WorldWideScience

Sample records for chromosome 22q11 duplication

  1. Radial aplasia and chromosome 22q11 deletion.

    Science.gov (United States)

    Digilio, M C; Giannotti, A; Marino, B; Guadagni, A M; Orzalesi, M; Dallapiccola, B

    1997-01-01

    We report on a neonate with deletion 22q11 (del22q11) presenting with facial dysmorphism, ocular coloboma, congenital heart defect, urogenital malformations, and unilateral radial aplasia. This malformation complex includes features frequently occurring in velocardiofacial syndrome as well as findings described in the CHARGE and VACTERL associations. To our knowledge, the present case is the first report of radial aplasia in del22q11. This observation further supports and extends the clinical variability of del22q11. Images PMID:9391893

  2. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    Science.gov (United States)

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with…

  3. Characterization of the past and current duplication activities in the human 22q11.2 region

    Directory of Open Access Journals (Sweden)

    Morrow Bernice

    2011-01-01

    Full Text Available Abstract Background Segmental duplications (SDs on 22q11.2 (LCR22, serve as substrates for meiotic non-allelic homologous recombination (NAHR events resulting in several clinically significant genomic disorders. Results To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young Alu SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young AluYs at their breakpoints. Conclusions Our study indicates that AluYs are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and Alu elements.

  4. Thrombocytopenia and Postpartum Hemorrhage in a Woman with Chromosome 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Deng, Kathy; Nanda, Deepak

    2016-01-01

    Chromosome 22q11.2 deletion syndrome, also known as DiGeorge or velocardiofacial syndrome, is associated with a wide spectrum of phenotypic features. It is known to be associated with severe macrothrombocytopenia. Postpartum hemorrhage is a leading cause of maternal morbidity and mortality globally. Chromosome 22q11.2 deletion syndrome is rare cause of thrombocytopenia that can be a significant risk factor for life-threatening postpartum hemorrhage. We report a case of postpartum hemorrhage in a woman with 22q11.2 deletion syndrome causing severe macrothrombocytopenia. PMID:27366335

  5. The Development of Cognitive Control in Children with Chromosome 22q11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Heather M Shapiro

    2014-06-01

    Full Text Available Chromosome 22q11.2 Deletion Syndrome (22q11.2DS is caused by the most common human microdeletion, and it is associated with cognitive impairments across many domains. While impairments in cognitive control have been described in children with 22q11.2DS, the nature and development of these impairments are not clear. Children with 22q11.2DS and typically developing children (TD were tested on four well-validated tasks aimed at measuring specific foundational components of cognitive control: response inhibition, cognitive flexibility, and working memory. Molecular assays were also conducted in order to examine genotype of catechol-O-methyltransferase (COMT, a gene located within the deleted region in 22q11.2DS and hypothesized to play a role in cognitive control. Mixed model regression analyses were used to examine group differences, as well as age-related effects on cognitive control component processes in a cross-sectional analysis. Regression models with COMT genotype were also conducted in order to examine potential effects of the different variants of the gene. Response inhibition, cognitive flexibility, and working memory were impaired in children with 22q11.2DS relative to TD children, even after accounting for global intellectual functioning (as measured by full-scale IQ. When compared with TD individuals, children with 22q11.2DS demonstrated atypical age-related patterns of response inhibition and cognitive flexibility. Both groups demonstrated typical age-related associations with working memory. The results of this cross-sectional analysis suggest a specific aberration in the development of systems mediating response inhibition in a sub-set of children with 22q11.2DS. It will be important to follow up with longitudinal analyses to directly examine these developmental trajectories, and correlate neurocognitive variables with clinical and adaptive outcome measures.

  6. Unambiguous molecular detections with multiple genetic approach for the complicated chromosome 22q11 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Lin Lung-Huang

    2009-02-01

    Full Text Available Abstract Background Chromosome 22q11 deletion syndrome (22q11DS causes a developmental disorder during the embryonic stage, usually because of hemizygous deletions. The clinical pictures of patients with 22q11DS vary because of polymorphisms: on average, approximately 93% of affected individuals have a de novo deletion of 22q11, and the rest have inherited the same deletion from a parent. Methods using multiple genetic markers are thus important for the accurate detection of these microdeletions. Methods We studied 12 babies suspected to carry 22q11DS and 18 age-matched healthy controls from unrelated Taiwanese families. We determined genomic variance using microarray-based comparative genomic hybridization (array-CGH, quantitative real-time polymerase chain reaction (qPCR and multiplex ligation-dependent probe amplification (MLPA. Results Changes in genomic copy number were significantly associated with clinical manifestations for the classical criteria of 22q11DS using MPLA and qPCR (p Conclusion Both MLPA and qPCR could produce a clearly defined range of deleted genomic DNA, whereas there must be a deleted genome that is not distinguishable using MLPA. These data demonstrate that such multiple genetic approaches are necessary for the unambiguous molecular detection of these types of complicated genomic syndromes.

  7. Chromosome 22q11.2 microdeletion in monozygotic twins with discordant phenotype and deletion size

    Directory of Open Access Journals (Sweden)

    Halder Ashutosh

    2012-03-01

    Full Text Available Abstract We report on a pair of male monozygotic twins with 22q11.2 microdeletion, discordant phenotype and discordant deletion size. The second twin had findings suggestive of DiGeorge syndrome, while the first twin had milder anomalies without any cardiac malformation. The second twin had presented with intractable convulsion, cyanosis and cardiovascular failure in the fourth week of life and expired on the sixth week of life, whereas the first twin had some characteristic facial appearance with developmental delay but no other signs of the 22q11.2 microdeletion syndrome including cardiovascular malformation. The fluorescence in situ hybridization (FISH analysis had shown a microdeletion on the chromosome 22q11.2 in both twins. The interphase FISH did not find any evidence for the mosaicism. The genomic DNA microarray analysis, using HumanCytoSNP-12 BeadChip (Illumina, was identical between the twins except different size of deletion of 22q11.2. The zygosity using HumanCytoSNP-12 BeadChip (Illumina microarray analysis suggested monozygosity. This observation indicates that altered size of the deletion may be the underlying etiology for the discordance in phenotype in monozygotic twins. We think early post zygotic events (mitotic non-allelic homologous recombination could have been played a role in the alteration of 22q11.2 deletion size and, thus phenotypic variability in the monozygotic twins.

  8. Domain specific attentional impairments in children with chromosome 22q11.2 deletion syndrome

    OpenAIRE

    Bish, Joel P.; Chiodo, Renee; Mattei, Victoria; Simon, Tony J.

    2007-01-01

    One of the defining cognitive characteristics of the chromosome 22q deletion syndrome (DS22q11.2) is visuospatial processing impairments. The purpose of this study was to investigate and extend the specific attentional profile of children with this disorder using both an object-based attention task and an inhibition of return task. A group of children with the disorder was compared in these tasks with a group of age-matched typically developing children. The children with DS22q11.2 demonstrat...

  9. Domain Specific Attentional Impairments in Children with Chromosome 22Q11.2 Deletion Syndrome

    Science.gov (United States)

    Bish, Joel P.; Chiodo, Renee; Mattei, Victoria; Simon, Tony J.

    2007-01-01

    One of the defining cognitive characteristics of the chromosome 22q deletion syndrome (DS22q11.2) is visuospatial processing impairments. The purpose of this study was to investigate and extend the specific attentional profile of children with this disorder using both an object-based attention task and an inhibition of return task. A group of…

  10. Early-onset Parkinson's Disease Associated with Chromosome 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Oki, Mitsuaki; Hori, Shin-ichiro; Asayama, Shinya; Wate, Reika; Kaneko, Satoshi; Kusaka, Hirofumi

    2016-01-01

    We herein report the case of a 43-year-old man with a 4-year history of resting tremor and akinesia. His resting tremor and rigidity were more prominent on the left side. He also presented retropulsion. His symptoms responded to the administration of levodopa. The patient also had a cleft lip and palate, cavum vergae, and hypoparathyroidism. A chromosome analysis disclosed a hemizygous deletion in 22q11.2, and he was diagnosed with early-onset Parkinson's disease associated with 22q11.2 deletion syndrome. However, the patient lacked autonomic nerve dysfunction, and his cardiac uptake of (123)I-metaiodobenzylguanidine was normal, indicating an underlying pathological mechanism that differed to that of sporadic Parkinson's disease. PMID:26831029

  11. Social Skills and Associated Psychopathology in Children with Chromosome 22q11.2 Deletion Syndrome: Implications for Interventions

    Science.gov (United States)

    Shashi, V.; Veerapandiyan, A.; Schoch, K.; Kwapil, T.; Keshavan, M.; Ip, E.; Hooper, S.

    2012-01-01

    Background: Although distinctive neuropsychological impairments have been delineated in children with chromosome 22q11 deletion syndrome (22q11DS), social skills and social cognition remain less well-characterised. Objective: To examine social skills and social cognition and their relationship with neuropsychological function/behaviour and…

  12. Overlapping Numerical Cognition Impairments in Children with Chromosome 22q11.2 Deletion or Turner Syndromes

    Science.gov (United States)

    Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor…

  13. 多重连接探针扩增技术在先天性心脏病22q11微缺失/微重复综合征诊断中的应用%Diagnosis of 22q11 deletion and duplication in congenital heart disease by multiplex iigation-dependent probe amplification

    Institute of Scientific and Technical Information of China (English)

    杨月华; 茹彤; 王志群; 胡娅莉; 朱湘玉; 莫绪明; 王东进; 姚金翠; 盛敏; 朱海燕; 李洁

    2009-01-01

    目的 染色体22q11区域基因拷贝数异常是先天性心脏病(CHD)的遗传病因之一,由其引起的CHD预后不良.该研究主要探讨多重连接探针扩增技术用于CHD 22q11微缺失或微重复遗传病因诊断的实用性,并了解22q11微缺失或微重复在CHD中的发生情况.方法 选择25个位于染色体22q11低重复拷贝序列A-H区域内、7个位于其周围(CES、22q13)和16个位于4、8、10、17号染色体上的基因位点共计48个探针组成多重连接探针,对181例外科手术前的CHD儿童和14例严重CHD或包括CHD的多发性畸形胎儿进行了22q11微缺失或微重复的检测,并进行了染色体核型分析.结果 195例患儿中,共检出22q11微缺失者7例(LCR A-D区6例,LCR A-C区1例),22q11微重复1例(LCR B-D区),涉及的CHD类犁包括室间隔缺损、房室间隔缺损、肺动脉狭窄和法洛四联征.同时染色体核型分析还发现了6例异常:1例21q部分缺失[46,XY,21q-],1例嵌合性8-三体[47,XY,+8/46,XY(1:2)],4例21-三体.其中1例21-三体与22q11微重复同时存在.结论 染色体22q11区域高密度多重连接探针检测技术能快速、灵敏、精确定位诊断染色体22q11区域基因拷贝数异常,适合于CHD的遗传学诊断;此外,22q11微缺失或微重复引起的CHD类型多种多样,建议所有CHD患者应常规进行遗传学检测.%Objective To investigate the clinical utility of multiplex ligation-dependent probe amplification ( MLPA) for detecting 22q11 deletion and duplication in congenital heart disease (CHD) cases and to study the incidence of 22q11 deletion and duplicaton in different kinds of CHD. Methods Forty-eight probes of which 25 located in 22q11 low copy number region ( LCR 22s A-H) , 7 in 22q11 surrounding region (CKS, 22q13) and 16 in chromosomes 4,8, 10 and 17 were selected to detect 22q11 deletion and duplication in 181 preoperative children with CHD and 14 fetuses with serious CHD or CHD with multiple malformations. In these

  14. Chromosome 22q11.2 deletion may contain a locus for recessive early-onset Parkinson’s disease

    OpenAIRE

    Ogaki, Kotaro; Ross, Owen A.

    2014-01-01

    Recently, it has been reported that carriers of a hemizygous chromosome 22q11.2 deletion may be at increased risk of early-onset Parkinson’s disease. Herein, we propose a hypothesis that it is not the microdeletion per se that is responsible for the phenotype but rather a complete loss of function of a gene within the region due to the combination of the deletion and another mutation on the alternate allele. Thus we propose the deletion may be highlighting a novel locus for ...

  15. A cross-sectional study of the development of volitional control of spatial attention in children with chromosome 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Shapiro Heather M

    2012-02-01

    Full Text Available Abstract Background Chromosome 22q11.2 deletion syndrome (22q11.2DS results from a 1.5- to 3-megabase deletion on the long arm of chromosome 22 and occurs in approximately 1 in 4000 live births. Previous studies indicate that children with 22q11.2DS are impaired on tasks involving spatial attention. However, the degree to which these impairments are due to volitionally generated (endogenous or reflexive (exogenous orienting of attention is unclear. Additionally, the efficacy of these component attention processes throughout child development in 22q11.2DS has yet to be examined. Methods Here we compared the performance of a wide age range (7 to 14 years of children with 22q11.2DS to typically developing (TD children on a comprehensive visual cueing paradigm to dissociate the contributions of endogenous and exogenous attentional impairments. Paired and two-sample t-tests were used to compare outcome measures within a group or between groups. Additionally, repeated measures regression models were fit to the data in order to examine effects of age on performance. Results We found that children with 22q11.2DS were impaired on a cueing task with an endogenous cue, but not on the same task with an exogenous cue. Additionally, it was younger children exclusively who were impaired on endogenous cueing when compared to age-matched TD children. Older children with 22q11.2DS performed comparably to age-matched TD peers on the endogenous cueing task. Conclusions These results suggest that endogenous but not exogenous orienting of attention is selectively impaired in children with 22q11.2DS. Additionally, the age effect on cueing in children with 22q11.2DS suggests a possible altered developmental trajectory of endogenous cueing.

  16. A cross-sectional analysis of the development of response inhibition in children with Chromosome 22q11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Heather M Shapiro

    2013-08-01

    Full Text Available Chromosome 22q11.2 Deletion Syndrome (22q11.2DS is a neurogenetic disorder that is associated with cognitive impairments and significantly elevated risk for developing schizophrenia. While impairments in response inhibition are central to executive dysfunction in schizophrenia, the nature and development of such impairments in children with 22q11.2DS, a group at high risk for the disorder, are not clear. Here we used a classic Go/No-Go paradigm to quantify proactive (anticipatory stopping and reactive (actual stopping response inhibition in 47 children with 22q11.2DS and 36 typically developing (TD children, all ages 7-14. A cross-sectional design was used to examine age-related associations with response inhibition. When compared with TD individuals, children with 22q11.2DS demonstrated typical proactive response inhibition at all ages. By contrast, reactive response inhibition was impaired in children with 22q11.2DS relative to TD children. While older age predicted better reactive response inhibition in TD children, there was no age-related association with reactive response inhibition in children with 22q11.2DS. Closer examination of individual performance data revealed a wide range of performance abilities in older children with 22q11.2DS; some typical and others highly impaired. The results of this cross-sectional analysis suggest an impaired developmental trajectory of reactive response inhibition in some children with 22q11.2DS that might be related to atypical development of neuroanatomical systems underlying this cognitive process. As part of a larger study, this investigation might help identify risk factors for conversion to schizophrenia and lead to early diagnosis and preventive intervention.

  17. 22q11-deletionssyndrom

    DEFF Research Database (Denmark)

    Olesen, Charlotte; Agergaard, Peter; Boers, Maria;

    2010-01-01

    22q11 deletion syndrome (formerly named CATCH22, DiGeorge, Velo-Cardio-Facial, Caylor, Kinouchi and Shprintzen syndrome) occurs in approximately 1/2000 to 4000 children. The genetic lesion is remarkably uniform, occurring mainly as 3 or 1.5 MB deletions in the 22q11.2 region. However, the clinical...

  18. Molecular Mechanisms and Diagnosis of Chromosome 22q11.2 Rearrangements

    Science.gov (United States)

    Emanuel, Beverly S.

    2008-01-01

    Several recurrent, constitutional genomic disorders are present on chromosome 22q. These include the translocations and deletions associated with DiGeorge and velocardiofacial syndrome and the translocations that give rise to the recurrent t(11;22) supernumerary der(22) syndrome (Emanuel syndrome). The rearrangement breakpoints on 22q cluster…

  19. A New Account of the Neurocognitive Foundations of Impairments in Space, Time, and Number Processing in Children with Chromosome 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Simon, Tony J.

    2008-01-01

    In this article, I present an updated account that attempts to explain, in cognitive processing and neural terms, the nonverbal intellectual impairments experienced by most children with deletions of chromosome 22q11.2. Specifically, I propose that this genetic syndrome leads to early developmental changes in the structure and function of clearly…

  20. Microdeletion 22q11 and oesophageal atresia

    Science.gov (United States)

    Digilio, M. C.; Marino, B.; Bagolan, P.; Giannotti, A.; Dallapiccola, B.

    1999-01-01

    Oesophageal atresia (OA) is a congenital defect associated with additional malformations in 30-70% of the cases. In particular, OA is a component of the VACTERL association. Since some major features of the VACTERL association, including conotruncal heart defect, radial aplasia, and anal atresia, have been found in patients with microdeletion 22q11.2 (del(22q11.2)), we have screened for del(22q11.2) by fluorescent in situ hybridisation (FISH) in 15 syndromic patients with OA. Del(22q11.2) was detected in one of them, presenting with OA, tetralogy of Fallot, anal atresia, neonatal hypocalcaemia, and subtle facial anomalies resembling those of velocardiofacial syndrome. The occurrence of del(22q11.2) in our series of patients with OA is low (1/15), but this chromosomal anomaly should be included among causative factors of malformation complexes with OA. In addition, clinical variability of del(22q11.2) syndrome is further corroborated with inclusion of OA in the list of the findings associated with the deletion.


Keywords: microdeletion 22q11; oesophageal atresia; VACTERL association; velocardiofacial syndrome PMID:10051013

  1. Genetics Home Reference: 22q11.2 deletion syndrome

    Science.gov (United States)

    ... Seattle, Washington Children's Hospital of Philadelphia Cincinnati Children's Hospital Medical Center Disease InfoSearch: 22q11.2 Deletion Syndrome Emory University School of Medicine Genetics Education Materials for School Success (GEMSS) MalaCards: chromosome 22q11. ...

  2. Complexity of a small non-protein coding sequence in chromosomal region 22q11.2: presence of specialized DNA secondary structures and RNA exon/intron motifs

    OpenAIRE

    Delihas, Nicholas

    2015-01-01

    Background DiGeorge Syndrome is a genetic abnormality involving ~3 Mb deletion in human chromosome 22, termed 22q.11.2. To better understand the non-coding regions of 22q.11.2, a small 10,000 bp non-protein-coding sequence close to the DiGeorge Critical Region 6 gene (DGCR6) was chosen for analysis and functional entities as the homologous sequence in the chimpanzee genome could be aligned and used for comparisons. Methods The GenBank database provided genomic sequences. In silico computer pr...

  3. ESOPHAGEAL ATRESIA WITH RECURRENT TRACHEOESOPHAGEAL FISTULAS AND MICRODUPLICATION 22q11.23.

    Science.gov (United States)

    Puvabanditsin, S; Garrow, E; February, M; Yen, E; Mehta, R

    2015-01-01

    The microduplication 22q11.2 syndrome has a wide range of clinical manifestations. The phenotype ranges from normal to mental retardation and congenital anomalies. Esophageal atresia/tracheoesophageal fistula (EA/TEF) has recently been linked with the Tbx1 gene mutation located on the long arm of chromosome 22(22q11.21). We report a case with 1.4 Mb 22q11.23 duplication detected by array-CGH. The father of this infant has the same interstitial microduplication but with a normal phenotype. The phenotype seen in our case is type C (3B) esophageal atresia, tracheoesophageal fistula, and ventricular septal defect. Our patient underwent primary repair of OA/TEF malformations, which was later complicated by pneumonia and a recurrent TEF. PMID:26625662

  4. Clinical, cytogenetic, and molecular outcomes in a series of 66 patients with Pierre Robin sequence and literature review: 22q11.2 deletion is less common than other chromosomal anomalies.

    Science.gov (United States)

    Gomez-Ospina, Natalia; Bernstein, Jonathan A

    2016-04-01

    Pierre Robin sequence (PRS) is an important craniofacial anomaly that can be seen as an isolated finding or manifestation of multiple syndromes. 22q11.2 deletion and Stickler syndrome are cited as the two most common conditions associated with PRS, but their frequencies are debated. We performed a retrospective study of 66 patients with PRS and reviewed their genetic testing, diagnoses, and clinical findings. The case series is complemented by a comprehensive literature review of the nature and frequency of genetic diagnosis in PRS. In our cohort 65% of patients had associated anomalies; of these, a genetic diagnosis was established in 56%. Stickler syndrome was the most common diagnosis, comprising approximately 11% of all cases, followed by Treacher Collins syndrome (9%). The frequency of 22q11.2 deletion was 1.5%. Chromosome arrays, performed for 72% of idiopathic PRS with associated anomalies, revealed two cases of 18q22→qter deletion, a region not previously reported in association with PRS. A review of the cytogenetic anomalies identified in this population supports an association between the 4q33-qter, 17q24.3, 2q33.1, and 11q23 chromosomal loci and PRS. We found a low frequency of 22q11.2 deletion in PRS, suggesting it is less commonly implicated in this malformation. Our data also indicate a higher frequency of cytogenetic anomalies in PRS patients with associated anomalies, and a potential new link with the 18q22→qter locus. The present findings underscore the utility of chromosomal microarrays in cases of PRS with associated anomalies and suggest that delaying testing for apparently isolated cases should be considered.

  5. Enhanced Maternal Origin of the 22q11.2 Deletion in Velocardiofacial and DiGeorge Syndromes

    DEFF Research Database (Denmark)

    Delio, Maria; Guo, Tingwei; McDonald-McGinn, Donna M;

    2013-01-01

    Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplication...

  6. C1-2 vertebral anomalies in 22q11.2 microdeletion syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Konen, Osnat; Armstrong, Derek; Padfield, Nancy; Blaser, Susan [Hospital for Sick Children, Diagnostic Imaging, Toronto (Canada); Clarke, Howard [Hospital for Sick Children, Plastic Surgery, Toronto (Canada); Weksberg, Rosanna [Hospital for Sick Children, Clinical and Metabolic Genetics, Toronto (Canada)

    2008-07-15

    Chromosome 22q11.2 microdeletion syndrome (22q11DS) is characterized by cleft palate, cardiac anomalies, characteristic facies, high prevalence of skeletal anomalies and learning disability. To evaluate the prevalence of craniovertebral junction anomalies in children with 22q11DS and compare these findings to those in nonsyndromic children with velopharyngeal insufficiency (VPI). Sequential CT scans performed for presurgical carotid assessment in 76 children (45 children positive for chromosome 22q11.2 deletion and 31 negative for the deletion) with VPI were retrospectively evaluated for assessment of C1-2 anomalies. C1-2 vertebral anomalies, specifically midline C1 defects, uptilted or upswept posterior elements of C2 and fusions of C2-3, were nearly universal in our cohort of 22q11DS patients with VPI. They were strikingly absent in the majority of non-22q11DS patients with VPI. C1-2 vertebral anomalies, particularly those listed above, are important radiographic markers for 22q11DS. (orig.)

  7. SNP Microarray in FISH Negative Clinically Suspected 22q11.2 Microdeletion Syndrome

    OpenAIRE

    Ashutosh Halder; Manish Jain; Amanpreet Kaur Kalsi

    2016-01-01

    The present study evaluated the role of SNP microarray in 101 cases of clinically suspected FISH negative (noninformative/normal) 22q11.2 microdeletion syndrome. SNP microarray was carried out using 300 K HumanCytoSNP-12 BeadChip array or CytoScan 750 K array. SNP microarray identified 8 cases of 22q11.2 microdeletions and/or microduplications in addition to cases of chromosomal abnormalities and other pathogenic/likely pathogenic CNVs. Clinically suspected specific deletions (22q11.2) were d...

  8. Proton magnetic resonance spectroscopy in 22q11 deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Fabiana da Silva Alves

    Full Text Available OBJECTIVE: People with velo-cardio-facial syndrome or 22q11 deletion syndrome (22q11DS have behavioral, cognitive and psychiatric problems. Approximately 30% of affected individuals develop schizophrenia-like psychosis. Glutamate dysfunction is thought to play a crucial role in schizophrenia. However, it is unknown if and how the glutamate system is altered in 22q11DS. People with 22q11DS are vulnerable for haploinsufficiency of PRODH, a gene that codes for an enzyme converting proline into glutamate. Therefore, it can be hypothesized that glutamatergic abnormalities may be present in 22q11DS. METHOD: We employed proton magnetic resonance spectroscopy ((1H-MRS to quantify glutamate and other neurometabolites in the dorsolateral prefrontal cortex (DLPFC and hippocampus of 22 adults with 22q11DS (22q11DS SCZ+ and without (22q11DS SCZ- schizophrenia and 23 age-matched healthy controls. Also, plasma proline levels were determined in the 22q11DS group. RESULTS: We found significantly increased concentrations of glutamate and myo-inositol in the hippocampal region of 22q11DS SCZ+ compared to 22q11DS SCZ-. There were no significant differences in levels of plasma proline between 22q11DS SCZ+ and 22q11DS SCZ-. There was no relationship between plasma proline and cerebral glutamate in 22q11DS. CONCLUSION: This is the first in vivo(1H-MRS study in 22q11DS. Our results suggest vulnerability of the hippocampus in the psychopathology of 22q11DS SCZ+. Altered hippocampal glutamate and myo-inositol metabolism may partially explain the psychotic symptoms and cognitive impairments seen in this group of patients.

  9. Deficits in microRNA-mediated Cxcr4/Cxcl12 signaling in neurodevelopmental deficits in a 22q11 deletion syndrome mouse model.

    OpenAIRE

    Toritsuka, Michihiro; Kimoto, Sohei; Muraki, Kazue; Landek-Salgado, Melissa A.; Yoshida, Atsuhiro; Yamamoto, Norio; Horiuchi, Yasue; Hiyama, Hideki; Tajinda, Katsunori; Keni, Ni; Illingworth, Elizabeth; Iwamoto, Takashi; Kishimoto, Toshifumi; Sawa, Akira; Tanigaki, Kenji

    2013-01-01

    22q11 deletion syndrome (22q11DS) frequently accompanies psychiatric conditions, some of which are classified as schizophrenia and bipolar disorder in the current diagnostic categorization. However, it remains elusive how the chromosomal microdeletion leads to the mental manifestation at the mechanistic level. Here we show that a 22q11DS mouse model with a deletion of 18 orthologous genes of human 22q11 (Df1/+ mice) has deficits in migration of cortical interneurons and hippocampal dentate pr...

  10. Exclusion of 22q11 deletion in Noonan syndrome with Tetralogy of Fallot

    Energy Technology Data Exchange (ETDEWEB)

    Digilio, M.C.; Marino, B.; Giannotti, A. [Bambino Gesu Hospital, Rome (Italy); Dallapiccola, B. [Univ. of Tor Vergata, Rome (Italy)]|[Casa Sollievo Sofferenza Hospital, San Giovanni Rotondo (Italy)

    1996-04-24

    We read with interest the report of Robin et al. [1995] published in recent issue of the Journal. The authors described 6 patients with Noonan syndrome (NS) who underwent molecular evaluation for submicroscopic deletion of chromosome band 22q11. None of those patients presented with conotruncal heart defects. Evidence for 22q11 hemizygosity was demonstrated in only one patient. This patient had NS-like manifestations without clinical manifestations of DiGeorge (DG) or velo-cardio-facial (VCF) syndromes. The molecular results obtained in the other 5 patients led the authors to conclude that classical NS is not due to del(22)(q11), even if some patients with del(22)(q11) may present NS-like manifestations. 12 refs., 1 tab.

  11. 22q11 deletion syndrome: a review of the neuropsychiatric features and their neurobiological basis

    Directory of Open Access Journals (Sweden)

    Squarcione C

    2013-12-01

    Full Text Available Chiara Squarcione, Maria Chiara Torti, Fabio Di Fabio, Massimo Biondi Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy Abstract: The 22q11.2 deletion syndrome (22q11DS is caused by an autosomal dominant microdeletion of chromosome 22 at the long arm (q 11.2 band. The 22q11DS is among the most clinically variable syndromes, with more than 180 features related with the deletion, and is associated with an increased risk of psychiatric disorders, accounting for up to 1%–2% of schizophrenia cases. In recent years, several genes located on chromosome 22q11 have been linked to schizophrenia, including those encoding catechol-O-methyltransferase and proline dehydrogenase, and the interaction between these and other candidate genes in the deleted region is an important area of research. It has been suggested that haploinsufficiency of some genes within the 22q11.2 region may contribute to the characteristic psychiatric phenotype and cognitive functioning of schizophrenia. Moreover, an extensive literature on neuroimaging shows reductions of the volumes of both gray and white matter, and these findings suggest that this reduction may be predictive of increased risk of prodromal psychotic symptoms in 22q11DS patients. Experimental and standardized cognitive assessments alongside neuroimaging may be important to identify one or more endophenotypes of schizophrenia, as well as a predictive prodrome that can be preventively treated during childhood and adolescence. In this review, we summarize recent data about the 22q11DS, in particular those addressing the neuropsychiatric and cognitive phenotypes associated with the deletion, underlining the recent advances in the studies about the genetic architecture of the syndrome. Keywords: 22q11 deletion syndrome, microdeletion, neuropsychiatric disorders, cognitive impairments

  12. A Longitudinal Examination of the Psychoeducational, Neurocognitive, and Psychiatric Functioning in Children with 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Hooper, Stephen R.; Curtiss, Kathleen; Schoch, Kelly; Keshavan, Matcheri S.; Allen, Andrew; Shashi, Vandana

    2013-01-01

    The present study sought to examine the longitudinal psychoeducational, neurocognitive, and psychiatric outcomes of children and adolescents with chromosome 22q11.2 deletion syndrome (22q11DS), a population with a high incidence of major psychiatric illnesses appearing in late adolescence/early adulthood. Little is known of the developmental…

  13. Assessing the Cognitive Translational Potential of a Mouse Model of the 22q11.2 Microdeletion Syndrome

    Science.gov (United States)

    Nilsson, Simon RO.; Fejgin, Kim; Gastambide, Francois; Vogt, Miriam A.; Kent, Brianne A.; Nielsen, Vibeke; Nielsen, Jacob; Gass, Peter; Robbins, Trevor W.; Saksida, Lisa M.; Stensbøl, Tine B.; Tricklebank, Mark D.; Didriksen, Michael; Bussey, Timothy J.

    2016-01-01

    A chromosomal microdeletion at the 22q11.2 locus is associated with extensive cognitive impairments, schizophrenia and other psychopathology in humans. Previous reports indicate that mouse models of the 22q11.2 microdeletion syndrome (22q11.2DS) may model the genetic basis of cognitive deficits relevant for neuropsychiatric disorders such as schizophrenia. To assess the models usefulness for drug discovery, a novel mouse (Df(h22q11)/+) was assessed in an extensive battery of cognitive assays by partners within the NEWMEDS collaboration (Innovative Medicines Initiative Grant Agreement No. 115008). This battery included classic and touchscreen-based paradigms with recognized sensitivity and multiple attempts at reproducing previously published findings in 22q11.2DS mouse models. This work represents one of the most comprehensive reports of cognitive functioning in a transgenic animal model. In accordance with previous reports, there were non-significant trends or marginal impairment in some tasks. However, the Df(h22q11)/+ mouse did not show comprehensive deficits; no robust impairment was observed following more than 17 experiments and 14 behavioral paradigms. Thus – within the current protocols – the 22q11.2DS mouse model fails to mimic the cognitive alterations observed in human 22q11.2 deletion carriers. We suggest that the 22q11.2DS model may induce liability for cognitive dysfunction with additional “hits” being required for phenotypic expression. PMID:27507786

  14. Recurrence risk figures for isolated tetralogy of Fallot after screening for 22q11 microdeletion.

    Science.gov (United States)

    Digilio, M C; Marino, B; Giannotti, A; Toscano, A; Dallapiccola, B

    1997-01-01

    Isolated tetralogy of Fallot (TF) has a multifactorial mode of inheritance in most cases, and recurrence risk rates of 2.5-3% have been attributed to first degree relatives of an affected child. In a subgroup of patients with a strong family history, the transmission of a monogenic trait has been suspected. Microdeletion 22q11 (del(22q11)) can cause TF in the setting of DiGeorge and velocardiofacial syndromes, and has also been related to familial conotruncal cardiac defects. Empirical risk figures in families after exclusion of del(22q11) have never been calculated. We have investigated the overall occurrence of congenital heart defect (CHD) in relatives of 102 patients with isolated non-syndromic TF previously screened for del(22q11). Our results show that the frequency of CHD is 3% in sibs, 0.5% in parents, 0.3% in grandparents, 0.2% in uncles or aunts, and 0.6% in first cousins. The recurrence risk rate for sibs in our series is the same as that previously estimated, indicating that after exclusion of patients with del(22q11) genetic counselling to patients with isolated TF should not be modified. A high concordance rate among our affected sibs has been documented. Gene(s) different from those located on chromosome 22q11 must be involved in causing familial aggregation of non-syndromic TF in these cases. Images PMID:9132487

  15. An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    František Váša

    2016-01-01

    Full Text Available Chromosome 22q11.2 deletion syndrome (22q11DS is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes, we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure as the affected core (A-core of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs — chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, “de-centralizing” the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30–40% of 22q11DS patients develop.

  16. Research progress on congenital heart disease 22q11.2 microdeletion%先天性心脏畸形22q11.2微缺失研究进展

    Institute of Scientific and Technical Information of China (English)

    梁玥宏; 田卉; 任晨春

    2013-01-01

    Chromosome 22q11.2 deletion syndrome is a common chromosome microdeletion.Its clinical manifestation is complex, comprising congenital heart disease, dysmorphic facial, immunodeficiency, endocrine dysfunction and so on. Microdeletion of 22q11.2 is an important genetic etiology of congenital heart disease. A symmetric recombination of homologous low-copy-repeats(LCRs) in the deletion region causes the deletion of 22q11.2. This article reviewed clinical characteristics, genetic mechanism, key genes and current study methods of 22q11.2 microdeletion in CHD.%22q11.2微缺失是最常见的染色体微缺失疾病,它的临床表现复杂多样,可表现为心脏、颅面、四肢、免疫和内分泌等多系统的异常。22q11.2微缺失是先天性心脏病患者的重要遗传病因。22q11.2微缺失产生的机制是缺失区域内低拷贝重复序列之间的不对称重组。对22q11.2微缺失的临床表现、遗传机制、关键基因以及当前对先心病22q11.2微缺失的研究方法进行综述。

  17. Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data

    OpenAIRE

    Mok, K. Y.; Sheerin, U.; Simón-Sánchez, J.; Salaka, A.; Chester, L.; Escott-Price, V; Mantripragada, K.; Doherty, K M; Noyce, A. J.; Mencacci, N. E.; Lubbe, S. J.; International Parkinson's Disease Genomics Consortium (IPDGC); Williams-Gray, C. H.; Barker, R. A.; Dijk, K.D. van

    2016-01-01

    Summary Background Parkinson's disease has been reported in a small number of patients with chromosome 22q11.2 deletion syndrome. In this study, we screened a series of large, independent Parkinson's disease case-control studies for deletions at 22q11.2. Methods We used data on deletions spanning the 22q11.2 locus from four independent case-control Parkinson's disease studies (UK Wellcome Trust Case Control Consortium 2, Dutch Parkinson's Disease Genetics Consortium, US National Institute on ...

  18. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study

    NARCIS (Netherlands)

    L.E. Campbell; E. Daly; F. Toal; A. Stevens; R. Azuma; M. Catani; V. Ng; T. van Amelsvoort; X. Chitnis; W. Cutter; D.G.M. Murphy; K.C. Murphy

    2006-01-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of de

  19. Divergent Patterns of Social Cognition Performance in Autism and 22q11.2 Deletion Syndrome (22q11DS)

    Science.gov (United States)

    McCabe, Kathryn L.; Melville, Jessica L.; Rich, Dominique; Strutt, Paul A.; Cooper, Gavin; Loughland, Carmel M.; Schall, Ulrich; Campbell, Linda E.

    2013-01-01

    Individuals with developmental disorders frequently report a range of social cognition deficits including difficulties identifying facial displays of emotion. This study examined the specificity of face emotion processing deficits in adolescents with either autism or 22q11DS compared to typically developing (TD) controls. Two tasks (face emotion…

  20. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome.

    Science.gov (United States)

    de la Morena, M Teresa; Eitson, Jennifer L; Dozmorov, Igor M; Belkaya, Serkan; Hoover, Ashley R; Anguiano, Esperanza; Pascual, M Virginia; van Oers, Nicolai S C

    2013-04-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p<0.05), with miR-185 expressed at 0.4× normal levels. The 22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance.

  1. Use of amniocytes for prenatal diagnosis of 22q11.2 microdeletion syndrome: a feasibility study

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; LIU Qing; WANG Yi-xin; YANG Dong; XIN Yi; FANG Zhen; DING Shu-fang; YANG Jie-fu

    2010-01-01

    Background A study of prenatal genetic diagnosis for 22q11.2 mierodeletion, which has a wide phenotypic spectrum that involves almost all organs, is rarely reported in China. This study aimed to explore the prevalence of 22q11.2 microdeletion in congenitally malformed fetuses via the fluorescent in situ hybridization (FISH) technique and to investigate the feasibility of use of amniocytes to diagnose 22q11.2 microdeletion syndrome prenatally.Methods The study enrolled 23 cases of fetal cardiac malformation, as indicated by ultrasound in Beijing Anzhen Hospital and 14 cases of non-cardiac malformation, as determined by type-B ultrasound in Beijing Anzhen Hospital and other hospitals. Amniotic fluid was obtained by amniocentesis before odinopoeia, and the stillborn fetuses of the induced labor were preceded to autopsy. The amniotic fluid of 20 cesarean deliveries during the same period of time was used as a control. The TUPLE1 gene in the amniotic fluid of malformed and normal fetuses was assessed by the FISH method.Results The prevalence rates of the TUPLE1 gene deletion in the amniotic fluid cells from fetuses with cardiac deformations and fetuses without such malformations were 43.5% and 57.1%, respectively. The deletion of TUPLE1 was significantly associated with fetal malformation.Conclusion Chromosome 22q11.2 microdeletion is one of the major factors leading to fetal congenital malformations, and prenatal FISH screening for 22q11.2 microdeletion syndrome is technically feasible using amniocytes.

  2. Fluorescence in situ hybridization (FISH screening for the 22q11.2 deletion in patients with clinical features of velocardiofacial syndrome but without cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Paula Sandrin-Garcia

    2007-01-01

    Full Text Available The velocardiofacial syndrome (VCFS, a condition associated with 22q11.2 deletions, is characterized by a typical facies, palatal anomalies, learning disabilities, behavioral disturbances and cardiac defects. We investigated the frequency of these chromosomal deletions in 16 individuals with VCFS features who presented no cardiac anomalies, one of the main characteristics of VCFS. Fluorescent in situ hybridization (FISH with the N25 (D22S75; 22q11.2 probe revealed deletions in ten individuals (62%. Therefore, even in the absence of cardiac anomalies testing for the 22q11.2 microdeletions in individuals showing other clinical features of this syndrome is recommended.

  3. Idiopathic thromobocytopenic purpura in two mothers of children with DiGeorge sequence: A new component manifestation of deletion 22q11?

    Energy Technology Data Exchange (ETDEWEB)

    Levy, A.; Philip, N. [Hopital d`Enfants de la Timone, Marseilles (France); Michel, G. [Hopital d`Enfants de la Timone, Marseilles (France)] [and others

    1997-04-14

    The phenotypic spectrum caused by the microdeletion of chromosome 22q11 region is known to be variable. Nearly all patients with DiGeorge sequence (DGS) and approximately 60% of patients with velocardiofacial syndrome exhibit the deletion. Recent papers have reported various congenital defects in patients with 22q11 deletions. Conversely, some patients have minimal clinical expression. Ten to 25% of parents of patients with DGS exhibit the deletion and are nearly asymptomatic. Two female patients carrying a 22q11 microdeletion and presenting with idiopathic thrombocytopenic purpura are reported. Both had children with typical manifestations of DGS. 12 refs., 4 figs., 1 tab.

  4. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Beverly A. Karpinski

    2014-02-01

    Full Text Available We assessed feeding-related developmental anomalies in the LgDel mouse model of chromosome 22q11 deletion syndrome (22q11DS, a common developmental disorder that frequently includes perinatal dysphagia – debilitating feeding, swallowing and nutrition difficulties from birth onward – within its phenotypic spectrum. LgDel pups gain significantly less weight during the first postnatal weeks, and have several signs of respiratory infections due to food aspiration. Most 22q11 genes are expressed in anlagen of craniofacial and brainstem regions critical for feeding and swallowing, and diminished expression in LgDel embryos apparently compromises development of these regions. Palate and jaw anomalies indicate divergent oro-facial morphogenesis. Altered expression and patterning of hindbrain transcriptional regulators, especially those related to retinoic acid (RA signaling, prefigures these disruptions. Subsequently, gene expression, axon growth and sensory ganglion formation in the trigeminal (V, glossopharyngeal (IX or vagus (X cranial nerves (CNs that innervate targets essential for feeding, swallowing and digestion are disrupted. Posterior CN IX and X ganglia anomalies primarily reflect diminished dosage of the 22q11DS candidate gene Tbx1. Genetic modification of RA signaling in LgDel embryos rescues the anterior CN V phenotype and returns expression levels or pattern of RA-sensitive genes to those in wild-type embryos. Thus, diminished 22q11 gene dosage, including but not limited to Tbx1, disrupts oro-facial and CN development by modifying RA-modulated anterior-posterior hindbrain differentiation. These disruptions likely contribute to dysphagia in infants and young children with 22q11DS.

  5. Candidate Genes and the Behavioral Phenotype in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Prasad, Sarah E.; Howley, Sarah; Murphy, Kieran C.

    2008-01-01

    There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk…

  6. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    Full Text Available Deletion of the 1.5-3 Mb region of chromosome 22 at locus 11.2 gives rise to the chromosome 22q11.2 deletion syndrome (22q11DS, also known as DiGeorge and Velocardiofacial Syndromes. It is the most common micro-deletion disorder in humans and one of the most common multiple malformation syndromes. The syndrome is characterized by a broad phenotype, whose characterization has expanded considerably within the last decade and includes many associated findings such as craniofacial anomalies (40%, conotruncal defects of the heart (CHD; 70-80%, hypocalcemia (20-60%, and a range of neurocognitive anomalies with high risk of schizophrenia, all with a broad phenotypic variability. These phenotypic features are believed to be the result of a change in the copy number or dosage of the genes located in the deleted region. Despite this relatively clear genetic etiology, very little is known about which genes modulate phenotypic variations in humans or if they are due to combinatorial effects of reduced dosage of multiple genes acting in concert. Here, we report on decreased expression levels of genes within the deletion region of chromosome 22, including DGCR8, in peripheral leukocytes derived from individuals with 22q11DS compared to healthy controls. Furthermore, we found dysregulated miRNA expression in individuals with 22q11DS, including miR-150, miR-194 and miR-185. We postulate this to be related to DGCR8 haploinsufficiency as DGCR8 regulates miRNA biogenesis. Importantly we demonstrate that the level of some miRNAs correlates with brain measures, CHD and thyroid abnormalities, suggesting that the dysregulated miRNAs may contribute to these phenotypes and/or represent relevant blood biomarkers of the disease in individuals with 22q11DS.

  7. A case report of 22q11 deletion syndrome confirmed by array-CGH method

    Directory of Open Access Journals (Sweden)

    Maryam Sedghi

    2012-01-01

    Full Text Available Velo-cardio-facial syndrome (VCFS is caused by a submicroscopic deletion on the long arm of chromosome 22 and affects approximately 1 in 4000 persons, making it the second most prevalent genetic syndrome after Down syndrome and the most common genetic syndrome associated with cleft palate. Most of the 22q11.2 deletion cases are new occurrences or sporadic; however, in about 10 % of families, the deletion is inherited and other family members are affected or at risk for passing this deletion to their children. This report describes a 1.5 years-old male child with clinical signs of velo-cardio-facial syndrome (VCFS presented with heart defect, soft cleft palate, developmental delay, acrocephaly, seizure, MRI abnormalities and descriptive facial feature, such as hypertelorism. Array-CGH test was done to confirm the diagnosis; the result revealed a 2.6 Mbp deletion in 22q11.2 chromosome that containing TBX1 and COMT genes. Our data suggest that haploinsufficiency of TBX1 gene is probably a major contributor to some of the syndrome characteristic signs, such as heart defect. Because of developmental delay and dysmorphic facial feature were observed in the index′s mother and relatives, inherited autosomal dominant form of VCF is probable, and MLPA (multiplex ligation-dependent probe amplification test should be performed for parents to estimate the recurrent risk in next pregnancy.

  8. Disrupted anatomic networks in the 22q11.2 deletion syndrome.

    Science.gov (United States)

    Schmitt, J Eric; Yi, James; Calkins, Monica E; Ruparel, Kosha; Roalf, David R; Cassidy, Amy; Souders, Margaret C; Satterthwaite, Theodore D; McDonald-McGinn, Donna M; Zackai, Elaine H; Gur, Ruben C; Emanuel, Beverly S; Gur, Raquel E

    2016-01-01

    The 22q11.2 deletion syndrome (22q11DS) is an uncommon genetic disorder with an increased risk of psychosis. Although the neural substrates of psychosis and schizophrenia are not well understood, aberrations in cortical networks represent intriguing potential mechanisms. Investigations of anatomic networks within 22q11DS are sparse. We investigated group differences in anatomic network structure in 48 individuals with 22q11DS and 370 typically developing controls by analyzing covariance patterns in cortical thickness among 68 regions of interest using graph theoretical models. Subjects with 22q11DS had less robust geographic organization relative to the control group, particularly in the occipital and parietal lobes. Multiple global graph theoretical statistics were decreased in 22q11DS. These results are consistent with prior studies demonstrating decreased connectivity in 22q11DS using other neuroimaging methodologies. PMID:27622139

  9. SDF1-CXCR4 signaling: A new player involved in DiGeorge/22q11-deletion syndrome

    Science.gov (United States)

    Duband, Jean-Loup; Escot, Sophie; Fournier-Thibault, Claire

    2016-01-01

    ABSTRACT The DiGeorge/22q11-deletion syndrome (22q11DS), also known as velocardiofacial syndrome, is a congenital disease causing numerous structural and behavioral disorders, including cardiac outflow tract anomalies, craniofacial dysmorphogenesis, parathyroid and thymus hypoplasia, and mental disorders. It results from a unique chromosomal microdeletion on the 22q11.2 region in which the transcriptional activator TBX1 is decisive for the occurrence of the disease. During embryogenesis, Tbx1 is required for patterning of pharyngeal region giving rise to structures of the face, neck and chest. Genetic and developmental studies demonstrated that the severity and variability of the syndrome are determined by Tbx1 targets involved in pharyngeal neural crest cell migration and survival. Recently, we demonstrated that the chemokine Sdf1/Cxcl12 and its receptor Cxcr4 are genetically downstream of Tbx1 during pharyngeal development and that reduction of CXCR4 signaling results in defects which recapitulate the major morphological anomalies of 22q11DS, supporting the possibility of a pivotal role for the SDF1/CXCR4 axis in its etiology. PMID:27500073

  10. The neurocognitive phenotype of the 22q11.2 deletion syndrome: selective deficit in visual-spatial memory.

    Science.gov (United States)

    Bearden, C E; Woodin, M F; Wang, P P; Moss, E; McDonald-McGinn, D; Zackai, E; Emannuel, B; Cannon, T D

    2001-08-01

    The 22q11.2 deletion syndrome (velocardiofacial/DiGeorge syndrome) is associated with a high frequency of learning disabilities. Although previous work has demonstrated that verbal skills are typically better preserved than non-verbal skills on both IQ and academic achievement testing in children with this syndrome, such measures are not sufficiently specific to determine a selective cognitive deficit. As part of an ongoing prospective study of patients with this syndrome, 29 children aged 5-17 with confirmed 22q11.2 deletions were assessed with a comprehensive neuropsychological test battery, including matched tasks of verbal and visuospatial memory. Results indicate that 22q patients displayed a selective deficit in visual-spatial memory, which was mirrored by deficits in arithmetic and general visual-spatial cognition. Further, a dissociation between visual-spatial and object memory was observed, indicating further selectivity of this pattern of deficit, and providing evidence for the dissociability of these components of visual cognition. These results indicate that children with 22q11.2 deletions display a specific neurocognitive phenotype, and suggest that this region of Chromosome 22q11 may harbor a gene or genes relevant to the etiology of nonverbal learning deficits. PMID:11780945

  11. Whole-Genome Sequencing Suggests Schizophrenia Risk Mechanisms in Humans with 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Merico, Daniele; Zarrei, Mehdi; Costain, Gregory; Ogura, Lucas; Alipanahi, Babak; Gazzellone, Matthew J.; Butcher, Nancy J.; Thiruvahindrapuram, Bhooma; Nalpathamkalam, Thomas; Chow, Eva W. C.; Andrade, Danielle M.; Frey, Brendan J.; Marshall, Christian R.; Scherer, Stephen W.; Bassett, Anne S.

    2015-01-01

    Chromosome 22q11.2 microdeletions impart a high but incomplete risk for schizophrenia. Possible mechanisms include genome-wide effects of DGCR8 haploinsufficiency. In a proof-of-principle study to assess the power of this model, we used high-quality, whole-genome sequencing of nine individuals with 22q11.2 deletions and extreme phenotypes (schizophrenia, or no psychotic disorder at age >50 years). The schizophrenia group had a greater burden of rare, damaging variants impacting protein-coding neurofunctional genes, including genes involved in neuron projection (nominal P = 0.02, joint burden of three variant types). Variants in the intact 22q11.2 region were not major contributors. Restricting to genes affected by a DGCR8 mechanism tended to amplify between-group differences. Damaging variants in highly conserved long intergenic noncoding RNA genes also were enriched in the schizophrenia group (nominal P = 0.04). The findings support the 22q11.2 deletion model as a threshold-lowering first hit for schizophrenia risk. If applied to a larger and thus better-powered cohort, this appears to be a promising approach to identify genome-wide rare variants in coding and noncoding sequence that perturb gene networks relevant to idiopathic schizophrenia. Similarly designed studies exploiting genetic models may prove useful to help delineate the genetic architecture of other complex phenotypes. PMID:26384369

  12. White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia.

    Science.gov (United States)

    da Silva Alves, Fabiana; Schmitz, Nicole; Bloemen, Oswald; van der Meer, Johan; Meijer, Julia; Boot, Erik; Nederveen, Aart; de Haan, Lieuwe; Linszen, Don; van Amelsvoort, Therese

    2011-10-01

    Dysfunction of cerebral white matter (WM) is a potential factor underlying the neurobiology of schizophrenia. People with 22q11 deletion syndrome have altered brain morphology and increased risk for schizophrenia, therefore decreased WM integrity may be related to schizophrenia in 22q11DS. We measured fractional anisotropy (FA) and WM volume in 27 adults with 22q11DS with schizophrenia (n=12, 22q11DS SCZ+) and without schizophrenia (n=15, 22q11DS SCZ-), 12 individuals with idiopathic schizophrenia and 31 age-matched healthy controls. We found widespread decreased WM volume in posterior and temporal brain areas and decreased FA in areas of the frontal cortex in the whole 22q11DS group compared to healthy controls. In 22q11DS SCZ+ compromised WM integrity included inferior frontal areas of parietal and occipital lobe. Idiopathic schizophrenia patients showed decreased FA in inferior frontal and insular regions compared to healthy controls. We found no WM alterations in 22q11DS SCZ+ vs. 22q11DS SCZ-. However, there was a negative correlation between FA and PANSS scores (Positive and Negative Symptom Scale) in the whole 22q11DS group in the inferior frontal, cingulate, insular and temporal areas. This is the first study to investigate WM integrity in adults with 22q11DS. Our results suggest that pervasive WM dysfunction is intrinsic to 22q11DS and that psychotic development in adults with 22q11DS involves similar brain areas as seen in schizophrenia in the general population.

  13. Behavior in preschool children with the 22q11.2 deletion syndrome.

    Science.gov (United States)

    Klaassen, Petra; Duijff, Sasja; Swanenburg de Veye, Henriette; Vorstman, Jacob; Beemer, Frits; Sinnema, Gerben

    2013-01-01

    Children with the 22q11.2 deletion syndrome (22q11DS) are at an increased risk of psychiatric problems from pre-adolescence; little is known, however, about behavioral problems at a preschool age and the relationship between speech and behavior in this group. Parents of 90 children (aged 1.42-5.99 years) with 22q11DS filled out the Child Behavior Checklist, documenting behaviors including speech problems. Their profiles were compared with those of a comparison group consisting of 33 children with nonsyndromic orofacial clefts without 22q11DS, since both children with 22q11DS and children with clefts are expected to have speech problems. In the 22q11DS group, data on intelligence was acquired by means of formal tests. Parents of children with 22q11DS reported significantly higher mean scores on withdrawn behavior, affective problems and pervasive developmental problems compared to children with nonsyndromic clefts. Approximately 30% of children with 22q11DS had a score above the 97th percentile on at least one of the behavior subscales, indicating psychopathology. In children with 22q11DS, the reported behavioral problems were not associated with speech problems. Behavioral problems were found in 30% of young children with 22q11DS and were unlikely to be caused by speech problems. Within the 22q11DS group, behavioral problems were not related to the degree of cognitive impairment. This shows that many children with 22q11DS, known to be at an increased risk of psychiatric problems from pre-adolescence, already show behavioral problems before the age of 6 years.

  14. Prodromal Symptoms in Adolescents with 22q11.2 Deletion Syndrome and Schizotypal Personality Disorder

    OpenAIRE

    Shapiro, DI; Cubells, JF; Ousley, OY; Rockers, K; Walker, EF

    2011-01-01

    Adolescents with 22q11.2 Deletion Syndrome (22q11.2DS) and Schizotypal Personality Disorder (SPD) are at increased risk for the development of psychosis based, respectively, on genetic or behavioral factors. Thus both groups would be expected to manifest heightened rates of the prodromal signs that typically precede psychosis. Although there are now standardized procedures for assessing prodromal symptoms, there has been little research on the manifestation of these symptoms in 22q11.2DS pati...

  15. 22q11 Deletion Syndrome and Multiple Complex Developmental Disorder: a case report

    NARCIS (Netherlands)

    V. Scandurra; M.R. Scordo; R. Canitano; E.I. de Bruin

    2013-01-01

    22q11.2 Deletion Syndrome (22q11 DS) is a multisystemic condition that may also include neuropsychiatric disorders. We present a case of a 15-year-old boy that was evaluated for social difficulties, and anxiety with the above genetic abnormality. Clinical features were rather complex as different ne

  16. Subtypes in 22q11.2 Deletion Syndrome Associated with Behaviour and Neurofacial Morphology

    Science.gov (United States)

    Sinderberry, Brooke; Brown, Scott; Hammond, Peter; Stevens, Angela F.; Schall, Ulrich; Murphy, Declan G. M.; Murphy, Kieran C.; Campbell, Linda E.

    2013-01-01

    22q11.2 deletion syndrome (22q11DS) has a complex phenotype with more than 180 characteristics, including cardiac anomalies, cleft palate, intellectual disabilities, a typical facial morphology, and mental health problems. However, the variable phenotype makes it difficult to predict clinical outcome, such as the high prevalence of psychosis among…

  17. White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia

    NARCIS (Netherlands)

    F. da Silva Alves; N. Schmitz; O. Bloemen; J. van der Meer; J. Meijer; E. Boot; A. Nederveen; L. de Haan; D. Linszen; T. van Amelsvoort

    2011-01-01

    Dysfunction of cerebral white matter (WM) is a potential factor underlying the neurobiology of schizophrenia. People with 22q11 deletion syndrome have altered brain morphology and increased risk for schizophrenia, therefore decreased WM integrity may be related to schizophrenia in 22q11DS. We measur

  18. Novel susceptibility locus at 22q11 for diabetic nephropathy in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Maija Wessman

    Full Text Available BACKGROUND: Diabetic nephropathy (DN affects about 30% of patients with type 1 diabetes (T1D and contributes to serious morbidity and mortality. So far only the 3q21-q25 region has repeatedly been indicated as a susceptibility region for DN. The aim of this study was to search for new DN susceptibility loci in Finnish, Danish and French T1D families. METHODS AND RESULTS: We performed a genome-wide linkage study using 384 microsatellite markers. A total of 175 T1D families were studied, of which 94 originated from Finland, 46 from Denmark and 35 from France. The whole sample set consisted of 556 individuals including 42 sib-pairs concordant and 84 sib-pairs discordant for DN. Two-point and multi-point non-parametric linkage analyses were performed using the Analyze package and the MERLIN software. A novel DN locus on 22q11 was identified in the joint analysis of the Finnish, Danish and French families by genome-wide multipoint non-parametric linkage analysis using the Kong and Cox linear model (NPL(pairs LOD score 3.58. Nominal or suggestive evidence of linkage to this locus was also detected when the three populations were analyzed separately. Suggestive evidence of linkage was found to six additional loci in the Finnish and French sample sets. CONCLUSIONS: This study identified a novel DN locus at chromosome 22q11 with significant evidence of linkage to DN. Our results suggest that this locus may be of importance in European populations. In addition, this study supports previously indicated DN loci on 3q21-q25 and 19q13.

  19. Default mode network connectivity and reciprocal social behavior in 22q11.2 deletion syndrome

    OpenAIRE

    Schreiner, Matthew J.; Karlsgodt, Katherine H; Uddin, Lucina Q.; Chow, Carolyn; Congdon, Eliza; Jalbrzikowski, Maria; Bearden, Carrie E.

    2013-01-01

    22q11.2 deletion syndrome (22q11DS) is a genetic mutation associated with disorders of cortical connectivity and social dysfunction. However, little is known about the functional connectivity (FC) of the resting brain in 22q11DS and its relationship with social behavior. A seed-based analysis of resting-state functional magnetic resonance imaging data was used to investigate FC associated with the posterior cingulate cortex (PCC), in (26) youth with 22qDS and (51) demographically matched cont...

  20. Cayler cardiofacial syndrome and del 22q11: Part of the CATCH22 phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, A.; Digilio, M.C.; Marino, B. [Bambino Gesu Hospital, Rome (Italy); Mingarelli, R.; Dallapiccola, B. [Tor Vergata Univ., Rome (Italy)

    1994-11-15

    The authors report evidence supporting the hypothesis that del(22)(q11) can be a pathogenetic mechanism for the association between hypoplasia of the depressor anguli oris muscle (DAOM) and conotruncal cardiac malformations. A series of over 180 patients was investigated with deletions of 22q11 with conotruncal defects. About 2/3 of these patients had isolated, nonfamilial cardiac defects. Hemizygosity was searched using the HD7k probe and densitometric analysis. In the patients with molecular evidence of del(22)(q11), hemizygosity was confirmed also using fluorescence in situ hybridization (FISH) with SC11.1 probe. No deletion was found in the parents of hemizygous patients. 16 refs.

  1. Prevalence and Nature of Hearing Loss in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Van Eynde, Charlotte; Swillen, Ann; Lambeens, Elien; Verhaert, Nicolas; Desloovere, Christian; Luts, Heleen; Vander Poorten, Vincent; Devriendt, Koenraad; Hens, Greet

    2016-01-01

    Purpose: The purpose of this study was to clarify the prevalence, type, severity, and age-dependency of hearing loss in 22q11.2 deletion syndrome. Method: Extensive audiological measurements were conducted in 40 persons with proven 22q11.2 deletion (aged 6-36 years). Besides air and bone conduction thresholds in the frequency range between 0.125…

  2. The Neuropsychology of 22q11 Deletion Syndrome. A Neuropsychiatric Study of 100 Individuals

    Science.gov (United States)

    Niklasson, Lena; Gillberg, Christopher

    2010-01-01

    The primary objective of this study was to study the impact of ASD/ADHD on general intellectual ability and profile, executive functions and visuo-motor skills in children and adults with 22q11 deletion syndrome (22q11DS). A secondary aim was to study if gender, age, heart disease, ASD, ADHD or ASD in combination with ADHD had an impact on general…

  3. Cognitive decline preceding the onset of psychosis in patients with 22q11.2 deletion syndrome

    NARCIS (Netherlands)

    Vorstman, Jacob A S; Breetvelt, Elemi J.; Duijff, Sasja N.; Eliez, Stephan; Schneider, Maude; Jalbrzikowski, Maria; Armando, Marco; Vicari, Stefano; Shashi, Vandana; Hooper, Stephen R.; Chow, Eva W C; Fung, Wai Lun Alan; Butcher, Nancy J.; Young, Donald A.; McDonald-McGinn, Donna M.; Vogels, Annick; Van Amelsvoort, Therese; Gothelf, Doron; Weinberger, Ronnie; Weizman, Abraham; Klaassen, Petra W J; Koops, Sanne; Kates, Wendy R.; Antshel, Kevin M.; Simon, Tony J.; Ousley, Opal Y.; Swillen, Ann; Gur, Raquel E.; Bearden, Carrie E.; Kahn, René S.; Bassett, Anne S.; Emanuel, Beverly S.; Zackai, Elaine H.; Kushan, Leila; Fremont, Wanda; Schoch, Kelly; Stoddard, Joel; Cubells, Joseph; Fu, Fiona; Campbell, Linda E.; Fritsch, Rosemarie; Vergaelen, Elfi; Neeleman, Marjolein; Boot, Erik; Debbané, Martin; Philip, Nicole; Green, Tamar; Van DenBree, Marianne B M; Murphy, Declan; Canyelles, Jaume Morey; Arango, Celso; Murphy, Kieran C.; Pontillo, Maria

    2015-01-01

    Importance: Patients with 22q11.2 deletion syndrome (22q11DS) have an elevated (25%) risk of developing schizophrenia. Recent reports have suggested that a subgroup of children with 22q11DS display a substantial decline in cognitive abilities starting at a young age.Objective: To determine whether e

  4. Chromosome I duplications in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    McKim, K.S.; Rose, A.M. (Univ. of British Columbia, Vancouver (Canada))

    1990-01-01

    We have isolated and characterized 76 duplications of chromosome I in the genome of Caenorhabditis elegans. The region studied is the 20 map unit left half of the chromosome. Sixty-two duplications were induced with gamma radiation and 14 arose spontaneously. The latter class was apparently the result of spontaneous breaks within the parental duplication. The majority of duplications behave as if they are free. Three duplications are attached to identifiable sequences from other chromosomes. The duplication breakpoints have been mapped by complementation analysis relative to genes on chromosome I. Nineteen duplication breakpoints and seven deficiency breakpoints divide the left half of the chromosome into 24 regions. We have studied the relationship between duplication size and segregational stability. While size is an important determinant of mitotic stability, it is not the only one. We observed clear exceptions to a size-stability correlation. In addition to size, duplication stability may be influenced by specific sequences or chromosome structure. The majority of the duplications were stable enough to be powerful tools for gene mapping. Therefore the duplications described here will be useful in the genetic characterization of chromosome I and the techniques we have developed can be adapted to other regions of the genome.

  5. Are 22q11.2 distal deletions associated with math difficulties?

    Science.gov (United States)

    Carvalho, Maria Raquel Santos; Vianna, Gabrielle; Oliveira, Lívia de Fátima Silva; Costa, Annelise Julio; Pinheiro-Chagas, Pedro; Sturzenecker, Rosane; Zen, Paulo Ricardo Gazzola; Rosa, Rafael Fabiano Machado; de Aguiar, Marcos José Burle; Haase, Vitor Geraldi

    2014-09-01

    Approximately 6% of school-aged children have math difficulties (MD). A neurogenetic etiology has been suggested due to the presence of MD in some genetic syndromes such as 22q11.2DS. However, the contribution of 22q11.2DS to the MD phenotype has not yet been investigated. This is the first population-based study measuring the frequency of 22q11.2DS among school children with MD. Children (1,564) were identified in the schools through a screening test for language and math. Of these children, 152 (82 with MD and 70 controls) were selected for intelligence, general neuropsychological, and math cognitive assessments and for 22q11.2 microdeletion screening using MLPA. One child in the MD group had a 22q11.2 deletion spanning the LCR22-4 to LCR22-5 interval. This child was an 11-year-old girl with subtle anomalies, normal intelligence, MD attributable to number sense deficit, and difficulties in social interactions. Only 19 patients have been reported with this deletion. Upon reviewing these reports, we were able to characterize a new syndrome, 22q11.2 DS (LCR22-4 to LCR22-5), characterized by prematurity; pre- and postnatal growth restriction; apparent hypotelorism, short/upslanting palpebral fissures; hypoplastic nasal alae; pointed chin and nose; posteriorly rotated ears; congenital heart defects; skeletal abnormalities; developmental delay, particularly compromising the speech; learning disability (including MD, in one child); intellectual disability; and behavioral problems. These results suggest that 22q11.2 DS (LCR22-4 to LCR22-5) may be one of the genetic causes of MD.

  6. Neuroimaging correlates of 22q11.2 deletion syndrome: implications for schizophrenia research.

    Science.gov (United States)

    Boot, E; van Amelsvoort, T A M J

    2012-01-01

    22q11.2 Deletion syndrome (22q11DS) is the most common known recurrent copy-number variant disorder. It is also the most common known genetic risk factor for schizophrenia. The greater homogeneity of subjects with schizophrenia in 22q11DS compared with schizophrenia in the wider non-deleted population may help to identify much needed information on neuroanatomical substrates, and neurochemical and neurofunctional mechanisms that may modulate the risk for schizophrenia. Identification of the underlying pathophysiology creates opportunities for developing genotype-specific, biology-based and targeted treatments to prevent, delay or minimize the severity of schizophrenia in both 22q11DS and the wider non-deleted population. This article reviews neuroimaging studies that focused on brain structure and function in this high-risk population, with particular attention to schizophrenia research. We also discuss the evidence on the role of candidate genes within the 22q11.2 region, with particular reference to catechol-O-methyl transferase (COMT) and proline dehydrogenase (PRODH). PMID:23279171

  7. Behavioral phenotype in children with 22q11DS: agreement between parents and teachers.

    Science.gov (United States)

    Klaassen, Petra W J; Duijff, Sasja N; Sinnema, Gerben; Beemer, Frits A; Swanenburg de Veye, Henriëtte F N; Vorstman, Jacob A S

    2015-03-01

    Patients with the 22q11-deletion syndrome (22q11DS) are at an increased risk of developing schizophrenia. Besides the effects of genetic variation, environmental factors could also be important in modifying the risk of schizophrenia in 22q11DS patients. In particular, previous studies have shown the importance of stress as a precipitating factor of psychosis. An incongruence between the perceived and actual severity of behavioral and cognitive domains could lead caregivers, and even the children themselves, to make demands that are insufficiently adapted to the child's abilities, causing stress and anxiety. Here, we investigate whether such diagnostic discrepancies are indeed present by comparing parent and teacher reports on behavioral concerns in children with 22q11DS. Behavioral questionnaires (CBCL and TRF) were prepared for both parents and teachers of 146 children with 22q11DS. We found that in line with previous reports, internalizing behavior was more frequently reported than externalizing behavior. While the behavioral profiles reported by parents and teachers were remarkably similar, the teachers' ratings were significantly lower (Total problem score p = .002). Age and IQ were not significantly associated with the severity of reported concerns. Our results indicate that indeed a disparity often exists between parents' and teachers' perceptions of the severity of a child's behavioral deficits. This may result in (substantially) different demands and expectations being placed on the child from the two fronts. We speculate that the stress resulting from this lack of cohesion between parents and teachers could precipitate, at least in some 22q11DS children, the emergence of psychosis.

  8. Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome

    Directory of Open Access Journals (Sweden)

    Maria eJalbrzikowski

    2014-11-01

    Full Text Available 22q11.2 Microdeletion Syndrome (22q11DS is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: 1 differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI measures within white matter tracts; 2 whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and 3 relationships between DTI measures, social cognition task performance and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls. We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA, axial (AD and radial diffusivity (RD, using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the inferior fronto-occipital fasciculus in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to

  9. TBX1 mutation identified by exome sequencing in a Japanese family with 22q11.2 deletion syndrome-like craniofacial features and hypocalcemia.

    Directory of Open Access Journals (Sweden)

    Tsutomu Ogata

    Full Text Available BACKGROUND: Although TBX1 mutations have been identified in patients with 22q11.2 deletion syndrome (22q11.2DS-like phenotypes including characteristic craniofacial features, cardiovascular anomalies, hypoparathyroidism, and thymic hypoplasia, the frequency of TBX1 mutations remains rare in deletion-negative patients. Thus, it would be reasonable to perform a comprehensive genetic analysis in deletion-negative patients with 22q11.2DS-like phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We studied three subjects with craniofacial features and hypocalcemia (group 1, two subjects with craniofacial features alone (group 2, and three subjects with normal phenotype within a single Japanese family. Fluorescence in situ hybridization analysis excluded chromosome 22q11.2 deletion, and genomewide array comparative genomic hybridization analysis revealed no copy number change specific to group 1 or groups 1+2. However, exome sequencing identified a heterozygous TBX1 frameshift mutation (c.1253delA, p.Y418fsX459 specific to groups 1+2, as well as six missense variants and two in-frame microdeletions specific to groups 1+2 and two missense variants specific to group 1. The TBX1 mutation resided at exon 9C and was predicted to produce a non-functional truncated protein missing the nuclear localization signal and most of the transactivation domain. CONCLUSIONS/SIGNIFICANCE: Clinical features in groups 1+2 are well explained by the TBX1 mutation, while the clinical effects of the remaining variants are largely unknown. Thus, the results exemplify the usefulness of exome sequencing in the identification of disease-causing mutations in familial disorders. Furthermore, the results, in conjunction with the previous data, imply that TBX1 isoform C is the biologically essential variant and that TBX1 mutations are associated with a wide phenotypic spectrum, including most of 22q11.2DS phenotypes.

  10. Mitochondrial Citrate Transporter-dependent Metabolic Signature in the 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Napoli, Eleonora; Tassone, Flora; Wong, Sarah; Angkustsiri, Kathleen; Simon, Tony J; Song, Gyu; Giulivi, Cecilia

    2015-09-18

    The congenital disorder 22q11.2 deletion syndrome (22qDS), characterized by a hemizygous deletion of 1.5-3 Mb on chromosome 22 at locus 11.2, is the most common microdeletion disorder (estimated prevalence of 1 in 4000) and the second risk factor for schizophrenia. Nine of ∼30 genes involved in 22qDS have the potential of disrupting mitochondrial metabolism (COMT, UFD1L, DGCR8, MRPL40, PRODH, SLC25A1, TXNRD2, T10, and ZDHHC8). Deficits in bioenergetics during early postnatal brain development could set the basis for a disrupted neuronal metabolism or synaptic signaling, partly explaining the higher incidence in developmental and behavioral deficits in these individuals. Here, we investigated whether mitochondrial outcomes and metabolites from 22qDS children segregated with the altered dosage of one or several of these mitochondrial genes contributing to 22qDS etiology and/or morbidity. Plasma metabolomics, lymphocytic mitochondrial outcomes, and epigenetics (histone H3 Lys-4 trimethylation and 5-methylcytosine) were evaluated in samples from 11 22qDS children and 13 age- and sex-matched neurotypically developing controls. Metabolite differences between 22qDS children and controls reflected a shift from oxidative phosphorylation to glycolysis (higher lactate/pyruvate ratios) accompanied by an increase in reductive carboxylation of α-ketoglutarate (increased concentrations of 2-hydroxyglutaric acid, cholesterol, and fatty acids). Altered metabolism in 22qDS reflected a critical role for the haploinsufficiency of the mitochondrial citrate transporter SLC25A1, further enhanced by HIF-1α, MYC, and metabolite controls. This comprehensive profiling served to clarify the biochemistry of this disease underlying its broad, complex phenotype. PMID:26221035

  11. Searching for a Schizophrenia Susceptibility Gene in the 22q11 Region

    Institute of Scientific and Technical Information of China (English)

    LIN XIE; GUI-ZHI JU; SHU-ZHENG LIU; JIE-PING SHI; YA-QIN YU; JUN WEI

    2005-01-01

    Objective To investigate a genetic association for schizophrenia within chromosome 22q11 in a Chinese Han population. Methods The PCR-based restriction fragment length polymorphism (PCR-RFLP) analysis was used to detect three single nucleotide polymorphisms (SNPs), rs165655 (A/G base change) and rs165815 (C/T base change) present in the ARVCF (armadillo repeat gene deletion in velocardiofacial syndrome) locus, and rs756656 (A/C base change) in the LOC128979 (expressed sequence tags, EST) locus, among 100 Chinese family trios consisting of fathers, mothers and affected offspring with schizophrenia. Genotype data were analyzed by using linkage disequilibrium (LD) methods including haplotype relative risk (HRR) analysis, transmission disequilibrium test (TDT) and haplotype transmission analysis. Results The genotype frequency distributions of three SNPs were all in Hardy-Weinberg equilibrium (P>0.05). Both the HRR and the TDT analysis showed that rs165815 was associated with schizophrenia (χ2=6.447, df=1, P=0.011 and χ2=6.313, df=1, P=0.012, respectively), whereas the other two SNPs did not show any allelic association. The haplotype transmission analysis showed a biased transmission for the rs165655-rs165815 haplotype system (χ2=17.224, df=3, P=0.0006) and for the rs756656- rs165655-rs165815 hapoltype system (χ2=20.965, df=7, P=0.0038). Conclusion Either the ARVCF gene itself or a nearby locus may confer susceptibility to schizophrenia in a Chinese Han population.

  12. Mapping Cortical Morphology in Youth with Velocardiofacial (22q11.2 Deletion) Syndrome

    Science.gov (United States)

    Kates, Wendy R.; Bansal, Ravi; Fremont, Wanda; Antshel, Kevin M.; Hao, Xuejun; Higgins, Anne Marie; Liu, Jun; Shprintzen, Robert J.; Peterson, Bradley S.

    2011-01-01

    Objective: Velocardiofacial syndrome (VCFS; 22q11.2 deletion syndrome) represents one of the highest known risk factors for schizophrenia. Insofar as up to 30% of individuals with this genetic disorder develop schizophrenia, VCFS constitutes a unique, etiologically homogeneous model for understanding the pathogenesis of schizophrenia. Method:…

  13. Core Neuropsychological Characteristics of Children and Adolescents with 22q11.2 Deletion

    Science.gov (United States)

    Jacobson, C.; Shearer, J.; Habel, A.; Kane, F.; Tsakanikos, E.; Kravariti, E.

    2010-01-01

    Background: The 22q11.2 deletion syndrome (22qDS) confers high risk for intellectual disability and neuropsychological/academic impairment, although a minority of patients show average intelligence. Intellectual heterogeneity and the high prevalence of psychiatric diagnoses in earlier studies may have obscured the prototypical neuropsychological…

  14. Prodromal and autistic symptoms in schizotypal personality disorder and 22q11.2 deletion syndrome.

    Science.gov (United States)

    Esterberg, Michelle L; Ousley, Opal Y; Cubells, Joseph F; Walker, Elaine F

    2013-02-01

    Despite clear diagnostic distinctions, schizophrenia and autism share symptoms on several dimensions. Recent research has suggested the two disorders overlap in etiology, particularly with respect to inherited and noninherited genetic factors. Studying the relationship between psychotic-like and autistic-like symptoms in risk groups such as 22q11 deletion syndrome (22q11DS) and schizotypal personality disorder (SPD) has the potential to shed light on such etiologic factors; thus, the current study examined prodromal symptoms and autistic features in samples of 22q11DS and SPD subjects using standardized diagnostic measures, including the Structured Interview for Prodromal Symptoms (SIPS) and the Autism Diagnostic Inventory-Revised (ADI-R). Results showed that SPD subjects manifested significantly more severe childhood and current social as well as stereotypic autistic features, as well as more severe positive prodromal symptoms. The two groups did not differ on negative, disorganized, or general prodromal symptoms, but were distinguishable based on correlations between prodromal and autistic features; the relationships between childhood autistic features and current prodromal symptoms were stronger for the SPD group. The results suggest that childhood autistic features are less continuous with subsequent prodromal signs in 22q11DS patients relative to those with SPD, and the findings highlight the importance of studying the overlap in diagnostic phenomenology in groups at risk for developing psychosis and/or autism.

  15. Metyrosine in psychosis associated with 22q11.2 deletion syndrome: case report.

    Science.gov (United States)

    Carandang, Carlo G; Scholten, Monique C

    2007-02-01

    This report describes the use of metyrosine (Demser) in an adolescent male with psychosis associated with the 22q11.2 deletion syndrome (velocardiofacial syndrome; VCFS), diagnosed by fluorescence in situ hybridization (FISH). He presented with multiple features of 22q11.2 deletion syndrome, including ventricular septal defect, palatal abnormalities, speech and motor delays, attention deficits, mood lability, and psychosis. After a failed trial of an atypical antipsychotic to address the psychosis, metyrosine was initiated, with significant reduction of psychotic symptoms and mood lability. Metyrosine treatment allowed this youth to live at home and to attend school, after months of recurrent psychiatric hospitalizations. The successful treatment of metyrosine for psychosis associated with VCFS represents a first in psychiatry, where a known biochemical abnormality in a psychiatric disorder was corrected by a treatment that targets the biochemical pathway, leading to reduction of psychiatric symptoms and improvement of functioning.

  16. Delayed diagnosis of 22q11.2 deletion syndrome in an adult Chinese lady

    Institute of Scientific and Technical Information of China (English)

    SHEA Yat-fung; LEE Chi-ho; Harinder Gill; CHOW Wing-sun; LAM Yui-ming; LUK Ho-ming; LAM Stephen Tak-sum; CHU Leung-wing

    2012-01-01

    We report a 32 year-old Chinese lady with history of tetralogy of Fallot,presented to us with chest pain due to hypocalcemia secondary to hypoparathyroidism.With her dysmorphic facial features and intellectual disability 22q11.2 deletion was suspected and confirmed by genetic study.Clinicians should consider the diagnosis of DiGeorge syndrome in adult patient with past medical history of congenital heart disease,facial dysmorphism,intellectual disability and primary hypoparathyroidism.

  17. The 22Q11.2 Deletion in Children: High Rate of Autistic Disorders and Early Onset of Psychotic Symptoms

    Science.gov (United States)

    Vorstman, Jacob A. S.; Morcus, Monique E. J.; Duijff, Sasja N.; Klaassen, Petra W. J.; Heineman-de, Josien A.; Beemer, Frits A.; Swaab, Hanna; Kahn, Rene S.; van Engeland, Herman

    2006-01-01

    Objective: To examine psychopathology and influence of intelligence level on psychiatric symptoms in children with the 22q11.2 deletion syndrome (22q11DS). Method: Sixty patients, ages 9 through 18 years, were evaluated. Assessments followed standard protocols, including structured and semistructured interviews of parents, videotaped psychiatric…

  18. Síndrome de deleção 22q11 e cardiopatias congênitas complexas 22q11.2 deletion syndrome and complex congenital heart defects

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano Machado Rosa

    2011-02-01

    Full Text Available OBJETIVO: Verificar a frequência da síndrome de deleção 22q11 (SD22q11 entre pacientes portadores de cardiopatia congênita do tipo complexa. MÉTODOS: A amostra foi constituída por uma coorte prospectiva e consecutiva de pacientes com cardiopatia complexa em sua primeira hospitalização em uma unidade de tratamento intensivo cardiológica de um hospital pediátrico. Para cada paciente foi preenchida uma ficha de avaliação, com coleta de dados clínicos, e realizado o cariótipo de alta resolução e técnica de hibridização in situ fluorescente (FISH com pesquisa de microdeleção 22q11. Os defeitos cardíacos foram classificados por um cardiologista participante do estudo. RESULTADOS: A amostra foi composta de 66 pacientes. Quanto à análise cariotípica, alterações foram observadas em cinco pacientes (7,6%; contudo, nenhum deles apresentava deleção 22q11. A avaliação pela técnica de FISH pôde ser realizada com sucesso em 65 pacientes, sendo que a microdeleção 22q11 foi identificada em dois (3,1%. Dos 66 pacientes com defeitos complexos, 52 eram portadores de malformações do tipo conotruncal, sendo que em 51 a pesquisa para microdeleção 22q11 foi realizada. Os dois pacientes portadores da microdeleção 22q11 fizeram parte deste grupo, representando uma frequência de 3,9%. Eles apresentavam tetralogia de Fallot. CONCLUSÃO: A SD22q11 é uma anormalidade frequente entre pacientes com cardiopatias congênitas complexas e conotruncais. Variações da frequência da SD22q11 entre os estudos parecem estar associadas, principalmente, com a forma adotada para a seleção da amostra e às características da população em análise.OBJECTIVE: Investigate the frequency of 22q11 deletion syndrome among patients with complex congenital heart disease. METHODS: A prospective and consecutive cohort of patients with complex heart defects was evaluated in their first hospitalization at a cardiac intensive care unit of a pediatric

  19. Parental Communication and Experiences and Knowledge of Adolescent Siblings of Children with 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Okashah, Rebecca; Schoch, Kelly; Hooper, Stephen R; Shashi, Vandana; Callanan, Nancy

    2015-10-01

    22q11.2 deletion syndrome (22q11DS) is the most common microdeletion in humans. There have been few studies assessing the impact of this condition on the family and no previous studies conducted on unaffected siblings of children with 22q11DS. The goal of this study was to determine the frequency, method, and content of information being communicated by parents to unaffected siblings about the condition and to assess unaffected siblings' knowledge of 22q11DS and perceptions of the impact of the condition on their affected sibling and themselves. Families were recruited from several 22q11DS educational and support organizations and asked to complete a single anonymous online survey. Families were eligible to participate if they had one child with 22q11DS and at least one unaffected child between the ages of 12 and 17. Survey questions were developed based on previous literature and authors' expertise with individuals with 22q11DS. Responses to quantitative and qualitative questions were analyzed to calculate frequencies and proportions and to extract themes, respectively. A total of 25 families (defined as a unit of at least one parent, one affected child, and at least one unaffected child) participated in the study. Parents shared genetic information less often as compared to behavioral and medical information. Siblings of children with 22q11DS had both positive and negative experiences in having a brother or sister with this condition. Genetic counselors can use the results of this study to develop anticipatory guidance for parents of children with 22q11DS in talking with their unaffected children about the condition. PMID:25540895

  20. Speech and language abilities of children with the familial form of 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Rakonjac Marijana

    2016-01-01

    Full Text Available The 22q11.2 Deletion Syndrome (22q11.2DS, which encompasses Shprintzen syndrome, DiGeorge and velocardiofacial syndrome, is the most common microdeletion syndrome in humans with an estimated incidence of approximately 1/4000 per live births. After Down syndrome, it is the second most common genetic syndrome associated with congenital heart malformations. The mode of inheritance of the 22q11.2DS is autosomal dominant. In approximately 72 - 94% of the cases the deletion has occurred de novo, while in 6 to 28% of patients deletion was inherited from a parent. As a part of a multidisciplinary study we examined the speech and language abilities of members of two families with inherited form of 22q11.2DS. The presence of 22q11.2 microdeletion was revealed by fluorescence in situ hybridization (FISH and/or multiplex ligation-dependent probe amplification (MLPA. In one family we detected 1.5 Mb 22q11.2 microdeletion, while in the other family we found 3Mb microdeletion. Patients from both families showed delays in cognitive, socio-emotional, speech and language development. Furthermore, we found considerable variability in the phenotypic characteristics of 22q11.2DS and the degree of speech-language pathology not only between different families with 22q11.2 deletion, but also among members of the same family. In addition, we detected no correlation between the phenotype and the size of 22q11.2 microdeletion.

  1. Social Cognition in 22q11.2 Microdeletion Syndrome: Relevance to Psychosis

    OpenAIRE

    Jalbrzikowski, Maria; Carter, Chelsea; Senturk, Damla; Chow, Carolyn; Hopkins, Jessica M.; Green, Michael F.; Galván, Adriana; Cannon, Tyrone D.; Bearden, Carrie E.

    2012-01-01

    22q11.2 deletion syndrome (22qDS) represents one of the largest known genetic risk factors for schizophrenia. Approximately 30% of individuals with 22qDS develop psychotic illness in adolescence or young adulthood. Given that deficits in social cognition are increasingly viewed as a central aspect of idiopathic schizophrenia, we sought to investigate abilities in this domain as a predictor of psychotic symptoms in 22qDS participants. We assessed multiple domains of social and non-social cogni...

  2. Prevalence of Psychiatric Morbidity and Behavioural Problems in 22q11.2DS: An Irish Population Study

    OpenAIRE

    Prasad, Sarah E

    2010-01-01

    Introduction: This population study examines the prevalence of psychiatric morbidity, behavioural difficulties, autistic and schizotypal features in a sample of individuals with 22q11.2DS and in their sibling controls. Methods: Forty-five individuals with 22q11.2DS and their 27 siblings were recruited and studied. Psychiatric morbidity was assessed by using the parent Diagnostic Interview Schedule for Children (DISC-P), Kiddie SADS-Present and Lifetime Version (K-SADPL) (psychotic su...

  3. Intelligence and Visual Motor Integration in 5-Year-Old Children with 22q11-Deletion Syndrome

    Science.gov (United States)

    Duijff, Sasja; Klaassen, Petra; Beemer, Frits; Swanenburg de Veye, Henriette; Vorstman, Jacob; Sinnema, Gerben

    2012-01-01

    The purpose of this study was to explore the relationship between intelligence and visual motor integration skills in 5-year-old children with 22q11-deletion syndrome (22q11DS) (N = 65, 43 females, 22 males; mean age 5.6 years (SD 0.2), range 5.23-5.99 years). Sufficient VMI skills seem a prerequisite for IQ testing. Since problems related to…

  4. The 22q11.2 Deletion Syndrome as a Window into Complex Neuropsychiatric Disorders Over the Lifespan

    OpenAIRE

    Jonas, Rachel K.; Montojo, Caroline A.; Bearden, Carrie E.

    2013-01-01

    Evidence is rapidly accumulating that rare, recurrent copy number variants (CNVs) represent large effect risk factors for neuropsychiatric disorders. 22q11.2 Deletion Syndrome (22q11DS; Velo-Cardio-Facial Syndrome (VCFS) or DiGeorge Syndrome) is the most common known contiguous gene deletion syndrome, and is associated with diverse neuropsychiatric disorders across the lifespan. One of the most intriguing aspects of the syndrome is the variability in clinical and cognitive presentation: child...

  5. Associations between prepulse inhibition and executive visual attention in children with the 22q11 deletion syndrome

    OpenAIRE

    Sobin, C; Kiley-Brabeck, K; Karayiorgou, M

    2005-01-01

    The 22q11 deletion syndrome (DS) results in the loss of approximately 30 gene copies and is associated with possible physical anomalies, varied learning disabilities, and a specific cluster of neurocognitive deficits, including primary impairment in working memory, executive visual attention, and sensorimotor processing. Retrospective studies have suggested that children with 22q11DS are at 25 times greater risk of developing schizophrenia, thus specification of early brain network vulnerabil...

  6. Individuals with 22q11.2 Deletion Syndrome Are Impaired at Explicit, but Not Implicit, Discrimination of Local Forms Embedded in Global Structures

    Science.gov (United States)

    Giersch, Anne; Glaser, Bronwyn; Pasca, Catherine; Chabloz, Mélanie; Debbané, Martin; Eliez, Stephan

    2014-01-01

    Individuals with 22q11.2 deletion syndrome (22q11.2DS) are impaired at exploring visual information in space; however, not much is known about visual form discrimination in the syndrome. Thirty-five individuals with 22q11.2DS and 41 controls completed a form discrimination task with global forms made up of local elements. Affected individuals…

  7. Performance on the Modified Card Sorting Test and Its Relation to Psychopathology in Adolescents and Young Adults with 22Q11.2 Deletion Syndrome

    Science.gov (United States)

    Rockers, K.; Ousley, O.; Sutton, T.; Schoenberg, E.; Coleman, K.; Walker, E.; Cubells, J. F.

    2009-01-01

    Background: Approximately one-third of individuals with 22q11.2 deletion syndrome (22q11DS), a common genetic disorder highly associated with intellectual disabilities, may develop schizophrenia, likely preceded by a mild to moderate cognitive decline. Methods: We examined adolescents and young adults with 22q11DS for the presence of executive…

  8. Congenital Heart Disease as a Warning Sign for the Diagnosis of the 22q11.2 Deletion

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Marcília S., E-mail: marcilia.grassi@hc.fm.usp.br; Jacob, Cristina M. A. [Instituto da Criança - HC-FMUSP, São Paulo, SP (Brazil); Kulikowski, Leslie D. [Departamento de Patologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP (Brazil); Pastorino, Antonio C. [Instituto da Criança - HC-FMUSP, São Paulo, SP (Brazil); Dutra, Roberta L. [Departamento de Patologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP (Brazil); Miura, Nana; Jatene, Marcelo B. [Instituto do Coração - HC-FMUSP, São Paulo, SP (Brazil); Pegler, Stephanie P.; Kim, Chong A.; Carneiro-Sampaio, Magda [Instituto da Criança - HC-FMUSP, São Paulo, SP (Brazil)

    2014-11-15

    To alert for the diagnosis of the 22q11.2 deletion syndrome (22q11.2DS) in patients with congenital heart disease (CHD). To describe the main CHDs, as well as phenotypic, metabolic and immunological findings in a series of 60 patients diagnosed with 22q11.2DS. The study included 60 patients with 22q11.2DS evaluated between 2007 and 2013 (M:F=1.3, age range 14 days to 20 years and 3 months) at a pediatric reference center for primary immunodeficiencies. The diagnosis was established by detection of the 22q11.2 microdeletion using FISH (n = 18) and/or MLPA (n = 42), in association with clinical and laboratory information. Associated CHDs, progression of phenotypic facial features, hypocalcemia and immunological changes were analyzed. CHDs were detected in 77% of the patients and the most frequent type was tetralogy of Fallot (38.3%). Surgical correction of CHD was performed in 34 patients. Craniofacial dysmorphisms were detected in 41 patients: elongated face (60%) and/or elongated nose (53.3%), narrow palpebral fissure (50%), dysplastic, overfolded ears (48.3%), thin lips (41.6%), elongated fingers (38.3%) and short stature (36.6%). Hypocalcemia was detected in 64.2% and decreased parathyroid hormone (PTH) level in 25.9%. Decrease in total lymphocytes, CD4 and CD8 counts were present in 40%, 53.3% and 33.3%, respectively. Hypogammaglobulinemia was detected in one patient and decreased concentrations of immunoglobulin M (IgM) in two other patients. Suspicion for 22q11.2DS should be raised in all patients with CHD associated with hypocalcemia and/or facial dysmorphisms, considering that many of these changes may evolve with age. The 22q11.2 microdeletion should be confirmed by molecular testing in all patients.

  9. Congenital Heart Disease as a Warning Sign for the Diagnosis of the 22q11.2 Deletion

    Directory of Open Access Journals (Sweden)

    Marcília S. Grassi

    2014-11-01

    Full Text Available Background: To alert for the diagnosis of the 22q11.2 deletion syndrome (22q11.2DS in patients with congenital heart disease (CHD. Objective: To describe the main CHDs, as well as phenotypic, metabolic and immunological findings in a series of 60 patients diagnosed with 22q11.2DS. Methods: The study included 60 patients with 22q11.2DS evaluated between 2007 and 2013 (M:F=1.3, age range 14 days to 20 years and 3 months at a pediatric reference center for primary immunodeficiencies. The diagnosis was established by detection of the 22q11.2 microdeletion using FISH (n = 18 and/or MLPA (n = 42, in association with clinical and laboratory information. Associated CHDs, progression of phenotypic facial features, hypocalcemia and immunological changes were analyzed. Results: CHDs were detected in 77% of the patients and the most frequent type was tetralogy of Fallot (38.3%. Surgical correction of CHD was performed in 34 patients. Craniofacial dysmorphisms were detected in 41 patients: elongated face (60% and/or elongated nose (53.3%, narrow palpebral fissure (50%, dysplastic, overfolded ears (48.3%, thin lips (41.6%, elongated fingers (38.3% and short stature (36.6%. Hypocalcemia was detected in 64.2% and decreased parathyroid hormone (PTH level in 25.9%. Decrease in total lymphocytes, CD4 and CD8 counts were present in 40%, 53.3% and 33.3%, respectively. Hypogammaglobulinemia was detected in one patient and decreased concentrations of immunoglobulin M (IgM in two other patients. Conclusion: Suspicion for 22q11.2DS should be raised in all patients with CHD associated with hypocalcemia and/or facial dysmorphisms, considering that many of these changes may evolve with age. The 22q11.2 microdeletion should be confirmed by molecular testing in all patients.

  10. Extracorporeal membrane oxygenation in children with heart disease and del22q11 syndrome: a review of the Extracorporeal Life Support Organization Registry.

    Science.gov (United States)

    Prodhan, P; Gossett, J M; Rycus, P T; Gupta, P

    2015-11-01

    The study objective was to evaluate outcomes among children with del22q11 (DiGeorge) syndrome supported on ECMO for heart disease. The ELSO registry database was queried to include all children great vessels and interrupted aortic arch and requiring ECMO, from 1998-2011. The outcomes evaluated included mortality, ECMO duration and length of hospital stay in patients with del22q11 syndrome and with no del22q11 syndrome. Eighty-eight ECMO runs occurred in children with del22q11 syndrome while 2694 ECMO runs occurred in children without del22q11 syndrome. For patients with heart defects receiving ECMO, del22q11 syndrome did not confer a significant mortality risk or an increased risk of infectious complications before or while on ECMO support. Neither the duration of ECMO nor mechanical ventilation prior to ECMO deployment were prolonged in patients with del22q11 syndrome compared to the controls.

  11. Chromosome duplication in Lolium multiflorum Lam.

    Directory of Open Access Journals (Sweden)

    Roselaine Cristina Pereira

    2014-11-01

    Full Text Available Artificial chromosome duplication of diploid genotypes of Lolium multiflorum (2n=2x=14 is worthy to breeding, and aims to increase the expression of traits with agronomic interest. The purpose of this study was to obtain polyploid plants of L. multiflorum from local diploid populations in order to exploit adaptation and future verification of the effects of polyploidy in agronomic traits. Seedlings were immersed in different colchicine solutions for an exposure time of 3h and 24h. Ploidy determination was made by the DNA content and certified by chromosomes counts. The plants confirmed as tetraploids were placed in a greenhouse, and, at flowering, pollen viability was evaluated, and seeds were harvested to assess the stability of the progenies. The percentage of polyploids obtained was 20%. Pollen viability of the tetraploids generated ranged from 58% to 69%. The tetraploid plants obtained in the experiment generated 164 progenies, of which 109 presented DNA content compatible with the tetraploid level, showing stability of chromosome duplication in the filial generation.

  12. Social cognition in 22q11.2 microdeletion syndrome: relevance to psychosis?

    Science.gov (United States)

    Jalbrzikowski, Maria; Carter, Chelsea; Senturk, Damla; Chow, Carolyn; Hopkins, Jessica M; Green, Michael F; Galván, Adriana; Cannon, Tyrone D; Bearden, Carrie E

    2012-12-01

    22q11.2 deletion syndrome (22qDS) represents one of the largest known genetic risk factors for schizophrenia. Approximately 30% of individuals with 22qDS develop psychotic illness in adolescence or young adulthood. Given that deficits in social cognition are increasingly viewed as a central aspect of idiopathic schizophrenia, we sought to investigate abilities in this domain as a predictor of psychotic symptoms in 22qDS participants. We assessed multiple domains of social and non-social cognition in 22qDS youth to: 1) characterize performance across these domains in 22qDS, and identify whether 22qDS participants fail to show expected patterns of age-related improvements on these tasks; and 2) determine whether social cognition better predicts positive and negative symptoms than does non-social cognition. Task domains assessed were: emotion recognition and differentiation, Theory of Mind (ToM), verbal knowledge, visuospatial skills, working memory, and processing speed. Positive and negative symptoms were measured using scores obtained from the Structured Interview for Prodromal Symptoms (SIPS). 22qDS participants (N=31, mean age: 15.9) showed the largest impairment, relative to healthy controls (N=31, mean age: 15.6), on measures of ToM and processing speed. In contrast to controls, 22qDS participants did not show age-related improvements on measures of working memory and verbal knowledge. Notably, ToM performance was the best predictor of positive symptoms in 22qDS, accounting for 39% of the variance in symptom severity. Processing speed emerged as the best predictor of negative symptoms, accounting for 37% of the variance in symptoms. Given that ToM was a robust predictor of positive symptoms in our sample, these findings suggest that social cognition may be a valuable intermediate trait for predicting the development of psychosis.

  13. Social cognition in 22q11.2 microdeletion syndrome: relevance to psychosis?

    Science.gov (United States)

    Jalbrzikowski, Maria; Carter, Chelsea; Senturk, Damla; Chow, Carolyn; Hopkins, Jessica M; Green, Michael F; Galván, Adriana; Cannon, Tyrone D; Bearden, Carrie E

    2012-12-01

    22q11.2 deletion syndrome (22qDS) represents one of the largest known genetic risk factors for schizophrenia. Approximately 30% of individuals with 22qDS develop psychotic illness in adolescence or young adulthood. Given that deficits in social cognition are increasingly viewed as a central aspect of idiopathic schizophrenia, we sought to investigate abilities in this domain as a predictor of psychotic symptoms in 22qDS participants. We assessed multiple domains of social and non-social cognition in 22qDS youth to: 1) characterize performance across these domains in 22qDS, and identify whether 22qDS participants fail to show expected patterns of age-related improvements on these tasks; and 2) determine whether social cognition better predicts positive and negative symptoms than does non-social cognition. Task domains assessed were: emotion recognition and differentiation, Theory of Mind (ToM), verbal knowledge, visuospatial skills, working memory, and processing speed. Positive and negative symptoms were measured using scores obtained from the Structured Interview for Prodromal Symptoms (SIPS). 22qDS participants (N=31, mean age: 15.9) showed the largest impairment, relative to healthy controls (N=31, mean age: 15.6), on measures of ToM and processing speed. In contrast to controls, 22qDS participants did not show age-related improvements on measures of working memory and verbal knowledge. Notably, ToM performance was the best predictor of positive symptoms in 22qDS, accounting for 39% of the variance in symptom severity. Processing speed emerged as the best predictor of negative symptoms, accounting for 37% of the variance in symptoms. Given that ToM was a robust predictor of positive symptoms in our sample, these findings suggest that social cognition may be a valuable intermediate trait for predicting the development of psychosis. PMID:23122739

  14. Transcriptome Profiling of Peripheral Blood in 22q11.2 Deletion Syndrome Reveals Functional Pathways Related to Psychosis and Autism Spectrum Disorder

    OpenAIRE

    Maria Jalbrzikowski; Maria T Lazaro; Fuying Gao; Alden Huang; Carolyn Chow; Geschwind, Daniel H.; Giovanni Coppola; Bearden, Carrie E.

    2015-01-01

    Background 22q11.2 Deletion Syndrome (22q11DS) represents one of the greatest known genetic risk factors for the development of psychotic illness, and is also associated with high rates of autistic spectrum disorders (ASD) in childhood. We performed integrated genomic analyses of 22q11DS to identify genes and pathways related to specific phenotypes. Methods We used a high-resolution aCGH array to precisely characterize deletion breakpoints. Using peripheral blood, we examined differential exp...

  15. Deleção 22q11.2 em pacientes com defeito cardíaco conotruncal e fenótipo da síndrome da deleção 22q11.2 Deleción 22q11.2 en pacientes con defecto cardiaco conotruncal y fenotipo del síndrome de la deleción 22q11.2 22q11.2 deletion in patients with conotruncal heart defect and del22q syndrome phenotype

    Directory of Open Access Journals (Sweden)

    Sintia Iole Nogueira Belangero

    2009-04-01

    Full Text Available FUNDAMENTO: A síndrome da deleção 22q11.2 é a mais freqüente síndrome de microdeleção humana. O fenótipo é altamente variável e caracterizado por defeito cardíaco conotruncal, dismorfias faciais, insuficiência velofaríngea, dificuldade de aprendizagem e retardo mental. OBJETIVO: O objetivo deste trabalho foi investigar a freqüência da deleção 22q11.2 em uma amostra brasileira de indivíduos portadores de cardiopatia conontrucal isolada e do fenótipo da síndrome da deleção 22q11.2. MÉTODOS: Vinte e nove pacientes foram estudados por meio de citogenética clássica, por hibridação in situ fluorescente (FISH e por técnicas moleculares. RESULTADOS: A análise citogenética por meio de bandamento G revelou cariótipo normal em todos os pacientes, com exceção de um que apresentou cariótipo 47,XX,+idic(22(q11.2. Com o uso de técnicas moleculares, a deleção foi observada em 25% dos pacientes, todos portadores do fenótipo da síndrome da deleção 22q11.2. Em nenhum dos casos, a deleção foi herdada dos pais. A freqüência da deleção 22q11.2 foi maior no grupo de pacientes portadores do espectro clínico da síndrome da deleção 22q11.2 do que no grupo de pacientes com cardiopatia conotruncal isolada. CONCLUSÃO: A investigação da presença da deleção e sua correlação com os dados clínicos dos pacientes podem auxiliar os pacientes e suas famílias a terem um melhor aconselhamento genético e um seguimento clínico mais adequado.FUNDAMENTO: El síndrome de la deleción 22q11.2 es el más frecuente síndrome de microdeleción humana. El fenotipo, altamente variable, se caracteriza por defecto cardiaco conotruncal, dismorfias faciales, insuficiencia velofaríngea, dificultad de aprendizaje y retardo mental. OBJETIVO: El objetivo de este trabajo fue investigar la frecuencia tanto de la deleción 22q11.2 en una muestra brasileña de individuos portadores de cardiopatía conotrucal aislada, como del fenotipo del s

  16. Intellectual Functioning in Relation to Autism and ADHD Symptomatology in Children and Adolescents with 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Hidding, E.; Swaab, H.; Sonneville, L. M. J.; Engeland, H.; Sijmens-Morcus, M. E. J.; Klaassen, P. W. J.; Duijff, S. N.; Vorstman, J. A. S.

    2015-01-01

    Background: The 22q11.2 deletion syndrome (22q11DS; velo-cardio-facial syndrome) is associated with an increased risk of various disorders, including autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). With this study, we aimed to investigate the relation between intellectual functioning and severity of ASD and ADHD…

  17. Comparing the neural bases of self-referential processing in typically developing and 22q11.2 adolescents.

    Science.gov (United States)

    Schneider, Maude; Debbané, Martin; Lagioia, Annalaura; Salomon, Roy; d'Argembeau, Arnaud; Eliez, Stephan

    2012-04-01

    The investigation of self-reflective processing during adolescence is relevant, as this period is characterized by deep reorganization of the self-concept. It may be the case that an atypical development of brain regions underlying self-reflective processing increases the risk for psychological disorders and impaired social functioning. In this study, we investigated the neural bases of self- and other-related processing in typically developing adolescents and youths with 22q11.2 deletion syndrome (22q11DS), a rare neurogenetic condition associated with difficulties in social interactions and increased risk for schizophrenia. The fMRI paradigm consisted in judging if a series of adjectives applied to the participant himself/herself (self), to his/her best friend or to a fictional character (Harry Potter). In control adolescents, we observed that self- and other-related processing elicited strong activation in cortical midline structures (CMS) when contrasted with a semantic baseline condition. 22q11DS exhibited hypoactivation in the CMS and the striatum during the processing of self-related information when compared to the control group. Finally, the hypoactivation in the anterior cingulate cortex was associated with the severity of prodromal positive symptoms of schizophrenia. The findings are discussed in a developmental framework and in light of their implication for the development of schizophrenia in this at-risk population.

  18. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study.

    Science.gov (United States)

    Campbell, Linda E; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Catani, Marco; Ng, Virginia; van Amelsvoort, Therese; Chitnis, Xavier; Cutter, William; Murphy, Declan G M; Murphy, Kieran C

    2006-05-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of developing attention-deficit/hyperactivity disorder and autism spectrum disorders in childhood, and schizophrenia in adolescence or adult life. However, the neurobiology of 22qDS, and the relationship between abnormalities in brain anatomy and behaviour, is poorly understood. Thus, we studied the neuroanatomy of 22qDS children using fully automated voxel-based morphometry (VBM) and manually traced single region-of-interest (ROI) analysis. Also, we investigated whether those brain regions that differed significantly between groups were related to behavioural differences within children with 22qDS. We compared the brain morphometry of 39 children and adolescents with 22qDS (mean age: 11 years, SD +/-3, IQ = 67, SD +/-10) and 26 sibling controls (mean age: 11 years, SD +/-3, IQ = 102, SD +/-12). Using VBM, we found, after correction for IQ, that individuals with 22qDS compared with controls had a significant reduction in cerebellar grey matter, and white matter reductions in the frontal lobe, cerebellum and internal capsule. Using single ROI analysis, we found that people with 22qDS had a significant (P social behavioural difficulties and grey matter in frontostriatal regions. Thus, subjects with 22qDS have widespread changes in brain anatomy, particularly affecting white matter, basal ganglia and cerebellum. Also, within 22qDS, regionally specific differences in brain development may partially underpin behavioural differences. We suggest that there is preliminary evidence for specific vulnerability of the frontostriatal and cerebellar-cortical networks in 22qDS.

  19. Relationship between reaction time, fine motor control, and visual-spatial perception on vigilance and visual-motor tasks in 22q11.2 Deletion Syndrome.

    LENUS (Irish Health Repository)

    Howley, Sarah A

    2012-10-15

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  20. Deficits in Mental State Attributions in Individuals with 22q11.2 Deletion Syndrome (Velo-Cardio-Facial Syndrome)

    OpenAIRE

    Ho, Jennifer S.; Radoeva, Petya D.; Jalbrzikowski, Maria; Chow, Carolyn; Hopkins, Jessica; Tran, Wen-Ching; Mehta, Ami; Enrique, Nicole; Gilbert, Chelsea; Antshel, Kevin M.; Fremont, Wanda; Kates, Wendy R.; Bearden, Carrie E.

    2012-01-01

    Velo-cardio-facial syndrome (VCFS; 22q11.2 deletion syndrome) results from a genetic mutation that increases risk for Autism Spectrum Disorder (ASD). We compared Theory of Mind (ToM) skills in 63 individuals with VCFS (25% with an ASD diagnosis) and 43 typically-developing controls, and investigated the relationship of ToM to reciprocal social behavior. We administered a video-based task to assess mentalizing at two sites (UCLA and SUNY Upstate Medical University). The videos depicted interac...

  1. Congenital Heart Defects and Measures of Fetal Growth in Newborns with Down Syndrome or 22q11.2 Deletion Syndrome

    DEFF Research Database (Denmark)

    Matthiesen, Niels B; Agergaard, Peter; Henriksen, Tine B;

    2016-01-01

    OBJECTIVES: To estimate the association between congenital heart defects (CHD) and indices of fetal growth in Down and 22q11.2 deletion syndromes. STUDY DESIGN: We established 2 Danish nationwide cohorts of newborn singletons with either Down syndrome (n = 670) or 22q11.2 deletion syndrome (n = 155...... syndrome and 22q11.2 deletion syndrome were both associated with lower mean birth weight and head circumference z-scores. We found no association between CHD or CHD severity and indices of fetal growth. In Down syndrome, the association between any CHD and the mean difference in head circumference z...... measures in newborns with Down syndrome or 22q11.2 deletion syndrome. Thus, in certain subtypes of CHD, the contribution of genetic factors to prenatal growth impairment may be more important than circulatory disturbances....

  2. Transcriptome Profiling of Peripheral Blood in 22q11.2 Deletion Syndrome Reveals Functional Pathways Related to Psychosis and Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Maria Jalbrzikowski

    Full Text Available 22q11.2 Deletion Syndrome (22q11DS represents one of the greatest known genetic risk factors for the development of psychotic illness, and is also associated with high rates of autistic spectrum disorders (ASD in childhood. We performed integrated genomic analyses of 22q11DS to identify genes and pathways related to specific phenotypes.We used a high-resolution aCGH array to precisely characterize deletion breakpoints. Using peripheral blood, we examined differential expression (DE and networks of co-expressed genes related to phenotypic variation within 22q11DS patients. Whole-genome transcriptional profiling was performed using Illumina Human HT-12 microarrays. Data mining techniques were used to validate our results against independent samples of both peripheral blood and brain tissue from idiopathic psychosis and ASD cases.Eighty-five percent of 22q11DS individuals (N = 39 carried the typical 3 Mb deletion, with significant variability in deletion characteristics in the remainder of the sample (N = 7. DE analysis and weighted gene co-expression network analysis (WGCNA identified expression changes related to psychotic symptoms in patients, including a module of co-expressed genes which was associated with psychosis in 22q11DS and involved in pathways associated with transcriptional regulation. This module was enriched for brain-expressed genes, was not related to antipsychotic medication use, and significantly overlapped with transcriptional changes in idiopathic schizophrenia. In 22q11DS-ASD, both DE and WGCNA analyses implicated dysregulation of immune response pathways. The ASD-associated module showed significant overlap with genes previously associated with idiopathic ASD.These findings further support the use of peripheral tissue in the study of major mutational models of diseases affecting the brain, and point towards specific pathways dysregulated in 22q11DS carriers with psychosis and ASD.

  3. Is theory of mind related to social dysfunction and emotional problems in 22q11.2 deletion syndrome (velo-cardio-facial syndrome)?

    Science.gov (United States)

    Campbell, Linda E; Stevens, Angela F; McCabe, Kathryn; Cruickshank, Lynne; Morris, Robin G; Murphy, Declan G M; Murphy, Kieran C

    2011-06-01

    Social dysfunction is intrinsically involved in severe psychiatric disorders such as depression and psychosis and linked with poor theory of mind. Children with 22q11.2 deletion syndrome (22q11DS, or velo-cardio-facial syndrome) have poor social competence and are also at a particularly high risk of developing mood (40%) and psychotic (up to 30%) disorders in adolescence and young adulthood. However, it is unknown if these problems are associated with theory of mind skills, including underlying social-cognitive and social-perceptual mechanisms. The present cross-sectional study included classic social-cognitive false-belief and mentalising tasks and social-perceptual face processing tasks. The performance of 50 children with 22q11DS was compared with 31 age-matched typically developing sibling controls. Key findings indicated that, while younger children with 22q11DS showed impaired acquisition of social-cognitive skills, older children with 22q11DS were not significantly impaired compared with sibling controls. However, children with 22q11DS were found to have social-perceptual deficits, as demonstrated by difficulties in matching faces on the basis of identity, emotion, facial speech and gaze compared with sibling controls. Furthermore, performance on the tasks was associated with age, language ability and parentally rated social competence and emotional problems. These results are discussed in relation to the importance of a better delineation of social competence in this population.

  4. How many breaks do we need to CATCH on 22q11?

    Energy Technology Data Exchange (ETDEWEB)

    Dallapiccola, B.; Pizzuti, A.; Novelli, G. [Univ. of Rome, Rome (Italy)]|[Univ. of Milan (Italy)]|[CSS IRCCS Hospital, San Giovanni Rotondo (Italy)

    1996-07-01

    The major clinical manifestations of DiGeorge syndrome (DGS; MIM 188400), which reflect developmental abnormalities of the 3d and 4th pharyngeal pouch derivatives, include thymus- and parathyroid-gland aplasia or hypoplasia and conotruncal cardiac malformations. The additional dysmorphic facial features, such as hypertelorism, cleft lip and palate, bifid uvula, and small/low-set ears, which are also common, presumably reflect the same defect. The DGS phenotype has been associated with chromosome abnormalities and, sometimes, is the effect of teratogenic agents such as retinoic acid and alcohol. 53 refs., 1 fig.

  5. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J; Han, C; Gordon, L A; Terry, A; Prabhakar, S; She, X; Xie, G; Hellsten, U; Chan, Y M; Altherr, M; Couronne, O; Aerts, A; Bajorek, E; Black, S; Blumer, H; Branscomb, E; Brown, N; Bruno, W J; Buckingham, J; Callen, D F; Campbell, C S; Campbell, M L; Campbell, E W; Caoile, C; Challacombe, J F; Chasteen, L A; Chertkov, O; Chi, H C; Christensen, M; Clark, L M; Cohn, J D; Denys, M; Detter, J C; Dickson, M; Dimitrijevic-Bussod, M; Escobar, J; Fawcett, J J; Flowers, D; Fotopulos, D; Glavina, T; Gomez, M; Gonzales, E; Goodstein, D; Goodwin, L A; Grady, D L; Grigoriev, I; Groza, M; Hammon, N; Hawkins, T; Haydu, L; Hildebrand, C E; Huang, W; Israni, S; Jett, J; Jewett, P B; Kadner, K; Kimball, H; Kobayashi, A; Krawczyk, M; Leyba, T; Longmire, J L; Lopez, F; Lou, Y; Lowry, S; Ludeman, T; Manohar, C F; Mark, G A; McMurray, K L; Meincke, L J; Morgan, J; Moyzis, R K; Mundt, M O; Munk, A C; Nandkeshwar, R D; Pitluck, S; Pollard, M; Predki, P; Parson-Quintana, B; Ramirez, L; Rash, S; Retterer, J; Ricke, D O; Robinson, D; Rodriguez, A; Salamov, A; Saunders, E H; Scott, D; Shough, T; Stallings, R L; Stalvey, M; Sutherland, R D; Tapia, R; Tesmer, J G; Thayer, N; Thompson, L S; Tice, H; Torney, D C; Tran-Gyamfi, M; Tsai, M; Ulanovsky, L E; Ustaszewska, A; Vo, N; White, P S; Williams, A L; Wills, P L; Wu, J; Wu, K; Yang, J; DeJong, P; Bruce, D; Doggett, N A; Deaven, L; Schmutz, J; Grimwood, J; Richardson, P; Rokhsar, D S; Eichler, E E; Gilna, P; Lucas, S M; Myers, R M; Rubin, E M; Pennacchio, L A

    2005-04-06

    Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes, and 3 RNA pseudogenes. These genes include metallothionein, cadherin, and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. While the segmental duplications of chromosome 16 are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events likely to have had an impact on the evolution of primates and human disease susceptibility.

  6. Secondary EWSR1 gene abnormalities in SMARCB1-deficient tumors with 22q11-12 regional deletions: Potential pitfalls in interpreting EWSR1 FISH results.

    Science.gov (United States)

    Huang, Shih-Chiang; Zhang, Lei; Sung, Yun-Shao; Chen, Chun-Liang; Kao, Yu-Chien; Agaram, Narasimhan P; Antonescu, Cristina R

    2016-10-01

    SMARCB1 inactivation occurs in a variety of tumors, being caused by various genetic mechanisms. Since SMARCB1 and EWSR1 genes are located close to each other on chromosome 22, larger SMARCB1 deletions may encompass the EWSR1 locus. Herein, we report four cases with SMARCB1-deletions showing concurrent EWSR1 gene abnormalities by FISH, which lead initially to misinterpretations as EWSR1-rearranged tumors. Our study group included various morphologies: a poorly differentiated chordoma, an extrarenal rhabdoid tumor, a myoepithelial carcinoma, and a proximal-type epithelioid sarcoma. All cases showed loss of SMARCB1 (INI1) by immunohistochemistry (IHC) and displayed characteristic histologic features for the diagnoses. The SMARCB1 FISH revealed homozygous or heterozygous deletions in three and one case, respectively. The co-hybridized EWSR1 probes demonstrated either unbalanced split signals or heterozygous deletion in two cases each. The former suggested bona fide rearrangement, while the latter resembled an unbalanced translocation. However, all the FISH patterns were quite complex and distinct from the simple and uniform split signals seen in typical EWSR1 rearrangements. We conclude that in the context of 22q11-12 regional alterations present in SMARCB1-deleted tumors, simultaneous EWSR1 involvement may be misinterpreted as equivalent to EWSR1 rearrangement. A detailed clinicopathologic correlation and supplementing the EWSR1 FISH assay with complementary methodology is mandatory for correct diagnosis. © 2016 Wiley Periodicals, Inc. PMID:27218413

  7. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-08-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  8. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    Science.gov (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  9. Performance on a computerized neurocognitive battery in 22q11.2 deletion syndrome: A comparison between US and Israeli cohorts.

    Science.gov (United States)

    Yi, James J; Weinberger, Ronnie; Moore, Tyler M; Calkins, Monica E; Guri, Yael; McDonald-McGinn, Donna M; Zackai, Elaine H; Emanuel, Beverly S; Gur, Raquel E; Gothelf, Doron; Gur, Ruben C

    2016-07-01

    Increasingly, the effects of copy number variation (CNV) in the genome on brain function and behaviors are recognized as means to elucidate pathophysiology of psychiatric disorders. Such studies require large samples and we characterized the neurocognitive profile of two cohorts of individuals with 22q11.2 deletion syndrome (22q11DS), the most common CNV associated with schizophrenia, in an effort to harmonize phenotyping in multi-site global collaborations. The Penn Computerized Neurocognitive Battery (PCNB) was administered to individuals with 22q11DS in Philadelphia (PHL; n=155, aged 12-40) and Tel Aviv (TLV; n=59, aged 12-36). We examined effect sizes of performance differences between the cohorts and confirmed the factor structure of PCNB performance efficiency in the combined sample based on data from a large comparison community sample. The cohorts performed comparably with notable deficits in executive function, episodic memory and social cognition domains that were previously associated with abnormal neuroimaging findings in 22q11DS. In mixed model analysis, while there was a main effect for site for accuracy (number of correct response) and speed (time to correct response) independently, there were no main site effects for standardized efficiency (average of accuracy and speed). The fit of a structural model was excellent indicating that PCNB tests were related to the targeted cognitive domains. Thus, our results provide preliminary support for the use of the PCNB as an efficient tool for neurocognitive assessment in international 22q11DS collaborations. PMID:27200494

  10. Estudio de la psicopatología en una población de pacientes con microdeleción 22q11.2

    OpenAIRE

    Robles Sánchez, Fuensanta

    2016-01-01

    El síndrome de deleción 22q11.2 (22q11.2 DS; OMIM # 188400) es un trastorno genético que puede presentar diversas malformaciones físicas, déficit cognitivo y trastornos psicopatológicos. Los objetivos del estudio han consistido en evaluar el nivel de inteligencia y los trastornos psiquiátricos de los pacientes con este síndrome en la etapa infanto-juvenil y determinar los factores genéticos, clínicos y sociodemográficos asociados. Hemos estudiado el perfil cognitivo y los trastornos psi...

  11. Urethral duplication and chromosomal translocation in a Swiss braunvieh heifer.

    Science.gov (United States)

    Braun, U; Gansohr, B; Feige, K; Gardelle, O; Suwattana, D; Stranzinger, G

    2000-01-01

    As it was urinating, a six-month-old Swiss braunvieh heifer produced a second stream of urine from a fistula that opened on the ventrolateral margin of the left vulval lip. A catheter was introduced into this opening and passed easily into the bladder. Urethrography showed that the fistula joined the urethra in the mid-pelvic region and that a single canal originated from the bladder. Endoscopy confirmed this finding and also revealed a duplication of the vaginal portion of the cervix, a division of the cranial vagina by a septum and a fibrous band in the region of the hymenal ring. Cytogenetic examination revealed reciprocal translocation between chromosomes 20q23 and 22q23. A diagnosis of urethra duplex, duplication of the vaginal portion of the cervix and reciprocal autosomal translocation between chromosomes 20 and 22 was made on the basis of these findings.

  12. Verification and characterization of chromosome duplication in haploid maize.

    Science.gov (United States)

    de Oliveira Couto, E G; Resende Von Pinho, E V; Von Pinho, R G; Veiga, A D; de Carvalho, M R; de Oliveira Bustamante, F; Nascimento, M S

    2015-01-01

    Doubled haploid technology has been used by various private companies. However, information regarding chromosome duplication methodologies, particularly those concerning techniques used to identify duplication in cells, is limited. Thus, we analyzed and characterized artificially doubled haploids using microsatellites molecular markers, pollen viability, and flow cytometry techniques. Evaluated material was obtained using two different chromosome duplication protocols in maize seeds considered haploids, resulting from the cross between the haploid inducer line KEMS and 4 hybrids (GNS 3225, GNS 3032, GNS 3264, and DKB 393). Fourteen days after duplication, plant samples were collected and assessed by flow cytometry. Further, the plants were transplanted to a field, and samples were collected for DNA analyses using microsatellite markers. The tassels were collected during anthesis for pollen viability analyses. Haploid, diploid, and mixoploid individuals were detected using flow cytometry, demonstrating that this technique was efficient for identifying doubled haploids. The microsatellites markers were also efficient for confirming the ploidies preselected by flow cytometry and for identifying homozygous individuals. Pollen viability showed a significant difference between the evaluated ploidies when the Alexander and propionic-carmin stains were used. The viability rates between the plodies analyzed show potential for fertilization. PMID:26125909

  13. Interstitial duplication of proximal 22q: Phenotypic overlap with cat eye syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, J.H.M.; Asamoah, A.; Wagstaff, J. [Children`s Hospital, Boston, MA (United States)] [and others

    1995-01-16

    We describe a child with downslanting palpebral fissures, preauricular malfunctions, congenital heart defect (total anomalous pulmonary venous return), unilateral absence of a kidney, and developmental delay with an apparent interstitial duplication of proximal 22q. Fluorescent in situ hybridization (FISH) analysis showed duplication of the IGLC locus, and C-banding of the duplicated region was negative. The duplication appears to involve 22q11.2-q12. Although the child has neither colobomas nor microphthalmia, he shows phenotypic overlap with with the cat eye syndrome, which is caused by a supernumerary bisatellited chromosome arising from inverted duplication of the short arm and proximal long arm of chromosome 22. Further molecular studies of this patient should help to define the regions responsible for the manifestations of cat eye syndrome. 17 refs., 3 figs., 1 tab.

  14. MicroRNA Profiling of Neurons Generated Using Induced Pluripotent Stem Cells Derived from Patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del.

    Directory of Open Access Journals (Sweden)

    Dejian Zhao

    Full Text Available We are using induced pluripotent stem cell (iPSC technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del, the most common known schizophrenia (SZ-associated genetic factor. Several genes in the region have been implicated; a promising candidate is DGCR8, which codes for a protein involved in microRNA (miRNA biogenesis. We carried out miRNA expression profiling (miRNA-seq on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del. Using thresholds of p<0.01 for nominal significance and 1.5-fold differences in expression, 45 differentially expressed miRNAs were detected (13 lower in SZ and 32 higher. Of these, 6 were significantly down-regulated in patients after correcting for genome wide significance (FDR<0.05, including 4 miRNAs that map to the 22q11.2 del region. In addition, a nominally significant increase in the expression of several miRNAs was found in the 22q11.2 neurons that were previously found to be differentially expressed in autopsy samples and peripheral blood in SZ and autism spectrum disorders (e.g., miR-34, miR-4449, miR-146b-3p, and miR-23a-5p. Pathway and function analysis of predicted mRNA targets of the differentially expressed miRNAs showed enrichment for genes involved in neurological disease and psychological disorders for both up and down regulated miRNAs. Our findings suggest that: i. neurons with 22q11.2 del recapitulate the miRNA expression patterns expected of 22q11.2 haploinsufficiency, ii. differentially expressed miRNAs previously identified using autopsy samples and peripheral cells, both of which have significant methodological problems, are indeed disrupted in neuropsychiatric disorders and likely have an underlying genetic basis.

  15. Clinical experience with single‐nucleotide polymorphism‐based non‐invasive prenatal screening for 22q11.2 deletion syndrome

    Science.gov (United States)

    Gross, S. J.; Stosic, M.; McDonald‐McGinn, D. M.; Bassett, A. S.; Norvez, A.; Dhamankar, R.; Kobara, K.; Kirkizlar, E.; Zimmermann, B.; Wayham, N.; Babiarz, J. E.; Ryan, A.; Jinnett, K. N.; Demko, Z.

    2016-01-01

    ABSTRACT Objectives To evaluate the performance of a single‐nucleotide polymorphism (SNP)‐based non‐invasive prenatal test (NIPT) for the detection of fetal 22q11.2 deletion syndrome in clinical practice, assess clinical follow‐up and review patient choices for women with high‐risk results. Methods In this study, 21 948 samples were submitted for screening for 22q11.2 deletion syndrome using a SNP‐based NIPT and subsequently evaluated. Follow‐up was conducted for all cases with a high‐risk result. Results Ninety‐five cases were reported as high risk for fetal 22q11.2 deletion. Diagnostic testing results were available for 61 (64.2%) cases, which confirmed 11 (18.0%) true positives and identified 50 (82.0%) false positives, resulting in a positive predictive value (PPV) of 18.0%. Information regarding invasive testing was available for 84 (88.4%) high‐risk cases: 57.1% (48/84) had invasive testing and 42.9% (36/84) did not. Ultrasound anomalies were present in 81.8% of true‐positive and 18.0% of false‐positive cases. Two additional cases were high risk for a maternal 22q11.2 deletion; one was confirmed by diagnostic testing and one had a positive family history. There were three pregnancy terminations related to screening results of 22q11.2 deletion, two of which were confirmed as true positive by invasive testing. Conclusions Clinical experience with this SNP‐based non‐invasive screening test for 22q11.2 deletion syndrome indicates that these deletions have a frequency of approximately 1 in 1000 in the referral population with most identifiable through this test. Use of this screening method requires the availability of counseling and other management resources for high‐risk pregnancies. © 2015 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd. on behalf of the International Society of Ultrasound in Obstetrics and Gynecology. PMID:26396068

  16. A Case of Concurrent Miller-Dieker Syndrome (17p13.3 Deletion) and 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Atwal, Paldeep S; Macmurdo, C

    2015-12-01

    Features of Miller-Dieker syndrome (MDS, 17p13.3 deletion syndrome, LIS1-associated lissencephaly) include classic lissencephaly, microcephaly, cardiac malformations, growth restriction, and characteristic facial changes. Individuals with 22q11.2 deletion syndrome (DiGeorge syndrome or velocardiofacial syndrome) are known to have congenital cardiac malformations (in particular conotruncal defects), palatal abnormalities (especially velopharyngeal insufficiency), hypocalcemia, immune deficiency, learning disabilities, and characteristic facial features. This case report describes phenotypic characteristics of a patient with extremely rare instance of having both MDS and 22q11.2 deletion syndrome that is unique in the medical literature. Prognosis in this concurrent phenotype is poor with our patient suffering from several malformations seen in both conditions and expiring in the neonatal period. PMID:27617133

  17. Detecting 22q11.2 deletions by use of multiplex ligation-dependent probe amplification on DNA from neonatal dried blood spot samples

    DEFF Research Database (Denmark)

    Sørensen, Karina M; Agergaard, Peter; Olesen, Charlotte;

    2010-01-01

    of 22q11.2 deletions among certain manifestations, eg, congenital heart disease, on selected Danes, a multiplex ligation-dependant probe amplification (MLPA) analysis was designed. The analysis was planned to be performed on DNA extracted from dried blood spot samples (DBSS) obtained from Guthrie cards...... collected during neonatal screening programs. However, the DNA concentration necessary for a standard MLPA analysis (20 ng) could not be attained from DBSS, and a novel MLPA design was developed to permit for analysis on limited amounts of DNA (2 ng). A pilot study is reported here that validates the new...... MLPA design using nine patients diagnosed with the 22q11.2 deletion and 101 controls. All deletions were identified using DNA extracted from DBSS, and no copy number variations were detected in the controls, resulting in a specificity and sensitivity of 100%. It is thereby concluded that the novel MLPA...

  18. Dopamine metabolism in adults with 22q11 deletion syndrome, with and without schizophrenia--relationship with COMT Val¹⁰⁸/¹⁵⁸Met polymorphism, gender and symptomatology

    NARCIS (Netherlands)

    E. Boot; J. Booij; N. Abeling; J. Meijer; F. da Silva Alves; J. Zinkstok; F. Baas; D. Linszen; T. van Amelsvoort

    2011-01-01

    22q11 Deletion syndrome (22q11DS) is a major risk factor for schizophrenia. In addition, both conditions are associated with alterations of the dopaminergic system. The catechol-O-methyltransferase (COMT) gene, located within the deleted region, encodes for the enzyme COMT that is important for degr

  19. Explaining the variable penetrance of CNVs: Parental intelligence modulates expression of intellectual impairment caused by the 22q11.2 deletion.

    Science.gov (United States)

    Klaassen, Petra; Duijff, Sasja; Swanenburg de Veye, Henriëtte; Beemer, Frits; Sinnema, Gerben; Breetvelt, Elemi; Schappin, Renske; Vorstman, Jacob

    2016-09-01

    The role of rare genetic variants, in particular copy number variants (CNVs), in the etiology of neurodevelopmental disorders is becoming increasingly clear. While the list of these disorder-related CNVs continues to lengthen, it has also become clear that in nearly all genetic variants the proportion of carriers who express the associated phenotype is far from 100%. To understand this variable penetrance of CNVs it is important to realize that even the largest CNVs represent only a tiny fraction of the entire genome. Therefore, part of the mechanism underlying the variable penetrance of CNVs is likely the modulatory impact of the rest of the genome. In the present study we used the 22q11DS as a model to examine whether the observed penetrance of intellectual impairment-one of the main phenotypes associated with 22q11DS-is modulated by the intellectual level of their parents, for which we used the parents' highest level of education as a proxy. Our results, based on data observed in 171 children with 22q11DS in the age range of 5-15 years, showed a significant association between estimated parental cognitive level and intelligence in offspring (full scale, verbal and performance IQ), with the largest effect size for verbal IQ. These results suggest that possible mechanisms involved in the variable penetrance observed in CNVs include the impact of genetic background and/or environmental influences. © 2016 Wiley Periodicals, Inc.

  20. Explaining the variable penetrance of CNVs: Parental intelligence modulates expression of intellectual impairment caused by the 22q11.2 deletion.

    Science.gov (United States)

    Klaassen, Petra; Duijff, Sasja; Swanenburg de Veye, Henriëtte; Beemer, Frits; Sinnema, Gerben; Breetvelt, Elemi; Schappin, Renske; Vorstman, Jacob

    2016-09-01

    The role of rare genetic variants, in particular copy number variants (CNVs), in the etiology of neurodevelopmental disorders is becoming increasingly clear. While the list of these disorder-related CNVs continues to lengthen, it has also become clear that in nearly all genetic variants the proportion of carriers who express the associated phenotype is far from 100%. To understand this variable penetrance of CNVs it is important to realize that even the largest CNVs represent only a tiny fraction of the entire genome. Therefore, part of the mechanism underlying the variable penetrance of CNVs is likely the modulatory impact of the rest of the genome. In the present study we used the 22q11DS as a model to examine whether the observed penetrance of intellectual impairment-one of the main phenotypes associated with 22q11DS-is modulated by the intellectual level of their parents, for which we used the parents' highest level of education as a proxy. Our results, based on data observed in 171 children with 22q11DS in the age range of 5-15 years, showed a significant association between estimated parental cognitive level and intelligence in offspring (full scale, verbal and performance IQ), with the largest effect size for verbal IQ. These results suggest that possible mechanisms involved in the variable penetrance observed in CNVs include the impact of genetic background and/or environmental influences. © 2016 Wiley Periodicals, Inc. PMID:26953189

  1. Síndrome de deleção 22q11.2: importância da avaliação clínica e técnica de FISH 22q11.2 deletion syndrome: importance of clinical evaluation and FISH analysis

    Directory of Open Access Journals (Sweden)

    Dayane Bohn Koshiyama

    2009-01-01

    Full Text Available OBJETIVO: A síndrome de deleção 22q11.2 é considerada hoje uma das doenças genéticas mais frequentes em humanos. Caracteriza-se clinicamente por um espectro fenotípico bastante amplo, com mais de 180 achados já descritos, tanto físicos como comportamentais. Contudo, nenhum deles é patognomônico ou mesmo obrigatório, o que acaba dificultando o diagnóstico. Assim, o objetivo do presente estudo foi determinar a prevalência e as características clínicas de pacientes com microdeleção 22q11.2 em uma amostra selecionada de indivíduos com suspeita clínica de síndrome de deleção 22q11.2 e cariótipo normal. MÉTODOS: Uma amostra selecionada de 30 pacientes com suspeita clínica da síndrome de deleção 22q11.2 e cariótipo normal foi avaliada através da aplicação de um protocolo clínico padrão e análise citogenética por meio da técnica de hibridização in situ fluorescente. RESULTADOS: A microdeleção 22q11.2 foi identificada em três pacientes (10%, sendo esta prevalência similar a da maioria dos estudos descritos na literatura que oscila de 4% a 21%. Os pacientes com síndrome de deleção 22q11.2 do nosso trabalho se caracterizaram por um fenótipo variável, com poucos achados clínicos similares, o que foi concordante com a descrição da literatura. CONCLUSÃO: Nossos achados reforçam a ideia de que o diagnóstico clínico da síndrome de deleção 22q11.2 é difícil devido à sua grande variabilidade fenotípica. Assim, uma avaliação clínica detalhada associada a um teste sensível como a hibridização in situ fluorescente, são fundamentais para a identificação destes pacientes.OBJECTIVE: The 22q11.2 deletion syndrome nowadays is considered one of the most often observed genetic diseases in humans. It is clinically characterized by a rather wide phenotypic spectrum, with more than 180 clinical features physical as well as behavioral, already described. However, none is pathognomonic or obligatory which

  2. Síndrome con deleción 22q11 (Síndrome velocardiofacial, reporte de los primeros casos en Costa Rica con diagnóstico citogenético 22q11 Deletion Syndrome (Velo-Cardio-Facial syndrome, report of the first cases in Costa Rica with cytogenetic diagnosis

    Directory of Open Access Journals (Sweden)

    Oscar Porras

    2011-01-01

    Full Text Available El síndrome con deleción 22q11 es una enfermedad autosómica recesiva causada por una microdeleción 22q11.2. En este artículo se reportan los tres primeros casos del síndrome confirmados por citogenética en Costa Rica. El estudio de fluorescencia con hibridización in situ que demostró la microdeleción 22q11.2, se indicó por la sospecha clínica del síndrome, en 2 niños y una niña con malformaciones congénitas conotruncales de corazón. Dos de los casos se encuentran vivos a la fecha cuando se escribió este reporte y uno falleció en el postoperatorio inmediato de la cirugía para corregir la cardiopatía. Al inicio de los síntomas, en los tres casos se documentó falla para progresar y en dos se anotó dismorfismo en referencia a rasgos faciales anormales. En un caso se reportó paladar hendido y en otro pie, bott. A pesar de que la malformación congénita de corazón es el hallazgo clínico que con frecuencia induce al médico a pensar en este síndrome, los trastornos cognitivos y del comportamiento son las manifestaciones fenotípicas más frecuentes.The 22q11 deletion syndrome is an autosomic recessive disease caused by a 22q11 microdeletion. We report the first 3 cases of this syndrome in Costa Rica, confirmed by cytogenetics, in situ fluorescence hybridization showed the 22q11 microdeletion. Due to clinical suspicion it was requested in 2 boys and one girl with congenital conotruncal heart disease. As of today, 2 of the cases are alive and 1 died in the immediate postoperative period of corrective cardiac surgery. When their symptoms began, in the 3 cases failure to thrive was noted and in 2, dimorphism related to abnormal facial features. In 1 case, cleft palate was recorded and, pie bott in another. Although congenital heart disease is a clinical finding that frequently persuades physicians into thinking about this syndrome, the most common phenotypical signs are cognitive and behavioral disorders.

  3. COMT Val(158) met genotype and striatal D(2/3) receptor binding in adults with 22q11 deletion syndrome.

    LENUS (Irish Health Repository)

    Boot, Erik

    2011-09-01

    Although catechol-O-methyltransferase (COMT) activity evidently affects dopamine function in prefrontal cortex, the contribution is assumed less significant in striatum. We studied whether a functional polymorphism in the COMT gene (Val(158) Met) influences striatal D(2\\/3) R binding ratios (D(2\\/3) R BP(ND) ) in 15 adults with 22q11 deletion syndrome and hemizygous for this gene, using single photon emission computed tomography and the selective D(2\\/3) radioligand [(123) I]IBZM. Met hemizygotes had significantly lower mean D(2\\/3) R BPND than Val hemizygotes. These preliminary data suggest that low COMT activity may affect dopamine levels in striatum in humans and this may have implications for understanding the contribution of COMT activity to psychiatric disorders.

  4. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  5. Duplication and loss of chromosome 21 in two children with Down syndrome and acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Rogan, P.K.; Close, P.; Gannutz, L. [Pennsylvania State Univ., Hershey, PA (United States)] [and others

    1995-11-06

    Acute leukemia in Down syndrome (DS) is often associated with additional changes in the number of structure of chromosome 21. We present two DS patients whose leukemic karyotypes were associated with changes in chromosome 21 ploidy. Patient 1 developed acute lymphocytic leukemia (type L1); disomy for chromosome 21 was evident in all blast cells examined. Loss of the paternal chromosome in the leukemic clone produced maternal uniparental disomy with isodisomy over a 25-cM interval. The second patient had acute monoblastic leukemia (type M5) with tetrasomy 21 in all leukemic cells. DNA polymorphism analysis showed duplicate paternal chromosomes in the constitutional genotype. The maternal chromosome was subsequently duplicated in the leukemic clone. The distinct inheritance patterns of chromosome 21 in the blast cells of these patients would appear to indicate that leukemogenesis occurred by different genetic mechanisms in each individual. 57 refs., 2 figs., 3 tabs.

  6. In vivo HAPLOID INDUCTION AND EFFICIENCY OF TWO CHROMOSOME DUPLICATION PROTOCOLS IN TROPICAL MAIZE

    Directory of Open Access Journals (Sweden)

    Evellyn Giselly de Oliveira Couto

    2015-10-01

    Full Text Available ABSTRACTArtificial chromosome duplication is one of the most important process in the attainment of doubled haploids in maize. This study aimed to evaluate the induction ability of the inducer line KEMS in a tropical climate and test the efficiency of the R1-Navajo marker by flow cytometry to evaluate two chromosome duplication protocols and analyze the development of the doubled haploids in the field. To accomplish this goal, four genotypes (F1 and F2 generations were crossed with the haploid inducer line KEMS. The seeds obtained were selected using the R1-Navajo marker and subject to two chromosome duplication protocols. Duplication was confirmed using flow cytometry. The percentages of self-fertilized plants after duplication as well as the quantities of doubled haploid seeds obtained after the self-fertilization processes were analyzed. It was observed that the germplasm influences haploid induction but not the duplication rates of the tested protocols. Protocol 2 was more efficient for the duplication of haploids, in the percentage of self-fertilized plants after duplication, and in the attainment of doubled haploid lines. Moreover, the haploid inducer line KEMS can produce haploids in a tropical climate. Other markers, in addition to the R1-Navajo system, should be used in the selection of haploid seeds.

  7. Analysis of the DNA sequence and duplication history of human chromosome 15.

    Science.gov (United States)

    Zody, Michael C; Garber, Manuel; Sharpe, Ted; Young, Sarah K; Rowen, Lee; O'Neill, Keith; Whittaker, Charles A; Kamal, Michael; Chang, Jean L; Cuomo, Christina A; Dewar, Ken; FitzGerald, Michael G; Kodira, Chinnappa D; Madan, Anup; Qin, Shizhen; Yang, Xiaoping; Abbasi, Nissa; Abouelleil, Amr; Arachchi, Harindra M; Baradarani, Lida; Birditt, Brian; Bloom, Scott; Bloom, Toby; Borowsky, Mark L; Burke, Jeremy; Butler, Jonathan; Cook, April; DeArellano, Kurt; DeCaprio, David; Dorris, Lester; Dors, Monica; Eichler, Evan E; Engels, Reinhard; Fahey, Jessica; Fleetwood, Peter; Friedman, Cynthia; Gearin, Gary; Hall, Jennifer L; Hensley, Grace; Johnson, Ericka; Jones, Charlien; Kamat, Asha; Kaur, Amardeep; Locke, Devin P; Madan, Anuradha; Munson, Glen; Jaffe, David B; Lui, Annie; Macdonald, Pendexter; Mauceli, Evan; Naylor, Jerome W; Nesbitt, Ryan; Nicol, Robert; O'Leary, Sinéad B; Ratcliffe, Amber; Rounsley, Steven; She, Xinwei; Sneddon, Katherine M B; Stewart, Sandra; Sougnez, Carrie; Stone, Sabrina M; Topham, Kerri; Vincent, Dascena; Wang, Shunguang; Zimmer, Andrew R; Birren, Bruce W; Hood, Leroy; Lander, Eric S; Nusbaum, Chad

    2006-03-30

    Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplications in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome. PMID:16572171

  8. Dopamine metabolism in adults with 22q11 deletion syndrome, with and without schizophrenia--relationship with COMT Val¹⁰⁸/¹⁵⁸Met polymorphism, gender and symptomatology.

    Science.gov (United States)

    Boot, Erik; Booij, Jan; Abeling, Nico; Meijer, Julia; da Silva Alves, Fabiana; Zinkstok, Janneke; Baas, Frank; Linszen, Don; van Amelsvoort, Thérèse

    2011-07-01

    22q11 Deletion syndrome (22q11DS) is a major risk factor for schizophrenia. In addition, both conditions are associated with alterations of the dopaminergic system. The catechol-O-methyltransferase (COMT) gene, located within the deleted region, encodes for the enzyme COMT that is important for degradation of catecholamines, including dopamine (DA). COMT activity is sexually dimorphic and its gene contains a functional polymorphism, Val¹⁰⁸/¹⁵⁸ Met; the Met allele is associated with lower enzyme activity. We report the first controlled catecholamine study in 22q11DS-related schizophrenia. Twelve adults with 22q11DS with schizophrenia (SCZ+) and 22 adults with 22q11DS without schizophrenia (SCZ-) were genotyped for the COMT Val¹⁰⁸/¹⁵⁸ Met genotype. We assessed dopaminergic markers in urine and plasma. We also correlated these markers with scores on the Positive and Negative Symptom Scale (PANSS). Contrary to our expectations, we found SCZ+ subjects to be more often Val hemizygous and SCZ- subjects more often Met hemizygous. Significant COMT cross gender interactions were found on dopaminergic markers. In SCZ+ subjects there was a negative correlation between prolactin levels and scores on the general psychopathology subscale of the PANSS scores. These findings suggest intriguing, but complex, interactions of the COMT Val¹⁰⁸/¹⁵⁸ Met polymorphism, gender and additional factors on DA metabolism, and its relationship with schizophrenia.

  9. 22q11.2欠失症候群における特徴的顔貌の検討 : 三次元レーザースキャナを用いて

    OpenAIRE

    山村, 幸江; 高山, 幹子; 石井, 哲夫; 寺田, 伸一; YAMAMURA, Yukie; TAKAYAMA, Mikiko; ISHII, Tetsuo; TERADA, Shinichi

    2001-01-01

    The DiGeorge syndrome, velo-cardio-facial syndrome and conotruncal anomaly face syndrome have similar but variable phenotypes and share the deletion of 22q11.2. The 22q11.2 deletion syndrome includes the following facial appearance: widely spaced eyes, narrow eyelids, small mouth, prominent apex nasi, flat and widened nasal dorsum. A diagnosis of this syndrome may be made based solely on facial appearance. However, a more accurate and objective evaluation is necessary as facial appearance lar...

  10. Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication.

    Science.gov (United States)

    Hou, Jing; Ye, Ning; Dong, Zhongyuan; Lu, Mengzhu; Li, Laigeng; Yin, Tongming

    2016-01-01

    Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the "salicoid" duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants. PMID:27352946

  11. Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral “Salicoid” Genome Duplication

    Science.gov (United States)

    Hou, Jing; Ye, Ning; Dong, Zhongyuan; Lu, Mengzhu; Li, Laigeng; Yin, Tongming

    2016-01-01

    Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the “salicoid” duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants. PMID:27352946

  12. A molecularly defined duplication set for the X chromosome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Venken, Koen J. T.; Popodi, Ellen; Holtzman, Stacy L.; Schulze, Karen L.; Park, Soo; Carlson, Joseph W.; Hoskins, Roger A.; Bellen, Hugo J.; Kaufman, Thomas C.

    2010-07-22

    We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using C31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

  13. Partial duplication of the APBA2 gene in chromosome 15q13 corresponds to duplicon structures

    Directory of Open Access Journals (Sweden)

    Kesterson Robert A

    2003-04-01

    Full Text Available Abstract Background Chromosomal abnormalities affecting human chromosome 15q11-q13 underlie multiple genomic disorders caused by deletion, duplication and triplication of intervals in this region. These events are mediated by highly homologous segments of DNA, or duplicons, that facilitate mispairing and unequal cross-over in meiosis. The gene encoding an amyloid precursor protein-binding protein (APBA2 was previously mapped to the distal portion of the interval commonly deleted in Prader-Willi and Angelman syndromes and duplicated in cases of autism. Results We show that this gene actually maps to a more telomeric location and is partially duplicated within the broader region. Two highly homologous copies of an interval containing a large 5' exon and downstream sequence are located ~5 Mb distal to the intact locus. The duplicated copies, containing the first coding exon of APBA2, can be distinguished by single nucleotide sequence differences and are transcriptionally inactive. Adjacent to APBA2 maps a gene termed KIAA0574. The protein encoded by this gene is weakly homologous to a protein termed X123 that in turn maps adjacent to APBA1 on 9q21.12; APBA1 is highly homologous to APBA2 in the C-terminal region and is distinguished from APBA2 by the N-terminal region encoded by this duplicated exon. Conclusion The duplication of APBA2 sequences in this region adds to a complex picture of different low copy repeats present across this region and elsewhere on the chromosome.

  14. 20-Mb duplication of chromosome 9p in a girl with minimal physical findings and normal IQ: narrowing of the 9p duplication critical region to 6 Mb.

    Science.gov (United States)

    Bonaglia, Maria Clara; Giorda, Roberto; Carrozzo, Romeo; Roncoroni, Maria Elena; Grasso, Rita; Borgatti, Renato; Zuffardi, Orsetta

    2002-10-01

    We studied the case of a girl with a partial 9p duplication, dup(9)(p22.1 --> p13.1). Molecular cytogenetics studies defined the chromosome 9 rearrangement as a direct duplication of 20 Mb from D9S1213 to D9S52. Microsatellite analysis demonstrated the presence of a double dosage of the paternal alleles and demonstrated that the duplication occurred between sister chromatids. The patient's phenotype was almost normal, with a few minor anomalies (dolichocephaly, crowded teeth, high arched palate) and normal IQ. The breakpoint's location in this patient and previously reported cases suggest that the critical region for the 9p duplication syndrome lies within a 6-Mb portion of chromosome 9p22 between markers D9S267 and D9S1213.

  15. Duplication and loss of chromosome 21 in two children with Down Syndrome and acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Rogan, P.K.; Close, P.; Seip, J.R. [Pennsylvania State Univ. College of Medicine, Hershey, PA (United States)] [and others

    1994-09-01

    Acute leukemia in patients with Trisomy 21 (Down Syndrome; DS) may often result in additional karyotypic changes in the number or structure of chromosome 21. We present two DS patients whose immunoblast karyotypes were associated with changes in chromosome 21 ploidy. Patient L.E. developed acute lymphocytic leukemia concomitant with the loss of a single copy of chromosome 21. Trisomy 21 in this individual was due to maternal meiosis I nondisjunction. A recombination event resulted in reduction of maternal alleles to homozygosity distal to D21S167. Loss of the paternal chromosomes in the leukemia clone produced uniparental maternal disomy with isodisomy over a 25cM interval. This could, in theory, permit the unopposed expression of one or more homozygous recessive maternal tumor-associated genes, thus providing an explanation for leukemogenesis in this patient. Patient E.H. was diagnosed with acute monoblastic leukemia and consistently displayed tetrasomy 21 in the blast cell population. The DS karyotype probably arose from a mitotic error in which the paternal chromosome was duplicated. DNA polymorphism analysis indicated that the additional chromosome in the leukemia clone was of maternal origin. The presence of equal numbers of maternal and paternal chromosomes in the tetraploid blast clone would not appear to be consistent with the expression of a mutant tumor suppressor gene in this patient. Although tetrasomy 21 could be a non-specific karyotypic abnormality unrelated to leukemogenesis, it is possible that monoblastic leukemia may be a consequence of increased expression of one or more genes on this chromosome.

  16. Persistent Mosaicism for 12p Duplication/Triplication Chromosome Structural Abnormality in Peripheral Blood

    Directory of Open Access Journals (Sweden)

    Amy L. Shackelford

    2013-01-01

    Full Text Available We present a rare case of mosaicism for a structural abnormality of chromosome 12 in a patient with phenotypic features of Pallister-Killian syndrome. A six-month-old child with dysmorphic features, exotropia, hypotonia, and developmental delay was mosaic for both a normal karyotype and a cell line with 12p duplication/triplication in 25 percent of metaphase cells. Utilization of fluorescence in situ hybridization (FISH identified three copies of probes from the end of the short arm of chromosome 12 (TEL(12p13 locus and the subtelomere (12p terminal on the structurally abnormal chromosome 12. Genome-wide SNP array analysis revealed that the regions of duplication and triplication were of maternal origin. The abnormal cell line in our patient was present at 25 percent at six months and 19 months of age in both metaphase and interphase cells from peripheral blood, where typically the isochromosome 12p is absent in the newborn. This may suggest that the gene(s resulting in a growth disadvantage of abnormal cells in peripheral blood of patients with tetrasomy 12p may not have the same influence when present in only three copies.

  17. Evidence for Involvement of GNB1L in Autism

    OpenAIRE

    Chen, Ying-Zhang; Matsushita, Mark; Girirajan, Santhosh; Lisowski, Mark; Sun, Elizabeth; Sul, Youngmee; Bernier, Raphael; Estes, Annette; Dawson, Geraldine; Minshew, Nancy; Shellenberg, Gerard D; Evan E Eichler; Rieder, Mark J.; Deborah A Nickerson; Tsuang, Debby W.

    2011-01-01

    Structural variations in the chromosome 22q11.2 region mediated by nonallelic homologous recombination result in 22q11.2 deletion (del22q11.2) and 22q11.2 duplication (dup22q11.2) syndromes. The majority of del22q11.2 cases have facial and cardiac malformations, immunologic impairments, specific cognitive profile and increased risk for schizophrenia and autism spectrum disorders (ASDs). The phenotype of dup22q11.2 is frequently without physical features but includes the spectrum of neurocogni...

  18. Chromosomal duplications and cointegrates generated by the bacteriophage lamdba Red system in Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Nadkarni Ashwini

    2004-12-01

    sequences in the chromosome generates a partial duplication of the bacterial chromosome. When the incoming DNA species is circular rather than linear, cointegrates are the most frequent type of recombinant.

  19. A dense linkage map for Chinook salmon (Oncorhynchus tshawytscha) reveals variable chromosomal divergence after an ancestral whole genome duplication event.

    Science.gov (United States)

    Brieuc, Marine S O; Waters, Charles D; Seeb, James E; Naish, Kerry A

    2014-03-20

    Comparisons between the genomes of salmon species reveal that they underwent extensive chromosomal rearrangements following whole genome duplication that occurred in their lineage 58-63 million years ago. Extant salmonids are diploid, but occasional pairing between homeologous chromosomes exists in males. The consequences of re-diploidization can be characterized by mapping the position of duplicated loci in such species. Linkage maps are also a valuable tool for genome-wide applications such as genome-wide association studies, quantitative trait loci mapping or genome scans. Here, we investigated chromosomal evolution in Chinook salmon (Oncorhynchus tshawytscha) after genome duplication by mapping 7146 restriction-site associated DNA loci in gynogenetic haploid, gynogenetic diploid, and diploid crosses. In the process, we developed a reference database of restriction-site associated DNA loci for Chinook salmon comprising 48528 non-duplicated loci and 6409 known duplicated loci, which will facilitate locus identification and data sharing. We created a very dense linkage map anchored to all 34 chromosomes for the species, and all arms were identified through centromere mapping. The map positions of 799 duplicated loci revealed that homeologous pairs have diverged at different rates following whole genome duplication, and that degree of differentiation along arms was variable. Many of the homeologous pairs with high numbers of duplicated markers appear conserved with other salmon species, suggesting that retention of conserved homeologous pairing in some arms preceded species divergence. As chromosome arms are highly conserved across species, the major resources developed for Chinook salmon in this study are also relevant for other related species.

  20. The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks

    Directory of Open Access Journals (Sweden)

    Zhao Jianwei

    2009-11-01

    Full Text Available Abstract Background The gene FLOWERING LOCUS T (FT and its orthologues play a central role in the integration of flowering signals within Arabidopsis and other diverse species. Multiple copies of FT, with different cis-intronic sequence, exist and appear to operate harmoniously within polyploid crop species such as Brassica napus (AACC, a member of the same plant family as Arabidopsis. Results We have identified six BnFT paralogues from the genome of B. napus and mapped them to six distinct regions, each of which is homologous to a common ancestral block (E of Arabidopsis chromosome 1. Four of the six regions were present within inverted duplicated regions of chromosomes A7 and C6. The coding sequences of BnFT paralogues showed 92-99% identities to each other and 85-87% identity with that of Arabidopsis. However, two of the paralogues on chromosomes A2 and C2, BnA2.FT and BnC2.FT, were found to lack the distinctive CArG box that is located within intron 1 that has been shown in Arabidopsis to be the binding site for theFLC protein. Three BnFT paralogues (BnA2.FT, BnC6.FT.a and BnC6.FT.b were associated with two major QTL clusters for flowering time. One of the QTLs encompassing two BnFT paralogues (BnC6.FT.a and BnC6.FT.b on chromosome C6 was resolved further using near isogenic lines, specific alleles of which were both shown to promote flowering. Association analysis of the three BnFT paralogues across 55 cultivars of B. napus showed that the alleles detected in the original parents of the mapping population used to detect QTL (NY7 and Tapidor were ubiquitous amongst spring and winter type cultivars of rapeseed. It was inferred that the ancestral FT homologues in Brassica evolved from two distinct copies, one of which was duplicated along with inversion of the associated chromosomal segment prior to the divergence of B. rapa (AA and B. oleracea (CC. At least ten such inverted duplicated blocks (IDBs were identified covering a quarter of the

  1. Sgs1 and Exo1 suppress targeted chromosome duplication during ends-in and ends-out gene targeting.

    Science.gov (United States)

    Štafa, Anamarija; Miklenić, Marina; Zunar, Bojan; Lisnić, Berislav; Symington, Lorraine S; Svetec, Ivan-Krešimir

    2014-10-01

    Gene targeting is extremely efficient in the yeast Saccharomyces cerevisiae. It is performed by transformation with a linear, non-replicative DNA fragment carrying a selectable marker and containing ends homologous to the particular locus in a genome. However, even in S. cerevisiae, transformation can result in unwanted (aberrant) integration events, the frequency and spectra of which are quite different for ends-out and ends-in transformation assays. It has been observed that gene replacement (ends-out gene targeting) can result in illegitimate integration, integration of the transforming DNA fragment next to the target sequence and duplication of a targeted chromosome. By contrast, plasmid integration (ends-in gene targeting) is often associated with multiple targeted integration events but illegitimate integration is extremely rare and a targeted chromosome duplication has not been reported. Here we systematically investigated the influence of design of the ends-out assay on the success of targeted genetic modification. We have determined transformation efficiency, fidelity of gene targeting and spectra of all aberrant events in several ends-out gene targeting assays designed to insert, delete or replace a particular sequence in the targeted region of the yeast genome. Furthermore, we have demonstrated for the first time that targeted chromosome duplications occur even during ends-in gene targeting. Most importantly, the whole chromosome duplication is POL32 dependent pointing to break-induced replication (BIR) as the underlying mechanism. Moreover, the occurrence of duplication of the targeted chromosome was strikingly increased in the exo1Δ sgs1Δ double mutant but not in the respective single mutants demonstrating that the Exo1 and Sgs1 proteins independently suppress whole chromosome duplication during gene targeting. PMID:25089886

  2. Reciprocal white matter alterations due to 16p11.2 chromosomal deletions versus duplications.

    Science.gov (United States)

    Chang, Yi Shin; Owen, Julia P; Pojman, Nicholas J; Thieu, Tony; Bukshpun, Polina; Wakahiro, Mari L J; Marco, Elysa J; Berman, Jeffrey I; Spiro, John E; Chung, Wendy K; Buckner, Randy L; Roberts, Timothy P L; Nagarajan, Srikantan S; Sherr, Elliott H; Mukherjee, Pratik

    2016-08-01

    Copy number variants at the 16p11.2 chromosomal locus are associated with several neuropsychiatric disorders, including autism, schizophrenia, bipolar disorder, attention-deficit hyperactivity disorder, and speech and language disorders. A gene dosage dependence has been suggested, with 16p11.2 deletion carriers demonstrating higher body mass index and head circumference, and 16p11.2 duplication carriers demonstrating lower body mass index and head circumference. Here, we use diffusion tensor imaging to elucidate this reciprocal relationship in white matter organization, showing widespread increases of fractional anisotropy throughout the supratentorial white matter in pediatric deletion carriers and, in contrast, extensive decreases of white matter fractional anisotropy in pediatric and adult duplication carriers. We find associations of these white matter alterations with cognitive and behavioral impairments. We further demonstrate the value of imaging metrics for characterizing the copy number variant phenotype by employing linear discriminant analysis to predict the gene dosage status of the study subjects. These results show an effect of 16p11.2 gene dosage on white matter microstructure, and further suggest that opposite changes in diffusion tensor imaging metrics can lead to similar cognitive and behavioral deficits. Given the large effect sizes found in this study, our results support the view that specific genetic variations are more strongly associated with specific brain alterations than are shared neuropsychiatric diagnoses. Hum Brain Mapp 37:2833-2848, 2016. © 2016 Wiley Periodicals, Inc. PMID:27219475

  3. Delineation of a new chromosome 20q11.2 duplication syndrome including the ASXL1 gene

    DEFF Research Database (Denmark)

    Avila, Magali; Kirchhoff, Eva Maria; Marle, Nathalie;

    2013-01-01

    We report on three males with de novo overlapping 7.5, 9.8, and 10 Mb duplication of chromosome 20q11.2. Together with another patient previously published in the literature with overlapping 20q11 microduplication, we show that such patients display common clinical features including metopic ridg...

  4. Cytogenetic and molecular characterization of inverted duplicated chromosomes 15 from 11 patients

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Sou-De; Knoll, J.H.M. [Harvard Medical School, Boston, MA (United States); Spinner, N.B.; Zackai, E.H. [Children`s Hospital, Philadelphia, PA (United States)

    1994-10-01

    We have studied the inverted duplicated chromosomes 15 (inv dup(15)) from 11 individuals - 7 with severe mental retardation and seizures, 3 with a normal phenotype, and 1 with Prader-Willi syndrome (PWS). Through a combination of FISH and quantitative DNA analyses, three different molecular sizes of inv dup(15) were identified. The smallest inv dup(15) was positive only for the centromeric locus D15Z1 (type 1); the next size was positive for D15Z1 and D15S18 (type 2); and the largest inv dup(15) was positive for two additional copies of loci extending from D15Z1 and D15S18 through D15S12 (type 3). Type 1 or type 2 was observed in the three normal individuals and the PWS patient. Type 3 was observed in all seven individuals with mental retardation and seizures but without PWS or Angelman Syndrome (AS). The PWS patient, in addition to being mosaic for a small inv dup(15), demonstrated at D15S63 a methylation pattern consistent with material uniparental inheritance of the normal chromosomes 15. The results from this study show (a) two additional copies of proximal 15q loci, D15S9 through D15S12, in mentally retarded patients with an inv dup(15) but without AS or PWS and (b) no additional copies of these loci in patients with a normal phenotype or with PWS. 36 refs., 3 figs., 2 tabs.

  5. Evolutionary consequences of a large duplication event in Trypanosoma brucei: Chromosomes 4 and 8 are partial duplicons

    Directory of Open Access Journals (Sweden)

    Jackson Andrew P

    2007-11-01

    Full Text Available Abstract Background Gene order along the genome sequence of the human parasite Trypanosoma brucei provides evidence for a 0.5 Mb duplication, comprising the 3' regions of chromosomes 4 and 8. Here, the principal aim was to examine the contribution made by this duplication event to the T. brucei genome sequence, emphasising the consequences for gene content and the evolutionary change subsequently experienced by paralogous gene copies. The duplicated region may be browsed online at http://www.genedb.org/genedb/tryp/48dup_image.jsp Results Comparisons of trypanosomatid genomes demonstrated widespread gene loss from each duplicon, but also showed that 47% of duplicated genes were retained on both chromosomes as paralogous loci. Secreted and surface-expressed genes were over-represented among retained paralogs, reflecting a bias towards important factors at the host-parasite interface, and consistent with a dosage-balance hypothesis. Genetic divergence in both coding and regulatory regions of retained paralogs was bimodal, with a deficit in moderately divergent paralogs; in particular, non-coding sequences were either conserved or entirely remodelled. The conserved paralogs included examples of remarkable sequence conservation, but also considerable divergence of both coding and regulatory regions. Sequence divergence typically displayed strong negative selection; but several features, such as asymmetric evolutionary rates, positively-selected codons and other non-neutral substitutions, suggested that divergence of some paralogs was driven by functional change. The absence of orthologs to retained paralogs in T. congolense indicated that the duplication event was specific to T. brucei. Conclusion The duplication of this chromosomal region doubled the dosage of many genes. Rather than creating 'more of the same', these results show that paralogs were structurally modified according to various evolutionary trajectories. The retention of paralogs, and

  6. The Danish 22q11 research initiative

    DEFF Research Database (Denmark)

    Schmock, Henriette; Vangkilde, Anders; Larsen, Kit Melissa;

    2015-01-01

    and secondarily the morbid condition of autism and attention deficit hyperactivity disorder. We use a population based epidemiological design to inform on disease prevalence, environmental risk factors and familial disposition for mental health disorders and a case control study design to map the functional...... from symptomatic therapy of manifest mental illness into early intervention strategies, which may also be applicable to at risk subjects without known etiology. Hopefully new insights into the biological disease mechanisms, which are mandatory for novel drug developments, can improve the outcome...

  7. The genomic distribution of intraspecific and interspecific sequence divergence of human segmental duplications relative to human/chimpanzee chromosomal rearrangements

    OpenAIRE

    Eichler Evan E; She Xinwei; Cheng Ze; Marques-Bonet Tomàs; Navarro Arcadi

    2008-01-01

    Abstract Background It has been suggested that chromosomal rearrangements harbor the molecular footprint of the biological phenomena which they induce, in the form, for instance, of changes in the sequence divergence rates of linked genes. So far, all the studies of these potential associations have focused on the relationship between structural changes and the rates of evolution of single-copy DNA and have tried to exclude segmental duplications (SDs). This is paradoxical, since SDs are one ...

  8. Low thymic output in the 22q11.2 deletion syndrome measured by CCR9+CD45RA+ T cell counts and T cell receptor rearrangement excision circles

    DEFF Research Database (Denmark)

    Lima, K; Abrahamsen, Gitte Meldgaard; Foelling, I;

    2010-01-01

    -expression of CD3, CD45RA and CCR9 (r=0.84) as well as with the CD4+ and CD8+ T cell subtypes. RTE-related T cell counts also paralleled age-related TREC reductions. CD45RA+ T cells correlated well with absolute counts of CD4+ (r=0.87) and CD8+ (r=0.75) RTE-related T cells. Apart from CD45RA- T cells, all T......Thymic hypoplasia is a frequent feature of the 22q11.2 deletion syndrome, but we know little about patients' age-related thymic output and long-term consequences for their immune system. We measured the expression of T cell receptor rearrangement excision circles (TREC) and used flow cytometry for...... direct subtyping of recent thymic emigrant (RTE)-related T cells in 43 patients (aged 1-54 years; median 9 years) from all over Norway and in age-matched healthy controls. Thymic volumes were estimated by ultrasound in patients. TREC levels correlated well with RTE-related T cells defined by co...

  9. Chromosome mapping of Xenopus tropicalis using the G- and Ag-bands: tandem duplication and polyploidization of larvae heads.

    Science.gov (United States)

    Uehara, Mariko; Haramoto, Yoshikazu; Sekizaki, Hiroyuki; Takahashi, Shuji; Asashima, Makoto

    2002-10-01

    Developmental cytogenetic analyses of Xenopus tropicalis larvae from two origins were performed on stage 27-34 heads treated with colchicine. Standard G-band karyotyping using trypsin and chromosome mapping of 184 bands were examined. Although the main karyotype was 2n = 20, polyploidy (3n = 30 or 4n = 40) and aneuploidy were detected in each individual treated with colchicine, even those treated for only 1 h. The percentage of polyploid karyotypes was 10-20% across the total of measured metaphases. The mean mitotic index was 0.10. Chromosomal breaks and exchanges were detected at the secondary constriction of chromosomes 5 or 6. Ag-band detection showed clearly positive staining at the secondary constriction of chromosome 5, which corresponds to the nucleolar organizer region. Tandem duplication of negative G-bands at the secondary constriction of chromosome 6 and the short arm of chromosome 10 was suggested by this study. X. tropicalis thus provides a good model to study the mechanism and effects of chromosomal abnormalities, gene mapping and tissue specific gene expression in the developmental process. PMID:12392576

  10. An interstitial duplication of chromosome 13q31.3q32.1 further delineates the critical region for postaxial polydactyly type A2

    NARCIS (Netherlands)

    van der Zwaag, Paul A.; Dijkhuizen, Trijnie; Gerssen - Schoorl, Klasientje; Colijn, Anja W.; Broens, Paul M. A.; Flapper, Boudien; van Ravenswaaij-Arts, Conny M. A.

    2010-01-01

    Postaxial polydactyly type A2 (PAP-A2; OMIM 602085) is a common feature seen in patients with a partial duplication of the long arm of chromosome 13. Dose dependency has been shown for digital malformations in this region, deletions resulting in oligodactyly and duplications in polydactyly. We aimed

  11. A novel duplication of chromosome (13)(q14.1q21.3) in a patient with mental retardation and microcephaly

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Ruiter, E.M.; Egger, J.I.M.; Tuinier, S.; Smeets, D.F.C.M.

    2009-01-01

    A novel duplication of chromosome (13)(q14.1q21.3) in a patient with mental retardation and microcephaly: We report on a mentally retarded female with behavioural problems, microcephaly, mild facial dysmorphisms, short stature and small hands with thin fingers due to a de novo partial duplication wi

  12. Mutant dihydrofolate reductase-thymidylate synthase genes in pyrimethamine-resistant Plasmodium falciparum with polymorphic chromosome duplications.

    Science.gov (United States)

    Tanaka, M; Gu, H M; Bzik, D J; Li, W B; Inselburg, J

    1990-08-01

    We have identified dihydrofolate reductase (DHFR) gene point mutations and chromosomal changes in pyrimethamine-resistant mutants selected in vitro of Plasmodium falciparum strain FCR3. A pyrimethamine-resistant derivative of the pyrimethamine-sensitive strain FCR3, FCR3-D8, that had been grown in the absence of pyrimethamine for an extended time, was grown in two concentrations of pyrimethamine, and surviving drug-resistant parasites were subcloned. One selected mutant, FCR3-D81, that grew at 1 X 10(-6) M pyrimethamine, contained a single point mutation in the DHFR domain which caused an amino acid change (Phe to Ser) at amino acid 223, whereas another mutant, FCR3-D85, that grew at 5 X 10(-6) M pyrimethamine had that same mutation and an additional point mutation that changed amino acid 54 (Asp to Asn). The selection of FCR3-D85, whose nucleotide sequence was identical to that previously reported for FCR3-D8, confirmed that the original FCR3-D8 parasite population had changed during extended growth in vitro in the absence of drug pressure. FCR3-D81 and FCR3-D85 cells contained different pairs of polymorphic chromosomes that hybridized to a DHFR-TS probe as well as to three other chromosome 4 specific DNAs, indicating that at least part of chromosome 4 had been duplicated and that these parasites were aneuploid with 15 rather than 14 chromosomes. The mutant DHFR-TS genes were diploid. We consider the roles of the polymorphic chromosome duplications and DHFR point mutation(s) as causes of pyrimethamine resistance. PMID:2233901

  13. A rare duplication on chromosome 16p11.2 is identified in patients with psychosis in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Xiaojing Zheng

    Full Text Available Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer's disease (AD+P share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip. A chromosome 16p11.2 duplication CNV (chr16: 29,554,843-30,105,652 was identified in 2 of 440 AD+P subjects, but not in 136 AD subjects without psychosis, or in 593 AD subjects with intermediate psychosis status, or in 855 non-AD individuals. The frequency of this duplication CNV in AD+P (0.46% was similar to that reported previously in schizophrenia (0.46%. This duplication CNV was further validated using the NanoString nCounter CNV Custom CodeSets. The 16p11.2 duplication has been associated with developmental delay, intellectual disability, behavioral problems, autism, schizophrenia (SCZ, and bipolar disorder. These two AD+P patients had no personal of, nor any identified family history of, SCZ, bipolar disorder and autism. To the best of our knowledge, our case report is the first suggestion that 16p11.2 duplication is also linked to AD+P. Although rare, this CNV may have an important role in the development of psychosis.

  14. Inherited Xq13.2-q21.31 duplication in a boy with recurrent seizures and pubertal gynecomastia: Clinical, chromosomal and aCGH characterization

    Directory of Open Access Journals (Sweden)

    Natália D. Linhares

    2016-09-01

    Full Text Available We report on a 16-year-old boy with a maternally inherited ~18.3 Mb Xq13.2-q21.31 duplication delimited by aCGH. As previously described in patients with similar duplications, his clinical features included intellectual disability, developmental delay, speech delay, generalized hypotonia, infantile feeding difficulties, self-injurious behavior, short stature and endocrine problems. As additional findings, he presented recurrent seizures and pubertal gynecomastia. His mother was phenotypically normal and had completely skewed inactivation of the duplicated X chromosome, as most female carriers of such duplications. Five previously reported patients with partial Xq duplications presented duplication breakpoints similar to those of our patient. One of them, a fetus with multiple congenital abnormalities, had the same cytogenetic duplication breakpoint. Three of the reported patients shared many features with our proband but the other had some clinical features of the Prader-Willi syndrome. It was suggested that ATRX overexpression could be involved in the major clinical features of patients with partial Xq duplications. We propose that this gene could also be involved with the obesity of the patient with the Prader-Willi-like phenotype. Additionally, we suggest that the PCDH11X gene could be a candidate for our patient's recurrent seizures. In males, the Xq13-q21 duplication should be considered in the differential diagnosis of Prader-Willi syndrome, as previously suggested, and neuromuscular diseases, particularly mitochondriopathies.

  15. Inherited Xq13.2-q21.31 duplication in a boy with recurrent seizures and pubertal gynecomastia: Clinical, chromosomal and aCGH characterization.

    Science.gov (United States)

    Linhares, Natália D; Valadares, Eugênia R; da Costa, Silvia S; Arantes, Rodrigo R; de Oliveira, Luiz Roberto; Rosenberg, Carla; Vianna-Morgante, Angela M; Svartman, Marta

    2016-09-01

    We report on a 16-year-old boy with a maternally inherited ~ 18.3 Mb Xq13.2-q21.31 duplication delimited by aCGH. As previously described in patients with similar duplications, his clinical features included intellectual disability, developmental delay, speech delay, generalized hypotonia, infantile feeding difficulties, self-injurious behavior, short stature and endocrine problems. As additional findings, he presented recurrent seizures and pubertal gynecomastia. His mother was phenotypically normal and had completely skewed inactivation of the duplicated X chromosome, as most female carriers of such duplications. Five previously reported patients with partial Xq duplications presented duplication breakpoints similar to those of our patient. One of them, a fetus with multiple congenital abnormalities, had the same cytogenetic duplication breakpoint. Three of the reported patients shared many features with our proband but the other had some clinical features of the Prader-Willi syndrome. It was suggested that ATRX overexpression could be involved in the major clinical features of patients with partial Xq duplications. We propose that this gene could also be involved with the obesity of the patient with the Prader-Willi-like phenotype. Additionally, we suggest that the PCDH11X gene could be a candidate for our patient's recurrent seizures. In males, the Xq13-q21 duplication should be considered in the differential diagnosis of Prader-Willi syndrome, as previously suggested, and neuromuscular diseases, particularly mitochondriopathies. PMID:27617217

  16. The genomic distribution of intraspecific and interspecific sequence divergence of human segmental duplications relative to human/chimpanzee chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Eichler Evan E

    2008-08-01

    Full Text Available Abstract Background It has been suggested that chromosomal rearrangements harbor the molecular footprint of the biological phenomena which they induce, in the form, for instance, of changes in the sequence divergence rates of linked genes. So far, all the studies of these potential associations have focused on the relationship between structural changes and the rates of evolution of single-copy DNA and have tried to exclude segmental duplications (SDs. This is paradoxical, since SDs are one of the primary forces driving the evolution of structure and function in our genomes and have been linked not only with novel genes acquiring new functions, but also with overall higher DNA sequence divergence and major chromosomal rearrangements. Results Here we take the opposite view and focus on SDs. We analyze several of the features of SDs, including the rates of intraspecific divergence between paralogous copies of human SDs and of interspecific divergence between human SDs and chimpanzee DNA. We study how divergence measures relate to chromosomal rearrangements, while considering other factors that affect evolutionary rates in single copy DNA. Conclusion We find that interspecific SD divergence behaves similarly to divergence of single-copy DNA. In contrast, old and recent paralogous copies of SDs do present different patterns of intraspecific divergence. Also, we show that some relatively recent SDs accumulate in regions that carry inversions in sister lineages.

  17. Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homoeologous regions in sorghum and sugarcane.

    Science.gov (United States)

    Dufour, P; Grivet, L; D'Hont, A; Deu, M; Trouche, G; Glaszmann, J C; Hamon, P

    1996-06-01

    Comparative mapping within maize, sorghum and sugarcane has previously revealed the existence of syntenic regions between the crops. In the present study, mapping on the sorghum genome of a set of probes previously located on the maize and sugarcane maps allow a detailed analysis of the relationship between maize chromosomes 3 and 8 and sorghum and sugarcane homoeologous regions. Of 49 loci revealed by 46 (4 sugarcane and 42 maize) polymorphic probes in sorghum, 42 were linked and were assigned to linkage groups G (28), E (10) and I (4). On the basis of common probes, a complete co-linearity is observed between sorghum linkage group G and the two sugarcane linkage groups II and III. The comparison between the consensus sorghum/sugarcane map (G/II/III) and the maps of maize chromosomes 3 and 8 reveals a series of linkage blocks within which gene orders are conserved. These blocks are interspersed with non-homoeologous regions corresponding to the central part of the two maize chromosomes and have been reshuffled, resulting in several inversions in maize compared to sorghum and sugarcane. The results emphasize the fact that duplication will considerably complicate precise comparative mapping at the whole genome scale between maize and other Poaceae. PMID:24166631

  18. Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem II Contains Tandem Duplication of a Large Chromosomal Region.

    Science.gov (United States)

    Tichý, Martin; Bečková, Martina; Kopečná, Jana; Noda, Judith; Sobotka, Roman; Komenda, Josef

    2016-01-01

    Cyanobacterium Synechocystis PCC 6803 represents a favored model organism for photosynthetic studies. Its easy transformability allowed construction of a vast number of Synechocystis mutants including many photosynthetically incompetent ones. However, it became clear that there is already a spectrum of Synechocystis "wild-type" substrains with apparently different phenotypes. Here, we analyzed organization of photosynthetic membrane complexes in a standard motile Pasteur collection strain termed PCC and two non-motile glucose-tolerant substrains (named here GT-P and GT-W) previously used as genetic backgrounds for construction of many photosynthetic site directed mutants. Although, both the GT-P and GT-W strains were derived from the same strain constructed and described by Williams in 1988, only GT-P was similar in pigmentation and in the compositions of Photosystem II (PSII) and Photosystem I (PSI) complexes to PCC. In contrast, GT-W contained much more carotenoids but significantly less chlorophyll (Chl), which was reflected by lower level of dimeric PSII and especially trimeric PSI. We found that GT-W was deficient in Chl biosynthesis and contained unusually high level of unassembled D1-D2 reaction center, CP47 and especially CP43. Another specific feature of GT-W was a several fold increase in the level of the Ycf39-Hlip complex previously postulated to participate in the recycling of Chl molecules. Genome re-sequencing revealed that the phenotype of GT-W is related to the tandem duplication of a large region of the chromosome that contains 100 genes including ones encoding D1, Psb28, and other PSII-related proteins as well as Mg-protoporphyrin methylester cyclase (Cycl). Interestingly, the duplication was completely eliminated after keeping GT-W cells on agar plates under photoautotrophic conditions for several months. The GT-W strain without a duplication showed no obvious defects in PSII assembly and resembled the GT-P substrain. Although, we do not exactly

  19. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia.

    LENUS (Irish Health Repository)

    Vacic, Vladimir

    2011-03-24

    Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2-4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.

  20. Polymorphism, duplication, and IS1-mediated rearrangement in the chromosomal his-rfb-gnd region of Escherichia coli strains with group IA and capsular K antigens.

    OpenAIRE

    Drummelsmith, J; Amor, P A; Whitfield, C

    1997-01-01

    Individual Escherichia coli strains produce several cell surface polysaccharides. In E. coli E69, the his region of the chromosome contains the rfb (serotype O9 lipopolysaccharide O-antigen biosynthesis) and cps (serotype K30 group IA capsular polysaccharide biosynthesis) loci. Polymorphisms in this region of the Escherichia coli chromosome reflect extensive antigenic diversity in the species. Previously, we reported a duplication of the manC-manB genes, encoding enzymes involved in GDP-manno...

  1. A novel duplication of chromosome (13)(q14.1q21.3) in a patient with mental retardation and microcephaly.

    NARCIS (Netherlands)

    Verhoeven, W.; Ruiter, M.; Egger, J.; Tuinier, S.; Smeets, D.F.C.M.

    2009-01-01

    We report on a mentally retarded female with behavioural problems, microcephaly, mild facial dysmorphisms, short stature and small hands with thin fingers due to a de novo partial duplication within the long arm of chromosome 13(q14.1q21.3). She was primarily referred to the outpatient department of

  2. Pure Duplication of the Distal Long Arm of Chromosome 15 with Ebstein Anomaly and Clavicular Anomaly

    Directory of Open Access Journals (Sweden)

    Rachel O'Connor

    2011-01-01

    Full Text Available This report is of a patient with pure trisomy of 15q24-qter who presents with the rare Ebstein anomaly and a previously unreported skeletal anomaly. Chromosome microarray analysis allowed high-resolution identification of the extent of the trisomy and provided a means of achieving higher-resolution breakpoint data. The phenotypic expression of unbalanced chromosomal regions is a complex phenomenon, and fine mapping of the involved region, as described here, is only a first step on the path to its full understanding. Overexpression of the LINGO-1 and CSPG4 genes has been implicated in developmental delay seen in other patients with trisomy of 15q24-qter, but our patient is currently too young to ascertain developmental progress. The genetic underpinning of Ebstein anomaly and the skeletal anomaly reported here is unclear based on our high-resolution dosage mapping.

  3. Chromosome 22q a frequent site of allele loss in head and neck carcinoma

    DEFF Research Database (Denmark)

    Poli-Frederico, R C; Bergamo, N A; Reis, P P;

    2000-01-01

    to evaluate the presence of LOH on chromosome 22q11.2-13 and determine whether there was a relationship between loss in this genomic region and tumor histologic parameters, anatomic site, and survival in patients with squamous cell carcinoma of the head and neck (HNSCC). METHODS: Fifty matched blood...... tumor suppressor gene (TSG) and involved in upper aerodigestive tract carcinogenesis. In particular, laryngeal tumors may harbor another putative TSG on 22q11.2-q12.3 that may play a role in aggressive stage III/IV disease....

  4. A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments.

    Science.gov (United States)

    Chittenden, L M; Schertz, K F; Lin, Y R; Wing, R A; Paterson, A H

    1994-03-01

    The first "complete" genetic linkage map of Sorghum section Sorghum is described, comprised of ten linkage groups putatively corresponding to the ten gametic chromosomes of S. bicolor and S. propinquum. The map includes 276 RFLP loci, predominately detected by PstI-digested S. bicolor genomic probes, segregating in 56 F2 progeny of a cross between S. bicolor and S. propinquum. Although prior cytological evidence suggests that the genomes of these species are largely homosequential, a high level of molecular divergence is evidenced by the abundant RFLP and RAPD polymorphisms, the marked deviations from Mendelian segregation in many regions of the genome, and several species-specific DNA probes. The remarkable level of DNA polymorphism between these species will facilitate development of a high-density genetic map. Further, the high level of DNA polymorphism permitted mapping of multiple loci for 21 (8.2%) DNA probes. Linkage relationships among eight (38%) of these probes suggest ancestral duplication of three genomic regions. Mapping of 13 maize genomic clones in this cross was consistent with prior results. Mapping of heterologous cDNAs from rice and oat suggests that it may be feasible to extend comparative mapping to these distantly-related species, and to ultimately generate a detailed description of chromosome rearrangements among cultivated Gramineae. Limited investigation of a small number of RFLPs showed several alleles common to S. bicolor and S. Halepense ("johnson-grass"), but few alleles common to S. propinquum and S. halepense, raising questions about the origin of S. halepense.

  5. Translocations used to generate chromosome segment duplications in Neurospora can disrupt genes and create novel open reading frames

    Indian Academy of Sciences (India)

    Parmit K Singh; Srividhya V Iyer; T Naga Sowjanya; B Kranthi Raj; Durgadas P Kasbekar

    2010-12-01

    In Neurospora crassa, crosses between normal sequence strains and strains bearing some translocations can yield progeny bearing a duplication (Dp) of the translocated chromosome segment. Here, 30 breakpoint junction sequences of 12 Dp-generating translocations were determined. The breakpoints disrupted 13 genes (including predicted genes), and created 10 novel open reading frames. Insertion of sequences from LG III into LG I as translocation T(UK818) disrupts the eat-3 gene, which is the ortholog of the Podospora anserine gene ami1. Since ami1-homozygous Podospora crosses were reported to increase the frequency of repeat-induced point mutation (RIP), we performed crosses homozygous for a deficiency in eat-3 to test for a corresponding increase in RIP frequency. However, our results suggested that, unlike in Podospora, the eat-3 gene might be essential for ascus development in Neurospora. Duplication–heterozygous crosses are generally barren in Neurospora; however, by using molecular probes developed in this study, we could identify Dp segregants from two different translocation–heterozygous crosses, and using these we found that the barren phenotype of at least some duplication–heterozygous crosses was incompletely penetrant.

  6. Malformation/dysplasia syndrome (neural tube defect, hypospadias neuroblastoma) associated with an extra dicentric marker chromosome 15 ({open_quotes}inversion duplication 15{close_quotes})

    Energy Technology Data Exchange (ETDEWEB)

    Reitnauer, P.J.; Rao, K.W.; Tepperberg, J.H. [Univ. of North Carolina, Chapel Hill, NC (United States)

    1994-09-01

    Extra dicentric 15 marker chromosomes are associated with variable degrees of mental retardation but not major structural birth defects. We have studied a unique patient, a male infant who was prenatally diagnosed with lumbar meningomyelocele and an extra pseudodicentric marker chromosome: 47,XY,+psu dic(15)t(15;15)(?q12,?q12)mat. Hairy ears and a coronal hypospadias were noted at birth. At three months of age, a stage I thoracic neuroblastoma was primarily resected. Tumor cells, skin fibroblasts and peripheral blood lymphocytes contained the dicentric 15. The mother is mosaic for the marker chromosome. Fluorescence in situ hybridization (FISH) studies using a classic 15 satellite probe (D15Z1 [Oncor]) confirmed the presence of 2 number 15 centromeres in the marker. The marker is felt to be the result of a translocation rather than an inverted duplication because the G-band morphology of the short arm/satellite complexes differ from one another, implying that the arms originate from 2 different number 15s. FISH analysis using cosmid probes for the Prader-Willi/Angelman critical region (D15S11 and GABRB3 [Oncor]) revealed 2 copies of this region, indicating that these loci are duplicated in the marker. Although some features of the patient`s phenotype such as developmental delay and hypotonia have been associated with dicentric chromosome 15 markers, this is the first malformation/dysplasia syndrome or neuroblastoma reported to our knowledge. The association of neuroblastoma with chromosome 15 aberrations in this case provides speculation as to the role of chromosome 15 loci in cell division control.

  7. Birth of a child with Down syndrome in a family transmitting an unusual chromosome 22 arising from a translocation between chromosomes 21 and an inverted chromosome 22

    Energy Technology Data Exchange (ETDEWEB)

    Aviv, H.A.; Desposito, F. [UMDNJ-NJ Medical School, Newark, NJ (United States); Lieber, C. [Hackensack Medical Center, NJ (United States)

    1994-09-01

    Chromosomal analysis of a child with Down syndrome resulted in the identification of a family with an unusual translocation and in the definition of the translocation breakpoints. Studies were performed on the child, his siblings, mother, mother`s sister, and grandmother. All of the family members were carriers of the translocation. We performed G-banding, silver stain, C-banding, and hybridization with the following FISH probes (Oncor): {alpha}-satellite 13/21; {beta}-satellite, coatasome 21 and 22, and the probes for chromosome 22 at 22q11 (DiGeorge region) and 22q13.3 (control region). Using the banding techniques and probes, we characterized the karyotype as: 45,XX,-21,-22,+der(22),t(21;22)(22qter{r_arrow}22q11.2::22p13{r_arrow}22q11.2::21q11.2{r_arrow}21qter). The effect of deletion of 21q11.2 and the break of chromosome 22 in the DiGeorge region in this family is not clear. However, the presence of the translocation increases the risk of family members of conceiving children with Down syndrome.

  8. Duplication of the segment q12.2 leads to qter of chromosome 22 due to paternal inversion 22(p13q12.2).

    Science.gov (United States)

    Fujimoto, A; Wilson, M G; Towner, J W

    1983-01-01

    A 1730-g male infant, born at 37 weeks gestation, had multiple congenital anomalies, consisting of microcephaly, hypertelorism, bilateral cleft lip and palate, micrognathia, low-set ears, and cryptorchidism. Chromosome analysis showed a recombinant 22 derived from the paternal inversion (22)(p13q12.2). The proband's karyotype is 46,XY,rec(22),dup q,inv(22)(p13q12.2)pat, which has a duplication of q12.2 leads to qter. An identical recombinant has been reported in a female infant in Mexico whose mother was a carrier of the inversion. Similar congenital anomalies present in these two patients demonstrate the phenotype of duplication of the distal long arm 22. This report also documents the occurrence of an identical inversion in two apparently unrelated Mexican families.

  9. Tetrasomy 13q31.1qter due to an inverted duplicated neocentric marker chromosome in a fetus with multiple malformations.

    Science.gov (United States)

    Haddad, Véronique; Aboura, Azzedine; Tosca, Lucie; Guediche, Narjes; Mas, Anne-Elisabeth; L'Herminé, Aurore Coulomb; Druart, Luc; Picone, Olivier; Brisset, Sophie; Tachdjian, Gérard

    2012-04-01

    Small supernumerary marker chromosome (sSMC) lacking alpha satellite DNA or endogenous centromere regions are rare and contain fully functional centromeres, called neocentromeres. We report on a woman with a 14-week gestation pregnancy with a cystic hygroma and cerebellar hypoplasia at ultrasound examination. Cytogenetic studies showed a karyotype 47,XY,+mar dn. This sSMC was observed in chorionic villi, lung, and muscle tissue. Array Comparative Genomic Hybridization showed a gain from 13q31.1 to 13qter region. Fluorescent in situ hybridization with pan alpha satellite probe and probes specific for chromosome 13 showed a marker corresponding to an inversion duplication of the 13q distal chromosomal region without alpha satellite DNA sequence, suggesting the presence of a neocentromere. Examination of the fetus showed dysmorphic features, cystic cervical hygroma, postaxial polydactyly of the right hand and left foot with short fingers, malrotation of the gut, and a micropenis with hypospadias. Genotype-phenotype correlation in tetrasomy 13q is discussed according to the four 13q chromosomal breakpoints reported (13q32, 13q31, 13q21, 13q14) for chromosome 13 supernumerary markers.

  10. A factor in a wild isolated Neurospora crassa strain enables a chromosome segment duplication to suppress repeat-induced point mutation

    Indian Academy of Sciences (India)

    Mukund Ramakrishnan; T Naga Sowjanya; Kranthi B Raj; Durgadas P Kasbekar

    2011-12-01

    Repeat-induced point mutation (RIP) is a sexual stage-specific mutational process of Neurospora crassa and other fungi that alters duplicated DNA sequences. Previous studies from our laboratory showed that chromosome segment duplications (Dps) longer than ∼300 kbp can dominantly suppress RIP, presumably by titration of the RIP machinery, and that although Dps < 200 kbp did not individually suppress RIP, they could do so in homozygous and multiply heterozygous crosses, provided the sum of the duplicated DNA exceeds ∼300 kbp. Here we demonstrate suppression of RIP in a subset of progeny carrying the normally sub-threshold 154 kbp Dp(R2394) from a cross of T(R2394) to the wild isolated Carrefour Mme. Gras strain (CMG). Thus, the CMG strain contains a factor that together with Dp(R2394) produces a synthetic RIP suppressor phenotype. It is possible that the factor is a cryptic Dp that together with Dp(R2394) can exceed the size threshold for titration of the RIP machinery and thereby causes RIP suppression.

  11. Polymorphism, duplication, and IS1-mediated rearrangement in the chromosomal his-rfb-gnd region of Escherichia coli strains with group IA and capsular K antigens.

    Science.gov (United States)

    Drummelsmith, J; Amor, P A; Whitfield, C

    1997-05-01

    Individual Escherichia coli strains produce several cell surface polysaccharides. In E. coli E69, the his region of the chromosome contains the rfb (serotype O9 lipopolysaccharide O-antigen biosynthesis) and cps (serotype K30 group IA capsular polysaccharide biosynthesis) loci. Polymorphisms in this region of the Escherichia coli chromosome reflect extensive antigenic diversity in the species. Previously, we reported a duplication of the manC-manB genes, encoding enzymes involved in GDP-mannose formation, upstream of rfb in strain E69 (P. Jayaratne et al., J. Bacteriol. 176:3126-3139, 1994). Here we show that one of the manC-manB copies is flanked by IS1 elements, providing a potential mechanism for the gene duplication. Adjacent to manB1 on the IS1-flanked segment is a further open reading frame (ugd), encoding uridine-5'-diphosphoglucose dehydrogenase. The Ugd enzyme is responsible for the production of UDP-glucuronic acid, a precursor required for K30 antigen synthesis. Construction of a chromosomal ugd::Gm(r) insertion mutation demonstrated the essential role for Ugd in the biosynthesis of the K30 antigen and confirmed that there is no additional functional ugd copy in strain E69. PCR amplification and Southern hybridization were used to examine the distribution of IS1 elements and ugd genes in the vicinity of rfb in other E. coli strains, producing different group IA K antigens. The relative order of genes and, where present, IS1 elements was established in these strains. The regions adjacent to rfb in these strains are highly variable in both size and gene order, but in all cases where a ugd homolog was present, it was found near rfb. The presence of IS1 elements in the rfb regions of several of these strains provides a potential mechanism for recombination and deletion events which could contribute to the antigenic diversity seen in surface polysaccharides. PMID:9150218

  12. BCR translocation to derivative chromosome 2: a new case of chronic myeloid leukemia with a complex variant translocation and Philadelphia chromosome

    OpenAIRE

    Al-Achkar, Walid; Wafa, Abdulsamad; ALMEDANI, SUHER

    2010-01-01

    The well-known typical fusion gene BCR/ABL is observed in connection with a complex translocation event in 5–8% of cases of chronic myeloid leukemia (CML). The present study described an exceptional CML case with complex chromosomal aberrations not previously observed. Aberrations included a translocated BCR to the derivative chromosome 2 [der(2)] that also involved a four-chromosome translocation, implying chromosomal regions 1p32 and 2q21, besides 9q34 and 22q11.2, which were characterized ...

  13. Inverted duplication of JH associated with chromosome 14 translocation and T-cell leukemia in ataxia-telangiectasia.

    OpenAIRE

    Johnson, J P; Gatti, R A; Sears, T S; White, R. L.

    1986-01-01

    A specific 14q32 breakpoint is observed in a homologous chromosome 14 translocation [t(14;14)q12q32] occurring in the T-cells of about 10% of patients with ataxia-telangiectasia (AT). To investigate whether the 14q32 breakpoint in AT occurs within the immunoglobulin gene cluster as is frequently detected in B-cell lymphoma, immunoglobulin clones were hybridized to Southern blots of DNA isolated from the T-cells of two AT patients with this chromosome 14 translocation. The 14q32 translocation ...

  14. Duplications of the Y-chromosome specific loci P25 and 92R7 and forensic implications

    DEFF Research Database (Denmark)

    Sanchez Sanchez, Juan Jose; Brión, Maria; Parson, Walther;

    2004-01-01

    methodologies were used in order to detect the SNP alleles and the PSVs of the loci. All results obtained with the various typing techniques supported the conclusion. The allele distributions of the binary markers were analysed in more than 600 males with seven different haplogroups. For P25, the ancestral...... allele C was found in several samples from different haplogroups. The derived allele A was always present with an additional C variant. Haplogroup P was defined by the derived allele A at the 92R7 locus. However, the ancestral allele G was always associated with an A variant due to the duplication....

  15. Startling mosaicism of the Y-chromosome and tandem duplication of the SRY and DAZ genes in patients with Turner Syndrome.

    Directory of Open Access Journals (Sweden)

    Sanjay Premi

    Full Text Available Presence of the human Y-chromosome in females with Turner Syndrome (TS enhances the risk of development of gonadoblastoma besides causing several other phenotypic abnormalities. In the present study, we have analyzed the Y chromosome in 15 clinically diagnosed Turner Syndrome (TS patients and detected high level of mosaicisms ranging from 45,XO:46,XY = 100:0% in 4; 45,XO:46,XY:46XX = 4:94:2 in 8; and 45,XO:46,XY:46XX = 50:30:20 cells in 3 TS patients, unlike previous reports showing 5-8% cells with Y- material. Also, no ring, marker or di-centric Y was observed in any of the cases. Of the two TS patients having intact Y chromosome in >85% cells, one was exceptionally tall. Both the patients were positive for SRY, DAZ, CDY1, DBY, UTY and AZFa, b and c specific STSs. Real Time PCR and FISH demonstrated tandem duplication/multiplication of the SRY and DAZ genes. At sequence level, the SRY was normal in 8 TS patients while the remaining 7 showed either absence of this gene or known and novel mutations within and outside of the HMG box. SNV/SFV analysis showed normal four copies of the DAZ genes in these 8 patients. All the TS patients showed aplastic uterus with no ovaries and no symptom of gonadoblastoma. Present study demonstrates new types of polymorphisms indicating that no two TS patients have identical genotype-phenotype. Thus, a comprehensive analysis of more number of samples is warranted to uncover consensus on the loci affected, to be able to use them as potential diagnostic markers.

  16. 7号染色体臂间倒位伴Turner综合征家系分析%Analysis of Pericentric Inversion of Chromosome 7 Associated with Turner Syndrome in Family

    Institute of Scientific and Technical Information of China (English)

    江静; 王伟; 傅曼芬; 孙文鑫; 陈凤生; 王德芬

    2006-01-01

    目的 研究7号染色体臂间倒位的遗传机制.方法 患儿及父母作染色体检查,并对患儿的家系进行调查.结果 患儿的染色体核型为46,XX,inv(7)(p22q11)/45,X,inv(7)(p22q11),其中46,XX,inv(7)(p22q11),85%,45,X,inv(7)(p22q11),15%.父亲的核型为46,XY,inv(7)(p22q11),母亲的染色体正常,患儿的母亲第1胎为3月自然流产,家系中其它成员均无流产史,母系成员中身材均偏矮小.结论 染色体臂间倒位能引起流产和畸胎,应作产前诊断.%Objective: To investigate the genetic mechanism of pericentric inversion of chromosome 7. Methods: The patient and her parents were chromosome karyotype analysed. Results: Cytogenetic evaluation by G banding a pericentric inversion of chromosome 7 and mosaic Turner syndrome, 45, XO/46, XX, inv (7) ( p22q11 ). The position of the centromeres was identified by the CBG technique. One hundred metaphases were counted with 45, XO, inv (7) in 15% and 46, XX, inv (7)in 85%. A family study revealed the same abnormal inversion in her father while the mother was normal . But her mother had short stature . Her father's karyotype was 46, XY, inv(7 ) ( p22q11 ). The inversion was paternal. This mother with miscarriage for her first pregnancy at 12 weeks gestation may be related to the consequence of unbalanced gamete. Conclusion: Amniocytic cytogenetic examinate should be indispensable for prenatal diagnosis and terminating pregnancy is suggested when the foetus is found with unbalanced inversion karyotype.

  17. Partial 1q Duplications and Associated Phenotype

    Science.gov (United States)

    Morris, Marcos L.M.; Baroneza, José E.; Teixeira, Patricia; Medina, Cristina T.N.; Cordoba, Mara S.; Versiani, Beatriz R.; Roese, Liege L.; Freitas, Erika L.; Fonseca, Ana C.S.; dos Santos, Maria C.G.; Pic-Taylor, Aline; Rosenberg, Carla; Oliveira, Silviene F.; Ferrari, Iris; Mazzeu, Juliana F.

    2016-01-01

    Duplications of the long arm of chromosome 1 are rare. Distal duplications are the most common and have been reported as either pure trisomy or unbalanced translocations. The paucity of cases with pure distal 1q duplications has made it difficult to delineate a partial distal trisomy 1q syndrome. Here, we report 2 patients with overlapping 1q duplications detected by G-banding. Array CGH and FISH were performed to characterize the duplicated segments, exclude the involvement of other chromosomes and determine the orientation of the duplication. Patient 1 presents with a mild phenotype and carries a 22.5-Mb 1q41q43 duplication. Patient 2 presents with a pure 1q42.13qter inverted duplication of 21.5 Mb, one of the smallest distal 1q duplications ever described and one of the few cases characterized by array CGH, thus contributing to a better characterization of distal 1q duplication syndrome. PMID:27022331

  18. Chromosome

    Science.gov (United States)

    Chromosomes are structures found in the center (nucleus) of cells that carry long pieces of DNA. DNA ... is the building block of the human body. Chromosomes also contain proteins that help DNA exist in ...

  19. A Tandem Duplicate of Anti-Mullerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus.

    Directory of Open Access Journals (Sweden)

    Minghui Li

    2015-11-01

    Full Text Available Variation in the TGF-β signaling pathway is emerging as an important mechanism by which gonadal sex determination is controlled in teleosts. Here we show that amhy, a Y-specific duplicate of the anti-Müllerian hormone (amh gene, induces male sex determination in Nile tilapia. amhy is a tandem duplicate located immediately downstream of amhΔ-y on the Y chromosome. The coding sequence of amhy was identical to the X-linked amh (amh except a missense SNP (C/T which changes an amino acid (Ser/Leu92 in the N-terminal region. amhy lacks 5608 bp of promoter sequence that is found in the X-linked amh homolog. The amhΔ-y contains several insertions and deletions in the promoter region, and even a 5 bp insertion in exonVI that results in a premature stop codon and thus a truncated protein product lacking the TGF-β binding domain. Both amhy and amhΔ-y expression is restricted to XY gonads from 5 days after hatching (dah onwards. CRISPR/Cas9 knockout of amhy in XY fish resulted in male to female sex reversal, while mutation of amhΔ-y alone could not. In contrast, overexpression of Amhy in XX fish, using a fosmid transgene that carries the amhy/amhΔ-y haplotype or a vector containing amhy ORF under the control of CMV promoter, resulted in female to male sex reversal, while overexpression of AmhΔ-y alone in XX fish could not. Knockout of the anti-Müllerian hormone receptor type II (amhrII in XY fish also resulted in 100% complete male to female sex reversal. Taken together, these results strongly suggest that the duplicated amhy with a missense SNP is the candidate sex determining gene and amhy/amhrII signal is essential for male sex determination in Nile tilapia. These findings highlight the conserved roles of TGF-β signaling pathway in fish sex determination.

  20. X chromosome-linked CNVs in male infertility: discovery of overall duplication load and recurrent, patient-specific gains with potential clinical relevance.

    Directory of Open Access Journals (Sweden)

    Chiara Chianese

    Full Text Available Spermatogenesis is a highly complex process involving several thousand genes, only a minority of which have been studied in infertile men. In a previous study, we identified a number of Copy Number Variants (CNVs by high-resolution array-Comparative Genomic Hybridization (a-CGH analysis of the X chromosome, including 16 patient-specific X chromosome-linked gains. Of these, five gains (DUP1A, DUP5, DUP20, DUP26 and DUP40 were selected for further analysis to evaluate their clinical significance.The copy number state of the five selected loci was analyzed by quantitative-PCR on a total of 276 idiopathic infertile patients and 327 controls in a conventional case-control setting (199 subjects belonged to the previous a-CGH study. For one interesting locus (intersecting DUP1A additional 338 subjects were analyzed.All gains were confirmed as patient-specific and the difference in duplication load between patients and controls is significant (p = 1.65 × 10(-4. Two of the CNVs are private variants, whereas 3 are found recurrently in patients and none of the controls. These CNVs include, or are in close proximity to, genes with testis-specific expression. DUP1A, mapping to the PAR1, is found at the highest frequency (1.4% that was significantly different from controls (0% (p = 0.047 after Bonferroni correction. Two mechanisms are proposed by which DUP1A may cause spermatogenic failure: i by affecting the correct regulation of a gene with potential role in spermatogenesis; ii by disturbing recombination between PAR1 regions during meiosis. This study allowed the identification of novel spermatogenesis candidate genes linked to the 5 CNVs and the discovery of the first recurrent, X-linked gain with potential clinical relevance.

  1. 先天性膜性白内障一家系致病基因的遗传分析%Mutation of 22q11.2-q12.1 gene in a family with autosomal dominant congenital membranous cataract

    Institute of Scientific and Technical Information of China (English)

    袁芳; 李飞峰; 刘伟; 刘华; 季健; 马旭

    2009-01-01

    目的 分析一个先天性白内障家系的遗传规律,对其突变基因进行初步研究.方法 选取一先天性膜性白内障家系,对家系成员进行临床检查并采集静脉血.标准饱和酚/氯仿抽提法提取DNA,选取多态性微卫星遗传标记,合成引物,聚合酶链反应,聚丙烯酰胺凝胶电泳,基因分型,等位基因共享分析法对已知候选基因进行排除性定位.结果 该家系为常染色体显性遗传性先天性白内障家系.其致病基因与D22S315联系紧密,重组发生在以D22S303和D22S1167为上下边界的范围内.对该范围内已知的先天性白内障致病基因CRYBB1、CRYBB2、CRYBB3、CRYBA4进行DNA直接测序,未发现突变.结论 该家系致病基因定位于22q11.2~q12.1的2.4 Mbp范围内,其致病基因与已知基因座不同.该范围内可能存在导致先天性膜性白内障的新的致病基因.%Objective Autosomal dominant congenital cataract (ADCC) is a common heredit disease.Some known genes and mutated loci related to ADCC have been found.The present study provides other disease-causing genes in the ADCC family.This study was to identify the genetic defect in four generations of a Chinese family with autosomal dominant congenital membranous cataracts and demonstrate the functional analysis of a candidate gene in the family.MethodsThe family with hereditary cataract was recruited from the Tianjin Medical University Eye Center.The family history was collected and recorded.Clinical and ophthalmologic examinations were performed on 6 affected and 14 unaffected family members and periphery blood samples were collected from all of the subjects for genomic DNA preparation.The members were genotyped with microsatellite markers at loci associated with cataracts.Multiplex polymerase chain reaction (PCR) was carried out with microsatellite markers near to candidated loci related to congenital cataracts.PCR products from each DNA sample were separated on a polyarcylamide gel and

  2. A small (sSMC) chromosome 22 due to a maternal translocation between chromosomes 8 and 22: a case report.

    Science.gov (United States)

    Mundhofir, F E P; Kooper, A J A; Winarni, T I; Smits, A P T; Faradz, S M H; Hamel, B C J

    2010-01-01

    We report on a boy with partial trisomies for chromosomes 8 and 22 caused by the presence of a small supernumerary marker chromosome (sSMC), a der(22)t(8;22)(p22;q11.21), inherited from a t(8;22)(p22;q11.21) translocation carrier mother. He has mild mental retardation, unability to speak distinct words and several minor anomalies i.e. high forehead and hairline, telecanthus, upslanting palpebral fissures, depressed nasal bridge, nail hypoplasia, toe position anomaly and 5th finger clinodactyly. He has two maternal uncles and one maternal aunt with mental retardation. G-banding technique showed 47,XY,+mar whilst his mother's karyotype showed a balanced reciprocal translocation between the chromosomes 8 and 22. Fluorescence In Situ Hybridization (FISH) technique with probes for centromere 22 and 8pter were used to detect the origin of marker chromosome and confirmed the marker chromosome in the proband showing to be extra chromosomal material originated from chromosome 8 and 22. Additional genome wide microarray analysis, using the Affymetrix Nspl 250K SNP array platform was performed to further characterize the marker chromosome and resulted in a der(22)t(8;22)(p22;q11.21). Furthermore, cytogenetic analysis of three affected family members showed the same unbalanced translocation, due to 3:1 meiotic segregation. This indicated the viability of this unbalanced pattern and combined with the recurrent miscarriages by the proband's mother, the mechanism of transmitting extrachromosomal material is probably not a random process. Since, there is no similar translocation (8p;22q) reported and the chromosomal translocation largely exists of additional 8p22-8pter we compare the clinical outcomes with reported cases of 8p22-8pter triplication, although there is a part of genetic material derived from chromosome 22 present. This unique familial chromosome translocation case from Indonesia will give insight in the underlying mechanism of this recurrent chromosomal abnormality

  3. [Duodenal duplication].

    Science.gov (United States)

    Ilari, J; Martorell, R; Morales, M; Capdevila, M; Mairal, J A; Teixidó, M; Casadellá, A

    1998-01-01

    Cystic duplication of the duodenum is a rare anomaly of the gastrointestinal tract. This is a report of a newborn with a cystic duplication of duodenum diagnosed prenatally. It's relevant the few clinical symptoms of a such big mass. The surgical procedure was excision of the cyst, with a good post operative curse. PMID:9662869

  4. Complex Variant of Philadelphia Translocation Involving Chromosomes 9, 12, and 22 in a Case with Chronic Myeloid Leukaemia

    Directory of Open Access Journals (Sweden)

    F. Malvestiti

    2014-01-01

    Full Text Available Chronic myeloid leukemia (CML is a hematopoietic stem cell disorder included in the broader diagnostic category of myeloproliferative neoplasms, associated with fusion by BCR gene at chromosome 22q11 to ABL1 gene at chromosome 9q34 with the formation of the Philadelphia (Ph chromosome. In 2–10% of CML cases, the fusion gene arises in connection with a variant translocation, involving chromosomes 9, 22, and one or more different chromosomes; consequently, the Ph chromosome could be masked within a complex chromosome rearrangement. In cases with variant Ph translocation a deletion on der(9 may be more frequently observed than in cases with the classical one. Herein we describe a novel case of CML with complex variant Ph translocation involving chromosomes 9, 12, and 22. We present the hematologic response and cytogenetic response after Imatinib treatment. We also speculated the mechanism which had originated the chromosome rearrangement.

  5. Gallbladder duplication

    Directory of Open Access Journals (Sweden)

    Yagan Pillay

    2015-01-01

    Conclusion: Duplication of the gallbladder is a rare congenital abnormality, which requires special attention to the biliary ductal and arterial anatomy. Laparoscopic cholecystectomy with intraoperative cholangiography is the appropriate treatment in a symptomatic gallbladder. The removal of an asymptomatic double gallbladder remains controversial.

  6. The psychiatric and behavioural characteristics of individuals with 22q11.2 deletion syndrome (22q11DS): An Irish population study

    LENUS (Irish Health Repository)

    Prasad, S E

    2011-01-01

    Background: There is a growingbody of evidence which indicates an unequivocal association between 22qllDS and schizophrenia. Deletion of 22qll is recognised as the third highest risk for the development of schizophrenia, with only a greater risk conferred by being the child of 2 parents with schizophrenia or the monozygotic co-twin of an affected individual. The challenge for clinicians and researchers is to identify early vulnerability traits, symptoms or disorders which may be associated with or predict a later emerging psychotic disorder, so that at risk individuals maybe identified, monitored and treated early to improve outcomes. Identification of these early traits or symptoms firstly requires detailed analysis of the behavioural phenotype in individuals with 22qllDS. The current study aims to define the prevalence and correlates of psychiatric disorders in a population cohort of individuals with 22qllDS in Ireland. The data gained from the study will provide the foundation for future longitudinal studies of risk factors of psychosis in 22qllDS. Methods: Forty-five individuals with 22qllDS (mean age = 14.6, SD 8.94) and 27 sibling controls (mean age = 12.2, SD 4.12) participated in the study. The rate of psychiatric and behavioural disorders was investigated through a range of semi-structured interviews and standardised questionnaires. This is the first study to use the Comprehensive Assessment of at Risk Mental State (CAARMS), a tool which has been designed to identify a possible prodromal state. Results: Individuals with 22qllDS had high rates of psychiatric disorders and had significant difficulties with social and school functioning (p < 0.0001) compared to sibling controls. The most frequently occurring were attention deficit hyperactivity disorders (29%, p = 0.001) and anxiety disorders (31%, p = 0.021). Eight individuals (18%) with 22qllDS exhibited subthreshold psychotic symptoms (mean age = 13, SD 2.8, range 7–16 years) and had significantly higher rates of co-morbid psychiatric disorders (p = 0.0003), were found to be more irritable\\/confrontational with peers\\/siblings (p = 0.0002), disorganised (p = 0.0001), more likely to be clumsy with coordination difficulties (p < 0.001) and had peer problems (p = 0.01) compared to individuals with the deletion and without subthreshold psychotic symptoms. No significant association was found between FSIQ and subthreshold psychotic symptoms (p > 0.05). Conclusion: Children and adolescents with 22qllDS and subthreshold psychotic symptoms were found to be more irritable, disorganised, and clumsy and have peer-related problems. These symptoms may identify individuals who may be at risk for a later emerging psychotic disorder and who may require careful monitoring and follow-up.

  7. Complex Variant t(9;22 Chromosome Translocations in Five Cases of Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Ana Valencia

    2009-01-01

    Full Text Available The Philadelphia (Ph1 chromosome arising from the reciprocal t(9;22 translocation is found in more than 90% of chronic myeloid leukemia (CML patients and results in the formation of the chimeric fusion gene BCR-ABL. However, a small proportion of patients with CML have simple or complex variants of this translocation, involving various breakpoints in addition to 9q34 and 22q11. We report five CML cases carrying variant Ph translocations involving both chromosomes 9 and 22 as well as chromosomes 3, 5, 7, 8, or 10. G-banding showed a reciprocal three-way translocation involving 3q21, 5q31, 7q32, 8q24, and 10q22 bands. BCR-ABL fusion signal on der(22 was found in all of the cases by FISH.

  8. Y chromosome haplotype diversity in Mongolic-speaking populations and gene conversion at the duplicated STR DYS385a,b in haplogroup C3-M407.

    Science.gov (United States)

    Malyarchuk, Boris A; Derenko, Miroslava; Denisova, Galina; Woźniak, Marcin; Rogalla, Urszula; Dambueva, Irina; Grzybowski, Tomasz

    2016-06-01

    Y chromosome microsatellite (Y-STR) diversity has been studied in different Mongolic-speaking populations from South Siberia, Mongolia, North-East China and East Europe. The results obtained indicate that the Mongolic-speaking populations clustered into two groups, with one group including populations from eastern part of South Siberia and Central Asia (the Buryats, Barghuts and Khamnigans) and the other group including populations from western part of Central Asia and East Europe (the Mongols and Kalmyks). High frequency of haplogroup C3-M407 (>50%) is present in the Buryats, Barghuts and Khamnigans, whereas in the Mongols and Kalmyks its frequency is much lower. In addition, two allelic combinations in DYS385a,b loci of C3-M407 haplotypes have been observed: the combination 11,18 (as well as 11,17 and 11,19) is frequent in different Mongolic-speaking populations, but the 11,11 branch is present mainly in the Kalmyks and Mongols. Results of locus-specific sequencing suggest that the action of gene conversion is a more likely explanation for origin of homoallelic 11,11 combination. Moreover, analysis of median networks of Y-STR haplotypes demonstrates that at least two gene conversion events can be revealed-one of them has probably occurred among the Mongols, and the other event occurred in the Barghuts. These two events give an average gene conversion rate range of 0.24-7.1 × 10(-3) per generation. PMID:26911356

  9. Schizophrenia susceptibility genes on chromosome 13q32

    Institute of Scientific and Technical Information of China (English)

    胡颖; 许琪; 鞠桂芝; 刘树铮; 史杰萍; 于雅琴; 尉军

    2004-01-01

    @@Schizophrenia is a complex mental disorder affecting approximately 1% of the general population worldwide.1 It has a high incidence in the general population, a poor prognosis and a poor outcome, in that it has become a major social problem. Family, twin, and adoption studies have clearly shown that a genetic component is quite likely to play an important role in determining susceptibility to schizophrenia. The genome-wide scan indicates that several chromosomal regions are linked to schizophrenia, some of which have been replicated independently including 6p21-24, 8p21-22, 13q14-33 and 22q11-12.2,3 This study was designed to detect two single nucleotide polymorphisms (SNPs) located in the 13q14-33 region, rs188608 at the STK24 locus and rs2892679 at the GPC6 locus, among Chinese population.

  10. Novel susceptibility locus at 22q11 for diabetic nephropathy in type 1 diabetes

    DEFF Research Database (Denmark)

    Wessman, Maija; Forsblom, Carol; Kaunisto, Mari A;

    2011-01-01

    Diabetic nephropathy (DN) affects about 30% of patients with type 1 diabetes (T1D) and contributes to serious morbidity and mortality. So far only the 3q21-q25 region has repeatedly been indicated as a susceptibility region for DN. The aim of this study was to search for new DN susceptibility loci...

  11. Distal Xq duplication and functional Xq disomy

    Directory of Open Access Journals (Sweden)

    Schluth-Bolard Caroline

    2009-02-01

    Full Text Available Abstract Distal Xq duplications refer to chromosomal disorders resulting from involvement of the long arm of the X chromosome (Xq. Clinical manifestations widely vary depending on the gender of the patient and on the gene content of the duplicated segment. Prevalence of Xq duplications remains unknown. About 40 cases of Xq28 functional disomy due to cytogenetically visible rearrangements, and about 50 cases of cryptic duplications encompassing the MECP2 gene have been reported. The most frequently reported distal duplications involve the Xq28 segment and yield a recognisable phenotype including distinctive facial features (premature closure of the fontanels or ridged metopic suture, broad face with full cheeks, epicanthal folds, large ears, small and open mouth, ear anomalies, pointed nose, abnormal palate and facial hypotonia, major axial hypotonia, severe developmental delay, severe feeding difficulties, abnormal genitalia and proneness to infections. Xq duplications may be caused either by an intrachromosomal duplication or an unbalanced X/Y or X/autosome translocation. In XY males, structural X disomy always results in functional disomy. In females, failure of X chromosome dosage compensation could result from a variety of mechanisms, including an unfavourable pattern of inactivation, a breakpoint separating an X segment from the X-inactivation centre in cis, or a small ring chromosome. The MECP2 gene in Xq28 is the most important dosage-sensitive gene responsible for the abnormal phenotype in duplications of distal Xq. Diagnosis is based on clinical features and is confirmed by CGH array techniques. Differential diagnoses include Prader-Willi syndrome and Alpha thalassaemia-mental retardation, X linked (ATR-X. The recurrence risk is significant if a structural rearrangement is present in one of the parent, the most frequent situation being that of an intrachromosomal duplication inherited from the mother. Prenatal diagnosis is performed by

  12. MR Imaging Findings in Xp21.2 Duplication Syndrome

    Science.gov (United States)

    Whitehead, Matthew T; Helman, Guy; Gropman, Andrea L

    2016-01-01

    Xp21.2 duplication syndrome is a rare genetic disorder of undetermined prevalence and clinical relevance. As the use of chromosomal microarray has become first line for the work-up of childhood developmental delay, more gene deletions and duplications have been recognized. To the best of our knowledge, the imaging findings of Xp21.2 duplication syndrome have not been reported. We report a case of a 33 month-old male referred for developmental delay that was found to have an Xp21.2 duplication containing IL1RAPL1 and multiple midline brain malformations.

  13. Duplication in DNA Sequences

    Science.gov (United States)

    Ito, Masami; Kari, Lila; Kincaid, Zachary; Seki, Shinnosuke

    The duplication and repeat-deletion operations are the basis of a formal language theoretic model of errors that can occur during DNA replication. During DNA replication, subsequences of a strand of DNA may be copied several times (resulting in duplications) or skipped (resulting in repeat-deletions). As formal language operations, iterated duplication and repeat-deletion of words and languages have been well studied in the literature. However, little is known about single-step duplications and repeat-deletions. In this paper, we investigate several properties of these operations, including closure properties of language families in the Chomsky hierarchy and equations involving these operations. We also make progress toward a characterization of regular languages that are generated by duplicating a regular language.

  14. Detection of tandam duplications and implications for linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Matise, T.C.; Weeks, D.E. (Univ. of Pittsburgh, PA (United States)); Chakravarti, A. (Case Western Reserve Univ., Cleveland, OH (United States)); Patel, P.I.; Lupski, J.R. (Baylor College of Medicine, Houston, TX (United States)); Nelis, E.; Timmerman, V.; Van Broeckhoven, C. (Univ. of Antwerp (Belgium))

    1994-06-01

    The first demonstration of an autosomal dominant human disease caused by segmental trisomy came in 1991 for Charcot-Marie-Tooth disease type 1A (CMT1A). For this disorder, the segmental trisomy is due to a large tandem duplication of 1.5 Mb of DNA located on chromosome 17p11.2-p12. The search for the CMT1A disease gene was misdirected and impeded because some chromosome 17 genetic markers that are linked to CMT1A lie within this duplication. To better understand how such a duplication might affect genetic analyses in the context of disease gene mapping, the authors studied the effects of marker duplication on transmission probabilities of marker alleles, on linkage analysis of an autosomal dominant disease, and on tests of linkage homogeneity. They demonstrate that the undetected presence of a duplication distorts transmission ratios, hampers fine localization of the disease gene, and increases false evidence of linkage heterogeneity. In addition, they devised a likelihood-based method for detecting the presence of a tandemly duplicated marker when one is suspected. They tested their methods through computer simulations and on CMT1A pedigrees genotyped at several chromosome 17 markers. On the simulated data, the method detected 96% of duplicated markers (with a false-positive rate of 5%). On the CMT1A data the method successfully identified two of three loci that are duplicated (with no false positives). This method could be used to identify duplicated markers in other regions of the genome and could be used to delineate the extent of duplications similar to that involved in CMT1A. 18 refs., 5 figs., 6 tabs.

  15. Gene duplication as a major force in evolution

    Indian Academy of Sciences (India)

    Santoshkumar Magadum; Urbi Banerjee; Priyadharshini Murugan; Doddabhimappa Gangapur; Rajasekar Ravikesavan

    2013-04-01

    Gene duplication is an important mechanism for acquiring new genes and creating genetic novelty in organisms. Many new gene functions have evolved through gene duplication and it has contributed tremendously to the evolution of developmental programmes in various organisms. Gene duplication can result from unequal crossing over, retroposition or chromosomal (or genome) duplication. Understanding the mechanisms that generate duplicate gene copies and the subsequent dynamics among gene duplicates is vital because these investigations shed light on localized and genomewide aspects of evolutionary forces shaping intra-specific and inter-specific genome contents, evolutionary relationships, and interactions. Based on whole-genome analysis of Arabidopsis thaliana, there is compelling evidence that angiosperms underwent two whole-genome duplication events early during their evolutionary history. Recent studies have shown that these events were crucial for creation of many important developmental and regulatory genes found in extant angiosperm genomes. Recent studies also provide strong indications that even yeast (Saccharomyces cerevisiae), with its compact genome, is in fact an ancient tetraploid. Gene duplication can provide new genetic material for mutation, drift and selection to act upon, the result of which is specialized or new gene functions. Without gene duplication the plasticity of a genome or species in adapting to changing environments would be severely limited. Whether a duplicate is retained depends upon its function, its mode of duplication, (i.e. whether it was duplicated during a whole-genome duplication event), the species in which it occurs, and its expression rate. The exaptation of preexisting secondary functions is an important feature in gene evolution, just as it is in morphological evolution.

  16. Object Duplicate Detection

    OpenAIRE

    Vajda, Péter

    2011-01-01

    With the technological evolution of digital acquisition and storage technologies, millions of images and video sequences are captured every day and shared in online services. One way of exploring this huge volume of images and videos is through searching a particular object depicted in images or videos by making use of object duplicate detection. Therefore, need of research on object duplicate detection is validated by several image and video retrieva...

  17. The duplication 17p13.3 phenotype

    DEFF Research Database (Denmark)

    Curry, Cynthia J; Rosenfeld, Jill A; Grant, Erica;

    2013-01-01

    duplications that include both the YWHAE and LIS1 genes. These patients had a relatively distinct facial phenotype and frequent structural brain abnormalities involving the corpus callosum, cerebellar vermis, and cranial base. Autism spectrum disorders were seen in a third of duplication probands, most......Chromosome 17p13.3 is a gene rich region that when deleted is associated with the well-known Miller-Dieker syndrome. A recently described duplication syndrome involving this region has been associated with intellectual impairment, autism and occasional brain MRI abnormalities. We report 34...

  18. X-linked congenital ptosis and associated intellectual disability, short stature, microcephaly, cleft palate, digital and genital abnormalities define novel Xq25q26 duplication syndrome

    NARCIS (Netherlands)

    Moller, R.S.; Jensen, L.R.; Maas, S.M.; Filmus, J.; Capurro, M.; Hansen, C.; Marcelis, C.L.M.; Ravn, K.; Andrieux, J.; Mathieu, M.; Kirchhoff, M.; Rodningen, O.K.; Leeuw, N. de; Yntema, H.G.; Froyen, G.; Vandewalle, J.; Ballon, K.; Klopocki, E.; Joss, S.; Tolmie, J.; Knegt, A.C.; Lund, A.M.; Hjalgrim, H.; Kuss, A.W.; Tommerup, N.; Ullmann, R.; Brouwer, A.P.M. de; Stromme, P.; Kjaergaard, S.; Tumer, Z.; Kleefstra, T.

    2014-01-01

    Submicroscopic duplications along the long arm of the X-chromosome with known phenotypic consequences are relatively rare events. The clinical features resulting from such duplications are various, though they often include intellectual disability, microcephaly, short stature, hypotonia, hypogonadis

  19. X-linked congenital ptosis and associated intellectual disability, short stature, microcephaly, cleft palate, digital and genital abnormalities define novel Xq25q26 duplication syndrome

    DEFF Research Database (Denmark)

    Møller, R S; Jensen, L R; Maas, S M;

    2014-01-01

    Submicroscopic duplications along the long arm of the X-chromosome with known phenotypic consequences are relatively rare events. The clinical features resulting from such duplications are various, though they often include intellectual disability, microcephaly, short stature, hypotonia, hypogona...

  20. MECP2 Duplication Syndrome

    DEFF Research Database (Denmark)

    Signorini, Cinzia; De Felice, Claudio; Leoncini, Silvia;

    2016-01-01

    Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) are neurodevelopmental disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2) gene expression. A relationship between MECP2 loss-of-function mutations and oxidative stress has been previously documented in RTT patients...

  1. Perspectives on Program Duplication

    Science.gov (United States)

    Morrison, Gail M.

    2010-01-01

    Concerns about program duplication in higher education are often reminiscent of Supreme Court Justice Potter Stewart's now famous remark about pornography: "I know it when I see it." The problem with that reaction is that, at least on its surface, this response seems intuitive and emotional, to say nothing of subjective and personal. The fact is…

  2. Histone modifications: Cycling with chromosomal replication

    DEFF Research Database (Denmark)

    Thon, Genevieve

    2008-01-01

    Histone modifications tend to be lost during chromosome duplication. Several recent studies suggest that the RNA interference pathway becomes active during the weakened transcriptional repression occurring at centromeres in S phase, resulting in the re-establishment of histone modifications...

  3. Familial complex chromosomal rearrangement resulting in a recombinant chromosome.

    Science.gov (United States)

    Berend, Sue Ann; Bodamer, Olaf A F; Shapira, Stuart K; Shaffer, Lisa G; Bacino, Carlos A

    2002-05-15

    Familial complex chromosomal rearrangements (CCRs) are rare and tend to involve fewer breakpoints and fewer chromosomes than CCRs that are de novo in origin. We report on a CCR identified in a child with congenital heart disease and dysmorphic features. Initially, the child's karyotype was thought to involve a straightforward three-way translocation between chromosomes 3, 8, and 16. However, after analyzing the mother's chromosomes, the mother was found to have a more complex rearrangement that resulted in a recombinant chromosome in the child. The mother's karyotype included an inverted chromosome 2 and multiple translocations involving chromosomes 3, 5, 8, and 16. No evidence of deletion or duplication that could account for the clinical findings in the child was identified.

  4. Comparative mapping of DNA probes derived from the V{sub k} immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, N.; Wienberg, J.; Ermert, K. [Universitaet Muenchen (Germany)] [and others

    1995-03-01

    Fluorescence in situ hybridization (FISH) of cosmid clones of human V{sub K} gene regions to human and primate chromosomes contributed to the dating of chromosome reorganizations in evolution. A clone from the K locus at 2p11-p12 (cos 106) hybridized to the assumed homologous chromosome bands in the chimpanzees Pan troglodytes (PTR) and P. paniscus (PPA), the Gorilla gorilla (GGO), and the orangutan Pongo Pygmaeus (PPY). Human and both chimpanzees differed from gorilla and orangutan by the mapping of cos 170, a clone derived from chromosome 2cen-q11.2; the transposition of this orphon to the other side of the centromere can, therefore, be dated after the human/chimpanzee and gorilla divergence. Hybridization to homologous bands was also found with a cosmid clone containing a V{sub K}I orphon located on chromosome 1 (cos 115, main signal at 1q31-q32), although the probe is not fully unique. Also, a clone derived from the orphon V{sub K} region on chromosome 22q11 (cos 121) hybridized to the homologous bands in the great apes. This indicates that the orphons on human chromosomes 1 and 22 had been translocated early in primate evolution. 18 refs., 2 figs.

  5. Developmental trajectories of fronto-executive functions in 22q11.2 deletion syndrome: A preliminary study

    LENUS (Irish Health Repository)

    Howley, S A

    2011-01-01

    22qll.2 deletion syndrome (22qllDS) is associated with borderline-mild intellectual disability and specific neurocognitive deficits, particularly in prefrontally-mediated executive functions (EF). There is evidence for white matter abnormalities in frontal cortical regions in 22qllDS, however little is known about the development of EF across the age range. Forty-eight individuals with 22qllDS were divided into 3 age groups: Child (7 male; n = 16; 6–11 years; M (SD) age = 8.4 (1.7); mean FSIQ = 72.9); Adolescent (7 male; n = 15; 12–15 years; M (SD) age = 13.1 (0.8); mean FSIQ = 68.0) and Adult (7 male; n = 17; 16–45 years; M (SD) age = 28.8 (11.5); mean FSIQ = 69.6). Forty healthy controls were also recruited and divided into the same 3 age groups: Child (6 male; 6–11 years, n = 12; M (SD) age = 9.3 (1.7); mean FSIQ = 99.1); Adolescent (6 male; 12–15 years; n = 12; M (SD) age = 13.2 (1.1); mean FSIQ = 100.9) and Adult (6 male; 16–45 years; n = 16; M (SD) age = 28.8 (9.4); mean FSIQ = 109). All participants completed standardised tests of a range of executive functions, specifically working memory, planning, problem-solving, strategy formation, cognitive flexibility and inhibition, and cross-sectional developmental trajectories of each function were constructed. No age-mediated improvements on EF tasks were observed in the 22qllDS groups, with the exception of verbal working memory. The control group exhibited significant age-mediated improvements in working memory, strategy formation and planning efficiency. These findings support the hypothesis that 22qllDS individuals experience atypical development of neuroanatomical regions and networks associated with EF in typical individuals. Future longitudinal work is required to examine intra-individual development of executive and non-executive cognitive processes.

  6. An Introduction to Duplicate Detection

    CERN Document Server

    Nauman, Felix

    2010-01-01

    With the ever increasing volume of data, data quality problems abound. Multiple, yet different representations of the same real-world objects in data, duplicates, are one of the most intriguing data quality problems. The effects of such duplicates are detrimental; for instance, bank customers can obtain duplicate identities, inventory levels are monitored incorrectly, catalogs are mailed multiple times to the same household, etc. Automatically detecting duplicates is difficult: First, duplicate representations are usually not identical but slightly differ in their values. Second, in principle

  7. A case of de novo duplication of 15q24-q26.3

    Directory of Open Access Journals (Sweden)

    Hye Ran Kim

    2011-06-01

    Full Text Available Distal duplication, or trisomy 15q, is an extremely rare chromosomal disorder characterized by prenatal and postnatal overgrowth, mental retardation, and craniofacial malformations. Additional abnormalities typically include an unusually short neck, malformations of the fingers and toes, scoliosis and skeletal malformations, genital abnormalities, particularly in affected males, and, in some cases, cardiac defects. The range and severity of symptoms and physical findings may vary from case to case, depending upon the length and location of the duplicated portion of chromosome 15q. Most reported cases of duplication of the long arm of chromosome 15 frequently have more than one segmental imbalance resulting from unbalanced translocations involving chromosome 15 and deletions in another chromosome, as well as other structural chromosomal abnormalities. We report a female newborn with a de novo duplication, 15q24- q26.3, showing intrauterine overgrowth, a narrow asymmetric face with down-slanting palpebral fissures, a large, prominent nose, and micrognathia, arachnodactyly, camptodactyly, congenital heart disease, hydronephrosis, and hydroureter. Chromosomal analysis showed a 46,XX,inv(9(p12q13,dup(15(q24q26.3. Array comparative genomic hybridization analysis revealed a gain of 42 clones on 15q24-q26.3. This case represents the only reported patient with a de novo 15q24-q26.3 duplication that did not result from an unbalanced translocation and did not have a concomitant monosomic component in Korea.

  8. Craniofacial Duplication: A Case Report

    OpenAIRE

    Suryawanshi, Pradeep; Deshpande, Mandar; Verma, Nitin; Mahendrakar, Vivek; Mahendrakar, Sandhya

    2013-01-01

    A craniofacial duplication or diprosopus is an unusual variant of conjoined twinning. The reported incidence is one in 180,000-15 million births and 35 cases have been reported till date. The phenotype is wide, with the partial duplication of a few facial structures to complete dicephalus. A complete duplication is associated with a high incidence of anomalies in the central nervous system, cardiovascular system, gastrointestinal system and the respiratory system, whereas no major anomalies a...

  9. Authorized Duplication: A Timely Solution.

    Science.gov (United States)

    Curatilo, Joe

    1997-01-01

    Asks how a music teacher can supply enough sheet music to ensure resources for every student while meeting restrictions of slender budgets and copyright laws. Explores the concept of authorized duplication, similar to software licensing, as a solution. Provides sources of music with authorized duplication agreements. (DSK)

  10. PARTIAL 3Q DUPLICATION SYNDROME AND ASSIGNMENT OF D3S5 TO 3Q25-3Q28

    NARCIS (Netherlands)

    VANESSEN, AJ; KOK, K; van den Berg, Anke; DEJONG, B; STELLINK, F; BOS, AF; SCHEFFER, H; BUYS, CHCM

    1991-01-01

    We report a girl with a de novo duplication of the distal part of the long arm of chromosome 3 and review the literature. Our patient had the facial characteristics and many other anomalies of the partial 3q duplication syndrome. As a hitherto undescribed symptom in partial 3q trisomy syndrome, she

  11. A survey of innovation through duplication in the reduced genomes of twelve parasites.

    Directory of Open Access Journals (Sweden)

    Jeremy D DeBarry

    Full Text Available We characterize the prevalence, distribution, divergence, and putative functions of detectable two-copy paralogs and segmental duplications in the Apicomplexa, a phylum of parasitic protists. Apicomplexans are mostly obligate intracellular parasites responsible for human and animal diseases (e.g. malaria and toxoplasmosis. Gene loss is a major force in the phylum. Genomes are small and protein-encoding gene repertoires are reduced. Despite this genomic streamlining, duplications and gene family amplifications are present. The potential for innovation introduced by duplications is of particular interest. We compared genomes of twelve apicomplexans across four lineages and used orthology and genome cartography to map distributions of duplications against genome architectures. Segmental duplications appear limited to five species. Where present, they correspond to regions enriched for multi-copy and species-specific genes, pointing toward roles in adaptation and innovation. We found a phylum-wide association of duplications with dynamic chromosome regions and syntenic breakpoints. Trends in the distribution of duplicated genes indicate that recent, species-specific duplicates are often tandem while most others have been dispersed by genome rearrangements. These trends show a relationship between genome architecture and gene duplication. Functional analysis reveals: proteases, which are vital to a parasitic lifecycle, to be prominent in putative recent duplications; a pair of paralogous genes in Toxoplasma gondii previously shown to produce the rate-limiting step in dopamine synthesis in mammalian cells, a possible link to the modification of host behavior; and phylum-wide differences in expression and subcellular localization, indicative of modes of divergence. We have uncovered trends in multiple modes of duplicate divergence including sequence, intron content, expression, subcellular localization, and functions of putative recent duplicates that

  12. Prenatal diagnosis of a de novo partial duplication of chromosome 21 associated with Down syndrome:a case report and literature review%新生21号染色体部分重复致胎儿唐氏综合征的产前诊断一例并文献复习

    Institute of Scientific and Technical Information of China (English)

    戚庆炜; 周希亚; 蒋宇林; 郝娜; 周京; 刘俊涛; 边旭明

    2013-01-01

    Objective:To report a case of de novo partial duplication of chromosome 21 associated with Down syndrome and review the literatures.Clinical data:A 29-year-old gravida 1,para 0 woman came to our clinic at 15 gestational weeks.The ultrasound showed the nuchal fold of 0.6 cm thickness.The maternal serum screening showed that the risk of fetal Down syndrome was 1/110.The amniocentesis was performed at 18 weeks of gestation.The interphase fluorescence in situ hybridization (FISH) showed three signals of the probe DSCR2:21q22.The karyotyping of the amniotic fluid cell was 46,XX,21p+.Results:The karyotyping of the blood lymphocytes from the parents was normal.The metaphase FISH analysis revealed that the segment of the 21p+ was 21q22 in origin.The array-based comparative genomic hybridization(aCGH)analysis demonstrated a 11.74 Mb duplication of 21q22.12-q22.3,a 1.31 Mb duplication of 21q21.3,a 1.33 Mb duplication of 21q21.1 and a 1.68 Mb deletion of 21q21.1-21q21.2.The parents opted to terminate the pregnancy.A malformed female fetus with some characterization of Down syndrome was delivered.Conclusions:FISH and aCGH analyses are useful in prenatal diagnosis of de novo alterations of small fragments of the chromosome.%目的 报道罕见的新生21号染色体部分重复致胎儿唐氏综合征的产前诊断一例,并对相关文献进行复习.临床资料 患者29岁,G1P0,孕15周超声发现胎儿颈后皱褶厚0.6 cm,孕16周母血清学筛查提示胎儿罹患唐氏综合征的风险为1/110,孕18周行羊膜腔穿刺术.采用DSCR2:21q22探针的羊水间期细胞荧光原位杂交(fluorescence in situ hybridization,FISH)分析发现在细胞核中出现3个杂交信号,但羊水细胞染色体核型分析结果为46,XX,21p+. 结果 孕妇夫妇外周血染色体核型分析未见异常,进一步行羊水中期分裂相FISH分析发现在一条21号染色体的短臂上出现了一个杂交信号.提取羊水细胞DNA行基于微阵列

  13. Prevalence and origin of De Novo duplications in Charcot-Marie-Tooth disease type 1A: First report of a De Novo duplication with a maternal origin

    Energy Technology Data Exchange (ETDEWEB)

    Blair, I.P.; Nash, J.; Gordon, M.J.; Nicholson, G.A. [Univ. of Sydney, New South Wales (United Kingdom)

    1996-03-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. Sporadic cases of CMT have been described since the earliest reports of the disease. The most frequent form of the disorder, CMT1A, is associated with a 1.5-Mb DNA duplication on chromosome 17p11.2, which segregates with the disease. In order to investigate the prevalence of de novo CMT1A duplications, this study examined 118 duplication-positive CMT1A families. In 10 of these families it was demonstrated that the disease had arisen as the result of a de novo mutation. By taking into account the ascertainment of families, it can be estimated that {>=}10% of autosomal dominant CMT1 families are due to de novo duplications. The CMT1A duplication is thought to be the product of unequal crossing over between parental chromosome 17 homologues during meiosis. Polymorphic markers from within the duplicated region were used to determine the parental origin of these de novo duplications in eight informative families. Seven were of paternal and one of maternal origin. This study represents the first report of a de novo duplication with a maternal origin and indicates that it is not a phenomenon associated solely with male meioses. Recombination fractions for the region duplicated in CMT1A are larger in females than in males. That suggests that oogenesis may be afforded greater protection from misalignment during synapsis, and/or that there may be lower activity of those factors or mechanisms that lead to unequal crossing over at the CMT1A locus. 41 refs., 2 figs.

  14. Rapid diagnosis of aneuploidy using segmental duplication quantitative fluorescent PCR.

    Directory of Open Access Journals (Sweden)

    Xiangdong Kong

    Full Text Available The aim of this study was use a simple and rapid procedure, called segmental duplication quantitative fluorescent polymerase chain reaction (SD-QF-PCR, for the prenatal diagnosis of fetal chromosomal aneuploidies. This method is based on the co-amplification of segmental duplications located on two different chromosomes using a single pair of fluorescent primers. The PCR products of different sizes were subsequently analyzed through capillary electrophoresis, and the aneuploidies were determined based on the relative dosage between the two chromosomes. Each primer set, containing five pairs of primers, was designed to simultaneously detect aneuploidies located on chromosomes 21, 18, 13, X and Y in a single reaction. We applied these two primer sets to DNA samples isolated from individuals with trisomy 21 (n = 36; trisomy 18 (n = 6; trisomy 13 (n = 4; 45, X (n = 5; 47, XXX (n = 3; 48, XXYY (n = 2; and unaffected controls (n = 40. We evaluated the performance of this method using the karyotyping results. A correct and unambiguous diagnosis with 100% sensitivity and 100% specificity, was achieved for clinical samples examined. Thus, the present study demonstrates that SD-QF-PCR is a robust, rapid and sensitive method for the diagnosis of common aneuploidies, and these analyses can be performed in less than 4 hours for a single sample, providing a competitive alternative for routine use.

  15. Form of 15q proximal duplication appears to be a normal euchromatic variant

    Energy Technology Data Exchange (ETDEWEB)

    Jalal, S.M.; Persons, D.L.; DeWald, G.W.; Lindor, N.M.

    1994-10-01

    Deletions involving often leads to either Prader-Willi or Angelman syndrome, depending on the hereditary path of the deletion (paternal or maternal). A number of cases have been reported in which duplications involving 15q11.2-q13 have not been associated with any detectable phenotypic abnormalities. Ludowese et al. (1991) have summarized 25 such cases that include 10 of their own cases from 5 unrelated families. They conclude that duplication of 15q12-13 does not have an adverse phenotypic effect, though they do not completely rule out the possibility that, instead of 15q12-13 duplication, the extra material could be an insertion from another chromosome. Thus, the dilemma is when duplication of 15q11.2-q13 is clinically significant. We suggest that certain kinds of amplification or duplication involving distal 15q12 and 15q13 may represent a normal variant. 14 refs., 1 fig., 1 tab.

  16. Sorting duplicated loci disentangles complexities of polyploid genomes masked by genotyping by sequencing

    DEFF Research Database (Denmark)

    Limborg, Morten; Seeb, Lisa W.; Seeb, J. E.

    2016-01-01

    Many plants and animals of polyploid origin are currently enjoying a genomics explosion enabled by modern sequencing and genotyping technologies. However, routine filtering of duplicated loci in most studies using genotyping by sequencing introduces an unacceptable, but often overlooked, bias when...... in a genome. Evidence shows that these duplications facilitate adaptation through one of two pathways: neo-functionalization or increased gene expression. Filtering duplicates removes distal ends of some chromosomes, and distal ends are especially known to harbour adaptively important genes. Thus, filtering...

  17. Duplication of the CD8 beta-chain gene as a marker of the man-gorilla-chimpanzee clade.

    OpenAIRE

    Delarbre, C; Nakauchi, H; Bontrop, R.; Kourilsky, P.; Gachelin, G

    1993-01-01

    In earlier studies we have found that the gene encoding the CD8 beta chain is duplicated in man. We demonstrate here that the duplicated genes are both located on chromosome 2. We have also studied the moment of the duplication event relative to the evolution of higher primates by using genomic DNA of a panel of primates. Our data strongly suggest that duplication occurred after the orangutan lineage had split and before the chimpanzee, gorilla, and man clade diverged, some 8-9.5 million year...

  18. Analysis of Duplicate Genes in Soybean

    Institute of Scientific and Technical Information of China (English)

    C.M. Cai; K.J. Van; M.Y. Kim; S.H. Lee

    2007-01-01

    @@ Gene duplication is a major determinant of the size and gene complement of eukaryotic genomes (Lockton and Gaut, 2005). There are a number of different ways in which duplicate genes can arise (Sankoff, 2001), but the most spectacular method of gene duplication may be whole genome duplication via polyploidization.

  19. Dynamics of chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck

    2007-01-01

    Since the 1960’es the conformation and segregation of the chromosome in Escherichia coli has been a subject of interest for many scientists. However, after 40 years of research, we still know incredibly little about how the chromosome is organized inside the cell, how it manages to duplicate...... method enabled us to start the analysis on the distribution of various chromosomal loci inside slowly growing cells. With the actual counting and measuring no longer being any problem we could easily analyze 14 loci distributed on the E.coli chromosome. More than 15.000 cells were analyzed in total...... the new system, which is based on the pMT1 par system from Yersenia pestis, we labeled loci on opposite sides of the E.coli chromosome simultaneously and were able to show that the E.coli chromosome is organized with one chromosomal arm in each cell half. This astounding result is described in Paper III...

  20. Mapping of human chromosomal regions related to neoplasia: evidence from chromosomes 1 and 17

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J.D.

    1977-12-01

    In clonal aberrations leading to an excess or partial excess of chromosome I, trisomy for bands 1q25-1q32 was noted in the myeloid cells from all of 34 patients who had various disorders such as acute leukemia, polycythemia vera, and myelofibrosis. This was not the result of a particularly fragile site in that region of the chromosome because the break points in reciprocal translocations that involve it occurred almost exclusively in the short arm. Two consistent rearrangements that have been observed in chromosome 17 produced either duplication of the entire long arm or a translocation of the distal portion of the long arm to chromosome 15. The nonrandom chromosomal changes found in hematologic disorders can now be correlated with the gene loci on these chromosomes or chromosomal segments. Seventy-five genes related to various metabolic enzymes have been mapped; it may be significant that chromosomes carrying gene loci related to nucleic acid metabolism are more frequently involved in hematologic disorders (and other malignancies as well) than are gene loci related to intermediary or carbohydrate metabolism. Furthermore, the known virus-human chromosome associations are closely correlated with the chromosomes affected in hematologic disorders. If one of the effects of carcinogens (including viruses) is to activate genes that regulate host cell DNA synthesis, and if translocations or duplications of specific chromosomal segments produce the same effect, then either of these mechanisms might provide the affected cell with a proliferative advantage.

  1. True Intramural Esophageal Duplication Cyst

    Directory of Open Access Journals (Sweden)

    Salim Al-Riyami

    2015-11-01

    Full Text Available Esophageal duplication is the second most common site of gastrointestinal duplication and most cases present with complications. These complications include bleeding, infection, dysphagia, and dyspnea. We report an incidental case of a true intramural esophageal duplication cyst in a new military recruit. The patient was diagnosed in Armed Forces Hospital, Oman. The patient came for a pre-recruitment routine check-up, he was found to have a suspicious soft tissue lesion on chest X-ray. He was referred to the thoracic surgeon for further investigations. The investigations included computed tomography and magnetic resonance imaging chest scans, barium swallow, endoscopy and, finally, an endoscopic ultrasound. All workup pointed to a diagnosis of esophageal duplication cyst; therefore, the decision was made to excise the lesion after discussion with the patient about the possible diagnosis and nature of the treatment. The cyst was completely excised thoracoscopically with uneventful recovery. The patient was discharged a few days later and was doing well in subsequent visits to the outpatient department. The histopathological exam confirmed the diagnosis of a true congenital duplication cyst, which was lined by pseudostratified ciliated columnar epithelium overlying double layers of thick bundles of smooth muscle fibers.

  2. The Genomes of Oryza sativa: a history of duplications.

    Directory of Open Access Journals (Sweden)

    Jun Yu

    2005-02-01

    Full Text Available We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000-40,000. Only 2%-3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.

  3. The Genomes of Oryza sativa: a history of duplications.

    Science.gov (United States)

    Yu, Jun; Wang, Jun; Lin, Wei; Li, Songgang; Li, Heng; Zhou, Jun; Ni, Peixiang; Dong, Wei; Hu, Songnian; Zeng, Changqing; Zhang, Jianguo; Zhang, Yong; Li, Ruiqiang; Xu, Zuyuan; Li, Shengting; Li, Xianran; Zheng, Hongkun; Cong, Lijuan; Lin, Liang; Yin, Jianning; Geng, Jianing; Li, Guangyuan; Shi, Jianping; Liu, Juan; Lv, Hong; Li, Jun; Wang, Jing; Deng, Yajun; Ran, Longhua; Shi, Xiaoli; Wang, Xiyin; Wu, Qingfa; Li, Changfeng; Ren, Xiaoyu; Wang, Jingqiang; Wang, Xiaoling; Li, Dawei; Liu, Dongyuan; Zhang, Xiaowei; Ji, Zhendong; Zhao, Wenming; Sun, Yongqiao; Zhang, Zhenpeng; Bao, Jingyue; Han, Yujun; Dong, Lingli; Ji, Jia; Chen, Peng; Wu, Shuming; Liu, Jinsong; Xiao, Ying; Bu, Dongbo; Tan, Jianlong; Yang, Li; Ye, Chen; Zhang, Jingfen; Xu, Jingyi; Zhou, Yan; Yu, Yingpu; Zhang, Bing; Zhuang, Shulin; Wei, Haibin; Liu, Bin; Lei, Meng; Yu, Hong; Li, Yuanzhe; Xu, Hao; Wei, Shulin; He, Ximiao; Fang, Lijun; Zhang, Zengjin; Zhang, Yunze; Huang, Xiangang; Su, Zhixi; Tong, Wei; Li, Jinhong; Tong, Zongzhong; Li, Shuangli; Ye, Jia; Wang, Lishun; Fang, Lin; Lei, Tingting; Chen, Chen; Chen, Huan; Xu, Zhao; Li, Haihong; Huang, Haiyan; Zhang, Feng; Xu, Huayong; Li, Na; Zhao, Caifeng; Li, Shuting; Dong, Lijun; Huang, Yanqing; Li, Long; Xi, Yan; Qi, Qiuhui; Li, Wenjie; Zhang, Bo; Hu, Wei; Zhang, Yanling; Tian, Xiangjun; Jiao, Yongzhi; Liang, Xiaohu; Jin, Jiao; Gao, Lei; Zheng, Weimou; Hao, Bailin; Liu, Siqi; Wang, Wen; Yuan, Longping; Cao, Mengliang; McDermott, Jason; Samudrala, Ram; Wang, Jian; Wong, Gane Ka-Shu; Yang, Huanming

    2005-02-01

    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000-40,000. Only 2%-3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family. PMID:15685292

  4. Multiple forms of atypical rearrangements generating supernumerary derivative chromosome 15

    Directory of Open Access Journals (Sweden)

    Sigman Marian

    2008-01-01

    Full Text Available Abstract Background Maternally-derived duplications that include the imprinted region on the proximal long arm of chromosome 15 underlie a complex neurobehavioral disorder characterized by cognitive impairment, seizures and a substantial risk for autism spectrum disorders1. The duplications most often take the form of a supernumerary pseudodicentric derivative chromosome 15 [der(15] that has been called inverted duplication 15 or isodicentric 15 [idic(15], although interstitial rearrangements also occur. Similar to the deletions found in most cases of Angelman and Prader Willi syndrome, the duplications appear to be mediated by unequal homologous recombination involving low copy repeats (LCR that are found clustered in the region. Five recurrent breakpoints have been described in most cases of segmental aneuploidy of chromosome 15q11-q13 and previous studies have shown that most idic(15 chromosomes arise through BP3:BP3 or BP4:BP5 recombination events. Results Here we describe four duplication chromosomes that show evidence of atypical recombination events that involve regions outside the common breakpoints. Additionally, in one patient with a mosaic complex der(15, we examined homologous pairing of chromosome 15q11-q13 alleles by FISH in a region of frontal cortex, which identified mosaicism in this tissue and also demonstrated pairing of the signals from the der(15 and the normal homologues. Conclusion Involvement of atypical BP in the generation of idic(15 chromosomes can lead to considerable structural heterogeneity.

  5. Fine mapping of a de novo interstitial 10q22-q23 duplication in a patient with congenital heart disease and microcephaly

    DEFF Research Database (Denmark)

    Erdogan, F; Belloso, J M; Gabau, E;

    2008-01-01

    In this study we report a female patient with an interstitial duplication of a region (10q22-q23) which is rarely reported in the literature. We fine mapped the aberration with array CGH, which revealed an 18.6-Mb duplication, covering 89 annotated genes, at 10q22.2-q23.33. There were no other...... deletions or duplications elsewhere in the genome. The main clinical features of the patient are microcephaly and congenital heart disease, which are likely to be caused by dosage effect of one or several genes in the duplicated region. Similar phenotypes have been found in other patients with 10q11-q22...... duplications and in two out of three patients with 10q22-q25 duplications. However, most of the duplication cases were investigated only by conventional chromosome analyses, and fine mapping of these and other duplications of 10q22-q23 are warranted for genotype-phenotype comparisons....

  6. Human interleukin 2 receptor β-chain gene: Chromosomal localization and identification of 5' regulatory sequences

    International Nuclear Information System (INIS)

    Interleukin 2 (IL-2) binds to and stimulates activated T cells through high-affinity IL-2 receptors (IL-2Rs). Such receptors represent a complex consisting of at least two proteins, the 55-kDa IL-2Rα chain and the 70-kDa IL-2Rβ chain. The low-affinity, IL-2Rα chain cannot by itself transduce a mitogenic signal, whereas IL-2 stimulates resting lymphocytes through the intermediate-affinity, IL-2Rβ receptor. The authors report here identification of the genomic locus for IL-2Rβ. The exons are contained on four EcoRI fragments of 1.1, 9.2, 7.2, and 13.7 kilobases. The 1.1-kilobase EcoRI fragment lies at the 5'-most end of the genomic locus and contains promoter sequences. The promoter contains no TATA box-like elements but does contain the d(GT)n class of middle repetitive elements, which may play an interesting regulatory role. The IL-2Rβ gene is localized to chromosome 22q11.2-q12, a region that is the locus for several lymphoid neoplasias

  7. OTX2 duplication is implicated in hemifacial microsomia.

    Directory of Open Access Journals (Sweden)

    Dina Zielinski

    Full Text Available Hemifacial microsomia (HFM is the second most common facial anomaly after cleft lip and palate. The phenotype is highly variable and most cases are sporadic. We investigated the disorder in a large pedigree with five affected individuals spanning eight meioses. Whole-exome sequencing results indicated the absence of a pathogenic coding point mutation. A genome-wide survey of segmental variations identified a 1.3 Mb duplication of chromosome 14q22.3 in all affected individuals that was absent in more than 1000 chromosomes of ethnically matched controls. The duplication was absent in seven additional sporadic HFM cases, which is consistent with the known heterogeneity of the disorder. To find the critical gene in the duplicated region, we analyzed signatures of human craniofacial disease networks, mouse expression data, and predictions of dosage sensitivity. All of these approaches implicated OTX2 as the most likely causal gene. Moreover, OTX2 is a known oncogenic driver in medulloblastoma, a condition that was diagnosed in the proband during the course of the study. Our findings suggest a role for OTX2 dosage sensitivity in human craniofacial development and raise the possibility of a shared etiology between a subtype of hemifacial microsomia and medulloblastoma.

  8. Y-chromosome polymorphism: Possible largest Y chromosome in man?

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, D.S.K.; Al-Awadi, S.A.; Bastaki, L. [Kuwait Medical Genetics Centre, Sulaibikat (Kuwait)] [and others

    1994-09-01

    The role of variations (inversions/deletion or duplication) in the heterochromatin in gonadal development and function, reproductive fitness, and malignant disease has been extensively studied. However, the causal-relationship of large Y (Yqh+) and repeated fetal loss has not been established unequivocally. An Arab couple (?Bedouin origin) with a history of repeated abortions were investigated. Karyotype analysis of the husband showed a very large Y chromosome, confirmed by GTG-, QFQ- and CBG-banding techniques. C-banding showed discontinuous distribution of the heterochromatin blocks separated by pale bands. The origin of the large heterochromatin segment could be due to tandem duplication of the Yq region or translocation (Yq:Yq). No other relatives (males) of the propositus have been available for investigation. Polymorphism of the Y chromosome could be attributed to evolutionary changes from an ancestral type, either by deletion or duplication of the heterochromatin segment. More detailed studies on isolated, aboriginal/tribal human populations will enable us to better understand the significance of the Y chromosome polymorphism.

  9. Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant

    OpenAIRE

    Hannes, F.D.; Sharp, A. J.; Mefford, H.C.; Ravel, de, T.; Ruivenkamp, C A; Breuning, M.H.; Fryns, J P; Devriendt, K; Buggenhout, van, G.; Vogels, A.; Stewart, H. H.; Hennekam, R. C.; Cooper, G M; Regan, R.; Knight, S.J.

    2009-01-01

    Background: Genomic disorders are often caused by non-allelic homologous recombination between segmental duplications. Chromosome 16 is especially rich in a chromosome-specific low copy repeat, termed LCR16. Methods and Results: A bacterial artificial chromosome (BAC) array comparative genome hybridisation (CGH) screen of 1027 patients with mental retardation and/or multiple congenital anomalies (MR/MCA) was performed. The BAC array CGH screen identified five patients with deletions and five ...

  10. Effect of chromosome homology an plasmid transformation and plasmid conjugal transfer in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Balganesh, M.; Setlow, J.K.

    1984-05-14

    The pairing between plasmid and the homologous part of the chromosome associated with plasmid establishment may differ from the pairing which results from integration of a homologous region of the plasmid into the chromosome. Thus the rate of novobiocin transformation decreases with duplication of the chromosomal portion in pMB2, but the rate of establishment of the plasmid increases with this duplication. A model to explain these data is given. 17 references, 5 figures, 4 tables.

  11. Recurrent duplications of 17q12 associated with variable phenotypes.

    Science.gov (United States)

    Mitchell, Elyse; Douglas, Andrew; Kjaegaard, Susanne; Callewaert, Bert; Vanlander, Arnaud; Janssens, Sandra; Yuen, Amy Lawson; Skinner, Cindy; Failla, Pinella; Alberti, Antonino; Avola, Emanuela; Fichera, Marco; Kibaek, Maria; Digilio, Maria C; Hannibal, Mark C; den Hollander, Nicolette S; Bizzarri, Veronica; Renieri, Alessandra; Mencarelli, Maria Antonietta; Fitzgerald, Tomas; Piazzolla, Serena; van Oudenhove, Elke; Romano, Corrado; Schwartz, Charles; Eichler, Evan E; Slavotinek, Anne; Escobar, Luis; Rajan, Diana; Crolla, John; Carter, Nigel; Hodge, Jennelle C; Mefford, Heather C

    2015-12-01

    The ability to identify the clinical nature of the recurrent duplication of chromosome 17q12 has been limited by its rarity and the diverse range of phenotypes associated with this genomic change. In order to further define the clinical features of affected patients, detailed clinical information was collected in the largest series to date (30 patients and 2 of their siblings) through a multi-institutional collaborative effort. The majority of patients presented with developmental delays varying from mild to severe. Though dysmorphic features were commonly reported, patients do not have consistent and recognizable features. Cardiac, ophthalmologic, growth, behavioral, and other abnormalities were each present in a subset of patients. The newly associated features potentially resulting from 17q12 duplication include height and weight above the 95th percentile, cataracts, microphthalmia, coloboma, astigmatism, tracheomalacia, cutaneous mosaicism, pectus excavatum, scoliosis, hypermobility, hypospadias, diverticulum of Kommerell, pyloric stenosis, and pseudohypoparathryoidism. The majority of duplications were inherited with some carrier parents reporting learning disabilities or microcephaly. We identified additional, potentially contributory copy number changes in a subset of patients, including one patient each with 16p11.2 deletion and 15q13.3 deletion. Our data further define and expand the clinical spectrum associated with duplications of 17q12 and provide support for the role of genomic modifiers contributing to phenotypic variability. PMID:26420380

  12. A Case of ADHD and a Major Y Chromosome Abnormality

    Science.gov (United States)

    Mulligan, Aisling; Gill, Michael; Fitzgerald, Michael

    2008-01-01

    Background: ADHD is a common, heritable disorder of childhood. Sex chromosome abnormalities are relatively rare conditions that are sometimes associated with behavioral disorders. Method: The authors present a male child with ADHD and a major de-novo Y chromosome abnormality consisting of deletion of the long arm and duplication of the short arm.…

  13. Chromosome Abnormalities

    Science.gov (United States)

    ... are two kinds of cell division, mitosis and meiosis. Mitosis results in two cells that are duplicates ... make up our body are made and replaced. Meiosis results in cells with half the number of ...

  14. Four unrelated patients with Lubs X-linked mental retardation syndrome and different Xq28 duplications.

    Science.gov (United States)

    Bartsch, Oliver; Gebauer, Konstanze; Lechno, Stanislav; van Esch, Hilde; Froyen, Guy; Bonin, Michael; Seidel, Jörg; Thamm-Mücke, Barbara; Horn, Denise; Klopocki, Eva; Hertzberg, Christoph; Zechner, Ulrich; Haaf, Thomas

    2010-02-01

    The Lubs X-linked mental retardation syndrome (MRXSL) is caused by small interstitial duplications at distal Xq28 including the MECP2 gene. Here we report on four novel male patients with MRXSL and different Xq28 duplications delineated by microarray-based chromosome analysis. All mothers were healthy carriers of the duplications. Consistent with an earlier report [Bauters et al. (2008); Genome Res 18: 847-858], the distal breakpoints of all four Xq28 duplications were located in regions containing low-copy repeats (LCRs; J, K, and L groups), which may facilitate chromosome breakage and reunion events. The proximal breakpoint regions did not contain known LCRs. Interestingly, we identified apparent recurrent breakage sites in the proximal and distal breakpoint regions. Two of the four patients displayed more complex rearrangements. Patient 2 was endowed with a quadruplicated segment and a small triplication within the duplication, whereas patient 3 displayed two triplicated segments within the duplication, supporting that the Fork Stalling and Template Switching (FoSTeS) model may explain a subset of the structural rearrangements in Xq28. Clinically, muscular hypertonia and contractures of large joints may present a major problem in children with MRXSL. Because injection of botulinum toxin (BT-A; Botox) proved to be extremely helpful for patient 1, we recommend consideration of Botox treatment in other patients with MRXSL and severe joint contractures.

  15. Signals of historical interlocus gene conversion in human segmental duplications.

    Directory of Open Access Journals (Sweden)

    Beth L Dumont

    Full Text Available Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC. Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis combines two complementary methods: (i a paralog quartet method that uses DNA sequence simulations to identify a statistical excess of sites consistent with inter-paralog exchange, and (ii the alignment-based method implemented in the GENECONV program. One-quarter (25.4% of the paralog families in our analysis harbor clear IGC signals by the quartet approach. Using GENECONV, we identify 1477 gene conversion tracks that cumulatively span 1.54 Mb of the genome. Our analyses confirm the previously reported high rates of IGC in subtelomeric regions and Y-chromosome palindromes, and identify multiple novel IGC hotspots, including the pregnancy specific glycoproteins and the neuroblastoma breakpoint gene families. Although the duplication history of a paralog family is described by a single tree, we show that IGC has introduced incredible site-to-site variation in the evolutionary relationships among paralogs in the human genome. Our findings indicate that IGC has left significant footprints in patterns of sequence diversity across segmental duplications in the human genome, out-pacing the contributions of single base mutation by orders of magnitude. Collectively, the IGC signals we report comprise a catalog that will provide a critical reference for interpreting observed patterns of DNA sequence variation across duplicated genomic regions, including targets of recent adaptive evolution in humans.

  16. Evolution of alternative splicing after gene duplication

    OpenAIRE

    Su, Zhixi; Wang, Jianmin; Yu, Jun; Huang, Xiaoqiu; Gu, Xun

    2006-01-01

    Alternative splicing and gene duplication are two major sources of proteomic function diversity. Here, we study the evolutionary trend of alternative splicing after gene duplication by analyzing the alternative splicing differences between duplicate genes. We observed that duplicate genes have fewer alternative splice (AS) forms than single-copy genes, and that a negative correlation exists between the mean number of AS forms and the gene family size. Interestingly, we found that the loss of ...

  17. Congenital duplication of the gallbladder.

    Science.gov (United States)

    Safioleas, Michael C; Papavassiliou, Vassilios G; Moulakakis, Konstantinos G; Angouras, Dimitrios C; Skandalakis, Panagiotis

    2006-03-01

    Duplication of the gallbladder is a rare congenital anomaly of the biliary system. In this article, two cases of gallbladder duplication are presented. The first case is a patient with double gallbladder and concomitant choledocholithiasis. The probable diagnosis of double gallbladder was made preoperatively by computed tomography. The patient underwent a successful open cholecystectomy and common bile duct exploration. In the second case, two cystic formations in the place of gallbladder are demonstrated with ultrasound scan in a woman with acute cholecystitis. At surgery, two gallbladders were found. A brief review of epidemiology and anatomy of double gallbladder is included, along with a discussion of the difficulties in diagnosis and treatment of this condition.

  18. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  19. AMID: autonomous modeler of intragenic duplication.

    Science.gov (United States)

    Kummerfeld, Sarah K; Weiss, Anthony S; Fekete, Alan; Jermiin, Lars S

    2003-01-01

    Intragenic duplication is an evolutionary process where segments of a gene become duplicated. While there has been much research into whole-gene or domain duplication, there have been very few studies of non-tandem intragenic duplication. The identification of intragenically replicated sequences may provide insight into the evolution of proteins, helping to link sequence data with structure and function. This paper describes a tool for autonomously modelling intragenic duplication. AMID provides: identification of modularly repetitive genes; an algorithm for identifying repeated modules; and a scoring system for evaluating the modules' similarity. An evaluation of the algorithms and use cases are presented.

  20. Nonrandom chromosomal changes in human malignant cells

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J D

    1977-01-01

    The role of chromosomal changes in human malignant cells has been the subject of much debate. The observation of nonrandom chromosomal changes has become well recognized in chronic myelogenous leukemia, and more recently in acute myelogenous leukemia. In the present report, data are presented on the sites of duplication of chromosome No. 1 in hematologic disorders. Trisomy for region lq25 to lq32 was observed in every one of 34 patients whose cells showed duplication of some part of chromosome No. 1. Adjacent regions lq21 to lq25, and lq32 to lqter, also were trisomic in the majority of patients. Two patients had deletions, one of lq32 to qter, and the other, of lp32 to pter. The sites of chromosomal breaks leading to trisomy differ from those involved in balanced reciprocal translocations. Some of these sites are sometimes, but not always, vulnerable in constitutional chromosomal abnormalities. The nature of the proliferative advantage conferred on myeloid cells by these chromosomal changes is unknown.

  1. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage.

    Science.gov (United States)

    Zody, Michael C; Garber, Manuel; Adams, David J; Sharpe, Ted; Harrow, Jennifer; Lupski, James R; Nicholson, Christine; Searle, Steven M; Wilming, Laurens; Young, Sarah K; Abouelleil, Amr; Allen, Nicole R; Bi, Weimin; Bloom, Toby; Borowsky, Mark L; Bugalter, Boris E; Butler, Jonathan; Chang, Jean L; Chen, Chao-Kung; Cook, April; Corum, Benjamin; Cuomo, Christina A; de Jong, Pieter J; DeCaprio, David; Dewar, Ken; FitzGerald, Michael; Gilbert, James; Gibson, Richard; Gnerre, Sante; Goldstein, Steven; Grafham, Darren V; Grocock, Russell; Hafez, Nabil; Hagopian, Daniel S; Hart, Elizabeth; Norman, Catherine Hosage; Humphray, Sean; Jaffe, David B; Jones, Matt; Kamal, Michael; Khodiyar, Varsha K; LaButti, Kurt; Laird, Gavin; Lehoczky, Jessica; Liu, Xiaohong; Lokyitsang, Tashi; Loveland, Jane; Lui, Annie; Macdonald, Pendexter; Major, John E; Matthews, Lucy; Mauceli, Evan; McCarroll, Steven A; Mihalev, Atanas H; Mudge, Jonathan; Nguyen, Cindy; Nicol, Robert; O'Leary, Sinéad B; Osoegawa, Kazutoyo; Schwartz, David C; Shaw-Smith, Charles; Stankiewicz, Pawel; Steward, Charles; Swarbreck, David; Venkataraman, Vijay; Whittaker, Charles A; Yang, Xiaoping; Zimmer, Andrew R; Bradley, Allan; Hubbard, Tim; Birren, Bruce W; Rogers, Jane; Lander, Eric S; Nusbaum, Chad

    2006-04-20

    Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome. PMID:16625196

  2. Duplicability of self-interacting human genes

    Directory of Open Access Journals (Sweden)

    Makino Takashi

    2010-05-01

    Full Text Available Abstract Background There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. Results We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD or small-scale duplication (SSD, and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. Conclusions Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  3. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  4. Phenotypic variation within European carriers of the Y-chromosomal gr/gr deletion is independent of Y-chromosomal background

    DEFF Research Database (Denmark)

    Krausz, C; Giachini, C; Xue, Y;

    2008-01-01

    of duplications and the Y-chromosomal haplogroup were characterised. Although the study had good power to detect factors that accounted for >or=5.5% of the variation in sperm concentration, no such factor was found. A negative effect of gr/gr deletions followed by b2/b4 duplication was found within...

  5. Chromosome 15q24 microdeletion syndrome

    Directory of Open Access Journals (Sweden)

    Magoulas Pilar L

    2012-01-01

    involves a multi-disciplinary approach to care with the primary care physician and clinical geneticist playing a crucial role in providing appropriate screening, surveillance, and care for individuals with this syndrome. At the time of diagnosis, individuals should receive baseline echocardiograms, audiologic, ophthalmologic, and developmental assessments. Growth and feeding should be closely monitored. Other specialists that may be involved in the care of individuals with 15q24 deletion syndrome include immunology, endocrine, orthopedics, neurology, and urology. Chromosome 15q24 microdeletion syndrome should be differentiated from other genetic syndromes, particularly velo-cardio-facial syndrome (22q11.2 deletion syndrome, Prader-Willi syndrome, and Noonan syndrome. These conditions share some phenotypic similarity to 15q24 deletion syndrome yet have characteristic features specific to each of them that allows the clinician to distinguish between them. Molecular genetic testing and/or aCGH will be able to diagnose these conditions in the majority of individuals. Disease name and synonyms Chromosome 15q24 deletion syndrome 15q24 deletion syndrome 15q24 microdeletion syndrome

  6. Miller-Dieker syndrome associated with duplication of 17p13.3 confirmed by fluorescence in situ hybridization (FISH)

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.; Tuck-Muller, C.M.; Martinez, J.E. [Univ. of South Alabama, Mobile, AL (United States)] [and others

    1994-09-01

    Miller-Dieker syndrome is characterized by profound mental retardation, craniofacial abnormalities, and lissencephaly (smooth brain). Microscopic or submicroscopic deletions of the 17p13.3 region have been reported in Miller-Dieker patients. We report a patient with this syndrome in whom a duplication of the 17p13.3 region was detected by FISH. The 9-year-old female proband was referred because of features of Miller-Dieker syndrome: microcephaly, profound psychomotor retardation, seizures, characteristic facies, and lissencephaly shown by MRI studies. High-resolution G-banding failed to demonstrate an abnormality in chromosome 17. However, FISH analysis with the DNA probe (Oncor No. 5101) specific for Miller-Dieker region of chromosome 17p13.3 demonstrated duplication of this segment instead of the classic deletion. We know of no other report of Miller-Dieker syndrome associated with duplication of 17p13.3. The family study revealed normal chromosomes in both parents by cytogenetic and FISH analysis. Our investigation suggests that duplications, as well as deletions, of the 17p13.3 region are associated with the Miller-Dieker syndrome. The presence of deletions or duplications of the same chromosomal region in patients with features of Miller-Dieker syndrome suggests that its pathogenesis may be due to gene dosage effects.

  7. Narrow, duplicated internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)

    2003-05-01

    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  8. De novo interstitial direct duplication of Xq21.1q25 associated with skewed X-inactivation pattern.

    Science.gov (United States)

    Tachdjian, G; Aboura, A; Benkhalifa, M; Creveaux, I; Foix-Hélias, L; Gadisseux, J F; Boespflug-Tanguy, O; Mohammed, M; Labrune, P

    2004-12-15

    Genotype-phenotype correlation in women with an abnormal phenotype associated with a duplication of the long arm of the X chromosome remains unclear. We report on prenatal diagnosis and follow-up of a girl with an Xq duplication and dysmorphic features. The abnormal phenotype included growth retardation, hypotonia, and nystagmus. In order to improve the resolution of the cytogenetic analysis, we used both conventional and array-based comparative genomic hybridization to perform a global molecular cytogenetic analysis of the genome. These molecular cytogenetic analyses showed a direct duplication Xq21.1 --> q25 without other chromosomal abnormalities. This duplication was originating from the paternal X chromosome. Moreover, a skewed X-inactivation pattern was observed leading to a partial functional disomy of the chromosomal region Xq21.1q25. This report and review of the literature suggest that functional disomy for chromosome X could explain the abnormal phenotype. In prenatal diagnosis, this can have implication for patient management and genetic counseling.

  9. Molecular cytogenetic determination of a deletion/duplication of 1q that results in a trisomy 18 syndrome-like phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Mewar, R.; Harrison, W.; Weaver, D.D.; Palmer, C.; Davee, M.A.; Overhauser, J.

    1994-08-15

    We report on an infant who presented at birth with some characteristics of trisomy 18 syndrome, including low birth weight, facial abnormalities, overlapping fingers, and congenital heart defects. On chromosome analysis, no additional chromosome 18 was observed and both chromosome 18 homologues appeared normal. However, a small piece of chromosomal material of unknown origin was detected at the tip of the long arm of chromosome 1. Fluorescence in situ hybridization (FISH) using whole chromosome 18 painting probes disclosed no additional hybridization at the telomere of 1q, suggesting that the material was derived from another chromosome. Further chromosome painting experiments suggested that the telomeric addition was of chromosome 1 origin. To identify subchromosomal regions involved in the rearrangement, additional FISH analyses were performed using single copy and repetitive DNA probes mapping different portions of chromosome 1. The analyses showed that probes mapping to 1q34-43 were duplicated in the derivative chromosome 1. In addition, a DNA probe mapping to 1q44 was found to be deleted from the derivative chromosome 1. Our composite analysis suggests that a deletion and a duplication of chromosome 1q can result in some of the clinical findings usually associated with trisomy 16 syndrome. These results demonstrate the usefulness of FISH analysis when karyotype analysis is not consistent with the clinical description. 23 refs., 3 figs., 2 tabs.

  10. Recombinant Chromosome 4 from a Familial Pericentric Inversion: Prenatal and Adulthood Wolf-Hirschhorn Phenotypes

    Directory of Open Access Journals (Sweden)

    Francesca Malvestiti

    2013-01-01

    Full Text Available Pericentric inversion of chromosome 4 can give rise to recombinant chromosomes by duplication or deletion of 4p. We report on a familial case of Wolf-Hirschhorn Syndrome characterized by GTG-banding karyotypes, FISH, and array CGH analysis, caused by a recombinant chromosome 4 with terminal 4p16.3 deletion and terminal 4q35.2 duplication. This is an aneusomy due to a recombination which occurred during the meiosis of heterozygote carrier of cryptic pericentric inversion. We also describe the adulthood and prenatal phenotypes associated with the recombinant chromosome 4.

  11. Engineering Mouse Chromosomes with Cre-loxP: Range, Efficiency, and Somatic Applications

    OpenAIRE

    Zheng, Binhai; Sage, Marijke; Sheppeard, Elizabeth A.; Jurecic, Vesna; Bradley, Allan

    2000-01-01

    Chromosomal rearrangements are important resources for genetic studies. Recently, a Cre-loxP-based method to introduce defined chromosomal rearrangements (deletions, duplications, and inversions) into the mouse genome (chromosome engineering) has been established. To explore the limits of this technology systematically, we have evaluated this strategy on mouse chromosome 11. Although the efficiency of Cre-loxP-mediated recombination decreases with increasing genetic distance when the two endp...

  12. The combinatorics of tandem duplication trees.

    Science.gov (United States)

    Gascuel, Olivier; Hendy, Michael D; Jean-Marie, Alain; McLachlan, Robert

    2003-02-01

    We developed a recurrence relation that counts the number of tandem duplication trees (either rooted or unrooted) that are consistent with a set of n tandemly repeated sequences generated under the standard unequal recombination (or crossover) model of tandem duplications. The number of rooted duplication trees is exactly twice the number of unrooted trees, which means that on average only two positions for a root on a duplication tree are possible. Using the recurrence, we tabulated these numbers for small values of n. We also developed an asymptotic formula that for large n provides estimates for these numbers. These numbers give a priori probabilities for phylogenies of the repeated sequences to be duplication trees. This work extends earlier studies where exhaustive counts of the numbers for small n were obtained. One application showed the significance of finding that most maximum-parsimony trees constructed from repeat sequences from human immunoglobins and T-cell receptors were tandem duplication trees. Those findings provided strong support to the proposed mechanisms of tandem gene duplication. The recurrence relation also suggests efficient algorithms to recognize duplication trees and to generate random duplication trees for simulation. We present a linear-time recognition algorithm.

  13. Title Based Duplicate Detection of Web Documents

    Directory of Open Access Journals (Sweden)

    Mrs. M. Kiruthika

    2012-09-01

    Full Text Available In recent times, the concept of web crawling has received remarkable significance owing to extreme development of the World Wide Web. Very large amounts of web documents are swarming the web making the search engines less appropriate to the users. Among the vast number of web documents are many duplicates and near duplicates i.e. variants derived from the same original web document due to which additional overheads are created for search engines by which their performance and quality is significantly affected. Web crawling research community has extensively recognized the need for detection of duplicate and near duplicate web pages. Providing the users with relevant results for their queries in the first page without duplicates and redundant results is a vital requisite. Also, this problem of duplication should be avoided to save storage as well as to improve search quality. The near duplicate web pages are detected followed by the storage of crawled web pages in to repositories. The detection of near duplicates conserves network bandwidth, brings down storage cost and enhances the quality of search engines. In this paper, we have discussed a feasible method for detection of near-duplicate web documents based on the title of the documents which will help to reduce the overhead of search engines and improve their performance.

  14. Definition of 5q11.2 Microdeletion Syndrome Reveals Overlap with CHARGE Syndrome and 22q11 Deletion Syndrome Phenotypes

    NARCIS (Netherlands)

    Blok, Charlotte Snijders; Corsten-Janssen, Nicole; FitzPatrick, David R.; Romano, Corrado; Fichera, Marco; Vitello, Girolamo Aurelio; Willemsen, Marjolein H.; Schoots, Jeroen; Pfundt, Rolph; van Ravenswaaij-Arts, Conny M. A.; Hoefsloot, Lies; Kleefstra, Tjitske

    2014-01-01

    Microdeletions of the 5q11.2 region are rare; in literature only two patients with a deletion in this region have been reported so far. In this study, we describe four additional patients and further define this new 5q11.2 microdeletion syndrome. A comparison of the features observed in all six pati

  15. Combined use of molecular cytogenetic techniques to detect a small chromosomal translocation%综合应用分子细胞遗传学技术检测一例染色体微小易位

    Institute of Scientific and Technical Information of China (English)

    谢英俊; 陈宝江; 吴坚柱; 陈争; 林少宾; 方群

    2011-01-01

    Objective Comprehensive use of molecular cytogenetic techniques for the detection of 1 case of small chromosome translocation.Methods Following conventional chromosome preparation,G-banding karyotype analysis, spectral karyotyping (SKY), whole chromosome painting, two-color fluorescence in situ hybridization (FISH) and subtelomeric probe FISH were performed.Results G-banded karyotype was 46,XX,? (22q11.3),SKY karyotype analysis was 46,XX,der (4) t (4 ; 6) and found no abnormalities on chromosome 22,staining signal was not found with any abnormalities on chromosome 6.Two-color FISH indicated a chromosomal translocation segment of 22q13.3 to one end of the short arm of chromosome 4.Subtelomeric FISH probe showed the end of the long arm of chromosome 22 and the end of the short arm of chromosome 4 reciprocal translocation. High resolution G-banding and FISH result indicated 46,XX,t(4;22)(p15.3;q13.2).Conclusion The testing of small chromosomal translocation should be combined with clinical information and integrated use of molecular cytogenetic techniques to improve the accuracy of diagnosis of chromosomal diseases.%目的 综合应用分子细胞遗传学技术对1例染色体微小易位的病例进行检测.方法 按常规制备染色体,G显带进行核型分析,并先后进行光谱核型分析(spectral karyotyping,SKY),染色体涂染,双色荧光原位杂交技术(fluorescence in situ hybridisation,FISH)检测,亚端粒探针FISH检测.结果 常规G显带染色体核型为46,XX,?(22q11.3),SKY核型分析结果:46,XX,der(4)t(4;6),未发现22号染色体异常,染色体涂染未发现6号染色体信号异常.双色FISH提示其中1个22号染色体22q13.3片段易位到另外1条4号染色体短臂末端.亚端粒探针FISH显示22号染色体长臂末端和4号染色体短臂末端的相互易位.综合上述结果结合染色体高分辨分析,得出染色体核型为:46,XX,t(4;22)(p15.3;q13.2).结论 对于染色体微小易位的病例,应结合相关

  16. RECENT SEGMENTAL DUPLICATIONS IN THE CATTLE GENOME

    Science.gov (United States)

    We assessed the content, structure, and distribution of segmental duplications (> or =90% sequence identity, > or =5 kb length) within the newest public version of the Bos taurus genome assembly (bta_3.1). The overall fraction of duplicated sequence within the cattle assembly is approximately equiva...

  17. Duodenal duplication cyst identified with MRCP

    Energy Technology Data Exchange (ETDEWEB)

    Carbognin, G.; Guarise, A.; Biasiutti, C.; Pagnotta, N.; Procacci, C. [Department of Radiology, University Hospital ' G.B. Rossi' , Verona (Italy)

    2000-08-01

    We report a case of a stalked cystic duodenal duplication. The lesion, hyperintense on T2-weighted GRE images, maintained the signal intensity after oral administration of a negative contrast agent (Lumirem, Guerbet, Aulnay-Sous-Bois, France), confirming its independence from the duodenal lumen. To our knowledge, this is the first demonstration of duodenal duplication by means of MR cholangiopancreatography. (orig.)

  18. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage

    OpenAIRE

    Zody, Michael C; Garber, Manuel; Adams, David J.; Sharpe, Ted; Harrow, Jennifer; James R. Lupski; Nicholson, Christine; Searle, Steven M.; Wilming, Laurens; Young, Sarah K.; Abouelleil, Amr; Van Allen, Nicole R; Bi, Weimin; Bloom, Toby; Borowsky, Mark L

    2006-01-01

    Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome1, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome2,3. It is also enriched in segmental duplications, ranking third in density among the autosomes4. Here we report a finished sequence for human chromosome 17, as well as a structural ...

  19. Diverged Copies of the Seed Regulatory Opaque-2 Gene by a Segmental Duplication in the Progenitor Genome of Rice,Sorghum,and Maize

    Institute of Scientific and Technical Information of China (English)

    Jian-Hong Xu; Joachim Messing

    2008-01-01

    Comparative analyses of the sequence of entire genomes have shown that gene duplications,chromosomal segmental duplications.or even whole genome duplications(WGD)have played prominent roles in the evolution of many eukaryotic species.Here,we used the ancient duplication of a well known transcription factor in maize,encoded by the Opaque-2(02)IOCUS,to examine the generaI features of divergences of chromosomaI segmentaI duplications in a lineagespecific manner.We took advantage of contiguous chromosomal sequence information in rice(Oryza sativa,Nipponbare).sorghum(Sorghum bicoloc Btx623),and maize(Zea mays,B73)that were aligned by conserved gene order(synteny).This analysis showed that the maize O2 locus is contained within a 1.25 million base-pair(Mb)segment on chromosome 7.which was duplicated≈56 million years ago(mya)before the split of rice and maize 50 mya.The duplicated region on chromosome 1 is only half the size and contains the maize OHP gene.which does not restore the o2 mutation although it encodes a protein with the same DNA and protein binding properties in endosperm.The segmental duplication iS not only found in rice,but also in sorghum,which split from maize 11.9 mya.A detailed analysis of the duplicated regions provided examples for complex rearrangements including deletions.duplications,conversions,inversions,and translocations.Furthermore,the rice and sorghum genomes appeared to be more stable than the maize genome,probably because maize underwent allotetraploidization and then diploidization.

  20. Yeast genome duplication was followed by asynchronous differentiation of duplicated genes

    DEFF Research Database (Denmark)

    Langkjær, Rikke Breinhold; Cliften, P.F.; Johnston, M.;

    2003-01-01

    Gene redundancy has been observed in yeast, plant and human genomes, and is thought to be a consequence of whole-genome duplications(1-3). Baker's yeast, Saccharomyces cerevisiae, contains several hundred duplicated genes(1). Duplication(s) could have occurred before or after a given speciation....... To understand the evolution of the yeast genome, we analysed orthologues of some of these genes in several related yeast species. On the basis of the inferred phylogeny of each set of genes, we were able to deduce whether the gene duplicated and/or specialized before or after the divergence of two yeast...

  1. SALL4 and NFATC2: two major actors of interstitial 20q13.2 duplication.

    Science.gov (United States)

    Briand-Suleau, A; Martinovic, J; Tosca, L; Tou, B; Brisset, S; Bouligand, J; Delattre, V; Giurgea, I; Bachir, J; Folliot, P; Goumy, C; Francannet, C; Guiochon-Mantel, A; Benachi, A; Vermeesch, J; Tachdjian, G; Vago, P; Goossens, M; Métay, C

    2014-03-01

    Interstitial duplication within the long arm of chromosome 20 is an uncommon chromosome structural abnormality. We report here the clinical and molecular characterization associated with pure 20q13.2 duplication in three unrelated patients. The most frequent clinical features were developmental delay, facial dysmorphism, cardiac malformation and skeletal anomalies. All DNA gains occurred de novo, ranging from 1.1 Mb to 11.5 Mb. Compared with previously reported conventional cytogenetic analyses, oligonucleotides array CGH allowed us to refine breakpoints and determine the genes of interest in the region. Involvement of SALL4 in cardiac malformations and NFATC2 gene disruption in both cardiac and skeletal anomalies are discussed.

  2. Heterogeneous duplications in patients with Pelizaeus-Merzbacher disease suggest a mechanism of coupled homologous and nonhomologous recombination.

    NARCIS (Netherlands)

    Woodward, K.J.; Cundall, M.; Sperle, K.; Sistermans, E.A.; Ross, M.; Howell, G.R.; Gribble, S.M.; Burford, D.C.; Carter, N.P.; Hobson, D.L.; Garbern, J.Y.; Kamholz, J.A.; Heng, H.; Hodes, M.E.; Malcolm, S.; Hobson, G.M.

    2005-01-01

    We describe genomic structures of 59 X-chromosome segmental duplications that include the proteolipid protein 1 gene (PLP1) in patients with Pelizaeus-Merzbacher disease. We provide the first report of 13 junction sequences, which gives insight into underlying mechanisms. Although proximal breakpoin

  3. A 380-kb Duplication in 7p22.3 Encompassing the LFNG Gene in a Boy with Asperger Syndrome

    NARCIS (Netherlands)

    Vulto-van Silfhout, A.T.; Brouwer, A.F. de; Leeuw, N. de; Obihara, C.C.; Brunner, H.G.; Vries, B.B. de

    2012-01-01

    De novo genomic aberrations are considered an important cause of autism spectrum disorders. We describe a de novo 380-kb gain in band p22.3 of chromosome 7 in a patient with Asperger syndrome. This duplicated region contains 9 genes including the LNFG gene that is an important regulator of NOTCH sig

  4. Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders

    Science.gov (United States)

    Isles, Anthony R.; Ingason, Andrés; Lowther, Chelsea; Gawlick, Micha; Stöber, Gerald; Potter, Harry; Georgieva, Lyudmila; Pizzo, Lucilla; Ozaki, Norio; Kushima, Itaru; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F.; Gejman, Pablo V.; Shi, Jianxin; Sanders, Alan R.; Duan, Jubao; Sisodiya, Sanjay; Costain, Gregory; Degenhardt, Franziska; Giegling, Ina; Rujescu, Dan; Hreidarsson, Stefan J.; Saemundsen, Evald; Ahn, Joo Wook; Ogilvie, Caroline; Stefansson, Hreinn; Stefansson, Kari; O’Donovan, Michael C.; Owen, Michael J.; Bassett, Anne; Kirov, George

    2016-01-01

    Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally

  5. Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders.

    Directory of Open Access Journals (Sweden)

    Anthony R Isles

    2016-05-01

    Full Text Available Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS region have been associated with developmental delay (DD, autism spectrum disorder (ASD and schizophrenia (SZ. Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA, but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15 or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of

  6. Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders.

    Science.gov (United States)

    Isles, Anthony R; Ingason, Andrés; Lowther, Chelsea; Walters, James; Gawlick, Micha; Stöber, Gerald; Rees, Elliott; Martin, Joanna; Little, Rosie B; Potter, Harry; Georgieva, Lyudmila; Pizzo, Lucilla; Ozaki, Norio; Aleksic, Branko; Kushima, Itaru; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F; Gejman, Pablo V; Shi, Jianxin; Sanders, Alan R; Duan, Jubao; Willis, Joseph; Sisodiya, Sanjay; Costain, Gregory; Werge, Thomas M; Degenhardt, Franziska; Giegling, Ina; Rujescu, Dan; Hreidarsson, Stefan J; Saemundsen, Evald; Ahn, Joo Wook; Ogilvie, Caroline; Girirajan, Santhosh D; Stefansson, Hreinn; Stefansson, Kari; O'Donovan, Michael C; Owen, Michael J; Bassett, Anne; Kirov, George

    2016-05-01

    Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally

  7. A strategy for constructing aneuploid yeast strains by transient nondisjunction of a target chromosome

    Directory of Open Access Journals (Sweden)

    Peck Anders T

    2009-07-01

    Full Text Available Abstract Background Most methods for constructing aneuploid yeast strains that have gained a specific chromosome rely on spontaneous failures of cell division fidelity. In Saccharomyces cerevisiae, extra chromosomes can be obtained when errors in meiosis or mitosis lead to nondisjunction, or when nuclear breakdown occurs in heterokaryons. We describe a strategy for constructing N+1 disomes that does not require such spontaneous failures. The method combines two well-characterized genetic tools: a conditional centromere that transiently blocks disjunction of one specific chromosome, and a duplication marker assay that identifies disomes among daughter cells. To test the strategy, we targeted chromosomes III, IV, and VI for duplication. Results The centromere of each chromosome was replaced by a centromere that can be blocked by growth in galactose, and ura3::HIS3, a duplication marker. Transient exposure to galactose induced the appearance of colonies carrying duplicated markers for chromosomes III or IV, but not VI. Microarray-based comparative genomic hybridization (CGH confirmed that disomic strains carrying extra chromosome III or IV were generated. Chromosome VI contains several genes that are known to be deleterious when overexpressed, including the beta-tubulin gene TUB2. To test whether a tubulin stoichiometry imbalance is necessary for the apparent lethality caused by an extra chromosome VI, we supplied the parent strain with extra copies of the alpha-tubulin gene TUB1, then induced nondisjunction. Galactose-dependent chromosome VI disomes were produced, as revealed by CGH. Some chromosome VI disomes also carried extra, unselected copies of additional chromosomes. Conclusion This method causes efficient nondisjunction of a targeted chromosome and allows resulting disomic cells to be identified and maintained. We used the method to test the role of tubulin imbalance in the apparent lethality of disomic chromosome VI. Our results indicate

  8. Chromosomal phenotypes and submicroscopic abnormalities

    Directory of Open Access Journals (Sweden)

    Devriendt Koen

    2004-01-01

    Full Text Available Abstract The finding, during the last decade, that several common, clinically delineated syndromes are caused by submicroscopic deletions or, more rarely, by duplications, has provided a powerful tool in the annotation of the human genome. Since most microdeletion/microduplication syndromes are defined by a common deleted/duplicated region, abnormal dosage of genes located within these regions can explain the phenotypic similarities among individuals with a specific syndrome. As such, they provide a unique resource towards the genetic dissection of complex phenotypes such as congenital heart defects, mental and growth retardation and abnormal behaviour. In addition, the study of phenotypic differences in individuals with the same microdeletion syndrome may also become a treasury for the identification of modifying factors for complex phenotypes. The molecular analysis of these chromosomal anomalies has led to a growing understanding of their mechanisms of origin. Novel tools to uncover additional submicroscopic chromosomal anomalies at a higher resolution and higher speed, as well as the novel tools at hand for deciphering the modifying factors and epistatic interactors, are 'on the doorstep' and will, besides their obvious diagnostic role, play a pivotal role in the genetic dissection of complex phenotypes.

  9. Recurrent 70.8 Mb 4q22.2q32.3 duplication due to ovarian germinal mosaicism.

    Science.gov (United States)

    Tosca, Lucie; Brisset, Sophie; Petit, François M; Lecerf, Laure; Rousseau, Ghislaine; Bas, Cécile; Laroudie, Mireille; Maurin, Marie-Laure; Tapia, Sylvie; Picone, Olivier; Prevot, Sophie; Goossens, Michel; Labrune, Philippe; Tachdjian, Gérard

    2010-08-01

    A mosaicism is defined by the presence of two or more populations of cells with different genotypes in one individual. Chromosomal germinal mosaicism occurs in germ cells before the onset of meiosis. Previously, few studies have described germinal mosaicism. In this study, we report on two siblings who carried identical pure and direct interstitial 4q22.2q32.3 duplication. Procedure investigations included complete clinical description, conventional cytogenetic analysis, fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH) array experiments and microsatellite study searching for parental origin of the duplication. Microarray CGH and further FISH experiments with BAC clones showed the same 70.8 Mb direct duplication, dup(4)(q22.2q32.3). Molecular studies of the 4q duplication were consistent with maternal origin associated with mitotic or meiotic rearrangements. This structural chromosomal aberration was associated in both cases with increased nuchal translucency, growth retardation and dysmorphy. Cardiopathy and lung malformations were only evident in the first case. These clinical manifestations are similar to those previously reported in previous studies involving pure 4q trisomy of the same region, except for thumb and renal abnormalities that were not obvious in the presented cases. The amplified region included genes involved in neurological development (NEUROG2, MAB21L2, PCDH10/18 and GRIA2). The recurrent 4q duplication in these siblings is consistent with a maternal ovarian germinal mosaicism. This is the first description of germinal mosaicism for a large chromosomal duplication and highlights that genetic counselling for apparently de novo chromosome aberration should be undertaken with care.

  10. Assignment of Atlantic salmon (Salmo salar) Linkage Groups to Specific Chromosomes: Conservation of Large Syntenic Blocks Corresponding to Whole Chromosome Arms in Rainbow Trout (Oncorhynchus mykiss)

    OpenAIRE

    Phillips, Ruth; Keatley, Kimberly; Morasch, Matthew; Ventura, Abigail; Lubieniecki, Krzysztof; Koop, Ben; Danzmann, Roy; Davidson, William

    2009-01-01

    Background: Most teleost species, especially freshwater groups such as the Esocidae which are theclosest relatives of salmonids, have a karyotype comprising 25 pairs of acrocentric chromosomes and 48–52 chromosome arms. After the common ancestor of salmonids underwent a whole genome duplication,its karyotype would have 100 chromosome arms, and this is reflected in the modal range of 96–104 seenin extant salmonids (e.g., rainbow trout). The Atlantic salmon is an exception among the salmonids a...

  11. Duplicated Ižnternal Juguler Vein

    Directory of Open Access Journals (Sweden)

    Ahmet Kirbas

    2014-03-01

    Full Text Available    Duplicated internal juguler vein (DIJV is a rare anomaly and reported incidence is 0.4 % in the literature. A 45-year-old female patient was referred to our hospital because of non pulsatile neck swelling. The magnetic resonance image (MRI showed left IJVs divided at the angles of the mandible running anterior to the common carotid artery until anterior mediastinal level. Clinicians should be aware of the rare possibility of duplicated IJVs in patients presenting with neck swelling. The development of imaging technics have revealed more cases of duplicated internal juguler vein.

  12. MRI in congenital duplication of urethra

    International Nuclear Information System (INIS)

    Congenital urethral duplication is a rare anomaly, with less than 200 cases described in the literature. The investigations that are usually performed are micturating cystourethrography (MCU) and retrograde urethrography (RGU), which can diagnose the presence of duplication but cannot diagnose the precise relationship of the duplicated urethra with other pelvic structures. MRI, because of the excellent tissue contrast that it provides and its multiplanar ability, can demonstrate with precision, the size, shape and position of the two urethras. We describe below a case where MRI was able to show this exquisitely

  13. A Rare Interstitial Duplication of 8q22.1–8q24.3 Associated with Syndromic Bilateral Cleft Lip/Palate

    Directory of Open Access Journals (Sweden)

    Regina Ferreira Rezek

    2014-01-01

    Full Text Available We present a rare case of 8q interstitial duplication derived from maternal balanced translocations in a patient with bilateral cleft lip and palate in syndromic form associated with other congenital malformations. G-banding cytogenetic analysis revealed a chromosomal abnormality in the form of the karyotype 46,XX der(22t(8;22(q22.1;p11.1mat. Chromosome microarray analysis evidenced a 49 Mb duplicated segment of chromosome 8q with no pathogenic imbalances on chromosome 22. Two siblings also carry the balanced translocation. We have compared this case with other “pure” trisomies of 8q patients reported in the literature and with genome wide association studies recently published. This work highlights the involvement of chromosome 8q in orofacial clefts.

  14. Molecular mapping of the Edwards syndrome phenotype to two noncontiguous regions on chromosome 18

    Energy Technology Data Exchange (ETDEWEB)

    Boghosian-Sell, L.; Mewar, R.; Harrison, W.; Shapiro, R.M.; Zackai, E.H.; Carey, J.; Davis-Keppen, L.; Hudgins, L.; Overhauser, J.

    1994-09-01

    In an effort to identify regions on chromosome 18 that may be critical in the appearance of the Edwards syndrome phenotype, the authors have analyzed six patients with partial duplication of chromosome 18. Four of the patients have duplications involving the distal half of 18q (18q21.1-qter) and are very mildly affected. The remaining two patients have most of 18q (18q12.1-qter) duplicated, are severely affected, and have been diagnosed with Edwards syndrome. The authors have employed FISH, using DNA probes from a chromosome 18-specific library, for the precise determination of the duplicated material in each of these patients. The clinical features and the extent of the chromosomal duplication in these patients were compared with four previously reported partial trisomy 18 patients, to identify regions of chromosome 18 that may be responsible for certain clinical features of trisomy 18. The comparative analysis confirmed that there is no single region on 18q that is sufficient to produce the trisomy 18 phenotype and identified two regions on 18q that may work in conjunction to produce the Edwards syndrome phenotype. In addition, correlative analysis indicates that duplication of 18q12.3-q22.1 may be associated with more severe mental retardation in trisomy 18 individuals. 25 refs., 3 figs., 1 tab.

  15. Post-zygotic breakage of a dicentric chromosome results in mosaicism for a telocentric 9p marker chromosome in a boy with developmental delay.

    Science.gov (United States)

    Pedurupillay, C R J; Misceo, D; Gamage, T H; Dissanayake, V H W; Frengen, E

    2014-01-01

    Chromosomal rearrangements resulting in an inverted duplication and a terminal deletion (inv dup del) can occur due to three known mechanisms, two of them resulting in a normal copy region between the duplicated regions. These mechanisms involve the formation of a dicentric chromosome, which undergo breakage during cell division resulting in cells with either an inverted duplication and deletion or a terminal deletion. We describe a mosaic 3 year old patient with two cell lines carrying a chromosome 9p deletion where one of the cell lines contains an additional telocentric marker chromosome. Our patient is mosaic for the product of a double breakage of a dicentric chromosome including a centric fission. Mosaicism involving different rearrangements of the same chromosome is rare and suggests an early mitotic breakage event. Chr9p terminal deletions associated with duplications have previously been reported in 11 patients. We compare the clinical features of all 12 patients including the patient that we report here. To the best to our knowledge this is a first case reported where the double breakage occurred in the dicentric derivative chromosome 9.

  16. A critical assessment of cross-species detection of gene duplicates using comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Renn Suzy CP

    2010-05-01

    Full Text Available Abstract Background Comparison of genomic DNA among closely related strains or species is a powerful approach for identifying variation in evolutionary processes. One potent source of genomic variation is gene duplication, which is prevalent among individuals and species. Array comparative genomic hybridization (aCGH has been successfully utilized to detect this variation among lineages. Here, beyond the demonstration that gene duplicates among species can be quantified with aCGH, we consider the effect of sequence divergence on the ability to detect gene duplicates. Results Using the X chromosome genomic content difference between male D. melanogaster and female D. yakuba and D. simulans, we describe a decrease in the ability to accurately measure genomic content (copy number for orthologs that are only 90% identical. We demonstrate that genome characteristics (e.g. chromatin environment and non-orthologous sequence similarity can also affect the ability to accurately measure genomic content. We describe a normalization strategy and statistical criteria to be used for the identification of gene duplicates among any species group for which an array platform is available from a closely related species. Conclusions Array CGH can be used to effectively identify gene duplication and genome content; however, certain biases are present due to sequence divergence and other genome characteristics resulting from the divergence between lineages. Highly conserved gene duplicates will be more readily recovered by aCGH. Duplicates that have been retained for a selective advantage due to directional selection acting on many loci in one or both gene copies are likely to be under-represented. The results of this study should inform the interpretation of both previously published and future work that employs this powerful technique.

  17. Cell division control by the Chromosomal Passenger Complex

    Energy Technology Data Exchange (ETDEWEB)

    Waal, Maike S. van der; Hengeveld, Rutger C.C.; Horst, Armando van der; Lens, Susanne M.A., E-mail: s.m.a.lens@umcutrecht.nl

    2012-07-15

    The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.

  18. Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes.

    Directory of Open Access Journals (Sweden)

    Vincent J Lynch

    2009-01-01

    Full Text Available While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion--such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these--is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox "paralogon" and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.

  19. 10 CFR 9.35 - Duplication fees.

    Science.gov (United States)

    2010-01-01

    ... § 9.21 at the NRC Public Document Room (PDR), One White Flint North, 11555 Rockville Pike, Room O-1F23.... (iv) Microfiche card duplication is $5.00 per card; CD-ROM duplication is $10.00 each. (v) The charges... copying of ADAMS documents to CD-ROM is $5.00 per CD plus $0.15 per page. (C) CD-ROM-to-paper...

  20. Title Based Duplicate Detection of Web Documents

    OpenAIRE

    Kiruthika, M.; Mrs. Smita Dange; Sandhya, P

    2012-01-01

    In recent times, the concept of web crawling has received remarkable significance owing to extreme development of the World Wide Web. Very large amounts of web documents are swarming the web making the search engines less appropriate to the users. Among the vast number of web documents are many duplicates and near duplicates i.e. variants derived from the same original web document due to which additional overheads are created for search engines by which their performance and quality is signi...

  1. Structural variation of chromosomes in autism spectrum disorder

    NARCIS (Netherlands)

    Marshall, Christian R.; Noor, Abdul; Vincent, John B.; Lionel, Anath C.; Feuk, Lars; Skaug, Jennifer; Shago, Mary; Moessner, Rainald; Pinto, Dalila; Ren, Yan; Thiruvahindrapduram, Bhoorna; Fiebig, Andreas; Schreiber, Stefan; Friedman, Jan; Ketelaars, Cees E. J.; Vos, Yvonne J.; Ficicioglu, Can; Kirkpatrick, Susan; Nicolson, Rob; Sloman, Leon; Surnmers, Anne; Gibbons, Clare A.; Teebi, Ahmad; Chitayat, David; Weksberg, Rosanna; Thompson, Ann; Vardy, Cathy; Crosbie, Vicki; Luscombe, Sandra; Baatjes, Rebecca; Zwaigenbaum, Lonnie; Roberts, Wendy; Fernandez, Bridget; Szatmari, Peter; Scherer, Stephen W.

    2008-01-01

    Structural variation (copy number variation [CNV] including deletion and duplication, translocation, inversion) of chromosomes has been identified in some individuals with autism spectrum disorder (ASD), but the full etiologic role is unknown. We performed genome-wide assessment for structural abnor

  2. Novel gene acquisition on carnivore Y chromosomes.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced. We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority.

  3. Case report of individual with cutaneous immunodeficiency and novel 1p36 duplication

    Directory of Open Access Journals (Sweden)

    Hatter AD

    2016-01-01

    Full Text Available Alyn D Hatter,1 David C Soler,2,3 Christine Curtis,4 Kevin D Cooper,1,2,3,5 Thomas S McCormick,2,31University Hospitals Case Medical Center, 2Department of Dermatology, 3The Murdough Family Center for Psoriasis, Case Western Reserve University, 4Cleveland Department of Pathology and Center for Human Genetics Laboratory, 5VA Medical Center, Cleveland, OH, USAIntroduction: Crusted or Norwegian scabies is an infectious skin dermatopathology usually associated with an underlying immunodeficiency condition. It is caused when the mite Sarcoptes scabiei infects the skin, and the immune system is unable to control its spread, leading to a massive hyperinfestation with a simultaneous inflammatory and hyperkeratotic reaction. This is the first report of a novel 1p36 duplication associated with a recurrent infection of crusted scabies.Case report: We describe a 34-year-old patient with a cutaneous immunodeficiency characterized by recurrent crusted scabies infestation, diffuse tinea, and recurrent staphylococcal cellulitis, who we suspected had an undiagnosed syndrome. The patient also suffered from mental retardation, renal failure, and premature senescence. A cytogenetic fluorescence in situ hybridization analysis revealed a 9.34 Mb duplication within the short (p arm of chromosome 1, precisely from 1p36.11 to 1p36.21, with an adjacent 193 kb copy gain entirely within 1p36.11. In addition, chromosome 4 had a 906 kb gain in 4p16.1 and chromosome 9 had a 81 kb copy gain in 9p24.3. Over 100 genes localized within these duplicated regions. Gene expression array revealed 82 genes whose expression changed >1.5-fold compared to a healthy age-matched skin control, but among them only the lipolytic enzyme arylacetamide deacetylase-like 3 was found within the duplicated 1p36 region of chromosome 1.Discussion: Although genetic duplications in the 1p36 region have been previously described, our report describes a novel duplicative variant within the 1p36 region. The

  4. Chromosome Microarray.

    Science.gov (United States)

    Anderson, Sharon

    2016-01-01

    Over the last half century, knowledge about genetics, genetic testing, and its complexity has flourished. Completion of the Human Genome Project provided a foundation upon which the accuracy of genetics, genomics, and integration of bioinformatics knowledge and testing has grown exponentially. What is lagging, however, are efforts to reach and engage nurses about this rapidly changing field. The purpose of this article is to familiarize nurses with several frequently ordered genetic tests including chromosomes and fluorescence in situ hybridization followed by a comprehensive review of chromosome microarray. It shares the complexity of microarray including how testing is performed and results analyzed. A case report demonstrates how this technology is applied in clinical practice and reveals benefits and limitations of this scientific and bioinformatics genetic technology. Clinical implications for maternal-child nurses across practice levels are discussed. PMID:27276104

  5. The DNA sequence of human chromosome 7.

    Science.gov (United States)

    Hillier, Ladeana W; Fulton, Robert S; Fulton, Lucinda A; Graves, Tina A; Pepin, Kymberlie H; Wagner-McPherson, Caryn; Layman, Dan; Maas, Jason; Jaeger, Sara; Walker, Rebecca; Wylie, Kristine; Sekhon, Mandeep; Becker, Michael C; O'Laughlin, Michelle D; Schaller, Mark E; Fewell, Ginger A; Delehaunty, Kimberly D; Miner, Tracie L; Nash, William E; Cordes, Matt; Du, Hui; Sun, Hui; Edwards, Jennifer; Bradshaw-Cordum, Holland; Ali, Johar; Andrews, Stephanie; Isak, Amber; Vanbrunt, Andrew; Nguyen, Christine; Du, Feiyu; Lamar, Betty; Courtney, Laura; Kalicki, Joelle; Ozersky, Philip; Bielicki, Lauren; Scott, Kelsi; Holmes, Andrea; Harkins, Richard; Harris, Anthony; Strong, Cynthia Madsen; Hou, Shunfang; Tomlinson, Chad; Dauphin-Kohlberg, Sara; Kozlowicz-Reilly, Amy; Leonard, Shawn; Rohlfing, Theresa; Rock, Susan M; Tin-Wollam, Aye-Mon; Abbott, Amanda; Minx, Patrick; Maupin, Rachel; Strowmatt, Catrina; Latreille, Phil; Miller, Nancy; Johnson, Doug; Murray, Jennifer; Woessner, Jeffrey P; Wendl, Michael C; Yang, Shiaw-Pyng; Schultz, Brian R; Wallis, John W; Spieth, John; Bieri, Tamberlyn A; Nelson, Joanne O; Berkowicz, Nicolas; Wohldmann, Patricia E; Cook, Lisa L; Hickenbotham, Matthew T; Eldred, James; Williams, Donald; Bedell, Joseph A; Mardis, Elaine R; Clifton, Sandra W; Chissoe, Stephanie L; Marra, Marco A; Raymond, Christopher; Haugen, Eric; Gillett, Will; Zhou, Yang; James, Rose; Phelps, Karen; Iadanoto, Shawn; Bubb, Kerry; Simms, Elizabeth; Levy, Ruth; Clendenning, James; Kaul, Rajinder; Kent, W James; Furey, Terrence S; Baertsch, Robert A; Brent, Michael R; Keibler, Evan; Flicek, Paul; Bork, Peer; Suyama, Mikita; Bailey, Jeffrey A; Portnoy, Matthew E; Torrents, David; Chinwalla, Asif T; Gish, Warren R; Eddy, Sean R; McPherson, John D; Olson, Maynard V; Eichler, Evan E; Green, Eric D; Waterston, Robert H; Wilson, Richard K

    2003-07-10

    Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame. PMID:12853948

  6. Small supernumerary marker chromosomes (sSMC in humans; are there B chromosomes hidden among them

    Directory of Open Access Journals (Sweden)

    Ogilvie Caroline

    2008-06-01

    Full Text Available Abstract Background Small supernumerary marker chromosomes (sSMC and B-chromosomes represent a heterogeneous collection of chromosomes added to the typical karyotype, and which are both small in size. They may consist of heterochromatic and/or euchromatic material. Also a predominance of maternal transmission was reported for both groups. Even though sSMC and B-chromosomes show some similarity it is still an open question if B-chromosomes are present among the heterogeneous group of sSMC. According to current theories, sSMC would need drive, drift or beneficial effects to increase in frequency in order to become B chromosome. However, up to now no B-chromosomes were described in human. Results Here we provide first evidence and discuss, that among sSMC B-chromosomes might be hidden. We present two potential candidates which may already be, or may in future evolve into B chromosomes in human: (i sSMC cases where the marker is stainable only by DNA derived from itself; and (ii acrocentric-derived inverted duplication sSMC without associated clinical phenotype. Here we report on the second sSMC stainable exclusively by its own DNA and show that for acrocentric derived sSMC 3.9× more are familial cases than reported for other sSMC. Conclusion The majority of sSMC are not to be considered as B-chromosomes. Nonetheless, a minority of sSMC show similarities to B-chromosomes. Further studies are necessary to come to final conclusions for that problem.

  7. Non-radioactive detection of 17p11.2 duplication in CMT1A: a study of 78 patients.

    OpenAIRE

    Schiavon, F; Mostacciuolo, M. L.; Saad, F.; Merlini, L.; Siciliano, G; Angelini, C.; Danieli, G A

    1994-01-01

    Charcot-Marie-Tooth disease type 1 (CMT1) is a peripheral neuropathy characterised by progressive distal muscular atrophy and sensory loss with markedly decreased nerve conduction velocity, mostly inherited as an autosomal dominant trait. The most common form, type 1A, is associated with a 1.5Mb DNA duplication in region p11.2-p12 of chromosome 17 in many patients. In this study a non-radioactive test for detection of the CMT1A duplication based on an RM11-GT microsatellite polymorphism is pr...

  8. A conserved segmental duplication within ELA.

    Science.gov (United States)

    Brinkmeyer-Langford, C L; Murphy, W J; Childers, C P; Skow, L C

    2010-12-01

    The assembled genomic sequence of the horse major histocompatibility complex (MHC) (equine lymphocyte antigen, ELA) is very similar to the homologous human HLA, with the notable exception of a large segmental duplication at the boundary of ELA class I and class III that is absent in HLA. The segmental duplication consists of a ∼ 710 kb region of at least 11 repeated blocks: 10 blocks each contain an MHC class I-like sequence and the helicase domain portion of a BAT1-like sequence, and the remaining unit contains the full-length BAT1 gene. Similar genomic features were found in other Perissodactyls, indicating an ancient origin, which is consistent with phylogenetic analyses. Reverse-transcriptase PCR (RT-PCR) of mRNA from peripheral white blood cells of healthy and chronically or acutely infected horses detected transcription from predicted open reading frames in several of the duplicated blocks. This duplication is not present in the sequenced MHCs of most other mammals, although a similar feature at the same relative position is present in the feline MHC (FLA). Striking sequence conservation throughout Perissodactyl evolution is consistent with a functional role for at least some of the genes included within this segmental duplication.

  9. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family

    Directory of Open Access Journals (Sweden)

    Bowerman Bruce

    2009-08-01

    Full Text Available Abstract Background GATA transcription factors influence many developmental processes, including the specification of embryonic germ layers. The GATA gene family has significantly expanded in many animal lineages: whereas diverse cnidarians have only one GATA transcription factor, six GATA genes have been identified in many vertebrates, five in many insects, and eleven to thirteen in Caenorhabditis nematodes. All bilaterian animal genomes have at least one member each of two classes, GATA123 and GATA456. Results We have identified one GATA123 gene and one GATA456 gene from the genomic sequence of two invertebrate deuterostomes, a cephalochordate (Branchiostoma floridae and a hemichordate (Saccoglossus kowalevskii. We also have confirmed the presence of six GATA genes in all vertebrate genomes, as well as additional GATA genes in teleost fish. Analyses of conserved sequence motifs and of changes to the exon-intron structure, and molecular phylogenetic analyses of these deuterostome GATA genes support their origin from two ancestral deuterostome genes, one GATA 123 and one GATA456. Comparison of the conserved genomic organization across vertebrates identified eighteen paralogous gene families linked to multiple vertebrate GATA genes (GATA paralogons, providing the strongest evidence yet for expansion of vertebrate GATA gene families via genome duplication events. Conclusion From our analysis, we infer the evolutionary birth order and relationships among vertebrate GATA transcription factors, and define their expansion via multiple rounds of whole genome duplication events. As the genomes of four independent invertebrate deuterostome lineages contain single copy GATA123 and GATA456 genes, we infer that the 0R (pre-genome duplication invertebrate deuterostome ancestor also had two GATA genes, one of each class. Synteny analyses identify duplications of paralogous chromosomal regions (paralogons, from single ancestral vertebrate GATA123 and GATA456

  10. MLPA analysis for a panel of syndromes with mental retardation reveals imbalances in 5.8% of patients with mental retardation and dysmorphic features, including duplications of the Sotos syndrome and Williams-Beuren syndrome regions

    DEFF Research Database (Denmark)

    Kirchhoff, Maria; Bisgaard, Anne-Marie; Bryndorf, Thue;

    2007-01-01

    -Beuren, Prader-Willi, Angelman, Miller-Dieker, Smith-Magenis, and 22q11-deletion syndromes). Patients were initially referred for HR-CGH analysis and MRS-MLPA was performed retrospectively. MRS-MLPA analysis revealed imbalances in 15/258 patients (5.8%). Ten deletions were identified, including deletions of 1p36...

  11. Copy number variants and rasopathies: germline KRAS duplication in a patient with syndrome including pigmentation abnormalities.

    Science.gov (United States)

    Gilbert-Dussardier, Brigitte; Briand-Suleau, Audrey; Laurendeau, Ingrid; Bilan, Frédéric; Cavé, Hélène; Verloes, Alain; Vidaud, Michel; Vidaud, Dominique; Pasmant, Eric

    2016-01-01

    RAS/MAPK pathway germline mutations were described in Rasopathies, a class of rare genetic syndromes combining facial abnormalities, heart defects, short stature, skin and genital abnormalities, and mental retardation. The majority of the mutations identified in the Rasopathies are point mutations which increase RAS/MAPK pathway signaling. Duplications encompassing RAS/MAPK pathway genes (PTPN11, RAF1, MEK2, or SHOC2) were more rarely described. Here we report, a syndromic familial case of a 12p duplication encompassing the dosage sensitive gene KRAS, whose phenotype overlapped with rasopathies. The patient was referred because of a history of mild learning disabilities, small size, facial dysmorphy, and pigmentation abnormalities (café-au-lait and achromic spots, and axillar lentigines). This phenotype was reminiscent of rasopathies. No mutation was identified in the most common genes associated with Noonan, cardio-facio-cutaneous, Legius, and Costello syndromes, as well as neurofibromatosis type 1. The patient constitutional DNA exhibited a ~10.5 Mb duplication at 12p, including the KRAS gene. The index case's mother carried the same chromosome abnormality and also showed development delay with short stature, and numerous café-au-lait spots. Duplication of the KRAS gene may participate in the propositus phenotype, in particular of the specific pigmentation abnormalities. Array-CGH or some other assessment of gene/exon CNVs of RAS/MAPK pathway genes should be considered in the evaluation of individuals with rasopathies. PMID:27450488

  12. Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication.

    Science.gov (United States)

    Atkinson, John; Gupta, Milind K; Rudolph, Christian J; Bell, Hazel; Lloyd, Robert G; McGlynn, Peter

    2011-02-01

    Genome duplication requires accessory helicases to displace proteins ahead of advancing replication forks. Escherichia coli contains three helicases, Rep, UvrD and DinG, that might promote replication of protein-bound DNA. One of these helicases, Rep, also interacts with the replicative helicase DnaB. We demonstrate that Rep is the only putative accessory helicase whose absence results in an increased chromosome duplication time. We show also that the interaction between Rep and DnaB is required for Rep to maintain rapid genome duplication. Furthermore, this Rep-DnaB interaction is critical in minimizing the need for both recombinational processing of blocked replication forks and replisome reassembly, indicating that colocalization of Rep and DnaB minimizes stalling and subsequent inactivation of replication forks. These data indicate that E. coli contains only one helicase that acts as an accessory motor at the fork in wild-type cells, that such an activity is critical for the maintenance of rapid genome duplication and that colocalization with the replisome is crucial for this function. Given that the only other characterized accessory motor, Saccharomyces cerevisiae Rrm3p, associates physically with the replisome, our demonstration of the functional importance of such an association indicates that colocalization may be a conserved feature of accessory replicative motors. PMID:20923786

  13. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes

    Directory of Open Access Journals (Sweden)

    Yu Jane-Fang

    2008-03-01

    Full Text Available Abstract Background The Azoospermia Factor c (AZFc region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates. Results The Old World monkey rhesus macaque has only one DAZ gene. In contrast, the great apes have multiple copies of DAZ, ranging from 2 copies in bonobos and gorillas to at least 6 copies in orangutans, and these DAZ genes have polymorphic structures similar to those of their human counterparts. Sequences homologous to the various AZFc amplicons are present on the Y chromosomes of some but not all primates, indicating that they arrived on the Y chromosome at different times during primate evolution. Conclusion The duplication and transposition of AZFc amplicons to the human Y chromosome occurred in three waves, i.e., after the branching of the New World monkey, the gorilla, and the chimpanzee/bonobo lineages, respectively. The red-amplicon, one of the first to arrive on the Y chromosome, amplified by inverted duplication followed by direct duplication after the separation of the Old World monkey and the great ape lineages. Subsequent duplication/deletion in the various lineages gave rise to a spectrum of DAZ gene structure and copy number found in today's great apes.

  14. Entropy-driven spatial organization of highly confined polymers: Lessons for the bacterial chromosome

    Science.gov (United States)

    Jun, Suckjoon; Mulder, Bela

    2006-08-01

    Despite recent progress in visualization experiments, the mechanism underlying chromosome segregation in bacteria still remains elusive. Here we address a basic physical issue associated with bacterial chromosome segregation, namely the spatial organization of highly confined, self-avoiding polymers (of nontrivial topology) in a rod-shaped cell-like geometry. Through computer simulations, we present evidence that, under strong confinement conditions, topologically distinct domains of a polymer complex effectively repel each other to maximize their conformational entropy, suggesting that duplicated circular chromosomes could partition spontaneously. This mechanism not only is able to account for the spatial separation per se but also captures the major features of the spatiotemporal organization of the duplicating chromosomes observed in Escherichia coli and Caulobacter crescentus. bacterial chromosome segregation | Caulobacter crescentus | Escherichia coli | polymer physics

  15. Gastric Duplication Cyst Causing Gastric Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Muna Al Shehi

    2012-07-01

    Full Text Available This is a case report of a newborn baby with gastric duplication cyst presented with non-bilious vomiting and upper abdominal distension. The diagnosis was suspected clinically and established by ultrasonography and computed tomography. The cyst was completely excised with uneventful recovery.

  16. Metabolic Adaptation after Whole Genome Duplication

    NARCIS (Netherlands)

    Hoek, M.J.A. van; Hogeweg, P.

    2009-01-01

    Whole genome duplications (WGDs) have been hypothesized to be responsible for major transitions in evolution. However, the effects of WGD and subsequent gene loss on cellular behavior and metabolism are still poorly understood. Here we develop a genome scale evolutionary model to study the dynamics

  17. Organising European technical documentation to avoid duplication.

    Science.gov (United States)

    Donawa, Maria

    2006-04-01

    The development of comprehensive accurate and well-organised technical documentation that demonstrates compliance with regulatory requirements is a resource-intensive, but critically important activity for medical device manufacturers. This article discusses guidance documents and method of organising technical documentation that may help avoid costly and time-consuming duplication. PMID:16736662

  18. Incomplete urethral duplication in an adult male.

    LENUS (Irish Health Repository)

    Davis, N F

    2012-09-01

    Urethral duplication is a rare congenital anomaly with less than 200 cases reported. It predominantly occurs in males and is nearly always diagnosed in childhood or adolescence. It is defined as a complete second passage from the bladder to the dorsum of the penis or as an accessory pathway that ends blindly on the dorsal or ventral surface.

  19. Decomposition of Parallel Copies with Duplication

    Directory of Open Access Journals (Sweden)

    G. N. Purohit

    2012-05-01

    Full Text Available SSA form is becoming more popular in the context of JIT compilation since it allows the compiler to perform important optimizations like common sub-expression elimination or constant propagation without the drawbacks of keeping huge data structures in memory or requiring a lot of computing power. The recent approach of SSA-based register allocation performs SSA elimination after register allocation. F. Bouchez et al. proposed parallel copy motion to prevent the splitting of edges when going out of colored SSA by moving the code that should be assigned to the edges to a more convenient place. Duplications in parallel copies pose some problems when moving them. In this paper an approach has been developed to decompose parallel copies so that duplications can be handled separately and parallel copies can be easily moved away without duplication. A simple and elegant application is moving duplicated copies out of critical edges. This is often beneficial compared to the alternative splitting the edge.

  20. Clinical, cytogenetic and molecular-cytogenetic characterization of a patient with a de novo tandem proximal-intermediate duplication of 16q and review of the literature.

    Science.gov (United States)

    Lonardo, Fortunato; Perone, Lucia; Maioli, Marianna; Ciavarella, Maria; Ciccone, Roberto; Monica, Matteo Della; Lombardi, Cinzia; Forino, Luisa; Cantalupo, Giuseppina; Masella, Lucia; Scarano, Francesca

    2011-04-01

    Partial trisomy 16 is rare and most of the reported cases are secondary to chromosome rearrangements resulting in concurrent monosomies or trisomies of a second chromosome. Only a few patients survive the neonatal period and the duplication of the long arm seems to be mainly responsible for the prenatal lethality of the full trisomy 16. The reported patients with a partial 16q trisomy have a wide spectrum of congenital anomalies that include dysmorphic features, central nervous system malformations, failure to thrive, and club feet. The patients with duplications of proximal 16q frequently have short stature, developmental delay, speech delay, learning difficulties, and mild to severe behavioral problems. Here we describe a patient with an inverted de novo tandem duplication of 16q with breakpoints evaluated in detail by molecular-cytogenetic techniques. Main clinical features include postural, motor and speech delay with severe learning difficulties and behavioral problems, obesity, microcephaly, and mild dysmorphic features. In the report we attempt to classify the few reported patients with pure partial duplications of 16q in more narrow and homogeneous groups: proximal, proximal-intermediate, intermediate, and intermediate-distal duplications. Moreover, we emphasize the importance of proper cytogenetic investigation and complete molecular cytogenetic refinement in all cases with a suspected chromosomal anomaly. PMID:21416588

  1. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene

    Science.gov (United States)

    Sullivan, Lori S.; Wheaton, Dianna K.; Locke, Kirsten G.; Jones, Kaylie D.; Koboldt, Daniel C.; Fulton, Robert S.; Wilson, Richard K.; Blanton, Susan H.; Birch, David G.; Daiger, Stephen P.

    2016-01-01

    Purpose To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). Methods A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. Results Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13. The duplication creates a partial copy of CCNC and a complete copy of PRDM13. The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. Conclusions The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1

  2. Duplication and relocation of the functional DPY19L2 gene within low copy repeats

    Directory of Open Access Journals (Sweden)

    Cheung Joseph

    2006-03-01

    Full Text Available Abstract Background Low copy repeats (LCRs are thought to play an important role in recent gene evolution, especially when they facilitate gene duplications. Duplicate genes are fundamental to adaptive evolution, providing substrates for the development of new or shared gene functions. Moreover, silencing of duplicate genes can have an indirect effect on adaptive evolution by causing genomic relocation of functional genes. These changes are theorized to have been a major factor in speciation. Results Here we present a novel example showing functional gene relocation within a LCR. We characterize the genomic structure and gene content of eight related LCRs on human Chromosomes 7 and 12. Two members of a novel transmembrane gene family, DPY19L, were identified in these regions, along with six transcribed pseudogenes. One of these genes, DPY19L2, is found on Chromosome 12 and is not syntenic with its mouse orthologue. Instead, the human locus syntenic to mouse Dpy19l2 contains a pseudogene, DPY19L2P1. This indicates that the ancestral copy of this gene has been silenced, while the descendant copy has remained active. Thus, the functional copy of this gene has been relocated to a new genomic locus. We then describe the expansion and evolution of the DPY19L gene family from a single gene found in invertebrate animals. Ancient duplications have led to multiple homologues in different lineages, with three in fish, frogs and birds and four in mammals. Conclusion Our results show that the DPY19L family has expanded throughout the vertebrate lineage and has undergone recent primate-specific evolution within LCRs.

  3. Local duplication of gonadotropin-releasing hormone (GnRH receptor before two rounds of whole genome duplication and origin of the mammalian GnRH receptor.

    Directory of Open Access Journals (Sweden)

    Fatemeh Ameri Sefideh

    Full Text Available Gonadotropin-releasing hormone (GnRH and the GnRH receptor (GnRHR play an important role in vertebrate reproduction. Although many GnRHR genes have been identified in a large variety of vertebrate species, the evolutionary history of GnRHR in vertebrates is unclear. To trace the evolutionary origin of GnRHR we examined the conserved synteny of chromosomes harboring GnRHR genes and matched the genes to linkage groups of reconstructed vertebrate ancestor chromosomes. Consistent with the phylogenetic tree, three pairs of GnRHR subtypes were identified in three paralogous linkage groups, indicating that an ancestral pair emerged through local duplication before two rounds of whole genome duplication (2R. The 2R then led to the generation of six subtypes of GnRHR. Some subtypes were lost during vertebrate evolution after the divergence of teleosts and tetrapods. One subtype includes mammalian GnRHR and a coelacanth GnRHR that showed the greatest response to GnRH1 among the three types of GnRH. This study provides new insight into the evolutionary relationship of vertebrate GnRHRs.

  4. De novo partial duplication 7(q11.2{r_arrow}q21.2) in a dysmorphic, developmentally retarded boy

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M.; Pinsky, L.; Teebi, A. [McGill Univ., Quebec (Canada)] [and others

    1994-09-01

    Chromosomal abnormalities involving chromosome 7q are rare; we report a case of partial duplication 7q. The propositus was born at 34 weeks by cesarian section, decided because of oligohydramnios, severe intrauterine growth retardation and fetal immobility. At birth, the baby was under the 5th percentile for height, weight and head circumference and had dysmorphic features, including slight asymmetry of the face, bilateral epicanthus, hypoplastic nasal bridge, short globular nose, asymmetrical dysplastic ears, fifth finger clinodactyly, short second and fifth toe. Ultrasound examination showed atrial and ventricular septal defects. At 18 months, the child had a fracture of the femur, secondary to a minor trauma; skeletal X-rays showed generalized osteoporosis and normal healing. The karyotype with GTG-banding showed a de novo partial duplication of the long arm of chromosome 7 (46,XX,dup(7)(q11.23{r_arrow}q21.2)). Fluorescence in situ hybridization with a painting probe specific for chromosome 7 confirmed the intra-chromosomal rearrangement. The patient`s phenotype and his chromosomal abnormality do not match the previously reported cases of partial trisomy 7q. This case confirms the importance of FISH for the delineation of the chromosomal inbalance in structural chromosomal aberrations.

  5. Our experience with unusual gastrointestinal tract duplications in infants

    Directory of Open Access Journals (Sweden)

    Bilal Mirza

    2014-01-01

    Full Text Available Background: Classical duplications may present along any part of gastrointestinal tract (GIT from mouth to anus. Atypical or unusual rare varieties of GIT duplications may also occur, but with different anatomical features. Materials and Methods: We reviewed our 5-year record (February 2008-January 2013 to describe clinical profile of unusual GIT duplications in neonates and small infants. Results: Three patients with atypical variety of GIT duplications were managed in our department during this tenure. Two were females and one male. Age was ranged between 11 days and 2 months. All patients presented with massive abdominal distension causing respiratory embarrassment in two of them. In all patients, the pre-operative differential diagnoses also included GIT duplication cysts. Computerized tomography (CT scan showed single huge cyst in one and multiple cysts in two patients. In one patient the CT scan also depicted a thoracic cyst in relation to posterior mediastinum. At operation, one patient had colonic tubular duplication cyst along with another isolated duplication cyst, the second case had a tubular duplication cyst of ileum with its segmental dilatation, and in the third case two isolated duplications were found. Duplication cysts were excised along with mucosal stripping in one patient, cyst excision and intestinal resection and anastomosis in one patient, and only cysts excision in one. All patients did well post-operatively. Conclusion: We presented unusual GIT duplications. These duplications are managed on similar lines as classical duplications with good prognosis when dealt early.

  6. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates.

    Directory of Open Access Journals (Sweden)

    Görel Sundström

    Full Text Available BACKGROUND: The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R before the origin of jawed vertebrates formed the receptor family. METHODOLOGY/PRINCIPAL FINDINGS: Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. CONCLUSIONS/SIGNIFICANCE: The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution.

  7. Characterization of duplicated Dunaliella viridis SPT1 genes provides insights into early gene divergence after duplication.

    Science.gov (United States)

    Guan, Zhenwei; Meng, Xiangzong; Sun, Zhenhua; Xu, Zhengkai; Song, Rentao

    2008-10-15

    The sodium-dependent phosphate transporter gene from unicellular green algae Dunaliella viridis, DvSPT1, shares similarity with members of Pi transporter family. Sequencing analysis of D. viridis BAC clone containing the DvSPT1 gene revealed two inverted duplicated copies of this gene (DvSPT1 and DvSPT1-2 respectively). The duplication covered most of both genes except for their 3' downstream region. The duplicated genomic sequences exhibited 97.9% identity with a synonymous divergence of Ks=0.0126 in the coding region. This data indicated very recent gene duplication in D. viridis genome, providing an excellent opportunity to investigate sequence and expression divergence of duplicated genes at an early stage. Scattered point mutations and length polymorphism of simple sequence repeats (SSRs) were predominant among the sequence divergence soon after gene duplication. Due to sequence divergence in the 5' regulatory regions and a swap of the entire 3' downstream regions (3'-UTR), DvSPT1 and DvSPT1-2 showed expression divergence in response to extra-cellular NaCl concentration changes. According to their expression patterns, the two diverged gene copies would provide better adaptation to a broader range of extra-cellular NaCl concentration. Furthermore, Southern blot analysis indicated that there might be a large phosphate transporter gene family in D. viridis. PMID:18662752

  8. Molecular analyses of unrelated Charcot-Marie-Tooth (CMT) disease patients suggest a high frequency of the CMTIA duplication.

    OpenAIRE

    Wise, C A; GARCIA, C. A.; Davis, S.N.; Heju, Z; Pentao, L; Patel, P.I.; Lupski, J.R.

    1993-01-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. One form of CMT, CMT type 1A, is characterized by uniformly decreased nerve conduction velocities, usually shows autosomal dominant inheritance, and is associated with a large submicroscopic duplication of the p11.2-p12 region of chromosome 17. A cohort of 75 unrelated patients diagnosed clinically with CMT and evaluated by electrophysiological methods were analyzed molecularly for the presence of the CMT1A ...

  9. A Cascade of Complex Subtelomeric Duplications during the Evolution of the Hominoid and Old World Monkey Genomes

    OpenAIRE

    van Geel, Michel; Eichler, Evan E.; Beck, Amy F; Shan, Zhihong; Haaf, Thomas; van der Maarel, Silvère M.; Frants, Rune R; de Jong, Pieter J.

    2001-01-01

    Subtelomeric duplications of an obscure tubulin “genic” segment located near the telomere of human chromosome 4q35 have occurred at different evolutionary time points within the last 25 million years of the catarrhine (i.e., hominoid and Old World monkey) evolution. The analyses of these segments reported here indicate an exceptional level of evolutionary instability. Substantial intra- and interspecific differences in copy number and distribution are observed among cercopithecoid (Old World ...

  10. Presentation and Surgical Management of Duodenal Duplication in Adults

    Directory of Open Access Journals (Sweden)

    Caroline C. Jadlowiec

    2015-01-01

    Full Text Available Duodenal duplications in adults are exceedingly rare and their diagnosis remains difficult as symptoms are largely nonspecific. Clinical presentations include pancreatitis, biliary obstruction, gastrointestinal bleeding from ectopic gastric mucosa, and malignancy. A case of duodenal duplication in a 59-year-old female is presented, and her treatment course is reviewed with description of combined surgical and endoscopic approach to repair, along with a review of historic and current recommendations for management. Traditionally, gastrointestinal duplications have been treated with surgical resection; however, for duodenal duplications, the anatomic proximity to the biliopancreatic ampulla makes surgical management challenging. Recently, advances in endoscopy have improved the clinical success of cystic intraluminal duodenal duplications. Despite these advances, surgical resection is still recommended for extraluminal tubular duplications although combined techniques may be necessary for long tubular duplications. For duodenal duplications, a combined approach of partial excision combined with mucosal stripping may offer advantage.

  11. Independent recombination events between the duplicated human alpha globin genes; implications for their concerted evolution.

    OpenAIRE

    Higgs, D R; Hill, A V; Bowden, D K; Weatherall, D. J.; Clegg, J B

    1984-01-01

    We have examined the molecular structure of the human alpha globin gene complex from individuals with a common form of alpha thalassaemia in which one of the duplicated pair of alpha genes (alpha alpha) has been deleted (-alpha 3-7). Restriction mapping and DNA sequence analysis of the mutants indicate that different -alpha 3.7 chromosomes are the result of at least three independent events. In each case the genetic crossover has occurred within a region of complete homology between the alpha...

  12. X-linked congenital ptosis and associated intellectual disability, short stature, microcephaly, cleft palate, digital and genital abnormalities define novel Xq25q26 duplication syndrome.

    Science.gov (United States)

    Møller, R S; Jensen, L R; Maas, S M; Filmus, J; Capurro, M; Hansen, C; Marcelis, C L M; Ravn, K; Andrieux, J; Mathieu, M; Kirchhoff, M; Rødningen, O K; de Leeuw, N; Yntema, H G; Froyen, G; Vandewalle, J; Ballon, K; Klopocki, E; Joss, S; Tolmie, J; Knegt, A C; Lund, A M; Hjalgrim, H; Kuss, A W; Tommerup, N; Ullmann, R; de Brouwer, A P M; Strømme, P; Kjaergaard, S; Tümer, Z; Kleefstra, T

    2014-05-01

    Submicroscopic duplications along the long arm of the X-chromosome with known phenotypic consequences are relatively rare events. The clinical features resulting from such duplications are various, though they often include intellectual disability, microcephaly, short stature, hypotonia, hypogonadism and feeding difficulties. Female carriers are often phenotypically normal or show a similar but milder phenotype, as in most cases the X-chromosome harbouring the duplication is subject to inactivation. Xq28, which includes MECP2 is the major locus for submicroscopic X-chromosome duplications, whereas duplications in Xq25 and Xq26 have been reported in only a few cases. Using genome-wide array platforms we identified overlapping interstitial Xq25q26 duplications ranging from 0.2 to 4.76 Mb in eight unrelated families with in total five affected males and seven affected females. All affected males shared a common phenotype with intrauterine- and postnatal growth retardation and feeding difficulties in childhood. Three had microcephaly and two out of five suffered from epilepsy. In addition, three males had a distinct facial appearance with congenital bilateral ptosis and large protruding ears and two of them showed a cleft palate. The affected females had various clinical symptoms similar to that of the males with congenital bilateral ptosis in three families as most remarkable feature. Comparison of the gene content of the individual duplications with the respective phenotypes suggested three critical regions with candidate genes (AIFM1, RAB33A, GPC3 and IGSF1) for the common phenotypes, including candidate loci for congenital bilateral ptosis, small head circumference, short stature, genital and digital defects.

  13. Recurrent 70.8 Mb 4q22.2q32.3 duplication due to ovarian germinal mosaicism

    Science.gov (United States)

    Tosca, Lucie; Brisset, Sophie; Petit, François M; Lecerf, Laure; Rousseau, Ghislaine; Bas, Cécile; Laroudie, Mireille; Maurin, Marie-Laure; Tapia, Sylvie; Picone, Olivier; Prevot, Sophie; Goossens, Michel; Labrune, Philippe; Tachdjian, Gérard

    2010-01-01

    A mosaicism is defined by the presence of two or more populations of cells with different genotypes in one individual. Chromosomal germinal mosaicism occurs in germ cells before the onset of meiosis. Previously, few studies have described germinal mosaicism. In this study, we report on two siblings who carried identical pure and direct interstitial 4q22.2q32.3 duplication. Procedure investigations included complete clinical description, conventional cytogenetic analysis, fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH) array experiments and microsatellite study searching for parental origin of the duplication. Microarray CGH and further FISH experiments with BAC clones showed the same 70.8 Mb direct duplication, dup(4)(q22.2q32.3). Molecular studies of the 4q duplication were consistent with maternal origin associated with mitotic or meiotic rearrangements. This structural chromosomal aberration was associated in both cases with increased nuchal translucency, growth retardation and dysmorphy. Cardiopathy and lung malformations were only evident in the first case. These clinical manifestations are similar to those previously reported in previous studies involving pure 4q trisomy of the same region, except for thumb and renal abnormalities that were not obvious in the presented cases. The amplified region included genes involved in neurological development (NEUROG2, MAB21L2, PCDH10/18 and GRIA2). The recurrent 4q duplication in these siblings is consistent with a maternal ovarian germinal mosaicism. This is the first description of germinal mosaicism for a large chromosomal duplication and highlights that genetic counselling for apparently de novo chromosome aberration should be undertaken with care. PMID:20424646

  14. Plummer Vinson syndrome in a male and his chromosomal study – A case report

    Directory of Open Access Journals (Sweden)

    Santosh K. Swain

    2015-07-01

    Full Text Available Plummer Vinson syndrome (PVS is a triad of iron deficiency anemia, esophageal web and dysphagia. The exact etiology of PVS remains controversial but it has been associated with nutritional deficiency, autoimmune disorders, hereditary factors and remarkable high female predominance. This paper reports an atypical presentation of PVS in a 38 year old Indian male with special emphasis given on chromosomal analysis. Chromosomal assessment is done as it is a good predictor of the possibility of development of post-cricoid carcinoma (PCC in patients with PVS. Chromosomal aberrations like translocation, gain, loss, breakpoints and duplications are studied and they revealed normal male chromosomal pairing.

  15. Case report: Antenatal MRI diagnosis of esophageal duplication cyst

    International Nuclear Information System (INIS)

    Esophageal duplication cysts are classified as a subgroup of foregut duplication cysts. They are very rare and are predominantly detected in children. Antenatal detection is very rare. We report a case of an esophageal duplication cyst that was accurately identified antenatally by USG and MRI

  16. Origin of the duplicated regions in the yeast genomes

    DEFF Research Database (Denmark)

    Piskur, Jure

    2001-01-01

    The genome of Saccharomyces cerevisiae contains several duplicated regions. The recent sequencing results of several yeast species suggest that the duplicated regions found in the modern Saccharomyces species are probably the result of a single gross duplication, as well as a series of sporadic...

  17. Effect of Duplicate Genes on Mouse Genetic Robustness: An Update

    Directory of Open Access Journals (Sweden)

    Zhixi Su

    2014-01-01

    Full Text Available In contrast to S. cerevisiae and C. elegans, analyses based on the current knockout (KO mouse phenotypes led to the conclusion that duplicate genes had almost no role in mouse genetic robustness. It has been suggested that the bias of mouse KO database toward ancient duplicates may possibly cause this knockout duplicate puzzle, that is, a very similar proportion of essential genes (PE between duplicate genes and singletons. In this paper, we conducted an extensive and careful analysis for the mouse KO phenotype data and corroborated a strong effect of duplicate genes on mouse genetics robustness. Moreover, the effect of duplicate genes on mouse genetic robustness is duplication-age dependent, which holds after ruling out the potential confounding effect from coding-sequence conservation, protein-protein connectivity, functional bias, or the bias of duplicates generated by whole genome duplication (WGD. Our findings suggest that two factors, the sampling bias toward ancient duplicates and very ancient duplicates with a proportion of essential genes higher than that of singletons, have caused the mouse knockout duplicate puzzle; meanwhile, the effect of genetic buffering may be correlated with sequence conservation as well as protein-protein interactivity.

  18. Unilateral Pulmonary Agenesis and Gastric Duplication Cyst: A Rare Association

    Directory of Open Access Journals (Sweden)

    Amir Halilbasic

    2013-01-01

    Full Text Available Lung agenesis and gastric duplication cysts are both rare congenital anomalies. Gastric duplication cysts can present with nausea, vomiting, hematemesis, or vague abdominal pain. Unilateral pulmonary agenesis can present with respiratory distress which usually occurs due to retention of bronchial secretions and inflammations. We report the unique case of right pulmonary agenesis associated with gastric duplication cyst.

  19. Webbed Penis Associated with Urethral Duplication: A Case Report

    OpenAIRE

    Burhan Aksu; Mustafa İnan; Mehmet Pul

    2011-01-01

    Urethral duplication and webbed penis are rare congenital anomalies. Urethral duplication associated with webbed penis has not previously been reported in the literature. We describe a case of incomplete urethral duplication with webbed penis in an infant and discuss the clinical and radiological findings and treatment of this association.

  20. 47 CFR 76.1508 - Network non-duplication.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Network non-duplication. 76.1508 Section 76... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Open Video Systems § 76.1508 Network non-duplication. (a... regarding the exercise of network non-duplication rights immediately available to all appropriate...

  1. 47 CFR 76.122 - Satellite network non-duplication.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Satellite network non-duplication. 76.122... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.122 Satellite network non-duplication. (a) Upon receiving notification pursuant...

  2. Duplication Cyst of the Sigmoid Colon

    Directory of Open Access Journals (Sweden)

    Bastian Domajnko

    2009-01-01

    Full Text Available A 21-year-old male with developmental delay presented with abdominal pain of two days' duration. He was afebrile and his abdomen was soft with mild diffuse tenderness. There were no peritoneal signs. Plain x-ray demonstrated a large air-filled structure in the right upper quadrant. Computed tomography of the abdomen revealed a 9×8 cm structure adjacent to the hepatic flexure containing an air-fluid level. It did not contain oral contrast and had no apparent communication with the colon. At operation, the cystic lesion was identified as a duplication cyst of the sigmoid colon that was adherent to the right upper quadrant. The cyst was excised with a segment of the sigmoid colon and a stapled colo-colostomy was performed. Recovery was uneventful. Final pathology was consistent with a duplication cyst of the sigmoid colon. The cyst was attached to the colon but did not communicate with the lumen.

  3. SNP-based Microdeletion and Aneuploidy RegisTry (SMART)

    Science.gov (United States)

    2016-04-19

    22q11 Deletion Syndrome; DiGeorge Syndrome; Trisomy 21; Trisomy 18; Trisomy 13; Monosomy X; Sex Chromosome Abnormalities; Cri-du-Chat Syndrome; Angelman Syndrome; Prader-Willi Syndrome; 1p36 Deletion Syndrome

  4. Copy number variations of chromosome 16p13.1 region associated with schizophrenia

    DEFF Research Database (Denmark)

    Ingason, A; Rujescu, D; Cichon, S;

    2011-01-01

    Deletions and reciprocal duplications of the chromosome 16p13.1 region have recently been reported in several cases of autism and mental retardation (MR). As genomic copy number variants found in these two disorders may also associate with schizophrenia, we examined 4345 schizophrenia patients an...... disorder and dyslexia. Candidate genes in the region include NTAN1 and NDE1. We conclude that duplications and perhaps also deletions of chromosome 16p13.1, previously reported to be associated with autism and MR, also confer risk of schizophrenia....

  5. Exploring duplicated regions in natural images.

    Science.gov (United States)

    Bashar, M; Noda, K; Ohnishi, N; Mori, K

    2010-01-01

    Duplication of image regions is a common method for manipulating original images, using typical software like Adobe Photoshop, 3DS MAX, etc. In this study, we propose a duplication detection approach that can adopt two robust features based on discrete wavelet transform (DWT) and kernel principal component analysis (KPCA). Both schemes provide excellent representations of the image data for robust block matching. Multiresolution wavelet coefficients and KPCA-based projected vectors corresponding to image-blocks are arranged into a matrix for lexicographic sorting. Sorted blocks are used for making a list of similar point-pairs and for computing their offset frequencies. Duplicated regions are then segmented by an automatic technique that refines the list of corresponding point-pairs and eliminates the minimum offset-frequency threshold parameter in the usual detection method. A new technique that extends the basic algorithm for detecting Flip and Rotation types of forgeries is also proposed. This method uses global geometric transformation and the labeling technique to indentify the mentioned forgeries. Experiments with a good number of natural images show very promising results, when compared with the conventional PCA-based approach. A quantitative analysis indicate that the wavelet-based feature outperforms PCA- or KPCA-based features in terms of average precision and recall in the noiseless, or uncompressed domain, while KPCA-based feature obtains excellent performance in the additive noise and lossy JPEG compression environments. PMID:20350843

  6. tRNA creation by hairpin duplication.

    Science.gov (United States)

    Widmann, Jeremy; Di Giulio, Massimo; Yarus, Michael; Knight, Rob

    2005-10-01

    Many studies have suggested that the modern cloverleaf structure of tRNA may have arisen through duplication of a primordial hairpin, but the timing of this duplication event has been unclear. Here we measure the level of sequence identity between the two halves of each of a large sample of tRNAs and compare this level to that of chimeric tRNAs constructed either within or between groups defined by phylogeny and/or specificity. We find that actual tRNAs have significantly more matches between the two halves than do random sequences that can form the tRNA structure, but there is no difference in the average level of matching between the two halves of an individual tRNA and the average level of matching between the two halves of the chimeric tRNAs in any of the sets we constructed. These results support the hypothesis that the modern tRNA cloverleaf arose from a single hairpin duplication prior to the divergence of modern tRNA specificities and the three domains of life. PMID:16155749

  7. Origins of a 350-kilobase genomic duplication in Mycobacterium tuberculosis and its impact on virulence.

    Science.gov (United States)

    Domenech, Pilar; Rog, Anya; Moolji, Jalal-ud-din; Radomski, Nicolas; Fallow, Ashley; Leon-Solis, Lizbel; Bowes, Julia; Behr, Marcel A; Reed, Michael B

    2014-07-01

    In the present study, we have investigated the evolution and impact on virulence of a 350-kb genomic duplication present in the most recently evolved members of the Mycobacterium tuberculosis East Asian lineage. In a mouse model of infection, comparing HN878 subclones HN878-27 (no duplication) and HN878-45 (with the 350-kb duplication) revealed that the latter is impaired for in vivo growth during the initial 3 weeks of infection. Furthermore, the median survival time of mice infected with isolate HN878-45 is significantly longer (77 days) than that of mice infected with HN878-27. Whole-genome sequencing of both isolates failed to reveal any mutational events other than the duplication that could account for such a substantial difference in virulence. Although we and others had previously speculated that the 350-kb duplication arose in response to some form of host-applied selective pressure (P. Domenech, G. S. Kolly, L. Leon-Solis, A. Fallow, M. B. Reed, J. Bacteriol. 192: 4562-4570, 2010, and B. Weiner, J. Gomez, T. C. Victor, R. M. Warren, A. Sloutsky, B. B. Plikaytis, J. E. Posey, P. D. van Helden, N. C. Gey van Pittius, M. Koehrsen, P. Sisk, C. Stolte, J. White, S. Gagneux, B. Birren, D. Hung, M. Murray, J. Galagan, PLoS One 7: e26038, 2012), here we show that this large chromosomal amplification event is very rapidly selected within standard in vitro broth cultures in a range of isolates. Indeed, subclones harboring the duplication were detectable after just five rounds of in vitro passage. In contrast, the duplication appears to be highly unstable in vivo and is negatively selected during the later stages of infection in mice. We believe that the rapid in vitro evolution of M. tuberculosis is an underappreciated aspect of its biology that is often ignored, despite the fact that it has the potential to confound the data and conclusions arising from comparative studies of isolates at both the genotypic and phenotypic levels. PMID:24778110

  8. Fourth international workshop on human chromosome 5. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, J.D.

    1996-12-31

    The Fourth International Workshop on Human Chromosome 5 was held in Manchester, UK on November 9--10, 1996 and was hosted by the University of Manchester. The major goals of the workshop were: (1) to collate the various genetic, cytogenetic and physical maps of human chromosome 5; (2) to integrate these maps and identify/correct discrepancies between them wherever possible; (3) to catalogue the sequence-ready contigs of the chromosome; (4) to co-ordinate the various sequencing efforts to avoid future duplication; (5) to establish the first (to the author`s knowledge) web site for the human chromosome 5 community which contains the above information in a readily accessible form.

  9. The DNA sequence and comparative analysis of human chromosome 10.

    Science.gov (United States)

    Deloukas, P; Earthrowl, M E; Grafham, D V; Rubenfield, M; French, L; Steward, C A; Sims, S K; Jones, M C; Searle, S; Scott, C; Howe, K; Hunt, S E; Andrews, T D; Gilbert, J G R; Swarbreck, D; Ashurst, J L; Taylor, A; Battles, J; Bird, C P; Ainscough, R; Almeida, J P; Ashwell, R I S; Ambrose, K D; Babbage, A K; Bagguley, C L; Bailey, J; Banerjee, R; Bates, K; Beasley, H; Bray-Allen, S; Brown, A J; Brown, J Y; Burford, D C; Burrill, W; Burton, J; Cahill, P; Camire, D; Carter, N P; Chapman, J C; Clark, S Y; Clarke, G; Clee, C M; Clegg, S; Corby, N; Coulson, A; Dhami, P; Dutta, I; Dunn, M; Faulkner, L; Frankish, A; Frankland, J A; Garner, P; Garnett, J; Gribble, S; Griffiths, C; Grocock, R; Gustafson, E; Hammond, S; Harley, J L; Hart, E; Heath, P D; Ho, T P; Hopkins, B; Horne, J; Howden, P J; Huckle, E; Hynds, C; Johnson, C; Johnson, D; Kana, A; Kay, M; Kimberley, A M; Kershaw, J K; Kokkinaki, M; Laird, G K; Lawlor, S; Lee, H M; Leongamornlert, D A; Laird, G; Lloyd, C; Lloyd, D M; Loveland, J; Lovell, J; McLaren, S; McLay, K E; McMurray, A; Mashreghi-Mohammadi, M; Matthews, L; Milne, S; Nickerson, T; Nguyen, M; Overton-Larty, E; Palmer, S A; Pearce, A V; Peck, A I; Pelan, S; Phillimore, B; Porter, K; Rice, C M; Rogosin, A; Ross, M T; Sarafidou, T; Sehra, H K; Shownkeen, R; Skuce, C D; Smith, M; Standring, L; Sycamore, N; Tester, J; Thorpe, A; Torcasso, W; Tracey, A; Tromans, A; Tsolas, J; Wall, M; Walsh, J; Wang, H; Weinstock, K; West, A P; Willey, D L; Whitehead, S L; Wilming, L; Wray, P W; Young, L; Chen, Y; Lovering, R C; Moschonas, N K; Siebert, R; Fechtel, K; Bentley, D; Durbin, R; Hubbard, T; Doucette-Stamm, L; Beck, S; Smith, D R; Rogers, J

    2004-05-27

    The finished sequence of human chromosome 10 comprises a total of 131,666,441 base pairs. It represents 99.4% of the euchromatic DNA and includes one megabase of heterochromatic sequence within the pericentromeric region of the short and long arm of the chromosome. Sequence annotation revealed 1,357 genes, of which 816 are protein coding, and 430 are pseudogenes. We observed widespread occurrence of overlapping coding genes (either strand) and identified 67 antisense transcripts. Our analysis suggests that both inter- and intrachromosomal segmental duplications have impacted on the gene count on chromosome 10. Multispecies comparative analysis indicated that we can readily annotate the protein-coding genes with current resources. We estimate that over 95% of all coding exons were identified in this study. Assessment of single base changes between the human chromosome 10 and chimpanzee sequence revealed nonsense mutations in only 21 coding genes with respect to the human sequence. PMID:15164054

  10. Undetected sex chromosome aneuploidy by chromosomal microarray.

    Science.gov (United States)

    Markus-Bustani, Keren; Yaron, Yuval; Goldstein, Myriam; Orr-Urtreger, Avi; Ben-Shachar, Shay

    2012-11-01

    We report on a case of a female fetus found to be mosaic for Turner syndrome (45,X) and trisomy X (47,XXX). Chromosomal microarray analysis (CMA) failed to detect the aneuploidy because of a normal average dosage of the X chromosome. This case represents an unusual instance in which CMA may not detect chromosomal aberrations. Such a possibility should be taken into consideration in similar cases where CMA is used in a clinical setting.

  11. Neurodevelopmental and neurobehavioral characteristics in males and females with CDKL5 duplications.

    Science.gov (United States)

    Szafranski, Przemyslaw; Golla, Sailaja; Jin, Weihong; Fang, Ping; Hixson, Patricia; Matalon, Reuben; Kinney, Daniel; Bock, Hans-Georg; Craigen, William; Smith, Janice L; Bi, Weimin; Patel, Ankita; Wai Cheung, Sau; Bacino, Carlos A; Stankiewicz, Paweł

    2015-07-01

    Point mutations and genomic deletions of the CDKL5 (STK9) gene on chromosome Xp22 have been reported in patients with severe neurodevelopmental abnormalities, including Rett-like disorders. To date, only larger-sized (8-21 Mb) duplications harboring CDKL5 have been described. We report seven females and four males from seven unrelated families with CDKL5 duplications 540-935 kb in size. Three families of different ethnicities had identical 667kb duplications containing only the shorter CDKL5 isoform. Four affected boys, 8-14 years of age, and three affected girls, 6-8 years of age, manifested autistic behavior, developmental delay, language impairment, and hyperactivity. Of note, two boys and one girl had macrocephaly. Two carrier mothers of the affected boys reported a history of problems with learning and mathematics while at school. None of the patients had epilepsy. Similarly to CDKL5 mutations and deletions, the X-inactivation pattern in all six studied females was random. We hypothesize that the increased dosage of CDKL5 might have affected interactions of this kinase with its substrates, leading to perturbation of synaptic plasticity and learning, and resulting in autistic behavior, developmental and speech delay, hyperactivity, and macrocephaly.

  12. Divergence of gene regulation through chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Messing Joachim

    2010-11-01

    Full Text Available Abstract Background The molecular mechanisms that modify genome structures to give birth and death to alleles are still not well understood. To investigate the causative chromosomal rearrangements, we took advantage of the allelic diversity of the duplicated p1 and p2 genes in maize. Both genes encode a transcription factor involved in maysin synthesis, which confers resistance to corn earworm. However, p1 also controls accumulation of reddish pigments in floral tissues and has therefore acquired a new function after gene duplication. p1 alleles vary in their tissue-specific expression, which is indicated in their allele designation: the first suffix refers to red or white pericarp pigmentation and the second to red or white glume pigmentation. Results Comparing chromosomal regions comprising p1-ww[4Co63], P1-rw1077 and P1-rr4B2 alleles with that of the reference genome, P1-wr[B73], enabled us to reconstruct additive events of transposition, chromosome breaks and repairs, and recombination that resulted in phenotypic variation and chimeric regulatory signals. The p1-ww[4Co63] null allele is probably derived from P1-wr[B73] by unequal crossover between large flanking sequences. A transposon insertion in a P1-wr-like allele and NHEJ (non-homologous end-joining could have resulted in the formation of the P1-rw1077 allele. A second NHEJ event, followed by unequal crossover, probably led to the duplication of an enhancer region, creating the P1-rr4B2 allele. Moreover, a rather dynamic picture emerged in the use of polyadenylation signals by different p1 alleles. Interestingly, p1 alleles can be placed on both sides of a large retrotransposon cluster through recombination, while functional p2 alleles have only been found proximal to the cluster. Conclusions Allelic diversity of the p locus exemplifies how gene duplications promote phenotypic variability through composite regulatory signals. Transposition events increase the level of genomic complexity

  13. Molecular analyses of unrelated Charcot-Marie-Tooth (CMT) disease patients suggest a high frequency of the CMT1A duplication

    Energy Technology Data Exchange (ETDEWEB)

    Wise, C.A.; Davis, S.N.; Heju, Z.; Pentao, L.; Patel, P.I.; Lupski, J.R. (Baylor College of Medicine, Houston, TX (United States)); Garcia, C.A. (Louisiana State Univ. School of Medicine, New Orleans, LA (United States))

    1993-10-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. One form of CMT, CMT type 1A, is characterized by uniformly decreased nerve conduction velocities, usually shows autosomal dominant inheritance, and is associated with a large submicroscopic duplication of the p11.2-p12 region of chromosome 17. A cohort of 75 unrelated patients diagnosed clinically with CMT and evaluated by electrophysiological methods were analyzed molecularly for the presence of the CMT1A DNA duplication. Three methodologies were used to assess the duplication: Measurement of dosage differences between RFLP alleles, analysis of polymorphic (GT)[sub n] repeats, and detection of a junction fragment by pulsed-field gel electrophoresis. The CMT1A duplication was found in 68% of the 63 unrelated CMT patients with electrophysiological studies consistent with CMT type 1 (CMT1). The CMT1A duplication was detected as a de novo event in two CMT1 families. Twelve CMT patients who did not have decreased nerve conduction velocities consistent with a diagnosis of CMT type 2 (CMT2) were found not to have the CMT1A duplication. The most informative molecular method was the detection of the CMT1A duplication-specific junction fragment. Given the high frequency of the CMT1A duplication in CMT patients and the high frequency of new mutations, the authors conclude that a molecular test for the CMT1A DNA duplication is very useful in the differential diagnosis of patients with peripheral neuropathies. 61 refs., 4 figs.

  14. Characterization of a complex rearrangement involving duplication and deletion of 9p in an infant with craniofacial dysmorphism and cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Di Bartolo Daniel L

    2012-07-01

    Full Text Available Abstract Partial duplication and partial deletion of the short arm of chromosome 9 have each been reported in the literature as clinically recognizable syndromes. We present clinical, cytogenetic, and molecular findings on a five-week-old female infant with concomitant duplication and terminal deletion of the short arm of chromosome 9. To our knowledge ten such cases have previously been reported. Conventional cytogenetic analysis identified additional material on chromosome 9 at band p23. FISH analysis aided in determining the additional material consisted of an inverted duplication with a terminal deletion of the short arm. Microarray analysis confirmed this interpretation and further characterized the abnormality as a duplication of about 32.7 Mb, from 9p23 to 9p11.2, and a terminal deletion of about 11.5 Mb, from 9p24.3 to 9p23. The infant displayed characteristic features of Duplication 9p Syndrome (hypotonia, bulbous nose, single transverse palmar crease, cranial anomalies, as well as features associated with Deletion 9p Syndrome (flat nasal bridge, long philtrum, cardiac anomalies despite the deletion being distal to the reported critical region for this syndrome. This case suggests that there are genes or regulatory elements that lie outside of the reported critical region responsible for certain phenotypic features associated with Deletion 9p Syndrome. It also underscores the importance of utilizing array technology to precisely define abnormalities involving the short arm of 9p in order to further refine genotype/phenotype associations and to identify additional cases of duplication/deletion.

  15. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J;

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  16. Chromosome Disorder Outreach

    Science.gov (United States)

    ... BLOG Join Us Donate You are not alone. Chromosome Disorder Outreach, Inc. is a non-profit organization, ... Support For all those diagnosed with any rare chromosome disorder. Since 1992, CDO has supported the parents ...

  17. Chromosome 10q tetrasomy: First reported case

    Energy Technology Data Exchange (ETDEWEB)

    Blackston, R.D.; May, K.M.; Jones, F.D. [Emory Univ., Atlanta, GA (United States)] [and others

    1994-09-01

    While there are several reports of trisomy 10q (at least 35), we are not aware of previous cases of 10q tetrasomy. We present what we believe to be the initial report of such a case. R.J. is a 6 1/2 year old white male who presented with multiple dysmorphic features, marked articulation problems, hyperactivity, and developmental delays. He is the product of a term uncomplicated pregnancy. There was a normal spontaneous vaginal delivery with a birth weight of 6 lbs. 4oz. and length was 19 1/2 inch. Dysmorphic features include small size, an asymmetrically small head, low set ears with overfolded helixes, bilateral ptosis, downslanting eyes, right eye esotropia, prominent nose, asymmetric facies, high palate, mild pectus excavatum deformity of chest, and hyperextensible elbow joints. The patient is in special needs classes for mildly mentally handicapped students. Chromosome analysis at a resolution of 800 bands revealed a complex rearrangement of chromosomes 10 and 11. The segment 10q25.3 to q16.3 appears to be inverted and duplicated within the long arm of chromosome 10 at band q25.3 and the same segment of chromosome 10 is present on the terminal end of the short arm of chromosome 11. There is no visible loss of material from chromosome 11. Fluorescence in situ hybridization was performed with a chromosome 10 specific {open_quotes}paint{close_quotes} to confirm that all of the material on the abnormal 10 and the material on the terminal short arm of 11 was from chromosome 10. Thus, it appears that the segment 10q25.3 to q26.3 is present in four copies. Parental chromosome studies are normal. We compared findings which differ in that the case of 10q tetrasomy did not have prenatal growth deficiency, microphthalmia, cleft palate, digital anomalies, heart, or renal defects. Whereas most cases of 10q trisomy are said to have severe mental deficiency, our case of 10q tetrasomy was only mildly delayed. We report this first apparent cited case of 10q tetrasomy.

  18. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus.

    Science.gov (United States)

    Vakirlis, Nikolaos; Sarilar, Véronique; Drillon, Guénola; Fleiss, Aubin; Agier, Nicolas; Meyniel, Jean-Philippe; Blanpain, Lou; Carbone, Alessandra; Devillers, Hugo; Dubois, Kenny; Gillet-Markowska, Alexandre; Graziani, Stéphane; Huu-Vang, Nguyen; Poirel, Marion; Reisser, Cyrielle; Schott, Jonathan; Schacherer, Joseph; Lafontaine, Ingrid; Llorente, Bertrand; Neuvéglise, Cécile; Fischer, Gilles

    2016-07-01

    Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements, and protein divergence into a single evolutionary framework.

  19. Duplication of 5q21 in a mildly retarded male and his non-retarded mother

    Energy Technology Data Exchange (ETDEWEB)

    Stallard, R.; Zurcher, V.; Schwartz, S. [Case Western Reserve Univ., Cleveland, OH (United States)

    1994-09-01

    Euchromatic autosomal additions to chromosomal complements are typically associated with global effects including mental retardation (MR) and dysmorphism. We report a familial duplication that does not appear to cause consistent, significant effects. A hyperactive male with mild MR was referred for fra(X) testing at 8 yrs. His karyotype was fra(X) negative and normal except for an addition in one 5q. The abnormal 5 was also in the maternal karyotype, but all other parental chromosomes were normal. The addition (=8.5% the length of a 5) was interpreted as a duplication of band 5q21. FISH with Coatasome 5 (Oncor) showed the addition was from 5. The proband`s karyotype was designated 46,XY,dup(5)(q15q22.1)mat; his mother`s, 46,XX,dup(5)(q15q22.1). Single copy probes are being used to test the cytogenetic interpretation. At 39 yrs, the non-retarded, somewhat inattentive mother, who has a high school diploma and subsequent secretarial courses, cares for the proband and his chromosomally normal, but learning disabled sister at home. The family situation is chaotic with reported paternal psychiatric illness and abuse of the proband and his sister. The mother`s father is dead, but her four younger siblings and mother are reportedly normal. Their chromosomes have not been available. The proband was born at 40 weeks following an uneventful pregnancy, with length and weight at the 5-10th centiles. He walked and talked at about one year. At 9 yrs, his ht/wt ratio was 10th centile. Foot length as <3rd centile; soft masses were present on the anterior ankles. He was otherwise physically normal. His estimated I.Q. was 75 and he was severely hyperactive despite Ritalin. This is the first report of a familial duplication in 5q; no identical, isolated case is known. Although additional family members need evaluation, the presence of the dup(5q) in the non-retarded mother suggests that it may not be associated with the proband`s MR.

  20. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Taro Tsujimura

    2010-12-01

    Full Text Available A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  1. ZEBRAFISH CHROMOSOME-BANDING

    NARCIS (Netherlands)

    PIJNACKER, LP; FERWERDA, MA

    1995-01-01

    Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric C-b

  2. Chromosome painting in plants.

    NARCIS (Netherlands)

    Schubert, I.; Fransz, P.F.; Fuchs, J.; Jong, de J.H.

    2001-01-01

    The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in si

  3. A case report of Chinese brothers with inherited MECP2-containing duplication: autism and intellectual disability, but not seizures or respiratory infections

    Directory of Open Access Journals (Sweden)

    Xu Xiu

    2012-08-01

    Full Text Available Abstract Background Autistic spectrum disorders (ASDs are a family of neurodevelopmental disorders with strong genetic components. Recent studies have shown that copy number variations in dosage sensitive genes can contribute significantly to these disorders. One such gene is the transcription factor MECP2, whose loss of function in females results in Rett syndrome, while its duplication in males results in developmental delay and autism. Case presentation Here, we identified a Chinese family with two brothers both inheriting a 2.2 Mb MECP2-containing duplication (151,369,305 – 153,589,577 from their mother. In addition, both brothers also had a 213.7 kb duplication on Chromosome 2, inherited from their father. The older brother also carried a 48.4 kb duplication on Chromosome 2 inherited from the mother, and a 8.2 kb deletion at 11q13.5 inherited from the father. Based on the published literature, MECP2 is the most autism-associated gene among the identified CNVs. Consistently, the boys displayed clinical features in common with other patients carrying MECP2 duplications, including intellectual disability, autism, lack of speech, slight hypotonia and unsteadiness of movement. They also had slight dysmorphic features including a depressed nose bridge, large ears and midface hypoplasia. Interestingly, they did not exhibit other clinical features commonly observed in American-European patients with MECP2 duplication, including recurrent respiratory infections and epilepsy. Conclusions To our knowledge, this is the first identification and characterization of Chinese Han patients with MECP2-containing duplications. Further cases are required to determine if the above described clinical differences are due to individual variations or related to the genetic background of the patients.

  4. FT Duplication Coordinates Reproductive and Vegetative Growth

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chuan-Yu [Mississippi State University (MSU); Adams, Joshua P. [Mississippi State University (MSU); Kim, Hyejin [Mississippi State University (MSU); No, Kyoungok [Mississippi State University (MSU); Ma, Caiping [Oregon State University, Corvallis; Strauss, Steven [Oregon State University, Corvallis; Drnevich, Jenny [University of Illinois, Urbana-Champaign; Wickett, Norman [Pennsylvania State University; Vandervelde, Lindsay [Mississippi State University (MSU); Ellis, Jeffrey D. [Mississippi State University (MSU); Rice, Brandon [Mississippi State University (MSU); Gunter, Lee E [ORNL; Tuskan, Gerald A [ORNL; Brunner, Amy M. [Virginia Polytechnic Institute and State University (Virginia Tech); Page, Grier P. [RTI International; Carlson, John E. [Pennsylvania State University; DePamphilis, Claude [Pennsylvania State University; Luthe, Dawn S. [Pennsylvania State University; Yuceer, Cetin [Mississippi State University (MSU)

    2011-01-01

    Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles of vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.

  5. [Dicentric Y chromosomes. First part: cytogenetic and molecular aspects].

    Science.gov (United States)

    Bouayed Abdelmoula, N; Amouri, A

    2005-01-01

    Dicentric Y chromosomes have been reviewed twice in 1994 by Hsu et al. and in 1995 by Tuck-Muller et al. who showed that dic(Y) are the most common Y structural abnormalities and that their influence on gonadal and somatic development is extremely variable. The prediction of their phenotypic consequences is often difficult because of the variety of genomic sequences concerned by duplications and deletions, because of the variable degrees of mosaicism (cell line 45,X in particular) and at the end, because of identification and analysis technical difficulties of the structure of the rearranged Y chromosome. The clinical specter of this cytogenetic abnormality is rather wide going from almost-normal or infertile males, to females with or without stigmas of Turner syndrome. Middle phenotypes consist of various degrees of genital ambiguities. However, clinical expression seems to be related to the genomic capital of the Y chromosome, mainly the Y genes involved in the control of the process of the determination of gonads (Yp) and spermatogenesis (Yq) as well as control of the growth and the skeletal development (Yp). Here, we report a third comprehensive review of the literature concerning dicentric Y chromosomes reported since 1994. In the light of previous reviews as well as the recent data of the genetic cartography of the Y chromosome, we try, in this first part, to determine characteristics of reported dicentric Y chromosomes as well as their chromosomal mechanics, their mitotic stability and finally their cytogenetic and molecular investigations.

  6. Genotype/phenotype correlation in a female patient with 21q22.3 and 12p13.33 duplications.

    Science.gov (United States)

    Mekkawy, Mona K; Mazen, Inas M; Kamel, Alaa K; Vater, Inga; Zaki, Maha S

    2016-04-01

    Many chromosomal rearrangements that lead to copy-number gains or losses have been shown to cause distinctive and recognizable clinical phenotypes. Conventional cytogenetic analysis can detect many, but not all, rearrangements depending on its power of resolution. The wide use of whole-genome array-based comparative genomic hybridization (array-CGH) techniques has allowed the detection of novel syndromes and to establish genotype-phenotype correlations by delineating at high resolution the regions involved in specific chromosomal aberrations. We report on a two and half-year-old female patient with intellectual disability and distinctive phenotypic features resulting from a de novo duplication of about 0.3 Mb in 21q22.3 associated with duplication of about 0.3 Mb in 12p13.33. The patient's chromosomal abnormalities were identified at the cytogenetic molecular level, using SNP array analysis, while GTG banding technique revealed a normal karyotype. Clinical findings of the patient were compared with Down syndrome and 12p duplication syndrome. This study suggests that an area of contiguous genes on the distal part of chromosome 21 (21q22.3) contribute to the Down syndrome phenotype and indicates that genes in the distal region of 12p (12p13.33) account for many facial characteristics and hypotonia of trisomy 12p syndrome. PMID:26749249

  7. RECTAL DUPLICATION CYST IN PREVIOUS ANORECTAL MALFORMATION AND DOWN SYNDROME

    Directory of Open Access Journals (Sweden)

    A. Burgio

    2012-12-01

    Full Text Available Gastrointestinal (GI tract duplications are rare congenital malformations. Most of them occur in the ileum and only 1-5%, of all duplication, were in the rectum. Different clinical features including chronic constipation, rectal prolapsed or polips. We report on a 4-years-old girl with Down syndrome and anorectal malformation (ARM who was found to have a rectal duplication cyst.

  8. An Empirical Study on the Impact of Duplicate Code

    OpenAIRE

    Keisuke Hotta; Yui Sasaki; Yukiko Sano; Yoshiki Higo; Shinji Kusumoto

    2012-01-01

    It is said that the presence of duplicate code is one of the factors that make software maintenance more difficult. Many research efforts have been performed on detecting, removing, or managing duplicate code on this basis. However, some researchers doubt this basis in recent years and have conducted empirical studies to investigate the influence of the presence of duplicate code. In this study, we conduct an empirical study to investigate this matter from a different standpoint from previous...

  9. Colonic duplication in an adult mimicking a tumor of pancreas

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Duplications of the alimentary tract are uncommon congenital malformations that can present diagnostic difficulties.We report a rare case of a cystic colonic duplication in a female adult.Preoperative investigations were suggestive of pancreatic tumor.The diagnosis was established based on the histopathological examination of the resected specimen.We concluded that,though uncommon,intestinal duplication should be considered in differential diagnosis of abdominal mass.

  10. Mapping of 5q35 chromosomal rearrangements within a genomically unstable region

    DEFF Research Database (Denmark)

    Buysse, Karen; Crepel, An; Menten, Björn;

    2008-01-01

    BACKGROUND: Recent molecular studies of breakpoints of recurrent chromosome rearrangements revealed the role of genomic architecture in their formation. In particular, segmental duplications representing blocks of >1 kb with >90% sequence homology were shown to mediate non-allelic homologous reco...

  11. Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Ai Xia

    Full Text Available BACKGROUND: Nonrandom distribution of rearrangements is a common feature of eukaryotic chromosomes that is not well understood in terms of genome organization and evolution. In the major African malaria vector Anopheles gambiae, polymorphic inversions are highly nonuniformly distributed among five chromosomal arms and are associated with epidemiologically important adaptations. However, it is not clear whether the genomic content of the chromosomal arms is associated with inversion polymorphism and fixation rates. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the evolutionary dynamics of chromosomal inversions, we created a physical map for an Asian malaria mosquito, Anopheles stephensi, and compared it with the genome of An. gambiae. We also developed and deployed novel Bayesian statistical models to analyze genome landscapes in individual chromosomal arms An. gambiae. Here, we demonstrate that, despite the paucity of inversion polymorphisms on the X chromosome, this chromosome has the fastest rate of inversion fixation and the highest density of transposable elements, simple DNA repeats, and GC content. The highly polymorphic and rapidly evolving autosomal 2R arm had overrepresentation of genes involved in cellular response to stress supporting the role of natural selection in maintaining adaptive polymorphic inversions. In addition, the 2R arm had the highest density of regions involved in segmental duplications that clustered in the breakpoint-rich zone of the arm. In contrast, the slower evolving 2L, 3R, and 3L, arms were enriched with matrix-attachment regions that potentially contribute to chromosome stability in the cell nucleus. CONCLUSIONS/SIGNIFICANCE: These results highlight fundamental differences in evolutionary dynamics of the sex chromosome and autosomes and revealed the strong association between characteristics of the genome landscape and rates of chromosomal evolution. We conclude that a unique combination of various

  12. A cascade of complex subtelomeric duplications during the evolution of the hominoid and Old World monkey genomes.

    Science.gov (United States)

    van Geel, Michel; Eichler, Evan E; Beck, Amy F; Shan, Zhihong; Haaf, Thomas; van der Maarel, Silvère M; Frants, Rune R; de Jong, Pieter J

    2002-01-01

    Subtelomeric duplications of an obscure tubulin "genic" segment located near the telomere of human chromosome 4q35 have occurred at different evolutionary time points within the last 25 million years of the catarrhine (i.e., hominoid and Old World monkey) evolution. The analyses of these segments reported here indicate an exceptional level of evolutionary instability. Substantial intra- and interspecific differences in copy number and distribution are observed among cercopithecoid (Old World monkey) and hominoid genomes. Characterization of the hominoid duplicated segments reveals a strong positional bias within pericentromeric and subtelomeric regions of the genome. On the basis of phylogenetic analysis from predicted proteins and comparisons of nucleotide-substitution rates, we present evidence of a conserved b-tubulin gene among the duplications. Remarkably, the evolutionary conservation has occurred in a nonorthologous fashion, such that the functional copy has shifted its positional context between hominoids and cercopithecoids. We propose that, in a chimpanzee-human common ancestor, one of the paralogous copies assumed the original function, whereas the ancestral copy acquired mutations and eventually became silenced. Our analysis emphasizes the dynamic nature of duplication-mediated genome evolution and the delicate balance between gene acquisition and silencing. PMID:11731935

  13. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    Science.gov (United States)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  14. Chimpanzee chromosome 12 is homologous to human chromosome 2q

    Energy Technology Data Exchange (ETDEWEB)

    Sun, N. C.; Sun, C. R.Y.; Ho, T.

    1977-01-01

    Most of the 46 human chromosomes find their counterparts in the 48 chimpanzee chromosomes except for chromosome 2 which has been hypothesized to have been derived from a centric fusion of two chimpanzee acrocentric chromosomes. These two chromosomes correspond to the human chromosomes 2p and 2g. This conclusion is based primarily on chromosome banding techniques, and the somatic cell hybridization technique has also been used. (HLW)

  15. Duplication of the TGFBR1 gene causes features of Loeys-Dietz syndrome.

    Science.gov (United States)

    Breckpot, Jeroen; Budts, Werner; De Zegher, Francis; Vermeesch, Joris R; Devriendt, Koenraad

    2010-01-01

    Loeys-Dietz syndrome (LDS; OMIM:609192) is an autosomal dominant disorder characterized by hypertelorism, bifid uvula or cleft palate, and arterial tortuosity with widespread vascular aneurysms and a high risk of aortic dissection at an early age. LDS results from mutations in the transforming growth factor beta-receptor I and II (TGFBR1 and TGFBR2) genes, altering the transmission of the subcellular TGF-β signal, mediated by increased activation of Smad2. We report on a 17-year-old boy with pubertas tarda, a bifid uvula, camptodactyly and facial dysmorphic features, suggestive of LDS. Mutation analysis of TGFBR1 and TGFBR2 was normal. By means of molecular karyotyping two previously unreported chromosomal imbalances were detected: a 120 kb deletion on chromosome 22q13.31q13.32, inherited from an unaffected parent, and a de novo 14.6 Mb duplication on chromosome 9q22.32q31.3, comprising TGFBR1. We hypothesize that copy number gain of TGFBR1 contributes to the phenotype. PMID:20813212

  16. Identification by FISH of 21q22 duplication in patient with Down syndrome and apparent 46,XX karyotype

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chih-yu; Anyane-Yeoba, K.; Warburton, D. [Columbia Univ., New York, NY (United States)

    1994-09-01

    Karyotype analysis of a 3-day-old child referred for clinical evaluation of Down syndrome was originally reported as normal 46,XX. The child had many features of Down syndrome, including a leukemoid reaction at birth. Because of the strongly suggestive clinical features, and a slightly unusual appearance of the short arm of one chromosome 21, FISH analysis was carried out using a probe specific for the 21q22.3 region (ONCOR). Signal was seen as expected in the distal long arm of both chromosomes 21, but also in the short arm with the morphological variant. DNA analysis with a number of long arm probes confirmed the presence of duplication of a large portion of band 21q22. Parental karyotypes were normal. The mother of this case had declined amniocentesis. However, it is very likely that routine prenatal chromosome analysis would not have detected the duplication, since the short arm was not strikingly different from many normal variants. Only screening with a 21q22 FISH probe (interphase or metaphase) would have predicted the Down syndrome in this child.

  17. Ruptured rectal duplication with urogenital abnormality: Unusual presentation

    Directory of Open Access Journals (Sweden)

    Shailesh Solanki

    2015-01-01

    Full Text Available Rectal duplication (RD accounts for 5% of alimentary tract duplication. A varied presentation and associated anomalies have been described in the literature. Antenatal rupture of the RD is very rare. We present an unusual case of a ruptured RD associated with urogenital abnormalities in newborn male. We are discussing diagnosis, embryology, management and literature review of ruptured RD.

  18. Ruptured rectal duplication with urogenital abnormality: Unusual presentation

    Science.gov (United States)

    Solanki, Shailesh; Babu, M Narendra; Jadhav, Vinay; Shankar, Gowri; Santhanakrishnan, Ramesh

    2015-01-01

    Rectal duplication (RD) accounts for 5% of alimentary tract duplication. A varied presentation and associated anomalies have been described in the literature. Antenatal rupture of the RD is very rare. We present an unusual case of a ruptured RD associated with urogenital abnormalities in newborn male. We are discussing diagnosis, embryology, management and literature review of ruptured RD. PMID:25552833

  19. Gallbladder Duplication Associated with Gastro-Intestinal Atresia.

    Science.gov (United States)

    Gupta, Rahul; Gupta, Shilpi; Sharma, Pramila; Bhandari, Anu; Gupta, Arun Kumar; Mathur, Praveen

    2016-01-01

    Gallbladder duplication in association with other GIT anomalies is a rare entity. We report two neonates; one with duodenal atresia and the other newborn with pyloric atresia, ileal atresia and colonic atresia, both were associated with gallbladder duplication which has not been reported earlier. PMID:27123398

  20. Analysis of recent segmental duplications in the bovine genome

    Science.gov (United States)

    Duplicated sequences are an important source of gene innovation and structural variation within mammalian genomes. We describe the first systematic and genome-wide analysis of segmental duplications in the modern domesticated cattle (Bos taurus). Using two distinct computational analyses, we estimat...

  1. A rare case of congenital Y-type urethral duplication

    Directory of Open Access Journals (Sweden)

    Charu Tiwari

    2015-11-01

    Full Text Available Duplication of urethra is a rare congenital anomaly. We report a case of Y-type of urethral duplication with the accessory urethra arising from posterior urethra and opening in the perineum. The orthotopic urethra was normal. The accessory urethral tract was cored, transfixed and divided. At 1 year of follow-up, the patient has no urinary complaints

  2. 29 CFR 1912.4 - Avoidance of duplication.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Avoidance of duplication. 1912.4 Section 1912.4 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADVISORY COMMITTEES ON STANDARDS Organizational Matters § 1912.4 Avoidance of duplication....

  3. Rectal Duplication%直肠重复畸形

    Institute of Scientific and Technical Information of China (English)

    张道荣; 牟弦琴; 李振东; 李恭才; 王修忠; 代蕊霜

    1983-01-01

    @@ 我们两院近10年来共收治先天性直肠重复畸形17例(其中河北医学院11例,西安医学院6例).均经手术及病理证实.现总结如下:临床资料本组男性6例,女性11例,最小年龄4天,最大年龄14岁.%This paper reports 17 cases of rectal duplication. There were 6 males and 11rectal duplications were divided into three bordered by a common wall.9 patients in this series were found to have this condition.a rectovestitubular fistula.B.Pararectal duplication.The duplicated bowel lies near elliptical in shape and filled with fluid.In Complicated rectal duplication.The dupticated bowel is located at the perineum near the abnormal anus and is usually associated with hypospadia.Two cases were of this type.between the duplicated bowel and normal rectum must be partially resected at the distal end.The rectovestitubular fistula should be repaired at the same time.Pararectal duplication can be completely resected.resect the duplicated bowel from perineum but leave the genital anomaly for later treatment.

  4. 42 CFR 457.626 - Prevention of duplicate payments.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Prevention of duplicate payments. 457.626 Section... Payments to States § 457.626 Prevention of duplicate payments. (a) General rule. No payment shall be made... CFR 144.103, which is not part of, or wholly owned by, a governmental entity. Prompt payment...

  5. Dynamic Delayed Duplicate Detection for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami

    2008-01-01

    Duplicate detection is an expensive operation of disk-based model checkers. It consists of comparing some potentially new states, the candidate states, to previous visited states. We propose a new approach to this technique called dynamic delayed duplicate detection. This one exploits some typica...

  6. Double-blind ureteral duplication: report of two cases

    International Nuclear Information System (INIS)

    Blind ending of ureteral duplication is one of the most rare anomalies of the upper urinary tract. We report two cases of ureteral duplication with a blind ending both superiorly and inferiorly, and with no definite communication with the urinary tract. (orig.)

  7. Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae.

    Directory of Open Access Journals (Sweden)

    K Yoong Lim

    Full Text Available BACKGROUND: Polyploidy, frequently termed "whole genome duplication", is a major force in the evolution of many eukaryotes. Indeed, most angiosperm species have undergone at least one round of polyploidy in their evolutionary history. Despite enormous progress in our understanding of many aspects of polyploidy, we essentially have no information about the role of chromosome divergence in the establishment of young polyploid populations. Here we investigate synthetic lines and natural populations of two recently and recurrently formed allotetraploids Tragopogon mirus and T. miscellus (formed within the past 80 years to assess the role of aberrant meiosis in generating chromosomal/genomic diversity. That diversity is likely important in the formation, establishment and survival of polyploid populations and species. METHODOLOGY/PRINCIPAL FINDINGS: Applications of fluorescence in situ hybridisation (FISH to natural populations of T. mirus and T. miscellus suggest that chromosomal rearrangements and other chromosomal changes are common in both allotetraploids. We detected extensive chromosomal polymorphism between individuals and populations, including (i plants monosomic and trisomic for particular chromosomes (perhaps indicating compensatory trisomy, (ii intergenomic translocations and (iii variable sizes and expression patterns of individual ribosomal DNA (rDNA loci. We even observed karyotypic variation among sibling plants. Significantly, translocations, chromosome loss, and meiotic irregularities, including quadrivalent formation, were observed in synthetic (S(0 and S(1 generations polyploid lines. Our results not only provide a mechanism for chromosomal variation in natural populations, but also indicate that chromosomal changes occur rapidly following polyploidisation. CONCLUSIONS/SIGNIFICANCE: These data shed new light on previous analyses of genome and transcriptome structures in de novo and establishing polyploid species. Crucially our

  8. Distribution of segmental duplications in the context of higher order chromatin organisation of human chromosome 7

    DEFF Research Database (Denmark)

    Ebert, Grit; Steininger, Anne; Weißmann, Robert;

    2014-01-01

    of the Williams-Beuren syndrome locus we demonstrate by cross-species comparison that these SDs have inserted at the borders of a topological domain and that they flank regions with distinct DNA conformation. CONCLUSIONS: Our study suggests a link of nuclear architecture and the propagation of SDs across...

  9. DNA sequence and analysis of human chromosome 8.

    Science.gov (United States)

    Nusbaum, Chad; Mikkelsen, Tarjei S; Zody, Michael C; Asakawa, Shuichi; Taudien, Stefan; Garber, Manuel; Kodira, Chinnappa D; Schueler, Mary G; Shimizu, Atsushi; Whittaker, Charles A; Chang, Jean L; Cuomo, Christina A; Dewar, Ken; FitzGerald, Michael G; Yang, Xiaoping; Allen, Nicole R; Anderson, Scott; Asakawa, Teruyo; Blechschmidt, Karin; Bloom, Toby; Borowsky, Mark L; Butler, Jonathan; Cook, April; Corum, Benjamin; DeArellano, Kurt; DeCaprio, David; Dooley, Kathleen T; Dorris, Lester; Engels, Reinhard; Glöckner, Gernot; Hafez, Nabil; Hagopian, Daniel S; Hall, Jennifer L; Ishikawa, Sabine K; Jaffe, David B; Kamat, Asha; Kudoh, Jun; Lehmann, Rüdiger; Lokitsang, Tashi; Macdonald, Pendexter; Major, John E; Matthews, Charles D; Mauceli, Evan; Menzel, Uwe; Mihalev, Atanas H; Minoshima, Shinsei; Murayama, Yuji; Naylor, Jerome W; Nicol, Robert; Nguyen, Cindy; O'Leary, Sinéad B; O'Neill, Keith; Parker, Stephen C J; Polley, Andreas; Raymond, Christina K; Reichwald, Kathrin; Rodriguez, Joseph; Sasaki, Takashi; Schilhabel, Markus; Siddiqui, Roman; Smith, Cherylyn L; Sneddon, Tam P; Talamas, Jessica A; Tenzin, Pema; Topham, Kerri; Venkataraman, Vijay; Wen, Gaiping; Yamazaki, Satoru; Young, Sarah K; Zeng, Qiandong; Zimmer, Andrew R; Rosenthal, Andre; Birren, Bruce W; Platzer, Matthias; Shimizu, Nobuyoshi; Lander, Eric S

    2006-01-19

    The International Human Genome Sequencing Consortium (IHGSC) recently completed a sequence of the human genome. As part of this project, we have focused on chromosome 8. Although some chromosomes exhibit extreme characteristics in terms of length, gene content, repeat content and fraction segmentally duplicated, chromosome 8 is distinctly typical in character, being very close to the genome median in each of these aspects. This work describes a finished sequence and gene catalogue for the chromosome, which represents just over 5% of the euchromatic human genome. A unique feature of the chromosome is a vast region of approximately 15 megabases on distal 8p that appears to have a strikingly high mutation rate, which has accelerated in the hominids relative to other sequenced mammals. This fast-evolving region contains a number of genes related to innate immunity and the nervous system, including loci that appear to be under positive selection--these include the major defensin (DEF) gene cluster and MCPH1, a gene that may have contributed to the evolution of expanded brain size in the great apes. The data from chromosome 8 should allow a better understanding of both normal and disease biology and genome evolution. PMID:16421571

  10. The Precarious Prokaryotic Chromosome

    OpenAIRE

    Kuzminov, Andrei

    2014-01-01

    Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the t...

  11. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B;

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...... with the probe L1.26 confirmed the derivation from chromosome 13 and DNA polymorphism analysis showed maternal origin of the ring chromosome. Our results, together with a review of previous reports of cases with ring chromosome 13 with identified breakpoints, could neither support the theory of distinct clinical...

  12. Unique signatures of natural background radiation on human Y chromosomes from Kerala, India.

    Directory of Open Access Journals (Sweden)

    Sanjay Premi

    Full Text Available BACKGROUND: The most frequently observed major consequences of ionizing radiation are chromosomal lesions and cancers, although the entire genome may be affected. Owing to its haploid status and absence of recombination, the human Y chromosome is an ideal candidate to be assessed for possible genetic alterations induced by ionizing radiation. We studied the human Y chromosome in 390 males from the South Indian state of Kerala, where the level of natural background radiation (NBR is ten-fold higher than the worldwide average, and that from 790 unexposed males as control. RESULTS: We observed random microdeletions in the Azoospermia factor (AZF a, b and c regions in >90%, and tandem duplication and copy number polymorphism (CNP of 11 different Y-linked genes in about 80% of males exposed to NBR. The autosomal homologues of Y-linked CDY genes largely remained unaffected. Multiple polymorphic copies of the Y-linked genes showing single Y-specific signals suggested their tandem duplication. Some exposed males showed unilocus duplication of DAZ genes resulting in six copies. Notably, in the AZFa region, approximately 25% of exposed males showed deletion of the DBY gene, whereas flanking genes USP9Y and UTY remained unaffected. All these alterations were detected in blood samples but not in the germline (sperm samples. CONCLUSIONS: Exposure to high levels of NBR correlated with several interstitial polymorphisms of the human Y chromosome. CNPs and enhanced transcription of the SRY gene after duplication are envisaged to compensate for the loss of Y chromosome in some cells. The aforesaid changes, confined to peripheral blood lymphocytes, suggest a possible innate mechanism protecting the germline DNA from the NBR. Genome analysis of a larger population focusing on greater numbers of genes may provide new insights into the mechanisms and risks of the resultant genetic damages. The present work demonstrates unique signatures of NBR on human Y chromosomes

  13. Novel Duplicate Address Detection with Hash Function.

    Science.gov (United States)

    Song, GuangJia; Ji, ZhenZhou

    2016-01-01

    Duplicate address detection (DAD) is an important component of the address resolution protocol (ARP) and the neighbor discovery protocol (NDP). DAD determines whether an IP address is in conflict with other nodes. In traditional DAD, the target address to be detected is broadcast through the network, which provides convenience for malicious nodes to attack. A malicious node can send a spoofing reply to prevent the address configuration of a normal node, and thus, a denial-of-service attack is launched. This study proposes a hash method to hide the target address in DAD, which prevents an attack node from launching destination attacks. If the address of a normal node is identical to the detection address, then its hash value should be the same as the "Hash_64" field in the neighboring solicitation message. Consequently, DAD can be successfully completed. This process is called DAD-h. Simulation results indicate that address configuration using DAD-h has a considerably higher success rate when under attack compared with traditional DAD. Comparative analysis shows that DAD-h does not require third-party devices and considerable computing resources; it also provides a lightweight security resolution.

  14. Novel Duplicate Address Detection with Hash Function.

    Science.gov (United States)

    Song, GuangJia; Ji, ZhenZhou

    2016-01-01

    Duplicate address detection (DAD) is an important component of the address resolution protocol (ARP) and the neighbor discovery protocol (NDP). DAD determines whether an IP address is in conflict with other nodes. In traditional DAD, the target address to be detected is broadcast through the network, which provides convenience for malicious nodes to attack. A malicious node can send a spoofing reply to prevent the address configuration of a normal node, and thus, a denial-of-service attack is launched. This study proposes a hash method to hide the target address in DAD, which prevents an attack node from launching destination attacks. If the address of a normal node is identical to the detection address, then its hash value should be the same as the "Hash_64" field in the neighboring solicitation message. Consequently, DAD can be successfully completed. This process is called DAD-h. Simulation results indicate that address configuration using DAD-h has a considerably higher success rate when under attack compared with traditional DAD. Comparative analysis shows that DAD-h does not require third-party devices and considerable computing resources; it also provides a lightweight security resolution. PMID:26991901

  15. Intermittency as a universal characteristic of the complete chromosome DNA sequences of eukaryotes: From protozoa to human genomes

    Science.gov (United States)

    Rybalko, S.; Larionov, S.; Poptsova, M.; Loskutov, A.

    2011-10-01

    Large-scale dynamical properties of complete chromosome DNA sequences of eukaryotes are considered. Using the proposed deterministic models with intermittency and symbolic dynamics we describe a wide spectrum of large-scale patterns inherent in these sequences, such as segmental duplications, tandem repeats, and other complex sequence structures. It is shown that the recently discovered gene number balance on the strands is not of a random nature, and certain subsystems of a complete chromosome DNA sequence exhibit the properties of deterministic chaos.

  16. Identification of genes that are essential to restrict genome duplication to once per cell division

    Science.gov (United States)

    Vassilev, Alex; Lee, Chrissie Y.; Vassilev, Boris; Zhu, Wenge; Ormanoglu, Pinar; Martin, Scott E.; DePamphilis, Melvin L.

    2016-01-01

    Nuclear genome duplication is normally restricted to once per cell division, but aberrant events that allow excess DNA replication (EDR) promote genomic instability and aneuploidy, both of which are characteristics of cancer development. Here we provide the first comprehensive identification of genes that are essential to restrict genome duplication to once per cell division. An siRNA library of 21,584 human genes was screened for those that prevent EDR in cancer cells with undetectable chromosomal instability. Candidates were validated by testing multiple siRNAs and chemical inhibitors on both TP53+ and TP53- cells to reveal the relevance of this ubiquitous tumor suppressor to preventing EDR, and in the presence of an apoptosis inhibitor to reveal the full extent of EDR. The results revealed 42 genes that prevented either DNA re-replication or unscheduled endoreplication. All of them participate in one or more of eight cell cycle events. Seventeen of them have not been identified previously in this capacity. Remarkably, 14 of the 42 genes have been shown to prevent aneuploidy in mice. Moreover, suppressing a gene that prevents EDR increased the ability of the chemotherapeutic drug Paclitaxel to induce EDR, suggesting new opportunities for synthetic lethalities in the treatment of human cancers. PMID:27144335

  17. 7q36 deletion and 9p22 duplication: effects of a double imbalance

    Directory of Open Access Journals (Sweden)

    Pelegrino Karla de

    2013-01-01

    Full Text Available Abstract The etiology of mental retardation/developmental delay (MRDD remains a challenge to geneticists and clinicians and can be correlated to environmental and genetic factors. Chromosomal aberrations are common causes of moderate to severe mental retardation and may represent 10% of these occurrences. Here we report the case of a boy with development delay, hypoplasia of corpus callosum, microcephaly, muscular hypotonia, and facial dysmorphisms. A deletion of 7q36.1 → 36.3 and duplication of 9p22.3 → 23 was detected as a result of an unbalanced translocation of paternal origin. Breakpoint delimitation was achieved with array comparative genomic hybridization assay. Additional multiplex ligation dependent probe amplification (MLPA analyzes confirmed one copy loss of 7q36.3 region and one copy gain of 9p24.3 region. Patient resultant phenotype is consistent with the already described findings for both 7q deletion and 9p duplication syndromes.

  18. Annelid Distal-less/Dlx duplications reveal varied post-duplication fates

    Directory of Open Access Journals (Sweden)

    Korchagina Natalia

    2011-08-01

    Full Text Available Abstract Background Dlx (Distal-less genes have various developmental roles and are widespread throughout the animal kingdom, usually occurring as single copy genes in non-chordates and as multiple copies in most chordate genomes. While the genomic arrangement and function of these genes is well known in vertebrates and arthropods, information about Dlx genes in other organisms is scarce. We investigate the presence of Dlx genes in several annelid species and examine Dlx gene expression in the polychaete Pomatoceros lamarckii. Results Two Dlx genes are present in P. lamarckii, Capitella teleta and Helobdella robusta. The C. teleta Dlx genes are closely linked in an inverted tail-to-tail orientation, reminiscent of the arrangement of vertebrate Dlx pairs, and gene conversion appears to have had a role in their evolution. The H. robusta Dlx genes, however, are not on the same genomic scaffold and display divergent sequences, while, if the P. lamarckii genes are linked in a tail-to-tail orientation they are a minimum of 41 kilobases apart and show no sign of gene conversion. No expression in P. lamarckii appendage development has been observed, which conflicts with the supposed conserved role of these genes in animal appendage development. These Dlx duplications do not appear to be annelid-wide, as the polychaete Platynereis dumerilii likely possesses only one Dlx gene. Conclusions On the basis of the currently accepted annelid phylogeny, we hypothesise that one Dlx duplication occurred in the annelid lineage after the divergence of P. dumerilii from the other lineages and these duplicates then had varied evolutionary fates in different species. We also propose that the ancestral role of Dlx genes is not related to appendage development.

  19. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli;

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two chromoso...

  20. Duplication Cyst Presenting as Hydrocoele in a Child.

    Science.gov (United States)

    Liaqat, Naeem; Nayyer, Sajid; Yousaf, Abdul Rehman; Iqbal, Nayyer; Ahmed, Ejaz; Dar, Sajid Hameed

    2015-10-01

    Enteric duplication cyst can occur anywhere in Gastrointestinal Tract (GIT), from oropharynx to rectum. Their presentation depends upon the portion of GIT involved. The most common site of GIT involved is small intestine, in 50% of cases. Small intestinal duplication cyst usually present with abdominal pain or mass and rarely as intussusception, volvulus or small bowel obstruction. It may also present very rarely as inguinal hernia of which only 2 cases have been reported yet. We report a 3 years child presenting as hydrocoele of the cord which turned to be duplication cyst which is very rare presentation. PMID:26454396

  1. Foregut duplication cysts of the stomach with respiratory epithelium

    Institute of Scientific and Technical Information of China (English)

    Theodosios Theodosopoulos; Athanasios Marinis; Konstantinos Karapanos; Georgios Vassilikostas; Nikolaos Dafnios; Lazaros Samanides; Eleni Carvounis

    2007-01-01

    Gastrointestinal duplication is a congenital rare disease entity. Gastric duplication cysts seem to appear even more rarely. Herein, two duplications cysts of the stomach in a 46 year-old female patient are presented.Abdominal computed tomography demonstrated a cystic lesion attached to the posterior aspect of the gastric fundus, while upper gastrointestinal endoscopy was negative. An exploratory laparotomy revealed a non-communicating cyst and a smaller similar cyst embedded in the gastrosplenic ligament. Excision of both cysts along with the spleen was performed and pathology reported two smooth muscle coated cysts with a pseudostratified ciliated epithelial lining (respiratory type).

  2. Methods, apparatus and system for selective duplication of subtasks

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Costa, Carlos H.; Cher, Chen-Yong; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.

    2016-03-29

    A method for selective duplication of subtasks in a high-performance computing system includes: monitoring a health status of one or more nodes in a high-performance computing system, where one or more subtasks of a parallel task execute on the one or more nodes; identifying one or more nodes as having a likelihood of failure which exceeds a first prescribed threshold; selectively duplicating the one or more subtasks that execute on the one or more nodes having a likelihood of failure which exceeds the first prescribed threshold; and notifying a messaging library that one or more subtasks were duplicated.

  3. 4p16.3 microdeletions and microduplications detected by chromosomal microarray analysis: New insights into mechanisms and critical regions.

    Science.gov (United States)

    Bi, Weimin; Cheung, Sau-Wai; Breman, Amy M; Bacino, Carlos A

    2016-10-01

    Deletions in the 4p16.3 region cause Wolf-Hirschhorn syndrome, a well known contiguous microdeletion syndrome with the critical region for common phenotype mapped in WHSCR2. Recently, duplications in 4p16.3 were reported in three patients with developmental delay and dysmorphic features. Through chromosomal microarray analysis, we identified 156 patients with a deletion (n = 109) or duplication (n = 47) in 4p16.3 out of approximately 60,000 patients analyzed by Baylor Miraca Genetics Laboratories. Seventy-five of the postnatally detected deletions encompassed the entire critical region, 32 (43%) of which were associated with other chromosome rearrangements, including six patients (8%) that had a duplication adjacent to the terminal deletion. Our data indicate that Wolf-Hirschhorn syndrome deletions with an adjacent duplication occur at a higher frequency than previously appreciated. Pure deletions (n = 14) or duplications (n = 15) without other copy number changes distal to or inside the WHSCR2 were identified for mapping of critical regions. Our data suggest that deletion of the segment from 0.6 to 0.9 Mb from the terminus of 4p causes a seizure phenotype and duplications of a region distal to the previously defined smallest region of overlap for 4p16.3 microduplication syndrome are associated with neurodevelopmental problems. We detected seven Wolf-Hirschhorn syndrome deletions and one 4p16.3 duplication prenatally; all of the seven are either >8 Mb in size and/or associated with large duplications. In conclusion, our study provides deeper insight into the molecular mechanisms, the critical regions and effective prenatal diagnosis for 4p16.3 deletions/ duplications. © 2016 Wiley Periodicals, Inc.

  4. An Xq22.3 duplication detected by comparative genomic hybridization microarray (Array-CGH) defines a new locus (FGS5) for FG syndrome.

    Science.gov (United States)

    Jehee, Fernanda Sarquis; Rosenberg, Carla; Krepischi-Santos, Ana Cristina; Kok, Fernando; Knijnenburg, Jeroen; Froyen, Guy; Vianna-Morgante, Angela M; Opitz, John M; Passos-Bueno, Maria Rita

    2005-12-15

    FG syndrome is an X-linked multiple congenital anomalies (MCA) syndrome. It has been mapped to four distinct loci FGS1-4, through linkage analysis (Xq13, Xp22.3, and Xp11.4-p11.3) and based on the breakpoints of an X chromosome inversion (Xq11:Xq28), but so far no gene has been identified. We describe a boy with FG syndrome who has an inherited duplication at band Xq22.3 detected by comparative genomic hybridization microarray (Array-CGH). These duplication maps outside all four loci described so far for FG syndrome, representing therefore a new locus, which we propose to be called FGS5. MID2, a gene closely related to MID1, which is known to be mutated in Opitz G/BBB syndrome, maps within the duplicated segment of our patient. Since FG and Opitz G/BBB syndromes share many manifestations we considered MID2 a candidate gene for FG syndrome. We also discuss the involvement of other potential genes within the duplicated segment and its relationship with clinical symptoms of our patient, as well as the laboratory abnormalities found in his mother, a carrier of the duplication.

  5. Genomic and clinical characteristics of microduplications in chromosome 17.

    Science.gov (United States)

    Shchelochkov, Oleg A; Cheung, S W; Lupski, J R

    2010-05-01

    Genomic disorders have been increasingly recognized as a significant source of clinically relevant phenotypes largely fostered by advances in technologies for genome-wide analyses. Molecular and clinical studies of copy number variants involving chromosome 17 began with locus-specific studies of Charcot-Marie-Tooth disease type 1A (CMT1A, OMIM #118220) and hereditary neuropathy with liability to pressure palsies (HNPP, OMIM #162500), which laid the foundation for the paradigm of duplication/deletion and gene-dosage for our understanding of genomic disorders. With the clinical introduction of high-resolution array comparative genomic hybridization (aCGH) the number of recognized genomic disorders including microduplications has been increasing rapidly. A relatively high proportion of disease-associated copy number variants map to chromosome 17. This may result from its unique structural features, such as relative abundance of segmental duplications and interspersed repetitive elements, high gene content, and the presence of dosage-sensitive genes. These genomic rearrangements are mediated by diverse mechanisms including Non-Allelic Homologous Recombination (NAHR), Non-Homologous End-Joining (NHEJ), and Fork Stalling and Template Switching (FoSTeS). We provide specific examples of chromosome 17 microduplications with the emphasis on their phenotype, specific clinical features aiding in their diagnosis, and counseling. PMID:20425816

  6. Down syndrome phenotypes: The consequences of chromosomal imbalance

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.; Chen, X.N.; Schipper, R.; Sun, Z.; Gonsky, R.; Gerwehr, S.; Graham, J.M. Jr. (Univ. of California, Los Angeles, CA (United States)); Carpenter, N.; Say, B. (H.A. Chapman Institute of Medical Genetics, Tulsa, OK (United States)); Daumer, C. (Univ. of Munich (Germany)) (and others)

    1994-05-24

    Down syndrome (DS) is a major cause of mental retardation and congenital heart disease. Besides a characteristic set of facial and physical features, DS is associated with congenital anomalies of the gastrointestinal tract, an increased risk of leukemia, immune system defects, and an Alzheimer-like dementia. Moreover, DS is a model for the study of human aneuploidy. Although usually caused by the presence of an extra chromosome 21, subsets of the phenotypic features of DS may be caused by the duplication of small regions of the chromosome. The physical map of chromosome 21 allows the molecular definition of the regions duplicated in these rare cases of partial trisomy. As a first step in identifying the genes responsible for individual DS features and their pathophysiology, a panel of cell lines derived from 16 such individuals has been established and the molecular break points have been determined using fluorescence in situ hybridization and Southern blot dosage analysis of 32 markers unique to human chromosome 21. Combining this information with detailed clinical evaluations of these patients, the authors have now constructed a [open quotes]phenotypic map[close quotes] that includes 25 features and assigns regions of 2-20 megabases as likely to contain the genes responsible. This study provides evidence for a significant contribution of genes outside the D21S55 region to the DS phenotypes, including the facies, microcephaly, short stature, hypotonia, abnormal dermatoglyphics, and mental retardation. This strongly suggests DS is a contiguous gene syndrome and augurs against a single DS chromosomal region responsible for most of the DS phenotypic features.

  7. First Case of Complete Bladder Duplication in the Coronal Plane with Concomitant Duplication of the Urethra in an Adult Male

    Directory of Open Access Journals (Sweden)

    Nikolaos Karpathakis

    2013-01-01

    Full Text Available Duplication of the lower urinary tract is a very rare congenital anomaly which is diagnosed either at birth or during early childhood. These rare malformations are most of the times accompanied by other concomitant anomalies and are therefore diagnosed immediately after birth. In some even rarer cases there are no concomitant anomalies and symptoms thus leading to a diagnosis later in childhood. This is the first case in the literature of complete bladder duplication in the coronal plane with concomitant duplication of the urethra and no other associated anomalies in a 52-year-old male who remained asymptomatic and therefore undiagnosed for more than 5 decades.

  8. Recombinant chromosome 9 possibly derived from breakage and reunion of sister chromatids within a paracentric inversion loop.

    Science.gov (United States)

    Phelan, M C; Stevenson, R E; Anderson, E V

    1993-05-15

    Chromosomally unbalanced offspring resulting from the recombination of parental paracentric inversions are uncommon. We report on a 20-month-old boy with a partial duplication of 9p due to the recombination of a paternal paracentric inversion. The patient's recombinant chromosome was designated rec(9)(p13-->p24::p12-->p24::p12-->qter). The patient's father and paternal aunt have a paracentric inversion of chromosome 9:inv(9)(p13p24). Although several mechanisms have been proposed to explain the chromosome imbalance generated from paracentric inversions, none of the previously described mechanisms can account for the structure of the recombinant chromosome observed in the propositus. We propose an unusual mechanism of formation involving breakage and unequal reunion of sister chromatids within the inversion loop to explain the structure of the patient's recombinant chromosome. PMID:8488876

  9. Unique genomic structure and distinct mitotic behavior of ring chromosome 21 in two unrelated cases.

    Science.gov (United States)

    Zhang, H Z; Xu, F; Seashore, M; Li, P

    2012-01-01

    A ring chromosome replacing a normal chromosome could involve variable structural rearrangements and mitotic instability. However, most previously reported cases lacked further genomic characterization. High-resolution oligonucleotide array comparative genomic hybridization with single-nucleotide polymorphism typing (aCGH+SNP) was used to study 2 unrelated cases with a ring chromosome 21. Case 1 had severe myopia, hypotonia, joint hypermobility, speech delay, and dysmorphic features. aCGH detected a 1.275-Mb duplication of 21q22.12-q22.13 and a 6.731-Mb distal deletion at 21q22.2. Case 2 showed severe growth and developmental retardations, intractable seizures, and dysmorphic features. aCGH revealed a contiguous pattern of a 3.612- Mb deletion of 21q22.12-q22.2, a 4.568-Mb duplication of 21q22.2-q22.3, and a 2.243-Mb distal deletion at 21q22.3. Mitotic instability was noted in 13, 30, and 76% of in vitro cultured metaphase cells, interphase cells, and leukocyte DNA, respectively. The different phenotypes of these 2 cases are likely associated with the unique genomic structure and distinct mitotic behavior of their ring chromosome 21. These 2 cases represent a subtype of ring chromosome 21 probably involving somatic dicentric ring breakage and reunion. A cytogenomic approach is proposed for characterizing the genomic structure and mitotic instability of ring chromosome abnormalities.

  10. Complete duplication of bladder and urethra: a case report.

    Science.gov (United States)

    Esham, W; Holt, H A

    1980-05-01

    A case of complete duplication of the bladder and urethra in a girl is reported, demonstrating outlet obstruction in the bladder on the left side. Associated anomalies and pertinent literature are reviewed.

  11. Tubular colonic duplication - review of 1876-1981 literature

    International Nuclear Information System (INIS)

    Four cases of tubular colonic duplication are reported and 53 more are reviewed from 1876-1981 literature. Eighty percent of these patients had other anomalies, most notably genital and bladder duplications. Females outnumbered the males 37 to 20. Fifty percent of patients of either sex had some form of fistulous communication. In no one was the anomaly incompatible with life. Based on the anatomy of distal ends of duplicated colon, the patients are divided in five groups, for each of which the incidence and nature of concomitant anomalies are tabulated. Because of their anatomic complexity, most patients with colonic duplication require clinical evaluation by multiple subspecialists. We have also suggested the sequence and extent to which they should be evaluated by radiologists. (orig.)

  12. Sequential cloning of chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1991-12-31

    A method for sequential cloning of chromosomal DNA and chromosomal DNA cloned by this method are disclosed. The method includes the selection of a target organism having a segment of chromosomal DNA to be sequentially cloned. A first DNA segment, having a first restriction enzyme site on either side. homologous to the chromosomal DNA to be sequentially cloned is isolated. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  13. Recombination of an intrachromosomal paracentric insertion of chromosome 3

    Energy Technology Data Exchange (ETDEWEB)

    Best, R.G.; Burnett, W.J.; Brock, J.K. [Univ. of South Carolina School of Medicine, Columbia, SC (United States)] [and others

    1994-09-01

    Cytogenetic studies were initiated on a newborn female due to multiple congenital anomalies including microcephaly, clinodactyly, abnormal positioning of hands, left facial palsy, heart defect, sacral dimple, and facial dysmorphic features. Facial features were described as low set rotated ears, nystagmus, and a small, flattened nose. A structural rearrangement of the long arm of chromosome 3 was observed with a complex banding pattern. Study of parental chromosomes revealed a normal male pattern for the father, and an intrachromosomal insertion on the long arm of chromosome 3 for the mother described as 46,XX,dir ins(3)(q21q23q26.2). Further characterization of the proband`s structurally abnormal chromosome 3 revealed a karyotype best described as: 46,XX,rec(3),dupq23{r_arrow}q26.2::q21{r_arrow}q23,dir ins(3)(q21q23q26.2), which is a partial duplication of both the inserted segment as well as the intervening segment between the inserted segment and the insertion site. This would appear to be the result of a three-strand double cross-over within the insertion loop. Molecular cytogenetic studies are presently underway to further elucidate chromosome structure of the proband and her mother.

  14. Blind detection of duplicate regions in digital images

    OpenAIRE

    Čargo, Boštjan

    2009-01-01

    This work refers to the research area of digital image processing. Its main purpose is to elucidate the field of automatic digital forgery detection and, within its scope, describe a particular algorithm for blind detection of duplicated image regions: the so-called Duplicate Region Detector (DRD). The algorithm is based on principal component analysis, reduction of image blocks representations, and their lexicographical comparison. Our java implementation was tested on a population with posi...

  15. Infectious and Immunologic Phenotype of MECP2 Duplication Syndrome

    OpenAIRE

    Bauer, Michael; Kölsch, Uwe; Krüger, Renate; Unterwalder, Nadine; Hameister, Karin; Kaiser, Fabian Marc; Vignoli, Aglaia; Rossi, Rainer; Botella, Maria Pilar; Budisteanu, Magdalena; Rosello, Monica; Orellana, Carmen; Tejada, Maria Isabel; Papuc, Sorina Mihaela; Patat, Oliver

    2015-01-01

    MECP2 (methyl CpG binding protein 2) duplication causes syndromic intellectual disability. Patients often suffer from life-threatening infections, suggesting an additional immunodeficiency. We describe for the first time the detailed infectious and immunological phenotype of MECP2 duplication syndrome. 17/27 analyzed patients suffered from pneumonia, 5/27 from at least one episode of sepsis. Encapsulated bacteria (S.pneumoniae, H.influenzae) were frequently isolated. T-cell immunity showed no...

  16. Unusual variant of infrarenal duplication of inferior vena cava

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Sahoo

    2016-01-01

    Full Text Available Infrarenal inferior vena cava (IVC duplication is a rare anomaly. Most of the cases are asymptomatic and are detected incidentally. Prior knowledge of the anomaly is essential for safe procedure by intervention radiologist, retroperitoneal operation, and multi-visceral recovery operation from deceased donor by surgeon. We report a case of infrarenal IVC duplication detected incidentally during contrast-enhanced computed tomography examination of abdomen of a patient presenting with viral hepatitis and mild obstructive jaundice.

  17. Retroperitoneal gastric duplication cyst: a case report and literature review.

    Science.gov (United States)

    Pachl, Max; Patel, Kamlesh; Bowen, Claire; Parikh, Dakshesh

    2012-01-01

    A rare case of retroperitoneal gastric duplication is reported and discussed. An intra-abdominal cyst was detected at 31 weeks gestation and was followed up prenatally as a left sided duplex kidney. Post-natal ultrasound however, showed a normal kidney, but a cyst with features of enteric duplication in the left upper quadrant adjacent and compressing the kidney. Surgery was carried out during infancy and a retroperitoneal cyst was excised that contained heterotrophic gastric mucosa.

  18. Gene duplication in the genome of parasitic Giardia lamblia

    Directory of Open Access Journals (Sweden)

    Flores Roberto

    2010-02-01

    Full Text Available Abstract Background Giardia are a group of widespread intestinal protozoan parasites in a number of vertebrates. Much evidence from G. lamblia indicated they might be the most primitive extant eukaryotes. When and how such a group of the earliest branching unicellular eukaryotes developed the ability to successfully parasitize the latest branching higher eukaryotes (vertebrates is an intriguing question. Gene duplication has long been thought to be the most common mechanism in the production of primary resources for the origin of evolutionary novelties. In order to parse the evolutionary trajectory of Giardia parasitic lifestyle, here we carried out a genome-wide analysis about gene duplication patterns in G. lamblia. Results Although genomic comparison showed that in G. lamblia the contents of many fundamental biologic pathways are simplified and the whole genome is very compact, in our study 40% of its genes were identified as duplicated genes. Evolutionary distance analyses of these duplicated genes indicated two rounds of large scale duplication events had occurred in G. lamblia genome. Functional annotation of them further showed that the majority of recent duplicated genes are VSPs (Variant-specific Surface Proteins, which are essential for the successful parasitic life of Giardia in hosts. Based on evolutionary comparison with their hosts, it was found that the rapid expansion of VSPs in G. lamblia is consistent with the evolutionary radiation of placental mammals. Conclusions Based on the genome-wide analysis of duplicated genes in G. lamblia, we found that gene duplication was essential for the origin and evolution of Giardia parasitic lifestyle. The recent expansion of VSPs uniquely occurring in G. lamblia is consistent with the increment of its hosts. Therefore we proposed a hypothesis that the increment of Giradia hosts might be the driving force for the rapid expansion of VSPs.

  19. Familial Lymphoproliferative Malignancies and Tandem Duplication of NF1 Gene

    OpenAIRE

    Gustavo Fernandes; Mirela Souto; Frederico Costa; Edite Oliveira; Bernardo Garicochea

    2014-01-01

    Background. Neurofibromatosis type 1 is a genetic disorder caused by loss-of-function mutations in a tumor suppressor gene (NF1) which codifies the protein neurofibromin. The frequent genetic alterations that modify neurofibromin function are deletions and insertions. Duplications are rare and phenotype in patients bearing duplication of NF1 gene is thought to be restricted to developmental abnormalities, with no reference to cancer susceptibility in these patients. We evaluated a patient who...

  20. Interrogation of alternative splicing events in duplicated genes during evolution

    OpenAIRE

    Chen Ting-Wen; Wu Timothy H; Ng Wailap V; Lin Wen-Chang

    2011-01-01

    Abstract Background Gene duplication provides resources for developing novel genes and new functions while retaining the original functions. In addition, alternative splicing could increase the complexity of expression at the transcriptome and proteome level without increasing the number of gene copy in the genome. Duplication and alternative splicing are thought to work together to provide the diverse functions or expression patterns for eukaryotes. Previously, it was believed that duplicati...

  1. CHROMOSOMES OF AMERICAN MARSUPIALS.

    Science.gov (United States)

    BIGGERS, J D; FRITZ, H I; HARE, W C; MCFEELY, R A

    1965-06-18

    Studies of the chromosomes of four American marsupials demonstrated that Caluromys derbianus and Marmosa mexicana have a diploid number of 14 chromosomes, and that Philander opossum and Didelphis marsupialis have a diploid number of 22. The karyotypes of C. derbianus and M. mexicana are similar, whereas those of P. opossum and D. marsupialis are dissimilar. If the 14-chromosome karyotype represents a reduction from a primitive number of 22, these observations suggest that the change has occurred independently in the American and Australasian forms.

  2. Kinetics of catalytically activated duplication in aggregation growth

    Institute of Scientific and Technical Information of China (English)

    Wang Hai-Feng; Lin Zhen-Quan; Gao Yan; Xu Chao

    2009-01-01

    We propose a catalytically activated duplication model to mimic the coagulation and duplication of the DNA polymer system under the catalysis of the primer RNA.In the model,two aggregates of the same species can coagulate themselves and a DNA aggregate of any size can yield a new monomer or double itself with the help of RNA aggregates.By employing the mean-field rate equation approach we analytically investigate the evolution behaviour of the system.For the system with catalysis-driven monomer duplications,the aggregate size distribution of DNA polymers ak(t) always follows a power law in size in the long-time limit,and it decreases with time or approaches a time-independent steady-state form in the case of the duplication rate independent of the size of the mother aggregates,while it increases with time increasing in the case of the duplication rate proportional to the size of the mother aggregates.For the system with complete catalysis-driven duplications,the aggregate size distribution ak(t) approaches a generalized or modified scaling form.

  3. Differential selection after duplication in mammalian developmental genes.

    Science.gov (United States)

    Dermitzakis, E T; Clark, A G

    2001-04-01

    Gene duplication provides the opportunity for subsequent refinement of distinct functions of the duplicated copies. Either through changes in coding sequence or changes in regulatory regions, duplicate copies appear to obtain new or tissue-specific functions. If this divergence were driven by natural selection, we would expect duplicated copies to have differentiated patterns of substitutions. We tested this hypothesis using genes that duplicated before the human/mouse split and whose orthologous relations were clear. The null hypothesis is that the number of amino acid changes between humans and mice was distributed similarly across different paralogs. We used a method modified from Tang and Lewontin to detect heterogeneity in the amino acid substitution pattern between those different paralogs. Our results show that many of the paralogous gene pairs appear to be under differential selection in the human/mouse comparison. The properties that led to diversification appear to have arisen before the split of the human and mouse lineages. Further study of the diverged genes revealed insights regarding the patterns of amino acid substitution that resulted in differences in function and/or expression of these genes. This approach has utility in the study of newly identified members of gene families in genomewide data mining and for contrasting the merits of alternative hypotheses for the evolutionary divergence of function of duplicated genes. PMID:11264407

  4. Duplicate publication rate decline in Korean medical journals.

    Science.gov (United States)

    Kim, Soo Young; Bae, Chong-Woo; Hahm, Chang Kok; Cho, Hye Min

    2014-02-01

    The purpose of this study was to examine trends in duplicate publication in Korean medical articles indexed in the KoreaMed database from 2004 to 2009, before and after a campaign against scientific misconduct launched by the Korean Association of Medical Journal Editors in 2006. The study covered period from 2007 to 2012; and 5% of the articles indexed in KoreaMed were retrieved by random sampling. Three authors reviewed full texts of the retrieved articles. The pattern of duplicate publication, such as copy, salami slicing (fragmentation), and aggregation (imalas), was also determined. Before the launching ethics campaign, the national duplication rate in medical journals was relatively high: 5.9% in 2004, 6.0% in 2005, and 7.2% in 2006. However, duplication rate steadily declined to 4.5% in 2007, 2.8% in 2008, and 1.2 % in 2009. Of all duplicated articles, 53.4% were classified as copies, 27.8% as salami slicing, and 18.8% as aggregation (imalas). The decline in duplicate publication rate took place as a result of nationwide campaigns and monitoring by KoreaMed and KoreaMed Synapse, starting from 2006.

  5. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.J.; Rounsley, S.D.; Rodriguez-Carres, M.; Kuo, A.; Wasmann, C.c.; Grimwood, J.; Schmutz, J.; Taga, M.; White, G.J.; Zhuo, S.; Schwartz, D.C.; Freitag, M.; Ma, L.-J.; Danchin, E.G.J.; Henrissat, B.; Cutinho, P.M.; Nelson, D.R.; Straney, D.; Napoli, C.A.; Baker, B.M.; Gribskov, M.; Rep, M.; Kroken, S.; Molnar, I.; Rensing, C.; Kennell, J.C.; Zamora, J.; Farman, M.L.; Selker, E.U.; Salamov, A.; Shapiro, H.; Pangilinan, J.; Lindquist, E.; Lamers, C.; Grigoriev, I.V.; Geiser, D.M.; Covert, S.F.; Temporini, S.; VanEtten, H.D.

    2009-04-20

    The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of .50 species known as the"Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on .100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on

  6. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Coleman

    2009-08-01

    Full Text Available The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani, is a member of a group of >50 species known as the "Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI. Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique

  7. A 1.5-Mb cosmid contig of the CMT1A duplication/HNPP deletion critical region in 17p11.2-p12

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsufumi; Lupski, J.R. [Baylor College of Medicine, Houston, TX (United States)

    1996-05-15

    Charcot-Marie-Tooth disease type 1A (CMT1A) is associated with a 1.5-Mb tandem duplication in chromosome 17p11.2-p12, and hereditary neuropathy with liability to pressure palsies (HNPP) is associated with a 1.5-Mb deletion at this locus. Both diseases appear to result from an altered copy number of the peripheral myelin protein-22 gene, PMP22, which maps within the critical region. To identify additional genes and characterize chromosomal elements, a 1.5-Mb cosmid contig of the CMT1A duplication/HNPP deletion critical region was assembled using a yeast artificial chromosome (YAC)-based isolation and binning strategy. Whole YAC probes were used for screening a high-density arrayed chromosome 17-specific cosmid library. Selected cosmids were spotted on dot blots and assigned to bins defined by YACs. This binning of cosmids facilitated the subsequent fingerprint analysis. The 1.5-Mb region was covered by 137 cosmids with a minimum overlap set of 52 cosmids assigned to 17 bins and 9 contigs. 20 refs., 2 figs.

  8. Chromosomal abnormalities and autism

    Directory of Open Access Journals (Sweden)

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  9. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs

  10. Chromosomal Abnormalties with Epilepsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-02-01

    Full Text Available The correlation between specific chromosome abnormalties and various epilepsies was investigated by a study of 76 patients’ records obtained by questionnaires distributed to members of Kyoto Multi-institutional Study Group of Pediatric Neurology.

  11. Chimpanzee chromosome 13 is homologous to human chromosome 2p

    Energy Technology Data Exchange (ETDEWEB)

    Sun, N. C.; Sun, C. R.Y.; Ho, T.

    1977-01-01

    Similarities between human and chimpanzee chromosomes are shown by chromosome banding techniques and somatic cell hybridization techniques. Cell hybrids were obtained from the chimpanzee lymphocyte LE-7, and the Chinese hamster mutant cell, Gal-2. Experiments showed that the ACPL, MDHs, and Gal-Act genes could be assigned to chimpanzee chromosome 13, and since these genes have been assigned to human chromosme 2p, it is suggested that chimpanzee chromosome 13 is homologous to human chromosome 2p. (HLW)

  12. Chromosome doubling method

    Science.gov (United States)

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  13. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis.

    Directory of Open Access Journals (Sweden)

    Xue-Feng Ma

    Full Text Available We have created a high-resolution linkage map of Miscanthus sinensis, using genotyping-by-sequencing (GBS, identifying all 19 linkage groups for the first time. The result is technically significant since Miscanthus has a very large and highly heterozygous genome, but has no or limited genomics information to date. The composite linkage map containing markers from both parental linkage maps is composed of 3,745 SNP markers spanning 2,396 cM on 19 linkage groups with a 0.64 cM average resolution. Comparative genomics analyses of the M. sinensis composite linkage map to the genomes of sorghum, maize, rice, and Brachypodium distachyon indicate that sorghum has the closest syntenic relationship to Miscanthus compared to other species. The comparative results revealed that each pair of the 19 M. sinensis linkages aligned to one sorghum chromosome, except for LG8, which mapped to two sorghum chromosomes (4 and 7, presumably due to a chromosome fusion event after genome duplication. The data also revealed several other chromosome rearrangements relative to sorghum, including two telomere-centromere inversions of the sorghum syntenic chromosome 7 in LG8 of M. sinensis and two paracentric inversions of sorghum syntenic chromosome 4 in LG7 and LG8 of M. sinensis. The results clearly demonstrate, for the first time, that the diploid M. sinensis is tetraploid origin consisting of two sub-genomes. This complete and high resolution composite linkage map will not only serve as a useful resource for novel QTL discoveries, but also enable informed deployment of the wealth of existing genomics resources of other species to the improvement of Miscanthus as a high biomass energy crop. In addition, it has utility as a reference for genome sequence assembly for the forthcoming whole genome sequencing of the Miscanthus genus.

  14. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  15. Duodenal duplication cyst that manifested as duodeno-jejunal intussusception in an adult: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Jin [College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2007-08-15

    Duodenal duplication cyst account for 4% or 5% of all gastrointestinal duplications. Duodenal duplication acting as a lead point for an intussusception is an extremely rare event as it is largely a fixed retroperitoneal structure. We report here on the radiologic findings of a case of duodenal duplication cyst that manifested as duodeno-jejunal intussusception in an adult.

  16. Laparoscopic excision of an ascending colon duplication cyst in an adolescent

    OpenAIRE

    Nolan, Heather R.; Craig Wengler; Charles W. Hartin; Joshua B. Glenn

    2016-01-01

    Colonic intestinal duplications are infrequent and rarely present past early childhood. We present the case of a large, ascending colon duplication in a 17-year-old boy resected using minimally invasive techniques. This appears to be the first reported case of a laparoscopic en-bloc ascending colon duplication resection in an adolescent. The diagnosis and management of colonic duplications are discussed.

  17. Mapping Breakpoints of Complex Chromosome Rearrangements Involving a Partial Trisomy 15q23.1-q26.2 Revealed by Next Generation Sequencing and Conventional Techniques.

    Directory of Open Access Journals (Sweden)

    Qiong Pan

    Full Text Available Complex chromosome rearrangements (CCRs, which are rather rare in the whole population, may be associated with aberrant phenotypes. Next-generation sequencing (NGS and conventional techniques, could be used to reveal specific CCRs for better genetic counseling. We report the CCRs of a girl and her mother, which were identified using a combination of NGS and conventional techniques including G-banding, fluorescence in situ hybridization (FISH and PCR. The girl demonstrated CCRs involving chromosomes 3 and 8, while the CCRs of her mother involved chromosomes 3, 5, 8, 11 and 15. HumanCytoSNP-12 Chip analysis identified a 35.4 Mb duplication on chromosome 15q21.3-q26.2 in the proband and a 1.6 Mb microdeletion at chromosome 15q21.3 in her mother. The proband inherited the rearranged chromosomes 3 and 8 from her mother, and the duplicated region on chromosome 15 of the proband was inherited from the mother. Approximately one hundred genes were identified in the 15q21.3-q26.2 duplicated region of the proband. In particular, TPM1, SMAD6, SMAD3, and HCN4 may be associated with her heart defects, and HEXA, KIF7, and IDH2 are responsible for her developmental and mental retardation. In addition, we suggest that a microdeletion on the 15q21.3 region of the mother, which involved TCF2, TCF12, ADMA10 and AQP9, might be associated with mental retardation. We delineate the precise structures of the derivative chromosomes, chromosome duplication origin and possible molecular mechanisms for aberrant phenotypes by combining NGS data with conventional techniques.

  18. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements.

    Science.gov (United States)

    Liu, Pengfei; Erez, Ayelet; Nagamani, Sandesh C Sreenath; Dhar, Shweta U; Kołodziejska, Katarzyna E; Dharmadhikari, Avinash V; Cooper, M Lance; Wiszniewska, Joanna; Zhang, Feng; Withers, Marjorie A; Bacino, Carlos A; Campos-Acevedo, Luis Daniel; Delgado, Mauricio R; Freedenberg, Debra; Garnica, Adolfo; Grebe, Theresa A; Hernández-Almaguer, Dolores; Immken, LaDonna; Lalani, Seema R; McLean, Scott D; Northrup, Hope; Scaglia, Fernando; Strathearn, Lane; Trapane, Pamela; Kang, Sung-Hae L; Patel, Ankita; Cheung, Sau Wai; Hastings, P J; Stankiewicz, Paweł; Lupski, James R; Bi, Weimin

    2011-09-16

    Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.

  19. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids.

    Science.gov (United States)

    Wegrzyn, Katarzyna E; Gross, Marta; Uciechowska, Urszula; Konieczny, Igor

    2016-01-01

    The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells. PMID:27563644

  20. Small-Scale Duplications Play a Significant Role in Rice Genome Evolution

    Institute of Scientific and Technical Information of China (English)

    GUO Xin-yi; XU Guo-hua; ZHANG Yang; HU Wei-min; FAN Long-jiang

    2005-01-01

    Genes are continually being created by the processes of genome duplication (ohnolog) and gene duplication (paralog)Whole-genome duplications have been found to be widespread in plant species and play an important role in plant evolution. Clearly un-overlapping duplicated blocks of whole-genome duplications can be detected in the genome of sequenced rice (Oryza sativa).Syntenic ohnolog pairs (ohnologues) of the whole-genome duplications in rice were identified based on their syntenic duplicate lines.The paralogs of ohnologues were further scanned using multi-round reciprocal BLAST best-hit searching (E<e-14). The results indicated that an average of 0.55 sister paralogs could be found for every ohnologue in rice. These results suggest that small-scale duplications, as well as whole-genome duplications, play a significant role in the two duplicated rice genomes.

  1. Identification of novel candidate gene loci and increased sex chromosome aneuploidy among infants with conotruncal heart defects.

    Science.gov (United States)

    Osoegawa, Kazutoyo; Iovannisci, David M; Lin, Bin; Parodi, Christina; Schultz, Kathleen; Shaw, Gary M; Lammer, Edward J

    2014-02-01

    Congenital heart defects (CHDs) are common malformations, affecting four to eight per 1,000 total births. Conotruncal defects are an important pathogenetic subset of CHDs, comprising nearly 20% of the total. Although both environmental and genetic factors are known to contribute to the occurrence of conotruncal defects, the causes remain unknown for most. To identify novel candidate genes/loci, we used array comparative genomic hybridization to detect chromosomal microdeletions/duplications. From a population base of 974,579 total births born during 1999-2004, we screened 389 California infants born with tetralogy of Fallot or d-transposition of the great arteries. We found that 1.7% (5/288) of males with a conotruncal defect had sex chromosome aneuploidy, a sevenfold increased frequency (relative risk = 7.0; 95% confidence interval 2.9-16.9). We identified eight chromosomal microdeletions/duplications for conotruncal defects. From these duplications and deletions, we found five high priority candidate genes (GATA4, CRKL, BMPR1A, SNAI2, and ZFHX4). This is the initial report that sex chromosome aneuploidy is associated with conotruncal defects among boys. These chromosomal microduplications/deletions provide evidence that GATA4, SNAI2, and CRKL are highly dosage sensitive genes involved in outflow tract development. Genome wide screening for copy number variation can be productive for identifying novel genes/loci contributing to non-syndromic common malformations.

  2. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  3. Partial AZFc duplications not deletions are associated with male infertility in the Yi population of Yunnan Province, China

    Institute of Scientific and Technical Information of China (English)

    Jun-jie YE; Li MA; Li-juan YANG; Jin-huan WANG; Yue-li WANG; Hai GUO; Ning GONG

    2013-01-01

    There are many reports on associations between spermatogenesis and partial azoospermia factor c (AZFc) deletions as well as duplications; however,results are conflicting,possibly due to differences in methodology and ethnic background.The purpose of this study is to investigate the association of AZFc polymorphisms and male infertility in the Yi ethnic population,residents within Yunnan Province,China.Methods:A total of 224 infertile patients and 153 fertile subjects were selected in the Yi ethnic population.The study was performed by sequence-tagged site plus/minus (STS+/-) analysis followed by gene dosage and gone copy definition analysis.Y haplotypes of 215 cases and 115 controls were defined by 12 binary markers using single nucleotide polymorphism on Y chromosome (Y-SNP) multiplex assays based on single base primer extension technology.Results:The distribution of Y haplotypes was not significantly different between the case and control groups.The frequencies of both gr/gr (7.6% vs.8.5%) and b2/b3 (6.3% vs.8.5%) deletions do not show significant differences.Similarly,single nucleotide variant (SNV) analysis shows no significant difference of gene copy definition between the cases and controls.However,the frequency of partial duplications in the infertile group (4.0%) is significantly higher than that in the control group (0.7%).Further,we found a case with sY1206 deletion which had two CDY1 copies but removed half of DAZ genes.Conclusions:Our results show that male infertility is associated with partial AZFc duplications,but neither gr/gr nor b2/b3 deletions,suggesting that partial AZFc duplications rather than deletions are risk factors for male infertility in Chinese-Yi population.

  4. Autosomal dominant Parkinson's disease caused by SNCA duplications.

    Science.gov (United States)

    Konno, Takuya; Ross, Owen A; Puschmann, Andreas; Dickson, Dennis W; Wszolek, Zbigniew K

    2016-01-01

    The discovery in 1997 that mutations in the SNCA gene cause Parkinson's disease (PD) greatly advanced our understanding of this illness. There are pathogenic missense mutations and multiplication mutations in SNCA. Thus, not only a mutant protein, but also an increased dose of wild-type protein can produce autosomal dominant parkinsonism. We review the literature on SNCA duplications and focus on pathologically-confirmed cases. We also report a newly-identified American family with SNCA duplication whose proband was autopsied. We found that over half of the reported cases with SNCA duplication had early-onset parkinsonism and non-motor features, such as dysautonomia, rapid eye movement sleep behavior disorder (RBD), hallucinations (usually visual) and cognitive deficits leading to dementia. Only a few cases have presented with typical features of PD. Our case presented with depression and RBD that preceded parkinsonism, and dysautonomia that led to an initial diagnosis of multiple system atrophy. Dementia and visual hallucinations followed. Our patient and the other reported cases with SNCA duplications had widespread cortical Lewy pathology. Neuronal loss in the hippocampal cornu ammonis 2/3 regions were seen in about half of the autopsied SNCA duplication cases. Similar pathology was also observed in SNCA missense mutation and triplication carriers. PMID:26350119

  5. Site-specific basal body duplication in Chlamydomonas.

    Science.gov (United States)

    O'Toole, Eileen T; Dutcher, Susan K

    2014-02-01

    Correct centriole/basal body positioning is required for numerous biological processes, yet how the cell establishes this positioning is poorly understood. Analysis of centriolar/basal body duplication provides a key to understanding basal body positioning and function. Chlamydomonas basal bodies contain structural features that enable specific triplet microtubules to be specified. Electron tomography of cultures enriched in mitotic cells allowed us to follow basal body duplication and identify a specific triplet at which duplication occurs. Probasal bodies elongate in prophase, assemble transitional fibers (TF) and are segregated with a mature basal body near the poles of the mitotic spindle. A ring of nine-singlet microtubules is initiated at metaphase, orthogonal to triplet eight. At telophase/cytokinesis, triplet microtubule blades assemble first at the distal end, rather than at the proximal cartwheel. The cartwheel undergoes significant changes in length during duplication, which provides further support for its scaffolding role. The uni1-1 mutant contains short basal bodies with reduced or absent TF and defective transition zones, suggesting that the UNI1 gene product is important for coordinated probasal body elongation and maturation. We suggest that this site-specific basal body duplication ensures the correct positioning of the basal body to generate landmarks for intracellular patterning in the next generation. PMID:24166861

  6. Investigating the root causes of duplicate publication in research articles.

    Science.gov (United States)

    Adibi, Payman; Kianpour, Maryam; Shirani, Shahin

    2015-01-01

    Duplicate publication is the republication of an article in which a lot of important parts overlap with the published copy. This issue is nearly at the top of the list of subjects, which medical journal editors discuss. this study was conducted with the purpose of investigating the publication patterns and determining it's root causes in research articles in the Isfahan University of Medical Science and to find a solution to prevent it. In a cross sectional study, All the discovered cases of duplicate publication, which were referred to the ethics committee of the Isfahan University of Medical Science during 2005-2008 were selected to be investigated through a descriptive method. After confirmation about the case of a duplicate publication, the requisite investigation was conducted through interviews and review of the correspondence and documentaries, and then, a radical line was charted. After investigating the cases and classifying the radical causes and incidents, categorization and definition of duplicate publication are presented. Eight out of nine republished articles belonged to the first category of Baily's index (copy publication) and one was in the third category (minimum publishable unit: Salami slicing). The results of the present article indicate that, the scientific community of the country is not yet familiar with the professional principles of scientific and research affairs. According to the results of this investigation, it is recommended to take official action against duplicate publication cases, violation of copyright, and also to have strict instructions against this unethical practice. PMID:25861659

  7. Paralogue Interference Affects the Dynamics after Gene Duplication.

    Science.gov (United States)

    Kaltenegger, Elisabeth; Ober, Dietrich

    2015-12-01

    Proteins tend to form homomeric complexes of identical subunits, which act as functional units. By definition, the subunits are encoded from a single genetic locus. When such a gene is duplicated, the gene products are suggested initially to cross-interact when coexpressed, thus resulting in the phenomenon of paralogue interference. In this opinion article, we explore how paralogue interference can shape the fate of a duplicated gene. One important outcome is a prolonged time window in which both copies remain under selection increasing the chance to accumulate mutations and to develop new properties. Thereby, paralogue interference can mediate the coevolution of duplicates and here we illustrate the potential of this phenomenon in light of recent new studies. PMID:26638775

  8. Ureteral Triplication and Contralateral Duplication with Vesicoureteral Reflux

    Directory of Open Access Journals (Sweden)

    Haluk Söylemez

    2011-11-01

    Full Text Available Ureteral triplication is a rare congenital anomaly of the urinary tract. Since its first description, only about 100 cases have been reported in the literature. The association of ureteral triplication and contralateral duplication is even rarer. We reported a case of ureteral triplication and contralateral duplication with vesicoureteral reflux. The patient was a five-year-old girl with a history of recurrent urinary tract infections, dysuria and lower abdominal pain. Intravenous Pyelography (IVP showed duplication of the right ureter and triplication of the left ureter. In the cystourethrogram there was vesicoureteral reflux at the lower pole of the right kidney. The patient underwent right lower to upper ureteroureterostomy and excision of the distal ureter. This is the second report of ureteral triplication in Turkey. The literature concerning this rare anomaly was reviewed.

  9. Content-based network model with duplication and divergence

    Science.gov (United States)

    Şengün, Yasemin; Erzan, Ayşe

    2006-06-01

    We construct a minimal content-based realization of the duplication and divergence model of genomic networks introduced by Wagner [Proc. Natl. Acad. Sci. 91 (1994) 4387] and investigate the scaling properties of the directed degree distribution and clustering coefficient. We find that the content-based network exhibits crossover between two scaling regimes, with log-periodic oscillations for large degrees. These features are not present in the original gene duplication model, but inherent in the content-based model of Balcan and Erzan. The scaling form of the degree distribution of the content-based model turns out to be robust under duplication and divergence, with some re-adjustment of the scaling exponents, while the out-clustering coefficient goes over from a weak power-law dependence on the degree, to an exponential decay under mutations which include splitting and merging of strings.

  10. Ultrasound evaluation of the enteric duplication cyst: the gut signature.

    Science.gov (United States)

    Di Serafino, Marco; Mercogliano, Carmela; Vallone, Gianfranco

    2016-06-01

    Gastrointestinal duplication cyst is a rare congenital anomaly that may occur anywhere along the gastrointestinal tract from the tongue to the anus. Such cysts occur most commonly in the small bowel and about half are in the mesenteric border of the ileum. Such cystic duplications communicate only rarely with the intestinal lumen although the cysts are attached to the intestine and may even share a common wall with the adjacent alimentary tract. These lesions can vary in shape, being cystic or tubular, and often show the same structure of the adjacent normal bowel. It is usually asymptomatic and complications are rare but they may include obstruction by volvulus or intussusception, bleeding, infection, and perforation. When diagnosed these lesions should be surgically resected to avoid future possible complications. The authors present a case of enteric cystic duplication and its ultrasound appearance in a 12-month-old Caucasian female infant cause of acute abdominal pain and intestinal obstruction, thus requiring urgent surgery.

  11. Breakage-fusion-bridge cycles and de novo telomere formation on broken chromosomes in maize callus cultures.

    Science.gov (United States)

    Santos-Serejo, Janay A; Aguiar-Perecin, Margarida L R

    2016-06-01

    Breakpoints involved in chromosome alterations associated with heterochromatin have been detected in maize plants regenerated from callus culture. A cytogenetic analysis of plants regenerated from a maize callus was performed aiming to analyze the stability of a chromosome 7 bearing a deficiency-duplication (Df-Dp), which was interpreted as derived from a chromatid type breakage-fusion-bridge (BFB) cycle. The Df-Dp chromosome 7 was stable in mitotic and meiotic cells of the regenerated plants. Fluorescence in situ hybridization showed signals of telomeric sequences on the broken chromosome arm and provided evidence of de novo telomere formation. The stability of two types of altered chromosome 7 was investigated in C-banded metaphases from samples of the original callus that were collected during a period of 30-42 months after culture initiation. New alterations involving heterochromatic knobs of chromosomes 7 and 9 were observed. The aberrant chromosomes were stable in the subcultures, thus providing evidence of broken chromosome healing. The examination of anaphases showed the presence of bridges, which was consistent with the occurrence of BFB cycles. De novo telomere formation occurred in euchromatic and heterochromatic chromosome termini. The results point to events of chromosomal evolution that might occur in plants. PMID:27203556

  12. Chromosome numbers in Bromeliaceae

    Directory of Open Access Journals (Sweden)

    Cotias-de-Oliveira Ana Lúcia Pires

    2000-01-01

    Full Text Available The present study reports chromosome numbers of 17 species of Bromeliaceae, belonging to the genera Encholirium, Bromelia, Orthophytum, Hohenbergia, Billbergia, Neoglaziovia, Aechmea, Cryptanthus and Ananas. Most species present 2n = 50, however, Bromelia laciniosa, Orthophytum burle-marxii and O. maracasense are polyploids with 2n = 150, 2n = 100 and 2n = 150, respectively, while for Cryptanthus bahianus, 2n = 34 + 1-4B. B chromosomes were observed in Bromelia plumieri and Hohenbergia aff. utriculosa. The chromosome number of all species was determined for the first time, except for Billbergia chlorosticta and Cryptanthus bahianus. Our data supports the hypothesis of a basic number of x = 25 for the Bromeliaceae family and decreasing aneuploidy in the genus Cryptanthus.

  13. Those amazing dinoflagellate chromosomes

    Institute of Scientific and Technical Information of China (English)

    PETER J RIZZO

    2003-01-01

    Dinoflagellates are a very large and diverse group of eukaryotic algae that play a major role in aquatic food webs of both fresh water and marine habitats. Moreover, the toxic members of this group pose a health threat in the form of red tides. Finally, dinoflagellates are of great evolutionary importance,because of their taxonomic position, and their unusual chromosome structure and composition. While the cytoplasm of dinoflagellates is typically eukaryotic, the nucleus is unique when compared to the nucleus of other eukaryotes. More specifically, while the chromosomes of all other eukaryotes contain histones,dinoflagellate chromosomes lack histones completely. There are no known exceptions to this observation: all dinoflagellates lack histones, and all other eukaryotes contain histones. Nevertheless, dinoflagellates remain a relatively unstudied group of eukaryotes.

  14. A Method of Object-based De-duplication

    Directory of Open Access Journals (Sweden)

    Fang Yan

    2011-12-01

    Full Text Available Today, the world is increasingly awash in more and more unstructured data, not only because of the Internet, but also because data that used to be collected on paper or media such as film, DVDs and compact discs has moved online [1]. Most of this data is unstructured and in diverse formats such as e-mail, documents, graphics, images, and videos. In managing unstructured data complexity and scalability, object storage has a clear advantage. Object-based data de-duplication is the current most advanced method and is the effective solution for detecting duplicate data. It can detect common embedded data for the first backup across completely unrelated files and even when physical block layout changes. However, almost all of the current researches on data de-duplication do not consider the content of different file types, and they do not have any knowledge of the backup data format. It has been proven that such method cannot achieve optimal performance for compound files.In our proposed system, we will first extract objects from files, Object_IDs are then obtained by applying hash function to the objects. The resulted Object_IDs are used to build as indexing keys in B+ tree like index structure, thus, we avoid the need for a full object index, the searching time for the duplicate objects reduces to O(log n.We introduce a new concept of a duplicate object resolver. The object resolver mediates access to all the objects and is a central point for managing all the metadata and indexes for all the objects. All objects are addressable by their IDs which is unique in the universe. The resolver stores metadata with triple format. This improved metadata management strategy allows us to set, add and resolve object properties with high flexibility, and allows the repeated use of the same metadata among duplicate object.

  15. ETOPOSIDE INDUCES CHROMOSOMAL ABNORMALITIES IN SPERMATOCYTES AND SPERMATOGONIAL STEM CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, F; Pearson, F S; Bishop, J B; Wyrobek, A J

    2005-07-15

    Etoposide (ET) is a chemotherapeutic agent widely used in the treatment of leukemia, lymphomas and many solid tumors, such as testicular and ovarian cancers, that affect patients in their reproductive years. The purpose of the study was to use sperm FISH analyses to characterize the long-term effects of ET on male germ cells. We used a mouse model to characterize the induction of chromosomal aberrations (partial duplications and deletions) and whole chromosomal aneuploidies in sperm of mice treated with a clinical dose of ET. Semen samples were collected at 25 and 49 days after dosing to investigate the effects of ET on meiotic pachytene cells and spermatogonial stem-cells, respectively. ET treatment resulted in major increases in the frequencies of sperm carrying chromosomal aberrations in both meiotic pachytene (27- to 578-fold) and spermatogonial stem-cells (8- to 16-fold), but aneuploid sperm were induced only after treatment of meiotic cells (27-fold) with no persistent effects in stem cells. These results demonstrate that male meiotic germ cells are considerably more sensitive to ET than spermatogonial stem-cell and that increased frequencies of sperm with structural aberrations persist after spermatogonial stem-cell treatment. These findings predict that patients who undergo chemotherapy with ET may have transient elevations in the frequencies of aneuploid sperm, but more importantly, may have persistent elevations in the frequencies of sperm with chromosomal aberrations, placing them at higher risk for abnormal reproductive outcomes long after the end of their chemotherapy.

  16. Multi-Factor Duplicate Question Detection in Stack Overflow

    Institute of Scientific and Technical Information of China (English)

    张芸; David Lo; 夏鑫; 孙建伶

    2015-01-01

    Stack Overflow is a popular on-line question and answer site for software developers to share their experience and expertise. Among the numerous questions posted in Stack Overflow, two or more of them may express the same point and thus are duplicates of one another. Duplicate questions make Stack Overflow site maintenance harder, waste resources that could have been used to answer other questions, and cause developers to unnecessarily wait for answers that are already available. To reduce the problem of duplicate questions, Stack Overflow allows questions to be manually marked as duplicates of others. Since there are thousands of questions submitted to Stack Overflow every day, manually identifying duplicate questions is a di昋cult work. Thus, there is a need for an automated approach that can help in detecting these duplicate questions. To address the above-mentioned need, in this paper, we propose an automated approach named DUPPREDICTOR that takes a new question as input and detects potential duplicates of this question by considering multiple factors. DUPPREDICTOR extracts the title and description of a question and also tags that are attached to the question. These pieces of information (title, description, and a few tags) are mandatory information that a user needs to input when posting a question. DUPPREDICTOR then computes the latent topics of each question by using a topic model. Next, for each pair of questions, it computes four similarity scores by comparing their titles, descriptions, latent topics, and tags. These four similarity scores are finally combined together to result in a new similarity score that comprehensively considers the multiple factors. To examine the benefit of DUPPREDICTOR, we perform an experiment on a Stack Overflow dataset which contains a total of more than two million questions. The result shows that DUPPREDICTOR can achieve a recall-rate@20 score of 63.8%. We compare our approach with the standard search engine of Stack

  17. Evolution of Weighted Networks by Duplication-Divergence Mechanism

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Guo; YAN Jia-Ren; LIU Zi-Ran; WANG Li

    2006-01-01

    @@ The duplication and divergence process is ubiquitous in nature and man-made networks. Motivated by the duplication-divergence mechanism which depicts the growth of protein networks, we propose a weighted network model in which topological evolution is coupled with weight dynamics. Large scale numerical results indicate that our model can naturally generate networks with power-law-like distributions of degree, strength and weight.The degree-strength correlation is illustrated as well. These properties are in agreement well with empirical data observed in real-world systems. Furthermore, by altering the retention probability σ, weighted, structured exponential networks are realized.

  18. Analisis Duplicate File Finder Menggunakan Metode MD5 Hash

    OpenAIRE

    Juwita, Wahyuni Farah

    2015-01-01

    Hard drive is one of the core components of computer in various types and sizes. Hard drive with a largest size could be full, even it has not stored any large files. There’s a lot of possibility to have same files on a different directory, searching for the same file in each directory is very difficult and take a long time. Duplicate File Finder application is able to resolve the problem. Duplicate File Finder application be able to find out the same file that located in a different director...

  19. A retroperitoneal foregut duplication cyst: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Woon; Lee, Jin Hee; Byun, Kyung Hwan; Kim, Byung Ki; Sohn, Kyung Sik; Kee, Se Kook; Jeon, Jin Min [Pochon CHA University, Kumi CHA Hospital, Kumi (Korea, Republic of); Yun, Young Kook [College of Medicine, Kyungpook National University, Daegu (Korea, Republic of)

    2006-01-15

    Retroperitoneal foregut duplication cyst is an extremely rare congenital malformation. Pathologically, this lesion contains both gastric mucosa and respiratory type mucosa; radiologically, it is often challenging to differentiate it from the other cystic neoplasms that present a similar appearance. We report on a case of retroperitoneal foregut duplication cyst that was lined by both gastric and pseudostratified ciliated columnar epithelium, and it was also accompanied by a pancreatic pseudocyst. Initially, it presented with peripancreatic and intrapancreatic cystic masses in an asymptomatic 30-year-old man, and this man has since undergone surgical resection.

  20. Study of duplication 24bp of ARX gene among patients presenting a Mental Retardation with a syndromic and non syndromic forms

    International Nuclear Information System (INIS)

    Mental Retardation (MR) is the most frequent handicap. It touches 3% of the general population. The genetic causes of this handicap account for 40% of these cases. ARX gene (Aristaless related homeobox gene) belongs to the family of the genes homeobox located in Xp22.1. It is considered as the most frequently muted gene after the FMR1 gene. It is implicated in various forms of syndromic and nonsyndromic MR. Several types of mutation were identified on the level of this gene, including deletions/insertions, duplications, missense and nonsense mutations, responsible for a wide spectrum of phenotypes. The goal of this work is to seek the most frequent change of gene ARX: duplication 24pb (at the origin of an expansion of the field poly has protein ARX in the position 144-155AA) among Tunisian boys presenting in particular family forms of non specific MR, sporadic forms of non specific MR like certain patients presenting a West syndrome.To prove the duplication of 24 Pb, we used in this work the Pcr technique. The change of duplication 24pb was not found in our series, this could be explained by the low number of cases family studied (38 families) and by the absence of connection studies accusing a mode of transmission related to X chromosome in particular for the sporadic cases. (Author)

  1. Human interphase chromosomes: a review of available molecular cytogenetic technologies

    Directory of Open Access Journals (Sweden)

    Yurov Yuri B

    2010-01-01

    Full Text Available Abstract Human karyotype is usually studied by classical cytogenetic (banding techniques. To perform it, one has to obtain metaphase chromosomes of mitotic cells. This leads to the impossibility of analyzing all the cell types, to moderate cell scoring, and to the extrapolation of cytogenetic data retrieved from a couple of tens of mitotic cells to the whole organism, suggesting that all the remaining cells possess these genomes. However, this is far from being the case inasmuch as chromosome abnormalities can occur in any cell along ontogeny. Since somatic cells of eukaryotes are more likely to be in interphase, the solution of the problem concerning studying postmitotic cells and larger cell populations is interphase cytogenetics, which has become more or less applicable for specific biomedical tasks due to achievements in molecular cytogenetics (i.e. developments of fluorescence in situ hybridization -- FISH, and multicolor banding -- MCB. Numerous interphase molecular cytogenetic approaches are restricted to studying specific genomic loci (regions being, however, useful for identification of chromosome abnormalities (aneuploidy, polyploidy, deletions, inversions, duplications, translocations. Moreover, these techniques are the unique possibility to establish biological role and patterns of nuclear genome organization at suprachromosomal level in a given cell. Here, it is to note that this issue is incompletely worked out due to technical limitations. Nonetheless, a number of state-of-the-art molecular cytogenetic techniques (i.e multicolor interphase FISH or interpahase chromosome-specific MCB allow visualization of interphase chromosomes in their integrity at molecular resolutions. Thus, regardless numerous difficulties encountered during studying human interphase chromosomes, molecular cytogenetics does provide for high-resolution single-cell analysis of genome organization, structure and behavior at all stages of cell cycle.

  2. Topoisomerase IIα in chromosome instability and personalized cancer therapy.

    Science.gov (United States)

    Chen, T; Sun, Y; Ji, P; Kopetz, S; Zhang, W

    2015-07-30

    Genome instability is a hallmark of cancer cells. Chromosome instability (CIN), which is often mutually exclusive from hypermutation genotypes, represents a distinct subtype of genome instability. Hypermutations in cancer cells are due to defects in DNA repair genes, but the cause of CIN is still elusive. However, because of the extensive chromosomal abnormalities associated with CIN, its cause is likely a defect in a network of genes that regulate mitotic checkpoints and chromosomal organization and segregation. Emerging evidence has shown that the chromosomal decatenation checkpoint, which is critical for chromatin untangling and packing during genetic material duplication, is defective in cancer cells with CIN. The decatenation checkpoint is known to be regulated by a family of enzymes called topoisomerases. Among them, the gene encoding topoisomerase IIα (TOP2A) is commonly altered at both gene copy number and gene expression level in cancer cells. Thus, abnormal alterations of TOP2A, its interacting proteins, and its modifications may have a critical role in CIN in human cancers. Clinically, a large arsenal of topoisomerase inhibitors has been used to suppress DNA replication in cancer. However, they often lead to the secondary development of leukemia because of their effect on the chromosomal decatenation checkpoint. Therefore, topoisomerase drugs must be used judiciously and administered on an individual basis. In this review, we highlight the biological function of TOP2A in chromosome segregation and the mechanisms that regulate this enzyme's expression and activity. We also review the roles of TOP2A and related proteins in human cancers, and raise a perspective for how to target TOP2A in personalized cancer therapy. PMID:25328138

  3. ATR-16 due to a de novo complex rearrangement of chromosome 16.

    Science.gov (United States)

    Gallego, Marta S; Zelaya, Gabriela; Feliu, Aurora S; Rossetti, Liliana; Shaffer, Lisa G; Bailey, Kristen A; Bacino, Carlos A; Barreiro, Cristina Z

    2005-01-01

    We describe a child with ATR-16 [alpha-thalassemia (thal)/mental retardation], who was referred for genetic evaluation because of minor anomalies and developmental delay. Cytogenetic analysis demonstrated a de novo complex rearrangement of chromosome 16. Fluorescence in situ hybridization (FISH) analysis, using chromosome 16 subtelomeric probes, showed that this patient had a deletion of the distal short arm of chromosome 16 that contains the alpha-globin genes and a duplication of 16q. Analysis of the alpha-globin locus by Southern blot showed a half normal dose of the alpha-globin gene. Microsatellite marker studies revealed that the duplicated 16q region was maternal in origin. Hematological studies revealed anemia, hypochromia and occasional cells with Hb H inclusion bodies. A hematological screening for alpha-thal should be considered in patients with mild developmental delay and a suggestive phenotype of ATR-16 with microcytic hypochromic anemia and normal iron status. The stellate pattern of the iris, a new finding in our patient, may contribute to a better clinical delineation of both syndromes, ATR-16 and/or duplication of 16qter.

  4. Analyses of the NAC Transcription Factor Gene Family in Gossypium raimondii Ulbr.: Chromosomal Location, Structure, Phylogeny, and Expression Patterns

    Institute of Scientific and Technical Information of China (English)

    Haihong Shang; Wei Li; Changsong Zou; Youlu Yuan

    2013-01-01

    NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes.In the present study,we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr.,incorporating phylogenetic,chromosomal location,gene structure,conserved motif,and expression profiling analyses.We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies.Of these,127 NAC-TF genes were distributed across the 13 chromosomes,80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions.The majority of NAC-TF genes showed temporal-,spatial-,and tissue-specific expression patterns based on transcriptomic and qRT-PCR analyses.However,the expression patterns of several duplicate genes were partially redundant,suggesting the occurrence of sub-functionalization during their evolution.Based on their genomic organization,we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G.raimondii.Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G.raimondii.

  5. The Y Chromosome

    Science.gov (United States)

    Offner, Susan

    2010-01-01

    The Y chromosome is of great interest to students and can be used to teach about many important biological concepts in addition to sex determination. This paper discusses mutation, recombination, mammalian sex determination, sex determination in general, and the evolution of sex determination in mammals. It includes a student activity that…

  6. Chromosomes, cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available

  7. Chromosomes, cancer and radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Samouhos, E.

    1983-08-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available.

  8. De novo MECP2 duplications in two females with intellectual disability and unfavorable complete skewed X-inactivation.

    Science.gov (United States)

    Fieremans, Nathalie; Bauters, Marijke; Belet, Stefanie; Verbeeck, Jelle; Jansen, Anna C; Seneca, Sara; Roelens, Filip; De Baere, Elfride; Marynen, Peter; Froyen, Guy

    2014-11-01

    Xq28 microduplications of MECP2 are a prominent cause of a severe syndromic form of intellectual disability (ID) in males. Females are usually unaffected through near to complete X-inactivation of the aberrant X chromosome (skewing). In rare cases, affected females have been described due to random X-inactivation. Here, we report on two female patients carrying de novo MECP2 microduplications on their fully active X chromosomes. Both patients present with ID and additional clinical features. Mono-allelic expression confirmed complete skewing of X-inactivation. Consequently, significantly enhanced MECP2 mRNA levels were observed. We hypothesize that the cause for the complete skewing is due to a more harmful mutation on the other X chromosome, thereby forcing the MECP2 duplication to become active. However, we could not unequivocally identify such a second mutation by array-CGH or exome sequencing. Our data underline that, like in males, increased MECP2 dosage in females can contribute to ID too, which should be taken into account in diagnostics.

  9. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  10. Galbladder Duplication: Appearence On Sonography, Oral Cholecystography And Computed Tomography

    OpenAIRE

    ARSLAN, A.S.; SELÇUK, M.B.; YALIN, T.; H. Akan; İNCESU, L.

    2010-01-01

    Transabdominal ultrasonography (US) of a 55-year-old female demonstrated duplication of the gallbladder. This rare congenital anomaly of the biliary system is confirmed by oral cholecystography and computerized tomography (CT). The differential considerations of gallbladder duplitacion and the clinical significance are discussed.

  11. Intragenic duplication: a novel mutational mechanism in hereditary pancreatitis

    DEFF Research Database (Denmark)

    Joergensen, Maiken T; Geisz, Andrea; Brusgaard, Klaus;

    2011-01-01

    In a hereditary pancreatitis family from Denmark, we identified a novel intragenic duplication of 9 nucleotides in exon-2 of the human cationic trypsinogen (PRSS1) gene (c.63_71dup) which at the amino-acid level resulted in the insertion of 3 amino acids within the activation peptide of cationic...

  12. Duplicate 24-hour diet study 1994 organochlorine and organophosphorous pesticides

    NARCIS (Netherlands)

    Baumann RA; Hoogerbrugge R; Zoonen P van; LOC

    1999-01-01

    Duplicate diet samples collected in 1994 were analysed for organochlorine and organophosphorous pesticides. It was not possible to evaluate wether dietary intake exceeded the established Acceptable Daily Intake (ADI). For the other organophosphorous compounds as well as for the organoclorine pestic

  13. Alimentary tract duplications in children: Report of 16 years′ experience

    Directory of Open Access Journals (Sweden)

    Mohamed Zouari

    2014-01-01

    Full Text Available Background: Alimentary tract duplications (ATDs are a rare condition in children, characterised by a large pathogenic, clinical, and histological polymorphism. Surgical observation and pathologic evaluation of the resected specimens are the only way to confirm the diagnosis. In this study, we want to analyse the anatomical, clinical and therapeutic aspects of this entity. Patients and Methods: A total of 12 cases of ATD were diagnosed over a 16-year period at paediatric surgery department. The diagnosis was evoked on clinical and radiological data. Histological study of the resected specimens confirmed the diagnosis in all cases. Results: The mean age of patients at diagnosis was 41 months with a peak of incidence at the 1 st year of life (42%. Out of a total 12 cases, 10 were girls and 2 were boys. Abdominal pain and vomiting were the most frequent presenting features. Ultrasonography, tomodensitometry and magnetic resonance imaging were useful for diagnosis. ATDs were localised on the oesophagus in one case, the stomach in one case, the duodenum in four cases, the ileum in five cases, and the colon in one case. All these duplications were cystic, with three communicating duplications. All patients underwent surgery, and resection procedure was chosen according to duplication type and site. Histological study confirmed the diagnosis in all cases. Conclusion: ATDs are a rare condition in children. Diagnosis relies on histology, and treatment can only be by means of surgery. The outcome after surgery is generally favourable. Diagnosis and precocious surgery of ATDs can warn serious complications.

  14. Covered exstrophy with anorectal malformation and vaginal duplication

    Directory of Open Access Journals (Sweden)

    Bawa Monika

    2011-01-01

    Full Text Available Covered exstrophy is a rare variant of the exstrophy-epispadias complex. We report a female newborn with covered exstrophy, absent anal opening and duplication of the introitus and the lower vagina. This rare, previously unreported, combination of anomalies highlights the complexity of the embryological events in the caudal area during separation of the hindgut and allantois.

  15. Neurologic aspects of MECP2 gene duplication in male patients.

    NARCIS (Netherlands)

    Echenne, B.; Roubertie, A.; Lugtenberg, D.; Kleefstra, T.; Hamel, B.C.J.; Bokhoven, H. van; Lacombe, D.; Philippe, C.; Jonveaux, P.; Brouwer, A.P.M. de

    2009-01-01

    Duplications in Xq28 involving the methyl CpG binding protein 2 gene (MECP2) have been described in male patients with severe mental disability, delayed milestones, absence of language, hypotonia replaced by spasticity and retractions, and recurrent and often severe infections. In a study involving

  16. Non-recurrent SEPT9 duplications cause hereditary neuralgic amyotrophy.

    NARCIS (Netherlands)

    Collie, A.M.; Landsverk, M.L.; Ruzzo, E.; Mefford, H.C.; Buysse, K.; Adkins, J.R.; Knutzen, D.M.; Barnett, K.; Brown Jr., R.H.; Parry, G.J.; Yum, S.W.; Simpson, D.A.; Olney, R.K.; Chinnery, P.F.; Eichler, E.E.; Chance, P.F.; Hannibal, M.C.

    2010-01-01

    BACKGROUND: Genomic copy number variants have been shown to be responsible for multiple genetic diseases. Recently, a duplication in septin 9 (SEPT9) was shown to be causal for hereditary neuralgic amyotrophy (HNA), an episodic peripheral neuropathy with autosomal dominant inheritance. This duplicat

  17. Recombination facilitates neofunctionalization of duplicate genes via originalization

    Directory of Open Access Journals (Sweden)

    Huang Ren

    2010-06-01

    Full Text Available Abstract Background Recently originalization was proposed to be an effective way of duplicate-gene preservation, in which recombination provokes the high frequency of original (or wild-type allele on both duplicated loci. Because the high frequency of wild-type allele might drive the arising and accumulating of advantageous mutation, it is hypothesized that recombination might enlarge the probability of neofunctionalization (Pneo of duplicate genes. In this article this hypothesis has been tested theoretically. Results Results show that through originalization recombination might not only shorten mean time to neofunctionalizaiton, but also enlarge Pneo. Conclusions Therefore, recombination might facilitate neofunctionalization via originalization. Several extensive applications of these results on genomic evolution have been discussed: 1. Time to nonfunctionalization can be much longer than a few million generations expected before; 2. Homogenization on duplicated loci results from not only gene conversion, but also originalization; 3. Although the rate of advantageous mutation is much small compared with that of degenerative mutation, Pneo cannot be expected to be small.

  18. Noncommunicating multiple intra-abdominal enteric duplication cysts

    Directory of Open Access Journals (Sweden)

    Parkash Mandhan

    2014-01-01

    Full Text Available A very rare case of noncommunicating multiple intra and retroperitoneal enteric duplication cysts (EDCs is reported and discussed. Two large noncommunicating EDCs, one within the mesentery of proximal jejunum causing complete luminal obstruction and other isolated cyst in retroperitoneal area displacing duodenum and extrahepatic biliary system, were resected successfully in a 2-day-old neonate along with correction of malrotation.

  19. Exon duplications in the ATP7A gene

    DEFF Research Database (Denmark)

    Mogensen, Mie; Skjørringe, Tina; Kodama, Hiroko;

    2011-01-01

    BACKGROUND: Menkes disease (MD) is an X-linked, fatal neurodegenerative disorder of copper metabolism, caused by mutations in the ATP7A gene. Thirty-three Menkes patients in whom no mutation had been detected with standard diagnostic tools were screened for exon duplications in the ATP7A gene. ME...

  20. Duplication of the urethra with communication to the rectum

    International Nuclear Information System (INIS)

    The posterior channel of duplicated urethrae usually follows a straight course to end in the perineum just inside the anal verge. This unique urethra dipped into the perineum and then turned cephalad to enter the rectum above the anus. Delineation of the course of the urethra simplified management by assisting the urologist to convert the rectal passage to a hypospadiac urethra. (orig.)

  1. Novel clinical finding in MECP2 duplication syndrome

    OpenAIRE

    Budisteanu, Magdalena; Papuc, Sorina Mihaela; Tutulan-Cunita, Andreea; Budisteanu, Bogdan; Arghir, Aurora

    2011-01-01

    Novel clinical finding in MECP2 duplication syndrome phone: +40-213349068 (Budisteanu, Magdalena) (Budisteanu, Magdalena) ?Victor Babes? National Institute of Pathology - 99-101 Splaiul Independentei, Sect. 5 - 050096 - Bucharest - ROMANIA (Budisteanu, Magdalena) ?Prof. Dr. Alexandru Obregia? Clinical Hospital of Psychiatry - 10-12 Berceni Av., Sector 4 - 041914 - Bucharest - ROMANIA (Budisteanu, Magdalena) ?Victor Babes? National Institute of Patholog...

  2. Against Unnecessary Duplication of Selves: A Sartrean Argument Against Zahavi

    NARCIS (Netherlands)

    Gusman, S.W.

    2015-01-01

    In this article I argue that Zahavi's Sartre-inspired combination of the experiential and narrative self entails an unnecessary duplication of selves. Sartre himself accused Husserl of the same mistake in The Transcendence of the Ego. He claims that Husserl's combination of the transcendental I and

  3. Noncommunicating multiple intra-abdominal enteric duplication cysts.

    Science.gov (United States)

    Mandhan, Parkash; Ehsan, Toufique M; Al-Sibai, Sareyah; Khan, Ashfaq M; Sankhla, Dilip

    2014-01-01

    A very rare case of noncommunicating multiple intra and retroperitoneal enteric duplication cysts (EDCs) is reported and discussed. Two large noncommunicating EDCs, one within the mesentery of proximal jejunum causing complete luminal obstruction and other isolated cyst in retroperitoneal area displacing duodenum and extrahepatic biliary system, were resected successfully in a 2-day-old neonate along with correction of malrotation.

  4. Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility.

    Science.gov (United States)

    Nuttle, Xander; Giannuzzi, Giuliana; Duyzend, Michael H; Schraiber, Joshua G; Narvaiza, Iñigo; Sudmant, Peter H; Penn, Osnat; Chiatante, Giorgia; Malig, Maika; Huddleston, John; Benner, Chris; Camponeschi, Francesca; Ciofi-Baffoni, Simone; Stessman, Holly A F; Marchetto, Maria C N; Denman, Laura; Harshman, Lana; Baker, Carl; Raja, Archana; Penewit, Kelsi; Janke, Nicolette; Tang, W Joyce; Ventura, Mario; Banci, Lucia; Antonacci, Francesca; Akey, Joshua M; Amemiya, Chris T; Gage, Fred H; Reymond, Alexandre; Eichler, Evan E

    2016-08-11

    Genetic differences that specify unique aspects of human evolution have typically been identified by comparative analyses between the genomes of humans and closely related primates, including more recently the genomes of archaic hominins. Not all regions of the genome, however, are equally amenable to such study. Recurrent copy number variation (CNV) at chromosome 16p11.2 accounts for approximately 1% of cases of autism and is mediated by a complex set of segmental duplications, many of which arose recently during human evolution. Here we reconstruct the evolutionary history of the locus and identify bolA family member 2 (BOLA2) as a gene duplicated exclusively in Homo sapiens. We estimate that a 95-kilobase-pair segment containing BOLA2 duplicated across the critical region approximately 282 thousand years ago (ka), one of the latest among a series of genomic changes that dramatically restructured the locus during hominid evolution. All humans examined carried one or more copies of the duplication, which nearly fixed early in the human lineage--a pattern unlikely to have arisen so rapidly in the absence of selection (P < 0.0097). We show that the duplication of BOLA2 led to a novel, human-specific in-frame fusion transcript and that BOLA2 copy number correlates with both RNA expression (r = 0.36) and protein level (r = 0.65), with the greatest expression difference between human and chimpanzee in experimentally derived stem cells. Analyses of 152 patients carrying a chromosome 16p11. rearrangement show that more than 96% of breakpoints occur within the H. sapiens-specific duplication. In summary, the duplicative transposition of BOLA2 at the root of the H. sapiens lineage about 282 ka simultaneously increased copy number of a gene associated with iron homeostasis and predisposed our species to recurrent rearrangements associated with disease. PMID:27487209

  5. Chromosomal manipulation by site-specific recombinases and fluorescent protein-based vectors.

    Directory of Open Access Journals (Sweden)

    Munehiro Uemura

    Full Text Available Feasibility of chromosomal manipulation in mammalian cells was first reported 15 years ago. Although this technique is useful for precise understanding of gene regulation in the chromosomal context, a limited number of laboratories have used it in actual practice because of associated technical difficulties. To overcome the practical hurdles, we developed a Cre-mediated chromosomal recombination system using fluorescent proteins and various site-specific recombinases. These techniques enabled quick construction of targeting vectors, easy identification of chromosome-rearranged cells, and rearrangement leaving minimum artificial elements at junctions. Applying this system to a human cell line, we successfully recapitulated two types of pathogenic chromosomal translocations in human diseases: MYC/IgH and BCR/ABL1. By inducing recombination between two loxP sites targeted into the same chromosome, we could mark cells harboring deletion or duplication of the inter-loxP segments with different colors of fluorescence. In addition, we demonstrated that the intrachromosomal recombination frequency is inversely proportional to the distance between two recombination sites, implicating a future application of this frequency as a proximity sensor. Our method of chromosomal manipulation can be employed for particular cell types in which gene targeting is possible (e.g. embryonic stem cells. Experimental use of this system would open up new horizons in genome biology, including the establishment of cellular and animal models of diseases caused by translocations and copy-number variations.

  6. Dextrocardia, atrial septal defect, severe developmental delay, facial anomalies, and supernumerary ribs in a child with a complex unbalanced 8;22 translocation including partial 8p duplication.

    Science.gov (United States)

    Pope, Kathleen; Samanich, Joy; Ramesh, K H; Cannizzaro, Linda; Pan, Qiulu; Babcock, Melanie

    2012-03-01

    We report on a child with dextrocardia, atrial septal defect (ASD), severe developmental delay, hypotonia, 13 pairs of ribs, left preauricular choristoma, hirsutism, and craniofacial abnormalities. Prenatal cytogenetic evaluation showed karyotype 46,XY,?dup(8p)ish del(8)pter. Postnatal array CGH demonstrated a 6.8 Mb terminal deletion at 8p23.3-p23, an interstitial 31.1 Mb duplication within 8p23.1-p11, and a terminal duplication of 0.24 Mb at 22q13.33, refining the karyotype to 46,XY,der(8)dup(8)(p23.1p11.1)t(8;22)(p23.1;q13.1).ish der(8)dup(8)(p23.1p11.1)t(8;22)(p23.1;q13.1) (D8S504-,MS607 + ,ARSA + ,D8Z1 + , RP115713 + +). Previous reports of distal 8p deletion, 8p duplication, and distal 22q duplication have shown similar manifestations, including congenital heart disease, intellectual impairment, and multiple minor anomalies. We correlate the patient's clinical findings with these particular areas of copy number. This case study supports the use of aCGH to identify subtle chromosomal rearrangement in infants with cardiac malformation as their most significant or only apparent birth defect. Additionally, it illustrates why aCGH is essential in the description of chromosome rearrangements, even those seemingly visible via routine karyotype. This method shows that there is often greater complexity submicroscopically, essential to an adequate understanding of a patient's genotype and phenotype.

  7. Familial Lymphoproliferative Malignancies and Tandem Duplication of NF1 Gene

    Directory of Open Access Journals (Sweden)

    Gustavo Fernandes

    2014-01-01

    Full Text Available Background. Neurofibromatosis type 1 is a genetic disorder caused by loss-of-function mutations in a tumor suppressor gene (NF1 which codifies the protein neurofibromin. The frequent genetic alterations that modify neurofibromin function are deletions and insertions. Duplications are rare and phenotype in patients bearing duplication of NF1 gene is thought to be restricted to developmental abnormalities, with no reference to cancer susceptibility in these patients. We evaluated a patient who presented with few clinical signs of neurofibromatosis type 1 and a conspicuous personal and familiar history of different types of cancer, especially lymphoproliferative malignancies. The coding region of the NF-1 gene was analyzed by real-time polymerase chain reaction and direct sequencing. Multiplex ligation-dependent probe amplification was performed to detect the number of mutant copies. The NF1 gene analysis showed the following alterations: mosaic duplication of NF1, TRAF4, and MYO1D. Fluorescence in situ hybridization using probes (RP5-1002G3 and RP5-92689 flanking NF1 gene in 17q11.2 and CEP17 for 17q11.11.1 was performed. There were three signals (RP5-1002G3conRP5-92689 in the interphases analyzed and two signals (RP5-1002G3conRP5-92689 in 93% of cells. These findings show a tandem duplication of 17q11.2. Conclusion. The case suggests the possibility that NF1 gene duplication may be associated with a phenotype characterized by lymphoproliferative disorders.

  8. Familial Lymphoproliferative Malignancies and Tandem Duplication of NF1 Gene.

    Science.gov (United States)

    Fernandes, Gustavo; Souto, Mirela; Costa, Frederico; Oliveira, Edite; Garicochea, Bernardo

    2014-01-01

    Background. Neurofibromatosis type 1 is a genetic disorder caused by loss-of-function mutations in a tumor suppressor gene (NF1) which codifies the protein neurofibromin. The frequent genetic alterations that modify neurofibromin function are deletions and insertions. Duplications are rare and phenotype in patients bearing duplication of NF1 gene is thought to be restricted to developmental abnormalities, with no reference to cancer susceptibility in these patients. We evaluated a patient who presented with few clinical signs of neurofibromatosis type 1 and a conspicuous personal and familiar history of different types of cancer, especially lymphoproliferative malignancies. The coding region of the NF-1 gene was analyzed by real-time polymerase chain reaction and direct sequencing. Multiplex ligation-dependent probe amplification was performed to detect the number of mutant copies. The NF1 gene analysis showed the following alterations: mosaic duplication of NF1, TRAF4, and MYO1D. Fluorescence in situ hybridization using probes (RP5-1002G3 and RP5-92689) flanking NF1 gene in 17q11.2 and CEP17 for 17q11.11.1 was performed. There were three signals (RP5-1002G3conRP5-92689) in the interphases analyzed and two signals (RP5-1002G3conRP5-92689) in 93% of cells. These findings show a tandem duplication of 17q11.2. Conclusion. The case suggests the possibility that NF1 gene duplication may be associated with a phenotype characterized by lymphoproliferative disorders. PMID:25580325

  9. Chromosomal breakpoints characterization of two supernumerary ring chromosomes 20.

    Science.gov (United States)

    Guediche, N; Brisset, S; Benichou, J-J; Guérin, N; Mabboux, P; Maurin, M-L; Bas, C; Laroudie, M; Picone, O; Goldszmidt, D; Prévot, S; Labrune, P; Tachdjian, G

    2010-02-01

    The occurrence of an additional ring chromosome 20 is a rare chromosome abnormality, and no common phenotype has been yet described. We report on two new patients presenting with a supernumerary ring chromosome 20 both prenatally diagnosed. The first presented with intrauterine growth retardation and some craniofacial dysmorphism, and the second case had a normal phenotype except for obesity. Conventional cytogenetic studies showed for each patient a small supernumerary marker chromosome (SMC). Using fluorescence in situ hybridization, these SMCs corresponded to ring chromosomes 20 including a part of short and long arms of chromosome 20. Detailed molecular cytogenetic characterization showed different breakpoints (20p11.23 and 20q11.23 for Patient 1 and 20p11.21 and 20q11.21 for Patient 2) and sizes of the two ring chromosomes 20 (13.6 Mb for case 1 and 4.8 Mb for case 2). Review of the 13 case reports of an extra r(20) ascertained postnatally (8 cases) and prenatally (5 cases) showed varying degrees of phenotypic abnormalities. We document a detailed molecular cytogenetic chromosomal breakpoints characterization of two cases of supernumerary ring chromosomes 20. These results emphasize the need to characterize precisely chromosomal breakpoints of supernumerary ring chromosomes 20 in order to establish genotype-phenotype correlation. This report may be helpful for prediction of natural history and outcome, particularly in prenatal diagnosis.

  10. [Chromosomal organization of the genomes of small-chromosome plants].

    Science.gov (United States)

    Muravenko, O V; Zelenin, A V

    2009-11-01

    An effective approach to study the chromosome organization in genomes of plants with small chromosomes and/or with low-informative C-banding patterns was developed in the course of investigation of the karyotypes of cotton plant, camomile, flax, and pea. To increase the resolving power of chromosome analysis, methods were worked out for revealing early replication patterns on chromosomes and for artificial impairment of mitotic chromosome condensation with the use of a DNA intercalator, 9-aminoacridine (9-AMA). To estimate polymorphism of the patterns of C-banding of small chromosomes on preparations obtained with the use of 9-AMA, it is necessary to choose a length interval that must not exceed three average sizes of metaphase chromosomes without the intercalator. The use of 9-AMA increases the resolution of differential C- and OR-banding and the precision of physical chromosome mapping by the FISH method. Of particular importance in studying small chromosomes is optimization of the computer-aided methods used to obtain and process chromosome images. The complex approach developed for analysis of the chromosome organization in plant genomes was used to study the karyotypes of 24 species of the genus Linum L. It permitted their chromosomes to be identified for the first time, and, in addition, B chromosomes were discovered and studied in the karyotypes of the species of the section Syllinum. By similarity of the karyotypes, the studied flax species were distributed in eight groups in agreement with the clusterization of these species according to the results of RAPD analysis performed in parallel. Systematic positions and phylogenetic relationships of the studied flax species were verified. Out results can serve as an important argument in favour of the proposal to develop a special program for sequencing the genome of cultivated flax (L. usitatissimum L.), which is a major representative of small-chromosome species. PMID:20058798

  11. Clinical, Cytogenetic, and Biochemical Analyses of a Family with a t(3;13(q26.2;p11.2: Further Delineation of 3q Duplication Syndrome

    Directory of Open Access Journals (Sweden)

    M. Abreu-González

    2013-01-01

    Full Text Available Chromosomal abnormalities that result in genomic imbalances are a major cause of congenital and developmental anomalies. Partial duplication of chromosome 3q syndrome is a well-described condition, and the phenotypic manifestations include a characteristic facies, microcephaly, hirsutism, synophrys, broad nasal bridge, congenital heart disease, genitourinary disorders, and mental retardation. Approximately 60%–75% of cases are derived from a balanced translocation. We describe a family with a pure typical partial trisomy 3q syndrome derived from a maternal balanced translocation t(3;13(q26.2;p11.2. As the chromosomal rearrangement involves the short arm of an acrocentric chromosome, the phenotype corresponds to a pure trisomy 3q26.2-qter syndrome. There are 4 affected individuals and several carriers among three generations. The report of this family is relevant because there are few cases of pure duplication 3q syndrome reported, and the cases described here contribute to define the phenotype associated with the syndrome. Furthermore, we confirmed that the survival until adulthood is possible. This report also identified the presence of glycosaminoglycans in urine in this family, not related to the chromosomal abnormality or the phenotype.

  12. Genetic Diversity on the Human X Chromosome Does Not Support a Strict Pseudoautosomal Boundary.

    Science.gov (United States)

    Cotter, Daniel J; Brotman, Sarah M; Wilson Sayres, Melissa A

    2016-05-01

    Unlike the autosomes, recombination between the X chromosome and the Y chromosome is often thought to be constrained to two small pseudoautosomal regions (PARs) at the tips of each sex chromosome. PAR1 spans the first 2.7 Mb of the proximal arm of the human sex chromosomes, whereas the much smaller PAR2 encompasses the distal 320 kb of the long arm of each sex chromosome. In addition to PAR1 and PAR2, there is a human-specific X-transposed region that was duplicated from the X to the Y chromosome. The X-transposed region is often not excluded from X-specific analyses, unlike the PARs, because it is not thought to routinely recombine. Genetic diversity is expected to be higher in recombining regions than in nonrecombining regions because recombination reduces the effect of linked selection. In this study, we investigated patterns of genetic diversity in noncoding regions across the entire X chromosome of a global sample of 26 unrelated genetic females. We found that genetic diversity in PAR1 is significantly greater than in the nonrecombining regions (nonPARs). However, rather than an abrupt drop in diversity at the pseudoautosomal boundary, there is a gradual reduction in diversity from the recombining through the nonrecombining regions, suggesting that recombination between the human sex chromosomes spans across the currently defined pseudoautosomal boundary. A consequence of recombination spanning this boundary potentially includes increasing the rate of sex-linked disorders (e.g., de la Chapelle) and sex chromosome aneuploidies. In contrast, diversity in PAR2 is not significantly elevated compared to the nonPARs, suggesting that recombination is not obligatory in PAR2. Finally, diversity in the X-transposed region is higher than in the surrounding nonPARs, providing evidence that recombination may occur with some frequency between the X and Y chromosomes in the X-transposed region.

  13. NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits.

    Science.gov (United States)

    Dittwald, Piotr; Gambin, Tomasz; Szafranski, Przemyslaw; Li, Jian; Amato, Stephen; Divon, Michael Y; Rodríguez Rojas, Lisa Ximena; Elton, Lindsay E; Scott, Daryl A; Schaaf, Christian P; Torres-Martinez, Wilfredo; Stevens, Abby K; Rosenfeld, Jill A; Agadi, Satish; Francis, David; Kang, Sung-Hae L; Breman, Amy; Lalani, Seema R; Bacino, Carlos A; Bi, Weimin; Milosavljevic, Aleksandar; Beaudet, Arthur L; Patel, Ankita; Shaw, Chad A; Lupski, James R; Gambin, Anna; Cheung, Sau Wai; Stankiewicz, Pawel

    2013-09-01

    We delineated and analyzed directly oriented paralogous low-copy repeats (DP-LCRs) in the most recent version of the human haploid reference genome. The computationally defined DP-LCRs were cross-referenced with our chromosomal microarray analysis (CMA) database of 25,144 patients subjected to genome-wide assays. This computationally guided approach to the empirically derived large data set allowed us to investigate genomic rearrangement relative frequencies and identify new loci for recurrent nonallelic homologous recombination (NAHR)-mediated copy-number variants (CNVs). The most commonly observed recurrent CNVs were NPHP1 duplications (233), CHRNA7 duplications (175), and 22q11.21 deletions (DiGeorge/velocardiofacial syndrome, 166). In the ∼25% of CMA cases for which parental studies were available, we identified 190 de novo recurrent CNVs. In this group, the most frequently observed events were deletions of 22q11.21 (48), 16p11.2 (autism, 34), and 7q11.23 (Williams-Beuren syndrome, 11). Several features of DP-LCRs, including length, distance between NAHR substrate elements, DNA sequence identity (fraction matching), GC content, and concentration of the homologous recombination (HR) hot spot motif 5'-CCNCCNTNNCCNC-3', correlate with the frequencies of the recurrent CNVs events. Four novel adjacent DP-LCR-flanked and NAHR-prone regions, involving 2q12.2q13, were elucidated in association with novel genomic disorders. Our study quantitates genome architectural features responsible for NAHR-mediated genomic instability and further elucidates the role of NAHR in human disease.

  14. Homozygous 16p13.11 duplication associated with mild intellectual disability and urinary tract malformations in two siblings born from consanguineous parents.

    Science.gov (United States)

    Houcinat, N; Llanas, B; Moutton, S; Toutain, J; Cailley, D; Arveiler, B; Combe, C; Lacombe, D; Rooryck, C

    2015-11-01

    The use of array-comparative genomic hybridization (array-CGH) in routine clinical work has allowed the identification of many new copy number variations (CNV). The 16p13.11 duplication has been implicated in various congenital anomalies and neurodevelopmental disorders, but it has also been identified in healthy individuals. We report a clinical observation of two brothers from related parents each carrying a homozygous 16p13.11 duplication. The propositus had mild intellectual disability and posterior urethral valves with chronic renal disease. His brother was considered a healthy child with only learning disabilities and poor academic performances. However, a routine medical examination at 25-years-old revealed a mild chronic renal disease and ureteropelvic junction obstruction. Furthermore, the father presented with a unilateral renal agenesis, thus it seemed that a "congenital anomalies of kidney and urinary tract" (CAKUT) phenotype segregated in this family. This may be related to the duplication, but we cannot exclude the involvement of additional genetic or non-genetic factors in the urological phenotype. Several cohort studies showed association between this chromosomal imbalance and different clinical manifestations, but rarely with CAKUT. The duplication reported here was similar to the larger one of 3.4 Mb previously described versus the more common of 1.6 Mb. It encompassed at least 11 known genes, including the five ohnologs previously identified. Our observation, in addition to expanding the clinical spectrum of the duplication provides further support to understanding the underlying pathogenic mechanism. PMID:26114937

  15. Construction of human chromosome 21-specific yeast artificial chromosomes.

    Science.gov (United States)

    McCormick, M K; Shero, J H; Cheung, M C; Kan, Y W; Hieter, P A; Antonarakis, S E

    1989-12-01

    Chromosome 21-specific yeast artificial chromosomes (YACs) have been constructed by a method that performs all steps in agarose, allowing size selection by pulsed-field gel electrophoresis and the use of nanogram to microgram quantities of DNA. The DNA sources used were hybrid cell line WAV-17, containing chromosome 21 as the only human chromosome and flow-sorted chromosome 21. The transformation efficiency of ligation products was similar to that obtained in aqueous transformations and yielded YACs with sizes ranging from 100 kilobases (kb) to greater than 1 megabase when polyamines were included in the transformation procedure. Twenty-five YACs containing human DNA have been obtained from a mouse-human hybrid, ranging in size from 200 to greater than 1000 kb, with an average size of 410 kb. Ten of these YACs were localized to subregions of chromosome 21 by hybridization of RNA probes (corresponding to the YAC ends recovered in Escherichia coli) to a panel of somatic cell hybrid DNA. Twenty-one human YACs, ranging in size from 100 to 500 kb, with an average size of 150 kb, were obtained from approximately equal to 50 ng of flow-sorted chromosome 21 DNA. Three were localized to subregions of chromosome 21. YACs will aid the construction of a physical map of human chromosome 21 and the study of disorders associated with chromosome 21 such as Alzheimer disease and Down syndrome.

  16. Laparoscopic excision of an ascending colon duplication cyst in an adolescent

    Directory of Open Access Journals (Sweden)

    Heather R. Nolan

    2016-01-01

    Full Text Available Colonic intestinal duplications are infrequent and rarely present past early childhood. We present the case of a large, ascending colon duplication in a 17-year-old boy resected using minimally invasive techniques. This appears to be the first reported case of a laparoscopic en-bloc ascending colon duplication resection in an adolescent. The diagnosis and management of colonic duplications are discussed.

  17. Y-type urethral duplication presented with perineal fistula in a boy

    OpenAIRE

    Dayanc, Murat; Irkilata, Hasan Cem; Kibar, Yusuf; BOZKURT, Yasar; Basal, Seref; Xhafa, Ajet

    2010-01-01

    Urethral duplication is a rare congenital anomaly of the lower urinary system and has varied presentation. According to the Effmann classification, type IIA2-Y urethral duplication is charcterized by the duplicated urethra originating from the bladder neck and opening into either the rectum or the perineum. The accessory urethra is normal and functional and the normally positioned dorsal urethra is hypoplastic and stenotic in unusual form of Y-type duplication. We present a new case with unus...

  18. Duplication of cervical oesophagus: A case report and review of literatures

    OpenAIRE

    Nazem M; Amouee A; Eidy M; Khan Ishfaq; Javed H

    2010-01-01

    Foregut duplication is commonly found in the posterior mediastinum. 10-20% of these anomalies are associated with oesophageal duplication. It can occur in all parts of oesophageal length. Although duplication of cervical oesophagus has been previously reported, but a majority of them were found in thoracic oesophagus. Infants with oesophageal duplication usually manifested by respiratory distress or asymptomatic thoracic mass, casually, detected in X-ray. A 7-month-old infant weighing ...

  19. Genetics of dioecy and causal sex chromosomes in plants

    Indian Academy of Sciences (India)

    Sushil Kumar; Renu Kumari; Vishakha Sharma

    2014-04-01

    Dioecy (separate male and female individuals) ensures outcrossing and is more prevalent in animals than in plants. Although it is common in bryophytes and gymnosperms, only 5% of angiosperms are dioecious. In dioecious higher plants, flowers borne on male and female individuals are, respectively deficient in functional gynoecium and androecium. Dioecy is inherited via three sex chromosome systems: XX/XY, XX/X0 and WZ/ZZ, such that XX or WZ is female and XY, X0 or ZZ are males. The XX/XY system generates the rarer XX/X0 andWZ/ZZ systems. An autosome pair begets XY chromosomes. A recessive loss-of-androecium mutation (ana) creates X chromosome and a dominant gynoecium-suppressing (GYS) mutation creates Y chromosome. The ana/ANA and gys/GYS loci are in the sex-determining region (SDR) of the XY pair. Accumulation of inversions, deleterious mutations and repeat elements, especially transposons, in the SDR of Y suppresses recombination between X and Y in SDR, making Y labile and increasingly degenerate and heteromorphic from X. Continued recombination between X and Y in their pseudoautosomal region located at the ends of chromosomal arms allows survival of the degenerated Y and of the species. Dioecy is presumably a component of the evolutionary cycle for the origin of new species. Inbred hermaphrodite species assume dioecy. Later they suffer degenerate-Y-led population regression. Cross-hybridization between such extinguishing species and heterologous species, followed by genome duplication of segregants from hybrids, give rise to new species.

  20. Duplication of CYP2D6 predicts high clearance of desipramine but high clearance does not predict duplication of CYP2D6

    DEFF Research Database (Denmark)

    Bergmann, T K; Bathum, L; Brøsen, Kim

    2001-01-01

    OBJECTIVE: Duplication of CYP2D6 causes very rapid metabolism of CYP2D6 substrates such as desipramine. However, we have previously shown that in the Danish population, only about 15% of very rapid metabolisers, defined as subjects with a metabolic ratio of sparteine of 0.15 or less, carried a...... duplicated allele. The question is whether gene duplication is a relatively rare cause (perhaps predictor) of very rapid metabolism or whether a low metabolic ratio is a poor predictor of this. METHODS: After measuring metabolic ratios anew, we selected six volunteers with duplication of CYP2D6 and metabolic...... duplication of CYP2D6 is poor; there must be other causes (or predictors) of very rapid metabolism and with much higher frequency than duplication of CYP2D6....

  1. 7 CFR 27.23 - Duplicate sets of samples of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Duplicate sets of samples of cotton. 27.23 Section 27... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.23 Duplicate sets of samples of cotton. The duplicate sets of samples shall be inclosed in wrappers...

  2. 47 CFR 76.92 - Cable network non-duplication; extent of protection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Cable network non-duplication; extent of... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.92 Cable network non-duplication; extent of protection....

  3. 47 CFR 76.93 - Parties entitled to network non-duplication protection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Parties entitled to network non-duplication... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.93 Parties entitled to network non-duplication...

  4. Segmental duplication implicated in the genesis of inversion 2Rj of Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Mamadou B Coulibaly

    Full Text Available The malaria vector Anopheles gambiae maintains high levels of inversion polymorphism that facilitate its exploitation of diverse ecological settings across tropical Africa. Molecular characterization of inversion breakpoints is a first step toward understanding the processes that generate and maintain inversions. Here we focused on inversion 2Rj because of its association with the assortatively mating Bamako chromosomal form of An. gambiae, whose distinctive breeding sites are rock pools beside the Niger River in Mali and Guinea. Sequence and computational analysis of 2Rj revealed the same 14.6 kb insertion between both breakpoints, which occurred near but not within predicted genes. Each insertion consists of 5.3 kb terminal inverted repeat arms separated by a 4 kb spacer. The insertions lack coding capacity, and are comprised of degraded remnants of repetitive sequences including class I and II transposable elements. Because of their large size and patchwork composition, and as no other instances of these insertions were identified in the An. gambiae genome, they do not appear to be transposable elements. The 14.6 kb modules inserted at both 2Rj breakpoint junctions represent low copy repeats (LCRs, also called segmental duplications that are strongly implicated in the recent (approximately 0.4N(e generations origin of 2Rj. The LCRs contribute to further genome instability, as demonstrated by an imprecise excision event at the proximal breakpoint of 2Rj in field isolates.

  5. Genome management and mismanagement--cell-level opportunities and challenges of whole-genome duplication.

    Science.gov (United States)

    Yant, Levi; Bomblies, Kirsten

    2015-12-01

    Whole-genome duplication (WGD) doubles the DNA content in the nucleus and leads to polyploidy. In whole-organism polyploids, WGD has been implicated in adaptability and the evolution of increased genome complexity, but polyploidy can also arise in somatic cells of otherwise diploid plants and animals, where it plays important roles in development and likely environmental responses. As with whole organisms, WGD can also promote adaptability and diversity in proliferating cell lineages, although whether WGD is beneficial is clearly context-dependent. WGD is also sometimes associated with aging and disease and may be a facilitator of dangerous genetic and karyotypic diversity in tumorigenesis. Scaling changes can affect cell physiology, but problems associated with WGD in large part seem to arise from problems with chromosome segregation in polyploid cells. Here we discuss both the adaptive potential and problems associated with WGD, focusing primarily on cellular effects. We see value in recognizing polyploidy as a key player in generating diversity in development and cell lineage evolution, with intriguing parallels across kingdoms.

  6. Polo-like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication.

    Science.gov (United States)

    Krause, Annekatrin; Hoffmann, Ingrid

    2010-03-24

    Duplication of the centrosome is well controlled during faithful cell division while deregulation of this process leads to supernumary centrosomes, chromosome missegregation and aneuploidy, a hallmark of many cancer cells. We previously reported that Polo-like kinase 2 (Plk2) is activated near the G1/S phase transition, and regulates the reproduction of centrosomes. In search for Plk2 interacting proteins we have identified NPM/B23 (Nucleophosmin) as a novel Plk2 binding partner. We find that Plk2 and NPM/B23 interact in vitro in a Polo-box dependent manner. An association between both proteins was also observed in vivo. Moreover, we show that Plk2 phosphorylates NPM/B23 on serine 4 in vivo in S-phase. Notably, expression of a non-phosphorylatable NPM/B23 S4A mutant interferes with centriole reduplication in S-phase arrested cells and leads to a dilution of centriole numbers in unperturbed U2OS cells. The corresponding phospho-mimicking mutants have the opposite effect and their expression leads to the accumulation of centrioles. These findings suggest that NPM/B23 is a direct target of Plk2 in the regulation of centriole duplication and that phosphorylation on serine 4 can trigger this process.

  7. Polo-like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication.

    Directory of Open Access Journals (Sweden)

    Annekatrin Krause

    Full Text Available Duplication of the centrosome is well controlled during faithful cell division while deregulation of this process leads to supernumary centrosomes, chromosome missegregation and aneuploidy, a hallmark of many cancer cells. We previously reported that Polo-like kinase 2 (Plk2 is activated near the G1/S phase transition, and regulates the reproduction of centrosomes. In search for Plk2 interacting proteins we have identified NPM/B23 (Nucleophosmin as a novel Plk2 binding partner. We find that Plk2 and NPM/B23 interact in vitro in a Polo-box dependent manner. An association between both proteins was also observed in vivo. Moreover, we show that Plk2 phosphorylates NPM/B23 on serine 4 in vivo in S-phase. Notably, expression of a non-phosphorylatable NPM/B23 S4A mutant interferes with centriole reduplication in S-phase arrested cells and leads to a dilution of centriole numbers in unperturbed U2OS cells. The corresponding phospho-mimicking mutants have the opposite effect and their expression leads to the accumulation of centrioles. These findings suggest that NPM/B23 is a direct target of Plk2 in the regulation of centriole duplication and that phosphorylation on serine 4 can trigger this process.

  8. A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage.

    LENUS (Irish Health Repository)

    2010-11-15

    DNA damage can induce centrosome overduplication in a manner that requires G2-to-M checkpoint function, suggesting that genotoxic stress can decouple the centrosome and chromosome cycles. How this happens is unclear. Using live-cell imaging of cells that express fluorescently tagged NEDD1\\/GCP-WD and proliferating cell nuclear antigen, we found that ionizing radiation (IR)-induced centrosome amplification can occur outside S phase. Analysis of synchronized populations showed that significantly more centrosome amplification occurred after irradiation of G2-enriched populations compared with G1-enriched or asynchronous cells, consistent with G2 phase centrosome amplification. Irradiated and control populations of G2 cells were then fused to test whether centrosome overduplication is allowed through a diffusible stimulatory signal, or the loss of a duplication-inhibiting signal. Irradiated G2\\/irradiated G2 cell fusions showed significantly higher centrosome amplification levels than irradiated G2\\/unirradiated G2 fusions. Chicken-human cell fusions demonstrated that centrosome amplification was limited to the irradiated partner. Our finding that only the irradiated centrosome can duplicate supports a model where a centrosome-autonomous inhibitory signal is lost upon irradiation of G2 cells. We observed centriole disengagement after irradiation. Although overexpression of dominant-negative securin did not affect IR-induced centrosome amplification, Plk1 inhibition reduced radiation-induced amplification. Together, our data support centriole disengagement as a licensing signal for DNA damage-induced centrosome amplification.

  9. Bilateral Second Carpal Row Duplication Associated with Multiple Epiphyseal Dysplasia.

    Science.gov (United States)

    Cladiere-Nassif, Victoire; Delaroche, Caroline; Pottier, Edwige; Feron, Jean-Marc

    2015-11-01

    We report a case of a 75-year-old woman presenting a hitherto undescribed condition of bilateral second carpal row duplication. She was diagnosed in childhood with both Marfan and Ehlers-Danlos syndromes, with no clear evidence and no further medical follow-up. She presented throughout her life with various articular symptoms, which appeared to be compatible with a diagnosis of multiple epiphyseal dysplasia, and underwent several surgical procedures on her knees and hips. Most recently, she was reporting pain at the base of the fifth metacarpal bone of the left hand. X-ray images and computed tomography (CT) were obtained for exploration and showed a total second row duplication in both carpi, with a total number of 18 carpal bones in each wrist. PMID:26649258

  10. Simultaneous identification of duplications and lateral gene transfers.

    Science.gov (United States)

    Tofigh, Ali; Hallett, Michael; Lagergren, Jens

    2011-01-01

    The incongruency between a gene tree and a corresponding species tree can be attributed to evolutionary events such as gene duplication and gene loss. This paper describes a combinatorial model where so-called DTL-scenarios are used to explain the differences between a gene tree and a corresponding species tree taking into account gene duplications, gene losses, and lateral gene transfers (also known as horizontal gene transfers). The reasonable biological constraint that a lateral gene transfer may only occur between contemporary species leads to the notion of acyclic DTL-scenarios. Parsimony methods are introduced by defining appropriate optimization problems. We show that finding most parsimonious acyclic DTL-scenarios is NP-hard. However, by dropping the condition of acyclicity, the problem becomes tractable, and we provide a dynamic programming algorithm as well as a fixed-parameter tractable algorithm for finding most parsimonious DTL-scenarios.

  11. Auditing SNOMED Integration into the UMLS for Duplicate Concepts

    Science.gov (United States)

    Huang, Kuo-Chuan; Geller, James; Elhanan, Gai; Perl, Yehoshua; Halper, Michael

    2010-01-01

    The UMLS contains terms from many sources. Every update of a source requires reintegration. Each new term needs to be assigned to a preexisting UMLS concept, or a new concept must be created. Whenever the integration process unnecessarily creates a new concept, this is undesirable. We report on a method to detect such undesirable duplicate concepts. Terms are removed from the UMLS and reintegrated using “piecewise synonym generation.” The concept of the reintegrated term is programmatically compared to the initial concept of the term (before removal). If they are different, this indicates an error, either in the integration process or in the initial concept. Thus, such a term-concept pair is deemed suspicious. A study of five hierarchies of the SNOMED found 7.7% suspicious matches. A human expert needs to evaluate the correctness of suspicious concepts. In a sample of 149 of those, 19% of concepts were found to be duplicates. PMID:21346993

  12. A rare case of duodenal duplication treated surgically

    Institute of Scientific and Technical Information of China (English)

    Mehmet Ali Uzun; Neset Koksal; Munire Kayahan; Atilla Celik; Gamze Klcoglu; Selvinaz Ozkara

    2009-01-01

    Duodenal duplication, a rare congenital malformation,can also be observed in adulthood. Although it can be cystic or tubular, communicating or noncommunicating, cystic and non-communicating forms are the most common. Several complications, such as obstruction, bleeding, perforation and pancreatitis, may result. Optimal treatment is total excision,although endoscopic procedures have also been described in appropriate cases. If total excision is not possible, subtotal excision and internal derivation can be performed. The 38-year-old woman presented here had occasional attacks of abdominal pain and obstruction, and we considered the diagnosis of duodenal duplication by abdominal computerized tomography. As we confirmed the diagnosis with operative findings and histopathological signs, we treated her with subtotal excision and intraduodenal cystoduodenostomy.

  13. Duplication Detection When Evolving Feature Models of Software Product Lines

    Directory of Open Access Journals (Sweden)

    Amal Khtira

    2015-10-01

    Full Text Available After the derivation of specific applications from a software product line, the applications keep evolving with respect to new customer’s requirements. In general, evolutions in most industrial projects are expressed using natural language, because it is the easiest and the most flexible way for customers to express their needs. However, the use of this means of communication has shown its limits in detecting defects, such as inconsistency and duplication, when evolving the existing models of the software product line. The aim of this paper is to transform the natural language specifications of new evolutions into a more formal representation using natural language processing. Then, an algorithm is proposed to automatically detect duplication between these specifications and the existing product line feature models. In order to instantiate the proposed solution, a tool is developed to automatize the two operations.

  14. Down syndrome due to a recombination of a chromosome 21 paracentric inversion in 1 of 2 cases with a review of paracentric recombinants

    Energy Technology Data Exchange (ETDEWEB)

    Jewett, T.; Rao, P.N.; Berry, M. [Wake Forest Univ., Winston-Salem, NC (United States)] [and others

    1994-09-01

    We recently identified 2 paracentric inversions (PAI) of chromosome 21. Case 1 was identified prenatally and paternally inherited: 46,XY,inv(21)(q21.2q22.13). The outcome is pending. Case 2 was a newborn male infant with clinical features of Down syndrome and an apparent inversion-duplication within chromosome 21. Parental chromosome analysis showed a maternal PAI: 46,XX,inv(21)(q21.2q22.3). The resulting child`s karyotype was: 46,XY,rec(21)(pter{yields}q21.2::q22.3{yields}q21.2::q22.3{yields}pter). Duplication of chromosome region q22.3{yields}qter was confirmed by FISH using a Down syndrome region specific probe (Cambio). Cytologically, the cornerstone of meiotic recombination from a paracentric inversion is the {open_quotes}reverse loop{close_quotes} model. In this model, a crossover event in the inversion loop results in the formation of gametes carrying either a dicentric chromatid, an acentric fragment, a normal chromatid or a chromatid with an inversion. However, a literature review of 326 PAI identified only 2 dicentrics and 15 other recombinants: 1 duplication/deletion; 6 deletions; 8 duplications. A U-type exchange model during meiosis within the inversion loop may best account for duplication/deletion recombinants. In contrast, the recombination in our case 2 would have occurred outside the loop. It is possible that no single explanation for PAI recombination may account for all outcomes. Alternative models of PAI recominational events will be presented. The literature suggests a low risk for prenatal loss due to abnormal PAI recombinants. In our review, viable offspring with recombinant chromosomes occurred in 3.8% of the PAI. Considering the potential for an increased incidence of recombination, prenatal diagnosis for all PAI carriers is warranted.

  15. Female Urethral Duplication: Rare Anomaly with Unusual Presentation.

    Science.gov (United States)

    Solanki, Shailesh; Babu, M Narendra; Jadhav, Vinay; Gowrishankar; Ramesh, S

    2015-01-01

    Urethral duplication (UD) in females is a rare congenital anomaly and requires a high degree of clinical suspicion for diagnosis. The preoperative evaluation requires thorough investigations to delineate anatomy which is imperative for surgical reconstruction to provide excellent functional and cosmetic outcome. We describe the successful management of a 6-year-old girl with UD (presented as ambiguous genitalia and urinary incontinence) along with a review of pertinent literature. PMID:27512541

  16. Grebe syndrome with bilateral fibular hemimelia and thumb duplication

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Narasimha; Joseph, Benjamin [Department of Orthopaedics, Kasturba Medical College, Karnataka State (India)

    2002-03-01

    Grebe syndrome is a rare recessively inherited form of short-limbed dwarfism. Among the skeletal anomalies reported in the past, complete fibular hemimelia and thumb duplication have not been documented. We report a case of Grebe syndrome with these associated anomalies and review the various skeletal anomalies reported in the literature related to this syndrome. Awareness of the skeletal anomalies that can occur in this syndrome should enable an accurate diagnosis. (orig.)

  17. Root hairs, trichomes and the evolution of duplicate genes.

    Science.gov (United States)

    Kellogg, E A

    2001-12-01

    The MYB-class proteins WEREWOLF and GLABRA1 are functionally interchangeable, even though one is normally expressed solely in roots and the other only in shoots. This shows that their different functions are the result of the modification of cis-regulatory sequences over evolutionary time. The two genes thus provide an example of morphological diversification created by gene duplication and changes in regulation.

  18. Bionic Duplication of Fresh Navodon septentrionalis Fish Surface Structures

    OpenAIRE

    Xiaohui Zhou; Zhongze Gu; Chao Pan; Lanlan Pan; Jing Wang; Bing Qu

    2011-01-01

    Biomimetic superhydrophobic surface was fabricated by replicating topography of the fresh fish skin surface of Navodon septentrionalis with polydimethylsiloxane (PDMS) elastomer. A two-step replicating method was developed to make the surface structure of the fresh fish skin be replicated with high fidelity. After duplication, it was found that the static contact angle of the replica was as large as 173°. Theoretic analysis based on Young's and Cassie-Baxter (C-B) model was performed to expla...

  19. Cep63 and cep152 cooperate to ensure centriole duplication.

    Directory of Open Access Journals (Sweden)

    Nicola J Brown

    Full Text Available Centrosomes consist of two centrioles embedded in pericentriolar material and function as the main microtubule organising centres in dividing animal cells. They ensure proper formation and orientation of the mitotic spindle and are therefore essential for the maintenance of genome stability. Centrosome function is crucial during embryonic development, highlighted by the discovery of mutations in genes encoding centrosome or spindle pole proteins that cause autosomal recessive primary microcephaly, including Cep63 and Cep152. In this study we show that Cep63 functions to ensure that centriole duplication occurs reliably in dividing mammalian cells. We show that the interaction between Cep63 and Cep152 can occur independently of centrosome localisation and that the two proteins are dependent on one another for centrosomal localisation. Further, both mouse and human Cep63 and Cep152 cooperate to ensure efficient centriole duplication by promoting the accumulation of essential centriole duplication factors upstream of SAS-6 recruitment and procentriole formation. These observations describe the requirement for Cep63 in maintaining centriole number in dividing mammalian cells and further establish the order of events in centriole formation.

  20. Cep63 and cep152 cooperate to ensure centriole duplication.

    Science.gov (United States)

    Brown, Nicola J; Marjanović, Marko; Lüders, Jens; Stracker, Travis H; Costanzo, Vincenzo

    2013-01-01

    Centrosomes consist of two centrioles embedded in pericentriolar material and function as the main microtubule organising centres in dividing animal cells. They ensure proper formation and orientation of the mitotic spindle and are therefore essential for the maintenance of genome stability. Centrosome function is crucial during embryonic development, highlighted by the discovery of mutations in genes encoding centrosome or spindle pole proteins that cause autosomal recessive primary microcephaly, including Cep63 and Cep152. In this study we show that Cep63 functions to ensure that centriole duplication occurs reliably in dividing mammalian cells. We show that the interaction between Cep63 and Cep152 can occur independently of centrosome localisation and that the two proteins are dependent on one another for centrosomal localisation. Further, both mouse and human Cep63 and Cep152 cooperate to ensure efficient centriole duplication by promoting the accumulation of essential centriole duplication factors upstream of SAS-6 recruitment and procentriole formation. These observations describe the requirement for Cep63 in maintaining centriole number in dividing mammalian cells and further establish the order of events in centriole formation.