WorldWideScience

Sample records for chromosome 10q tetrasomy

  1. Chromosome 10q tetrasomy: First reported case

    Energy Technology Data Exchange (ETDEWEB)

    Blackston, R.D.; May, K.M.; Jones, F.D. [Emory Univ., Atlanta, GA (United States)] [and others

    1994-09-01

    While there are several reports of trisomy 10q (at least 35), we are not aware of previous cases of 10q tetrasomy. We present what we believe to be the initial report of such a case. R.J. is a 6 1/2 year old white male who presented with multiple dysmorphic features, marked articulation problems, hyperactivity, and developmental delays. He is the product of a term uncomplicated pregnancy. There was a normal spontaneous vaginal delivery with a birth weight of 6 lbs. 4oz. and length was 19 1/2 inch. Dysmorphic features include small size, an asymmetrically small head, low set ears with overfolded helixes, bilateral ptosis, downslanting eyes, right eye esotropia, prominent nose, asymmetric facies, high palate, mild pectus excavatum deformity of chest, and hyperextensible elbow joints. The patient is in special needs classes for mildly mentally handicapped students. Chromosome analysis at a resolution of 800 bands revealed a complex rearrangement of chromosomes 10 and 11. The segment 10q25.3 to q16.3 appears to be inverted and duplicated within the long arm of chromosome 10 at band q25.3 and the same segment of chromosome 10 is present on the terminal end of the short arm of chromosome 11. There is no visible loss of material from chromosome 11. Fluorescence in situ hybridization was performed with a chromosome 10 specific {open_quotes}paint{close_quotes} to confirm that all of the material on the abnormal 10 and the material on the terminal short arm of 11 was from chromosome 10. Thus, it appears that the segment 10q25.3 to q26.3 is present in four copies. Parental chromosome studies are normal. We compared findings which differ in that the case of 10q tetrasomy did not have prenatal growth deficiency, microphthalmia, cleft palate, digital anomalies, heart, or renal defects. Whereas most cases of 10q trisomy are said to have severe mental deficiency, our case of 10q tetrasomy was only mildly delayed. We report this first apparent cited case of 10q tetrasomy.

  2. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  3. Replication pattern of the pericentromeric region of chromosome 10q and expression of the RET protooncogene.

    Science.gov (United States)

    Cinti, R; Schena, F; Passalacqua, M; Ceccherini, I; Ravazzolo, R

    2004-08-15

    Regulation of the RET gene is highly specific during embryo development and is strictly tissue-specific. Control of transcription depends on mechanisms influenced by epigenetic processes, in particular, histone acetylation at regions flanking the 5' end of the gene. Since the RET gene is mapped in the pericentromeric region of the human chromosome 10, the implication of epigenetic processes is even more striking and worth to be investigated in an extended chromosomal tract. One experimental approach to study the chromatin status in relationship with gene transcription is to assess the replication timing, which we did by using fluorescent in situ hybridization in cells expressing or not expressing the RET gene. By using probes spanning a 700-kb genomic region from the RET locus toward the centromere, we found a relationship between RET expression and early replication. Different patterns were observed between cells naturally expressing RET and cells induced to expression of RET by treatment with sodium butyrate, an inhibitor of histone deacetylases. Three-dimensional analysis of the nuclear localization of fluorescent signals by confocal microscopy showed difference of localization between the RET probe and a probe for a housekeeping gene, G3PDH, located at 12p13.3, in cells that do not express RET, in accordance with previous data for other genes and chromosomal regions. However, RET-expressing cells showed a localization of signals which was not consistent with that expected for expressed genes.

  4. Patients with High-Grade Gliomas Harboring Deletions of Chromosomes 9p and 10q Benefit from Temozolomide Treatment

    Directory of Open Access Journals (Sweden)

    Silke Wemmert

    2005-10-01

    Full Text Available Surgical cure of glioblastomas is virtually impossible and their clinical course is mainly determined by the biologic behavior of the tumor cells and their response to radiation and chemotherapy. We investigated whether response to temozolomide (TMZ chemotherapy differs in subsets of malignant glioblastomas defined by genetic lesions. Eighty patients with newly diagnosed glioblastoma were analyzed with comparative genomic hybridization and loss of heterozygosity. All patients underwent radical resection. Fifty patients received TMZ after radiotherapy (TMZ group and 30 patients received radiotherapy alone (RT group. The most common aberrations detected were gains of parts of chromosome 7 and losses of 10% 9p, or 13q. The spectrum of genetic aberrations did not differ between the TMZ and RT groups. Patients treated with TMZ showed significantly better survival than patients treated with radiotherapy alone (19.5 vs 9.3 months. Genomic deletions on chromosomes 9 and 10 are typical for glioblastoma and associated with poor prognosis. However, patients with these aberrations benefited significantly from TMZ in univariate analysis. In multivariate analysis, this effect was pronounced for 9p deletion and for elderly patients with 10q deletions, respectively. This study demonstrates that molecular genetic and cytogenetic analyses potentially predict responses to chemotherapy in patients with newly diagnosed glioblastomas.

  5. Complex distal 10q rearrangement in a girl with mild intellectual disability: follow up of the patient and review of the literature of non-acrocentric satellited chromosomes.

    Science.gov (United States)

    Sarri, Catherine; Douzgou, Sofia; Gyftodimou, Yolanda; Tümer, Zeynep; Ravn, Kirstine; Pasparaki, Angela; Sarafidou, Theologia; Kontos, Harry; Kokotas, Haris; Karadima, Georgia; Grigoriadou, Maria; Pandelia, Effie; Theodorou, Virginia; Moschonas, Nicholas K; Petersen, Michael B

    2011-11-01

    We report on an intellectually disabled girl with a de novo satellited chromosome 10 (10qs) and performed a review of the literature of the non-acrocentric satellited chromosomes (NASC). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited non-acrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is, to our knowledge, the third report of a 10qs chromosome. The phenotype observed in the proband prompted a search for a structural rearrangement of chromosome 10q. By microsatellite analysis we observed a 4 Mb deletion on the long arm of chromosome 10, approximately 145 kb from the telomere. FISH and array CGH analyses revealed a complex rearrangement involving in range from the centromere to the telomere: A 9.64 Mb 10q26.11-q26.2 duplication, a 1.3 Mb region with no copy number change, followed by a 5.62 Mb 10q26.2-q26.3 deletion and a translocation of satellite material. The homology between the repeat sequences at 10q subtelomere region and the sequences on the acrocentric short arms may explain the origin of the rearrangement and it is likely that the submicroscopic microdeletion and microduplication are responsible for the abnormal phenotype in our patient. The patient presented here, with a 15-year follow-up, manifests a distinct phenotype different from the 10q26 pure distal monosomy and trisomy syndromes. Copyright © 2011 Wiley Periodicals, Inc.

  6. Tetrasomy 8 in a patient with chronic lymphocytic leukemia.

    Science.gov (United States)

    de Oliveira, Fábio Morato; Brandão, Renata Amorim; Leite-Cueva, Sabrina Dias; de Paula Careta, Francisco; Simões, Belinda Pinto; Rego, Eduardo Magalhães; Falcão, Roberto Passetto

    2010-04-15

    We report a case of a 47-year-old man diagnosed with chronic lymphocytic leukemia (CLL) with two extra copies of chromosome 8. Classical cytogenetic analysis by the immunostimulatory combination of DSP30 and interleukin 2 showed tetrasomy of chromosome 8 in 60% of the metaphase cells (48,XY,+8,+8[12]/46,XY[8]). Spectral karyotype analysis confirmed the abnormality previously seen by G banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 8 probe performed on peripheral blood cells without any stimulant agent showed tetrasomy of chromosome 8 in 54% of analyzed cells (108 of 200). To our knowledge, tetrasomy 8 as the sole chromosomal abnormality in CLL has not been previously described. The prognostic significance of tetrasomy 8 in CLL remains to be elucidated. However, the patient has been followed up in the outpatient hospital since 2004 without any therapeutic intervention and has so far remained stable. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Blepharophimosis and mental retardation (BMR) phenotypes caused by chromosomal rearrangements: description in a boy with partial trisomy 10q and monosomy 4q and review of the literature.

    Science.gov (United States)

    Bartholdi, Deborah; Toelle, Sandra P; Steiner, Bernhard; Boltshauser, Eugen; Schinzel, Albert; Riegel, Mariluce

    2008-01-01

    Blepharophimosis is a rare congenital anomaly of the palpebral fissure which is often associated with mental retardation and additional malformations. We report on a boy with blepharophimosis, ptosis and severe mental retardation carrying an unbalanced 4;10 translocation with terminal duplication of 10q [dup(10)(q25.1-->qter)] and monosomy of a small terminal segment of chromosome 4q [del(4)(34.3-->qter)]. Detailed clinical examination and review of the literature showed that the phenotype of the patient was mainly determined by the dup(10q). This paper reviews the chromosomal aberrations associated with BMR (blepharophimosis mental retardation) phenotypes. Searching different databases and reviewing the literature revealed 14 microscopically visible aberrations (among them UPD(14)pat) and two submicroscopic rearrangements causing blepharophimosis and mental retardation (BMR) syndrome. Some of these rearrangements-like the terminal dup(10q) identified in our patient or interstitial del(2q)-are associated with clearly defined phenotypes and can be well distinguished from each other on basis of clinical examination. This paper should assist clinicians and cytogeneticists when evaluating patients with BMR syndrome.

  8. DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3-26.1 is deleted in malignant brain tumours

    DEFF Research Database (Denmark)

    Mollenhauer, J; Wiemann, S; Scheurlen, W

    1997-01-01

    Loss of sequences from human chromosome 10q has been associated with the progression of human cancer. Medulloblastoma and glioblastoma multiforme are the most common malignant brain tumours in children and adults, respectively. In glioblastoma multiforme, the most aggressive form, 80% of the tumo......Loss of sequences from human chromosome 10q has been associated with the progression of human cancer. Medulloblastoma and glioblastoma multiforme are the most common malignant brain tumours in children and adults, respectively. In glioblastoma multiforme, the most aggressive form, 80....... Intragenic homozygous deletions has been detected in 2/20 medulloblastomas and in 9/39 glioblastomas multiformes. Lack of DMBT1 expression has been demonstrated in 4/5 brain-tumour cell lines. We suggest that DMBT1 is a putative tumour-suppressor gene implicated in the carcinogenesis of medulloblastoma...

  9. A chromosome 10 variant with a 12 Mb inversion [inv(10)(q11.22q21.1)] identical by descent and frequent in the Swedish population.

    Science.gov (United States)

    Entesarian, Miriam; Carlsson, Birgit; Mansouri, Mahmoud Reza; Stattin, Eva-Lena; Holmberg, Eva; Golovleva, Irina; Stefansson, Hreinn; Klar, Joakim; Dahl, Niklas

    2009-03-01

    We identified a paracentric inversion of chromosome 10 [inv(10)(q11.22q21.1)] in 0.20% of Swedish individuals (15/7,439) referred for cytogenetic analysis. A retrospective analysis of 8,896 karyotypes from amniocenteses in Sweden revealed a carrier frequency of 0.079% (7/8,896) for the inversion. Cloning and detailed analysis of the inversion breakpoint regions show enrichment for interspersed repeat elements and AT-stretches. The centromeric breakpoint coincides with that of a predicted inversion from HapMap data, which suggests that this region is involved in several chromosome 10 variants. No known gene or predicted transcript are disrupted by the inversion which spans approximately 12 Mb. Carriers from four non-related Swedish families have identical inversion breakpoints and haplotype analysis confirmed that the rearrangement is identical by descent. Diagnosis was retrieved in 6 out of the 15 carriers referred for cytogenetic analysis. No consistent phenotype was found to be associated with the inversion. Our study demonstrates that the inv(10)(q11.22q21.1) is a rare and inherited chromosome variant with a broad geographical distribution in Sweden. 2009 Wiley-Liss, Inc.

  10. Genome-wide association analysis of young onset stroke identifies a locus on chromosome 10q25 near HABP2

    Science.gov (United States)

    Cheng, Yu-Ching; Stanne, Tara M.; Giese, Anne-Katrin; Ho, Weang Kee; Traylor, Matthew; Amouyel, Philippe; Holliday, Elizabeth G.; Malik, Rainer; Xu, Huichun; Kittner, Steven J.; Cole, John W.; O’Connell, Jeffrey R.; Danesh, John; Rasheed, Asif; Zhao, Wei; Engelter, Stefan; Grond-Ginsbach, Caspar; Kamatani, Yoichiro; Lathrop, Mark; Leys, Didier; Thijs, Vincent; Metso, Tiina M.; Tatlisumak, Turgut; Pezzini, Alessandro; Parati, Eugenio A.; Norrving, Bo; Bevan, Steve; Rothwell, Peter M; Sudlow, Cathie; Slowik, Agnieszka; Lindgren, Arne; Walters, Matthew R; Jannes, Jim; Shen, Jess; Crosslin, David; Doheny, Kimberly; Laurie, Cathy C.; Kanse, Sandip M.; Bis, Joshua C.; Fornage, Myriam; Mosley, Thomas H.; Hopewell, Jemma C.; Strauch, Konstantin; Müller-Nurasyid, Martina; Gieger, Christian; Waldenberger, Melanie; Peters, Annette; Meisinger, Christine; Ikram, M. Arfan; Longstreth, WT; Meschia, James F.; Seshadri, Sudha; Sharma, Pankaj; Worrall, Bradford; Jern, Christina; Levi, Christopher; Dichgans, Martin; Boncoraglio, Giorgio B.; Markus, Hugh S.; Debette, Stephanie; Rolfs, Arndt; Saleheen, Danish; Mitchell, Braxton D.

    2015-01-01

    Background and Purpose Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a two-stage meta-analysis of genome-wide association studies (GWAS), focusing on stroke cases with an age of onset genetic variants at loci with association Pstroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the Discovery and Follow-up Stages (rs11196288, OR=1.41, P=9.5×10−9). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that two SNPs in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. Conclusions HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke. PMID:26732560

  11. Assignment of the 5HT7 receptor gene (HTR7) to chromosome 10q and exclusion of genetic linkage with Tourette syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Gelernter, J.; Rao, P.A.; Pauls, D.L. [Yale Univ. School of Medicine, West Haven, CT (United States)] [and others

    1995-03-20

    A novel serotonin receptor designated 5HT7 (genetic locus HTR7) was cloned in 1993. This receptor has interesting properties related to ligand affinity and CNS distribution that render HTR7 a very interesting candidate gene for neuropsychiatric disorders. We mapped this gene, first by physical methods and then by genetic linkage. First, we made a tentative assignment to chromosome 10, based on hybridization of an HTR7 probe to a Southern blot of DNA from somatic cell hybrids. We then identified a genetic polymorphism at the HTR7 locus. We identified one extended pedigree where the polymorphism segregated. Using the LEPED computer program for pairwise linkage analysis, we confirmed the assignment of the gene to chromosome 10, specifically 10q21-q24, based on a lod score of 5.37 at 0% recombination between HTR7 and D10S20 (a chromosome 10 reference marker). Finally, we excluded genetic linkage between this locus and Tourette syndrome under a reasonable set of assumptions. 15 refs., 1 fig., 1 tab.

  12. Role of Tetrasomy for the Diagnosis of Urothelial Carcinoma Using UroVysion Fluorescent In Situ Hybridization.

    Science.gov (United States)

    Zhou, Amy G; Liu, Yuxin; Cyr, Maryann St; Garver, Joanne; Woda, Bruce A; Cosar, Ediz F; Hutchinson, Lloyd M

    2016-06-01

    -UroVysion fluorescent in situ hybridization (FISH) is routinely used to detect urothelial carcinoma (UC). A positive threshold is defined as chromosome polysomy in 4 or more cells, which also includes tetrasomy, a natural product of cell division. -To evaluate tetrasomy for UC detection and explore the relation to the surgical diagnosis or patient history. -The FISH was performed on 1532 urine samples from patients with cytology results and 4 or more years of follow-up. We created separate polysomy and tetrasomy categories and constructed receiver operating curves to determine appropriate thresholds using biopsy (n = 194) as the gold standard. Standard FISH and a novel assay integrating cytomorphology and FISH (Target-FISH) were compared. Matching tissue biopsies of urine samples with 10 or more tetrasomy cells were analyzed. -No significant threshold was found for tetrasomy cells. Exclusion of tetrasomy from the polysomy category changed the threshold from 8.5 to 4.5 cells, increased specificity (59.2% to 78.9%), but reduced sensitivity (78.9% to 65.9%). In Target-FISH, the same approach yielded a specificity of 93.7% and sensitivity of 65.2%. Similarly, specificity improved significantly for low- and high-grade UC, but sensitivity decreased for low-grade UC. No evidence of UC was observed in 95% (52 of 55) of the patients referred for screening who had 10 or more tetrasomy cells by FISH. Matching biopsies for urines containing 10 or more tetrasomy cells showed few or no tetrasomy cells. -Tetrasomy is a nonspecific finding frequently encountered in urine FISH and should be excluded from the polysomy classification. Target-FISH is an optimal approach, offering the ability to detect rare tetrasomy tumors.

  13. Sperm FISH analysis of a 44,X,der(Y),t(Y;15)(q12;q10)pat,rob(13;14)(q10;q10)mat complex chromosome rearrangement.

    Science.gov (United States)

    Ferfouri, F; Boitrelle, F; Clement, P; Molina Gomes, D; Selva, J; Vialard, F

    2014-06-01

    Complex chromosome rearrangements (CCR) with two independent chromosome rearrangements are rare. Although CCRs lead to high unbalanced gamete rates, data on meiotic segregation in this context are scarce. A male patient was referred to our clinic as part of a family screening programme prompted by the observation of a 44,X,der(Y),t(Y;15)(q12;q10)pat,rob(13;14)(q10;q10)mat karyotype in his brother. Karyotyping identified the same CCR. Sperm FISH (with locus-specific probes for the segments involved in the translocations and nine chromosomes not involved in both rearrangements) was used to investigate the rearrangements meiotic segregation products and establish whether or not an inter-chromosomal effect was present. Sperm nuclear DNA fragmentation was also evaluated. For rob(13;14) and der(Y), the proportions of unbalanced products were, respectively, 26.4% and 60.6%. Overall, 70.3% of the meiotic segregation products were unbalanced. No evidence of an inter-chromosomal effect was found, and the sperm nuclear DNA fragmentation rate was similar to our laboratory's normal cut-off value. In view of previously published sperm FISH analyses of Robertsonian translocations (and even though the mechanism is still unknown), we hypothesise that cosegregation of der(Y) and rob(13;14) could modify rob(13;14) meiotic segregation. © 2013 Blackwell Verlag GmbH.

  14. Genome-wide association study identifies chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Brandon L Pierce

    Full Text Available Arsenic contamination of drinking water is a major public health issue in many countries, increasing risk for a wide array of diseases, including cancer. There is inter-individual variation in arsenic metabolism efficiency and susceptibility to arsenic toxicity; however, the basis of this variation is not well understood. Here, we have performed the first genome-wide association study (GWAS of arsenic-related metabolism and toxicity phenotypes to improve our understanding of the mechanisms by which arsenic affects health. Using data on urinary arsenic metabolite concentrations and approximately 300,000 genome-wide single nucleotide polymorphisms (SNPs for 1,313 arsenic-exposed Bangladeshi individuals, we identified genome-wide significant association signals (P<5×10(-8 for percentages of both monomethylarsonic acid (MMA and dimethylarsinic acid (DMA near the AS3MT gene (arsenite methyltransferase; 10q24.32, with five genetic variants showing independent associations. In a follow-up analysis of 1,085 individuals with arsenic-induced premalignant skin lesions (the classical sign of arsenic toxicity and 1,794 controls, we show that one of these five variants (rs9527 is also associated with skin lesion risk (P = 0.0005. Using a subset of individuals with prospectively measured arsenic (n = 769, we show that rs9527 interacts with arsenic to influence incident skin lesion risk (P = 0.01. Expression quantitative trait locus (eQTL analyses of genome-wide expression data from 950 individual's lymphocyte RNA suggest that several of our lead SNPs represent cis-eQTLs for AS3MT (P = 10(-12 and neighboring gene C10orf32 (P = 10(-44, which are involved in C10orf32-AS3MT read-through transcription. This is the largest and most comprehensive genomic investigation of arsenic metabolism and toxicity to date, the only GWAS of any arsenic-related trait, and the first study to implicate 10q24.32 variants in both arsenic metabolism and arsenical

  15. Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near HABP2.

    Science.gov (United States)

    Cheng, Yu-Ching; Stanne, Tara M; Giese, Anne-Katrin; Ho, Weang Kee; Traylor, Matthew; Amouyel, Philippe; Holliday, Elizabeth G; Malik, Rainer; Xu, Huichun; Kittner, Steven J; Cole, John W; O'Connell, Jeffrey R; Danesh, John; Rasheed, Asif; Zhao, Wei; Engelter, Stefan; Grond-Ginsbach, Caspar; Kamatani, Yoichiro; Lathrop, Mark; Leys, Didier; Thijs, Vincent; Metso, Tiina M; Tatlisumak, Turgut; Pezzini, Alessandro; Parati, Eugenio A; Norrving, Bo; Bevan, Steve; Rothwell, Peter M; Sudlow, Cathie; Slowik, Agnieszka; Lindgren, Arne; Walters, Matthew R; Jannes, Jim; Shen, Jess; Crosslin, David; Doheny, Kimberly; Laurie, Cathy C; Kanse, Sandip M; Bis, Joshua C; Fornage, Myriam; Mosley, Thomas H; Hopewell, Jemma C; Strauch, Konstantin; Müller-Nurasyid, Martina; Gieger, Christian; Waldenberger, Melanie; Peters, Annette; Meisinger, Christine; Ikram, M Arfan; Longstreth, W T; Meschia, James F; Seshadri, Sudha; Sharma, Pankaj; Worrall, Bradford; Jern, Christina; Levi, Christopher; Dichgans, Martin; Boncoraglio, Giorgio B; Markus, Hugh S; Debette, Stephanie; Rolfs, Arndt; Saleheen, Danish; Mitchell, Braxton D

    2016-02-01

    Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset genetic variants at loci with association Pstroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the discovery and follow-up stages (rs11196288; odds ratio =1.41; P=9.5×10(-9)). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that 2 single nucleotide polymorphisms in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke. © 2016 American Heart Association, Inc.

  16. Profound, prelingual nonsyndromic deafness maps to chromosome 10q21 and is caused by a novel missense mutation in the Usher syndrome type IF gene PCDH15.

    Science.gov (United States)

    Doucette, Lance; Merner, Nancy D; Cooke, Sandra; Ives, Elizabeth; Galutira, Dante; Walsh, Vanessa; Walsh, Tom; MacLaren, Linda; Cater, Tracey; Fernandez, Bridget; Green, Jane S; Wilcox, Edward R; Shotland, Lawrence I; Shotland, Larry; Li, Xiaoyan Cindy; Li, X C; Lee, Ming; King, Mary-Claire; Young, Terry-Lynn

    2009-05-01

    We studied a consanguineous family (Family A) from the island of Newfoundland with an autosomal recessive form of prelingual, profound, nonsyndromic sensorineural hearing loss. A genome-wide scan mapped the deafness trait to 10q21-22 (max LOD score of 4.0; D10S196) and fine mapping revealed a 16 Mb ancestral haplotype in deaf relatives. The PCDH15 gene was mapped within the critical region and was an interesting candidate because truncating mutations cause Usher syndrome type IF (USH1F) and two missense mutations have been previously associated with isolated deafness (DFNB23). Sequencing of the PCDH15 gene revealed 33 sequencing variants. Three of these variants were homozygous exclusively in deaf siblings but only one of them was not seen in ethnically matched controls. This novel c.1583 T>A transversion predicts an amino-acid substitution of a valine with an aspartic acid at codon 528 (V528D). Like the two DFNB23 mutations, the V528D mutation in Family A occurs in a highly conserved extracellular cadherin (EC) domain of PCDH15 and is predicted to be more deleterious than the previously identified DFNB23 missense mutations (R134G and G262D). Physical assessment, vestibular and visual function testing in deaf adults ruled out syndromic deafness because of Usher syndrome. This study validates the DFNB23 designation and supports the hypothesis that missense mutations in conserved motifs of PCDH15 cause nonsyndromic hearing loss. This emerging genotype-phenotype correlation in USH1F is similar to that in several other USH1 genes and cautions against a prognosis of a dual sensory loss in deaf children found to be homozygous for hypomorphic mutations at the USH1F locus.

  17. Genetics Home Reference: tetrasomy 18p

    Science.gov (United States)

    ... The word "tetrasomy" is derived from "tetra," the Greek word for "four.") The extra genetic material from ... usually the mother. Most affected individuals have no history of the disorder in their family. However, rare ...

  18. Tetrasomy 15q11-q13 Diagnosed by FISH in a Patient with Autistic Disorder

    Directory of Open Access Journals (Sweden)

    Karim Ouldim

    2007-01-01

    Full Text Available We report the case of a Moroccan boy with mental retardation, hyperactivity, epilepsy, developmental problems and behavioural disorders. Cytogenetic analysis showed the presence of a supernumerary marker chromosome. Molecular cytogenetics allowed us to determine the marker as an inverted duplication of chromosome 15. It is the first case of a Moroccan patient with tetrasomy 15q in which fluorescence in situ hybridization (FISH enabled us to specify the diagnosis. Interestingly, this patient has an infantile autism with cytogenetic abnormalities on chromosomal region 15q11-q13 as reported in patients with Autistic Disorder.

  19. Relatives with opposite chromosome constitutions, rec(10)dup(10p)inv(10)(p15.1q26.12) and rec(10)dup(10q)inv(10)(p15.1q26.12), due to a familial pericentric inversion.

    Science.gov (United States)

    Ciuladaite, Zivile; Preiksaitiene, Egle; Utkus, Algirdas; Kučinskas, Vaidutis

    2014-01-01

    Large pericentric inversions in chromosome 10 are rare chromosomal aberrations with only few cases of familial inheritance. Such chromosomal rearrangements may lead to production of unbalanced gametes. As a result of a recombination event in the inversion loop, 2 recombinants with duplicated and deficient chromosome segments, including the regions distal to the inversion, may be produced. We report on 2 relatives in a family with opposite terminal chromosomal rearrangements of chromosome 10, i.e. rec(10)dup(10p)inv(10) and rec(10)dup(10q)inv(10), due to familial pericentric inversion inv(10)(p15.1q26.12). Based on array-CGH results, we characterized the exact genomic regions involved and compared the clinical features of both patients with previous reports on similar pericentric inversions and regional differences within 10p and 10q. The fact that both products of recombination are viable indicates a potentially high recurrence risk of unbalanced offspring. This report of unbalanced rearrangements in chromosome 10 in 2 generations confirms the importance of screening for terminal imbalances in patients with idiopathic intellectual disability by molecular cytogenetic techniques such as FISH, MLPA or microarrays. It also underlines the necessity for FISH to define structural characteristics of such cryptic intrachromosomal rearrangements and the underlying cytogenetic mechanisms. © 2014 S. Karger AG, Basel.

  20. Nonmosaic tetrasomy 15q25.2 → qter identified with SNP microarray in a patient with characteristic facial appearance and review of the literature.

    Science.gov (United States)

    Xu, Huihui; Xiao, Bing; Ji, Xing; Hu, Qin; Chen, Yingwei; Qiu, Wenjuan

    2014-07-01

    Tetrasomy for the distal chromosome 15q is rare, and only 22 patients (including 6 cases without detailed information) have been described to date in the literature. Here we report on another patient with nonmosaic tetrasomy 15q25.2-qter resulted from an inverted duplication of distal chromosome 15. This patient presents with features of development delay, arachnodactyly, joint contractures and typical facial dysmorphism including frontal bossing, short palpebral fissures, long philtrum, low-set ears, high-arched palate and retrognathia. Unlike most of the related patients, abdominal ultrasound test and brain MRI showed normal. Karyotyping analysis revealed a supernumerary marker chromosome presented in all metaphase cells examined. Parental karyotyping analysis was normal, indicating a de novo chromosome aberration of the patient. SNP microarray analysis found a two copy gain of 17.7 Mb from the distal long arm of chromosome 15 (15q25.2-qter). Further FISH analysis using SureFISH 15q26.3 IGF1R probe proved an inverted duplication of distal long arm of chromosome 15. The segmental duplications which lie in the hotspots of 15q24-26 might increase the susceptibility of chromosome rearrangement. Compared with the George-Abraham' study [2012], ADAMTSL3 might be more related to the cardiac disorders in tetrasomy 15q patients. Considering all patients reported in the literature, different mosaic degrees and segmental sizes don't correlate to the severity of phenotypes. A clear delineation on tetrasomy for distal chromosome 15q could still be investigated. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. The inv dup (15 or idic (15 syndrome (Tetrasomy 15q

    Directory of Open Access Journals (Sweden)

    Battaglia Agatino

    2008-11-01

    Full Text Available Abstract The inv dup(15 or idic(15 syndrome displays distinctive clinical findings represented by early central hypotonia, developmental delay and intellectual disability, epilepsy, and autistic behaviour. Incidence at birth is estimated at 1 in 30,000 with a sex ratio of almost 1:1. Developmental delay and intellectual disability affect all individuals with inv dup(15 and are usually moderate to profound. Expressive language is absent or very poor and often echolalic. Comprehension is very limited and contextual. Intention to communicate is absent or very limited. The distinct behavioral disorder shown by children and adolescents has been widely described as autistic or autistic-like. Epilepsy with a wide variety of seizure types can occur in these individuals, with onset between 6 months and 9 years. Various EEG abnormalities have been described. Muscle hypotonia is observed in almost all individuals, associated, in most of them, with joint hyperextensibility and drooling. Facial dysmorphic features are absent or subtle, and major malformations are rare. Feeding difficulties are reported in the newborn period. Chromosome region 15q11q13, known for its instability, is highly susceptible to clinically relevant genomic rearrangements, such as supernumerary marker chromosomes formed by the inverted duplication of proximal chromosome 15. Inv dup(15 results in tetrasomy 15p and partial tetrasomy 15q. The large rearrangements, containing the Prader-Willi/Angelman syndrome critical region (PWS/ASCR, are responsible for the inv dup(15 or idic(15 syndrome. Diagnosis is achieved by standard cytogenetics and FISH analysis, using probes both from proximal chromosome 15 and from the PWS/ASCR. Microsatellite analysis on parental DNA or methylation analysis on the proband DNA, are also needed to detect the parent-of-origin of the inv dup(15 chromosome. Array CGH has been shown to provide a powerful approach for identifying and detecting the extent of the

  2. Various endocrine disorders in children with t(13;14(q10;q10 Robertsonian translocation

    Directory of Open Access Journals (Sweden)

    Byung Ho Choi

    2013-09-01

    Full Text Available Purpose45,XY,t(13;14(q10;q10 karyotype can suggest infertility associated with more or less severe oligospermia in male adults. In addition, 45,XX,t(13;14(q10;q10 karyotype carries reproductive risks such as miscarriage or infertility in female adults. However, reports on the phenotype of this karyotype in children are very rare. This study was done to observe various phenotypes of this karyotype in children.MethodsBetween January 2007 and December 2012, children diagnosed with 45,XY,t(13;14(q10;q10 or 45,XX,t(13;14(q10;q10 karyotype by chromosome analysis were analyzed retrospectively.ResultsEight children (5 boys and 3 girls were diagnosed with 45,XY,t(13;14(q10;q10 or 45,XX,t(13;14(q10;q10 karyotype. They ranged in age from 5 years and 6 months to 12 years and 4 months. The phenotypes of the study patients consisted of 1 hypogonadotrophic hypogonadism, 1 precocious puberty, 3 early puberty, 2 growth hormone deficiency (GHD (partial and 1 idiopathic short stature. As shown here t(13;14(q10;q10 Robertsonian translocation shows a wide range of phenotypes.ConclusionIt can be said that t(13;14(q10;q10 Robertsonian translocation shows various phenotypes from GHD to precocious puberty in children. Further large-scale studies are necessary.

  3. [X tetrasomy (48,XXXX karyotype) in a girl with altered behavior].

    Science.gov (United States)

    Rodado, Maria José; Manchón Trives, Irene; Lledó Bosch, Belén; Galán Sánchez, Francisco

    2010-07-01

    We report the case of a 14-year-old girl with mental retardation and dysmorphic features referred to child psychiatry because of altered behavior at school. Karyotyping (GTG banding), in situ fluorescent hybridization (FISH) and molecular study of parental origin by polymorphic STS were performed. Genetic study revealed a 48,XXXX karyotype with a maternal origin of the X-tetrasomy. The mechanism was successive non-dysjunction at meiosis I and II. The interest of this case lies in the rarity of the chromosomal anomaly and its late diagnosis, leading to a failure to adapt the girl's education to her needs, with consequences for her psyche. Copyright © 2010 SEP y SEPB. Published by Elsevier Espana. All rights reserved.

  4. Autism spectrum disorder with microdeletion 10q26 by subtelomere FISH

    Directory of Open Access Journals (Sweden)

    Tonk VS

    2011-05-01

    Full Text Available Vijay S Tonk1,2, Golder N Wilson11Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; 2Departments of Pathology, Obstetrics and Gynecology, Texas Tech University Health Sciences Center, Lubbock, TX, USAAbstract: An 11-year-old female with early feeding problems, mild motor delays, normal speech, subtle facial changes, social difficulties, anxiety and a diagnosis of Asperger disorder was found to have deletion of 10q26.3 by subtelomere fluorescent in situ hybridization (stF analysis. Our patient and others with 10q26 aneuploidy add this region to 11 other autism susceptibility loci qualified by converging genome linkage/association, high resolution chromosome, and mutation studies in our review. We summarize these loci and the current spectrum of terminal 10q deletion cases.Keywords: autism disorder, Asperger disorder, subtelomere FISH, microarray analysis, 10q26 deletion, gene changes in autism

  5. Trisomy/tetrasomy 13 in seven cases of acute leukemia.

    Science.gov (United States)

    Sreekantaiah, C; Baer, M R; Morgan, S; Isaacs, J D; Miller, K B; Sandberg, A A

    1990-11-01

    We report the clinical presentation and the morphologic, histochemical, and immunophenotypic characteristics of seven patients with acute leukemia who had trisomy/tetrasomy 13 as the sole cytogenetic abnormality in their leukemia. Five patients had trisomy 13 at diagnosis of acute leukemia. All five of these patients had undifferentiated leukemias. The sixth patient, who had French-American-British (FAB) type M2 acute nonlymphocytic leukemia (ANLL), and the seventh patient with biphenotypic acute leukemia developed the trisomic clone as a new abnormality late in the course of their disease. A review of the literature revealed 28 previously reported hematologic malignancies with trisomy 13 or tetrasomy 13q as a solitary cytogenetic abnormality. Trisomy 13 appears to represent another rare but nonrandom cytogenetic abnormality in acute leukemia. In our series trisomy 13 is largely associated with acute leukemia with little myeloid or lymphoid differentiation.

  6. Expression of fra(10)(q25) in peripheral blood and bone marrow in familial neutropenia.

    OpenAIRE

    Holmes, J A; Thompson, P W

    1988-01-01

    We report on the expression of fra(10)(q25) in a mother and daughter with familial chronic neutropenia. Differences in expression of the fragile site in bone marrow cells compared with peripheral blood lymphocytes were observed. Short term bone marrow cultures in complete medium showed high levels of spontaneous expression, whereas in 72 hour stimulated blood cultures it was virtually absent. There were also differences in the types of lesions found; chromosome type lesions predominated in th...

  7. Chromosome

    Science.gov (United States)

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  8. Myeloid Sarcoma and Acute Myelomonocytic Leukemia in an Adolescent with Tetrasomy 8: Staging With 18F-FDG PET/CT

    International Nuclear Information System (INIS)

    Makis, William; Rakheja, Rajan; Lavoie, Josee; Marc Hickeson

    2012-01-01

    Tetrasomy 8 is a relatively rare chromosomal abnormality that has been reported in only 33 cases in hematologic disorders, It is known for its association with aggressive acute myeloid leukemia (AML) and myeloid sarcoma and is considered a very poor prognostic factor. Myeloid sarcoma is a rare hematologic malignancy characterized by tumor masses consisting of immature myeloid cells, presenting at an extramedullary site. We present a case of a 17-year-old boy referred for an 18 F-FDG PET/CT for the evaluation of pleural masses and spinal bone lesions seen on CT, after presenting with a 4 month history of chest pain. The PET/CT revealed extensive FDG-avid extrame-dullary disease in the soft tissues of the chest, abdomen, and pelvis, which were biopsy-proven to be myeloid sarcoma, as well as extensive intramedullary disease biopsy proven to be AML. This is the first report of the use of 18 F-FDG PET/CT to stage a subset of aggressive AML and myeloid sarcoma in a patient with an associated chromosomal abnormality (tatrasomy 8)

  9. Myeloid Sarcoma and Acute Myelomonocytic Leukemia in an Adolescent with Tetrasomy 8: Staging With {sup 18}F-FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Makis, William [Brandon Regional Health Centre, Brandon (Canada); Rakheja, Rajan; Lavoie, Josee; Marc Hickeson [McGill Univ. Health Centre, Brandon (Canada)

    2012-06-15

    Tetrasomy 8 is a relatively rare chromosomal abnormality that has been reported in only 33 cases in hematologic disorders, It is known for its association with aggressive acute myeloid leukemia (AML) and myeloid sarcoma and is considered a very poor prognostic factor. Myeloid sarcoma is a rare hematologic malignancy characterized by tumor masses consisting of immature myeloid cells, presenting at an extramedullary site. We present a case of a 17-year-old boy referred for an {sup 18}F-FDG PET/CT for the evaluation of pleural masses and spinal bone lesions seen on CT, after presenting with a 4 month history of chest pain. The PET/CT revealed extensive FDG-avid extrame-dullary disease in the soft tissues of the chest, abdomen, and pelvis, which were biopsy-proven to be myeloid sarcoma, as well as extensive intramedullary disease biopsy proven to be AML. This is the first report of the use of {sup 18}F-FDG PET/CT to stage a subset of aggressive AML and myeloid sarcoma in a patient with an associated chromosomal abnormality (tatrasomy 8)

  10. 46,XY,DUP(10Q) IN DIRECT CVS PREPARATION AND MOSAIC 48,XXXY,DUP(10Q) IN CVS LONG-TERM CULTURE AND FETAL TISSUE

    NARCIS (Netherlands)

    SIJMONS, RH; SIKKEMARADDATZ, B; KLOOSTERMAN, MD; BRIET, JW; DEJONG, B; LESCHOT, NJ

    Chorionic villus sampling (CVS) was performed on a 40-year-old woman at 9 1/2 menstrual weeks because of advanced maternal age. The direct preparation showed 46,XY,dup(10)(q11.2q23.2). CVS long-term culture and fetal tissue revealed a rare additional abnormality: 48,XXXY,dup(10)(q11.2q23.2). This

  11. The t(10;14)(q24;q11) of T-cell acute lymphoblastic leukemia juxtaposes the δT-cell receptor with TCL3, a conserved and activated locus at 10q24

    International Nuclear Information System (INIS)

    Zutter, M.; Hockett, R.D.; Roberts, C.W.M.; McGuire, E.A.; Bloomstone, J.; Korsmeyer, S.J.; Morton, C.C.; Deaven, L.L.; Crist, W.M.; Carroll, A.J.

    1990-01-01

    The authors cloned the t(10;14) recurrent translocation from CD3-negative T-cell acute lymphoblastic leukemia cells. The breakpoint at 14q11 involved an intermediate rearrangement of the δ T-cell receptor locus, suggesting that the translocation arose at the time of antigen receptor assemblage. Translocation introduced chromosome segment 10q24 as proven by hybridization of a breakpoint-derived probe to flow-sorted chromosomes and metaphase chromosomes. Two t(10;14) breakpoints were clustered within a 600-base-pair region of 10q24 but no heptamer-spacer-nonamer motifs resembling T-cell receptor/immunoglobulin rearrangement signals were noted at the breakpoint. A locus distinct from terminal deoxynucleotidyltransferase was found at 10q24. Evolutionarily conserved regions surrounding the 10q24 breakpoint were examined for transcriptional activity. A region telomeric to the 10q24 breakpoint, expected to translocate to the der(14) chromosome, recognized an abundant 2.9-kilobase RNA in a t(10;14) T-cell leukemia. This locus was not active in a variety of other normal and neoplastic T cells, arguing that it was deregulated by he introduction of the T-cell receptor. This locus is a candidate for a putative protooncogene, TCL3, involved in T-cell neoplasia

  12. Aplastic Anemia in Two Patients with Sex Chromosome Aneuploidies.

    Science.gov (United States)

    Rush, Eric T; Schaefer, G Bradley; Sanger, Warren G; Coccia, Peter F

    2015-01-01

    Sex chromosome aneuploidies range in incidence from rather common to exceedingly rare and have a variable phenotype. We report 2 patients with sex chromosome aneuploidies who developed severe aplastic anemia requiring treatment. The first patient had tetrasomy X (48,XXXX) and presented at 9 years of age, and the second patient had trisomy X (47,XXX) and presented at 5 years of age. Although aplastic anemia has been associated with other chromosomal abnormalities, sex chromosome abnormalities have not been traditionally considered a risk factor for this condition. A review of the literature reveals that at least one other patient with a sex chromosome aneuploidy (45,X) has suffered from aplastic anemia and that other autosomal chromosomal anomalies have been described. Despite the uncommon nature of each condition, it is possible that the apparent association is coincidental. A better understanding of the genetic causes of aplastic anemia remains important. © 2015 S. Karger AG, Basel.

  13. Further mapping of 10q26 supports strong association of HTRA1 polymorphisms with age-related macular degeneration.

    Science.gov (United States)

    Gibbs, Daniel; Yang, Zhenglin; Constantine, Ryan; Ma, Xiang; Camp, Nicola J; Yang, Xian; Chen, Hayou; Jorgenson, Adam; Hau, Vincent; Dewan, Andrew; Zeng, Jiexi; Harmon, Jennifer; Buehler, Jeanette; Brand, John M; Hoh, Josephine; Cameron, D Joshua; Dixit, Manjusha; Tong, Zongzhong; Zhang, Kang

    2008-02-01

    Age-related macular degeneration (AMD) is a complex disorder with genetic and environmental influences. The genetic influences affecting AMD are not well understood and few genes have been consistently implicated and replicated for this disease. A polymorphism (rs11200638) in a transcription factor binding site of the HTRA1 gene has been described, in previous reports, as being most significantly associated with AMD. In this paper, we investigate haplotype association and individual polymorphic association by genotyping additional variants in the AMD risk-associated region of chromosome 10q26. We demonstrate that rs11200638 in the promoter region and rs2293870 in exon 1 of HTRA1, are among the most significantly associated variants for advanced forms of AMD.

  14. Novel interstitial deletion of 10q24.3-25.1 associated with multiple congenital anomalies including lobar holoprosencephaly, cleft lip and palate, and hypoplastic kidneys.

    Science.gov (United States)

    Peltekova, Iskra T; Hurteau-Millar, Julie; Armour, Christine M

    2014-12-01

    Chromosome 10q deletions are rare and phenotypically diverse. Such deletions differ in length and occur in numerous regions on the long arm of chromosome 10, accounting for the wide clinical variability. Commonly reported findings include dysmorphic facial features, microcephaly, developmental delay, and genitourinary abnormalities. Here, we report on a female patient with a novel interstitial 5.54 Mb deletion at 10q24.31-q25.1. This patient had findings in common with a previously reported patient with an overlapping deletion, including renal anomalies and an orofacial cleft, but also demonstrated lobar holoprosencephaly and a Dandy-Walker malformation, features which have not been previously reported with 10q deletions. An analysis of the region deleted in our patient showed numerous genes, such as KAZALD1, PAX2, SEMA4G, ACTRA1, INA, and FGF8, whose putative functions may have played a role in the phenotype seen in our patient. © 2014 Wiley Periodicals, Inc.

  15. Chromosomal Abnormalities Associated With Omphalocele

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-03-01

    Full Text Available Fetuses with omphalocele have an increased risk for chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with umbilical cord cysts, complexity of associated anomalies, and the contents of omphalocele. There is considerable evidence that genetics contributes to the etiology of omphalocele. This article provides an overview of chromosomal abnormalities associated with omphalocele and a comprehensive review of associated full aneuploidy such as trisomy 18, trisomy 13, triploidy, trisomy 21, 45,X, 47,XXY, and 47,XXX, partial aneuploidy such as dup(3q, dup(11p, inv(11, dup(1q, del(1q, dup(4q, dup(5p, dup(6q, del(9p, dup(15q, dup(17q, Pallister-Killian syndrome with mosaic tetrasomy 12p and Miller-Dieker lissencephaly syndrome with deletion of 17p13.3, and uniparental disomy (UPD such as UPD 11 and UPD 14. Omphalocele is a prominent marker for chromosomal abnormalities. Perinatal identification of omphalocele should alert chromosomal abnormalities and familial unbalanced translocations, and prompt thorough cytogenetic investigations and genetic counseling.

  16. Genomic Deletion at 10q23 in Prostate Cancer: More Than PTEN Loss?

    Directory of Open Access Journals (Sweden)

    Raghavendra Tejo Karthik Poluri

    2018-06-01

    Full Text Available The PTEN gene encodes for the phosphatase and tensin homolog; it is a tumor suppressor gene that is among the most frequently inactivated genes throughout the human cancer spectrum. The most recent sequencing approaches have allowed the identification of PTEN genomic alterations, including deletion, mutation, or rearrangement in about 50% of prostate cancer (PCa cases. It appears that mechanisms leading to PTEN inactivation are cancer-specific, comprising gene mutations, small insertions/deletions, copy number alterations (CNAs, promoter hypermethylation, and RNA interference. The examination of publicly available results from deep-sequencing studies of various cancers showed that PCa appears to be the only cancer in which PTEN is lost mostly through CNA. Instead of inactivating mutations, which are seen in other cancers, deletion of the 10q23 locus is the most common form of PTEN inactivation in PCa. By investigating the minimal deleted region at 10q23, several other genes appear to be lost simultaneously with PTEN. Expression data indicate that, like PTEN, these genes are also downregulated upon loss of 10q23. These analyses raise the possibility that 10q23 is lost upon selective pressure not only to inactivate PTEN but also to impair the expression of surrounding genes. As such, several genes from this deleted region, which represents about 500 kb, may also act as tumor suppressors in PCa, requiring further studies on their respective functions in that context.

  17. Variable phenotypes associated with 10q23 microdeletions involving the PTEN and BMPR1A genes.

    NARCIS (Netherlands)

    Menko, F.H.; Kneepkens, C.M.; Leeuw, N. de; Peeters, E.A.; Maldergem, L. van; Kamsteeg, E.J.; Davidson, R.; Rozendaal, L.; Lasham, C.A.; Peeters-Scholte, C.M.; Jansweijer, M.C.E.; Hilhorst-Hofstee, Y.; Gille, J.J.P.; Heins, Y.M.; Nieuwint, A.W.; Sistermans, E.A.

    2008-01-01

    Infantile juvenile polyposis is a rare disease with severe gastrointestinal symptoms and a grave clinical course. Recently, 10q23 microdeletions involving the PTEN and BMPR1A genes were found in four patients with infantile juvenile polyposis. It was hypothesized that a combined and synergistic

  18. Complex distal 10q rearrangement in a girl with mild intellectual disability

    DEFF Research Database (Denmark)

    Sarri, Catherine; Douzgou, Sofia; Gyftodimou, Yolanda

    2011-01-01

    We report on an intellectually disabled girl with a de novo satellited chromosome 10 (10qs) and performed a review of the literature of the non-acrocentric satellited chromosomes (NASC). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cit...

  19. Trisomy 10p and translocation of 10q to 4p associated with selective dysgenesis of IgA-producing cells in lymphoid tissue.

    Science.gov (United States)

    Saiga, Tatsuyoshi; Hashimoto, Kazuhiro; Kimura, Nobusuke; Ono, Hisako; Hiai, Hiroshi

    2007-01-01

    A combined chromosomal abberation trisomy of the short arm of chromosome 10 associated with translocation of 10q to chromosome 4p was found in a 14-month-old boy, who died after repeated bouts of pneumonia. The translocation involved the target region 4p16.3 of Wolf-Hirschhorn syndrome and/or Pitt-Rogers-Danks syndrome. The karyotype was 46,XY,der(4)t(4;10)(p16;q11.2),i(10)(p10),ish der(4)t(4;10)(p16.3;q11.2) (D4S96+,D4Z1+),i(10) (pter ++). In addition to growth retardation and external as well as internal dysmorphism, the patient had abnormalities of the immune system, such as thymic involution, generalized lymph node enlargement, unusual distribution of T cells in lymphoid follicles, and selective IgA deficiency. The IgA-producing cells were rarely found in lymph nodes but normally in intestinal mucosa. In contrast, in the lymph nodes, the paracortical T-lymphocytes were hyperplastic, but they rarely entered the primary follicles. It is assumed that the chromosomal abnormality may lead to the dysfunction of T lymphocytes and, further, to the dysgenesis of IgA-producing cells in lymph nodes but not in intestinal mucosa. This suggests that the thymus may differentially control the subsets of IgA-producing cells in lymph nodes and intestinal mucosa.

  20. Expansion of the clinical phenotype of the distal 10q26.3 deletion syndrome to include ataxia and hyperemia of the hands and feet.

    Science.gov (United States)

    Lacaria, Melanie; Srour, Myriam; Michaud, Jacques L; Doja, Asif; Miller, Elka; Schwartzentruber, Jeremy; Goldsmith, Claire; Majewski, Jacek; Boycott, Kym M

    2017-06-01

    Distal deletion of the long arm of chromosome 10 is associated with a dysmorphic craniofacial appearance, microcephaly, behavioral issues, developmental delay, intellectual disability, and ocular, urogenital, and limb abnormalities. Herein, we present clinical, molecular, and cytogenetic investigations of four patients, including two siblings, with nearly identical terminal deletions of 10q26.3, all of whom have an atypical presentation of this syndrome. Their prominent features include ataxia, mild-to-moderate intellectual disability, and hyperemia of the hands and feet, and they do not display many of the other features commonly associated with deletions of this region. These results point to a novel gene locus associated with ataxia and highlight the variability of the clinical presentation of patients with deletions of this region. © 2017 Wiley Periodicals, Inc.

  1. Syntenic homology of human unique DNA sequences within chromossome regions 5q31, 10q22, 13q32-33 and 19q13.1 in the great apes

    Directory of Open Access Journals (Sweden)

    Rhea U. Vallente-Samonte

    2000-09-01

    Full Text Available Homologies between chromosome banding patterns and DNA sequences in the great apes and humans suggest an apparent common origin for these two lineages. The availability of DNA probes for specific regions of human chromosomes (5q31, 10q22, 13q32-33 and 19q13.1 led us to cross-hybridize these to chimpanzee (Pan troglodytes, PTR, gorilla (Gorilla gorilla, GGO and orangutan (Pongo pygmaeus, PPY chromosomes in a search for equivalent regions in the great apes. Positive hybridization signals to the chromosome 5q31-specific DNA probe were observed at HSA 5q31, PTR 4q31, GGO 4q31 and PPY 4q31, while fluorescent signals using the chromosome 10q22-specific DNA probe were noted at HSA 10q22, PTR 8q22, GGO 8q22 and PPY 7q22. The chromosome arms showing hybridization signals to the Quint-EssentialTM 13-specific DNA probe were identified as HSA 13q32-33, PTR 14q32-33, GGO 14q32-33 and PPY 14q32-33, while those presenting hybridization signals to the chromosome 19q13.1-specific DNA probe were identified as HSA 19q13.1, PTR 20q13, GGO 20q13 and PPY 20q13. All four probes presumably hybridized to homologous chromosomal locations in the apes, which suggests a homology of certain unique DNA sequences among hominoid species.Homologias entre os padrões de bandamento de cromossomos e seqüências de DNA em grandes macacos e humanos sugerem uma aparente origem comum para estas duas linhagens. A disponibilidade de sondas de DNA para regiões específicas de cromossomos humanos (5q31, 10q22, 13q32-33 e 19q13.1 nos levou a realizar hibridação cruzada com cromossomos de chimpanzé (Pan troglodytes, PTR, gorila (Gorilla gorilla, GGO e orangotango (Pongo pygmaeus, PPY em um pesquisa de regiões equivalentes em grandes macacos. Sinais positivos de hibridação para a sonda de DNA específica para o cromossomo 5q31 foram observados em HSA 5q31, PTR 4q31, GGO 4q31 e PPY 4q31, enquanto que sinais fluorescentes usando a sonda de DNA específica para o cromossomo 10q22 foram

  2. Clonal chromosomal and genomic instability during human multipotent mesenchymal stromal cells long-term culture.

    Directory of Open Access Journals (Sweden)

    Victoria Nikitina

    Full Text Available Spontaneous mutagenesis often leads to appearance of genetic changes in cells. Although human multipotent mesenchymal stromal cells (hMSC are considered as genetically stable, there is a risk of genomic and structural chromosome instability and, therefore, side effects of cell therapy associated with long-term effects. In this study, the karyotype, genetic variability and clone formation analyses have been carried out in the long-term culture MSC from human gingival mucosa.The immunophenotype of MSC has been examined using flow cytofluorometry and short tandem repeat (STR analysis has been carried out for authentication. The karyotype has been examined using GTG staining and mFISH, while the assessment of the aneuploidy 8 frequency has been performed using centromere specific chromosome FISH probes in interphase cells.The immunophenotype and STR loci combination did not change during the process of cultivation. From passage 23 the proliferative activity of cultured MSCs was significantly reduced. From passage 12 of cultivation, clones of cells with stable chromosome aberrations have been identified and the biggest of these (12% are tetrasomy of chromosome 8. The random genetic and structural chromosomal aberrations and the spontaneous level of chromosomal aberrations in the hMSC long-term cultures were also described.The spectrum of spontaneous chromosomal aberrations in MSC long-term cultivation has been described. Clonal chromosomal aberrations have been identified. A clone of cells with tetrasomy 8 has been detected in passage 12 and has reached the maximum size by passage 18 before and decreased along with the reduction of proliferative activity of cell line by passage 26. At later passages, the MSC line exhibited a set of cells with structural variants of the karyotype with a preponderance of normal diploid cells. The results of our study strongly suggest a need for rigorous genetic analyses of the clone formation in cultured MSCs before

  3. A first case of primary amenorrhea with i(X(qter---q10::---qter, rob(13;14(q10;q10, inv(9(p13q33 karyotype

    Directory of Open Access Journals (Sweden)

    Seema Korgaonkar

    2011-01-01

    Full Text Available Primary amenorrhea (PA refers to the absence of menarche by the age of 16-18 years although secondary sexual characters are developed. PA occurs in 1-3% of women in the reproductive age group. Various factors such as anatomical, genetic and hormonal factors reported to influence PA. We report triple chromosomal abnormalities of rob(13;14(q10;q10,inv(9(p13q33, i(Xq(qter---q10::---qter in a case of PA and short stature. Though proband has multiple chromosome aberrations, genotypic effect of only i(Xq is evident as proband has PA and short stature. The rob(13;14 and inv(9, which are paternally derived may have role in later reproductive age. Therefore, chromosomal analysis is essential in such cases for the accurate diagnosis and management of the disease.

  4. Validation of Association of Genetic Variants at 10q with PSA Levels in Men at High Risk for Prostate Cancer

    Science.gov (United States)

    Chang, Bao-Li; Hughes, Lucinda; Chen, David Y. T.; Gross, Laura; Ruth, Karen; Giri, Veda N.

    2013-01-01

    Objectives Men with a family history of prostate cancer and African American men are at increased risk for prostate cancer and stand to benefit from individualized interpretation of PSA to guide screening strategies. The purpose of this study was to validate six previously identified markers among high-risk men enrolled in the Prostate Cancer Risk Assessment Program - a prostate cancer screening study. Patients and Methods Eligibility for PRAP includes men ages 35–69 years with a family history of prostate cancer, any African American male regardless of family history, and men with known BRCA gene mutations. GWAS markers assessed included rs2736098 (5p15.33), rs10993994 (10q11), rs10788160 (10q26), rs11067228 (12q24), rs4430796 (17q12), and rs17632542 (19q13.33). Genotyping methods included either Taqman® SNP Genotyping Assay (Applied Biosystems) or pyrosequencing. Linear regression models were used to evaluate the association between individual markers and log-transformed baseline PSA levels, while adjusting for potential confounders. Results 707 participants (37% Caucasian, 63% African American) with clinical and genotype data were included in the analysis. Rs10788160 (10q26) strongly associated with PSA levels among high-risk Caucasian participants (p<0.01), with a 33.2% increase in PSA level with each A-allele carried. Furthermore, rs10993994 (10q11) demonstrated an association to PSA level (p=0.03) in high-risk Caucasian men, with a 15% increase in PSA with each T-allele carried. A PSA adjustment model based on allele carrier status at rs10788160 and rs10993994 is proposed specific to high-risk Caucasian men. Conclusion Genetic variation at 10q may be particularly important in personalizing interpretation of PSA for high-risk Caucasian men. Such information may have clinical relevance in shared decision-making and individualized prostate cancer screening strategies for high-risk Caucasian men. Further study is warranted. PMID:23937305

  5. Distal trisomy 10q syndrome, report of a patient with duplicated q24.31 – qter, autism spectrum disorder and unusual features

    Science.gov (United States)

    Al-Sarraj, Yasser; Al-Khair, Hakam Abu; Taha, Rowaida Ziad; Khattab, Namat; El Sayed, Zakaria H; Elhusein, Bushra; El-Shanti, Hatem

    2014-01-01

    Key Clinical Message We report on a patient with distal trisomy 10q syndrome presenting with a few previously undescribed physical features, as well as, autism spectrum disorder (ASD). We recommend that patients with distal trisomy 10q syndrome should have a behavioral evaluation for ASD for the early institution of therapy. PMID:25614812

  6. Expression analyses of the genes harbored by the type 2 diabetes and pediatric BMI associated locus on 10q23

    Directory of Open Access Journals (Sweden)

    Zhao Jianhua

    2012-09-01

    Full Text Available Abstract Background There is evidence that one of the key type 2 diabetes (T2D loci identified by GWAS exerts its influence early on in life through its impact on pediatric BMI. This locus on 10q23 harbors three genes, encoding hematopoietically expressed homeobox (HHEX, insulin-degrading enzyme (IDE and kinesin family member 11 (KIF11, respectively. Methods We analyzed the impact of adipogeneis on the mRNA and protein expression levels of these genes in the human adipocyte Simpson-Golabi-Behmel syndrome (SGBS cell line in order to investigate which could be the culprit gene(s in this region of linkage disequilibrium. Results Following activation of differentiation with a PPARγ ligand, we observed ~20% decrease in IDE, ~40% decrease in HHEX and in excess of 80% decrease in KIF11 mRNA levels when comparing the adipocyte and pre-adipocyte states. We also observed decreases in KIF11 and IDE protein levels, but conversely we observed a dramatic increase in HHEX protein levels. Subsequent time course experiments revealed some marked changes in expression as early as three hours after activation of differentiation. Conclusion Our data suggest that the expression of all three genes at this locus are impacted during SGBS adipogenesis and provides insights in to the possible mechanisms of how the genes at this 10q23 locus could influence both adipocyte differentiation and susceptibility to T2D through insulin resistance.

  7. Tetrasomy 15q11-q13 identified by fluorescence in situ hybridization in a patient with autistic disorder Identificação de tetrassomia 15q11-q13 por hibridação in situ fluorescente em uma paciente com distúrbio autístico

    Directory of Open Access Journals (Sweden)

    Ana Elizabete Silva

    2002-06-01

    Full Text Available We report a female child with tetrasomy of the 15q11-q13 chromosomal region, and autistic disorder associated with mental retardation, developmental problems and behavioral disorders. Combining classical and molecular cytogenetic approaches by fluorescence in situ hybridization technique, the karyotype was demonstrated as 47,XX,+mar.ish der(15(D15Z1++,D15S11++,GABRB3++,PML-. Duplication of the 15q proximal segment represents the most consistent chromosomal abnormality reported in association with autism. The contribution of the GABA receptor subunit genes, and other genes mapped to this region, to the clinical symptoms of the disease is discussed.Relatamos uma criança do sexo feminino com tetrassomia da região cromossômica 15q11-q13 e distúrbio autístico associado com retardo mental, problemas de desenvolvimento e distúrbios comportamentais. A combinação de metodologias da citogenética clássica e molecular pela técnica de hibridação in situ fluorescente, demonstrou o cariótipo como 47,XX,+mar.ish der(15 (D15Z1++,D15S11++,GABRB3++,PML. Duplicação do segmento 15q proximal representa a mais consistente anomalia cromossômica relatada em associação com autismo. A contribuição dos genes das subunidades do recepetor GABA, assim como outros genes mapeados nessa região, para os sintomas clínicos da doença é discutida.

  8. A split hand-split foot (SHFM3) gene is located at 10q24{yields}25

    Energy Technology Data Exchange (ETDEWEB)

    Gurrieri, F.; Genuardi, M.; Nanni, L.; Sangiorgi, E.; Garofalo, G. [Catholic Univ. of Rome (Italy)] [and others

    1996-04-24

    The split hand-split foot (SHSF) malformation affects the central rays of the upper and lower limbs. It presents either as an isolated defect or in association with other skeletal or non-skeletal abnormalities. An autosomal SHSF locus (SHFM1) was previously mapped to 7q22.1. We report the mapping of a second autosomal SHSF locus to 10q24{yields}25 region. Maximum lod scores of 3.73, 4.33 and 4.33 at a recombination fraction of zero were obtained for the loci D10S198, PAX2 and D10S1239, respectively. An 19 cM critical region could be defined by haplotype analysis and several genes with a potential role in limb morphogenesis are located in this region. Heterogeneity testing indicates the existence of at least one additional autosomal SHSF locus. 36 refs., 3 figs., 3 tabs.

  9. Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near HABP2

    NARCIS (Netherlands)

    Y.-C. Cheng (Yu-Ching); T.M. Stanne (Tara M.); A.-K. Giese (Anne-Katrin); W.K. Ho (Weang K.); M. Traylor (Matthew); P. Amouyel (Philippe); E.G. Holliday (Elizabeth); R. Malik (Rainer); H. Xu (Huichun); T. Kittner (Thomas); J.W. Cole (John W.); J.R. O´Connell; J. Danesh (John); A. Rasheed (Asif); W. Zhao (Wei); S.T. Engelter (Stefan); C. Grond-Ginsbach (Caspar); Y. Kamatani (Yoichiro); M. Lathrop (Mark); D. Leys (Didier); V. Thijs (Vincent); T.M. Metso (Tiina M.); T. Tatlisumak (Turgut); A. Pezzini (Alessandro); E.A. Parati (Eugenio A.); B. Norrving (Bo); S. Bevan (Steve); P.M. Rothwell (Peter); C. Sudlow (Cathie); A. Slowik (Agnieszka); A.G. Lindgren (Arne G.); M. Walters (Matthew); J. Jannes (Jim); J. Shen (Jess); D.R. Crosslin (David); K.F. Doheny (Kimberly); C.C. Laurie (Cathy); S.M. Kanse (Sandip ); J.C. Bis (Joshua); M. Fornage (Myriam); T.H. Mosley (Thomas H.); J. Hopewell; K. Strauch (Konstantin); M. Müller-Nurasyid (Martina); C. Gieger (Christian); M. Waldenberger (Melanie); A. Peters (Annette); C. Meisinger (Christine); M.A. Ikram (Arfan); W.T. Longstreth Jr; J.F. Meschia (James F.); S. Seshadri (Sudha); P. Sharma (Pankaj); B.B. Worrall (Bradford B.); C. Jern (Christina); C. Levi (Christopher); C. Kubisch (Christian); G. Boncoraglio (Giorgio Battista); H.S. Markus (Hugh); S. Debette (Stéphanie); A. Rolfs (Arndt); D. Saleheen; B.D. Mitchell (Braxton)

    2016-01-01

    textabstractBackground and Purpose - Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early-versus late-onset stroke,

  10. Chromosome aberrations involving 10q22: report of three overlapping interstitial deletions and a balanced translocation disrupting C10orf11

    DEFF Research Database (Denmark)

    Tzschach, Andreas; Bisgaard, Anne-Marie; Kirchhoff, Maria

    2010-01-01

    feeding problems, facial dysmorphisms and profound mental retardation. Patients 2 and 3 had nearly identical deletions of 3.2 and 3.6 Mb, the proximal breakpoints of which were located at an identical low-copy repeat. Both patients were mentally retarded; patient 3 also suffered from growth retardation...

  11. Modeling Chromosomes

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Learning about chromosomes is standard fare in biology classrooms today. However, students may find it difficult to understand the relationships among the "genome", "chromosomes", "genes", a "gene locus", and "alleles". In the simple activity described in this article, which follows the 5E approach…

  12. Chromosomal Conditions

    Science.gov (United States)

    ... and more. Stony Point, NY 10980 Close X Home > Complications & Loss > Birth defects & other health conditions > Chromosomal conditions Chromosomal conditions ... Disorders See also: Genetic counseling , Your family health history Last reviewed: February, 2013 ... labor & premature birth The newborn intensive care unit (NICU) Birth defects & ...

  13. 31 CFR 30.10 - Q-10: What actions are necessary for a TARP recipient to comply with section 111(b)(3)(D) of EESA...

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Q-10: What actions are necessary for....10 Section 30.10 Money and Finance: Treasury Office of the Secretary of the Treasury TARP STANDARDS FOR COMPENSATION AND CORPORATE GOVERNANCE § 30.10 Q-10: What actions are necessary for a TARP...

  14. Fine mapping of a de novo interstitial 10q22-q23 duplication in a patient with congenital heart disease and microcephaly

    DEFF Research Database (Denmark)

    Erdogan, F; Belloso, J M; Gabau, E

    2008-01-01

    deletions or duplications elsewhere in the genome. The main clinical features of the patient are microcephaly and congenital heart disease, which are likely to be caused by dosage effect of one or several genes in the duplicated region. Similar phenotypes have been found in other patients with 10q11-q22...

  15. Chromosome Territories

    OpenAIRE

    Cremer, Thomas; Cremer, Marion

    2010-01-01

    Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenomics is considered, followed by a historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT architecture, and of structural interactions wit...

  16. Chromosomal aberration

    International Nuclear Information System (INIS)

    Ishii, Yutaka

    1988-01-01

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G 2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G 2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G 2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G 1 phase. (author)

  17. A Boy with an LCR3/4-Flanked 10q22.3q23.2 Microdeletion and Uncommon Phenotypic Features

    Science.gov (United States)

    Petrova, E.; Neuner, C.; Haaf, T.; Schmid, M.; Wirbelauer, J.; Jurkutat, A.; Wermke, K.; Nanda, I.; Kunstmann, E.

    2014-01-01

    The recurrent 10q22.3q23.2 deletion with breakpoints within low copy repeats 3 and 4 is a rare genomic disorder, reported in only 13 patients to date. The phenotype is rather uncharacteristic, which makes a clinical diagnosis difficult. A phenotypic feature described in almost all patients is a delay in speech development, albeit systematic studies are still pending. In this study, we report on a boy with an LCR3/4-flanked 10q22.3q23.2 deletion exhibiting an age-appropriate language development evaluated by a standardized test at an age of 2 years and 3 months. The boy was born with a cleft palate – a feature not present in any of the patients described before. Previously reported cases are reviewed, and the role of the BMPR1A gene is discussed. The phenotype of patients with an LCR3/4-flanked 10q22.3q23.2 deletion can be rather variable, so counseling the families regarding the prognosis of an affected child should be done with caution. Long-term studies of affected children are needed to delineate the natural history of this rare disorder. PMID:24550761

  18. Chromosomal organization of adrenergic receptor genes

    International Nuclear Information System (INIS)

    Yang-Feng, T.L.; Xue, Feiyu; Zhong, Wuwei; Cotecchia, S.; Frielle, T.; Caron, M.G.; Lefkowitz, R.J.; Francke, U.

    1990-01-01

    The adrenergic receptors (ARs) (subtypes α 1 , α 2 , β 1 , and β 2 ) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. The authors have previously assigned the genes for β 2 -and α 2 -AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, they have now mapped the α 1 -AR gene to chromosome 5q32→q34, the same position as β 2 -AR, and the β 1 -AR gene to chromosome 10q24→q26, the region where α 2 -AR, is located. In mouse, both α 2 -and β 1 -AR genes were assigned to chromosome 19, and the α 1 -AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the α 1 -and β 2 -AR genes in humans are within 300 kilobases (kb) and the distance between the α 2 - and β 1 -AR genes is <225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediation the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families off receptor molecules

  19. Three Supernumerary Marker Chromosomes in a Patient with Developmental Delay, Mental Retardation, and Dysmorphic Features

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2011-01-01

    Full Text Available We characterized three supernumerary marker chromosomes (SMCs simultaneously present in a 2-year- and 10-month-old male patient with mental retardation and dysmorphic features. Peripheral blood chromosome analysis revealed two to three SMCs in 25/26 cells analyzed. The remaining one cell had one SMC. Microarray comparative genomic hybridization (aCGH showed mosaicism for gains of 5q35.3, 15q11.2q13.3, and 18p11.21q11.1 regions. All three gains contain multiple OMIM genes. FISH studies indicated that one of the SMCs is a dicentric ring 15 with two copies of the 15q11.2q13.3 region including SNRPN/UBE3A and two copies of the 5q35.3 region. One of the der(18s contains the 18 centromere and 18p11.2 regions, while the other der(18 has a signal for the 18 centromere only. The phenotype of the patient is compared with that of patients with tetrasomy 15q11.2q13.3, trisomy 5q35.3, and trisomy 18p11.2. Our study demonstrates that aCGH and FISH analyses are powerful tools, which complement the conventional cytogenetic analysis for the identification of SMCs.

  20. A rare balanced nonrobertsonian translocation involving acrocentric chromosomes: Chromosome abnormality of t(13;15(p11.2;q22.1

    Directory of Open Access Journals (Sweden)

    Dalvi Rupa

    2016-01-01

    Full Text Available BACKGROUND: Balanced non-robertsonian translocation (RT, involving acrocentric chromosomes, is a rare event and only a few cases are reported. Most of the RTs are balanced involving acrocentric chromosomes with the breakpoints (q10;q10. MATERIALS AND METHODS: Chromosome analysis was performed as per standard procedure – Giemsa-trypsin banding with 500 band resolution was analyzed for chromosome identification. RESULTS: In the present study, we report a rare balanced non-RTs involving chromosomes 13 and 15 with cytogenetic finding of 46, XX, t(13;15(p11.2;q22.1. CONCLUSION: To the best of our knowledge, this is the first such report of an unusual non-RT of t(13:15 with (p11.2;q22.1 break points.

  1. Mitotic chromosome structure

    International Nuclear Information System (INIS)

    Heermann, Dieter W.

    2012-01-01

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  2. Mitotic chromosome structure

    Energy Technology Data Exchange (ETDEWEB)

    Heermann, Dieter W., E-mail: heermann@tphys.uni-heidelberg.de

    2012-07-15

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  3. Pallister–Killian syndrome: Cytogenetics and molecular investigations of mosaic tetrasomy 12p in prenatal chorionic villus and in amniocytes. Strategy of prenatal diagnosis

    Directory of Open Access Journals (Sweden)

    Francesco Libotte

    2016-12-01

    Conclusion: New molecular cytogenetic techniques array comparative genomic hybridization and fluorescence in-situ hybridization in association with conventional karyotype are pivotal innovative tools to search for chromosomic anomalies and for a complete prenatal diagnosis, especially in cases such as PKS where array comparative genomic hybridization analysis alone could not show mosaicism of i(12p.

  4. Incidental detection of congenital Robertsonian translocation at diagnosis of Philadelphia chromosome-positive acute lymphocytic leukemia.

    Science.gov (United States)

    Yamaguchi, Tsukasa; Igarashi, Aiko; Kawamura, Machiko; Ozasa, Yuka; Yoshida, Masayuki; Kakihana, Kazuhiko; Sakamaki, Hisashi; Ohashi, Kazuteru

    2015-05-01

    A man in his early forties who had undergone 3 years of unsuccessful treatment for infertility due to oligospermia and asthenospermia developed fever and bone pain in December 20XX. He was subsequently diagnosed with acute lymphocytic leukemia. Conventional cytogenetic analysis revealed Robertsonian translocation (RT) with der(13;14)(q10;q10) in addition to the Philadelphia (Ph) chromosome. Dasatinib and prednisolone induced complete remission (CR) with disappearance of the Ph chromosome. However, RT persisted despite achieving CR. We speculate that RT is possibly congenital in our present case and might also have been responsible for the aforementioned infertility. Hematologists should be aware of the possibility that congenital chromosomal disorders might be found incidentally through diagnostic chromosome analysis for leukemia.

  5. Common variants on 2p16.1, 6p22.1 and 10q24.32 are associated with schizophrenia in Han Chinese population.

    Science.gov (United States)

    Yu, H; Yan, H; Li, J; Li, Z; Zhang, X; Ma, Y; Mei, L; Liu, C; Cai, L; Wang, Q; Zhang, F; Iwata, N; Ikeda, M; Wang, L; Lu, T; Li, M; Xu, H; Wu, X; Liu, B; Yang, J; Li, K; Lv, L; Ma, X; Wang, C; Li, L; Yang, F; Jiang, T; Shi, Y; Li, T; Zhang, D; Yue, W

    2017-07-01

    Many schizophrenia susceptibility loci have been identified through genome-wide association studies (GWASs) in European populations. However, until recently, schizophrenia GWASs in non-European populations were limited to small sample sizes and have yielded few loci associated with schizophrenia. To identify genetic risk variations for schizophrenia in the Han Chinese population, we performed a two-stage GWAS of schizophrenia comprising 4384 cases and 5770 controls, followed by independent replications of 13 single-nucleotide polymorphisms in an additional 4339 schizophrenia cases and 7043 controls of Han Chinese ancestry. Furthermore, we conducted additional analyses based on the results in the discovery stage. The combined analysis confirmed evidence of genome-wide significant associations in the Han Chinese population for three loci, at 2p16.1 (rs1051061, in an exon of VRK2, P=1.14 × 10 -12 , odds ratio (OR)=1.17), 6p22.1 (rs115070292 in an intron of GABBR1, P=4.96 × 10 -10 , OR=0.77) and 10q24.32 (rs10883795 in an intron of AS3MT, P=7.94 × 10 -10 , OR=0.87; rs10883765 at an intron of ARL3, P=3.06 × 10 -9 , OR=0.87). The polygenic risk score based on Psychiatric Genomics Consortium schizophrenia GWAS data modestly predicted case-control status in the Chinese population (Nagelkerke R 2 : 1.7% ~5.7%). Our pathway analysis suggested that neurological biological pathways such as GABAergic signaling, dopaminergic signaling, cell adhesion molecules and myelination pathways are involved in schizophrenia. These findings provide new insights into the pathogenesis of schizophrenia in the Han Chinese population. Further studies are needed to establish the biological context and potential clinical utility of these findings.

  6. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  7. Low grade mosaic for a complex supernumerary ring chromosome 18 in an adult patient with multiple congenital anomalies

    Directory of Open Access Journals (Sweden)

    Hoogeboom A Jeannette M

    2010-07-01

    Full Text Available Abstract Background Several cases have been reported of patients with a ring chromosome 18 replacing one of the normal chromosomes 18. Less common are patients with a supernumerary ring chromosomes 18. High resolution whole genome examination in patients with multiple congenital abnormalities might reveal cytogenetic abnormalities of an unexpected complexity. Results We report a 24 years old male patient with lower spinal anomalies, hypospadia, bifid scrotum, cryptorchism, anal atresia, kidney stones, urethra anomalies, radial dysplasia, and a hypoplastic thumb. Some of the anomalies overlap with the VACTERL association. Chromosome analysis of cultured peripheral blood lymphocytes revealed an additional ring chromosome in 13% of the metaphases. Both parents had a normal karyotype, demonstrating the de novo origin of this ring chromosome. FISH analysis using whole chromosome paints showed that the additional chromosomal material was derived from chromosome 18. Chromosome analysis of cultured fibroblasts revealed only one cell with the supernumerary ring chromosome in the 400 analyzed. To characterize the ring chromosome in more detail peripheral blood derived DNA was analyzed using SNP-arrays. The array results indicated a 5 Mb gain of the pericentromeric region of chromosome 18q10-q11.2. FISH analysis using BAC-probes located in the region indicated the presence of 6 signals on the r(18 chromosome. In addition, microsatellite analysis demonstrated that the unique supernumerary ring chromosome was paternally derived and both normal copies showed biparental disomy. Conclusions We report on an adult patient with multiple congenital abnormalities who had in 13% of his cells a unique supernumerary ring chromosome 18 that was composed of 6 copies of the 5 Mb gene rich region of 18q11.

  8. Chromosome painting in plants.

    NARCIS (Netherlands)

    Schubert, I.; Fransz, P.F.; Fuchs, J.; Jong, de J.H.

    2001-01-01

    The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in

  9. Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia.

    Science.gov (United States)

    Harrison, Christine J; Schwab, Claire

    2016-03-01

    In addition to Down syndrome, individuals with other constitutional abnormalities of chromosome 21 have an increased risk of developing childhood acute lymphoblastic leukaemia (ALL). Specifically, carriers of the Robertsonian translocation between chromosomes 15 and 21, rob(15;21) (q10; q10)c, have ∼2,700 increased risk of developing ALL with iAMP21 (intrachromosomal amplification of chromosome 21). In these patients, chromosome 15 as well as chromosome 21 is involved in the formation of iAMP21, referred to here as der(21)(15;21). Individuals with constitutional ring chromosomes involving chromosome 21, r(21)c, are also predisposed to iAMP21-ALL, involving the same series of mutational processes as seen in sporadic- and der(21)(15;21)-iAMP21 ALL. Evidence is accumulating that the dicentric nature of the Robertsonian and ring chromosome is the initiating factor in the formation of the complex iAMP21 structure. Unravelling these intriguing predispositions to iAMP21-ALL may provide insight into how other complex rearrangements arise in cancer. Copyright © 2016. Published by Elsevier Masson SAS.

  10. Genetic variants at chromosomes 2q35, 5p12, 6q25.1, 10q26.13, and 16q12.1 influence the risk of breast cancer in men.

    Directory of Open Access Journals (Sweden)

    Nick Orr

    2011-09-01

    Full Text Available Male breast cancer accounts for approximately 1% of all breast cancer. To date, risk factors for male breast cancer are poorly defined, but certain risk factors and genetic features appear common to both male and female breast cancer. Genome-wide association studies (GWAS have recently identified common single nucleotide polymorphisms (SNPs that influence female breast cancer risk; 12 of these have been independently replicated. To examine if these variants contribute to male breast cancer risk, we genotyped 433 male breast cancer cases and 1,569 controls. Five SNPs showed a statistically significant association with male breast cancer: rs13387042 (2q35 (odds ratio (OR  = 1.30, p = 7.98×10⁻⁴, rs10941679 (5p12 (OR = 1.26, p = 0.007, rs9383938 (6q25.1 (OR = 1.39, p = 0.004, rs2981579 (FGFR2 (OR = 1.18, p = 0.03, and rs3803662 (TOX3 (OR = 1.48, p = 4.04×10⁻⁶. Comparing the ORs for male breast cancer with the published ORs for female breast cancer, three SNPs--rs13387042 (2q35, rs3803662 (TOX3, and rs6504950 (COX11--showed significant differences in ORs (p<0.05 between sexes. Breast cancer is a heterogeneous disease; the relative risks associated with loci identified to date show subtype and, based on these data, gender specificity. Additional studies of well-defined patient subgroups could provide further insight into the biological basis of breast cancer development.

  11. Complex Variant t(9;22 Chromosome Translocations in Five Cases of Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Ana Valencia

    2009-01-01

    Full Text Available The Philadelphia (Ph1 chromosome arising from the reciprocal t(9;22 translocation is found in more than 90% of chronic myeloid leukemia (CML patients and results in the formation of the chimeric fusion gene BCR-ABL. However, a small proportion of patients with CML have simple or complex variants of this translocation, involving various breakpoints in addition to 9q34 and 22q11. We report five CML cases carrying variant Ph translocations involving both chromosomes 9 and 22 as well as chromosomes 3, 5, 7, 8, or 10. G-banding showed a reciprocal three-way translocation involving 3q21, 5q31, 7q32, 8q24, and 10q22 bands. BCR-ABL fusion signal on der(22 was found in all of the cases by FISH.

  12. Chromosomal Evolution in Chiroptera.

    Science.gov (United States)

    Sotero-Caio, Cibele G; Baker, Robert J; Volleth, Marianne

    2017-10-13

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae), focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  13. Chromosomal Evolution in Chiroptera

    Directory of Open Access Journals (Sweden)

    Cibele G. Sotero-Caio

    2017-10-01

    Full Text Available Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62. As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae, focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  14. Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression

    DEFF Research Database (Denmark)

    Darabi, Hatef; McCue, Karen; Beesley, Jonathan

    2015-01-01

    of association with both estrogen receptor (ER)-positive (OR = 0.85 [0.82-0.88]) and ER-negative (OR = 0.87 [0.82-0.91]) disease, and was also the SNP most strongly associated with percent mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:D) and iCHAV3 (lead SNP, rs7922449) were also associated with ER......-positive (OR = 0.93 [0.91-0.95] and OR = 1.06 [1.03-1.09]) and ER-negative (OR = 0.95 [0.91-0.98] and OR = 1.08 [1.04-1.13]) disease. There was weaker evidence for iCHAV4, located 5' of ADO, associated only with ER-positive breast cancer (OR = 0.93 [0.90-0.96]). We found 12, 17, 18, and 2 candidate causal SNPs...... for breast cancer in iCHAVs 1-4, respectively. Chromosome conformation capture analysis showed that iCHAV2 interacts with the ZNF365 and NRBF2 (more than 600 kb away) promoters in normal and cancerous breast epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365...

  15. The eXtraordinarY Kids Clinic: an interdisciplinary model of care for children and adolescents with sex chromosome aneuploidy

    Directory of Open Access Journals (Sweden)

    Tartaglia N

    2015-07-01

    Full Text Available Nicole Tartaglia,1,2 Susan Howell,1,2 Rebecca Wilson,2 Jennifer Janusz,1,2 Richard Boada,1,2 Sydney Martin,2 Jacqueline B Frazier,2 Michelle Pfeiffer,2 Karen Regan,2 Sarah McSwegin,2 Philip Zeitler1,2 1Department of Pediatrics, University of Colorado School of Medicine, 2Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA Purpose: Individuals with sex chromosome aneuploidies (SCAs are born with an atypical number of X and/or Y chromosomes, and present with a range of medical, developmental, educational, behavioral, and psychological concerns. Rates of SCA diagnoses in infants and children are increasing, and there is a need for specialized interdisciplinary care to address associated risks. The eXtraordinarY Kids Clinic was established to provide comprehensive and experienced care for children and adolescents with SCA, with an interdisciplinary team composed of developmental–behavioral pediatrics, endocrinology, genetic counseling, child psychology, pediatric neuropsychology, speech–language pathology, occupational therapy, nursing, and social work. The clinic model includes an interdisciplinary approach to care, where assessment results by each discipline are integrated to develop unified diagnostic impressions and treatment plans individualized for each patient. Additional objectives of the eXtraordinarY Kids Clinic program include prenatal genetic counseling, research, education, family support, and advocacy. Methods: Satisfaction surveys were distributed to 496 patients, and responses were received from 168 unique patients. Results: Satisfaction with the overall clinic visit was ranked as “very satisfied” in 85%, and as “satisfied” in another 9.8%. Results further demonstrate specific benefits from the clinic experience, the importance of a knowledgeable clinic coordinator, and support the need for similar clinics across the country. Three case examples of the interdisciplinary approach to assessment and

  16. Discrimination of chromosome by autoradiography

    International Nuclear Information System (INIS)

    Masubuchi, Masanori

    1975-01-01

    This paper describes discrimination of chromosome by autoradiography. In this method, the difference in DNA synthetic phase between each chromosome was used as a standard, and the used chromosome was in metaphase, as morphological characteristics were markedly in this phase. Cell cycle and autoradiography with 3 H-thymidine were also examined. In order to discriminate chromosome by autoradiography, it was effective to utilize the labelled pattern in late DNA synthetic phase, where asynchronous replication of chromosome appeared most obviously. DNA synthesis in chromosome was examined in each DNA synthetic phase by culturing the chromosome after the treatment with 3 H-thymidine and altering the time to prepare chromosome specimen. Discrimination of chromosome in plants and animals by autoradiography was also mentioned. It was noticed as a structural and functional discrimination of chromosome to observe amino acid uptake into chromosome protein and to utilize the difference in labelled pattern between the sites of chromosome. (K. Serizawa)

  17. Fetal chromosome analysis

    DEFF Research Database (Denmark)

    Philip, J; Tabor, A; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  18. LOH at 6q and 10q in fractionated circulating DNA of ovarian cancer patients is predictive for tumor cell spread and overall survival

    Directory of Open Access Journals (Sweden)

    Kuhlmann Jan

    2012-07-01

    Full Text Available Abstract Background We recently showed that LOH proximal to M6P/IGF2R locus (D6S1581 in primary ovarian tumors is predictive for the presence of disseminated tumor cells (DTC in the bone marrow (BM. For therapy-monitoring, it would be highly desirable to establish a blood-based biomarker. Therefore, we quantified circulating DNA (cirDNA in sera of 63 ovarian cancer patients before surgery and after chemotherapy, measured incidence of LOH at four cancer-relevant chromosomal loci, correlated LOH with tumor cell spread to the BM and evaluated prognostic significance of LOH. Methods cirDNA was fractionated into high- and low molecular-weight fraction (HMWF, LMWF for LOH-profiling, utilizing PCR-based fluorescence microsatellite analysis. BM aspirates were analyzed for DTC by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. Results cirDNA levels in the HMWF before surgery were predictive for residual tumor load (p = 0.017. After chemotherapy, we observed a significant decline of cirDNA in the LMWF (p = 0.0001 but not in the HMWF. LOH was prevalently detected in the LMWF with an overall frequency of 67%, only moderately ablating after chemotherapy (45%. Before surgery, LOH in the LMWF at marker D10S1765 and D13S218 significantly correlated with tumor grading and FIGO stage (p = 0.033, p = 0.004, respectively. In both combined fractions, LOH at D6S1581 additionally associated with overall survival (OS (p = 0.030. Moreover, solely LOH at D10S1765 in LMWF after therapy correlated with DTC in BM after therapy (p = 0.017. Conclusion We demonstrate the applicability and necessity of DNA-fractionation prior to analyzing circulating LOH and identify LOH at D10S1765 and D6S1581 as novel blood-based biomarkers for ovarian cancer, being relevant for therapy-monitoring.

  19. CHROMOSOMES OF WOODY SPECIES

    Directory of Open Access Journals (Sweden)

    Julio R Daviña

    2000-01-01

    Full Text Available Chromosome numbers of nine subtropical woody species collected in Argentina and Paraguay are reported. The counts tor Coutarea hexandra (2n=52, Inga vera subsp. affinis 2n=26 (Fabaceae and Chorisia speciosa 2n=86 (Bombacaceae are reported for the first time. The chromosome number given for Inga semialata 2n=52 is a new cytotype different from the previously reported. Somatic chromosome numbers of the other taxa studied are: Sesbania punicea 2n=12, S. virgata 2n=12 and Pilocarpus pennatifolius 2n=44 from Argentina

  20. Chromosomal abnormalities and autism

    Directory of Open Access Journals (Sweden)

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  1. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  2. Chromosomal Evolution in Chiroptera

    OpenAIRE

    Sotero-Caio, Cibele G.; Baker, Robert J.; Volleth, Marianne

    2017-01-01

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within d...

  3. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F

    2011-01-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  4. A der(18)t(9;18)(p13;p11) and a der(9;18)(p10;q10) in polycythemia vera associated with a hyperproliferative phenotype in transformation to postpolycythemic myelofibrosis

    DEFF Research Database (Denmark)

    Larsen, Thomas Stauffer; Hasselbalch, Hans Carl; Pallisgaard, Niels

    2007-01-01

    Chromosomal aberrations in polycythemia vera (PV) are heterogenous and nonrandom. A prognostic predictive value of these aberrations has not been established. The V617F mutation in the JAK2 gene on chromosome 9p24.1 was identified recently in peripheral blood leukocytes in the majority of patients...

  5. Prevalence of chromosomal abnormalities in Sri Lankan women with primary amenorrhea.

    Science.gov (United States)

    Samarakoon, Lasitha; Sirisena, Nirmala D; Wettasinghe, Kalum T; Kariyawasam, Kariyawasam Warnakulathanthrige Jayani C; Jayasekara, Rohan W; Dissanayake, Vajira H W

    2013-05-01

    Chromosomal abnormalities are implicated in the etiology of primary amenorrhea. The underlying chromosomal aberrations are varied and regional differences have been reported. The objective of this study is to describe the prevalence of various types of chromosomal abnormalities in Sri Lankan women with primary amenorrhea. Medical records of all patients diagnosed with primary amenorrhea referred for cytogenetic analysis to two genetic centers in Sri Lanka from January 2005 to December 2011 were reviewed. Chromosome culture and karyotyping was performed on peripheral blood samples obtained from each patient. Data were analyzed using standard descriptive statistics. Altogether 338 patients with primary amenorrhea were karyotyped and mean age at testing was 20.5 years. Numerical and structural chromosomal abnormalities were noted in 115 (34.0%) patients which included 45,X Turner syndrome (10.7%), Turner syndrome variants (13.9%), XY females (6.5%), 45,X/46,XY (0.9%), 46,XX/46,XY (0.6%), 47,XXX (0.3%), 47,XX,+ mar (0.3%), 46,X,i(X)(p10) (0.3%), 46,XX with SRY gene translocation on X chromosome (0.3%) and 46,XX,inv(7)(p10;q11.2) (0.3%). Short stature, absent secondary sexual characteristics, neck webbing, cubitus valgus and broad chest with widely spaced nipples were commonly seen in patients with Turner syndrome and variant forms. Neck webbing and absent secondary sexual characteristics were significantly associated with classical Turner syndrome than variant forms. A considerable proportion of women with primary amenorrhea had chromosomal abnormalities. Mean age at testing was late suggesting delay in referral for karyotyping. Early referral for cytogenetic evaluation is recommended for the identification of underlying chromosomal aberrations in women with primary amenorrhea. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  6. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia.

    Science.gov (United States)

    Li, Yilong; Schwab, Claire; Ryan, Sarra; Papaemmanuil, Elli; Robinson, Hazel M; Jacobs, Patricia; Moorman, Anthony V; Dyer, Sara; Borrow, Julian; Griffiths, Mike; Heerema, Nyla A; Carroll, Andrew J; Talley, Polly; Bown, Nick; Telford, Nick; Ross, Fiona M; Gaunt, Lorraine; McNally, Richard J Q; Young, Bryan D; Sinclair, Paul; Rand, Vikki; Teixeira, Manuel R; Joseph, Olivia; Robinson, Ben; Maddison, Mark; Dastugue, Nicole; Vandenberghe, Peter; Stephens, Philip J; Cheng, Jiqiu; Van Loo, Peter; Stratton, Michael R; Campbell, Peter J; Harrison, Christine J

    2014-04-03

    Changes in gene dosage are a major driver of cancer, known to be caused by a finite, but increasingly well annotated, repertoire of mutational mechanisms. This can potentially generate correlated copy-number alterations across hundreds of linked genes, as exemplified by the 2% of childhood acute lymphoblastic leukaemia (ALL) with recurrent amplification of megabase regions of chromosome 21 (iAMP21). We used genomic, cytogenetic and transcriptional analysis, coupled with novel bioinformatic approaches, to reconstruct the evolution of iAMP21 ALL. Here we show that individuals born with the rare constitutional Robertsonian translocation between chromosomes 15 and 21, rob(15;21)(q10;q10)c, have approximately 2,700-fold increased risk of developing iAMP21 ALL compared to the general population. In such cases, amplification is initiated by a chromothripsis event involving both sister chromatids of the Robertsonian chromosome, a novel mechanism for cancer predisposition. In sporadic iAMP21, breakage-fusion-bridge cycles are typically the initiating event, often followed by chromothripsis. In both sporadic and rob(15;21)c-associated iAMP21, the final stages frequently involve duplications of the entire abnormal chromosome. The end-product is a derivative of chromosome 21 or the rob(15;21)c chromosome with gene dosage optimized for leukaemic potential, showing constrained copy-number levels over multiple linked genes. Thus, dicentric chromosomes may be an important precipitant of chromothripsis, as we show rob(15;21)c to be constitutionally dicentric and breakage-fusion-bridge cycles generate dicentric chromosomes somatically. Furthermore, our data illustrate that several cancer-specific mutational processes, applied sequentially, can coordinate to fashion copy-number profiles over large genomic scales, incrementally refining the fitness benefits of aggregated gene dosage changes.

  7. Vibrio chromosome-specific families

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...... chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein...... families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different "Molecular Function" GO categories were found for chromosome 1...

  8. Chromosomal localization of the human vesicular amine transporter genes

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D.; Finn, P.; Liu, Y.; Roghani, A.; Edwards, R.H.; Klisak, I.; Kojis, T.; Heinzmann, C.; Sparkes, R.S. (UCLA School of Medicine, Los Angeles, CA (United States))

    1993-12-01

    The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, the authors have isolated a human cDNA for the brain transporter and localized the human vesciular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes. 26 refs., 3 figs., 1 tab.

  9. Chromosome r(10(p15.3q26.12 in a newborn child: case report

    Directory of Open Access Journals (Sweden)

    Jonasson Jon

    2009-12-01

    Full Text Available Abstract Background Ring chromosome 10 is a rare cytogenetic finding. Of the less than 10 reported cases we have found in the literature, none was characterized using high-resolution microarray analysis. Ring chromosomes are frequently unstable due to sister chromatid exchanges and mitotic failures. When mosaicism is present, the interpretation of genotype-phenotype correlations becomes extremely difficult. Results We report on a newborn girl with growth retardation, microcephaly, congenital heart defects, dysmorphic features and psychomotor retardation. Karyotyping revealed a non-mosaic apparently stable ring chromosome 10 replacing one of the normal homologues in all analyzed metaphases. High-resolution oligonucleotide microarray analysis showed a de novo approximately 12.5 Mb terminal deletion 10q26.12 -> qter and a corresponding 285 kb terminal deletion of 10pter -> p15.3. Conclusion This case demonstrates that an increased nuchal translucency thickness detected by early ultrasonography should preferably lead to not only QF-PCR for the diagnosis of Down syndrome but also karyotyping. In the future, microarray analysis, which needs further evaluation, might become the method of choice. The clinical phenotype of our patient was in agreement with that of patients with a terminal 10q deletion. For the purpose of genotype-phenotype analysis, there seems to be no need for a "ring syndrome" concept.

  10. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... chromosomes that results in formation of derivative chromosomes with a mixed DNA sequence. The method currently used for their detection is Fluorescent In Situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the derivative chromosomes. We present here a double...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...

  11. Mutations and chromosomal aberrations

    International Nuclear Information System (INIS)

    Kihlman, B.A.

    1977-01-01

    The genetic changes of mutations and chromosomal aberrations are discussed. The consequences of both depend not only on the type of genetic change produced but also on the type of cell that is affected and on the development stage of the organism. (C.F.)

  12. Chromosomes, cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Samouhos, E.

    1983-01-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available

  13. Know Your Chromosomes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 3. Know Your Chromosomes The Strong Holds of Family Trees. Vani Brahmachari. Series Article Volume 1 Issue 3 March 1996 pp 30-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...

  15. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  16. The X chromosome in space.

    Science.gov (United States)

    Jégu, Teddy; Aeby, Eric; Lee, Jeannie T

    2017-06-01

    Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.

  17. Chromosome 15 structural abnormalities: effect on IGF1R gene expression and function

    Directory of Open Access Journals (Sweden)

    Rossella Cannarella

    2017-09-01

    Full Text Available Insulin-like growth factor 1 receptor (IGF1R, mapping on the 15q26.3 chromosome, is required for normal embryonic and postnatal growth. The aim of the present study was to evaluate the IGF1R gene expression and function in three unrelated patients with chromosome 15 structural abnormalities. We report two male patients with the smallest 15q26.3 chromosome duplication described so far, and a female patient with ring chromosome 15 syndrome. Patient one, with a 568 kb pure duplication, had overgrowth, developmental delay, mental and psychomotor retardation, obesity, cryptorchidism, borderline low testis volume, severe oligoasthenoteratozoospermia and gynecomastia. We found a 1.8-fold increase in the IGF1R mRNA and a 1.3-fold increase in the IGF1R protein expression (P < 0.05. Patient two, with a 650 kb impure duplication, showed overgrowth, developmental delay, mild mental retardation, precocious puberty, low testicular volume and severe oligoasthenoteratozoospermia. The IGF1R mRNA and protein expression was similar to that of the control. Patient three, with a 46,XX r(15 (p10q26.2 karyotype, displayed intrauterine growth retardation, developmental delay, mental and psychomotor retardation. We found a <0.5-fold decrease in the IGF1R mRNA expression and an undetectable IGF1R activity. After reviewing the previously 96 published cases of chromosome 15q duplication, we found that neurological disorders, congenital cardiac defects, typical facial traits and gonadal abnormalities are the prominent features in patients with chromosome 15q duplication. Interestingly, patients with 15q deletion syndrome display similar features. We speculate that both the increased and decreased IGF1R gene expression may play a role in the etiology of neurological and gonadal disorders.

  18. Molecular fundamentals of chromosomal mutagenesis

    International Nuclear Information System (INIS)

    Ganassi, E.Eh.; Zaichkina, S.I.; Malakhova, L.V.

    1987-01-01

    Precise quantitative correlation between the yield of chromosome structure damages and the yield of DNA damages is shown when comparing data on molecular and cytogenetic investigations carried out in cultural Mammalia cells. As the chromosome structure damage is to be connected with the damage of its carcass structure, then it is natural that DNA damage in loop regions is not to affect considerably the structure, while DNA damage lying on the loop base and connected with the chromosome carcass is to play a determining role in chromosomal mutagenesis. This DNA constitutes 1-2% from the total quantity of nuclear DNA. If one accepts that damages of these regions of DNA are ''hot'' points of chromosomal mutagenesis, then it becomes clear why 1-2% of preparation damages in a cell are realized in chromosome structural damages

  19. Intraspecific chromosome variability

    Directory of Open Access Journals (Sweden)

    N Dubinin

    2010-12-01

    Full Text Available (Editorial preface. The publication is presented in order to remind us of one of dramatic pages of the history of genetics. It re-opens for the contemporary reader a comprehensive work marking the priority change from plant cytogenetics to animal cytogenetics led by wide population studies which were conducted on Drosophila polytene chromosomes. The year of the publication (1937 became the point of irretrievable branching between the directions of Old World and New World genetics connected with the problems of chromosome variability and its significance for the evolution of the species. The famous book of T. Dobzhansky (1937 was published by Columbia University in the US under the title “Genetics and the origin of species”, and in the shadow of this American ‘skybuilding’ all other works grew dim. It is remarkable that both Dobzhansky and Dubinin come to similar conclusions about the role of chromosomes in speciation. This is not surprising given that they both might be considered as representatives of the Russian genetic school, by their birth and education. Interestingly, Dobzhansky had never referred to the full paper of Dubinin et al. (1937, though a previous short communication in Nature (1936 was included together with all former papers on the related subject. In full, the volume of the original publication printed in the Biological Journal in Moscow comprised 47 pages, in that number 41 pages of the Russian text accompanied by 16 Figs, a table and reference list, and, above all, 6 pages of the English summary. This final part in English is now reproduced in the authors’ version with the only addition being the reference list in the originally printed form.

  20. X chromosome and suicide.

    Science.gov (United States)

    Fiori, L M; Zouk, H; Himmelman, C; Turecki, G

    2011-02-01

    Suicide completion rates are significantly higher in males than females in most societies. Although gender differences in suicide rates have been partially explained by environmental and behavioral factors, it is possible that genetic factors, through differential expression between genders, may also help explain gender moderation of suicide risk. This study investigated X-linked genes in suicide completers using a two-step strategy. We first took advantage of the genetic structure of the French-Canadian population and genotyped 722 unrelated French-Canadian male subjects, of whom 333 were suicide completers and 389 were non-suicide controls, using a panel of 37 microsatellite markers spanning the entire X chromosome. Nine haplotype windows and several individual markers were associated with suicide. Significant results aggregated primarily in two regions, one in the long arm and another in the short arm of chromosome X, limited by markers DXS8051 and DXS8102, and DXS1001 and DXS8106, respectively. The second stage of the study investigated differential brain expression of genes mapping to associated regions in Brodmann areas 8/9, 11, 44 and 46, in an independent sample of suicide completers and controls. Six genes within these regions, Rho GTPase-activating protein 6, adaptor-related protein complex 1 sigma 2 subunit, glycoprotein M6B, ribosomal protein S6 kinase 90  kDa polypeptide 3, spermidine/spermine N(1)-acetyltransferase 1 and THO complex 2, were found to be differentially expressed in suicide completers.

  1. Chromosome Connections: Compelling Clues to Common Ancestry

    Science.gov (United States)

    Flammer, Larry

    2013-01-01

    Students compare banding patterns on hominid chromosomes and see striking evidence of their common ancestry. To test this, human chromosome no. 2 is matched with two shorter chimpanzee chromosomes, leading to the hypothesis that human chromosome 2 resulted from the fusion of the two shorter chromosomes. Students test that hypothesis by looking for…

  2. New Y chromosomes and early stages of sex chromosome ...

    Indian Academy of Sciences (India)

    2010-09-06

    Sep 6, 2010 ... chromosomes are evolutionary consequences of that func- tion. Given sufficient ... (for a review, see Charlesworth et al. 2005). ... In the present paper, I review sex deter- mination .... part had apparently been exchanged against the homologous ... age group III-Y chromosomes were successful while in well-.

  3. Pure chromosome-specific PCR libraries from single sorted chromosomes

    NARCIS (Netherlands)

    VanDevanter, D. R.; Choongkittaworn, N. M.; Dyer, K. A.; Aten, J. A.; Otto, P.; Behler, C.; Bryant, E. M.; Rabinovitch, P. S.

    1994-01-01

    Chromosome-specific DNA libraries can be very useful in molecular and cytogenetic genome mapping studies. We have developed a rapid and simple method for the generation of chromosome-specific DNA sequences that relies on polymerase chain reaction (PCR) amplification of a single flow-sorted

  4. Cohesin in determining chromosome architecture

    Energy Technology Data Exchange (ETDEWEB)

    Haering, Christian H., E-mail: christian.haering@embl.de [Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg (Germany); Jessberger, Rolf, E-mail: rolf.jessberger@tu-dresden.de [Institute of Physiological Chemistry, Dresden University of Technology, Dresden (Germany)

    2012-07-15

    Cells use ring-like structured protein complexes for various tasks in DNA dynamics. The tripartite cohesin ring is particularly suited to determine chromosome architecture, for it is large and dynamic, may acquire different forms, and is involved in several distinct nuclear processes. This review focuses on cohesin's role in structuring chromosomes during mitotic and meiotic cell divisions and during interphase.

  5. Sex chromosomes in Ephestia kuehniella

    Czech Academy of Sciences Publication Activity Database

    Marec, František; Sahara, K.; Traut, W.

    2001-01-01

    Roč. 44, č. 1 (2001), s. 131 ISSN 0003-3995. [European Cytogenetics Conference /3./. 07.07.2001-10.07.2001, Paris] Institutional research plan: CEZ:AV0Z5007907 Keywords : Telomere * sex chromosomes * chromosome fragments Subject RIV: EB - Genetics ; Molecular Biology

  6. Slit scan flow cytometry of isolated chromosomes following fluorescence hybridization: an approach of online screening for specific chromosomes and chromosome translocations

    NARCIS (Netherlands)

    Hausmann, M.; Dudin, G.; Aten, J. A.; Heilig, R.; Diaz, E.; Cremer, C.

    1991-01-01

    The recently developed methods of non radioactive in situ hybridization of chromosomes offer new aspects for chromosome analysis. Fluorescent labelling of hybridized chromosomes or chromosomal subregions allows to facilitate considerably the detection of specific chromosomal abnormalities. For many

  7. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  8. Mitotic chromosome condensation in vertebrates

    International Nuclear Information System (INIS)

    Vagnarelli, Paola

    2012-01-01

    Work from several laboratories over the past 10–15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292–301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories—a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307–316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119–1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579–589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  9. Mitotic chromosome condensation in vertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  10. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  11. Chromosome fragility in Freemartin cattle

    Directory of Open Access Journals (Sweden)

    V. Barbieri

    2010-04-01

    Full Text Available The aim of the present study was to verify chromosome fragility in freemartin cattle using chromosome aberration (CA and sister chromatid exchange (SCE tests. A total of eighteen co-twins were investigated. Fourteen animals were identified as cytogenetically chimeric (2n=60, XX/XY while 4 were classified as normal. Freemartin cattle showed a higher percentage of aneuploid cells (18.64% and highly significant statistical differences (P < 0.001 in mean values of gaps (4.53 ± 2.05, chromatid breaks (0.26 ± 0.51, and significant statistical differences (P < 0.005 in mean values of chromosome breaks (0.12 ± 0.43 when compared to 10 control animals from single births (aneuploid cells, 11.20%; gaps, 2.01 ± 1.42; chromatid breaks, 0.05 ± 0.22; chromosome breaks, 0.02 ± 0.14.

  12. Are There Knots in Chromosomes?

    Directory of Open Access Journals (Sweden)

    Jonathan T. Siebert

    2017-08-01

    Full Text Available Recent developments have for the first time allowed the determination of three-dimensional structures of individual chromosomes and genomes in nuclei of single haploid mouse embryonic stem (ES cells based on Hi–C chromosome conformation contact data. Although these first structures have a relatively low resolution, they provide the first experimental data that can be used to study chromosome and intact genome folding. Here we further analyze these structures and provide the first evidence that G1 phase chromosomes are knotted, consistent with the fact that plots of contact probability vs sequence separation show a power law dependence that is intermediate between that of a fractal globule and an equilibrium structure.

  13. Flow cytogenetics and chromosome sorting.

    Science.gov (United States)

    Cram, L S

    1990-06-01

    This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.

  14. Algorithm for sorting chromosomal aberrations

    DEFF Research Database (Denmark)

    Vogel, Ida; Lund, Najaaraq; Rasmussen, Steen

    2018-01-01

    Prenatal diagnostic methods and screening procedures change rapidly in these years. Years ago only karyotyping was performed prenatally, and we monitored only Down syndrome(1) . Since then the diagnostic possibilities have increased to QF-PCR, FISH, MLPA and chromosomal microarray.......Prenatal diagnostic methods and screening procedures change rapidly in these years. Years ago only karyotyping was performed prenatally, and we monitored only Down syndrome(1) . Since then the diagnostic possibilities have increased to QF-PCR, FISH, MLPA and chromosomal microarray....

  15. Diagnostic radiation and chromosome aberrations

    International Nuclear Information System (INIS)

    Patil, S.R.; Hecht, F.; Lubs, H.A.; Kimberling, W.; Brown, J.; Gerald, P.S.; Summitt, R.L.

    1977-01-01

    Some evidence is presented suggesting that diagnostic X-rays may be important in the origin of a new chromosomal abnormality other than Down syndrome. Chromosome analyses have been carried out on 4342 children, seven or eight years old. Maternal diagnostic irradiation in the year before conception and up to third lunar month of the index pregnancy was recorded, before the chromosome study began, together with a large amount of family and clinical data. Information on X-ray exposure was supplied by the mothers, s o radiation dosage could not be estimated. 21 children (including a pair of twins and a pair of siblings) born to 19 mothers had chromosomal aberrations. The mothers of six children with inherited translocations, rearrangements and XYY karyotypes were excluded, and 3 (23%) of the remaining 13 mothers had received abdominal and pelvic X-ray exposures. In the whole sample, however, only 6% of the mothers had diagnostic irradiation. Two of these mothers, aged sixteen and twenty, gave birth to a child each with de-novo autosomal translocations, and the third mother, aged thirty-two, had a child with a complex mosaicism involving one X chromosome. Although the sample size of the mothers with chromosomally abnormal children is small, the results are significant. (U.K.)

  16. Diagnostic radiation and chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Patil, S R; Hecht, F [Dept. of Pediatrics, Child Development and Rehabilitation Center, Univ. of Oregon Health Sciences Center, Portland, Oregon (USA); Lubs, H A; Kimberling, W; Brown, J; Gerald, P S; Summitt, R L

    1977-01-15

    Some evidence is presented suggesting that diagnostic X-rays may be important in the origin of a new chromosomal abnormality other than Down syndrome. Chromosome analyses have been carried out on 4342 children, seven or eight years old. Maternal diagnostic irradiation in the year before conception and up to third lunar month of the index pregnancy was recorded, before the chromosome study began, together with a large amount of family and clinical data. Information on X-ray exposure was supplied by the mothers, so radiation dosage could not be estimated. 21 children (including a pair of twins and a pair of siblings) born to 19 mothers had chromosomal aberrations. The mothers of six children with inherited translocations, rearrangements and XYY karyotypes were excluded, and 3 (23%) of the remaining 13 mothers had received abdominal and pelvic X-ray exposures. In the whole sample, however, only 6% of the mothers had diagnostic irradiation. Two of these mothers, aged sixteen and twenty, gave birth to a child each with de-novo autosomal translocations, and the third mother, aged thirty-two, had a child with a complex mosaicism involving one X chromosome. Although the sample size of the mothers with chromosomally abnormal children is small, the results are significant.

  17. Designing of plant artificial chromosome (PAC) by using the Chlorella smallest chromosome as a model system.

    Science.gov (United States)

    Noutoshi, Y; Arai, R; Fujie, M; Yamada, T

    1997-01-01

    As a model for plant-type chromosomes, we have been characterizing molecular organization of the Chlorella vulgaris C-169 chromosome I. To identify chromosome structural elements including the centromeric region and replication origins, we constructed a chromosome I specific cosmid library and aligned each cosmid clones to generate contigs. So far, more than 80% of the entire chromosome I has been covered. A complete clonal physical reconstitution of chromosome I provides information on the structure and genomic organization of plant genome. We propose our strategy to construct an artificial chromosome by assembling the functional chromosome structural elements identified on Chrorella chromosome I.

  18. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  19. Transmission of chromosomal and instability via a chromosome irradiated with ionizing radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji; Tanabe, Masateru; Shiraishi, Kazunori; Oshimura, Mitsuo

    2010-01-01

    We examined the stability of the transferred chromosome in 5 and 12 microcell hybrids including unirradiated human chromosomes 6 and 8, respectively, and 6 and 19 microcell hybrids including 4 Gy-irradiated human chromosomes 6 and 8, respectively. The transferred chromosome was structurally stable in most microcell hybrids transferred with the unirradiated chromosomes 6 and 8. In contrast, the 4 Gy-irradiated human chromosomes were unstable in 3 out of 6 hybrids (50%) with chromosome 6 and 3 out of 19 hybrids (16%) with chromosome 8, showing multiple aberrations in high frequencies (35∼98%). To know the cause of delayed chromosomal instability, intrachromosomal rearrangements of the human chromosome is investigated by subtelomere FISH in 17 microcell hybrids transferred with chromosomes 6 and 8. We found frequent intrachromosomal in 7 microcell hybrids (41%). However, no clear correlation was observed between the intrachromosomal rearrangements and the induction of delayed chromosomal instability by ionizing radiation

  20. Retrospective dosimetry using chromosome painting

    International Nuclear Information System (INIS)

    Nasazzi, N.B.; Giorgio, M.D.; Taja, M.R.

    2000-01-01

    Chromosome aberration frequency measured in peripheral lymphocytes of persons exposed to ionizing radiation has been used since 1960s for dose assessment. Suspected overexposure is usually evaluated by the frequency of dicentrics and centric rings using an appropriate in vitro calibration curve. However, these chromosome aberrations are unstable with time after exposure and dose reconstruction may encounter uncertainties when the time between the exposure and the analysis is considerable or even unknown. It appears that translocations persist with time after exposure and may be used as an indication of acute past overexposures. Moreover, they appear to accumulate the cytogenetical information, which correlates with the dose received under fractionated, chronic or even occupational exposure conditions. Translocations may be detected using G-banding, which allows to score the total amount of radiation induced translocations but it is a time consuming method, or by Chromosome Painting, a method base on the Fluorescence in situ Hybridization (FISH) technique, painting only some chromosome pairs with specific whole chromosome probes and then extrapolating the observed translocation frequencies to the full genome. The latter method allows a faster aberration scoring than G-banding and appears to be the most promissory tool for biodosimetry, particularly when it is necessary to assess low doses and consequently to score a large number of metaphases, e.g. radiation workers exposed within dose limits. As with the unstable chromosome aberration, it is necessary an in vitro calibration curve based on the frequency of stable chromosome aberrations to assess doses. Our laboratory performed calibration curves for Co 60 γ-rays based on the frequencies of unstable (dicentrics and centric rings detected by conventional Giemsa staining) and stable chromosome aberrations (translocations and inversions, detected by G-banding). In order to minimize the interlaboratory variability, we

  1. Construction of radiation-reduced hybrids and their use in mapping of microclones from chromosome 10p11.2-q11.2

    International Nuclear Information System (INIS)

    Fujita, Shoichi; Shin, Eisei; Nakamura, Tsutomu; Kurahashi, Hiroki; Mori, Takesada; Takai, Shin-ichiro; Nishisho, Isamu; Kaneda, Yasufumi; Tanaka, Kiyoji.

    1993-01-01

    Radiation-reduced hybrids for mapping of DNA markers in the pericentromeric region of chromosome 10 were developed. A Chinese hamster/human somatic cell hybrid (762-8A) carrying chromosomes 10 and Y as the only human material were exposed to 40,000 rads of irradiation and then rescued by fusion with non-irradiated recipient Chinese hamster cells (GM459). Southern hybridization analyses revealed that 10 of 128 HAT-resistant clones contained human chromosomal fragments corresponding to at least one marker locus between FNRB (10p11.2) and RBP3 (10q11.2). These hybrids were then used to map microdissection clones previously isolated and roughly mapped to this chromosomal region by fluorescence in situ hybridization (FISH). Two of the six microclones studies could be mapped to the proximity of the D10S102 locus. These radiation hybrids are useful for the construction of refined genetic maps of the pericentromeric region of chromosome 10. (author) 50 refs

  2. Radiation-induced chromosomal instability

    International Nuclear Information System (INIS)

    Ritter, S.

    1999-01-01

    Recent studies on radiation-induced chromosomal instability in the progeny of exposed mammalian cells were briefly described as well as other related studies. For the analysis of chromosomal damage in clones, cells were seeded directly after exposure in cell well-dish to form single cell clones and post-irradiation chromosome aberrations were scored. Both exposure to isoeffective doses of X-ray or 270 MeV/u C-ions (13 keV/μm) increased the number of clones with abnormal karyotype and the increase was similar for X-ray and for C-ions. Meanwhile, in the progeny of cells for mass cultures, there was no indication of a delayed expression of chromosomal damage up to 40 population doublings after the exposure. A high number of aberrant cells were only observed directly after exposure to 10.7 MeV/u O-ions, i.e. in the first cycle cells and decreased with subsequent cell divisions. The reason for these differences in the radiation-induced chromosomal instability between clonal isolates and mass culture has not been clarified. Recent studies indicated that genomic instability occurs at a high frequency in the progeny of cells irradiated with both sparsely and densely ionizing radiation. Such genomic instability is thought likely to increase the risk of carcinogenesis, but more data are required for a well understanding of the health risks resulting from radiation-induced delayed instability. (M.N.)

  3. Chromosome segregation in plant meiosis

    Directory of Open Access Journals (Sweden)

    Linda eZamariola

    2014-06-01

    Full Text Available Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.

  4. Radiation exposure and chromosome damage

    International Nuclear Information System (INIS)

    Lloyd, D.

    1979-01-01

    Chromosome damage is discussed as a means of biologically measuring radiation exposure to the body. Human lymphocytes are commonly used for this test since the extent of chromosome damage induced is related to the exposure dose. Several hundred lymphocytes are analysed in metaphase for chromosome damage, particularly dicentrics. The dose estimate is made by comparing the observed dicentric yield against calibration curves, previously produced by in vitro irradiation of blood samples to known doses of different types of radiation. This test is useful when there is doubt that the film badge has recorded a reasonable whole body dose and also when there is an absence of any physical data. A case of deliberate exposure is described where the chromosome damage test estimated an exposure of 152 rads. The life span of cell aberrations is also considered. Regular checks on radiotherapy patients and some accidental overdose cases have shown little reduction in the aberration levels over the first six weeks after which the damage disappears slowly with a half-life of about three years. In conclusion, chromosome studies have been shown to be of value in resolving practical problems in radiological protection. (U.K.)

  5. Chromosomal rearrangement interferes with meiotic X chromosome inactivation

    Czech Academy of Sciences Publication Activity Database

    Homolka, David; Ivánek, Robert; Čapková, Jana; Jansa, Petr; Forejt, Jiří

    2007-01-01

    Roč. 17, č. 10 (2007), s. 1431-1437 ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA301/06/1334; GA ČR GA301/07/1383 Grant - others:Howard Hughes Medical Institute(US) HHMI 55000306 Institutional research plan: CEZ:AV0Z50520514 Keywords : chromosomal translocations * meiotic X chromosome inactivation * spermatogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.224, year: 2007

  6. Chromosomal rearrangements in Tourette syndrome

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Debes, Nanette Mol; Hjermind, Lena E

    2013-01-01

    , and identification of susceptibility genes through linkage and association studies has been complicated due to inherent difficulties such as no clear mode of inheritance, genetic heterogeneity, and apparently incomplete penetrance. Positional cloning through mapping of disease-related chromosome rearrangements has...... been an efficient tool for the cloning of disease genes in several Mendelian disorders and in a number of complex disorders. Through cytogenetic investigation of 205 TS patients, we identified three possibly disease-associated chromosome rearrangements rendering this approach relevant in chasing TS...

  7. Chromosomal instability determines taxane response

    DEFF Research Database (Denmark)

    Swanton, C.; Nicke, B.; Schuett, M.

    2009-01-01

    chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells. Overexpression of these "CIN-survival'' genes is associated with poor outcome in estrogen receptor......-positive breast cancer and occurs frequently in basal-like and Her2-positive cases. In diploid cells, but not in chromosomally unstable cells, paclitaxel causes repression of CIN-survival genes, followed by cell death. In the OV01 ovarian cancer clinical trial, a high level of CIN was associated with taxane...

  8. Genetics Home Reference: ring chromosome 20 syndrome

    Science.gov (United States)

    ... drugs. Prolonged seizure episodes known as non-convulsive status epilepticus also appear to be characteristic of ring chromosome ... K, Takahashi Y. Ring chromosome 20 and nonconvulsive status epilepticus. A new epileptic syndrome. Brain. 1997 Jun;120 ( ...

  9. Chromosomal disorders and male infertility

    Institute of Scientific and Technical Information of China (English)

    Gary L Harton; Helen G Tempest

    2012-01-01

    infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family.Despite this,the molecular and genetic factors underlying the cause of infertility remain largely undiscovered.Nevertheless,more and more genetic factors associated with infertility are being identified.This review will focus on our current understanding of the chromosomal basis of male infertility specifically:chromosomal aneuploidy,structural and numerical karyotype abnormalities and Y chromosomal microdeletions.Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans.Aneuploidy is predominantly maternal in origin,but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts.Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm.Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed,as well as the application of preimplantation genetic diagnosis (PGD) in such cases.Clinical recommendations where possible will be made,as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility.

  10. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    Science.gov (United States)

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  11. First Birth after Sperm Selection through Discontinuous Gradient Centrifugation and Artificial Insemination from a Chromosomal Translocation Carrier

    Directory of Open Access Journals (Sweden)

    Alexandre Rouen

    2014-01-01

    Full Text Available Introduction. Balanced chromosomal carriers, though usually healthy, are confronted with recurrent spontaneous abortions and malformations in the offspring. Those are related to the transmission of an abnormal, chromosomally unbalanced genotype. We evidenced that the proportion of unbalanced spermatozoa can be significantly decreased through a sperm preparation process called discontinuous gradient centrifugation (DGC. We therefore started offering intrauterine inseminations with this procedure to couples with a male translocation carriers. Case Presentation. We report the case of a 37-year-old man carrying a t(3;10(q25;p13 reciprocal translocation. He and his partner had had trouble conceiving for ten years and had four spontaneous abortions. DGC in this patient decreased the proportion of unbalanced spermatozoa from 63.6% to 52.3%. They were therefore offered intrauterine insemination with DGC, which eventually led to the birth of a healthy female child carrying the paternal translocation. Conclusion. We showed that translocation carriers could be offered intrauterine inseminations with DGC. Before this, the only two options were natural conception with prenatal diagnosis and termination of chromosomally unbalanced fetuses or preimplantation genetic diagnosis, which is a much heavier and costly procedure. We are currently offering this option through a multicentric program in France, and this is the first birth originating from it.

  12. Inheritance of a Ring Chromosome 21 in a Couple Undergoing In Vitro Fertilization (IVF): A Case Report

    Science.gov (United States)

    Mazzaschi, Roberto L. P.; Love, Donald R.; Hayes, Ian; George, Alice

    2011-01-01

    An amniotic fluid sample from an in vitro fertilized pregnancy was referred for cytogenetic analysis based on a Down syndrome screening risk of 1 : 21. Routine cytogenetic analysis showed a nonmosaic karyotype of 46,XX,r(21)(p11.2q22.3), with partial monosomy for chromosome 21 due to a ring chromosome replacing one of the normal homologues. Detailed ultrasound scanning for the remainder of the pregnancy did not reveal any unusual findings. Parental bloods showed that the mother was mosaic for the ring 21 with a karyotype of 46,XX,r(21)(p11.2q22.3)/46,XX and the father had an unrelated Robertsonian translocation, with a karyotype of 45,XY,rob(13;14)(q10;q10). Microarray analysis of cultured amniocytes determined the extent of the deletion of chromosome 21 material in the ring. The parents were given genetic counselling, and a phenotypically normal female baby was delivered at term. This case highlights the importance of karyotyping as an initial step in the management of couples referred for in vitro fertilization. PMID:23074672

  13. Inheritance of a Ring Chromosome 21 in a Couple Undergoing In Vitro Fertilization (IVF: A Case Report

    Directory of Open Access Journals (Sweden)

    Roberto L. P. Mazzaschi

    2011-01-01

    Full Text Available An amniotic fluid sample from an in vitro fertilized pregnancy was referred for cytogenetic analysis based on a Down syndrome screening risk of 1 : 21. Routine cytogenetic analysis showed a nonmosaic karyotype of 46,XX,r(21(p11.2q22.3, with partial monosomy for chromosome 21 due to a ring chromosome replacing one of the normal homologues. Detailed ultrasound scanning for the remainder of the pregnancy did not reveal any unusual findings. Parental bloods showed that the mother was mosaic for the ring 21 with a karyotype of 46,XX,r(21(p11.2q22.3/46,XX and the father had an unrelated Robertsonian translocation, with a karyotype of 45,XY,rob(13;14(q10;q10. Microarray analysis of cultured amniocytes determined the extent of the deletion of chromosome 21 material in the ring. The parents were given genetic counselling, and a phenotypically normal female baby was delivered at term. This case highlights the importance of karyotyping as an initial step in the management of couples referred for in vitro fertilization.

  14. Chromosomal Evolution in Lower Vertebrates: Sex Chromosomes in Neotropical Fishes

    Czech Academy of Sciences Publication Activity Database

    Cioffi, M. de B.; Yano, C. F.; Sember, Alexandr; Bertollo, L.A.C.

    2017-01-01

    Roč. 8, č. 10 (2017), č. článku 258. ISSN 2073-4425 R&D Projects: GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : alternative evolutionary models * simple and multiple sex chromosomes * independent and common origins Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.600, year: 2016

  15. Microdissection and Chromosome Painting of the Alien Chromosome in an Addition Line of Wheat - Thinopyrum intermedium

    Science.gov (United States)

    Yin, Weibo; Zhang, Yingxin; Chen, Yuhong; Wang, Richard R.-C.; Zhang, Xiangqi; Han, Fangpu; Hu, Zanmin

    2013-01-01

    In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat - Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th . intermedium . Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th . intermedium , 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th . intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a Js genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (Js, J and St) in Th . intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th . bessarabicum . Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the Js genome, within a single chromosome, and among different genomes in Th . intermedium . Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different

  16. Dynamics of chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck

    2007-01-01

    Since the 1960’es the conformation and segregation of the chromosome in Escherichia coli has been a subject of interest for many scientists. However, after 40 years of research, we still know incredibly little about how the chromosome is organized inside the cell, how it manages to duplicate...... this incredibly big molecule and separate the two daughter chromosomes and how it makes sure that the daughter cells receives one copy each. The fully extended chromosome is two orders of magnitude larger than the cell in which it is contained. Hence the chromosome is heavily compacted in the cell...

  17. Prenatal diagnosis and molecular cytogenetic characterization of a derivative chromosome der(18;18(q10;q10del(18(q11.1q12.1del(18(q22.1q22.3 presenting as apparent isochromosome 18q in a fetus with holoprosencephaly

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2011-06-01

    Conclusion: Concomitant monosomy 18p and trisomy 18q can be associated with holoprosencephaly and abnormal maternal serum screening results. Array-comparative genomic hybridization, fluorescence in situ hybridization, and quantitative fluorescent polymerase chain reaction are useful in genetic counseling of prenatally detected isochromosomes by providing information on the origin and genetic components of the isochromosome.

  18. Frequencies of chromosome aberration on radiation workers

    International Nuclear Information System (INIS)

    Yanti Lusiyanti; Zubaidah Alatas

    2016-01-01

    Radiation exposure of the body can cause damage to the genetic material in cells (cytogenetic) in the form of changes in the structure or chromosomal aberrations in peripheral blood lymphocytes. Chromosomal aberrations can be unstable as dicentric and ring chromosomes, and is stable as translocation. Dicentric chromosome is the gold standard biomarker due to radiation exposure, and chromosome translocation is a biomarker for retrospective biodosimetry. The aim of this studi is to conduct examination of chromosomal aberrations in the radiation worker to determine the potential damage of cell that may arise due to occupational radiation exposure. The examination have been carried out on blood samples from 55 radiation workers in the range of 5-30 year of service. Chromosome aberration frequency measurement starts with blood sampling, culturing, harvesting, slide preparations, and lymphocyte chromosome staining with Giemsa and painting with Fluorescence In Situ Hybridization (FISH) technique. The results showed that chromosomal translocations are not found in blood samples radiation workers and dicentric chromosomes found only on 2 blood samples of radiation workers with a frequency of 0.001/cell. The frequency of chromosomal aberrations in the blood cells such workers within normal limits and this means that the workers have been implemented a radiation safety aspects very well. (author)

  19. Chromosomal instability induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1995-01-01

    There is accumulating evidence indicating genomic instability can manifest multiple generations after cellular exposure to DNA damaging agents. For instance, some cells surviving exposure to ionizing radiations show delayed reproductive cell death, delayed mutation and / or delayed chromosomal instability. Such instability, especially chromosome destabilization has been implicated in mutation, gene amplification, cellular transformation, and cell killing. To investigate chromosomal instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells. The relationship between delayed chromosomal destabilization and other endpoints of genomic instability, namely; delayed mutation and gene amplification will be discussed, as will the potential cytogenetic and molecular mechanisms contributing to delayed chromosomal instability

  20. Delayed chromosomal instability induced by DNA damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1994-01-01

    Cellular exposure to DNA damaging agents rapidly results in a dose dependent increase in chromosomal breakage and gross structural chromosomal rearrangements. Over recent years, evidence has been accumulating indicating genomic instability can manifest multiple generations after cellular exposure to physical and chemical DNA damaging agents. Genomic instability manifests in the progeny of surviving cells, and has been implicated in mutation, gene application, cellular transformation, and cell killing. To investigate chromosome instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells surviving X-irradiation many generations after exposure. At higher radiation doses, chromosomal instability was observed in a relatively high frequency of surviving clones and, in general, those clones showed delayed chromosome instability also showed reduced survival as measured by colony forming ability

  1. Genome Organization Drives Chromosome Fragility.

    Science.gov (United States)

    Canela, Andres; Maman, Yaakov; Jung, Seolkyoung; Wong, Nancy; Callen, Elsa; Day, Amanda; Kieffer-Kwon, Kyong-Rim; Pekowska, Aleksandra; Zhang, Hongliang; Rao, Suhas S P; Huang, Su-Chen; Mckinnon, Peter J; Aplan, Peter D; Pommier, Yves; Aiden, Erez Lieberman; Casellas, Rafael; Nussenzweig, André

    2017-07-27

    In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT. Published by Elsevier Inc.

  2. Chromosomes aberations and enviromental factors

    Directory of Open Access Journals (Sweden)

    Marković Srđan Z.

    2017-01-01

    Full Text Available Explanation the topic: Changes in genetic material can lead to aberrant cell in the direction of disorders of cellular regulation, malignant transformation, cell death, or if the adjustment was made at the level of the reproductive cells, to genetic changes in some of the consequent off spring. The topic position in scientific/professional public: Breaking of chromosomes can occur spontaneously or can be induced. Chromatid/chromosome breakings can be induced by different environmental factors: chemicals, biological clastogenic agents, accidentally or intentionally. Conclusions: The authors suggest: - making conditions for strong respect of environmental regulations; - to use higher plants for the early detection of environmental mutagens; - create and orderly update National radionuclide database.

  3. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    Science.gov (United States)

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  4. GSK-3 inhibitors induce chromosome instability

    Directory of Open Access Journals (Sweden)

    Staples Oliver D

    2007-08-01

    Full Text Available Abstract Background Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear. Here, we turn our attention to GSK-3 – a protein kinase, which in concert with APC, targets β-catenin for proteolysis – and ask whether GSK-3 is required for accurate chromosome segregation. Results To probe the role of GSK-3 in mitosis, we inhibited GSK-3 kinase activity in cells using a panel of small molecule inhibitors, including SB-415286, AR-A014418, 1-Azakenpaullone and CHIR99021. Analysis of synchronised HeLa cells shows that GSK-3 inhibitors do not prevent G1/S progression or cell division. They do, however, significantly delay mitotic exit, largely because inhibitor-treated cells have difficulty aligning all their chromosomes. Although bipolar spindles form and the majority of chromosomes biorient, one or more chromosomes often remain mono-oriented near the spindle poles. Despite a prolonged mitotic delay, anaphase frequently initiates without the last chromosome aligning, resulting in chromosome non-disjunction. To rule out the possibility of "off-target" effects, we also used RNA interference to selectively repress GSK-3β. Cells deficient for GSK-3β exhibit a similar chromosome alignment defect, with chromosomes clustered near the spindle poles. GSK-3β repression also results in cells accumulating micronuclei, a hallmark of chromosome missegregation. Conclusion Thus, not only do our observations indicate a role for GSK-3 in accurate chromosome segregation, but they also raise the possibility that, if used as therapeutic agents, GSK-3 inhibitors may induce unwanted side effects by inducing chromosome instability.

  5. Chromosome aberration assays in Allium

    Energy Technology Data Exchange (ETDEWEB)

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  6. Inter-chromosomal heterogeneity in the formation of radiation induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Vermeulen, S.; Boei, J.J.W.A.

    1997-01-01

    It is generally assumed that radiation induced chromosomal lesions are distributed randomly and repaired randomly among the genome. Recent studies using fluorescent in situ hybridization (FISH) and chromosome specific DNA libraries indicate that some chromosomes are more sensitive for radiation induced aberration formation than others. Chromosome No. 4 in human and chromosome No. 8 in Chinese hamster have been found to involve more in exchange aberrations than others, when calculated on the basis of their DNA content. Painting with arm specific chromosome libraries indicate that the frequencies of radiation induced intra-chromosome exchanges (i.e., between the arms of a chromosome, such as centric rings and inversions) are far in excess than one would expect on the basis of the frequencies of observed inter-chromosomal exchanges. The possible factors leading to the observed heterogeneity will be discussed

  7. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  8. Chromosomal amplifications, 3q gain and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma

    International Nuclear Information System (INIS)

    Rao, Pulivarthi H; Murty, Vundavalli VVS; Arias-Pulido, Hugo; Lu, Xin-Yan; Harris, Charles P; Vargas, Hernan; Zhang, Fang F; Narayan, Gopeshwar; Schneider, Achim; Terry, Mary Beth

    2004-01-01

    Carcinoma of uterine cervix is the second most common cancers among women worldwide. Combined radiation and chemotherapy is the choice of treatment for advanced stages of the disease. The prognosis is poor, with a five-year survival rate ranging from about 20–65%, depending on stage of the disease. Therefore, genetic characterization is essential for understanding the biology and clinical heterogeneity in cervical cancer (CC). We used a genome-wide screening method – comparative genomic hybridization (CGH) to identify DNA copy number changes in 77 patients with cervical cancer. We applied categorical and survival analyses to analyze whether chromosomal changes were related to clinico-pathologic characteristics and patients survival. The CGH analysis revealed a loss of 2q33-q37 (57.1%), gain of 3q (54.5%) and chromosomal amplifications (20.77%) as frequent genetic changes. A total of 15 amplified chromosomal sites were detected in 16 cases that include 1p31, 2q32, 7q22, 8q21.2-q24, 9p22, 10q21, 10q24, 11q13, 11q21, 12q15, 14q12, 17p11.2, 17q22, 18p11.2, and 19q13.1. Recurrent amplified sites were noted at 11q13, 11q21, and 19q13.1. The genomic alterations were further evaluated for prognostic significance in CC patients, and we did not find any correlation with a number of clinical or histological parameters. The tumors harboring HPV18 exhibited higher genomic instability compared to tumors with HPV 16. This study demonstrated that 2q33-q37 deletions, 3q gains and chromosomal amplifications as characteristic changes in invasive CC. These genetic alterations will aid in the identification of novel tumor suppressor gene(s) at 2q33-q37 and oncogenes at amplified chromosomal sites. Molecular characterization of these chromosomal changes utilizing the current genomic technologies will provide new insights into the biology and clinical behavior of CC

  9. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  10. Persistence of chromosomal abnormalities additional to the Philadelphia chromosome after Philadelphia chromosome disappearance during imatinib therapy for chronic myeloid leukemia.

    Science.gov (United States)

    Zaccaria, Alfonso; Valenti, Anna Maria; Donti, Emilio; Gozzetti, Alessandro; Ronconi, Sonia; Spedicato, Francesco

    2007-04-01

    Five Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) patients with additional chromosome abnormalities at diagnosis have been followed during Imatinib therapy. In all, the Ph chromosome disappeared, while the 5 cases, additional abnormalities [dup(1); del(5), +8 (2 patients) and +14] persisted in the subsequent studies, performed over a period of 11 to 49 months, either alone or together with a karyotypically normal cell population. This finding is consistent with a secondary origin of the Ph chromosome in these patients. It is still to early to evaluate the possible prognostic value of these additional abnormalities.

  11. Chromosomes

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  12. Chromosome engineering: power tools for plant genetics.

    Science.gov (United States)

    Chan, Simon W L

    2010-12-01

    The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Advances in plant chromosome genomics

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Vrána, Jan; Cápal, Petr; Kubaláková, Marie; Burešová, Veronika; Šimková, Hana

    2014-01-01

    Roč. 32, č. 1 (2014), s. 122-136 ISSN 0734-9750 R&D Projects: GA ČR GAP501/10/1740; GA ČR GAP501/10/1778; GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : BAC library * Chromosome sorting * Cytogenetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.015, year: 2014

  14. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1984-01-01

    The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four...... homologues of each of the chromosomes. The aneuploid C2--seedlings were fairly equally distributed on hypo-and hyperploids, and on the seven chromosome groups. This suggests that a particular chromosome is lost or gained at random in gametes and embryos. The 11 C3--seedlings comprised seven true euploids......, one seedling with 2n=28 having an extra chromosome 6 and missing one chromosome 3, and three seedlings with 2n=29. The chromosomal composition of aneuploid C3--seedlings did not reflect that of their aneuploid C2--parents with respect to missing or extra chromosomes. Two hypohexaploid C2--seedlings...

  15. Exceptional Complex Chromosomal Rearrangements in Three Generations

    Directory of Open Access Journals (Sweden)

    Hannie Kartapradja

    2015-01-01

    Full Text Available We report an exceptional complex chromosomal rearrangement (CCR found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband’s mother, which was confirmed using the whole chromosome painting (WCP FISH. High resolution whole genome microarray analysis of DNA from the proband’s mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother’s and grandmother’s CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.

  16. Evaluation of Chromosomal Abnormalities and Common ...

    African Journals Online (AJOL)

    Evaluation of Chromosomal Abnormalities and Common Trombophilic Mutations in Cases with Recurrent Miscarriage. Ahmet Karatas, Recep Eroz, Mustafa Albayrak, Tulay Ozlu, Bulent Cakmak, Fatih Keskin ...

  17. Reflections and meditations upon complex chromosomal exchanges.

    Science.gov (United States)

    Savage, John R K

    2002-12-01

    The application of FISH chromosome painting techniques, especially the recent mFISH (and its equivalents) where all 23 human chromosome pairs can be distinguished, has demonstrated that many chromosome-type structural exchanges are much more complicated (involving more "break-rejoins" and arms) than has hitherto been assumed. It is clear that we have been greatly under-estimating the damage produced in chromatin by such agents as ionising radiation. This article gives a brief historical summary of observations leading up to this conclusion, and after outlining some of the problems surrounding the formation of complex chromosomes exchanges, speculates about possible solutions currently being proposed.

  18. Chromosomal aberrations in ore miners of Slovakia

    International Nuclear Information System (INIS)

    Beno, M.; Vladar, M.; Nikodemova, D.; Vicanova, M.; Durcik, M.

    1998-01-01

    A pilot study was performed in which the incidence of chromosomal aberrations in lymphocytes of miners in ore mines located in Central Slovakia was monitored and related to lifetime underground radon exposure and to lifetime smoking. The conclusions drawn from the results of the study were as follows: the counts of chromosomal aberrations in lymphocytes of miners were significantly higher than in an age matched control group of white-collar staff; the higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; a dependence of chromosomal aberration counts on the exposure to radon could not be assessed. (A.K.)

  19. Chromosome heteromorphisms in the Japanese, 3

    International Nuclear Information System (INIS)

    Sofuni, Toshio; Awa, A.A.

    1982-12-01

    The type and frequency of chromosome variants detected by the C-staining method were ascertained in 1,857 individuals residing in Hiroshima. The most frequent heteromorphic variant was the total inversion of the C-band in chromosome 9 found in 27 individuals (1.45%). The total inversion of the C-band in chromosome 1 was not seen in this sample, but the partial inversion of the C-band in chromosome 1 was found in 18 persons (0.97%). Partial inversion was also detected in the C-band in chromosome 9 in 22 individuals (1.18%). In chromosome 16, neither total nor partial inversion of the C-band was observed in the present study. The frequencies of chromosomes 1, 9, and 16 with a very large C-band were 0.70%, 0.22%, and 0.54%, respectively. Aside from these (1, 9, and 16) a very large C-band was found occasionally in chromosomes 4, 5, 6, 11, 12, 14, and 15, and an unusual insertion of the Y chromosome was observed. A total of 128 C-band variants (6.89%) was found in the 1,857 Hiroshima residents. (author)

  20. Chromosomal instability can be induced by the formation of breakage-prone chromosome rearrangement junctions

    International Nuclear Information System (INIS)

    Allen, R.N.; Ritter, L.; Moore, S.R.; Grosovsky, A.J.

    2003-01-01

    Full text: Studies in our lab have led to the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in chromosomal instability acting predominantly in cis. For example, specific breakage of large blocks of centromeric region heterochromatin on chromosome 16q by treatment with 2,6-diaminopurine (DAP) is associated with repeated rearrangement of chromosome 16q during outgrowth of DAP-treated clones, thereby establishing a link between the initial site of damage and the occurrence of persistent chromosomal instability. Similarly, karyotypic analysis of gamma ray induced instability demonstrated that chromosomal rearrangements in sub-clones were significantly clustered near the site of previously identified chromosomal rearrangement junctions in unstable parental clones. This study investigates the hypothesis that integration of transfected sequences into host chromosomes could create breakage-prone junction regions and persistent genomic instability without exposure to DNA-damage agents. These junctions may mimic the unstable chromosomal rearrangements induced by DAP or radiation, and thus provide a test of the broader hypothesis that instability can to some extent be attributed to the formation of novel chromosomal breakage hot spots. These experiments were performed using human-hamster hybrid AL cells containing a single human chromosome 11, which was used to monitor instability in a chromosomal painting assay. AL cells were transfected with a 2.5 Kb fragment containing multiple copies of the 180 bp human alpha heterochromatic repeat, which resulted in chromosomal instability in 41% of the transfected clones. Parallel exposure to gamma-radiation resulted in a similar level of chromosomal instability, although control transfections with plasmid alone did not lead to karyotypic instability. Chromosomal instability induced by integration of alpha heterochromatic repeats was also frequently associated with delayed reproductive

  1. Chromosomal replicons of higher plants

    International Nuclear Information System (INIS)

    Van't Hof, J.

    1987-01-01

    This brief discussion of replicons of higher plants offers a glimpse into the properties of chromosomal DNA replication. It gives evidence that the S phase of unrelated plant species is comprised of temporally ordered replicon families that increase in number with genome size. This orderly process, which assures a normal inheritance of genetic material to recipient daughter cells, is maintained at the level of replicon clusters by two mutually exclusive mechanisms, one involving the rate at which single replicons replicate their allotment of DNA, and another by means of the tempo-pause. The same two mechanisms are used by cells to alter the pattern of chromosomal DNA replication just prior to and during normal development. Both mechanisms are genetically determined and produce genetic effects when disturbed of disrupted by additional non-conforming DNAs. Further insight into how these two mechanisms operate requires more molecular information about the nature of replicons and the factors that govern when a replicon family replicates. Plant material is a rich and ideal source for this information just awaiting exploitation. 63 refs

  2. Increased chromosome radiosensitivity during pregnancy

    International Nuclear Information System (INIS)

    Ricoul, Michelle; Sabatier, Laure; Dutrillaux, Bernard

    1997-01-01

    It was necessary to consider the risks of exposure of pregnant women, not only in relation to the child, but also in relation to their own hypersensitivity. We have demonstrated that pregnancy increases radiosensitivity of chromosome in the mouse at the end of gestation. This is of importance since it may have implications on radioprotection of pregnant women and give experimental guidelines to the problems of hypersensitivity to drugs and cancer aggravation during pregnancy. Blood obtained from women at various times of pregnancy was exposed to ionizing radiations. By comparison to non-pregnant women, an increase in chromosome breakage was observed in metaphases from lymphocytes, after short-term culture in the presence of the serum of the same donor. Immediately after delivery, this increase in radiosensitivity disappeared. In a prospective study, serial analyses showed a very strong correlation between the amount of pregnancy hormones, progesterone in particular, and the increase in radiosensitivity. Pregnant women may have an increased sensitivity to ionizing radiation during the second half of their pregnancy. This study provides the first evidence in human that radiosensitivity may vary in relation to physiological conditions

  3. Selfish X chromosomes and speciation.

    Science.gov (United States)

    Patten, Manus M

    2017-12-27

    In two papers published at about the same time almost thirty years ago, Frank (Evolution, 45, 1991a, 262) and Hurst and Pomiankowski (Genetics, 128, 1991, 841) independently suggested that divergence of meiotic drive systems-comprising genes that cheat meiosis and genes that suppress this cheating-might provide a general explanation for Haldane's rule and the large X-effect in interspecific hybrids. Although at the time, the idea was met with skepticism and a conspicuous absence of empirical support, the tide has since turned. Some of the clearest mechanistic explanations we have for hybrid male sterility involve meiotic drive systems, and several other cases of hybrid sterility are suggestive of a role for meiotic drive. In this article, I review these ideas and their descendants and catalog the current evidence for the meiotic drive model of speciation. In addition, I suggest that meiotic drive is not the only intragenomic conflict to involve the X chromosome and contribute to hybrid incompatibility. Sexually and parentally antagonistic selection pressures can also pit the X chromosome and autosomes against each other. The resulting intragenomic conflicts should lead to co-evolution within populations and divergence between them, thus increasing the likelihood of incompatibilities in hybrids. I provide a sketch of these ideas and interpret some empirical patterns in the light of these additional X-autosome conflicts. © 2017 John Wiley & Sons Ltd.

  4. Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum

    NARCIS (Netherlands)

    Vlaardingerbroek, I.; Beerens, B.; Rose, L.; Fokkens, L.; Cornelissen, B.J.C.; Rep, M.

    2016-01-01

    Horizontal transfer of supernumerary or lineage-specific (LS) chromosomes has been described in a number of plant pathogenic filamentous fungi. So far it was not known whether transfer is restricted to chromosomes of certain size or properties, or whether 'core' chromosomes can also undergo

  5. Stabilization of chromosomes by DNA intercalators for flow karyotyping and identification by banding of isolated chromosomes

    NARCIS (Netherlands)

    Aten, J. A.; Buys, C. H.; van der Veen, A. Y.; Mesa, J. R.; Yu, L. C.; Gray, J. W.; Osinga, J.; Stap, J.

    1987-01-01

    A number of structurally unrelated DNA intercalators have been studied as stabilizers of mitotic chromosomes during isolation from rodent and human metaphase cells. Seven out of the nine intercalators tested were found to be useful as chromosome stabilizing agents. Chromosome suspensions prepared in

  6. Flow Analysis and Sorting of Plant Chromosomes

    Czech Academy of Sciences Publication Activity Database

    Vrána, Jan; Cápal, Petr; Šimková, Hana; Karafiátová, Miroslava; Čížková, Jana; Doležel, Jaroslav

    2016-01-01

    Roč. 78, Oct 10 (2016), 5.3.1-5.3.43 ISSN 1934-9300 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : cell cycle synchronization * chromosome genomics * chromosome isolation Subject RIV: EB - Genetics ; Molecular Biology

  7. Chromosome studies in Cashew ( Anacardium occidentale L ...

    African Journals Online (AJOL)

    Despite the increased cultivation of cashew as a commodity crop in sub-Sahara Africa, Asia and South America there are few chromosome studies on it. The present study investigates number, structure and behavior of chromosome in cashew populations growing in Nigeria. Cytological examination of these populations ...

  8. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The literature is surveyed for data on recombination between loci on chromosome 5 of barley; 13 loci fall into the category “mapped” loci, more than 20 into the category “associated” loci and nine into the category “loci once suggested to be on chromosome 5”. A procedure was developed...

  9. Statistics for X-chromosome associations.

    Science.gov (United States)

    Özbek, Umut; Lin, Hui-Min; Lin, Yan; Weeks, Daniel E; Chen, Wei; Shaffer, John R; Purcell, Shaun M; Feingold, Eleanor

    2018-06-13

    In a genome-wide association study (GWAS), association between genotype and phenotype at autosomal loci is generally tested by regression models. However, X-chromosome data are often excluded from published analyses of autosomes because of the difference between males and females in number of X chromosomes. Failure to analyze X-chromosome data at all is obviously less than ideal, and can lead to missed discoveries. Even when X-chromosome data are included, they are often analyzed with suboptimal statistics. Several mathematically sensible statistics for X-chromosome association have been proposed. The optimality of these statistics, however, is based on very specific simple genetic models. In addition, while previous simulation studies of these statistics have been informative, they have focused on single-marker tests and have not considered the types of error that occur even under the null hypothesis when the entire X chromosome is scanned. In this study, we comprehensively tested several X-chromosome association statistics using simulation studies that include the entire chromosome. We also considered a wide range of trait models for sex differences and phenotypic effects of X inactivation. We found that models that do not incorporate a sex effect can have large type I error in some cases. We also found that many of the best statistics perform well even when there are modest deviations, such as trait variance differences between the sexes or small sex differences in allele frequencies, from assumptions. © 2018 WILEY PERIODICALS, INC.

  10. Cytometric analysis of irradiation damaged chromosomes

    International Nuclear Information System (INIS)

    Wilder, M.E.; Raju, M.R.

    1982-01-01

    Irradiation of cells in interphase results in dose-dependent damage to DNA which is discernable by flow-cytometric analysis of chromosomes. The quantity (and possibly the quality) of chromosomal changes is different in survival-matched doses of x and α irradiation. It may, therefore, be possible to use these methods for analysis of dose and type of exposure in unknown cases

  11. X-chromosome inactivation and escape

    Indian Academy of Sciences (India)

    2015-11-06

    Nov 6, 2015 ... tion and cancer in mice after a long period of time (Yildirim et al. 2013). ... chromosome of man has a short pairing seg- ment, that is not normally ..... Lyon M. F. 1988 The William Allan memorial award address: X-chromosome ...

  12. Chromosomal evolution and phylogenetic analyses in Tayassu ...

    Indian Academy of Sciences (India)

    Chromosome preparation and karyotype description. The material analysed consists of chromosome preparations of the tayassuid species T. pecari (three individuals) and. P. tajacu (four individuals) and were made from short-term lymphocyte cultures of whole blood samples using standard protocols (Chaves et al. 2002).

  13. AFM image of an entire polygene chromosome

    International Nuclear Information System (INIS)

    Li Minqian; Takeuchi; Ikai, A.

    1994-01-01

    The author present AFM images of an entire polygene chromosome of Drosophila for the first time. Comparing with conventional optical microscope, the AFM image of the polygene chromosomes provides much higher resolution and 3-D measurement capability which will lead to finer scale gene mapping and identification

  14. A sexy spin on nonrandom chromosome segregation.

    Science.gov (United States)

    Charville, Gregory W; Rando, Thomas A

    2013-06-06

    Nonrandom chromosome segregation is an intriguing phenomenon linked to certain asymmetric stem cell divisions. In a recent report in Nature, Yadlapalli and Yamashita (2013) observe nonrandom segregation of X and Y chromosomes in Drosophila germline stem cells and shed light on the complex mechanisms of this fascinating process. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Temporal genomic evolution of bird sex chromosomes

    DEFF Research Database (Denmark)

    Wang, Zongji; Zhang, Jilin; Yang, Wei

    2014-01-01

    BACKGROUND: Sex chromosomes exhibit many unusual patterns in sequence and gene expression relative to autosomes. Birds have evolved a female heterogametic sex system (male ZZ, female ZW), through stepwise suppression of recombination between chrZ and chrW. To address the broad patterns and complex...... driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. RESULTS: We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous...... ('fast-Z' evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes' enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic...

  16. Chromosome behaviour in Rhoeo spathacea var. variegata.

    Science.gov (United States)

    Lin, Y J

    1980-01-01

    Rhoeo spathacea var. variegata is unusual in that its twelve chromosomes are arranged in a ring at meiosis. The order of the chromosomes has been established, and each chromosome arm has been designated a letter in accordance with the segmental interchange theory. Chromosomes are often irregularly orientated at metaphase I. Chromosomes at anaphase I are generally distributed equally (6-6, 58.75%) although not necessarily balanced. Due to adjacent distribution, 7-5 distribution at anaphase I was frequently observed (24.17%), and due to lagging, 6-1-5 and 5-2-5 distributions were also observed (10.83% and 3.33% respectively). Three types of abnormal distribution, 8-4, 7-1-4 and 6-2-4 were observed very infrequently (2.92% total), and their possible origins are discussed. Irregularities, such as adjacent distribution and lagging, undoubtedly reduce the fertility of the plant because of the resulting unbalanced gametes.

  17. Chromosome reduction in Eleocharis maculosa (Cyperaceae).

    Science.gov (United States)

    da Silva, C R M; González-Elizondo, M S; Laforga Vanzela, A L

    2008-01-01

    Chromosome numbers in Cyperaceae lower than the typical basic number x = 5 have been described for only three species: Rhynchospora tenuis (n = 2), Fimbristylis umbellaris (n = 3) and Eleocharis subarticulata (n = 3). Eleocharis maculosa is recorded here as the fourth species of Cyperaceae that has a chromosome number lower than 2n = 10, with 2n = 8, 7 and 6. The karyotype differentiation in E. maculosa was studied using conventional staining (mitosis and meiosis), FISH with 45S and 5S rDNA and telomere probes. The results allow us to determine which chromosomes of the chromosome race with 2n = 10 fused to form the remaining reduced numbers, as well as to understand how the symploidy and translocation mechanisms were important in karyotype differentiation and the formation of chromosome races in Eleocharis. Copyright 2008 S. Karger AG, Basel.

  18. Energy Landscapes of Folding Chromosomes

    Science.gov (United States)

    Zhang, Bin

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  19. The Y chromosome of the Atelidae family (Platyrrhini): study by chromosome microdissection.

    Science.gov (United States)

    Gifalli-Iughetti, C; Koiffmann, C P

    2009-01-01

    In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachytelesarachnoides, obtained by microdissection, to metaphases of Atelesbelzebuthmarginatus, Lagothrixlagothricha, and Alouatta male specimens. Brachytelesarachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachytelesarachnoides Y chromosome probe hybridized to Lagothrixlagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Atelesbelzebuthmarginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group. Copyright 2009 S. Karger AG, Basel.

  20. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    Science.gov (United States)

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.

  1. An XmnI RFLP detected with a cDNA probe for the CYP2C gene locus on chromosome 10

    Energy Technology Data Exchange (ETDEWEB)

    Gough, A C; Spurr, N K [Clare Hall Laboratories, Herts (England); Meehan, R R; Miles, J S; Wolf, C R [Univ. Department of Biochemistry, Edinburgh (England)

    1989-06-12

    A 700 bp fragment of the cDNA clone for the human cytochrome P450 gene cloned in pUC9 at the PstI restriction site. XmnI detects a two allele polymorphism with bands at 10.00 kb (A1), 4.8 kb (A2) and constants bands at 13.0, 8.3, 4.6, 3.1, 2.8, 2.5, 2.3, 2.2, 1.8 and 1.5 kb. A total of 16 unrelated individuals of Caucasian origin were screened for A1 (.625) and A2 (.375). The probe was assigned to chromosome 10q24.1-q24.3 using a panel of human-rodent somatic cell hybrids and in situ hybridization. Co-dominant inheritance was observed in 3 families from CEPH, K1329 2 K1331 and K1333.

  2. Chromatid Painting for Chromosomal Inversion Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the continued development of a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and...

  3. Chromatid Painting for Chromosomal Inversion Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and inversions) have profound genetic...

  4. Automatic Metaphase Finding by Inter-Chromosome Extrema Profile Analysis

    National Research Council Canada - National Science Library

    Vega-Alvarado, Leticia

    2001-01-01

    ...-level inter-chromosome coarseness features in microscopic images of metaphase spreads, and allows to quantity the texture of the cytological objects analysing the intensity profile between chromosome...

  5. Label Free Chromosome Translocation Detection with Silicon nanowires

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Andersen, Karsten Brandt; Frøhling, Kasper Bayer

    HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method is a Fluore......HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method...

  6. Structure of the human chromosome interaction network.

    Directory of Open Access Journals (Sweden)

    Sergio Sarnataro

    Full Text Available New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.

  7. Chromosomal aberrations in benign prostatic hyperplasia patients

    Directory of Open Access Journals (Sweden)

    Muammer Altok

    2016-01-01

    Full Text Available Purpose: To investigate the chromosomal changes in patients with benign prostatic hyperplasia (BPH. Materials and Methods: A total of 54 patients diagnosed with clinical BPH underwent transurethral prostate resection to address their primary urological problem. All patients were evaluated by use of a comprehensive medical history and rectal digital examination. The preoperative evaluation also included serum prostate-specific antigen (PSA measurement and ultrasonographic measurement of prostate volume. Prostate cancer was detected in one patient, who was then excluded from the study. We performed conventional cytogenetic analyses of short-term cultures of 53 peripheral blood samples obtained from the BPH patients. Results: The mean (±standard deviation age of the 53 patients was 67.8±9.4 years. The mean PSA value of the patients was 5.8±7.0 ng/mL. The mean prostate volume was 53.6±22.9 mL. Chromosomal abnormalities were noted in 5 of the 53 cases (9.4%. Loss of the Y chromosome was the most frequent chromosomal abnormality and was observed in three patients (5.7%. There was no statistically significant relationship among age, PSA, prostate volume, and chromosomal changes. Conclusions: Loss of the Y chromosome was the main chromosomal abnormality found in our study. However, this coexistence did not reach a significant level. Our study concluded that loss of the Y chromosome cannot be considered relevant for the diagnosis of BPH as it is for prostate cancer. Because BPH usually occurs in aging men, loss of the Y chromosome in BPH patients may instead be related to the aging process.

  8. Chromosome breakage in Vicia faba by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Fetner, R H

    1958-02-15

    Meristem cells of Vicia faba roots were exposed to an atmosphere of ozone and the fraction of cells showing chromosome aberrations were recorded. Chromosome aberrations were observed on a dose-response basis after exposing the seeds to 0.4 wt. percent ozone for 15, 30, and 60 minutes. The results of ozone, x-rays, and ozone and x-ray treatments are presented. A small number of root tips from each group was treated with colchicine and an analysis made of metaphase aberrations. These observations confirmed that the aberrations were all of the chromosome-type.

  9. Genetic and chromosomal effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The genetic and chromosomal effects of ionizing radiations deal with those effects in the descendants of the individuals irradiated. The information base concerning genetic and chromosomal injury to humans from radiation is less adequate than is the information base for cancer and leukemia. As a result, it is not possible to make the kinds of quantitative estimates that have been made for carcinogenesis in previous chapters of this book. The chapter includes a detailed explanation of various types of genetic injuries such as chromosomal diseases, x-linked diseases, autosomal dominant diseases, recessive diseases, and irregularly inherited diseases. Quantitative estimates of mutation rates and incidences are given based on atomic bomb survivors data

  10. Chromosome mosaicism in hypomelanosis of Ito.

    Science.gov (United States)

    Ritter, C L; Steele, M W; Wenger, S L; Cohen, B A

    1990-01-01

    Our finding of chromosome mosaicism with a ring 22 in a retarded black boy with hypomelanosis of Ito prompted a review of this "syndrome." Most patients have a variety of non-dermal defects, particularly those affecting CNS function. Among karyotyped patients, most are chromosome mosaics of one sort or another. Hypomelanosis of Ito turns out to be a causable non-specific phenotype, i.e., a clinical marker for chromosome mosaicism of all different types in individuals with a dark enough skin to show lighter patches. Consequently, cytogenetic evaluation is indicated in all patients with this skin finding.

  11. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The distances between nine loci on barley chromosome 5 have been studied in five two-point tests, three three-point tests, and one four-point test. Our previous chromosome 5 linkage map, which contained eleven loci mapped from literature data (Jensen and Jørgensen 1975), is extended with four loci......-position is fixed on the map by a locus (necl), which has a good marker gene located centrally in the linkage group. The positions of the other loci are their distances in centimorgans from the 0-position; loci in the direction of the short chromosome arm are assigned positive values and those...

  12. Antibodies against chromosomal beta-lactamase

    DEFF Research Database (Denmark)

    Giwercman, B; Rasmussen, J W; Ciofu, Oana

    1994-01-01

    A murine monoclonal anti-chromosomal beta-lactamase antibody was developed and an immunoblotting technique was used to study the presence of serum and sputum antibodies against Pseudomonas aeruginosa chromosomal group 1 beta-lactamase in patients with cystic fibrosis (CF). The serum antibody...... 1 cephalosporinase. We found a wide range of chromosomal beta-lactamase activity in the sputum samples, with no correlation with basal or induced activity of beta-lactamase expression. The presence of anti-beta-lactamase antibodies in endobronchial sputum could be an important factor in the defense...

  13. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis.

    Science.gov (United States)

    Phillips, Carolyn M; Wong, Chihunt; Bhalla, Needhi; Carlton, Peter M; Weiser, Pinky; Meneely, Philip M; Dernburg, Abby F

    2005-12-16

    The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic pairing center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8 bound chromosome sites associate with the nuclear envelope (NE) throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient.

  14. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis

    International Nuclear Information System (INIS)

    Phillips, Carolyn M.; Wong, Chihunt; Bhalla, Needhi; Carlton, Peter M.; Weiser, Pinky; Meneely, Philip M.; Dernburg, Abby F.

    2005-01-01

    The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X-chromosome-specific defects in homolog pairing and synapsis.him-8 encodes a C2H2 zinc finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as themeiotic Pairing Center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8-bound chromosome sites associate with the nuclear envelope (NE)throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient

  15. Drug-induced premature chromosome condensation (PCC) protocols: cytogenetic approaches in mitotic chromosome and interphase chromatin.

    Science.gov (United States)

    Gotoh, Eisuke

    2015-01-01

    Chromosome analysis is a fundamental technique which is used in wide areas of cytogenetic study including karyotyping species, hereditary diseases diagnosis, or chromosome biology study. Chromosomes are usually prepared from mitotic cells arrested by colcemid block protocol. However, obtaining mitotic chromosomes is often hampered under several circumstances. As a result, cytogenetic analysis will be sometimes difficult or even impossible in such cases. Premature chromosome condensation (PCC) (see Note 1) is an alternative method that has proved to be a unique and useful way in chromosome analysis. Former, PCC has been achieved following cell fusion method (cell-fusion PCC) mediated either by fusogenic viruses (e.g., Sendai virus) or cell fusion chemicals (e.g., polyethylene glycol), but the cell fusion PCC has several drawbacks. The novel drug-induced PCC using protein phosphatase inhibitors was introduced about 20 years ago. This method is much simpler and easier even than the conventional mitotic chromosome preparation protocol use with colcemid block and furthermore obtained PCC index (equivalent to mitotic index for metaphase chromosome) is usually much higher than colcemid block method. Moreover, this method allows the interphase chromatin to be condensed to visualize like mitotic chromosomes. Therefore drug-induced PCC has opened the way for chromosome analysis not only in metaphase chromosomes but also in interphase chromatin. The drug-induced PCC has thus proven the usefulness in cytogenetics and other cell biology fields. For this second edition version, updated modifications/changes are supplemented in Subheadings 2, 3, and 4, and a new section describing the application of PCC in chromosome science fields is added with citation of updated references.

  16. Why Do Sex Chromosomes Stop Recombining?

    Science.gov (United States)

    Ponnikas, Suvi; Sigeman, Hanna; Abbott, Jessica K; Hansson, Bengt

    2018-04-28

    It is commonly assumed that sex chromosomes evolve recombination suppression because selection favours linkage between sex-determining and sexually antagonistic genes. However, although the role of sexual antagonism during sex chromosome evolution has attained strong support from theory, experimental and observational evidence is rare or equivocal. Here, we highlight alternative, often neglected, hypotheses for recombination suppression on sex chromosomes, which invoke meiotic drive, heterozygote advantage, and genetic drift, respectively. We contrast the hypotheses, the situations when they are likely to be of importance, and outline why it is surprisingly difficult to test them. Lastly, we discuss future research directions (including modelling, population genomics, comparative approaches, and experiments) to disentangle the different hypotheses of sex chromosome evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Human oocyte chromosome analyses need a standardized ...

    Indian Academy of Sciences (India)

    Studies of DNA polymorphisms in human trisomic abor- tions and liveborn have ... Keywords. human oocyte chromosomes; cytogenetic analysis; aneuploidy; nondisjunction; predivision. Journal of .... oocytes and giant embryos. Hum. Reprod.

  18. Conservation of sex chromosomes in lacertid lizards

    Czech Academy of Sciences Publication Activity Database

    Rovatsos, M.; Vukič, J.; Altmanová, M.; Johnson Pokorná, Martina; Moravec, J.; Kratochvíl, L.

    2016-01-01

    Roč. 25, č. 13 (2016), s. 3120-3126 ISSN 0962-1083 Institutional support: RVO:67985904 Keywords : lizards * molecular sex ing * reptiles * sex chromosomes Subject RIV: EG - Zoology Impact factor: 6.086, year: 2016

  19. Micro-Raman spectroscopy of chromosomes

    NARCIS (Netherlands)

    de Mul, F.F.M.; van Welle, A.G.M.; Otto, Cornelis; Greve, Jan

    1984-01-01

    Raman spectra of intact chromosomes (Chinese hamster), recorded with a microspectrometer, are reported. The spectra could be assigned to protein and DNA contributions. Protein and DNA conformations and the ratio of base pairs in DNA were determined.

  20. Partial Duplication of Chromosome 8p

    African Journals Online (AJOL)

    rme

    The partial chromosome 8p duplication is a rare syndrome and is ... abnormality of maternal origin that ... second trimester by vaginal bleeding and ... echocardiography, brain CT scan and. MRI. Fig. 1:Conventional karyotype of case 3 showing.

  1. Chromosomal contact permits transcription between coregulated genes

    CSIR Research Space (South Africa)

    Fanucchi, Stephanie

    2013-10-01

    Full Text Available . To ask whether chromosomal contacts are required for cotranscription in multigene complexes, we devised a strategy using TALENs to cleave and disrupt gene loops in a well-characterized multigene complex. Monitoring this disruption using RNA FISH...

  2. Evaluation of chromosomal abnormalities and common trombophilic ...

    African Journals Online (AJOL)

    2014-03-01

    Mar 1, 2014 ... Infections, genetic, endocrine, anatomic and immunologic problems have been suggested as causes for RM. ... Metaphase chromosome preparations from the .... The rate of karyotypically abnormal abortion specimens.

  3. Histone modifications: Cycling with chromosomal replication

    DEFF Research Database (Denmark)

    Thon, Genevieve

    2008-01-01

    Histone modifications tend to be lost during chromosome duplication. Several recent studies suggest that the RNA interference pathway becomes active during the weakened transcriptional repression occurring at centromeres in S phase, resulting in the re-establishment of histone modifications...

  4. Complement activation in chromosome 13 dementias

    DEFF Research Database (Denmark)

    Rostagno, A.; Revesz, T.; Lashley, T.

    2002-01-01

    Chromosome 13 dementias, familial British dementia (FBD) and familial Danish dementia (FDD), are associated with neurodegeneration and cerebrovascular amyloidosis, with striking neuropathological similarities to Alzheimer's disease (AD). Despite the structural differences among the amyloid subunits...

  5. Non-disjunction of chromosome 13

    DEFF Research Database (Denmark)

    Bugge, Merete; Collins, Andrew; Hertz, Jens Michael

    2007-01-01

    We performed a molecular study with 21 microsatellites on a sample of 82 trisomy 13 conceptuses, the largest number of cases studied to date. The parental origin was determined in every case and in 89% the extra chromosome 13 was of maternal origin with an almost equal number of maternal MI and MII...... recombination in both maternal MI and MII errors and the former is associated with a significant number of tetrads (33%) that are nullichiasmate, which do not appear to be a feature of normal chromosome 13 meiosis. This study supports the evidence for subtle chromosome-specific influences on the mechanisms...... that determine non-disjunction of human chromosomes, consistent with the diversity of findings for other trisomies. Udgivelsesdato: 2007-Aug-15...

  6. System for the analysis of plant chromosomes

    International Nuclear Information System (INIS)

    Medina Martin, D.; Peraza Gonzalez, L.H.

    1996-01-01

    The paper describes a computer system for the automation workers of recognition analysis and interpretation of plant chromosomes. This system permit to carry out the analysis in a more comfortable and faster way, using the image processing techniques

  7. Sex chromosomes and speciation in Drosophila

    Science.gov (United States)

    Presgraves, Daven C.

    2010-01-01

    Two empirical rules suggest that sex chromosomes play a special role in speciation. The first is Haldane's rule— the preferential sterility and inviability of species hybrids of the heterogametic (XY) sex. The second is the disproportionately large effect of the X chromosome in genetic analyses of hybrid sterility. Whereas the causes of Haldane's rule are well established, the causes of the ‘large X-effect’ have remained controversial. New genetic analyses in Drosophila confirm that the X is a hotspot for hybrid male sterility factors, providing a proximate explanation for the large X-effect. Several other new findings— on faster X evolution, X chromosome meiotic drive, and the regulation of the X chromosome in the male-germline— provide plausible evolutionary explanations for the large X-effect. PMID:18514967

  8. Errata :Chromosomal Abnormalities in Couples with Recurrent ...

    African Journals Online (AJOL)

    Chromosomal Abnormalities in Couples with Recurrent Abortions in Lagos, Nigeria. Akinde OR, Daramola A O, Taiwo I A, Afolayan M O and Akinsola Af. Sonographic Mammary Gland Density Pattern in Women in Selected ommunities of Southern Nigeria.

  9. Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae)

    Science.gov (United States)

    Suárez, Pablo; Boeris, Juan M.; Blasco-Zúñiga, Ailin; Barbero, Gastón; Gomes, Anderson; Gazoni, Thiago; Costa, William; Nagamachi, Cleusa Y.; Rivera, Miryan; Parise-Maltempi, Patricia P.; Wiley, John E.; Pieczarka, Julio C.; Haddad, Celio F. B.; Faivovich, Julián; Baldo, Diego

    2018-01-01

    The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46) and H. alytolylax (FN = 38), with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p), H. palmeri (4q), and H. larinopygion (1p). Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns) for their impact on the taxonomy and karyotype evolution in Cophomantini. PMID:29444174

  10. Demasculinization of the Anopheles gambiae X chromosome

    Directory of Open Access Journals (Sweden)

    Magnusson Kalle

    2012-05-01

    Full Text Available Abstract Background In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z. Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles. Results We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline. Conclusion The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.

  11. Human Chromosome 7: DNA Sequence and Biology

    OpenAIRE

    Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E.

    2003-01-01

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate gene...

  12. Chromosomal organization and segregation in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Isabelle Vallet-Gely

    2013-05-01

    Full Text Available The study of chromosomal organization and segregation in a handful of bacteria has revealed surprising variety in the mechanisms mediating such fundamental processes. In this study, we further emphasized this diversity by revealing an original organization of the Pseudomonas aeruginosa chromosome. We analyzed the localization of 20 chromosomal markers and several components of the replication machinery in this important opportunistic γ-proteobacteria pathogen. This technique allowed us to show that the 6.3 Mb unique circular chromosome of P. aeruginosa is globally oriented from the old pole of the cell to the division plane/new pole along the oriC-dif axis. The replication machinery is positioned at mid-cell, and the chromosomal loci from oriC to dif are moved sequentially to mid-cell prior to replication. The two chromosomal copies are subsequently segregated at their final subcellular destination in the two halves of the cell. We identified two regions in which markers localize at similar positions, suggesting a bias in the distribution of chromosomal regions in the cell. The first region encompasses 1.4 Mb surrounding oriC, where loci are positioned around the 0.2/0.8 relative cell length upon segregation. The second region contains at least 800 kb surrounding dif, where loci show an extensive colocalization step following replication. We also showed that disrupting the ParABS system is very detrimental in P. aeruginosa. Possible mechanisms responsible for the coordinated chromosomal segregation process and for the presence of large distinctive regions are discussed.

  13. Female meiotic sex chromosome inactivation in chicken.

    Directory of Open Access Journals (Sweden)

    Sam Schoenmakers

    2009-05-01

    Full Text Available During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW, whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  14. Abnormal sex chromosome constitution and longitudinal growth

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Skakkebaek, Niels E; Juul, Anders

    2008-01-01

    Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles.......Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles....

  15. Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae.

    Directory of Open Access Journals (Sweden)

    Juan M Ferro

    Full Text Available The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46 and H. alytolylax (FN = 38, with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p, H. palmeri (4q, and H. larinopygion (1p. Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns for their impact on the taxonomy and karyotype evolution in Cophomantini.

  16. Interphase Chromosome Profiling: A Method for Conventional Banded Chromosome Analysis Using Interphase Nuclei.

    Science.gov (United States)

    Babu, Ramesh; Van Dyke, Daniel L; Dev, Vaithilingam G; Koduru, Prasad; Rao, Nagesh; Mitter, Navnit S; Liu, Mingya; Fuentes, Ernesto; Fuentes, Sarah; Papa, Stephen

    2018-02-01

    - Chromosome analysis on bone marrow or peripheral blood samples fails in a small proportion of attempts. A method that is more reliable, with similar or better resolution, would be a welcome addition to the armamentarium of the cytogenetics laboratory. - To develop a method similar to banded metaphase chromosome analysis that relies only on interphase nuclei. - To label multiple targets in an equidistant fashion along the entire length of each chromosome, including landmark subtelomere and centromere regions. Each label so generated by using cloned bacterial artificial chromosome probes is molecularly distinct with unique spectral characteristics, so the number and position of the labels can be tracked to identify chromosome abnormalities. - Interphase chromosome profiling (ICP) demonstrated results similar to conventional chromosome analysis and fluorescence in situ hybridization in 55 previously studied cases and obtained useful ICP chromosome analysis results on another 29 cases in which conventional methods failed. - ICP is a new and powerful method to karyotype peripheral blood and bone marrow aspirate preparations without reliance on metaphase chromosome preparations. It will be of particular value for cases with a failed conventional analysis or when a fast turnaround time is required.

  17. Paternal isodisomy of chromosome 6 in association with a maternal supernumerary marker chromosome (6)

    Energy Technology Data Exchange (ETDEWEB)

    James, R.S.; Crolla, J.A.; Sitch, F.L. [Salisbury District Hospital, Wiltshire (United Kingdom)] [and others

    1994-09-01

    Uniparental disomy may arise by a number of different mechanisms of aneuploidy correction. A population that has been identified as being at increased risk of aneuploidy are those individuals bearing supernumerary marker chromosomes (SMCs). There have been a number of cases reported of trisomy 21 in association with bi-satellited marker chromosomes have described two individuals with small inv dup (15) markers. One had paternal isodisomy of chromosome 15 and Angelman syndrome. The other had maternal heterodisomy (15) and Prader-Willi syndrome. At the Wessex Regional Genetics Laboratory we have conducted a search for uniparental disomy of the normal homologues of the chromosomes from which SMCs originated. Our study population consists of 39 probands with SMCs originating from a number of different autosomes, including 17 with SMCs of chromosome 15 origin. Using PCR amplification of microsatellite repeat sequences located distal to the regions included in the SMCs we have determined the parental origin of the two normal homologues in each case. We have identified paternal isodisomy of chromosome 6 in a female child with a supernumerary marker ring chromosome 6 in approximately 70% of peripheral blood lymphocytes. The marker was found to be of maternal origin. This is the second case of paternal isodisomy of chromosome 6 to be reported, and the first in association with a SMC resulting in a partial trisomy for a portion of the short arm of chromosome 6. In spite of this, the patient appears to be functioning appropriately for her age.

  18. Chromosomes in the genesis and progression of ependymomas

    DEFF Research Database (Denmark)

    Rogatto, S R; Casartelli, C; Rainho, C A

    1993-01-01

    chromosomes in three cases. Structural rearrangements of chromosome 2 were a finding for all cases and involved loss of material at 2q32-34. Other structural chromosome abnormalities detected involved chromosomes 4, 6, 10, 11, 12, and X. We also reviewed data on 22 cases previously reported....

  19. Chromosome abnormalities in atomic bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Tomonaga, Y [Nagasaki Univ. (Japan). School of Medicine

    1976-09-01

    Chromosome abnormalities in bone marrow cells were recognized in 6 cases which consisted of one case of chronic myelogenous leukemia, two cases of acute myelogenous leukemia, one case of sideroblastic anemia, and two cases of myelodysplasis. Frequency of stable type chromosome abnormalities in bone marrow cells was investigated in 45 atomic bomb survivors without hematologic disorders and 15 controls. It was 1.4% (15 cases) in the group exposed to atomic bomb within 1 km from the hypocenter, which was significantly higher as compared with 0.1% (15 cases) in the group exposed to atomic bomb over 2.5 km from the hypocenter and 0.2% in normal controls. Examination of chromosome was also made on 2 of 3 cases which were the seconds born of female with high chromosome abnormality, who was exposed to within 1 km from the hypocenter, and healthy male exposed 3 km from the hypocenter. These two cases showed chromosome of normal male type, and balanced translocation was not recognized. There was not a significant difference in chromosome abnormalities between the seconds of atomic bomb survivors and controls.

  20. Evolutionary stability of sex chromosomes in snakes.

    Science.gov (United States)

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-12-22

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. © 2015 The Author(s).

  1. Chromosome aberration assays in barley (Hordeum vulgare)

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, M J [Univ. of Tennessee, Knoxville; Nilan, R A

    1982-01-01

    Barley is an exceellent organism for studies of induced chromosome aberrations because of its few (2n = 2x = 14) relatively large chromosomes. Root-tip and shoot-tip cells have been used extensively for the study of ionizing radiation-induced chromosome aberrations. The general procedures are well known, the technology is simple and easy to learn, and the assays are relatively quick and inexpensive. Both root tips and shoot tips can be used for the study of chemical mutagens as well as ionizing radiations. Pollen mother cells are well suited for studying the effects of mutagens on meiotic chromosomes. The literature review for the Gene-Tox Program reported on 61 chemicals tested for their effects on barley chromosomes. Of these, 90% were reported to be either positive or positive dose-related, while 7% were negative and 3% were questionable. Barley assays based on chromosomal aberrations are useful to detect the clastogenic potency of chemicals under laboratory conditions. Indications are that the data from barley can be used to corroborate data obtained from other organisms. Among the classes of chemicals assayed were: alcohols and phenols; alkaloids; epoxides; alkyl sulfates; amides and sulfonamides; aromatic amines; aryl halides; aziridines; alkenes; carbamates; hydroazides; nitroaromatics; nitrosamides; nitrosources; phenothiazines; and polycyclic aromatic hydrocarbons.

  2. Flow cytogenetics: progress toward chromosomal aberration detection

    International Nuclear Information System (INIS)

    Carrano, A.V.; Gray, J.W.; Van Dilla, M.A.

    1977-01-01

    Using clonal derivatives of the Chinese hamster M3-1 cell line, we demonstrate the potential of flow systems to karyotype homogeneous aberrations (aberrations which are identical and present in every cell) and to detect heterogeneous aberrations (aberrations which occur randomly in a population and are not identical in every cell). Flow cytometry (FCM) of ethidium bromide stained isolated chromosomes from clone 650A of the M3-1 cells distinguishes nine chromosome types from the fourteen present in the actual karyotype. X-irradiation of this parent 650A clone produced two sub-clones with an altered flow karyotype, that is, their FCM distributions were characterized by the addition of new peaks and alterations in area under existing peaks. From the relative DNA content and area for each peak, as determined by computer analysis, we predicted that each clone had undergone a reciprocal translocation involving chromosomes from two peaks. This prediction was confirmed by Giemsa-banding the metaphase cells. Heterogeneous aberrations are reflected in the flow karyotype as an increase in background, that is, an increase in area underlying the chromosome peaks. This increase is dose dependent but, as yet, the sample variability has been too large for quantitative analysis. Flow sorting of the valleys between chromosome peaks produces enriched fractions of aberrant chromosomes for visual analysis. These approaches are potentially applicable to the analysis of chromsomal aberrations induced by environmental contaminants

  3. Chromosome abnormalities in atomic bomb survivors

    International Nuclear Information System (INIS)

    Tomonaga, Yu

    1976-01-01

    Chromosome abnormalities in bone marrow cells were recognized in 6 cases which consisted of one case of chronic myelogenous leukemia, two cases of acute myelogenous leukemia, one case of sideroblastic anemia, and two cases of myelodysplasis. Frequency of stable type chromosome abnormalities in bone marrow cells was investigated in 45 atomic bomb survivors without hematologic disorders and 15 controls. It was 1.4% (15 cases) in the group exposed to atomic bomb within 1 km from the hypocenter, which was significantly higher as compared with 0.1% (15 cases) in the group exposed to atomic bomb over 2.5 km from the hypocenter and 0.2% in normal controls. Examination of chromosome was also made on 2 of 3 cases which were the seconds born of female with high chromosome abnormality, who was exposed to within 1 km from the hypocenter, and healthy male exposed 3 km from the hypocenter. These two cases showed chromosome of normal male type, and balanced translocation was not recognized. There was not a significant difference in chromosome abnormalities between the seconds of atomic bomb survivors and controls. (Kanao, N.)

  4. Polytene chromosome map and inversion polymorphism in Drosophila mediopunctata

    Directory of Open Access Journals (Sweden)

    Galina Ananina

    2002-07-01

    Full Text Available Drosophila mediopunctata belongs to the tripunctata group, and is one of the commonest Drosophila species collected in some places in Brazil, especially in the winter. A standard map of the polytene chromosomes is presented. The breakpoints of the naturally occurring chromosomal rearrangements are marked on the map. The distribution of breaking points through the chromosomes of D. mediopunctata is apparently non-random. Chromosomes X, II and IV show inversion polymorphisms. Chromosome II is the most polymorphic, with 17 inversions, 8 inversions in the distal region and 9 in the proximal region. Chromosome X has four different gene arrangements, while chromosome IV has only two.

  5. Sequencing of individual chromosomes of plant pathogenic Fusarium oxysporum.

    Science.gov (United States)

    Kashiwa, Takeshi; Kozaki, Toshinori; Ishii, Kazuo; Turgeon, B Gillian; Teraoka, Tohru; Komatsu, Ken; Arie, Tsutomu

    2017-01-01

    A small chromosome in reference isolate 4287 of F. oxysporum f. sp. lycopersici (Fol) has been designated as a 'pathogenicity chromosome' because it carries several pathogenicity related genes such as the Secreted In Xylem (SIX) genes. Sequence assembly of small chromosomes in other isolates, based on a reference genome template, is difficult because of karyotype variation among isolates and a high number of sequences associated with transposable elements. These factors often result in misassembly of sequences, making it unclear whether other isolates possess the same pathogenicity chromosome harboring SIX genes as in the reference isolate. To overcome this difficulty, single chromosome sequencing after Contour-clamped Homogeneous Electric Field (CHEF) separation of chromosomes was performed, followed by de novo assembly of sequences. The assembled sequences of individual chromosomes were consistent with results of probing gels of CHEF separated chromosomes with SIX genes. Individual chromosome sequencing revealed that several SIX genes are located on a single small chromosome in two pathogenic forms of F. oxysporum, beyond the reference isolate 4287, and in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. The particular combination of SIX genes on each small chromosome varied. Moreover, not all SIX genes were found on small chromosomes; depending on the isolate, some were on big chromosomes. This suggests that recombination of chromosomes and/or translocation of SIX genes may occur frequently. Our method improves sequence comparison of small chromosomes among isolates. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Molecular mapping of chromosomes 17 and X

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition of new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping clones from a larger genome.

  7. Klinefelter syndrome and other sex chromosomal aneuploidies

    Directory of Open Access Journals (Sweden)

    Graham John M

    2006-10-01

    Full Text Available Abstract The term Klinefelter syndrome (KS describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH, and luteinizing hormone (LH. The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ decrease of approximately 15–16 points, with language most affected

  8. Additional chromosome abnormalities in chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Hui-Hua Hsiao

    2011-02-01

    Full Text Available The Philadelphia (Ph chromosome and/or Breakpoint cluster region-Abelson leukemia virus oncogene transcript are unique markers for chronic myeloid leukemia (CML. However, CML demonstrates heterogeneous presentations and outcomes. We analyzed the cytogenetic and molecular results of CML patients to evaluate their correlation with clinical presentations and outcome. A total of 84 newly diagnosed CML patients were enrolled in the study. Patients were treated according to disease status. Bone marrow samples were obtained to perform cytogenetic and molecular studies. Clinical presentations, treatment courses, and survival were reviewed retrospectively. Among 84 patients, 72 had chronic phase and 12 had accelerated phase CML. Cytogenetic study showed 69 (82.1% with the classic Ph chromosome, 6 (7.2% with a variant Ph chromosome, and 9 (10.7% with additional chromosome abnormalities. Fifty-four (64.3% cases harbored b3a2 transcripts, 29 (34.5% had b2a2 transcript, and 1 had e19a2 transcript. There was no difference in clinical presentations between different cytogenetic and molecular groups; however, additional chromosome abnormalities were significantly associated with the accelerated phase. Imatinib therapy was an effective treatment, as measured by cytogenetic response, when administered as first- and second-line therapy in chronic phase patients. Survival analysis showed that old age, additional chromosome abnormalities, high Sokal score, and no cytogenetic response in second-line therapy had a significant poor impact (p<0.05. In conclusion, we presented the cytogenetic and molecular pattern of CML patients and demonstrated that the additional chromosome abnormality was associated with poor outcome.

  9. Synchronous clear cell renal cell carcinoma and tubulocystic carcinoma: genetic evidence of independent ontogenesis and implications of chromosomal imbalances in tumor progression

    Directory of Open Access Journals (Sweden)

    Quiroga-Garza Gabriela

    2012-02-01

    Full Text Available Abstract Seven percent of renal cell carcinoma (RCC cases are diagnosed as "unclassified" RCC by morphology. Genetic profiling of RCCs helps define renal tumor subtypes, especially in cases where morphologic diagnosis is inconclusive. This report describes a patient with synchronous clear cell RCC (ccRCC and a tubulocystic renal carcinoma (TCRC in the same kidney, and discusses the pathologic features and genetic profile of both tumors. A 67 year-old male underwent CT scans for an unrelated medical event. Two incidental renal lesions were found and ultimately removed by radical nephrectomy. The smaller lesion had multiple small cystic spaces lined by hobnail cells with high nuclear grade separated by fibrous stroma. This morphology and the expression of proximal (CD10, AMACR and distal tubule cell (CK19 markers by immunohistochemistry supported the diagnosis of TCRC. The larger lesion was a typical ccRCC, with Fuhrman's nuclear grade 3 and confined to the kidney. Molecular characterization of both neoplasms using virtual karyotyping was performed to assess relatedness of these tumors. Low grade areas (Fuhrman grade 2 of the ccRCC showed loss of 3p and gains in chromosomes 5 and 7, whereas oncocytic areas displayed additional gain of 2p and loss of 10q; the high grade areas (Fuhrman grade 3 showed several additional imbalances. In contrast, the TCRC demonstrated a distinct profile with gains of chromosomes 8 and 17 and loss of 9. In conclusion, ccRCC and TCRC show distinct genomic copy number profiles and chromosomal imbalances in TCRC might be implicated in the pathogenesis of this tumor. Second, the presence of a ccRCC with varying degrees of differentiation exemplifies the sequence of chromosomal imbalances acquired during tumor progression. Virtual Slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1790525735655283

  10. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat--Thinopyrum intermedium.

    Science.gov (United States)

    Deng, Chuanliang; Bai, Lili; Fu, Shulan; Yin, Weibo; Zhang, Yingxin; Chen, Yuhong; Wang, Richard R-C; Zhang, Xiangqi; Han, Fangpu; Hu, Zanmin

    2013-01-01

    In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat--Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th. intermedium. Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th. intermedium, 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th. intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a J(s) genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (J(s) , J and St) in Th. intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th. bessarabicum. Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the J(s) genome, within a single chromosome, and among different genomes in Th. intermedium. Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different

  11. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat--Thinopyrum intermedium.

    Directory of Open Access Journals (Sweden)

    Chuanliang Deng

    Full Text Available In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat--Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th. intermedium. Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th. intermedium, 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th. intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome and pDbH12 (a J(s genome specific probe as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (J(s , J and St in Th. intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th. bessarabicum. Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the J(s genome, within a single chromosome, and among different genomes in Th. intermedium. Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of

  12. Chromosome and genome size variation in Luzula (Juncaceae), a genus with holocentric chromosomes

    Czech Academy of Sciences Publication Activity Database

    Bozek, M.; Leitch, A. R.; Leitch, I. J.; Záveská Drábková, Lenka; Kuta, E.

    2012-01-01

    Roč. 170, č. 4 (2012), s. 529-541 ISSN 0024-4074 R&D Projects: GA ČR GP206/07/P147 Institutional support: RVO:67985939 Keywords : chromosomal evolution * endopolyploidy * holokinetic chromosome * karyotype evolution * tetraploides * centromeres * TRNF intergenic spacer Subject RIV: EF - Botanics Impact factor: 2.589, year: 2012

  13. Chromosomal geometry in the interface from the frequency of the radiation induced chromosome aberrations

    International Nuclear Information System (INIS)

    Nasazzi, N.; Otero, D.; Di Giorgio, M.

    1996-01-01

    Ionizing radiation induces DNA double-strand breaks (DSBs) and their interaction and illegitimate recombination produces chromosomal aberrations. Stable chromosomal aberrations comprise inter-chromosomal events (translocations) and intra-chromosomal events (inversions). When DSBs induction and interaction is done at random, and the proximity effects are neglected, the expected relation between translocations and inversions is F=86, based on chromosome arm length. The number of translocations and inversions is analyzed by using G-banding in 16 lymphocytes cultures from blood samples acutely irradiated with γ-rays (dose range: 0,5 Gy - 3 Gy). The result obtained was: F=13,5, significantly smaller than F=86. Literature data show similar small F values, but strongly spread. The excess of inversions could be explained by a 'proximity effect', it means that more proximate DSBs have more interaction probability. Therefore, it is possible to postulate a special chromosome arrangement during irradiation and the subsequent interval. We propose a model where individual chromosomes show spherical confinement with some degree of overlapping and DSBs induction proportional to cross section. A DSBs interaction probability function with cut-off length= 1μ is assumed. According to our results, the confinement volume is ≅ 6.4% of the nuclear volume. Nevertheless, we presume that large spread in F data could be due to temporal variation in overlapping and spatial chromosomal confinement. (authors). 14 refs

  14. Chromosome painting in biological dosimetry: Semi-automatic system to score stable chromosome aberrations

    International Nuclear Information System (INIS)

    Garcia-Sagredo, J.M.; Vallcorba, I.; Sanchez-Hombre, M.C.; Ferro, M.T.; San Roman Cos-Gayon, C.; Santos, A.; Malpica, N.; Ortiz, C.

    1997-01-01

    From the beginning of the description of the procedure of chromosome painting by fluorescence in situ hybridization (FISH), it was thought its possible application to score induced chromosomal aberrations in radiation exposition. With chromosome painting it is possible to detect changes between chromosomes that has been validated in radiation exposition. Translocation scoring by FISH, contrarily to the unstable dicentrics, mainly detect stable chromosome aberrations that do not disappear, it allows the capability of quantify delayed acute expositions or chronic cumulative expositions. The large number of cells that have to be analyzed for high accuracy, specially when dealing with low radiation doses, makes it almost imperative to use an automatic analysis system. After validate translocation scoring by FISH in our, we have evaluated the ability and sensitivity to detect chromosomal aberrations by chromosome using different paint probes used, showing that any combination of paint probes can be used to score induced chromosomal aberrations. Our group has developed a FISH analysis that is currently being adapted for translocation scoring analysis. It includes systematic error correction and internal control probes. The performance tests carried out show that 9,000 cells can be analyzed in 10 hr. using a Sparc 4/370. Although with a faster computer, a higher throughput is expected, for large population screening or very low radiation doses, this performance still has to be improved. (author)

  15. Unique mosaicism of structural chromosomal rearrangement: is chromosome 18 preferentially involved?

    NARCIS (Netherlands)

    Pater, J.M. de; Smeets, D.F.C.M.; Scheres, J.M.J.C.

    2003-01-01

    The mentally normal mother of a 4-year-old boy with del(18)(q21.3) syndrome was tested cytogenetically to study the possibility of an inherited structural rearrangement of chromosome 18. She was found to carry an unusual mosaicism involving chromosomes 18 and 21. Two unbalanced cell lines were seen

  16. Painting of fourth and chromosome-wide regulation of the 4th chromosome in Drosophila melanogaster.

    Science.gov (United States)

    Johansson, Anna-Mia; Stenberg, Per; Bernhardsson, Carolina; Larsson, Jan

    2007-05-02

    Drosophila melanogaster exhibits two expression-regulating systems that target whole, specific chromosomes: the dosage compensation system whereby the male-specific lethal complex doubles transcription of genes on the male X-chromosome and the chromosome 4-specific protein Painting of fourth, POF. POF is the first example of an autosome-specific protein and its presence raises the question of the universality of chromosome-specific regulation. Here we show that POF and heterochromatin protein 1 (HP1) are involved in the global regulation of the 4th chromosome. Contrary to previous conclusions, Pof is not essential for survival of diplo-4th karyotype flies. However, Pof is essential for survival of haplo-4th individuals and expression of chromosome 4 genes in diplo-4th individuals is decreased in the absence of Pof. Mapping of POF using chromatin immunoprecipitation suggested that it binds within genes. Furthermore, we show that POF binding is dependent on heterochromatin and that POF and HP1 bind interdependently to the 4th chromosome. We propose a balancing mechanism involving POF and HP1 that provides a feedback system for fine-tuning expression status of genes on the 4th chromosome.

  17. Analysis of the Ceratitis capitata y chromosome using in situ hybridization to mitotic chromosomes

    International Nuclear Information System (INIS)

    Willhoeft, U.; Franz, G.

    1998-01-01

    In Ceratitis capitata the Y chromosome is responsible for sex-determination. We used fluorescence in situ hybridization (FISH) for cytogenetic analysis of mitotic chromosomes. FISH with the wild-type strain EgyptII and two repetitive DNA probes enabled us to differentiate between the short and the long arm of the Y chromosome and gives a much better resolution than C-banding of mitotic chromosomes. We identified the Y-chromosomal breakpoints in Y-autosome translocations using FISH. Even more complex rearrangements i.e. deletions and insertions in some translocation strains were detected by this method. A strategy for mapping the primary sex determination factor in Ceratitis capitata by FISH is presented. (author)

  18. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G

    1992-01-01

    We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another......). The phenotype of patients correlated well with the extent of deletion or duplication of chromosome 21 sequences. These data demonstrate three mechanisms of r(21) formation and show that the phenotype of r(21) patients varies with the extent of chromosome 21 monosomy or trisomy....

  19. Noninvolvement of the X chromosome in radiation-induced chromosome translocations in the human lymphoblastoid cell line TK6

    International Nuclear Information System (INIS)

    Jordan, R.; Schwartz, J.L.

    1994-01-01

    Fluorescence in situ hybridization procedures were used to examine the influence of chromosome locus on the frequency and type of chromosome aberrations induced by 60 Co γ rays in the human lymphoblastoid cell line TK6. Aberrations involving the X chromosome were compared to those involving the similarly sized autosome chromosome 7. When corrected for DNA content, acentric fragments were induced with equal frequency in the X and 7 chromosomes. Dose-dependent increases in chromosomal interchanges involving chromosome 7 were noted, and the frequencies of balanced translocations and dicentrics produced were approximately equal. Chromosome interchanges involving the X chromosome were rare and showed no apparent dose dependence. Thus, while chromosomes 7 and X are equally sensitive to the induction of chromosome breaks, the X chromosome is much less likely to interact with autosomes than chromosome 7. The noninvolvement of the X chromosome in translocations with autosomes may reflect a more peripheral and separate location for the X chromosome in the mammalian nucleus. 20 refs., 2 figs., 1 tab

  20. Chromosomal abnormality in patients with secondary amenorrhea.

    Science.gov (United States)

    Safai, Akbar; Vasei, Mohammad; Attaranzadeh, Armin; Azad, Fariborz; Tabibi, Narjes

    2012-04-01

    Secondary amenorrhea is a condition in which there is cessation of menses after at least one menstruation. It is a symptom of different diseases, such as hormonal disturbances which range from pituitary to ovarian origin, as well as chromosomal abnormalities. Knowledge of the distinct cause of secondary amenorrhea is of tremendous benefit for the management and monitoring of patients. In this study, we determine the chromosomal abnormalities in patients with secondary amenorrhea in Southwest Iran. We selected 94 patients with secondary amenorrhea who referred to our Cytogenetic Ward from 2004 until 2009. For karyotyping, peripheral blood lymphocyte cultures were set up by conventional technique. In this study, 5.3% (n=5) of patients with secondary amenorrhea presented with chromosomal abnormalities, of which all contained an X element. The chromosomal abnormalities were: i) 45, X (n=1); ii) 47, XXX (n=1); iii) 45, X [13]/ 45, Xi(X)q[17] (n=1);  iv) 45, X[12]/46,X,+mar[12] (n=1); and v) 46,X,del(Xq)(q23q28) (n=1). Our study revealed that some causes of secondary amenorrhea could be due to chromosomal abnormalities. Therefore, cytogenetic studies should be important tests in the evaluation of patients with secondary amenorrhea.

  1. Chromosome-specific DNA Repeat Probes

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  2. Genomic regulatory landscapes and chromosomal rearrangements

    DEFF Research Database (Denmark)

    Ladegaard, Elisabete L Engenheiro

    2008-01-01

    The main objectives of the PhD study are to identify and characterise chromosomal rearrangements within evolutionarily conserved regulatory landscapes around genes involved in the regulation of transcription and/or development (trans-dev genes). A frequent feature of trans-dev genes is that they ......The main objectives of the PhD study are to identify and characterise chromosomal rearrangements within evolutionarily conserved regulatory landscapes around genes involved in the regulation of transcription and/or development (trans-dev genes). A frequent feature of trans-dev genes...... the complex spatio-temporal expression of the associated trans-dev gene. Rare chromosomal breakpoints that disrupt the integrity of these regulatory landscapes may be used as a tool, not only to make genotype-phenotype associations, but also to link the associated phenotype with the position and tissue...... specificity of the individual CNEs. In this PhD study I have studied several chromosomal rearrangements with breakpoints in the vicinity of trans-dev genes. This included chromosomal rearrangements compatible with known phenotype-genotype associations (Rieger syndrome-PITX2, Mowat-Wilson syndrome-ZEB2...

  3. Y chromosome STR typing in crime casework.

    Science.gov (United States)

    Roewer, Lutz

    2009-01-01

    Since the beginning of the nineties the field of forensic Y chromosome analysis has been successfully developed to become commonplace in laboratories working in crime casework all over the world. The ability to identify male-specific DNA renders highly variable Y-chromosomal polymorphisms, the STR sequences, an invaluable addition to the standard panel of autosomal loci used in forensic genetics. The male-specificity makes the Y chromosome especially useful in cases of male/female cell admixture, namely in sexual assault cases. On the other hand, the haploidy and patrilineal inheritance complicates the interpretation of a Y-STR match, because male relatives share for several generations an identical Y-STR profile. Since paternal relatives tend to live in the geographic and cultural territory of their ancestors, the Y chromosome analysis has a potential to make inferences on the population of origin of a given DNA profile. This review addresses the fields of application of Y chromosome haplotyping, the interpretation of results, databasing efforts and population genetics aspects.

  4. Mapping replication origins in yeast chromosomes.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1991-07-01

    The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.

  5. Chromosomal aberrations induced by alpha particles

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2005-01-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  6. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  7. Chromosomal abnormalities in a psychiatric population

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W. [Univ. of Pittsburgh Medical Center, PA (United States)

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  8. Progressive segregation of the Escherichia coli chromosome

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2006-01-01

    We have followed the fate of 14 different loci around the Escherichia coli chromosome in living cells at slow growth rate using a highly efficient labelling system and automated measurements. Loci are segregated as they are replicated, but with a marked delay. Most markers segregate in a smooth...... temporal progression from origin to terminus. Thus, the overall pattern is one of continuous segregation during replication and is not consistent with recently published models invoking extensive sister chromosome cohesion followed by simultaneous segregation of the bulk of the chromosome. The terminus......, and a region immediately clockwise from the origin, are exceptions to the overall pattern and are subjected to a more extensive delay prior to segregation. The origin region and nearby loci are replicated and segregated from the cell centre, later markers from the various positions where they lie...

  9. Non-disjunction of chromosome 18

    DEFF Research Database (Denmark)

    Bugge, M; Collins, A; Petersen, M B

    1998-01-01

    A sample of 100 trisomy 18 conceptuses analysed separately and together with a published sample of 61 conceptuses confirms that an error in maternal meiosis II (MII) is the most frequent cause of non-disjunction for chromosome 18. This is unlike all other human trisomies that have been studied......, which show a higher frequency in maternal meiosis I (MI). Maternal MI trisomy 18 shows a low frequency of recombination in proximal p and medial q, but not the reduction in proximal q observed in chromosome 21 MI non-disjunction. Maternal MII non-disjunction does not fit the entanglement model...... that predicts increased recombination, especially near the centromere. Whereas recent data on MII trisomy 21 show the predicted increase in recombination proximally, maternal MII trisomy 18 has non-significantly reduced recombination. Therefore, chromosome-specific factors must complicate the simple model...

  10. Radiation hybrid mapping of human chromosome 18

    International Nuclear Information System (INIS)

    Francke, U.; Moon, A.J.; Chang, E.; Foellmer, B.; Strauss, B.; Haschke, A.; Chihlin Hsieh; Geigl, E.M.; Welch, S.

    1990-01-01

    The authors have generated a Chinese hamster V79/380-6 HPRT minus x human leukocyte hybrid cell line (18/V79) with chromosome 18 as the only human chromosome that is retained at high frequency without specific selection. Hybrid cells were selected in HAT medium, and 164 individual colonies were isolated. Of 110 colonies screened for human DNA by PCR amplification using a primer specific for human Alu repeats 67 (61%) were positive. These were expanded in culture for large-scale DNA preparations. Retesting expanded clones by PCR with Alu and LINE primers has revealed unique patterns of amplification products. In situ hybridization of biotin labelled total human DNA to metaphase spreads from various hybrids revealed the presence of one or more human DNA fragments integrated in hamster chromosomes. The authors have generated a resource that should allow the construction of a radiation map, to be compared with the YAC contig map also under construction in their laboratory

  11. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  12. An approach to automated chromosome analysis

    International Nuclear Information System (INIS)

    Le Go, Roland

    1972-01-01

    The methods of approach developed with a view to automatic processing of the different stages of chromosome analysis are described in this study divided into three parts. Part 1 relates the study of automated selection of metaphase spreads, which operates a decision process in order to reject ail the non-pertinent images and keep the good ones. This approach has been achieved by Computing a simulation program that has allowed to establish the proper selection algorithms in order to design a kit of electronic logical units. Part 2 deals with the automatic processing of the morphological study of the chromosome complements in a metaphase: the metaphase photographs are processed by an optical-to-digital converter which extracts the image information and writes it out as a digital data set on a magnetic tape. For one metaphase image this data set includes some 200 000 grey values, encoded according to a 16, 32 or 64 grey-level scale, and is processed by a pattern recognition program isolating the chromosomes and investigating their characteristic features (arm tips, centromere areas), in order to get measurements equivalent to the lengths of the four arms. Part 3 studies a program of automated karyotyping by optimized pairing of human chromosomes. The data are derived from direct digitizing of the arm lengths by means of a BENSON digital reader. The program supplies' 1/ a list of the pairs, 2/ a graphic representation of the pairs so constituted according to their respective lengths and centromeric indexes, and 3/ another BENSON graphic drawing according to the author's own representation of the chromosomes, i.e. crosses with orthogonal arms, each branch being the accurate measurement of the corresponding chromosome arm. This conventionalized karyotype indicates on the last line the really abnormal or non-standard images unpaired by the program, which are of special interest for the biologist. (author) [fr

  13. Origin and domestication of papaya Yh chromosome

    Science.gov (United States)

    VanBuren, Robert; Zeng, Fanchang; Chen, Cuixia; Zhang, Jisen; Wai, Ching Man; Han, Jennifer; Aryal, Rishi; Gschwend, Andrea R.; Wang, Jianping; Na, Jong-Kuk; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Gou, Jiqing; Arro, Jie; Guyot, Romain; Moore, Richard C.; Wang, Ming-Li; Zee, Francis; Charlesworth, Deborah; Moore, Paul H.; Yu, Qingyi; Ming, Ray

    2015-01-01

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previously. We now report the sequence of the entire male-specific region of the Y (MSY). We used a BAC-by-BAC approach to sequence the MSY and resequence the Y regions of 24 wild males and the Yh regions of 12 cultivated hermaphrodites. The MSY and HSY regions have highly similar gene content and structure, and only 0.4% sequence divergence. The MSY sequences from wild males include three distinct haplotypes, associated with the populations’ geographic locations, but gene flow is detected for other genomic regions. The Yh sequence is highly similar to one Y haplotype (MSY3) found only in wild dioecious populations from the north Pacific region of Costa Rica. The low MSY3-Yh divergence supports the hypothesis that hermaphrodite papaya is a product of human domestication. We estimate that Yh arose only ∼4000 yr ago, well after crop plant domestication in Mesoamerica >6200 yr ago but coinciding with the rise of the Maya civilization. The Yh chromosome has lower nucleotide diversity than the Y, or the genome regions that are not fully sex-linked, consistent with a domestication bottleneck. The identification of the ancestral MSY3 haplotype will expedite investigation of the mutation leading to the domestication of the hermaphrodite Yh chromosome. In turn, this mutation should identify the gene that was affected by the carpel-suppressing mutation that was involved in the evolution of males. PMID:25762551

  14. Delayed chromosomal instability caused by large deletion

    International Nuclear Information System (INIS)

    Ojima, M.; Suzuki, K.; Kodama, S.; Watanabe, M.

    2003-01-01

    Full text: There is accumulating evidence that genomic instability, manifested by the expression of delayed phenotypes, is induced by X-irradiation but not by ultraviolet (UV) light. It is well known that ionizing radiation, such as X-rays, induces DNA double strand breaks, but UV-light mainly causes base damage like pyrimidine dimers and (6-4) photoproducts. Although the mechanism of radiation-induced genomic instability has not been thoroughly explained, it is suggested that DNA double strand breaks contribute the induction of genomic instability. We examined here whether X-ray induced gene deletion at the hprt locus induces delayed instability in chromosome X. SV40-immortalized normal human fibroblasts, GM638, were irradiated with X-rays (3, 6 Gy), and the hprt mutants were isolated in the presence of 6-thioguanine (6-TG). A 2-fold and a 60-fold increase in mutation frequency were found by 3 Gy and 6 Gy irradiation, respectively. The molecular structure of the hprt mutations was determined by multiplex polymerase chain reaction of nine exons. Approximately 60% of 3 Gy mutants lost a part or the entire hprt gene, and the other mutants showed point mutations like spontaneous mutants. All 6 Gy mutants show total gene deletion. The chromosomes of the hprt mutants were analyzed by Whole Human Chromosome X Paint FISH or Xq telomere FISH. None of the point or partial gene deletion mutants showed aberrations of X-chromosome, however total gene deletion mutants induced translocations and dicentrics involving chromosome X. These results suggest that large deletion caused by DNA double strand breaks destabilizes chromosome structure, which may be involved in an induction of radiation-induced genomic instability

  15. Chromosomes of Protists: The crucible of evolution.

    Science.gov (United States)

    Soyer-Gobillard, Marie-Odile; Dolan, Michael F

    2015-12-01

    As early as 1925, the great protozoologist Edouard Chatton classified microorganisms into two categories, the prokaryotic and the eukaryotic microbes, based on light microscopical observation of their nuclear organization. Now, by means of transmission electron microscopy, we know that prokaryotic microbes are characterized by the absence of nuclear envelope surrounding the bacterial chromosome, which is more or less condensed and whose chromatin is deprived of histone proteins but presents specific basic proteins. Eukaryotic microbes, the protists, have nuclei surrounded by a nuclear envelope and have chromosomes more or less condensed, with chromatin-containing histone proteins organized into nucleosomes. The extraordinary diversity of mitotic systems presented by the 36 phyla of protists (according to Margulis et al., Handbook of Protoctista, 1990) is in contrast to the relative homogeneity of their chromosome structure and chromatin components. Dinoflagellates are the exception to this pattern. The phylum is composed of around 2000 species, and characterized by unique features including their nucleus (dinokaryon), dinomitosis, chromosome organization and chromatin composition. Although their DNA synthesis is typically eukaryotic, dinoflagellates are the only eukaryotes in which the chromatin, organized into quasi-permanently condensed chromosomes, is in some species devoid of histones and nucleosomes. In these cases, their chromatin contains specific DNA-binding basic proteins. The permanent compaction of their chromosomes throughout the cell cycle raises the question of the modalities of their division and their transcription. Successful in vitro reconstitution of nucleosomes using dinoflagellate DNA and heterologous corn histones raises questions about dinoflagellate evolution and phylogeny. [Int Microbiol 18(4):209-216 (2015)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  16. Chromosomal radiosensitivity of prostate cancer patients

    International Nuclear Information System (INIS)

    McRobbie, M.L.; Riches, A.; Baxby, K.

    2003-01-01

    Full text: Radiosensitivity of peripheral blood lymphocytes from prostate cancer patients is being investigated using the G2 assay and the Cytokinesis Block Micronucleus(CBMN)assay. The G2 assay evaluates chromosomal damage caused by irradiating cells in the G2 phase of the cell cycle. The CBMN assay quantifies the post mitotic micronuclei, which are the expression of damage incurred during G0. An association between hypersensitivity to the chromosome damaging effects of ionising radiation and cancer predispostion has been demonstrated in a number of heritable conditions by using the aforementioned techniques. Recently, increased chromosomal radiosensitivity has been demonstrated in a significant proportion of patients with no obvious family history of malignancy. The aim of this study is to establish whether a group of prostatic carcinoma patients exists and if so whether there are any correlations between their G2 and G0 sensitivities. The study has shown there is no correlation between G2 and G0 sensitivity, confirming the general trend that individuals exhibiting chromosomal radiosensitivity are defective in only one mechanism and G2 and G0 sensitivity are largely independent. Current data indicates that there is an identifiable group of men within the prostate cancer population with increased chromosomal radiosensitivity. Using the G2 assay and the 90th percentile of the controls as a cut off point for sensitivity, no significant difference between the controls and the patient population has been found. However, using the CBMN assay and again the 90th percentile, approximately 11% of the control group are sensitive compared with approximately 40% of the carcinoma cases. The implications of this increased radiosensitivity are as yet unclear, but it is indicative of increased chromosomal fragility and therefore, possibly associated with malignant transformation. Hence, it may prove a useful tool in identifying individuals at increased risk of developing

  17. From equator to pole: splitting chromosomes in mitosis and meiosis

    Science.gov (United States)

    Duro, Eris

    2015-01-01

    During eukaryotic cell division, chromosomes must be precisely partitioned to daughter cells. This relies on a mechanism to move chromosomes in defined directions within the parental cell. While sister chromatids are segregated from one another in mitosis and meiosis II, specific adaptations enable the segregation of homologous chromosomes during meiosis I to reduce ploidy for gamete production. Many of the factors that drive these directed chromosome movements are known, and their molecular mechanism has started to be uncovered. Here we review the mechanisms of eukaryotic chromosome segregation, with a particular emphasis on the modifications that ensure the segregation of homologous chromosomes during meiosis I. PMID:25593304

  18. Chromosome aberration analysis for biological dosimetry: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  19. Computational simulation of chromosome breaks in human liver

    International Nuclear Information System (INIS)

    Yang Jianshe; Li Wenjian; Jin Xiaodong

    2006-01-01

    An easy method was established for computing chromosome breaks in cells exposed to heavily charged particles. The cell chromosome break value by 12 C +6 ions was theoretically calculated, and was tested with experimental data of chromosome breaks by using a premature chromosome condensation technique. The theoretical chromosome break value agreed well with the experimental data. The higher relative biological effectiveness of the heavy ions was closely correlated to its physical characteristics. In addition, the chromosome break value can be predicted off line. (authors)

  20. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Lo Fang-Yi

    2012-06-01

    Full Text Available Abstract Background Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods Array-comparative genomic hybridization (array-CGH was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR, chromogenic in situ hybridization (CISH, reverse transcriptase-qPCR (RT-qPCR, and immunohistochemistry (IHC in more patients. Results We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1 functioning in Rho activity control, FRAT2 (10q24.1 involved in Wnt signaling, PAFAH1B1 (17p13.3 functioning in motility control, and ZNF322A (6p22.1 involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (PP=0.06. In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of

  1. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    International Nuclear Information System (INIS)

    Lo, Fang-Yi; Nandi, Suvobroto; Salgia, Ravi; Wang, Yi-Ching; Chang, Jer-Wei; Chang, I-Shou; Chen, Yann-Jang; Hsu, Han-Shui; Huang, Shiu-Feng Kathy; Tsai, Fang-Yu; Jiang, Shih Sheng; Kanteti, Rajani

    2012-01-01

    Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Array-comparative genomic hybridization (array-CGH) was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR), chromogenic in situ hybridization (CISH), reverse transcriptase-qPCR (RT-qPCR), and immunohistochemistry (IHC) in more patients. We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1) functioning in Rho activity control, FRAT2 (10q24.1) involved in Wnt signaling, PAFAH1B1 (17p13.3) functioning in motility control, and ZNF322A (6p22.1) involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (P<0.001~P=0.06). In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of PAFAH1B1 protein overexpression was 68

  2. Chromosomal DNA replication of Vicia faba cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1976-01-01

    The chromosomal DNA replication of higher plant cells has been investigated by DNA fiber autoradiography. The nuclear DNA fibers of Vicia root meristematic cells are organized into many tandem arrays of replication units or replicons which exist as clusters with respect to replication. DNA is replicated bidirectionally from the initiation points at the average rate of 0.15 μm/min at 20 0 C, and the average interinitiation interval is about 16 μm. The manner of chromosomal DNA replication in this higher plant is similar to that found in other eukaryotic cells at a subchromosomal level. (auth.)

  3. Chromosomal phylogeny of Lagothrix, Brachyteles, and Cacajao.

    Science.gov (United States)

    Viegas Péquignot, E; Koiffmann, C P; Dutrillaux, B

    1985-01-01

    Based on a comparison of the karyotypes of two Plathyrrhini species, Cacajao melanocephalus (Pitheciinae) and Brachyteles arachnoides (Atelinae), with those of two previously studied species, Lagothrix lagothrica (Atelinae) and C calvus rubicundus (Pitheciinae), it appears that the two Cacajao species have undergone the same number of chromosome rearrangements since they diverged from their common ancestor and that the karyotype of Brachyteles is ancestral to that of Lagothrix. The chromosomal phylogeny of these four species is proposed. A Y-autosome translocation is present in the karyotypes of the two Cacajao species.

  4. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  5. Gonadal sex chromosome complement in individuals with sex chromosomal and/or gonadal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, J.A.; Sanger, W.G.; Seemayer, T. [Univ. of Nebraska Medical Center, Omaha, NE (United States)] [and others

    1994-09-01

    Gonadal abnormalities are characteristically seen in patients with sex chromosomal aneuploidy. Morphologically these abnormalities can be variable and are hypothesized to be dependent on the sex chromosomal consititution of the gonad (independent of the chromosomal complement of other tissues, such as peripheral blood lymphocytes). In this study, the gonadal sex chromosome complement was evaluated for potential mosaicism and correlated with the histopathology from 5 patients with known sex chromosomal and/or gonadal disorders. FISH techniques using X and Y chromosome specific probes were performed on nuclei extracted from paraffin embedded tissue. Gonadal tissue obtained from case 1 (a true hemaphroditic newborn) consisted of ovotestes and epididymis (left side) and ovary with fallopian tube (right side). Cytogenetic and FISH studies performed on blood, ovotestes and ovary revealed an XX complement. Cytogenetic analysis of blood from case 2, a 4-year-old with suspected Turner syndrome revealed 45,X/46,X,del(Y)(q11.21). FISH analysis of the resected gonads (histologically = immature testes) confirmed an X/XY mosaic complement. Histologically, the gonadal tissue was testicular. Severe autolysis prohibited successful analysis in the 2 remaining cases. In summary, molecular cytogenetic evaluation of gonadal tissue from individuals with sex chromosomal and/or gonadal disorders did not reveal tissue-specific anomalies which could account for differences observed pathologically.

  6. The distribution of chromosome aberrations among chromosomes of karyotype in exposed human lymphocyte

    International Nuclear Information System (INIS)

    Que Tran; Tien Hoang Hung

    1997-01-01

    Induced chromosome aberrations (ch. ab.) in exposed Human peripheral blood lymphocyte have been used to assay radio.bio.doses, because of their characters such as: the maintaining Go phase in cell cycle in body, the distribution of cell in blood system and the distribution of ch. ab. in exposed cells of body and among chromosomes of karyotype. The frequency of ch. ab. reflected the quantity of radiation dose, dose rate and radiation energy. The dependence between radiation dose and frequency of ch. ab. was illustrated by the mathematic equations. The distribution of induced ch. ab. among the cells exposed to uniform radiation fields was Poisson's, but the distribution of ch. ab. among chromosomes in karyotype depended on radiation field and mononucleotid sequence of DNA molecular of each chromosome. The minimum influence of mononucleotid sequence of DNA molecular in inform ch. ab. will be advantageous state for dose-assessments. The location of induced ch. ab. in exposed Human lymphocyte had been determined by karyotype analyses. The data of statistic analyse had improved that the number of ch. ab. depended on the size of chromosomes in karyotype. The equal distribution of ch. ab.among chromosomes in karyotype provided the objectiveness and the accuracy of using the chromosomal aberrant analysis technique on bio-dosimetry. (author)

  7. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes

    Science.gov (United States)

    Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.

    2011-01-01

    Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624

  8. Neocentromeres Provide Chromosome Segregation Accuracy and Centromere Clustering to Multiple Loci along a Candida albicans Chromosome.

    Directory of Open Access Journals (Sweden)

    Laura S Burrack

    2016-09-01

    Full Text Available Assembly of kinetochore complexes, involving greater than one hundred proteins, is essential for chromosome segregation and genome stability. Neocentromeres, or new centromeres, occur when kinetochores assemble de novo, at DNA loci not previously associated with kinetochore proteins, and they restore chromosome segregation to chromosomes lacking a functional centromere. Neocentromeres have been observed in a number of diseases and may play an evolutionary role in adaptation or speciation. However, the consequences of neocentromere formation on chromosome missegregation rates, gene expression, and three-dimensional (3D nuclear structure are not well understood. Here, we used Candida albicans, an organism with small, epigenetically-inherited centromeres, as a model system to study the functions of twenty different neocentromere loci along a single chromosome, chromosome 5. Comparison of neocentromere properties relative to native centromere functions revealed that all twenty neocentromeres mediated chromosome segregation, albeit to different degrees. Some neocentromeres also caused reduced levels of transcription from genes found within the neocentromere region. Furthermore, like native centromeres, neocentromeres clustered in 3D with active/functional centromeres, indicating that formation of a new centromere mediates the reorganization of 3D nuclear architecture. This demonstrates that centromere clustering depends on epigenetically defined function and not on the primary DNA sequence, and that neocentromere function is independent of its distance from the native centromere position. Together, the results show that a neocentromere can form at many loci along a chromosome and can support the assembly of a functional kinetochore that exhibits native centromere functions including chromosome segregation accuracy and centromere clustering within the nucleus.

  9. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Pampalona, J.; Soler, D.; Genesca, A. [Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra E-08193 (Spain); Tusell, L., E-mail: laura.tusell@uab.es [Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra E-08193 (Spain)

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16{sup INK4a} protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and

  10. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies

    International Nuclear Information System (INIS)

    Pampalona, J.; Soler, D.; Genesca, A.; Tusell, L.

    2010-01-01

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16 INK4a protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  11. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    Science.gov (United States)

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  12. Chromosomal instability drives metastasis through a cytosolic DNA response.

    Science.gov (United States)

    Bakhoum, Samuel F; Ngo, Bryan; Laughney, Ashley M; Cavallo, Julie-Ann; Murphy, Charles J; Ly, Peter; Shah, Pragya; Sriram, Roshan K; Watkins, Thomas B K; Taunk, Neil K; Duran, Mercedes; Pauli, Chantal; Shaw, Christine; Chadalavada, Kalyani; Rajasekhar, Vinagolu K; Genovese, Giulio; Venkatesan, Subramanian; Birkbak, Nicolai J; McGranahan, Nicholas; Lundquist, Mark; LaPlant, Quincey; Healey, John H; Elemento, Olivier; Chung, Christine H; Lee, Nancy Y; Imielenski, Marcin; Nanjangud, Gouri; Pe'er, Dana; Cleveland, Don W; Powell, Simon N; Lammerding, Jan; Swanton, Charles; Cantley, Lewis C

    2018-01-25

    Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs.

  13. Aneuploids of wheat and chromosomal localization of genes ...

    African Journals Online (AJOL)

    Aneuploids of wheat and chromosomal localization of genes. ... African Journal of Biotechnology ... cytogenetic methods for the chromosomal localization of major genes in wheat including Chinese spring (CS) monosomics (Triticum aestivum, ...

  14. Divergent actions of long noncoding RNAs on X-chromosome ...

    Indian Academy of Sciences (India)

    2015-10-20

    Oct 20, 2015 ... Organisms with heterochromatic sex chromosomes need to compensate for differences in dosages of ... could also get genetically inactive and late replicating when ... tial to achieve the chromosomal level modifications were.

  15. Human oocyte chromosome analysis: complicated cases and major ...

    Indian Academy of Sciences (India)

    Human oocyte chromosome analysis: complicated cases and major ... dardized even after more than 20 years of research, making it difficult to draw .... (c) Part of a metaphase with a chromosome break in the centromeric region (arrows).

  16. Understanding Chromosome Disorders and their Implications for Special Educators

    Directory of Open Access Journals (Sweden)

    Linda Gilmore

    2014-03-01

    Full Text Available More children are now being diagnosed with chromosome abnormalities. Some chromosome disorder syndromes are relatively well known; while others are so rare that there is only limited evidence about their likely impact on learning and development. For educators, a basic level of knowledge about chromosome abnormalities is important for understanding the literature and communicating with families and professionals. This paper describes chromosomes, and the numerical and structural anomalies that can occur, usually spontaneously during early cell division. Distinctive features of various chromosome syndromes are summarised before a discussion of the rare chromosome disorders that are labelled, not with a syndrome name, but simply by a description of the chromosome number, size and shape. Because of the potential within-group variability that characterises syndromes, and the scarcity of literature about the rare chromosome disorders, expectations for learning and development of individual students need to be based on the range of possible outcomes that may be achievable.

  17. Flow cytometry measurements of human chromosome kinetochore labeling

    International Nuclear Information System (INIS)

    Fantes, J.A.; Green, D.K.; Malloy, P.; Sumner, A.T.

    1989-01-01

    A method for the preparation and measurement of immunofluorescent human chromosome centromeres in suspension is described using CREST antibodies, which bind to the centromeric region of chromosomes. Fluorescein isothiocyanate (FITC)-conjugated antihuman antibodies provide the fluorescent label. Labeled chromosomes are examined on microscope slides and by flow cytometry. In both cases a dye which binds to DNA is added to provide identification of the chromosome groups. Sera from different CREST patients vary in their ability to bind to chromosome arms in addition to the centromeric region. Flow cytometry and microfluorimetry measurements have shown that with a given CREST serum the differences in kinetochore fluorescence between chromosomes are only minor. Flow cytometry experiments to relate the number of dicentric chromosomes, induced by in vitro radiation of peripheral blood cells to the slightly increased number of chromosomes with above-average kinetochore fluorescence did not produce decisive radiation dosimetry results

  18. Sex Chromosome Translocations in the Evolution of Reproductive Isolation

    Science.gov (United States)

    Tracey, Martin L.

    1972-01-01

    Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane's rule on the basis of chromosomal imbalance have been estimated in small populations of Drosophila melanogaster. The fixation probability of an X chromosome carrying the long arm of the Y(X·YL) is approximately 30% greater than expected under the assumption of no selection. No fitness differences associated with the attached YL segment were detected. The fixation probability of a deficient Y chromosome is 300% greater than expected when the X chromosome contains the deleted portion of the Y. It is suggested that sex-chromosome translocations may play a role in the establishment of reproductive isolation. PMID:4630586

  19. The value of chromosomal analysis in oligozoospermic men

    NARCIS (Netherlands)

    Stegen, Çarcia; van Rumste, Minouche M. E.; Mol, Ben Willem J.; Koks, Carolien A. M.

    2012-01-01

    Objective: To determine the prevalence of chromosomal abnormalities in relation to sperm concentration in subfertile oligozoospermic men. Design: Retrospective cohort study. Setting: Two teaching hospitals. Patient(s): We retrospectively studied all men who received chromosomal analysis prior to

  20. Bands and chromosome arrangement in interphase nuclei

    International Nuclear Information System (INIS)

    Bianchi, N.O.; Bianchi, M.A.; Matayoshi, T.

    1977-01-01

    Chromosomes from the vole mouse Akodon dolores and from laboratory mouse showed the presence of G-bands after 3 minutes digestion with trypsin and Giemsa stain. Simultaneously, 30- to 40% of the interphase nuclei exhibited a dark ring parallel to the nuclear contour and a radial array of the chromatin in the internal and external regions of the ring. The origin and meaning of this ring image was analyzed by combining progressive trypsinizations with other methods such as C-banding procedures, autoradiography with 3 HTdR, staining with quinacrine mustard and 33258 Hoechst fluorochromes. Moreover, the presence of the dark ring was also investigated in cells treated with actinomycin and in control cells not subjected to any treatment. The results obtained allowed to assume that in interphase nuclei the chromosomes have chromatin bridges which connect the dark G-bands and that these bridges are probably involved in maintaining an ordered architecture of the nucleus with fixed chromosome positions in regard to the nuclear envelope and in regard to other chromosomes. Trypsinization produces a disruption of the interphase chromatin arrangement and the subsequent appearance of a dark ring formed by the combination of constitutive heterochromatin and dark G-bands. (auth.)

  1. The genomics of plant sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Vyskot, Boris; Hobza, Roman

    2015-01-01

    Roč. 236, JUL 2015 (2015), s. 126-135 ISSN 0168-9452 R&D Projects: GA ČR(CZ) GBP501/12/G090; GA ČR(CZ) GAP501/12/2220 Institutional support: RVO:68081707 Keywords : Y-CHROMOSOME * SILENE-LATIFOLIA * DIOECIOUS PLANT Subject RIV: BO - Biophysics Impact factor: 3.362, year: 2015

  2. Study of radiation-induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Wolfring, E.

    2004-06-01

    A method for determining chromosomal aberrations was established for the purpose of examining the relative biological effectiveness (RBE) of photon radiation with respect to mammary epithelium cells. Cells were exposed to 25 kV X-radiation and to 200 kV X-radiation for comparison and the resulting concentrations of chromosomal aberrations were compared. The RBE M value for radiation-induced fragmentation was found to be 4.2 ± 2.4, while the RBE M value for radiation-induced generation of dicentric chromosomes was found to be 0.5 ± 0.5. In addition to the evaluation of chromosomal aberrations the number of cell cycles undergone by the cells was monitored by means of BrDU staining. As expected, the proportion of cells which underwent more than one cell cycle following exposure to 5 Gy was very low in both cases, amounting to 1.9% (25 kV) and 3.2 (200 kV). Non-radiated cells yielded control values of 26.0% and 12.6%, suggesting variations in external conditions from day to day

  3. Chromosome 22 microdeletion in children with syndromic ...

    African Journals Online (AJOL)

    Cytogenetic study and fluorescence in situ hybridization (FISH) were performed in the patients. The study revealed that 2 patients were with chromosomal aberrations [one with 46,XY, add (13)(p13) & the other with 47,XX,+13]. In addition, FISH revealed 4 patients (20%) with 22q11.2 microdeletion syndrome. The congenital ...

  4. Johannsen's criticism of the chromosome theory.

    Science.gov (United States)

    Roll-Hansen, Nils

    2014-01-01

    The genotype theory of Wilhelm Johannsen (1857-1927) was an important contribution to the founding of classical genetics. This theory built on Johannsen's experimental demonstration that hereditary change is discontinuous, not continuous as had been widely assumed. Johannsen is also known for his criticism of traditional Darwinian evolution by natural selection, as well as his criticism of the classical Mendelian chromosome theory of heredity. He has often been seen as one of the anti-Darwinians that caused the "eclipse of Darwinism" in the early 20th century, before it was saved by the Modern Synthesis. This article focuses on Johannsen's criticism of the chromosome theory. He was indeed skeptical of the notion of the chromosomes as the sole carriers of heredity, but he praised the mapping of Mendelian genes on the chromosomes as a major step forward. Johannsen objected that these genes could not account for the whole of heredity, and that the stability of the genotype depended on much more than the stability of Mendelian genes. For Johannsen, the genotype, as a property of the whole organism, was the fundamental and empirically well-established entity.

  5. Genetics Home Reference: Y chromosome infertility

    Science.gov (United States)

    ... NBK1339/ Citation on PubMed Tyler-Smith C. An evolutionary perspective on Y-chromosomal variation and male infertility. ... genome editing and CRISPR-Cas9? What is precision medicine? What is newborn screening? New Pages Alopecia areata ...

  6. P chromosomes involved in intergenomic rearrangements of ...

    Indian Academy of Sciences (India)

    2014-04-08

    Apr 8, 2014 ... [Wang Q., Han H., Gao A., Yang X. and Li L. 2014 P chromosomes ... Y, were affected predominantly by ecological factors and altitude in nine populations of Kengyilia thoroldiana (Wang et al. 2012). To investigate the effects of different altitudes on .... AB51 0LX, UK) for improving the article linguistically.

  7. Psychoeducational Implications of Sex Chromosome Anomalies

    Science.gov (United States)

    Wodrich, David L.; Tarbox, Jennifer

    2008-01-01

    Numerous anomalies involving the sex chromosomes (X or Y) have been documented and their impact on development, learning, and behavior studied. This article reviews three of these disorders, Turner syndrome, Klinefelter syndrome, and Lesch-Nyhan disease. Each of these three is associated with one or more selective impairments or behavioral…

  8. Association of recurrent pregnancy loss with chromosomal ...

    African Journals Online (AJOL)

    Objective: To evaluate the association of parental and fetal chromosomal abnormalities with recurrent pregnancy loss in our area and to analyze the frequency of three types of hereditary thrombophilia's; (MTHFR C677T polymorphisms, FV Leiden G1691A mutation and Prothrombin (factor II) G20210A mutation) in these ...

  9. Association of recurrent pregnancy loss with chromosomal ...

    African Journals Online (AJOL)

    EB

    for recurrent pregnancy loss and these patients are the best candidates for offering prenatal genetic diagnosis by the help of which there is a possibility of obtaining a better reproductive outcome. Key words: chromosomal abnormality, recurrent pregnancy loss, thrombophilia. African Health Sciences 2013; 13(2): 447 - 452 ...

  10. Determination of chromosomes that control physiological traits ...

    African Journals Online (AJOL)

    Determination of chromosomes that control physiological traits associated with salt tolerance in barley at the seedling stage. ... The phenotypic traits under study included: chlorophyll contents, chlorophyll fluorescence (Fo, Fv, Fv/Fm), proline and carbohydrate rates, relative water content (RWC) and dry and wet weight of ...

  11. Robot system for preparing lymphocyte chromosome

    International Nuclear Information System (INIS)

    Hayata, Isamu; Furukawa, Akira; Yamamoto, Mikio; Sato, Koki; Tabuchi, Hiroyoshi; Okabe, Nobuo.

    1992-01-01

    Towards the automatization of the scoring of chromosome aberrations in radiation dosimetry with the emphasis on the improvement of biological preparations, the conventional culture and harvesting method was modified. Based on this modified method, a culture and harvest robotic system (CHROSY) for preparing lymphocyte chromosome was developed. The targeted points of the modification are as in the preparing lymphocyte chromosome was developed. The targeted points of the modification are as in the following. 1) Starting culture with purified lymphocytes in a fixed cell number. 2) Avoiding the loss of cells in changing the liquids following centrifugalization. 3) Keeping the quantity of the liquids to be applied to the treatments of cells fixed. 4) Building a system even a beginner can handle. System features are as follows. 1) Operation system: Handling robot having 5 degrees of freedom; a rotator incubator with an automatic sliding door; units for setting and removing pipette tips; a centrifuge equipped with a position adjuster and an automatic sliding door; two aluminium block baths; two nozzles as pipettes and aspirators connected to air pumps; a capping unit with a nozzle for CO 2 gas; a compressor; and an air manipulated syringe. 2) Control system; NEC PC-9801RX21 with CRT; and program written in Basic and Assembly languages on MS-DOS. It took this system 2 hours and 25 minutes to harvest 2 cultures. A fairly good chromosome slide was made from the sample harvested by CHROSY automatically. (author)

  12. Chromosome studies in Cashew (Anacardium occidentale L.)

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-18

    Jan 18, 2007 ... behavior of chromosome in cashew populations growing in Nigeria. Cytological examination of these ... which penetrate very deep into the soil profile and lateral roots that sometimes ... The importance of cytological information to crop improvement ..... Tree nuts production, processing and products,. Vol.

  13. Chromosome-damaging effect of betel leaf.

    Science.gov (United States)

    Sadasivan, G; Rani, G; Kumari, C K

    1978-05-01

    The chewing of betel leaf with other ingredients is a widespread addiction in India. The chromosome damaging effect was studied in human leukocyte cultures. There was an increase in the frequency of chromatid aberrations when the leaf extract was added to cultures.

  14. Plasmid and chromosome segregation in prokaryotes

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Gerdes, Kenn

    2000-01-01

    Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic...

  15. Genetics Home Reference: ring chromosome 14 syndrome

    Science.gov (United States)

    ... be something about the ring structure itself that causes epilepsy. Seizures may occur because certain genes on the ... mapping of telomeric 14q32 deletions: search for the cause of seizures. Am J Med Genet A. ... L, Elia M, Vigevano F. Epilepsy in ring 14 chromosome syndrome. Epilepsy Behav. 2012 ...

  16. Improved prenatal detection of chromosomal anomalies

    DEFF Research Database (Denmark)

    Frøslev-Friis, Christina; Hjort-Pedersen, Karina; Henriques, Carsten U

    2011-01-01

    Prenatal screening for karyotype anomalies takes place in most European countries. In Denmark, the screening method was changed in 2005. The aim of this study was to study the trends in prevalence and prenatal detection rates of chromosome anomalies and Down syndrome (DS) over a 22-year period....

  17. Chromosome Conformation Capture on Chip (4C)

    DEFF Research Database (Denmark)

    Leblanc, Benjamin Olivier; Comet, Itys; Bantignies, Frédéric

    2016-01-01

    4C methods are useful to investigate dependencies between regulatory mechanisms and chromatin structures by revealing the frequency of chromatin contacts between a locus of interest and remote sequences on the chromosome. In this chapter we describe a protocol for the data analysis of microarray-...

  18. The map of chromosome 1 of man

    NARCIS (Netherlands)

    W.G. Burgerhout (Wim)

    1977-01-01

    textabstractMaking maps is an essential procedure in the exploration of new territories. In the field of genetics, many basic concepts concerning the structure of a genome and the regulation of gene activity have emerged from regional mapping studies on the chromosomes of e.g. Escherichia coli

  19. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids and chr...

  20. Chromosomal location of genomic SSR markers associated

    Indian Academy of Sciences (India)

    Among the same earlier tested 230 primers, one SSR marker (Xgwm311) also amplified a fragment which is present in the resistant parent and in the resistant bulks, but absent in the susceptible parent and in the susceptible bulks. To understand the chromosome group location of these diagnostic markers, Xgwm382 and ...

  1. Chromosome aberrations induced by radiation. With special reference to possible relation between chromosome aberrations and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, N [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1980-02-01

    Chromosome aberration seems to be one of the most conspicuous residual abnormalities recognizable in radiation-exposed persons for many years after exposure. Knowledge of the biological significance of these abnormalities seems to be necessary for understanding of the effect of radiation on humans, especially in relation to possible leukemic development. Cytogenetic studies were performed on the bone marrow cells, T and B lymphocytes, and fibroblasts in atomic bomb-survivors who were in apparent good health (105 cases), atomic bomb exposed patients who had prolonged periods of blood disorders which terminated in acute leukemia (8 cases), and who had no such abnormalities (6 cases). All patients with chronic myelocytic leukemia (CML) and a history of atomic bomb exposure showed Philadelphia chromosome, a characteristic chromosome abnormality for CML. The persistent chromosome aberrations of bone marrow cells, T and B lymphocytes found among the atomic bomb survivors with or without blood disorders may give some clue to solve the problems of carcinogenesis.

  2. Chromosomes of South American Bufonidae (Amphibia, Anura Chromosomes of South American Bufonidae (Amphibia, Anura

    Directory of Open Access Journals (Sweden)

    Brum Zorrilla N.

    1973-09-01

    Full Text Available Karyotypes of eight of South American Bufonidae were studied: B.ictericus, B. spinulosus spinulosus, B. arenarum, B. g. fernandezae, B. g. d'orbignyi, B. crucifer, B. paracnemis and B. marinus. In all species 2n = 22 chromosomes were found. Neither heteromorphic pairs of chromosomes nor bivalents with characteristic morphology and behavior of sex chromosomesduring male meiosis were observed in any species.Karyotypes of eight of South American Bufonidae were studied: B.ictericus, B. spinulosus spinulosus, B. arenarum, B. g. fernandezae, B. g. d'orbignyi, B. crucifer, B. paracnemis and B. marinus. In all species 2n = 22 chromosomes were found. Neither heteromorphic pairs of chromosomes nor bivalents with characteristic morphology and behavior of sex chromosomesduring male meiosis were observed in any species.

  3. Chromosomes as well as chromosomal subdomains constitute distinct units in interphase nuclei

    NARCIS (Netherlands)

    Visser, A. E.; Aten, J. A.

    1999-01-01

    Fluorescence in situ hybridization has demonstrated that chromosomes form individual territories in interphase nuclei. However, this technique is not suitable to determine whether territories are mutually exclusive or interwoven. This notion, however, is essential for understanding functional

  4. Identification of Chromosomes Alterations in Primary Breast Cancer Using Premature Chromosome Condensation

    National Research Council Canada - National Science Library

    Griffin, Constance

    2000-01-01

    .... We are developing a new method, premature chromosome condensation (PCC),using mitotic Xenopus extracts that will allow us to obtain G-banded karyotypes from primary, uncultured breast cancer specimens...

  5. Dielectrophoretic manipulation of human chromosomes in microfluidic channels: extracting chromosome dielectric properties

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Buckley, Sonia

    2011-01-01

    An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method...... of manipulation combined with a custom designed microfluidic system containing the required electrodes for dielectrophoresis experiments. Our results show that although this system is presently not able to distinguish between the different chromosomes, it can provide average data for the dielectric properties...... of human chromosomes in polyamine buffer. These can then be used to optimize system designs for further characterization and even sorting. The experimental data from the dielectrophoretic manipulation were combined with theoretical calculations to extract a range of values for the permittivity...

  6. Updating the maize karyotype by chromosome DNA sizing

    Science.gov (United States)

    2018-01-01

    The karyotype is a basic concept regarding the genome, fundamentally described by the number and morphological features of all chromosomes. Chromosome class, centromeric index, intra- and interchromosomal asymmetry index, and constriction localization are important in clinical, systematic and evolutionary approaches. In spite of the advances in karyotype characterization made over the last years, new data about the chromosomes can be generated from quantitative methods, such as image cytometry. Therefore, using Zea mays L., this study aimed to update the species’ karyotype by supplementing information on chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry and class as well as knob localization enabled describing the Z. mays karyotype. In addition, applying image cytometry, DNA sizing was unprecedentedly measured for the arms and satellite of all chromosomes. This way, unambiguous identification of the chromosome pairs, and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each chromosome, their arms and satellite portions. These accurate, quantitative and reproducible data also enabled determining the distribution and variation of DNA content in each chromosome. From this, a correlation between DNA amount and total chromosome length evidenced that the mean DNA content of chromosome 9 was higher than that of chromosome 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights into its dynamic genome with regards to the organization of the ten chromosomes and their respective portions. Considering the results and the relevance of cytogenetics in the current scenario of comparative sequencing and genomics, chromosomal DNA sizing should be incorporated as an additional parameter for karyotype definition. Based on this study, it can be affirmed that cytogenetic approaches go beyond the simple morphological description of chromosomes. PMID:29293613

  7. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.

    Science.gov (United States)

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi; Kitagaki, Hiroshi

    2017-12-15

    The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast ( Saccharomyces cerevisiae ) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of

  8. Heteromorphic Sex Chromosomes: Navigating Meiosis without a Homologous Partner

    OpenAIRE

    Checchi, Paula M.; Engebrecht, JoAnne

    2011-01-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have ...

  9. The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Hobza, Roman; Kejnovský, Eduard; Vyskot, Boris; Widmer, A.

    2007-01-01

    Roč. 278, č. 6 (2007), s. 633-638 ISSN 1617-4615 R&D Projects: GA ČR(CZ) GA204/05/2097; GA ČR(CZ) GA521/06/0056 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chromosomal rearrangements * sex chromosomes * FISH Subject RIV: BO - Biophysics Impact factor: 2.978, year: 2007

  10. Sex-chromosome anaphase movements in crane-fly spermatocytes are coordinated: ultraviolet microbeam irradiation of one kinetochore of one sex chromosome blocks the movements of both sex chromosomes

    International Nuclear Information System (INIS)

    Swedak, J.A.M.; Forer, A.

    1987-01-01

    Sex chromosomes in crane-fly spermatocytes move polewards at anaphase after the autosomes have reached the poles. We irradiated one kinetochore of one sex chromosome using an ultraviolet microbeam. When both sex chromosomes were normally oriented, irradiation of a single kinetochore permanently blocked movement of both sex chromosomes. Irradiation of non-kinetochore chromosomal regions or of spindle fibres did not block movement, or blocked movement only temporarily. We argue that ultraviolet irradiation of one kinetochore blocks movement of both sex chromosomes because of effects on a 'signal' system. Irradiation of one kinetochore of a maloriented sex chromosome did not block motion of either sex chromosome. However, irradiation of one kinetochore of a normally oriented sex chromosome permanently blocked motion of both that sex chromosome and the maloriented sex chromosome. Thus for the signal system to allow the sex chromosomes to move to the pole each sex chromosome must have one spindle fibre to each pole. (author)

  11. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease

    NARCIS (Netherlands)

    van der Crabben, Saskia N; Hennus, Marije P; McGregor, Grant A; Ritter, Deborah I; Nagamani, Sandesh C S; Wells, Owen S; Harakalova, Magdalena; Chinn, Ivan K; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M; Terheggen-Lagro, Suzanne W; van Lieshout, Stef; van Roosmalen, Markus J; Renkens, Ivo; Duran, Karen; Nijman, Isaäc J.; Kloosterman, Wigard P; Hennekam, Eric; Orange, Jordan S; van Hasselt, Peter M; Wheeler, David A; Palecek, Jan J; Lehmann, Alan R; Oliver, Antony W; Pearl, Laurence H; Plon, Sharon E; Murray, Johanne M; van Haaften, Gijs

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome

  12. Aneuploids of wheat and chromosomal localization of genes

    African Journals Online (AJOL)

    Administrator

    2011-06-22

    Jun 22, 2011 ... chromosome location of such genes is critical for effective utilization and subsequent manipulation. Further, chromosomal localization will lead to the identification of ... Various cytogenetic stocks and techniques have been previously reported useful in localizing genes on wheat chromosomes. The objective ...

  13. The architecture of chicken chromosome territories changes during differentiation

    Directory of Open Access Journals (Sweden)

    Stadler Sonja

    2004-11-01

    Full Text Available Abstract Background Between cell divisions the chromatin fiber of each chromosome is restricted to a subvolume of the interphase cell nucleus called chromosome territory. The internal organization of these chromosome territories is still largely unknown. Results We compared the large-scale chromatin structure of chromosome territories between several hematopoietic chicken cell types at various differentiation stages. Chromosome territories were labeled by fluorescence in situ hybridization in structurally preserved nuclei, recorded by confocal microscopy and evaluated visually and by quantitative image analysis. Chromosome territories in multipotent myeloid precursor cells appeared homogeneously stained and compact. The inactive lysozyme gene as well as the centromere of the lysozyme gene harboring chromosome located to the interior of the chromosome territory. In further differentiated cell types such as myeloblasts, macrophages and erythroblasts chromosome territories appeared increasingly diffuse, disaggregating to separable substructures. The lysozyme gene, which is gradually activated during the differentiation to activated macrophages, as well as the centromere were relocated increasingly to more external positions. Conclusions Our results reveal a cell type specific constitution of chromosome territories. The data suggest that a repositioning of chromosomal loci during differentiation may be a consequence of general changes in chromosome territory morphology, not necessarily related to transcriptional changes.

  14. Determination of chromosomal ploidy in Agave ssp. | Lingling ...

    African Journals Online (AJOL)

    Chromosome observation is necessary to elucidate the structure, function and organization of Agave plants' genes and genomes. However, few researches about chromosome observation of Agave ssp. were done, not only because their chromosome numbers are large, but also because their ploidies are complicated.

  15. 21 CFR 864.2260 - Chromosome culture kit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Chromosome culture kit. 864.2260 Section 864.2260...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2260 Chromosome culture kit. (a) Identification. A chromosome culture kit is a device containing the necessary ingredients...

  16. New chromosome numbers in the genus Trigonella L. ( Fabaceae ...

    African Journals Online (AJOL)

    Somatic chromosome numbers of 45 Trigonella L. (Fabaceae), collected from different localities in Turkey was examined. Chromosome numbers were determined as 2n = 14, 16, 30 and 46. B chromosome was also observed in somatic cells of some taxa (Trigonella arcuata C.A. Meyer and Trigonella procumbens (Besser) ...

  17. Chromosomal Translocations: Chicken or Egg? | Center for Cancer Research

    Science.gov (United States)

    Many tumor cells have abnormal chromosomes. Some of these abnormalities are caused by chromosomal translocations, which occur when two chromosomes break and incorrectly rejoin, resulting in an exchange of genetic material. Translocations can activate oncogenes, silence tumor suppressor genes, or result in the creation of completely new fusion gene products. While there is

  18. The Detection and Analysis of Chromosome Fragile Sites

    DEFF Research Database (Denmark)

    Bjerregaard, Victoria A; Özer, Özgün; Hickson, Ian D

    2018-01-01

    A fragile site is a chromosomal locus that is prone to form a gap or constriction visible within a condensed metaphase chromosome, particularly following exposure of cells to DNA replication stress. Based on their frequency, fragile sites are classified as either common (CFSs; present in all...... for detection and analysis of chromosome fragile sites....

  19. Chromosomal homologies among vampire bats revealed by chromosome painting (phyllostomidae, chiroptera).

    Science.gov (United States)

    Sotero-Caio, C G; Pieczarka, J C; Nagamachi, C Y; Gomes, A J B; Lira, T C; O'Brien, P C M; Ferguson-Smith, M A; Souza, M J; Santos, N

    2011-01-01

    Substantial effort has been made to elucidate karyotypic evolution of phyllostomid bats, mostly through comparisons of G-banding patterns. However, due to the limited number of G-bands in respective karyotypes and to the similarity of non-homologous bands, an accurate evolutionary history of chromosome segments remains questionable. This is the case for vampire bats (Desmodontinae). Despite several proposed homologies, banding data have not yet provided a detailed understanding of the chromosomal changes within vampire genera. We examined karyotype differentiation of the 3 species within this subfamily using whole chromosomal probes from Phyllostomus hastatus (Phyllostominae) and Carollia brevicauda (Carolliinae). Painting probes of P. hastatus respectively detected 22, 21 and 23 conserved segments in Diphylla ecaudata, Diaemus youngi, and Desmodus rotundus karyotypes, whereas 27, 27 and 28 were respectively detectedwith C. brevicauda paints. Based on the evolutionary relationships proposed by morphological and molecular data, we present probable chromosomal synapomorphies for vampire bats and propose chromosomes that were present in the common ancestor of the 5 genera analyzed. Karyotype comparisons allowed us to relate a number of conserved chromosomal segments among the 5 species, providing a broader database for understanding karyotype evolution in the family. 2010 S. Karger AG, Basel.

  20. Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4.

    Science.gov (United States)

    Lee, Tong Geon; Lee, Yong Jin; Kim, Dae Yeon; Seo, Yong Weon

    2010-12-01

    Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35 Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.

  1. Chromosomal instability and double minute chromosomes in a breast cancer patient

    International Nuclear Information System (INIS)

    Lalic, H.; Radosevic-Stasic, B.

    2004-01-01

    Cytogenetic analysis was performed in peripheral blood lymphocytes (PBL) of a woman with ductal breast carcinoma, who as a hospital employee was exposed professionally for 15 years to low doses of ionizing radiation. The most important finding after the chemotherapy in combination with radiotherapy was the presence of double minutes (DM) chromosomes, in combination with other chromosomal abnormalities (on 200 scored metaphases were found 2 chromatid breaks, 10 dicentrics, 11 acentric fragments, 2 gaps, and 3 double min chromosomes). In a repeated analysis (after 6 months), DM chromosomes were still present. To rule out the possibility that the patient was overexposed to ionizing radiation at work, her blood test was compared with a group of coworkers as well as with a group of professionally unexposed people. The data rejected this possibility, but the retroactive analysis showed that the patient even at the time of employment had a moderately increased number of chromosomal aberrations (3.5%) consisting of 3 isochromatids and 4 gaps, suggesting that her initial genomic instability enhanced the later development. The finding of a continuous presence of rare DM chromosomes in her PBL (4 and 10 months after radio-chemotherapy) was considered as an indicator of additional risk, which might have some prognostic significance. (author)

  2. Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories

    OpenAIRE

    T Cremer; C Cremer

    2009-01-01

    It is now generally accepted that chromosomes in the cell nucleus are organized in distinct domains, first called chromosome territories in 1909 by the great cytologist Theodor Boveri. Yet, even today chromosomes have remained enigmatic individuals, whose structures, arrangements and functions in cycling and post-mitotic cells still need to be explored in full detail. Whereas numerous recent reviews describe present evidence for a dynamic architecture of chromosome territories and discuss the...

  3. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    International Nuclear Information System (INIS)

    Muehlmann-Diaz, M.C.

    1993-01-01

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 10 5 copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G 0 , the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes

  4. The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Ottesen, Jesper R.; Youngren, Brenda

    2006-01-01

    in one half of the cell and markers on the right arm of the chromosome lie in the opposite half. This is achieved by reorganizing the chromosome arms of the two nucleoids in pre-division cells relative to the cell quarters. The spatial reorganization of the chromosome arms ensures that the two...

  5. Anhidrotic ectodermal dysplasia gene region cloned in yeast artificial chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Kere, J. [Washington Univ. School of Medicine, St. Louis, MO (United States)]|[Univ. of Helsinki (Finland); Grzeschik, K.H. [Univ. of Marburg (Germany); Limon, J. [Medical Academy, Gdansk (Poland); Gremaud, M.; Schlessinger, D. [Washington Univ. School of Medicine, St. Louis, MO (United States); De La Chapelle, A. [Univ. of Helsinki (Finland)

    1993-05-01

    Anhidrotic ectodermal dysplasia (EDA), an X-chromosomal recessive disorder, is expressed in a few females with chromosomal translocations involving bands Xq12-q13. Using available DNA markers from the region and somatic cell hybrids the authors mapped the X-chromosomal breakpoints in two such translocations. The breakpoints were further mapped within a yeast artificial chromosome contig constructed by chromosome walking techniques. Genomic DNA markers that map between the two translocation breakpoints were recovered representing putative portions of the EDA gene. 32 refs., 3 figs., 1 tab.

  6. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Kruse, Thomas; Møller-Jensen, Jakob; Løbner-Olesen, Anders

    2003-01-01

    The mechanism of prokaryotic chromosome segregation is not known. MreB, an actin homolog, is a shape-determining factor in rod-shaped prokaryotic cells. Using immunofluorescence microscopy we found that MreB of Escherichia coli formed helical filaments located beneath the cell surface. Flow...... cytometric and cytological analyses indicated that MreB-depleted cells segregated their chromosomes in pairs, consistent with chromosome cohesion. Overexpression of wild-type MreB inhibited cell division but did not perturb chromosome segregation. Overexpression of mutant forms of MreB inhibited cell...... that MreB filaments participate in directional chromosome movement and segregation....

  7. Calcium ions function as a booster of chromosome condensation.

    Science.gov (United States)

    Phengchat, Rinyaporn; Takata, Hideaki; Morii, Kenichi; Inada, Noriko; Murakoshi, Hideji; Uchiyama, Susumu; Fukui, Kiichi

    2016-12-02

    Chromosome condensation is essential for the faithful transmission of genetic information to daughter cells during cell division. The depletion of chromosome scaffold proteins does not prevent chromosome condensation despite structural defects. This suggests that other factors contribute to condensation. Here we investigated the contribution of divalent cations, particularly Ca 2+ , to chromosome condensation in vitro and in vivo. Ca 2+ depletion caused defects in proper mitotic progression, particularly in chromosome condensation after the breakdown of the nuclear envelope. Fluorescence lifetime imaging microscopy-Förster resonance energy transfer and electron microscopy demonstrated that chromosome condensation is influenced by Ca 2+ . Chromosomes had compact globular structures when exposed to Ca 2+ and expanded fibrous structures without Ca 2+ . Therefore, we have clearly demonstrated a role for Ca 2+ in the compaction of chromatin fibres.

  8. Diagnosis of Fanconi Anemia: Chromosomal Breakage Analysis

    Science.gov (United States)

    Oostra, Anneke B.; Nieuwint, Aggie W. M.; Joenje, Hans; de Winter, Johan P.

    2012-01-01

    Fanconi anemia (FA) is a rare inherited syndrome with diverse clinical symptoms including developmental defects, short stature, bone marrow failure, and a high risk of malignancies. Fifteen genetic subtypes have been distinguished so far. The mode of inheritance for all subtypes is autosomal recessive, except for FA-B, which is X-linked. Cells derived from FA patients are—by definition—hypersensitive to DNA cross-linking agents, such as mitomycin C, diepoxybutane, or cisplatinum, which becomes manifest as excessive growth inhibition, cell cycle arrest, and chromosomal breakage upon cellular exposure to these drugs. Here we provide a detailed laboratory protocol for the accurate assessment of the FA diagnosis as based on mitomycin C-induced chromosomal breakage analysis in whole-blood cultures. The method also enables a quantitative estimate of the degree of mosaicism in the lymphocyte compartment of the patient. PMID:22693659

  9. American marsupials chromosomes: why study them?

    Directory of Open Access Journals (Sweden)

    Marta Svartman

    2009-01-01

    Full Text Available Marsupials, one of the three main groups of mammals, are only found in Australia and in the American continent. Studies performed in Australian marsupials have demonstrated the great potential provided by the group for the understanding of basic genetic mechanisms and chromosome evolution in mammals. Genetic studies in American marsupials are relatively scarce and cytogenetic data of most species are restricted to karyotype descriptions, usually without banding patterns. Nevertheless, the first marsupial genome sequenced was that of Monodelphis domestica, a South American species. The knowledge about mammalian genome evolution and function that resulted from studies on M. domestica is in sharp contrast with the lack of genetic data on most American marsupial species. Here, we present an overview of the chromosome studies performed in marsupials with emphasis on the South American species.

  10. Chromosome-based genomics in cereals

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Kubaláková, Marie; Paux, E.; Bartoš, Jan; Feuillet, C.

    2007-01-01

    Roč. 15, č. 1 (2007), s. 51-66 ISSN 0967-3849 R&D Projects: GA ČR GP521/06/P412; GA ČR(CZ) GA521/05/0257; GA ČR GA521/06/1723; GA MŠk ME 884; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : Chromosome sorting * chromosome-specific BAC libraries * flow cytometry Subject RIV: EB - Genetic s ; Molecular Biology Impact factor: 3.469, year: 2007

  11. Chromosome heteromorphisms in the Japanese, 1

    International Nuclear Information System (INIS)

    Sofuni, Toshio; Tanabe, Kazumi; Awa, A.A.

    1979-02-01

    Thirty-four cases with Dp+ and Gp+, known to be chromosome heteromorphisms in man, were examined using Q- and C-staining methods. Of 18 cases with Dp+, 14 involved No. 15 chromosome and 2 each were No. 13 and No. 14 respectively. Of 16 cases with Gp+, 13 were concerned with No. 22 and the remaining 3 were No. 21. Short arm regions of eight cases with 15p+ and one with 14p+ were stained very darkly by the C-method, but did not fluoresce brilliantly by the Q-method. On the other hand, brightly fluorescing short arm regions observed in three cases with 15p+ and two with 22p+, were not very darkly stained by the C-method. In the remaining 20 cases, short arm regions were not stained positively by either method, but showed negatively or intermediately variable staining intensities. (author)

  12. Y-chromosome STR haplotypes in Somalis

    DEFF Research Database (Denmark)

    Hallenberg, Charlotte; Simonsen, Bo; Sanchez Sanchez, Juan Jose

    2005-01-01

    A total of 201 males from Somalia were typed for the Y-chromosome STRs DYS19, DYS385a/b, DYS389-I, DYS389-II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439 with the PowerPlex Y kit (Promega). A total of 96 different haplotypes were observed and the haplotype diversity was 0.9715. The ......A total of 201 males from Somalia were typed for the Y-chromosome STRs DYS19, DYS385a/b, DYS389-I, DYS389-II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439 with the PowerPlex Y kit (Promega). A total of 96 different haplotypes were observed and the haplotype diversity was 0...

  13. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    Directory of Open Access Journals (Sweden)

    Kumaran Narayanan

    2011-01-01

    Full Text Available Gene expression from bacterial artificial chromosome (BAC clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo.

  14. Chromosome analyses of nurses handling cytostatic agents

    International Nuclear Information System (INIS)

    Waksvik, H.; Klepp, O.; Brogger, A.

    1981-01-01

    A cytogenetic study of ten nurses handling cytostatic agents (average exposure, 2150 hours) and ten female hospital clerks revealed an increased frequency of chromosome gaps and a slight increase in sister chromatid exchange frequency among the nurses. The increase may be due to exposure to cytostatic drugs and points to these agents as a possible occupational health hazard. A second group of 11 nurses handling cytostatic agents for a shorter period of time (average exposure, 1078 hours), and three other groups (eight nurses engaged in therapeutic and diagnostic radiology, nine nurses engaged in anesthesiology, and seven nurses in postoperative ward) did not differ from the office personnel, except for an increased frequency of chromosome gaps in the radiology group

  15. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. I. Construction of single chromosomal DNA libraries.

    Science.gov (United States)

    Huang, D; Wu, W; Zhou, Y; Hu, Z; Lu, L

    2004-05-01

    Construction of single chromosomal DNA libraries by means of chromosome microdissection and microcloning will be useful for genomic research, especially for those species that have not been extensively studied genetically. Application of the technology of microdissection and microcloning to woody fruit plants has not been reported hitherto, largely due to the generally small sizes of metaphase chromosomes and the difficulty of chromosome preparation. The present study was performed to establish a method for single chromosome microdissection and microcloning in woody fruit species using pomelo as a model. The standard karyotype of a pomelo cultivar ( Citrus grandis cv. Guanxi) was established based on 20 prometaphase photomicrographs. According to the standard karyotype, chromosome 1 was identified and isolated with fine glass microneedles controlled by a micromanipulator. DNA fragments ranging from 0.3 kb to 2 kb were acquired from the isolated single chromosome 1 via two rounds of PCR mediated by Sau3A linker adaptors and then cloned into T-easy vectors to generate a DNA library of chromosome 1. Approximately 30,000 recombinant clones were obtained. Evaluation based on 108 randomly selected clones showed that the sizes of the cloned inserts varied from 0.5 kb to 1.5 kb with an average of 860 bp. Our research suggests that microdissection and microcloning of single small chromosomes in woody plants is feasible.

  16. Mouse Chromosome Engineering for Modeling Human Disease

    OpenAIRE

    van der Weyden, Louise; Bradley, Allan

    2006-01-01

    Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

  17. Chromosomal variation in the house mouse

    Czech Academy of Sciences Publication Activity Database

    Piálek, Jaroslav; Hauffe, H. C.; Searle, J. B.

    2005-01-01

    Roč. 84, č. 3 (2005), s. 535-563 ISSN 0024-4066. [The genus Mus as a model for evolutionary studies - a symposium in honour of Louis Thaler. Brno, 28.07.2003-30.07.2003] R&D Projects: GA AV ČR IAA6045601 Institutional research plan: CEZ:AV0Z6093917 Keywords : chromosomal evolution * hybrid zone * Robertsonian fusions Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.261, year: 2005

  18. Y-chromosome STR haplotypes in Danes

    DEFF Research Database (Denmark)

    Hallenberg, Charlotte; Nielsen, Karsten; Simonsen, Bo Thisted

    2005-01-01

    A total of 185 unrelated Danish males were typed for the Y-chromosome STRs DYS19, DYS385a/b, DYS389-I, DYS389-II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439 using the kits PowerPlex Y (Promega), ReliaGene Y-Plex 6 and ReliaGene Y-Plex 5 (Reliagene Technologies). A total of 163...

  19. Difficult cases for chromosomal dosimetry: Statistical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Vinnikov, Volodymyr A., E-mail: vlad.vinnikov@mail.ru [Grigoriev Institute for Medical Radiology of the National Academy of Medical Science of Ukraine, Pushkinskaya Street 82, Kharkiv 61024 (Ukraine); Ainsbury, Elizabeth A., E-mail: liz.ainsbury@hpa.org.uk [Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Lloyd, David C., E-mail: david.lloyd@hpa.org.uk [Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Maznyk, Nataliya A., E-mail: maznik.cytogen@mail.ru [Grigoriev Institute for Medical Radiology of the National Academy of Medical Science of Ukraine, Pushkinskaya Street 82, Kharkiv 61024 (Ukraine); Rothkamm, Kai, E-mail: kai.rothkamm@hpa.org.uk [Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2011-09-15

    Several examples are selected from the literature in order to illustrate combinations of complicating factors, which may occur in real-life radiation exposure scenarios that affect the accuracy of cytogenetic dose estimates. An analysis of limitations in the current statistical methods used in biodosimetry was carried out. Possible directions for further improvement of the statistical basis of chromosomal dosimetry by specific mathematical procedures are outlined.

  20. Chromosome duplication in Lolium multiflorum Lam.

    Directory of Open Access Journals (Sweden)

    Roselaine Cristina Pereira

    2014-11-01

    Full Text Available Artificial chromosome duplication of diploid genotypes of Lolium multiflorum (2n=2x=14 is worthy to breeding, and aims to increase the expression of traits with agronomic interest. The purpose of this study was to obtain polyploid plants of L. multiflorum from local diploid populations in order to exploit adaptation and future verification of the effects of polyploidy in agronomic traits. Seedlings were immersed in different colchicine solutions for an exposure time of 3h and 24h. Ploidy determination was made by the DNA content and certified by chromosomes counts. The plants confirmed as tetraploids were placed in a greenhouse, and, at flowering, pollen viability was evaluated, and seeds were harvested to assess the stability of the progenies. The percentage of polyploids obtained was 20%. Pollen viability of the tetraploids generated ranged from 58% to 69%. The tetraploid plants obtained in the experiment generated 164 progenies, of which 109 presented DNA content compatible with the tetraploid level, showing stability of chromosome duplication in the filial generation.

  1. The variability is in the sex chromosomes.

    Science.gov (United States)

    Reinhold, Klaus; Engqvist, Leif

    2013-12-01

    Sex differences in the mean trait expression are well documented, not only for traits that are directly associated with reproduction. Less is known about how the variability of traits differs between males and females. In species with sex chromosomes and dosage compensation, the heterogametic sex is expected to show larger trait variability ("sex-chromosome hypothesis"), yet this central prediction, based on fundamental genetic principles, has never been evaluated in detail. Here we show that in species with heterogametic males, male variability in body size is significantly larger than in females, whereas the opposite can be shown for species with heterogametic females. These results support the prediction of the sex-chromosome hypothesis that individuals of the heterogametic sex should be more variable. We argue that the pattern demonstrated here for sex-specific body size variability is likely to apply to any trait and needs to be considered when testing predictions about sex-specific variability and sexual selection. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  2. Chromosome length scaling in haploid, asexual reproduction

    International Nuclear Information System (INIS)

    Oliveira, P M C de

    2007-01-01

    We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with L bits, where 0-bits represent the wild allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with a few random mutations: on average a fixed number m of bits are flipped. Selection is implemented according to the number N of 1-bits counted along the individual's chromosome: the smaller N the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilized after sufficiently many generations have passed. The question we pose concerns the procedure of increasing L. The aim is to get the same distribution of genetic loads N/L among the equilibrated population, in spite of a larger L. Should we keep the same mutation rate m/L for different values of L? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulation results: the question also involves the population size

  3. Meiotic transmission of Drosophila pseudoobscura chromosomal arrangements.

    Directory of Open Access Journals (Sweden)

    Richard P Meisel

    Full Text Available Drosophila pseudoobscura harbors a rich gene arrangement polymorphism on the third chromosome generated by a series of overlapping paracentric inversions. The arrangements suppress recombination in heterokaryotypic individuals, which allows for the selective maintenance of coadapted gene complexes. Previous mapping experiments used to determine the degree to which recombination is suppressed in gene arrangement heterozygotes produced non-recombinant progeny in non-Mendelian ratios. The deviations from Mendelian expectations could be the result of viability differences between wild and mutant chromosomes, meiotic drive because of achiasmate pairing of homologues in heterokaryotypic females during meiosis, or a combination of both mechanisms. The possibility that the frequencies of the chromosomal arrangements in natural populations are affected by mechanisms other than adaptive selection led us to consider these hypotheses. We performed reciprocal crosses involving both heterozygous males and females to determine if the frequency of the non-recombinant progeny deviates significantly from Mendelian expectations and if the frequencies deviate between reciprocal crosses. We failed to observe non-Mendelian ratios in multiple crosses, and the frequency of the non-recombinant classes differed in only one of five pairs of reciprocal crosses despite sufficient power to detect these differences in all crosses. Our results indicate that deviations from Mendelian expectations in recombination experiments involving the D. pseudoobscura inversion system are most likely due to fitness differences of gene arrangement karyotypes in different environments.

  4. Using 3-color chromosome painting to decide between chromosome aberration models

    International Nuclear Information System (INIS)

    Lucas, J.N.; Sachs, R.K.

    1993-01-01

    Ionizing radiation produces chromosome aberrations when DNA double strand breaks (DSB) interact pairwise. For more than 30 years there have been two main, competing theories of such binary DSB interactions. The classical theory asserts that an unrepaired DSB makes two ends which separate, with each end subsequently able to join any similar (non-telomeric) end. The exchange theory asserts that the two DSB ends remain associated until repair or a reciprocal chromosome exchange involving a second DSB occurs. The authors conducted an experiment to test these models, using 3-color chromosome painting. After in vitro irradiation of resting human lymphocytes, they observed cells with three-color triplets at first metaphase: three derivative chromosomes having permuted colors, as if three broken chromosomes had played musical chairs. On the exchange model in its standard form such 3-color triplets cannot occur. On the classical model the expected frequency can be calculated. They report data and computer calculations which exclude the exchange model and favor the classical model

  5. Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division

    Science.gov (United States)

    Storlazzi, Aurora; Tessé, Sophie; Gargano, Silvana; James, Françoise; Kleckner, Nancy; Zickler, Denise

    2003-01-01

    Chromosomal processes related to formation and function of meiotic chiasmata have been analyzed in Sordaria macrospora. Double-strand breaks (DSBs), programmed or γ-rays-induced, are found to promote four major events beyond recombination and accompanying synaptonemal complex formation: (1) juxtaposition of homologs from long-distance interactions to close presynaptic coalignment at midleptotene; (2) structural destabilization of chromosomes at leptotene/zygotene, including sister axis separation and fracturing, as revealed in a mutant altered in the conserved, axis-associated cohesin-related protein Spo76/Pds5p; (3) exit from the bouquet stage, with accompanying global chromosome movements, at zygotene/pachytene (bouquet stage exit is further found to be a cell-wide regulatory transition and DSB transesterase Spo11p is suggested to have a new noncatalytic role in this transition); (4) normal occurrence of both meiotic divisions, including normal sister separation. Functional interactions between DSBs and the spo76-1 mutation suggest that Spo76/Pds5p opposes local destabilization of axes at developing chiasma sites and raise the possibility of a regulatory mechanism that directly monitors the presence of chiasmata at metaphase I. Local chromosome remodeling at DSB sites appears to trigger an entire cascade of chromosome movements, morphogenetic changes, and regulatory effects that are superimposed upon a foundation of DSB-independent processes. PMID:14563680

  6. Distribution of X-ray induced chromosome rearrangement breaks along the polytene chromosomes of Anopheles messeae

    International Nuclear Information System (INIS)

    Pleshkova, G.N.

    1983-01-01

    Distribution of chromosomal aberrations localization along polytene chromosomes (aoutosomes) of salivary glands of malarial mosquito. Anopheles messeae is presented. Induced aberrations in F 1 posterity from X-ray irradiated fecundated females are studied. Poipts of breaks of inversions and trapslocations are localized separately. There are no considerable dif-- ferences in the distribution character of two types of aberrations. Over the length of autosomes the breaks are more frequent in distal halves, their frequency in proximal parts anally in near centromeric regions of chromosomes is reduced. Concentration of breaks in certain ''hot points'' of the chromosomes is pointed out. Comparison of distribution of actual and expected frequencies of break points according to chi 2 criterion revealed highly fiducial discrepancies, testifying to uneven participation of different regions of chromosomes in aberration formation. Similarities and differences of the data obtained from analogous ones, demonstrated in Drosophila, as well as possible reasons for the distribution unevennes are discussed. On the basis of analysis of intrinsic and literature data a supposition is made that the ''hot points'' (break concentrations) can be considered as localizaion markers of intercalary heterochromatin

  7. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Science.gov (United States)

    Machiela, Mitchell J.; Zhou, Weiyin; Karlins, Eric; Sampson, Joshua N.; Freedman, Neal D.; Yang, Qi; Hicks, Belynda; Dagnall, Casey; Hautman, Christopher; Jacobs, Kevin B.; Abnet, Christian C.; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Arslan, Alan A.; Beane-Freeman, Laura E.; Berndt, Sonja I.; Black, Amanda; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Brinton, Louise A.; Bueno-de-Mesquita, H Bas; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Canzian, Federico; Carreón, Tania; Chaffee, Kari G.; Chang, I-Shou; Chatterjee, Nilanjan; Chen, Chu; Chen, Constance; Chen, Kexin; Chung, Charles C.; Cook, Linda S.; Crous Bou, Marta; Cullen, Michael; Davis, Faith G.; De Vivo, Immaculata; Ding, Ti; Doherty, Jennifer; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Friedenreich, Christine M.; Fuchs, Charles S.; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M.; Garcia-Closas, Montserrat; Gaudet, Mia M.; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Haiman, Christopher A.; Hallmans, Goran; Hankinson, Susan E.; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hong, Yun-Chul; Hoover, Robert N.; Hsiung, Chao A.; Hu, Nan; Hu, Wei; Hunter, David J.; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Alison P.; Klein, Robert; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Lan, Qing; Landi, Maria Teresa; Marchand, Loic Le; Li, Donghui; Liang, Xiaolin; Liao, Linda M.; Lin, Dongxin; Liu, Jianjun; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Malats, Nuria; Matsuo, Keitaro; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Moore, Lee; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Patiño-Garcia, Ana; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Pooler, Loreall; Prescott, Jennifer; Prokunina-Olsson, Ludmila; Purdue, Mark P.; Qiao, You-Lin; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Risch, Harvey A.; Rodriguez-Santiago, Benjamin; Ruder, Avima M.; Savage, Sharon A.; Schumacher, Fredrick; Schwartz, Ann G.; Schwartz, Kendra L.; Seow, Adeline; Wendy Setiawan, Veronica; Severi, Gianluca; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Van Den Berg, David; Visvanathan, Kala; Wacholder, Sholom; Wang, Jiu-Cun; Wang, Zhaoming; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S.; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Ziegler, Regina G.; Perez-Jurado, Luis A.; Caporaso, Neil E.; Rothman, Nathaniel; Tucker, Margaret; Dean, Michael C.; Yeager, Meredith; Chanock, Stephen J.

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases. PMID:27291797

  8. DNA fingerprinting tags novel altered chromosomal regions and identifies the involvement of SOX5 in the progression of prostate cancer.

    Science.gov (United States)

    Ma, Stephanie; Chan, Yuen Piu; Woolcock, Bruce; Hu, Liang; Wong, Kai Yau; Ling, Ming Tat; Bainbridge, Terry; Webber, Douglas; Chan, Tim Hon Man; Guan, Xin-Yuan; Lam, Wan; Vielkind, Juergen; Chan, Kwok Wah

    2009-05-15

    Identification of genomic alterations associated with the progression of prostate cancer may facilitate the better understanding of the development of this highly variable disease. Matched normal, premalignant high-grade prostatic intraepithelial neoplasia and invasive prostate carcinoma cells were procured by laser capture microdissection (LCM) from human radical prostatectomy specimens. From these cells, comparative DNA fingerprints were generated by a modified PCR-based technique called scanning of microdissected archival lesion (SMAL)-PCR. Recurrent polymorphic fingerprint fragments were used in tagging altered chromosomal regions. Altered regions were found at cytobands 1p31.3, 1q44, 2p23.1, 3p26.3, 3q22.3, 4q22.3, 4q35.2, 5q23.2, 8q22.3, 8q24.13, 9q21.3, 9q22.32, 10q11.21, 11p13, 12p12.1, 13q12.1, 16q12.2 and 18q21.31. Candidate genes in the surrounding area that may possibly harbor mutations that change normal prostatic cells to progress into their tumor stages were proposed. Of these fragments, a 420 bp alteration, absent in all 26 normal samples screened, was observed in 2 tumors. This fragment was cloned, sequenced and localized to chromosome 12p12.1. Within this region, candidate gene sex determining region Y-box 5 (SOX5) was proposed. Further studies of SOX5 in cell lines, xenografts and human prostate specimens, at both the RNA and protein levels, found overexpression of the gene in tumors. This overexpression was then subsequently found by fluorescent in situ hybridization to be caused by amplification of the region. In conclusion, our results suggest LCM coupled with SMAL-PCR DNA fingerprinting is a useful method for the screening and identification of chromosomal regions and genes associated with cancer development. Further, overexpression of SOX5 is associated with prostate tumor progression and early development of distant metastasis. (c) 2008 Wiley-Liss, Inc.

  9. Genes and chromosomes: control of development

    Directory of Open Access Journals (Sweden)

    Oleg Serov

    2004-09-01

    Full Text Available The past decade has witnessed immense progress in research into the molecular basis behind the developmental regulation of genes. Sets of genes functioning under hierarchical control have been identified, evolutionary conserved systems of genes effecting the cell-to-cell transmission of transmembrane signals and assigned a central role in morphogenesis have been intensively studied; the concept of genomic regulatory networks coordinating expression of many genes has been introduced, to mention some of the major breakthroughs. It should be noted that the temporal and tissue-specific parameters of gene expression are correctly regulated in development only in the context of the chromosome and that they are to a great extent dependent on the position of the gene on the chromosome or the interphase nucleus. Moreover epigenetic inheritance of the gene states through successive cell generations has been conducted exclusively at the chromosome level by virtue of cell or chromosome memory. The ontogenetic memory is an inherent property of the chromosome and cis-regulation has a crucial role in its maintenance.Durante a última década houve imenso progresso na pesquisa sobre as bases moleculares da regulação gênica durante o desenvolvimento. Foram identificados grupos de genes funcionando sob controle hierárquico, sistemas de genes conservados ao longo da evolução atuando na transmissão célula a célula de sinais transmembrana e com uma função central na morfogênese foram intensamente estudados e o conceito de redes genômicas regulatórias coordenando a expressão de diversos genes foi introduzido, para citar apenas alguns dos principais avanços. Deve-se notar que os parâmetros tempo e tecido-específicos da expressão gênica são corretamente regulados durante o desenvolvimento apenas no contexto do cromossomo e que são amplamente dependentes da posição do gene no cromossomo ou no núcleo em interfase. Além do mais, a herança epigen

  10. Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a dioecious plant, Silene latifolia

    International Nuclear Information System (INIS)

    Matsunaga, S.; Kawano, S.; Michimoto, T.; Higashiyama, T.; Nakao, S.; Sakai, A.; Kuroiwa, T.

    1999-01-01

    Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but-hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes

  11. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  12. High degree of sex chromosome differentiation in stickleback fishes

    Directory of Open Access Journals (Sweden)

    Shimada Yukinori

    2011-09-01

    Full Text Available Abstract Background Studies of closely related species with different sex chromosome systems can provide insights into the processes of sex chromosome differentiation and evolution. To investigate the potential utility of molecular markers in studying sex chromosome differentiation at early stages of their divergence, we examined the levels and patterns of genetic differentiation between sex chromosomes in nine-spined (Pungitius pungitius and three-spined sticklebacks (Gasterosteus aculeatus using microsatellite markers. Results A set of novel microsatellite markers spanning the entire length of the sex chromosomes were developed for nine-spined sticklebacks using the sequenced genomes of other fish species. Sex-specific patterns of genetic variability and male-specific alleles were identified at most of these loci, indicating a high degree of differentiation between the X and Y chromosomes in nine-spined sticklebacks. In three-spined sticklebacks, male-specific alleles were detected at some loci confined to two chromosomal regions. In addition, male-specific null alleles were identified at several other loci, implying the absence of Y chromosomal alleles at these loci. Overall, male-specific alleles and null alleles were found over a region spanning 81% of the sex chromosomes in three-spined sticklebacks. Conclusions High levels but distinct patterns of sex chromosome differentiation were uncovered in the stickleback species that diverged 13 million years ago. Our results suggest that the Y chromosome is highly degenerate in three-spined sticklebacks, but not in nine-spined sticklebacks. In general, the results demonstrate that microsatellites can be useful in identifying the degree and patterns of sex chromosome differentiation in species at initial stages of sex chromosome evolution.

  13. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei

    International Nuclear Information System (INIS)

    Beetstra, Sasja; Thomas, Philip; Salisbury, Carolyn; Turner, Julie; Fenech, Michael

    2005-01-01

    Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the 'normal' physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P < 0.0001, P = 0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy γ-rays) on day 9 relative to un-irradiated controls (P < 0.05). Folic acid deficiency and γ-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P 0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend < 0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage

  14. Balanced Chromosomal Translocation of Chromosomes 6 and 7: A Rare Male Factor of Spontaneous Abortions

    Directory of Open Access Journals (Sweden)

    Sefa Resim

    2013-06-01

    Full Text Available Background: Carriers of structural chromosomal rearrangements such as Robertsonian or reciprocal translocations have an increased risk of spontaneous abortion and producing offspring with genetic abnormalities. Case Report: We report a man with balanced chromosomal translocations located at 6p22, and 7q22. His wife has a history of four spontaneous abortions. Conclusion: Couples with a history of abortions should be investigated cytogenetically, after other causes of miscarriages are excluded. The possibility of spontaneous abortions can be reduced with preimplantation genetic diagnosis (PGD before embryo transfer.

  15. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    Science.gov (United States)

    Gleeson, Dianne; Georges, Arthur

    2018-01-01

    Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata) which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways. PMID:29751579

  16. Cell division control by the Chromosomal Passenger Complex

    Energy Technology Data Exchange (ETDEWEB)

    Waal, Maike S. van der; Hengeveld, Rutger C.C.; Horst, Armando van der; Lens, Susanne M.A., E-mail: s.m.a.lens@umcutrecht.nl

    2012-07-15

    The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.

  17. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    Directory of Open Access Journals (Sweden)

    Shayer Mahmood Ibney Alam

    2018-05-01

    Full Text Available Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD and temperature-dependent sex determination (TSD within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways.

  18. Chromosomal characterization of the bonytongue Arapaima gigas (Osteoglossiformes: Arapaimidae

    Directory of Open Access Journals (Sweden)

    Debora Karla Marques

    Full Text Available The mitotic chromosomes of the pirarucu Arapaima gigas inhabiting the middle Araguaia River and collected in the municipality of Araguaiana (MT, Brazil were studied. The chromosomes were analyzed through Giemsa staining, C-banding, Ag-NOR staining and in situ hybridization using an 18S rRNA gene probe. The karyotype had 2n=56 comprising 14 biarmed and 14 uniarmed chromosome pairs in both sexes. No cytologically distinguishable sex chromosome was identified. A single NOR-bearing chromosome pair was detected by Ag-NOR staining and confirmed by 18S rDNA- FISH. Faint constitutive heterochromatin was C-banded in the centromeric region of some chromosomes.

  19. Evolution of heteromorphic sex chromosomes in the order Aulopiformes.

    Science.gov (United States)

    Ota, K; Kobayashi, T; Ueno, K; Gojobori, T

    2000-12-23

    The fish order Aulopiformes contains both synchronously hermaphroditic and gonochoristic species. From the cytogenetic viewpoint, few reports show that gonochoristic Aulopiformes have heteromorphic sex chromosomes. Because fish in this order give us a unique opportunity to elucidate the evolution of sex chromosomes, it is important to examine a phylogenetic relationship in Aulopiformes by both molecular evolutionary and cytogenetic methods. Thus, we conducted molecular phylogenetic and cytogenetic studies of six Aulopiform species. Our results suggested that hermaphroditic species were evolutionarily derived from gonochoristic species. It follows that the hermaphroditic species might have lost the heteromorphic sex chromosomes during evolution. Here, we suggest a possibility that heteromorphic sex chromosomes can disappear from the genome, even if they have appeared once in evolution. Taking into account Ohno's hypothesis that heteromorphic sex chromosomes might have emerged from autosomes, we propose the hypothesis that heteromorphic sex chromosomes may have undergone repeated events of appearance and disappearance during the course of fish evolution.

  20. Meningiomas, dicentric chromosomes, gliomas, and telomerase activity.

    Science.gov (United States)

    Carroll, T; Maltby, E; Brock, I; Royds, J; Timperley, W; Jellinek, D

    1999-08-01

    Lack of telomere maintenance during cell replication leads to telomere erosion and loss of function. This can result in telomere associations which probably cause the dicentric chromosomes seen in some tumour cells. One mechanism of telomere maintenance in dividing cells is the action of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening during cell division. Over 90 per cent of extracranial malignant neoplasms have been found to have telomerase activity. This study sought to determine if there was a relationship between absence of telomerase activity and presence of dicentric chromosomes in meningiomas and to what extent the other main group of central nervous system tumours, the gliomas, expressed telomerase activity. Telomerase activity was measured on 25 meningiomas and 29 gliomas. Four of the meningiomas were atypical variants and 11 were positive for dicentric chromosomes. Twenty-five of 29 gliomas were glioblastoma multiforme tumours. Measures were taken to ensure absence of false positives due to primer-dimer interaction and false negatives due to protein degradation or the presence of Taq polymerase inhibitors. All 25 meningiomas and the four low-grade gliomas (WHO grade II) were telomerase activity-negative. Seven (28 per cent) of the 25 glioblastoma multiforme tumours showed telomerase activity. The absence of telomerase activity in meningiomas and the high frequency of telomere associations support the hypothesis that these tumours are benign, transformed but pre-crisis. The relatively low frequency of telomerase activity in the malignant glioblastoma multiforme suggests that most of these tumours may have other mechanisms of telomere maintenance and that the potentially therapeutic telomerase inhibitors will not be of great value in the future management of the majority of patients suffering from these tumours. Copyright 1999 John Wiley & Sons, Ltd.

  1. Image cytometry: nuclear and chromosomal DNA quantification.

    Science.gov (United States)

    Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo; Abreu, Isabella Santiago

    2011-01-01

    Image cytometry (ICM) associates microscopy, digital image and software technologies, and has been particularly useful in spatial and densitometric cytological analyses, such as DNA ploidy and DNA content measurements. Basically, ICM integrates methodologies of optical microscopy calibration, standard density filters, digital CCD camera, and image analysis softwares for quantitative applications. Apart from all system calibration and setup, cytological protocols must provide good slide preparations for efficient and reliable ICM analysis. In this chapter, procedures for ICM applications employed in our laboratory are described. Protocols shown here for human DNA ploidy determination and quantification of nuclear and chromosomal DNA content in plants could be used as described, or adapted for other studies.

  2. Bias of purine stretches in sequenced chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Soumpasis, Dikeos Mario; Brunak, Søren

    2002-01-01

    /pur tracts was slightly less than expected, with an average of 0.8%. One of the most surprising findings is a clear difference in the length distributions of the regions studied between prokaryotes and eukaryotes. Whereas short-range correlations can explain the length distributions in prokaryotes......, in eukaryotes there is an abundance of long stretches of purines or alternating purine/pyrimidine tracts, which cannot be explained in this way; these sequences are likely to play an important role in eukaryotic chromosome organisation....

  3. Chromosomal aberrations in children exposed to diagnostic x-rays

    International Nuclear Information System (INIS)

    Nordenson, I.; Beckman, G.; Beckman, L.; Lemperg, R.

    1980-01-01

    Among children who have received high x-ray doses congenital dislocation of the hip joint is the predominating diagnosis. In a series of 9 children who had received high x-ray doses (8 with luxation of the hip joint and one with achondroplasia) a significant increase of chromosomal aberrations was found. The increase concerned mainly chromosome type aberrations. The shorter the time since the last x-ray investigation the higher was the frequency of chromosome type aberrations. (author)

  4. Chromosome breakage in peripheral lymphocytes of thorium workers

    International Nuclear Information System (INIS)

    Hoegerman, S.F.; Cummins, H.T.

    1979-01-01

    Cytogenic analysis of 21 thorium workers and 3 controls has not shown a significant elevation in the level of chromosome breakage in the workers' peripheral lymphocytes. The observation of a single dicentric chromosome in 100-cell samples from each of two workers with relatively long periods of occupational exposure and relatively high body burdens suggests, however, that such exposure might result in increases in chromosome aberration frequency

  5. Chromosomes in the flow to simplify genome analysis

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Vrána, Jan; Šafář, Jan; Bartoš, Jan; Kubaláková, Marie; Šimková, Hana

    2012-01-01

    Roč. 12, č. 3 (2012), s. 397-416 ISSN 1438-793X R&D Projects: GA ČR GAP501/10/1740; GA ČR GAP501/10/1778 Institutional research plan: CEZ:AV0Z50380511 Keywords : Chromosome sorting * Chromosome-specific BAC libraries * Chromosome sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.292, year: 2012

  6. Study of ionizing radiation effect on human spermatozoa chromosomes

    International Nuclear Information System (INIS)

    Rousseaux, S.

    1990-02-01

    The purpose of this thesis is to study the radio-induced chromosomal aberrations in spermatozoa. After a brief recall on ionizing radiations, the author reviews the radio-induced chromosomal anomalies on somatic cells and on germinal line cells and spermatozoa. The author presents the technical aspects of human spermatozoa karyotype and finally studies the radio induced chromosomal anomalies of sperm to patients undergoing a radiotherapy. 13 tabs., 28 figs., 28 photos

  7. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    DEFF Research Database (Denmark)

    Machiela, Mitchell J; Zhou, Weiyin; Karlins, Eric

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chrom...

  8. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome

    Czech Academy of Sciences Publication Activity Database

    Yu, Q.; Hou, S.; Hobza, Roman; Feltus, F.A.; Wang, X.; Jin, W.; Skelton, R.L.; Blas, A.; Lemke, C.; Saw, J.H.; Moore, P.H.; Alam, M.; Jiang, J.; Paterson, A.H.; Vyskot, Boris; Ming, R.

    2007-01-01

    Roč. 278, č. 2 (2007), s. 177-185 ISSN 1617-4615 R&D Projects: GA ČR(CZ) GA521/06/0056 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Carica papaya * repetitive sequences * sex chromosome Subject RIV: BO - Biophysics Impact factor: 2.978, year: 2007

  9. Nondisjunction in Favor of a Chromosome: The Mechanism of Rye B Chromosome Drive during Pollen Mitosis

    Czech Academy of Sciences Publication Activity Database

    Banaei-Moghaddam, A.M.; Schubert, V.; Kumke, K.; Weiβ, O.; Klemme, S.; Nagaki, K.; Macas, Jiří; González-Sánchez, M.; Heredia, V.; Gómez-Revilla, D.; González-García, M.; Vega, J.M.; Puertas, M.J.; Houben, A.

    2012-01-01

    Roč. 24, č. 10 (2012), s. 4124-4134 ISSN 1040-4651 Institutional research plan: CEZ:AV0Z50510513 Keywords : chromosomes * centromere * repeats Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.251, year: 2012

  10. Conservation of chromosomes syntenic with avian autosomes in squamate reptiles revealed by comparative chromosome painting

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Martina; Giovannotti, M.; Kratochvíl, L.; Caputo, V.; Olmo, E.; Ferguson-Smith, M. A.; Rens, W.

    2012-01-01

    Roč. 121, č. 4 (2012), s. 409-418 ISSN 0009-5915 R&D Projects: GA ČR GAP506/10/0718 Institutional support: RVO:67985904 Keywords : sex-chromosomes * evolution * genome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.340, year: 2012

  11. Chromosome polymorphism in a population of ceratitis capitata

    International Nuclear Information System (INIS)

    Lifschitz, E.

    1987-08-01

    A morphological chromosomal polymorphism along with the observation of B chromosomes in a natural population of Ceratitis capitata is reported. A variability affecting the centromere size of chromosome 3 is described. The observed B chromosome is minute, heterochromatic and telocentric. The B chromosome was found in the male and female germ cells and it exhibited, in the males, intra-individual numerical variation with OB and IB cells, which suggested a mitotic instability. It was also found, in both sexes, in somatic cells (cerebral ganglia tissue). Only males transmitted the B chromosomes to the progeny. The high rate of transmission suggested a differential utilization of the sperm carrying the B chromosomes or a preferential segregation into secondary spermatocytes. Previously reported linkage relationship between a pupal esterase gene (Est-1) and a pupa colour mutant (nig) has been extended to a line carrying a Y-chromosome (Y,B) shorter than the one previously studied (Y,A). Furthermore, an elaborate crossing scheme has been devised in order to estimate the recombination distances between these two genes and a third one affecting pupal length (lp-1). It is concluded that all three genes are in the same linkage group but Est-1 is far from the other two. In turn, nig and lp-1 are separated by 14.9 map units. It is confirmed that genetic recombination does not regularly occur at high frequency in the male and this frequency is not increased by the varying length of the Y-chromosome. Refs, figs, tabs

  12. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis

    Directory of Open Access Journals (Sweden)

    Tamara Potapova

    2017-02-01

    Full Text Available Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.

  13. Marker chromosome 21 identified by microdissection and FISH

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Palmer, C.G. [Indiana Univ. School of Medicine, Indianapolis, IN (United States); Rubinstein, J. [Univ. Affiliated Cincinnati Center for Developmental Disorders, OH (United States)] [and others

    1995-03-27

    A child without Down`s syndrome but with developmental delay, short stature, and autistic behavior was found to be mosaic 46,XX/47,XX,+mar(21) de novo. The marker was a small ring or dot-like chromosome. Microdissection of the marker was performed. The dissected fragments were biotinylated with sequence-independent PCR as a probe pool for fluorescence in situ hybridization (FISH). FISH results suggested an acrocentric origin of the marker. Subsequent FISH with {alpha}-satellite DNA probes for acrocentric chromosomes and chromosome-specific 21 and 22 painting probes confirmed its origin from chromosome 21. 14 refs., 3 figs.

  14. Constitutional chromosome anomalies in patients with cerebral gigantism (Sotos syndrome).

    Science.gov (United States)

    Haeusler, G; Guchev, Z; Köhler, I; Schober, E; Haas, O; Frisch, H

    1993-01-01

    Two boys are presented with the clinical features of cerebral gigantism and chromosomal variants which have not been described so far in this syndrome. In the first boy a de novo pericentric inversion of chromosome Y was found, the karyotypes of all other investigated family members were normal. The patient had an obstructive hypertrophic cardiomyopathy and atrial septal defect type II. The second boy had inherited pericentric inversion of the heterochromatic region of chromosome 9 from his mother. This chromosome 9 variant was also found in his sister who had a similar phenotype but without gigantism. Endocrine evaluation demonstrated normal results in both boys. The intellectual achievement in both cases was average.

  15. Radiation-induced chromosome aberrations in the rat peripheral blood

    International Nuclear Information System (INIS)

    Ziemba-Zoltowska, B.; Bocian, E.; Radwan, I.; Rosiek, O.; Sablinski, J.

    1978-01-01

    Chromosome aberrations in rat lymphocytes of peripheral blood after X (in vitro and in vivo) and 3 H tritiated water (in vivo) irradiations were studied. The yield of chromosome aberrations after in vivo and in vitro exposure to X-rays was similar. The frequency of chromosome aberrations three weeks after exposure to X-rays and soon after irradiation was practically on the same level. The yield of chromosome aberrations determined three weeks after injection with tritiated water or X-rays exposure was similar. (author)

  16. Scanning conductance microscopy investigations on fixed human chromosomes

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Lange, Jacob Moresco; Jensen, Linda Boye

    2008-01-01

    Scanning conductance microscopy investigations were carried out in air on human chromosomes fixed on pre-fabricated SiO2 surfaces with a backgate. The point of the investigation was to estimate the dielectric constant of fixed human chromosomes in order to use it for microfluidic device...... optimization. The phase shift caused by the electrostatic forces, together with geometrical measurements of the atomic force microscopy (AFM) cantilever and the chromosomes were used to estimate a value,for the dielectric constant of different human chromosomes....

  17. The Emerging Role of the Cytoskeleton in Chromosome Dynamics

    Directory of Open Access Journals (Sweden)

    Maya Spichal

    2017-05-01

    Full Text Available Chromosomes underlie a dynamic organization that fulfills functional roles in processes like transcription, DNA repair, nuclear envelope stability, and cell division. Chromosome dynamics depend on chromosome structure and cannot freely diffuse. Furthermore, chromosomes interact closely with their surrounding nuclear environment, which further constrains chromosome dynamics. Recently, several studies enlighten that cytoskeletal proteins regulate dynamic chromosome organization. Cytoskeletal polymers that include actin filaments, microtubules and intermediate filaments can connect to the nuclear envelope via Linker of the Nucleoskeleton and Cytoskeleton (LINC complexes and transfer forces onto chromosomes inside the nucleus. Monomers of these cytoplasmic polymers and related proteins can also enter the nucleus and play different roles in the interior of the nucleus than they do in the cytoplasm. Nuclear cytoskeletal proteins can act as chromatin remodelers alone or in complexes with other nuclear proteins. They can also act as transcription factors. Many of these mechanisms have been conserved during evolution, indicating that the cytoskeletal regulation of chromosome dynamics is an essential process. In this review, we discuss the different influences of cytoskeletal proteins on chromosome dynamics by focusing on the well-studied model organism budding yeast.

  18. Chromosome and cell wall segregation in Streptococcus faecium ATCC 9790

    International Nuclear Information System (INIS)

    Higgins, M.L.; Glaser, D.; Dicker, D.T.; Zito, E.T.

    1989-01-01

    Segregation was studied by measuring the positions of autoradiographic grain clusters in chains formed from single cells containing on average less than one radiolabeled chromosome strand. The degree to which chromosomal and cell wall material cosegregated was quantified by using the methods of S. Cooper and M. Weinberger, dividing the number of chains labeled at the middle. This analysis indicated that in contrast to chromosomal segregation in Escherichia coli and, in some studies, to that in gram-positive rods, chromosomal segregation in Streptococcus faecium was slightly nonrandom and did not vary with growth rate. Results were not significantly affected by strand exchange. In contrast, labeled cell wall segregated predominantly nonrandomly

  19. Chromosome aberrations: plants to human and Feulgen to FISH

    International Nuclear Information System (INIS)

    Natarajan, A.T.

    2005-01-01

    Chromosome aberrations and their impact on human health have been recognized for a long time. In the 1950s, in India, studies on induced chromosome aberrations in plants were initiated by Swaminathan and his students. I trace here the impact of these initial studies on further developments in this field. The studies which were started in plants have been extended to mammals (including human) and the simple squash and solid staining have been improved by molecular cytogenetic techniques, thus enabling accurate identification and quantification of different types of chromosome aberrations. These studies have also thrown light on the mechanisms of chromosome aberration formation, especially following exposure to ionizing radiation. (author)

  20. Chromosomal localization of the human diazepam binding inhibitor gene

    International Nuclear Information System (INIS)

    DeBernardi, M.A.; Crowe, R.R.; Mocchetti, I.; Shows, T.B.; Eddy, R.L.; Costa, E.

    1988-01-01

    The authors have used in situ chromosome hybridization and human-mouse somatic cell hybrids to map the gene(s) for human diazepam binding inhibitor (DBI), an endogenous putative modulator of the γ-aminobutyric acid receptor acting at the allosteric regulatory center of this receptor that includes the benzodiazepine recognition site. In 784 chromosome spreads hybridized with human DBI cDNA, the distribution of 1,476 labeled sites revealed a significant clustering of autoradiographic grains (11.3% of total label) on the long arm of chromosome 2 (2q). Furthermore, 63.5% of the grains found on 2q were located on 2q12-21, suggesting regional mapping of DBI gene(s) to this segment. Secondary hybridization signals were frequently observed on other chromosomes and they were statistically significant mainly for chromosomes 5, 6, 11, and 14. In addition, DNA from 32 human-mouse cell hybrids was digested with BamHI and probed with human DBI cDNA. A 3.5-kilobase band, which probably represents the human DBI gene, was assigned to chromosome 2. Four higher molecular weight bands, also detected in BamHI digests, could not be unequivocally assigned. A chromosome 2 location was excluded for the 27-, 13-, and 10-kilobase bands. These results assign a human DBI gene to chromosome 2 (2q12-21) and indicate that three of the four homologous sequences detected by the human DBI probe are located on three other chromosomes

  1. Linkage group-chromosome correlations in Sordaria macrospora: Chromosome identification by three dimensional reconstruction of their synaptonemal complex.

    Science.gov (United States)

    Zickler, D; Leblon, G; Haedens, V; Collard, A; Thuriaux, P

    1984-01-01

    Reconstruction of serially sectioned zygotene and pachytene nuclei has allowed, by measuring the lengths of synaptonemal complexes, an assignment of the 7 linkage (LG) groups to the 7 chromosomes in the fungus Sordaria macrospora. The 7 LG have been established using 19 mutants showing low second division segregation frequencies. Eight chromosomal rearrangements mapped on the 7 LG were used to identify the chromosomes involved. The following one to one assignment of the 7 LG to specific chromosomes was obtained: LG a: chromosome (chr) 1, LG b: chr5, LG c: chr6, LG d: chr7, LG e: chr4, LG f: chr3 and LG g: chr2 (the chromosome carrying the nucleolus organizer region).

  2. An algorithm for automatic detection of chromosome aberrations induced by radiation using features of gray level profile across the main axis of chromosome image

    International Nuclear Information System (INIS)

    Kawashima, Hironao; Imai, Katsuhiro; Fukuoka, Hideya; Yamamoto, Mikio; Hayata, Isamu.

    1990-01-01

    A simple algorithm for detecting chromosome aberrations induced by radiation is developed. Microscopic images of conventional Giemsa stained chromosomes of rearranged chromosomes (abnormal chromosomes) including dicentric chromosomes, ordinary acentric fragments, small acentric fragments, and acentric rings are used as samples. Variation of width along the main axis and gray level profile across the main axis of the chromosome image are used as features for classification. In 7 microscopic images which include 257 single chromosomes, 90.0% (231 chromosomes) are correctly classified into 6 categories and 23 of 26 abnormal chromosomes are correctly identified. As a result of discrimination between a normal and an abnormal chromosome, 95.3% of abnormal chromosomes are detected. (author)

  3. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.

    Directory of Open Access Journals (Sweden)

    Tanmoy Bhattacharyya

    2014-02-01

    Full Text Available Hybrid sterility (HS belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.

  4. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.

    Science.gov (United States)

    Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri

    2014-02-01

    Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm) allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.

  5. X Chromosome Control of Meiotic Chromosome Synapsis in Mouse Inter-Subspecific Hybrids

    Science.gov (United States)

    Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri

    2014-01-01

    Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes. PMID:24516397

  6. Phenotypic consequences of a mosaic marker chromosome identified by fluorescence in situ hybridization (FISH) as being derived from chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Ray, J.H.; Zhou, X.; Pletcher, B.A. [Cornell Univ. Medical College, Manhasset, NY (United States)] [and others

    1994-09-01

    De novo marker chromosomes are detected in 1 in 2500 amniotic fluid samples and are associated with a 10-15% risk for phenotypic abnormality. FISH can be utilized as a research tool to identify the origins of marker chromosomes. The phenotypic consequences of a marker chromosome derived from the short arm of chromosome 16 are described. A 26-year-old woman underwent amniocentesis at 28 weeks gestation because of a prenatally diagnosed tetralogy of Fallot. Follow-up ultrasounds also showed ventriculomegaly and cleft lip and palate. 32 of 45 cells had the karyotype 47,XY,+mar; the remaining cells were 46,XY. The de novo marker chromosome was C-band positive and non-satellited and failed to stain with distamycin A/DAPI. At birth the ultrasound findings were confirmed and dysmorphic features and cryptorchidism were noted. Although a newborn blood sample contained only normal cells, mosaicism was confirmed in 2 skin biopsies. FISH using whole-chromosome painting and alpha-satellite DNA probes showed that the marker chromosome had originated from chromosome 16. As proximal 16q is distamycin A/DAPI positive, the marker is apparently derived from proximal 16p. At 15 months of age, this child is hypotonic, globally delayed and is gavage-fed. His physical examination is significant for microbrachycephaly, a round face, sparse scalp hair, ocular hypertelorism, exotropia, a flat, wide nasal bridge and tip, mild micrognathia, and tapered fingers with lymphedema of hands and feet. Inguinal hernias have been repaired. His features are consistent with those described for patients trisomic for most or all of the short arm of chromosome 16. Marker chromosomes derived from the short arm of chromosome 16 appear to have phenotypic consequences. As the origin of more marker chromosomes are identified using FISH, their karyotype/phenotype correlations will become more apparent, which will permit more accurate genetic counseling.

  7. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    Science.gov (United States)

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Molecular diagnostic of the philadelphia chromosome

    International Nuclear Information System (INIS)

    Campos Rudin, M.; Cuenca Berger, P.; Gutierrez Espeleta, G.; Jimenez Cruz, G.; Montero Umana, C.; Vazquez Castillo, L.; Ramon Ortiz, M.

    1998-01-01

    The importance that has to confirm the presence or absence of the chromosome Philadelphia in the diagnostic and follow up of the patient affected with chronic myeloid leukemia and other leukemia. It is considered necessary to implement the molecular diagnostic in Costa Rica. They studied 32 patient affected by Chronic Myeloid Leukemia, 7 by other Myeloproliferative Chronic Disorders and 2 by Myelodysplastic Syndrome. It utilized the sound Trans probe-1 (Oncogene Science, Inc), which was marked with radioactivity ( 32 P) or chemiluminescence (digoxigenin). Of the 32 cases affected by L mc, in 28 it was possible to carry out the molecular analysis detecting the characteristic translocation of the chromosome Philadelphia among the Mbcr/c-ABL genes in 21 (75%) of the patients, in 7 (25%) the rearrangement was not found. In seven of the nine affected by other sufferings it was possible to obtain results, 3 that turned out to be positive for the rearrangement among Mbcr/c-ABL and 4 normal. In all the cases, they obtained results marking the sound with radioactivity. However, they tested the marks with digoxigenin in seven of the patients, as an methodological alternative for the laboratories that lacks the requirements to work with radiation. The results obtained were identical. (S. Grainger) [es

  9. Epilepsy and ring chromosome 20: case report

    Directory of Open Access Journals (Sweden)

    Gomes Marleide da Mota

    2002-01-01

    Full Text Available We present the clinical, electroencephalographic, neuroimaging (brain magnetic resonance image - MRI and spectroscopy by MRI and cytogenetic findings of a young male patient with a rare cytogenetic anomaly characterised by a de novo 46,XY,r(20(p13q13.3 karyotype. He presents with mental retardation, emotional liability, and strabismus, without any other significant dysmorphies. There are brain anomalies characterised by corpus callosum, uvula, nodule and cerebellum pyramid hypoplasias, besides arachnoid cysts in the occipital region. He had seizures refractory to pharmacotherapy and long period of confusional status with or without a motor component. The authors recognised that the EEG pattern was not fixed but changed over time, specially for bursts of slow waves with great amplitude accompanied or not by sharp components, and bursts of theta waves sharply contoured. Previously, epilepsy solely has been assigned to region 20q13. However, the important structural cerebral alterations present in our case has not been reported associated to such chromosomal abnormality and may indicate possible new chromosomal sites where such atypical neurological characteristics could be mapped.

  10. Chromosome studies on Brazilian cerrado plants

    Directory of Open Access Journals (Sweden)

    Eliana Regina Forni-Martins

    2000-12-01

    Full Text Available Cerrado is the Brazilian name for the neotropical savanna, which occurs mainly in Brazilian Central Plateau, composed of herbaceous-subshrubby and shrubby-arboreal floras, both of which are heliophilous, highly diverse and regionally differentiated. Considering species distribution and chromosome numbers, some authors have proposed that the herbaceous-subshrubby flora of the neotropical savanna is quite old, while the shrubby-arboreal flora is derived from forests, a hypothesis that implies higher chromosome numbers in the savanna than in the forest. If, however, chromosome numbers are similar in the cerrado and in forests, both could be similarly old, indicating that bi-directional flow of flora occurred in the past. This paper presents data on chromosome numbers and microsporogenesis for 20 species in 13 families collected in the States of São Paulo, Goiás and Minas Gerais, providing previously unpublished data for Myrcia (Myrtaceae, Luxemburgia (Ochnaceae and Hortia (Rutaceae. Meiosis proved to be normal, indicating regularity in the sexual reproductive process. Chromosome numbers varied from 2n = 18 (Allamanda angustifolia: Apocynaceae to 2n = ca. 104 (Ouratea spectabilis: Ochnaceae, being low (20 Cerrado é a palavra que, no Brasil, designa a savana neotropical, com área nuclear no Planalto Central, constituída de uma flora herbáceo-subarbustiva e outra arbustivo-arbórea, ambas heliófilas, altamente diversificadas e regionalmente diferenciadas. Considerando a distribuição de espécies e de números cromossômicos, alguns autores propuseram que a flora herbáceo-subarbustiva da savanna neotropical seria bastante antiga, enquanto a flora arbustivo-arbórea seria derivada das florestas Atlântica e Amazônica, uma hipótese que implica na ocorrência de números cromossômicos mais altos no cerrado que nas florestas. Porém, se os números cromossômicos forem similares no cerrado e nas florestas, ambos os tipos de formação poderiam

  11. B chromosomes are associated with redistribution of genetic recombination towards lower recombination chromosomal regions in perennial ryegrass.

    Science.gov (United States)

    Harper, John; Phillips, Dylan; Thomas, Ann; Gasior, Dagmara; Evans, Caron; Powell, Wayne; King, Julie; King, Ian; Jenkins, Glyn; Armstead, Ian

    2018-04-09

    Supernumerary 'B' chromosomes are non-essential components of the genome present in a range of plant and animal species-including many grasses. Within diploid and polyploid ryegrass and fescue species, including the forage grass perennial ryegrass (Lolium perenne L.), the presence of B chromosomes has been reported as influencing both chromosome pairing and chiasma frequencies. In this study, the effects of the presence/absence of B chromosomes on genetic recombination has been investigated through generating DArT (Diversity Arrays Technology) marker genetic maps for six perennial ryegrass diploid populations, the pollen parents of which contained either two B or zero B chromosomes. Through genetic and cytological analyses of these progeny and their parents, we have identified that, while overall cytological estimates of chiasma frequencies were significantly lower in pollen mother cells with two B chromosomes as compared with zero B chromosomes, the recombination frequencies within some marker intervals were actually increased, particularly for marker intervals in lower recombination regions of chromosomes, namely pericentromeric regions. Thus, in perennial ryegrass, the presence of two B chromosomes redistributed patterns of meiotic recombination in pollen mother cells in ways which could increase the range of allelic variation available to plant breeders.

  12. Small supernumerary marker chromosome derived from proximal p-arm of chromosome 2: identification by fluorescent in situ hybridization.

    Science.gov (United States)

    Lasan Trcić, Ruzica; Hitrec, Vlasta; Letica, Ljiljana; Cuk, Mario; Begović, Davor

    2003-08-01

    Conventional cytogenetics detected an interstitial deletion of proximal region of p-arm of chromosome 2 in a 6-month-old boy with a phenotype slightly resembling Down's syndrome. The deletion was inherited from the father, whose karyotype revealed a small ring-shaped marker chromosome, in addition to interstitial deletion. Fluorescence in situ hybridization identified the marker, which consisted of the proximal region of the p-arm of chromosome 2, including a part of its centromere. This case shows that molecular cytogenetic analysis can reveal the mechanism of the formation of the marker chromosome.

  13. A Rare De novo Complex Chromosomal Rearrangement (CCR) Involving Four Chromosomes in An Oligo-asthenosperm Infertile Man.

    Science.gov (United States)

    Asia, Saba; Vaziri Nasab, Hamed; Sabbaghian, Marjan; Kalantari, Hamid; Zari Moradi, Shabnam; Gourabi, Hamid; Mohseni Meybodi, Anahita

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are rare events involving more than two chromosomes and over two breakpoints. They are usually associated with infertility or sub fertility in male carriers. Here we report a novel case of a CCR in a 30-year-old oligoasthenosperm man with a history of varicocelectomy, normal testes size and normal endocrinology profile referred for chromosome analysis to the Genetics unit of Royan Reproductive Biomedicine Research Center. Chromosomal analysis was performed using peripheral blood lymphocyte cultures and analyzed by GTG banding. Additional tests such as C-banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome microdeletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed. No micro deletion in Y chromosome was detected. The same de novo reciprocal exchange was also found in his monozygous twin brother. The other siblings and parents were normal. CCRs are associated with male infertility as a result of spermatogenic disruption due to complex meiotic configurations and the production of chromosomally abnormal sperms. These chromosomal rearrangements might have an influence on decreasing the number of sperms.

  14. BCR translocation to derivative chromosome 2, a new case of chronic myeloid leukemia with complex variant translocation and Philadelphia chromosome

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Wafa, A.; Al-Medani, S.

    2011-01-01

    The well-known typical fusion gene BCR/ABL can be observed in connection with a complex translocation event in only 5-8% of cases with chronic myeloid leukemia (CML). Herein we report an exceptional CML case with complex chromosomal aberrations not observed before, translocated BCR to the derivative chromosome 2 [der(2)], additional to involving a four chromosomes translocation implying chromosomal regions such as 1p32 and 2q21 besides 9q34 and 22q11.2. Which were characterized by molecular cytogenetics. (author)

  15. Chromosome Banding in Amphibia. XXXVI. Multimorphic Sex Chromosomes and an Enigmatic Sex Determination in Eleutherodactylus johnstonei (Anura, Eleutherodactylidae).

    Science.gov (United States)

    Schmid, Michael; Steinlein, Claus

    2018-01-01

    A detailed cytogenetic study on the leaf litter frog Eleutherodactylus johnstonei from 14 different Caribbean islands and the mainlands of Venezuela and Guyana revealed the existence of multimorphic XY♂/XX♀ sex chromosomes 14. Their male sex determination and development depends either on the presence of 2 telocentric chromosomes 14 (XtYt), or on 1 submetacentric chromosome 14 (Xsm) plus 1 telocentric chromosome 14 (Yt), or on the presence of 2 submetacentric chromosomes 14 (XsmYsm). The female sex determination and development requires either the presence of 2 telocentric chromosomes 14 (XtXt) or 2 submetacentric chromosomes 14 (XsmXsm). In all individuals analyzed, the sex chromosomes 14 carry a prominent nucleolus organizer region in their long arms. An explanation is given for the origin of the (XtYt)♂, (XsmYt)♂, (XsmYsm)♂, (XtXt)♀, and (XsmXsm)♀ in the different populations of E. johnstonei. Furthermore, the present study gives detailed data on the chromosome banding patterns, in situ hybridization experiments, and the genome size of E. johnstonei. © 2018 S. Karger AG, Basel.

  16. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation.

    Directory of Open Access Journals (Sweden)

    Colin D Meiklejohn

    2011-08-01

    Full Text Available The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

  17. The study of human Y chromosome variation through ancient DNA.

    Science.gov (United States)

    Kivisild, Toomas

    2017-05-01

    High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.

  18. Delimiting the origin of a B chromosome by FISH mapping, chromosome painting and DNA sequence analysis in Astyanax paranae (Teleostei, Characiformes.

    Directory of Open Access Journals (Sweden)

    Duílio M Z de A Silva

    Full Text Available Supernumerary (B chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the fish species Astyanax paranae, these two approaches were used along with PCR amplification of specific DNA sequences obtained from the B chromosomes and its comparison with those residing in the A chromosomes. Remarkably, chromosome painting with the one-arm metacentric B chromosome probe showed hybridization signals on entire B chromosome, while FISH mapping revealed the presence of H1 histone and 18S rDNA genes symmetrically placed in both arms of the B chromosome. These results support the hypothesis that the B chromosome of A. paranae is an isochromosome. Additionally, the chromosome pairs Nos. 2 or 23 are considered the possible B chromosome ancestors since both contain syntenic H1 and 18S rRNA sequences. The analysis of DNA sequence fragments of the histone and rRNA genes obtained from the microdissected B chromosomes showed high similarity with those obtained from 0B individuals, which supports the intraspecific origin of B chromosomes in A. paranae. Finally, the population hereby analysed showed a female-biased B chromosome presence suggesting that B chromosomes in this species could influence sex determinism.

  19. A high-resolution comparative map between pig chromosome 17 and human chromosomes 4, 8, and 20: Identification of synteny breakpoints

    DEFF Research Database (Denmark)

    Lahbib-Mansais, Yvette; Karlskov-Mortensen, Peter; Mompart, Florence

    2005-01-01

    We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC1...

  20. NEUROD2 and NEUROD3 genes map to human chromosomes 17q12 and 5q23-q31 and mouse chromosomes 11 and 13, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Tamimi, R.M.; Montgomery-Dyer, K.; Tapscott, S.J. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States)] [and others

    1997-03-01

    NEUROD2 and NEUROD3 are transcription factors involved in neurogenesis that are related to the basic helix-loop-helix protein NEUROD. NEUROD2 maps to human chromosome 17q12 and mouse chromosome 11. NEUROD3 maps to human chromosome 5q23-q31 and mouse chromosome 13. 16 refs., 2 figs.

  1. New trends and techniques in chromosome aberration analysis

    International Nuclear Information System (INIS)

    Bender, M.A.

    1978-01-01

    The following topics are discussed: automation of chromosome analysis; storage of fixed cells from cultures of lymphocytes obtained routinely during periodic employee medical examinations; analysis of banded chromosomes; identification of first division metaphases; sister chromatid exchange; and patterns of aberration induction

  2. Abnormalities of chromosome No. 1: significance in malignant transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J D

    1978-01-01

    Studies of human hematologic malignancies have provided sufficient data not only for the identification of nonrandom abnormalities of whole chromosomes, but also for determination of the specific chromosome regions involved. In clonal aberrations leading to an excess of chromosome No. 1, or a partial excess of No. 1, trisomy for bands 1q25 to 1q32 was noted in the myeloid cells obtained from every one of 35 patients who had various disorders, such as acute leukemia, polycythemia vera, or myelofibrosis. Similar chromosome changes were a consistent finding in various solid tumors as well. This rearrangement was not the result of a particularly fragile site in that region of the chromosome, since the break points in reciprocal translocations that involve No. 1 occurred almost exclusively in the short arm. The nonrandom chromosome changes found in neoplastic cells can now be correlated with the gene loci on these chromosomes or chromosome segments as an attempt is made to identify specific genes that might be related to malignancy.

  3. Supernumerary ring chromosome 20 characterized by fluorescence in situ hybridization

    NARCIS (Netherlands)

    Van Langen, Irene M.; Otter, Mariëlle A.; Aronson, Daniël C.; Overweg-Plandsoen, W.C.G.; Hennekam, Raoul C.M.; Leschot, Nico J.; Hoovers, Jan M.N.

    1996-01-01

    We report on a boy with mild dysmorphic features and developmental delay, in whom karyotyping showed an additional minute ring chromosome in 60% of metaphases. Fluorescence in situ hybridization (FISH) with a centromere specific probe demonstrated that the ring chromosome contained the centromeric

  4. DNA Catenation Maintains Structure of Human Metaphase Chromosomes

    DEFF Research Database (Denmark)

    L. V. Bauer, David; Marie, Rodolphe; Rasmussen, Kristian Hagsted

    2012-01-01

    Mitotic chromosome structure is pivotal to cell division but difficult to observe in fine detail using conventional methods. DNA catenation has been implicated in both sister chromatid cohesion and chromosome condensation, but has never been observed directly. We have used a lab-on-a-chip microfl...

  5. Structural, functional, and evolutionary features of plant sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Vyskot, Boris; Hobza, Roman; Kejnovský, Eduard; Žlůvová, Jitka; Janoušek, Bohuslav

    2009-01-01

    Roč. 17, č. 4 (2009), s. 547 ISSN 0967-3849. [17th International Chromosome Conference. 23.06.2009-26.06.2009, Boone] R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : sex chromosomes * Silene latifolia * epigenetic Subject RIV: BO - Biophysics

  6. Conserved sex chromosomes across adaptively radiated Anolis lizards.

    Science.gov (United States)

    Rovatsos, Michail; Altmanová, Marie; Pokorná, Martina; Kratochvíl, Lukáš

    2014-07-01

    Vertebrates possess diverse sex-determining systems, which differ in evolutionary stability among particular groups. It has been suggested that poikilotherms possess more frequent turnovers of sex chromosomes than homoiotherms, whose effective thermoregulation can prevent the emergence of the sex reversals induced by environmental temperature. Squamate reptiles used to be regarded as a group with an extensive variability in sex determination; however, we document how the rather old radiation of lizards from the genus Anolis, known for exceptional ecomorphological variability, was connected with stability in sex chromosomes. We found that 18 tested species, representing most of the phylogenetic diversity of the genus, share the gene content of their X chromosomes. Furthermore, we discovered homologous sex chromosomes in species of two genera (Sceloporus and Petrosaurus) from the family Phrynosomatidae, serving here as an outgroup to Anolis. We can conclude that the origin of sex chromosomes within iguanas largely predates the Anolis radiation and that the sex chromosomes of iguanas remained conserved for a significant part of their evolutionary history. Next to therian mammals and birds, Anolis lizards therefore represent another adaptively radiated amniote clade with conserved sex chromosomes. We argue that the evolutionary stability of sex-determining systems may reflect an advanced stage of differentiation of sex chromosomes rather than thermoregulation strategy. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  7. Microscopes and computers combined for analysis of chromosomes

    Science.gov (United States)

    Butler, J. W.; Butler, M. K.; Stroud, A. N.

    1969-01-01

    Scanning machine CHLOE, developed for photographic use, is combined with a digital computer to obtain quantitative and statistically significant data on chromosome shapes, distribution, density, and pairing. CHLOE permits data acquisition about a chromosome complement to be obtained two times faster than by manual pairing.

  8. X-Chromosome short tandem repeat, advantages and typing ...

    African Journals Online (AJOL)

    Microsatellites of the X-chromosome have been increasingly studied in recent years as a useful tool in forensic analysis. This review describes some details of X-chromosomal short tandem repeat (STR) analysis. Among them are: microsatellites, amplification using polymerase chain reaction (PCR) of STRs, PCR product ...

  9. Autosomal origin of sex chromosome in a polyploid plant

    Science.gov (United States)

    While theory on sex chromosome evolution is well developed, evidence of the early stages of this process remains elusive, in part because this process unfolded in many animals so long ago. The relatively recent and repeated evolution of separate sexes (dioecy) and sex chromosomes in plants, however,...

  10. Chromosomal mosaicism in human preimplantation embryos: a systematic review.

    NARCIS (Netherlands)

    Echten-Arends, J. van; Mastenbroek, S.; Sikkema-Raddatz, B.; Korevaar, J.C.; Heineman, M.J.; Veen, F. van der; Repping, S.

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is

  11. Chromosomal mosaicism in human preimplantation embryos : a systematic review

    NARCIS (Netherlands)

    van Echten-Arends, Jannie; Mastenbroek, Sebastiaan; Sikkema-Raddatz, Birgit; Korevaar, Johanna C.; Heineman, Maas Jan; van der Veen, Fulco; Repping, Sjoerd

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is

  12. Analysis of repetitive DNA in chromosomes by flow cytometry

    NARCIS (Netherlands)

    Brind'Amour, Julie; Lansdorp, Peter M.

    We developed a flow cytometry method, chromosome flow fluorescence in situ hybridization (FISH), called CFF, to analyze repetitive DNA in chromosomes using FISH with directly labeled peptide nucleic acid (PNA) probes. We used CFF to measure the abundance of interstitial telomeric sequences in

  13. Paternal inheritance of B chromosomes in a parthenogenetic hermaphrodite

    NARCIS (Netherlands)

    Beukeboom, Leo W.; Seif, Miriam; Mettenmeyer, Thomas; Plowman, Amy B.; Michiels, Nicolaas K.

    1996-01-01

    B chromosomes are dispensable elements extra to the standard (A) chromosome complement. They have been described from many sexually reproducing species where they often exploit meiosis to accumulate from one generation to the next. Polycelis nigra is a simultaneously hermaphroditic flatworm that can

  14. Incidence of fetal chromosome abnormalities in insulin dependent diabetic women

    DEFF Research Database (Denmark)

    Henriques, C U; Damm, P; Tabor, A

    1991-01-01

    -diabetic women with little risk of contracting genetic disorders. The results suggest that maternal IDDM does not increase the risk of fetal chromosome abnormality and consequently screening by amniocentesis for chromosome abnormalities among diabetic women does not seem to be indicated....

  15. On the origin of sex chromosomes from meiotic drive

    Science.gov (United States)

    Úbeda, Francisco; Patten, Manus M.; Wild, Geoff

    2015-01-01

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. PMID:25392470

  16. Psychotic disorder and its characteristics in sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Annapia Verri

    2009-09-01

    Full Text Available Sex chromosome anomalies have been associated with psychoses. We report a patient with XYY chromosome anomaly who developed a paranoid psychosis. The second case deal with a 51-year-old woman affected by Turner Syndrome and Psychotic Disorder, with a prevalent somatic and sexual focus.

  17. Genome organization influences partner selection for chromosomal rearrangements

    NARCIS (Netherlands)

    Wijchers, P.J.; de Laat, W.

    2010-01-01

    Chromosomal rearrangements occur as a consequence of the erroneous repair of DNA double-stranded breaks, and often underlie disease. The recurrent detection of specific tumorigenic rearrangements suggests that there is a mechanism behind chromosomal partner selection involving the shape of the

  18. Neo-sex Chromosomes in the Monarch Butterfly, Danaus plexippus

    Directory of Open Access Journals (Sweden)

    Andrew J. Mongue

    2017-10-01

    Full Text Available We report the discovery of a neo-sex chromosome in the monarch butterfly, Danaus plexippus, and several of its close relatives. Z-linked scaffolds in the D. plexippus genome assembly were identified via sex-specific differences in Illumina sequencing coverage. Additionally, a majority of the D. plexippus genome assembly was assigned to chromosomes based on counts of one-to-one orthologs relative to the butterfly Melitaea cinxia (with replication using two other lepidopteran species, in which genome scaffolds have been mapped to linkage groups. Sequencing coverage-based assessments of Z linkage combined with homology-based chromosomal assignments provided strong evidence for a Z-autosome fusion in the Danaus lineage, involving the autosome homologous to chromosome 21 in M. cinxia. Coverage analysis also identified three notable assembly errors resulting in chimeric Z-autosome scaffolds. Cytogenetic analysis further revealed a large W chromosome that is partially euchromatic, consistent with being a neo-W chromosome. The discovery of a neo-Z and the provisional assignment of chromosome linkage for >90% of D. plexippus genes lays the foundation for novel insights concerning sex chromosome evolution in this female-heterogametic model species for functional and evolutionary genomics.

  19. Visualizing how cancer chromosome abnormalities form in living cells

    Science.gov (United States)

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  20. ON THE TOPOGRAPHY OF THE SEX- CHROMOSOME IN

    Indian Academy of Sciences (India)

    over, we endeavoured to find the relative distribution of these genes in their chromosome, and to determine the distance between them, having in view the construction of a map of the sex-chromosome of fowls. We studied the following genes (in ...

  1. The DNA sequence of the human X chromosome

    Science.gov (United States)

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  2. Identification of Pneumocystis carinii chromosomes and mapping of five genes

    DEFF Research Database (Denmark)

    Lundgren, B; Cotton, R; Lundgren, J D

    1990-01-01

    Pulsed field gel electrophoresis was used to identify the chromosome-size DNA of Pneumocystis carinii, a major pathogen of immunocompromised patients. Thirteen chromosomes of rodent Pneumocystis carinii, ranging in size from 300 to 700 kilobases (kb), were identified. The minimum genome size for ...

  3. Radiation induced chromosome aberrations and interphase DNA geometry

    International Nuclear Information System (INIS)

    Nasazzi, N.; Di Giorgio, M.; Otero, D.

    1995-01-01

    Ionizing radiation induces DNA double strand breaks (DSBs) and their interaction and illegitimate recombination produces chromosome aberrations. Stable chromosome aberrations comprise inter-chromosomal events (translocations) and intra-chromosomal events (inversions). Assuming DSBs induction and interaction is completely random and neglecting proximity effects, the expected ratio of translocations to inversions is F=86, based on chromosome arm lengths. We analyzed the number of translocations and inversions using G-banding, in 16 lymphocyte cultures from blood samples acutely irradiated with γ-rays (dose range: 0.5Gy-3Gy). Our results give F=13.5, significantly smaller than F=86. Literature data show similar small F values but strongly spread. The excess of inversions could be explained by a 'proximity effect', it means that more proximate DSBs have an extra probability of interaction. Therefore, it is possible to postulate a special chromosome arrangement during irradiation and the subsequent interval. We propose a model where individual chromosomes show spherical confinement with some degree of overlapping and DSBs induction proportional to cross section. We assume a DSBs interaction probability function with cut-off length = 1 μ. We propose that large spread in F data could be due to temporal variation in overlapping and spatial chromosome confinement. (author). 14 refs

  4. Forensic use of Y-chromosome DNA: a general overview

    NARCIS (Netherlands)

    M.H. Kayser (Manfred)

    2017-01-01

    textabstractThe male-specific part of the human Y chromosome is widely used in forensic DNA analysis, particularly in cases where standard autosomal DNA profiling is not informative. A Y-chromosomal gene fragment is applied for inferring the biological sex of a crime scene trace donor. Haplotypes

  5. [Chromomeric organization of interphase chromosomes in Drosophila melanogaster].

    Science.gov (United States)

    Zhuimulev, I F; Beliaeva, E S; Zykova, T Iu; Semeshin, V F; Demakov, S A; Demakova, O V; Goncharov, F P; Khoroshko, V A; Boldyreva, L V; Kokoza, E B; Pokholkiova, G V

    2013-01-01

    As a result of treatment of bioinformatic data on the genome localization of structural proteins, histone modifications, DNase-hypersensitive regions, replication origins (taken from modENCODE) and their cytological localization to polytene chromosome structures, it is shown here that two types of interphase chromosomes -polytene chromosomes from salivary glands and from mitotically dividing cells cultures - demonstrate identical pictures of interband/band, i. e. the same localization and length on physical map and the same sets of proteins. In the interbands of both chromosome types we find the proteins that control initiation of transcription (RNA-polymerase II, transcription factors), replication (ORC2) as well as proteins modifying nucleosome structure (WDS, NURF) and proteins of insulators (BEAF). The nucleosome density and H1 histone concentration in the interbands are depleted; localization of DNase-hypersensitive regions corresponds strictly to the interbands. So, we conclude that both polytene and cell line interphase chromosomes are arranged according to general principle and polytene chromosomes represent precise model of interphase chromosomes. The interbands play a critical role in the initiation of transcription and replication. The interbands of interphase chromosomes are the sites of 5' parts of genes, while the 3' gene ends are located in the adjacent bands. The constancy of interbands decondensation results in the conclusion that the "interbands" genes are constantly active, i. e. they contain "house-keeping" genes. The large late replicating bands contain genes that do not have direct contact to the adjoining interbands are usually polygenic and contain tissue-specific genes.

  6. Medulloblastoma outcome is adversely associated with overexpression of EEF1D, RPL30, and RPS20 on the long arm of chromosome 8

    International Nuclear Information System (INIS)

    De Bortoli, Massimiliano; Man, Tsz-Kwong; Rao, Pulivarthi H; Kim, John YH; Castellino, Robert C; Lu, Xin-Yan; Deyo, Jeffrey; Sturla, Lisa Marie; Adesina, Adekunle M; Perlaky, Laszlo; Pomeroy, Scott L; Lau, Ching C

    2006-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. Improvements in clinical outcome require a better understanding of the genetic alterations to identify clinically significant biological factors and to stratify patients accordingly. In the present study, we applied cytogenetic characterization to guide the identification of biologically significant genes from gene expression microarray profiles of medulloblastoma. We analyzed 71 primary medulloblastomas for chromosomal copy number aberrations (CNAs) using comparative genomic hybridization (CGH). Among 64 tumors that we previously analyzed by gene expression microarrays, 27 were included in our CGH series. We analyzed clinical outcome with respect to CNAs and microarray results. We filtered microarray data using specific CNAs to detect differentially expressed candidate genes associated with survival. The most frequent lesions detected in our series involved chromosome 17; loss of 16q, 10q, or 8p; and gain of 7q or 2p. Recurrent amplifications at 2p23-p24, 2q14, 7q34, and 12p13 were also observed. Gain of 8q is associated with worse overall survival (p = 0.0141), which is not entirely attributable to MYC amplification or overexpression. By applying CGH results to gene expression analysis of medulloblastoma, we identified three 8q-mapped genes that are associated with overall survival in the larger group of 64 patients (p < 0.05): eukaryotic translation elongation factor 1D (EEF1D), ribosomal protein L30 (RPL30), and ribosomal protein S20 (RPS20). The complementary use of CGH and expression profiles can facilitate the identification of clinically significant candidate genes involved in medulloblastoma growth. We demonstrate that gain of 8q and expression levels of three 8q-mapped candidate genes (EEF1D, RPL30, RPS20) are associated with adverse outcome in medulloblastoma

  7. Tissue- and stage-dependent dosage compensation on the Neo-X chromosome in drosophila pseudoobscura

    KAUST Repository

    Nozawa, Masafumi; Fukuda, Nana; Ikeo, Kazuho; Gojobori, Takashi

    2013-01-01

    Sex chromosome dosage compensation (DC) is widely accepted in various organisms. This concept is mostly supported by comparisons of gene expression between chromosomes and between sexes. However, genes on the X chromosome and autosomes are mostly

  8. Accelerated pseudogenization on the neo-X chromosome in Drosophila miranda

    KAUST Repository

    Nozawa, Masafumi; Onizuka, Kanako; Fujimi, Mai; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    Y chromosomes often degenerate via the accumulation of pseudogenes and transposable elements. By contrast, little is known about X-chromosome degeneration. Here we compare the pseudogenization process between genes on the neo-sex chromosomes

  9. Chromosomal aberrations in bone marrow of continuously irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Chlebosky, O; Praslicka, M; Chlebovska, K [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1975-01-01

    Research on chromosomal aberrations of the bone marrow in continuously irradiated rats showed that chromosomal aberrations are a highly sensitive indicator of radiation injury. An increase in the chromosomal aberration frequency was already found on the 5th day at daily doses of 0.5 R, i.e. a 12% increase at a total dose of 25 R. In the steady-state stage at daily doses of 0.5; 1; 2.5 R, the number of chromosomal aberrations stabilized at values of about 20%; at daily doses of 5 and 10 R at values of 30.=., at daily doses of 53 R at 45%, at a daily dose of 82.5 R, the number of chromosomal aberrations increased to 55%.

  10. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    International Nuclear Information System (INIS)

    Ejima, Yosuke

    1988-01-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G 0 or G 1 phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases. (author)

  11. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Ejima, Yosuke; Ikushima, Takaji (ed.)

    1988-07-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G/sub 0/ or G/sub 1/ phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases.

  12. Identification of Pneumocystis carinii chromosomes and mapping of five genes

    DEFF Research Database (Denmark)

    Lundgren, B; Cotton, R; Lundgren, J D

    1990-01-01

    Pulsed field gel electrophoresis was used to identify the chromosome-size DNA of Pneumocystis carinii, a major pathogen of immunocompromised patients. Thirteen chromosomes of rodent Pneumocystis carinii, ranging in size from 300 to 700 kilobases (kb), were identified. The minimum genome size for P....... carinii, estimated on the basis of the sizes of chromosomes, is 7,000 kb. Genetic heterogeneity among different P. carinii isolates was documented by demonstration of chromosomal size variability. By hybridization studies, the genes for topoisomerase I, dihydrofolate reductase, rRNA, actin......, and thymidylate synthase were mapped to single chromosomes of approximately 650, 590, 550, 460, and 350 kb, respectively. Hybridization studies further confirmed the genetic heterogeneity of P. carinii....

  13. An improved method for chromosome counting in maize.

    Science.gov (United States)

    Kato, A

    1997-09-01

    An improved method for counting chromosomes in maize (Zea mays L.) is presented. Application of cold treatment (5C, 24 hr), heat treatment (42 C, 5 min) and a second cold treatment (5C, 24 hr) to root tips before fixation increased the number of condensed and dispersed countable metaphase chromosome figures. Fixed root tips were prepared by the enzymatic maceration-air drying method and preparations were stained with acetic orcein. Under favorable conditions, one preparation with 50-100 countable chromosome figures could be obtained in diploid maize using this method. Conditions affecting the dispersion of the chromosomes are described. This technique is especially useful for determining the somatic chromosome number in triploid and tetraploid maize lines.

  14. Spectral Karyotyping. An new method for chromosome analysis

    International Nuclear Information System (INIS)

    Zhou Liying; Qian Jianxin; Guo Xiaokui; Dai Hong; Liu Yulong; Zhou Jianying

    2006-01-01

    Spectral Karyotyping (SKY) can reveal fine changes in Chromosome structure which could not be detected by G, R, Q banding before, has become an accurate, sensitive and reliable method for karyotyping, promoted the development of cell genetics to molecular level and has been used in medicine and radiological injury research. It also has the ability of analyzing 24 chromosomes on its once test run and, find implicated structure of chromosome changes, such as metathesis, depletion, amplification, rearrangement, dikinetochore, equiarm and maker-body, detect the abnormal change of stable Chromosome and calculate the bio-dose curve; The abnormal Chromosome detected by SKY can be adopted as early diagnosis, effective indexes of minor remaining changes for use of monitor of treatment and in the duration of follow up. This technique provides us a more advanced and effective method for relative gene cloning and the study of pathological mechanism of cancer. (authors)

  15. Chromosomal Abnormalities Associated with Neural Tube Defects (I: Full Aneuploidy

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-12-01

    Full Text Available Fetuses with neural tube defects (NTDs carry a risk of chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with other structural abnormalities, and family history of chromosome aberrations. This article provides an overview of chromosomal abnormalities associated with NTDs in embryos, fetuses, and newborn patients, and a comprehensive review of numerical chromosomal abnormalities associated with NTDs, such as trisomy 18, trisomy 13, triploidy, trisomy 9, trisomy 2, trisomy 21, trisomy 7, trisomy 8, trisomy 14, trisomy 15, trisomy 16, trisomy 5 mosaicism, trisomy 11 mosaicism, trisomy 20 mosaicism, monosomy X, and tetraploidy. NTDs may be associated with aneuploidy. Perinatal identification of NTDs should alert one to the possibility of chromosomal abnormalities and prompt a thorough cytogenetic investigation and genetic counseling.

  16. G2 chromosomal radiosensitivity in Fanconi's anemia

    International Nuclear Information System (INIS)

    Bigelow, S.B.; Rary, J.M.; Bender, M.A.

    1979-01-01

    Both the peripheral lymphocytes from 4 patients affected with the inherited disease Fanconi's anemia (FA), and tissue-culture fibroblasts from skin biopsies from 33 patients similarly affected were found to be about twice as sensitive to the induction of chromatid-type chromosomal aberrations by X-rays administered in the G 2 phase of the cell cycle as cells from normal controls. Using tritiated thymidine labelling of peripheral lymphocytes and of cultured fibroblasts, it was determined that 3 affected patients and 3 normal controls all had similar percent labeled mitoses (PLM) curves, so the increased induced aberration yields seen in the FA cells do not appear to be simply a consequence of a longer than normal G 2 phase of the cell cycle. (Auth.)

  17. Nonequilibrium Chromosome Looping via Molecular Slip Links

    Science.gov (United States)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  18. Implications for x-chromosome regulation from studies of human x-chromosome DNA

    International Nuclear Information System (INIS)

    Wolf, S.F.; Migeon, B.R.

    1983-01-01

    It is clear that there must be multiple events involved in the regulation of the mammalian X chromosome. The initial event, occurring about the time of implantation results in inactivation of all but a single X chromosome in diploid cells. A popular working hypothesis is that DNA modification, such as methylation or sequence rearrangement, might be responsible for maintenance of the inactive state. Methylation is particularly attractive, since the preference for methylating half-methylated sites might result in perpetuation of the differentiated state. In this paper we discuss several facets of our studies of X inactivation; specifically, our general strategy, studies of X DNA methylation, and studies of loci that escape inactivation. 47 references, 8 figures, 2 tables

  19. Survival and transmission of symmetrical chromosomal aberrations

    International Nuclear Information System (INIS)

    Savage, J.R.K.

    1979-01-01

    The interaction between the lesions to produce chromosomal structural changes may be either asymmetrical (A) or symmetrical (S). In A, one or more acentric fragments are always produced, and there may also be the mechanical separation problems resulting from bridges at anaphase, while S-changes never produce fragment, and pose no mechanical problem in cell division. If A and S events occur with equal frequency, it might be an indication that they are truly the alternative modes of lesion interaction. Unstimulated lymphocytes were irradiated with 2.68 Gy 250 kV X-ray, and metaphases were sampled at 50 h after the stimulation. Preparations were complete diploid cells, and any obvious second division cells were rejected. So far as dermal repair and fibroblast functions are concerned, aberration burden seems to have little consequence from the view-point of the long-term survival in vivo. Large numbers of aberrations (mainly S translocation and terminal deletion) were found in the samples taken up to 60 years after therapy. Skin biopsies were removed 1 day and 6 months after irradiation and cultured. In irradiated cells, reciprocal translocations dominated, followed by terminal deletions, then inversions, while no chromosome-type aberration was seen in the control cells. a) The relative occurrence of A : S changes, b) long-term survival in vivo, c) the possibility of in vivo repair, and d) some unusual features of translocation found in Syrian hamsters are reviewed. The relevance or importance of major S events is clearly dependent upon the cells, the tissues or the organisms in which they occur. (Yamashita, S.)

  20. Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Ai Xia

    2010-05-01

    Full Text Available Nonrandom distribution of rearrangements is a common feature of eukaryotic chromosomes that is not well understood in terms of genome organization and evolution. In the major African malaria vector Anopheles gambiae, polymorphic inversions are highly nonuniformly distributed among five chromosomal arms and are associated with epidemiologically important adaptations. However, it is not clear whether the genomic content of the chromosomal arms is associated with inversion polymorphism and fixation rates.To better understand the evolutionary dynamics of chromosomal inversions, we created a physical map for an Asian malaria mosquito, Anopheles stephensi, and compared it with the genome of An. gambiae. We also developed and deployed novel Bayesian statistical models to analyze genome landscapes in individual chromosomal arms An. gambiae. Here, we demonstrate that, despite the paucity of inversion polymorphisms on the X chromosome, this chromosome has the fastest rate of inversion fixation and the highest density of transposable elements, simple DNA repeats, and GC content. The highly polymorphic and rapidly evolving autosomal 2R arm had overrepresentation of genes involved in cellular response to stress supporting the role of natural selection in maintaining adaptive polymorphic inversions. In addition, the 2R arm had the highest density of regions involved in segmental duplications that clustered in the breakpoint-rich zone of the arm. In contrast, the slower evolving 2L, 3R, and 3L, arms were enriched with matrix-attachment regions that potentially contribute to chromosome stability in the cell nucleus.These results highlight fundamental differences in evolutionary dynamics of the sex chromosome and autosomes and revealed the strong association between characteristics of the genome landscape and rates of chromosomal evolution. We conclude that a unique combination of various classes of genes and repetitive DNA in each arm, rather than a single type

  1. Heterozygous effects of irradiated chromosomes on viability in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Simmons, M.J.

    1976-01-01

    Two large experiments were conducted in order to evaluate the heterozygous effects of irradiated chromosomes on viability. Mutations were accumulated on several hundred second chromosomes by delivering doses of 2,500R over either two or four generations for total x-ray exposures of 5,000R or 10,000R. Chromosomes treated with 5,000R were screened for lethals after the first treatment, and surviving nonlethals were used to generate families of fully treated chromosomes. The members of these families shared the effects of the first irradiation, but differed with respect to those of the second. The chromosomes treated with 10,000R were not grouped into families since mutations were accumulated independently on each chromosome in that experiment. Heterozygous effects on viability of the irradiated chromosomes were tested in both isogenic (homozygous) and nonisogenic (heterozygous) genetic backgrounds. In conjunction with these tests, homozygous viabilities were determined by the marked-inversion technique. This permitted a separation of the irradiated chromosomes into those which were drastic when made homozygous and those which were not. The results indicate that drastic chromosomes have deleterious effects in heterozygous condition, since viability was reduced by 2 to 4 percent in tests performed with the 10,000R chromosomes, and by 1 percent in those involving the 5,000R material. Within a series of tests, the effects were more pronounced when the genetic background was homozygous. These results suggest that the mutants induced by high doses of x-rays are principally drastic ones which show deleterious effects on viability in heterozygous condition

  2. Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups.

    Science.gov (United States)

    Marcone, C; Neimark, H; Ragozzino, A; Lauer, U; Seemüller, E

    1999-09-01

    ABSTRACT Chromosome sizes of 71 phytoplasmas belonging to 12 major phylogenetic groups including several of the aster yellows subgroups were estimated from electrophoretic mobilities of full-length chromosomes in pulsed-field gels. Considerable variation in genome size, from 660 to 1,130 kilobases (kb), was observed among aster yellows phytoplasmas. Chromosome size heterogeneity was also observed in the stolbur phytoplasma group (range 860 to 1,350 kb); in this group, isolate STOLF contains the largest chromosome found in a phytoplasma to date. A wide range of chromosome sizes, from 670 to 1,075 kb, was also identified in the X-disease group. The other phytoplasmas examined, which included members of the apple proliferation, Italian alfalfa witches' broom, faba bean phyllody, pigeon pea witches' broom, sugarcane white leaf, Bermuda grass white leaf, ash yellows, clover proliferation, and elm yellows groups, all have chromosomes smaller than 1 megabase, and the size ranges within each of these groups is narrower than in the aster yellows, stolbur, and X-disease groups. The smallest chromosome, approximately 530 kb, was found in two Bermuda grass white leaf phytoplasma isolates. This not only is the smallest mollicute chromosome found to date, but also is the smallest chromosome known for any cell. More than one large DNA band was observed in several phytoplasma preparations. Possible explanations for the occurrence of more than one band may be infection of the host plant by different phytoplasmas, the presence of more than one chromosome in the same organism, or the presence of large extrachromosomal DNA elements.

  3. Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae).

    Science.gov (United States)

    Schmid, Michael; Steinlein, Claus

    2015-01-01

    Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species.

  4. Fluorescence in situ hybridization: an improved method of quantitating chromosome damage and repair

    International Nuclear Information System (INIS)

    Brown, J.M.; Evans, J.W.

    1993-01-01

    The authors combined fluorescence in situ hybridization (FISH) with specific full-length chromosome probes using the premature chromosome condensation (PCC) technique chromosome condensation (PCC) technique to simplify scoring chromosome damage and its repair. They have shown the technique works well and enables breaks and exchanges to be readily detected and scored in individual chromosomes. A chromosome 4 full-length specific library has been used in initial studies. (UK)

  5. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, P.E.; Gosden, J.; Lawson, D. [Western General Hospital, Edinburgh (United Kingdom)] [and others

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize and spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.

  6. Evaluating the relationship between spermatogenic silencing of the X chromosome and evolution of the Y chromosome in chimpanzee and human

    NARCIS (Netherlands)

    E. Mulugeta (Eskeatnaf); W.M. Baarends (Willy); J.H. Gribnau (Joost); J.A. Grootegoed (Anton)

    2010-01-01

    textabstractChimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural

  7. A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, F.; Wu, J.Z.; Kanamori, H.; Tanaka, T.; Katagiri, S.; Karasawa, W.; Kaneko, S.; Watanabe, S.; Sakaguchi, T.; Šafář, Jan; Šimková, Hana; Mukai, Y.; Hamada, M.; Saito, M.; Hayakawa, K.; Doležel, Jaroslav; Nasuda, S.; Matsumoto, T.; Handa, H.

    2015-01-01

    Roč. 16, AUG 12 (2015), s. 595 ISSN 1471-2164 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Centromere * Chromosomal rearrangement * Chromosome 6B Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.867, year: 2015

  8. Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing

    DEFF Research Database (Denmark)

    Skovgaard, Ole; Bak, Mads; Løbner-Olesen, Anders

    2011-01-01

    a combination of WGS and genome copy number analysis, for the identification of mutations that suppress the growth deficiency imposed by excessive initiations from the Escherichia coli origin of replication, oriC. The E. coli chromosome, like the majority of bacterial chromosomes, is circular, and DNA...... replication is initiated by assembling two replication complexes at the origin, oriC. These complexes then replicate the chromosome bidirectionally toward the terminus, ter. In a population of growing cells, this results in a copy number gradient, so that origin-proximal sequences are more frequent than...... origin-distal sequences. Major rearrangements in the chromosome are, therefore, readily identified by changes in copy number, i.e., certain sequences become over- or under-represented. Of the eight mutations analyzed in detail here, six were found to affect a single gene only, one was a large chromosomal...

  9. The significance of chromosome deletions in atomic-bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Shigeta, Chiharu; Oguma, Nobuo; Kamada, Nanao; Deng, Z.; Niimi, Masanobu; Aisaka, Tadaichi.

    1986-01-01

    In 39 A-bomb survivors 40 years after exposure at ≤ 1,000 m from ground zero, the frequency and features of chromosome deletions in peripheral lymphocytes were examined using a differential staining technique. Simultaneously, in vitro irradiation experiment with Cf-252 was made to infer chromosome aberrations occuring immediately after exposure. Californium-252 with 100 rad induced dicentric and ring chromosomes in 40 % of the cells and acentric fragments in 44 %. Among the A-bomb survivors, chromosome aberrations were observed in 651 (21 %) of the total 3,136 cells. There were 146 cells with deletions (22 % of abnormal cells; 5 % of the total cells), and 10 cells with acentric fragment (0.3 % of the total cells). The figure for deletions was far higher than that reported in the literature. A large number of deletions were seen in chromosomes no.4, no.21, and no.22, and a few deletions in chromosomes no.7 and no.20. Significance of chromosome deletions is discussed. (Namekawa, K.)

  10. Preparation and bivariate analysis of suspensions of human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    van den Engh, G.J.; Trask, B.J.; Gray, J.W.; Langlois, R.G.; Yu, L.C.

    1985-01-01

    Chromosomes were isolated from a variety of human cell types using a HEPES-buffered hypotonic solution (pH 8.0) containing KCl, MgSO/sub 4/ dithioerythritol, and RNase. The chromosomes isolated by this procedure could be stained with a variety of fluorescent stains including propidium iodide, chromomycin A3, and Hoeschst 33258. Addition of sodium citrate to the stained chromosomes was found to improve the total fluorescence resolution. High-quality bivariate Hoeschst vs. chromomycin fluorescence distributions were obtained for chromosomes isolated from a human fibroblast cell strain, a human colon carcinoma cell line, and human peripheral blood lymphocyte cultures. Good flow karyotypes were also obtained from primary amniotic cell cultures. The Hoeschst vs. chromomycin flow karyotypes of a given cell line, made at different times and at dye concentrations varying over fourfold ranges, show little variation in the relative peak positions of the chromosomes. The size of the DNA in chromosomes isolated using this procedure ranges from 20 to 50 kilobases. The described isolation procedure is simple, it yields high-quality flow karyotypes, and it can be used to prepare chromosomes from clinical samples. 22 references, 7 figures, 1 table.

  11. Chromosomal mechanisms in murine radiation acute myeloid leukemogenesis

    International Nuclear Information System (INIS)

    Bouffler, S.D.; Breckon, G.; Cox, R.

    1996-01-01

    Chromosome 2 abnormalities, particularly interstitial deletions, characterize murine radiation-induced acute myeloid leukaemias (AMLs). Here, G-band analyses in CBA/H mice of early (1-6 month) post 3 Gy X-radiation events in bone marrow cells in vivo and karyotype evolution in one unusual AML are presented. The early event analysis showed that all irradiated animals carry chromosome 2 abnormalities, that chromosome 2 abnormalities are more frequent than expected and that interstitial deletions are more common in chromosome 2 than in the remainder of the genome. On presentation AML case N122 carried a t(2; 11) terminal translocation which, with passaging, evolved into a del2(C3F3). Therefore two pathways in leukaemogenesis might exist, one deletion-driven, the other terminal tranlocation-driven involving interstitial genes and terminal genes respectively of chromosome 2. As all irradiated individuals carried chromosome 2 abnormalities, the formation of these aberrations does not determine individual leukaemogenic sensitivity as only 20-25% of animals would be expected to develop AML. Similar lines of argument suggest that chromosome 2 abnormalities are necessary but not sufficient for radiation leukaemogenesis in CBA/H nor are they rate limiting in leukaemogenesis. (Author)

  12. Microgravitational effects on chromosome behavior (7-IML-1)

    Science.gov (United States)

    Bruschi, Carlo

    1992-01-01

    The effects of the two major space-related conditions, microgravity and radiation, on the maintenance and transmission of genetic information have been partially documented in many organisms. Specifically, microgravity acts at the chromosomal level, primarily on the structure and segregation of chromosomes, in producing major abberations such as deletions, breaks, nondisjunction, and chromosome loss, and to a lesser degree, cosmic radiation appears to affect the genic level, producing point mutations and DNA damage. To distinguish between the effects from microgravity and from radiation, it is necessary to monitor both mitotic and meiotic genetic damage in the same organism. The yeast Saccharomyces cerevisiae is used to monitor at high resolution the frequency of chromosome loss, nondisjunction, intergenic recombination, and gene mutation in mitotic and meiotic cells, to a degree impossible in other organisms. Because the yeast chromosomes are small, sensitive measurements can be made that can be extrapolated to higher organisms and man. The objectives of the research are: (1) to quantitate the effects of microgravity and its synergism with cosmic radiation on chromosomal integrity and transmission during mitosis and meiosis; (2) to discriminate between chromosomal processes sensitive to microgravity and/or radiation during mitosis and meiosis; and (3) to relate these findings to anomalous mitotic mating type switching and ascosporogenesis following meiosis.

  13. Genetic maps of polymorphic DNA loci on rat chromosome 1

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yan-Ping; Remmers, E.F.; Longman, R.E. [National Institutes of Health, Bethesda, MD (United States)] [and others

    1996-09-01

    Genetic linkage maps of loci defined by polymorphic DNA markers on rat chromosome 1 were constructed by genotyping F2 progeny of F344/N x LEW/N, BN/SsN x LEW/N, and DA/Bkl x F344/Hsd inbred rat strains. In total, 43 markers were mapped, of which 3 were restriction fragment length polymorphisms and the others were simple sequence length polymorphisms. Nineteen of these markers were associated with genes. Six markers for five genes, {gamma}-aminobutyric acid receptor {beta}3 (Gabrb3), syntaxin 2 (Stx2), adrenergic receptor {beta}3 (Gabrb3), syntaxin 2 (Stx2), adrenergic receptor {beta}1 (Adrb1), carcinoembryonic antigen gene family member 1 (Cgm1), and lipogenic protein S14 (Lpgp), and 20 anonymous loci were not previously reported. Thirteen gene loci (Myl2, Aldoa, Tnt, Igf2, Prkcg, Cgm4, Calm3, Cgm3, Psbp1, Sa, Hbb, Ins1, and Tcp1) were previously mapped. Comparative mapping analysis indicated that the large portion of rat chromosome 1 is homologous to mouse chromosome 7, although the homologous to mouse chromosome 7, although the homologs of two rat genes are located on mouse chromosomes 17 and 19. Homologs of the rat chromosome 1 genes that we mapped are located on human chromosomes 6, 10, 11, 12, 15, 16, and 19. 38 refs., 1 fig., 3 tabs.

  14. Reassignment of Drosophila willistoni Genome Scaffolds to Chromosome II Arms.

    Science.gov (United States)

    Garcia, Carolina; Delprat, Alejandra; Ruiz, Alfredo; Valente, Vera L S

    2015-10-04

    Drosophila willistoni is a geographically widespread Neotropical species. The genome of strain Gd-H4-1 from Guadeloupe Island (Caribbean) was sequenced in 2007 as part of the 12 Drosophila Genomes Project. The assembled scaffolds were joined based on conserved linkage and assigned to polytene chromosomes based on a handful of genetic and physical markers. This paucity of markers was particularly striking in the metacentric chromosome II, comprised two similarly sized arms, IIL and IIR, traditionally considered homologous to Muller elements C and B, respectively. In this paper we present the cytological mapping of 22 new gene markers to increase the number of markers mapped by in situ hybridization and to test the assignment of scaffolds to the polytene chromosome II arms. For this purpose, we generated, by polymerase chain reaction amplification, one or two gene probes from each scaffold assigned to the chromosome II arms and mapped these probes to the Gd-H4-1 strain's polytene chromosomes by nonfluorescent in situ hybridization. Our findings show that chromosome arms IIL and IIR correspond to Muller elements B and C, respectively, directly contrasting the current homology assignments in D. willistoni and constituting a major reassignment of the scaffolds to chromosome II arms. Copyright © 2015 Garcia et al.

  15. Naturally occurring minichromosome platforms in chromosome engineering: an overview.

    Science.gov (United States)

    Raimondi, Elena

    2011-01-01

    Artificially modified chromosome vectors are non-integrating gene delivery platforms that can shuttle very large DNA fragments in various recipient cells: theoretically, no size limit exists for the chromosome segments that an engineered minichromosome can accommodate. Therefore, genetically manipulated chromosomes might be potentially ideal vector systems, especially when the complexity of higher eukaryotic genes is concerned. This review focuses on those chromosome vectors generated using spontaneously occurring small markers as starting material. The definition and manipulation of the centromere domain is one of the main obstacles in chromosome engineering: naturally occurring minichromosomes, due to their inherent small size, were helpful in defining some aspects of centromere function. In addition, several distinctive features of small marker chromosomes, like their appearance as supernumerary elements in otherwise normal karyotypes, have been successfully exploited to use them as gene delivery vectors. The key technologies employed for minichromosome engineering are: size reduction, gene targeting, and vector delivery in various recipient cells. In spite of the significant advances that have been recently achieved in all these fields, several unsolved problems limit the potential of artificially modified chromosomes. Still, these vector systems have been exploited in a number of applications where the investigation of the controlled expression of large DNA segments is needed. A typical example is the analysis of genes whose expression strictly depends on the chromosomal environment in which they are positioned, where engineered chromosomes can be envisaged as epigenetically regulated expression systems. A novel and exciting advance concerns the use of engineered minichromosomes to study the organization and dynamics of local chromatin structures.

  16. Turnover of sex chromosomes in the stickleback fishes (gasterosteidae.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2009-02-01

    Full Text Available Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae. Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus have a heteromorphic XY pair corresponding to linkage group (LG 19. In this study, we found that the ninespine stickleback (Pungitius pungitius has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X(1X(2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans and the fourspine stickleback (Apeltes quadracus. However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems.

  17. Production and characterization of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of Japanese bunching onion (A. fistulosum L.).

    Science.gov (United States)

    Hang, Tran Thi Minh; Shigyo, Masayoshi; Yamauchi, Naoki; Tashiro, Yosuke

    2004-10-01

    First and second backcrosses of amphidiploid hybrids (2n = 4x = 32, genomes AAFF) between shallot (Allium cepa Aggregatum group) and A. fistulosum were conducted to produce A. cepa - A. fistulosum alien addition lines. When shallot (A. cepa Aggregatum group) was used as a pollinator, the amphidiploids and allotriploids set germinable BC(1) and BC(2) seeds, respectively. The 237 BC(1) plants mainly consisted of 170 allotriploids (2n = 3x = 24, AAF) and 42 hypo-allotriploids possessing 23 chromosomes, i.e., single-alien deletions (2n = 3x-1 = 23, AAF-nF). The single-alien deletions in the BC(1) progeny showed dwarfing characteristics and were discriminated from the allotriploids (2n = 24) and hyper-allotriploids (2n = 25) by means of flow cytometric analysis. The chromosome numbers of 46 BC(2) seedlings varied from 16 to 24. Eight monosomic additions (2n = 2x+1 = 17, AA+nF) and 20 single-alien deletions were found in these BC(2) seedlings. Consequently, six kinds of A. cepa - A. fistulosum alien chromosome additions possessing different chromosome numbers (2n = 17, 18, 20, 21, 22, 23) were recognized in the BC(1) and BC(2) populations. A total of 79 aneuploids, including 62 single-alien deletions, were analyzed by a chromosome 6F-specific isozyme marker (Got-2) in order to recognize its existence in their chromosome complements. This analysis revealed that two out of 62 single-alien deletions did not possess 6F. One (AAF-6F) out of the possible eight single-alien deletions could be identified at first. The present study is a first step toward the development of a useful tool, such as a complete set of eight different single-alien deletions, for the rapid chromosomal assignment of genes and genetic markers in A. fistulosum.

  18. Chromosome 15q24 microdeletion syndrome

    Directory of Open Access Journals (Sweden)

    Magoulas Pilar L

    2012-01-01

    Full Text Available Abstract Chromosome 15q24 microdeletion syndrome is a recently described rare microdeletion syndrome that has been reported in 19 individuals. It is characterized by growth retardation, intellectual disability, and distinct facial features including long face with high anterior hairline, hypertelorism, epicanthal folds, downslanting palpebral fissures, sparse and broad medial eyebrows, broad and/or depressed nasal bridge, small mouth, long smooth philtrum, and full lower lip. Other common findings include skeletal and digital abnormalities, genital abnormalities in males, hypotonia, behavior problems, recurrent infections, and eye problems. Other less frequent findings include hearing loss, growth hormone deficiency, hernias, and obesity. Congenital malformations, while rare, can be severe and include structural brain anomalies, cardiovascular malformations, congenital diaphragmatic hernia, intestinal atresia, imperforate anus, and myelomeningocele. Karyotypes are typically normal, and the deletions were detected in these individuals by array comparative genomic hybridization (aCGH. The deletions range in size from 1.7-6.1 Mb and usually result from nonallelic homologous recombination (NAHR between paralogous low-copy repeats (LCRs. The majority of 15q24 deletions have breakpoints that localize to one of five LCR clusters labeled LCR15q24A, -B, -C, -D, and -E. The smallest region of overlap (SRO spans a 1.2 Mb region between LCR15q24B to LCR15q24C. There are several candidate genes within the SRO, including CYP11A1, SEMA7A, CPLX3, ARID3B, STRA6, SIN3A and CSK, that may predispose to many of the clinical features observed in individuals with 15q24 deletion syndrome. The deletion occurred as a de novo event in all of the individuals when parents were available for testing. Parental aCGH and/or FISH studies are recommended to provide accurate genetic counseling and guidance regarding prognosis, recurrence risk, and reproductive options. Management

  19. System for the detection of chromosomal rearrangements using Sordaria macrospora

    Energy Technology Data Exchange (ETDEWEB)

    Arnaise, S.; Leblon, G.; Lares, L. (Paris-11 Univ., 91 - Orsay (France). Lab. de Biologie Cellulaire et Genetique)

    1984-01-01

    A system is described for the detection and diagnosis of induced chromosomal rearrangement using Sordaria macrospora. The system uses the property of the rearrangement to produce defective white ascospores as meiotic progeny from heterozygous crosses. Two reconstruction experiments have shown that this system is able to give reliable quantitative measures of rearrangement frequencies. Evidence for a photoreactivation process was obtained, suggesting that pyrimidine dimers may well be an important lesion in UV-induced chromosomal rearrangement. No evidence of induction of chromosomal rearrangement was obtained in experiments with the powerful chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine.

  20. The colocalization transition of homologous chromosomes at meiosis

    Science.gov (United States)

    Nicodemi, Mario; Panning, Barbara; Prisco, Antonella

    2008-06-01

    Meiosis is the specialized cell division required in sexual reproduction. During its early stages, in the mother cell nucleus, homologous chromosomes recognize each other and colocalize in a crucial step that remains one of the most mysterious of meiosis. Starting from recent discoveries on the system molecular components and interactions, we discuss a statistical mechanics model of chromosome early pairing. Binding molecules mediate long-distance interaction of special DNA recognition sequences and, if their concentration exceeds a critical threshold, they induce a spontaneous colocalization transition of chromosomes, otherwise independently diffusing.

  1. Chromosome abnormalities in bone marrow of Thorotrast administered patients

    International Nuclear Information System (INIS)

    Ishihara, T.; Minamihisamatsu, M.

    1987-01-01

    The chromosomally abnormal clones occurring with high frequencies in bone marrow of 3 Thorotrast administered patients were studied by annual follow up observations. In one case the frequency of the clone was maintained fairly constant, but in another case it showed a tendency of increase, and in still another case the frequency of the clone showed drastic changes from year to year. The karyotypes of the clones showed remarkable chromosome abnormalities, among which the large partial loss of chromosomes was especially noted in all the 3 cases. (author)

  2. The chromosomal radiosensitivity of lymphocytes from the chimpanzee (Pan troglodytes)

    International Nuclear Information System (INIS)

    Leonard, A.; Decat, G.; Leonard, E.D.; Mortelmans, J.

    1977-01-01

    The yield of chromosomal aberrations induced by exposure to X-irradiation in vitro was studied in the lymphocytes of the chimpanzee (Pan troglodytes), a hominoid ape phylogenically and chromosomally closely related to man. In agreement with the similarity of the chromosome characteristics, no significant difference was observed between man and chimpanzee with respect to the incidence of dicentrics and fragments. It is obvious that the nuclear area, which apparently constitutes the most evident difference between the nuclei of man and chimpanzee lymphocytes, did not play an important role in the yields of aberrations

  3. Polyploidy and b chromosomes in Alium flavum from Serbia

    Directory of Open Access Journals (Sweden)

    Vujošević M.

    2013-01-01

    Full Text Available The most intriguing karyological features of the genus Allium are polyploidy and the frequent appearance of supernumerary or B chromosomes (Bs. Specimens of Allium flavum from natural populations at the Gornjačka Gorge in the vicinity of Gornjak Monastery, Serbia, were analyzed karyologically. All studied plants were tetraploid (2n = 32. One submetacentric B chromosome representing 1% of the genome, smaller than the smallest chromosomes of the standard set, was present in some plants. This is the first finding of Bs in tetraploid A. flavum. [Projekat Ministarstva nauke Republike Srbije, br. 173003

  4. Typing of Y chromosome SNPs with multiplex PCR methods

    DEFF Research Database (Denmark)

    Sanchez Sanchez, Juan Jose; Børsting, Claus; Morling, Niels

    2005-01-01

    We describe a method for the simultaneous typing of Y-chromosome single nucleotide polymorphism (SNP) markers by means of multiplex polymerase chain reaction (PCR) strategies that allow the detection of 35 Y chromosome SNPs on 25 amplicons from 100 to 200 pg of chromosomal deoxyribonucleic acid...... factors for the creation of larger SNP typing PCR multiplexes include careful selection of primers for the primary amplification and the SBE reaction, use of DNA primers with homogenous composition, and balancing the primer concentrations for both the amplification and the SBE reactions....

  5. Chromosomal radiosensitivity of human leucocytes in relation to sampling time

    International Nuclear Information System (INIS)

    Buul, P.P.W. van; Natarajan, A.T.

    1980-01-01

    Frequencies of chromosomal aberrations after irradiation with X-rays of peripheral blood lymphocytes in vitro were determined at different times after initiation of cultures. In each culture, the kinetics of cell multiplication was followed by using BrdU labelling and differential staining of chromosomes. The results indicate that the mixing up of first and second cell cycle cells at later sampling times cannot explain the observed variation in the frequencies of chromosomal aberrations but that donor-to-donor variation is a predominant factor influencing yields of aberrations. The condition of a donor seems to be most important because repeats on the same donor also showed marked variability. (orig.)

  6. BRCA1-mediated repression of select X chromosome genes

    Directory of Open Access Journals (Sweden)

    Ropers H Hilger

    2004-09-01

    Full Text Available Abstract Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling. Significance was determined using parametric statistics with P

  7. Chromosome sizes and phylogenetic relationships between serotypes of Actinobacillus pleuropneumoniae

    OpenAIRE

    Chevallier, Bruno; Dugourd, Dominique; Tarasiuk, Kazimirez; Harel, Josée; Gottschalk, Marcelo; Kobisch, Marylène; Frey, Joachim

    2017-01-01

    The genome size of Actinobacillus pleuropneumoniae was determined by pulsed field gel electrophoresis of AscI and ApaI digested chromosomal DNA. The genome size of the type strain 4074T (serotype 1) was determined to be 2404±40 kb. The chromosome sizes for the reference strains of the other serotypes range between 2.3 and 2.4 Mb. The restriction pattern profiles of AscI, ApaI and NheI digested chromosomes showed a high degree of polymorphism among the different serotype reference strains and ...

  8. Mapping of the bcl-2 oncogene on mouse chromosome 1.

    Science.gov (United States)

    Mock, B A; Givol, D; D'Hoostelaere, L A; Huppi, K; Seldin, M F; Gurfinkel, N; Unger, T; Potter, M; Mushinski, J F

    1988-01-01

    Two bcl-2 alleles have been identified in inbred strains of mice by restriction fragment length polymorphism (RFLP). Analysis of a bcl-2 RFLP in a series of bilineal congenic strains (C.D2), developed as a tool for chromosomal mapping studies, revealed linkage of bcl-2 to the Idh-1/Pep-3 region of murine chromosome 1. The co-segregation of bcl-2 alleles with allelic forms of two other chromosome 1 loci, Ren-1,2 and Spna-1, in a set of back-cross progeny, positions bcl-2 7.8 cM centromeric from Ren-1,2.

  9. Chromosome aberrations analysis of Serbia population from 1985 to 1995

    International Nuclear Information System (INIS)

    Jovicic, D.; Markovic, B.; Milacic, S.; Joksic, G.

    1996-01-01

    After the accident of NE Chernobyl in May 1986, Chernobyl's fallout with unhomogeneous dispersion of radioactive material in atmosphere caused the difference in contamination of the Serbia territory. The highest contamination was found to be in region Uzice, and the lowest in the region Nis. Two groups of population from these regions were undergone chromosome aberration analysis during 1987, 1988 and 1989. year. The results of our examination show increased frequency of structural chromosome aberrations/dicentrics, rings, peri centric inversions and acentric/ in the Uzice population, especially in the 1987. year. In 1985 and 1995 year have not been found chromosome aberrations. 2 refs.; 1 figs.; 2 tabs

  10. Combined pituitary hormone deficiency in a girl with 48, XXXX and Rathke's cleft cyst.

    Science.gov (United States)

    Uppal, Surabhi; Jee, Youn Hee; Lightbourne, Marissa; Han, Joan C; Stratakis, Constantine A

    2017-01-01

    Tetrasomy X is a rare chromosomal aneuploidy seen in girls, associated with facial dysmorphism, premature ovarian insufficiency and intellectual disability. A Rathke's cleft cyst (RCC) is a remnant of Rathke's pouch which may cause multiple pituitary hormone deficiencies by exerting pressure on the pituitary gland in the sella. The patient was diagnosed with tetrasomy X by karyotyping during infancy. Brain MRI and multiple endocrine stimulation tests revealed RCC and combined pituitary hormone deficiency (growth hormone deficiency, secondary adrenal insufficiency and central hypothyroidism) likely due to RCC. We report the first case in the literature of a girl with 48, XXXX and combined pituitary hormone deficiency due to Rathke's cyst.

  11. Caenorhabditis elegans histone methyltransferase MET-2 shields the male X chromosome from checkpoint machinery and mediates meiotic sex chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Paula M Checchi

    2011-09-01

    Full Text Available Meiosis is a specialized form of cellular division that results in the precise halving of the genome to produce gametes for sexual reproduction. Checkpoints function during meiosis to detect errors and subsequently to activate a signaling cascade that prevents the formation of aneuploid gametes. Indeed, asynapsis of a homologous chromosome pair elicits a checkpoint response that can in turn trigger germline apoptosis. In a heterogametic germ line, however, sex chromosomes proceed through meiosis with unsynapsed regions and are not recognized by checkpoint machinery. We conducted a directed RNAi screen in Caenorhabditis elegans to identify regulatory factors that prevent recognition of heteromorphic sex chromosomes as unpaired and uncovered a role for the SET domain histone H3 lysine 9 histone methyltransferase (HMTase MET-2 and two additional HMTases in shielding the male X from checkpoint machinery. We found that MET-2 also mediates the transcriptional silencing program of meiotic sex chromosome inactivation (MSCI but not meiotic silencing of unsynapsed chromatin (MSUC, suggesting that these processes are distinct. Further, MSCI and checkpoint shielding can be uncoupled, as double-strand breaks targeted to an unpaired, transcriptionally silenced extra-chromosomal array induce checkpoint activation in germ lines depleted for met-2. In summary, our data uncover a mechanism by which repressive chromatin architecture enables checkpoint proteins to distinguish between the partnerless male X chromosome and asynapsed chromosomes thereby shielding the lone X from inappropriate activation of an apoptotic program.

  12. Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories

    Directory of Open Access Journals (Sweden)

    T Cremer

    2009-06-01

    Full Text Available It is now generally accepted that chromosomes in the cell nucleus are organized in distinct domains, first called chromosome territories in 1909 by the great cytologist Theodor Boveri. Yet, even today chromosomes have remained enigmatic individuals, whose structures, arrangements and functions in cycling and post-mitotic cells still need to be explored in full detail. Whereas numerous recent reviews describe present evidence for a dynamic architecture of chromosome territories and discuss the potential significance within the functional compartmentalization of the nucleus, a comprehensive historical account of this important concept of nuclear organization was lacking so far. Here, we describe the early rise of chromosome territories within the context of the discovery of chromosomes and their fundamental role in heredity, covering a period from the 1870th to the early 20th century (part I, this volume. In part II (next volume we review the abandonment of the chromosome territory concept during the 1950th to 1980th and the compelling evidence, which led to its resurrection during the 1970th to 1980th.

  13. Beyond the chromosome: the prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Bryan Utter

    Full Text Available In Staphylococcus aureus, the disease impact of chromosomally integrated prophages on virulence is well described. However, the existence of extra-chromosomal prophages, both plasmidial and episomal, remains obscure. Despite the recent explosion in bacterial and bacteriophage genomic sequencing, studies have failed to specifically focus on extra-chromosomal elements. We selectively enriched and sequenced extra-chromosomal DNA from S. aureus isolates using Roche-454 technology and uncovered evidence for the widespread distribution of multiple extra-chromosomal prophages (ExPΦs throughout both antibiotic-sensitive and -resistant strains. We completely sequenced one such element comprised of a 43.8 kbp, circular ExPΦ (designated ФBU01 from a vancomycin-intermediate S. aureus (VISA strain. Assembly and annotation of ФBU01 revealed a number of putative virulence determinants encoded within a bacteriophage immune evasion cluster (IEC. Our identification of several potential ExPΦs and mobile genetic elements (MGEs also revealed numerous putative virulence factors and antibiotic resistance genes. We describe here a previously unidentified level of genetic diversity of stealth extra-chromosomal elements in S. aureus, including phages with a larger presence outside the chromosome that likely play a prominent role in pathogenesis and strain diversity driven by horizontal gene transfer (HGT.

  14. CHROMOSOMAL DIFFERENTIATIONS OF THE LAMPBRUSH TYPE FORMED BY THE Y CHROMOSOME IN DROSOPHILA HYDEI AND DROSOPHILA NEOHYDEI

    Science.gov (United States)

    Hess, Oswald; Meyer, Günther F.

    1963-01-01

    The nuclei of growing spermatocytes in Drosophila hydei and D. neohydei are characterized by the appearance of phase-specific, paired, loop-shaped structures thought to be similar to the loops in lampbrush chromosomes of amphibian oocytes. In X/O-males of D. hydei spermatogenesis is completely blocked before the first maturation division. No spermatozoa are formed in such testes. In the nuclei of X/O-spermatocytes, paired loop formations are absent. This shows the dependence of these chromosomal functional structures upon the Y chromosome. The basis of this dependence could be shown through an investigation of males with two Y chromosomes. All loop pairs are present in duplicate in XYY males. This proves that the intranuclear formations are structural modifications of the Y chromosome itself. These functional structures are species-specific and characteristically different in Drosophila hydei and D. neohydei. Reciprocal species crosses and a backcross showed that the spermatocyte nuclei of all hybrid males possess the functional structures corresponding to the species which donated the Y chromosome. This shows that the morphological character of the functional structures is also determined by the Y chromosome. PMID:13954225

  15. The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes.

    Directory of Open Access Journals (Sweden)

    Audrius Menkis

    2008-03-01

    Full Text Available We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains, derived from one N. tetrasperma heterokaryon (mat A+mat a, was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first "evolutionary stratum", genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers.

  16. Chromosomal Instability in Gastric Cancer Biology

    Directory of Open Access Journals (Sweden)

    Saffiyeh Saboor Maleki

    2017-05-01

    Full Text Available Gastric cancer (GC is the fifth most common cancer in the world and accounts for 7% of the total cancer incidence. The prognosis of GC is dismal in Western countries due to late diagnosis: approximately 70% of the patients die within 5 years following initial diagnosis. Recently, integrative genomic analyses led to the proposal of a molecular classification of GC into four subtypes, i.e.,microsatellite-instable, Epstein-Barr virus–positive, chromosomal-instable (CIN, and genomically stable GCs. Molecular classification of GC advances our knowledge of the biology of GC and may have implications for diagnostics and patient treatment. Diagnosis of microsatellite-instable GC and Epstein-Barr virus–positive GC is more or less straightforward. Microsatellite instability can be tested by immunohistochemistry (MLH1, PMS2, MSH2, and MSH6 and/or molecular-biological analysis. Epstein-Barr virus–positive GC can be tested by in situ hybridization (Epstein-Barr virus encoded small RNA. However, with regard to CIN, testing may be more complicated and may require a more in-depth knowledge of the underlying mechanism leading to CIN. In addition, CIN GC may not constitute a distinct subgroup but may rather be a compilation of a more heterogeneous group of tumors. In this review, we aim to clarify the definition of CIN and to point out the molecular mechanisms leading to this molecular phenotype and the challenges faced in characterizing this type of cancer.

  17. Low-dose effect on blood chromosomes

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1992-01-01

    Linear dose response relationships of biological effects at low doses are experimentally and theoretically disputed. Structural chromosome aberration rates at doses ranging from normal background exposures up to about 30 mGy/yr in vivo and up to 50 mGy in vitro were investigated by the author and other scientists. Results are comparable and dose effect curves reveal following shapes; within the normal burden and up to 2-10 mGy/yr in vivo rates they increase sharply to about 3-6 times the lowest values; subsequent doses either from natural, occupational or accidental exposures up to about 30 mGy/yr yield either constant aberration rates, assuming a plateau, or perhaps even a decrease. In vitro experiments show comparable results up to 50 mGy. Other biological effects seem to have similar dose dependencies. The non-linearity of low-dose effects can be explained by induction of repair enzymes at certain damage to the DNA. This hypothesis is sustained experimentally and theoretically by several papers in literature. (author). 14 refs., 5 figs

  18. Profiling of Escherichia coli Chromosome database.

    Science.gov (United States)

    Yamazaki, Yukiko; Niki, Hironori; Kato, Jun-ichi

    2008-01-01

    The Profiling of Escherichia coli Chromosome (PEC) database (http://www.shigen.nig.ac.jp/ecoli/pec/) is designed to allow E. coli researchers to efficiently access information from functional genomics studies. The database contains two principal types of data: gene essentiality and a large collection of E. coli genetic research resources. The essentiality data are based on data compilation from published single-gene essentiality studies and on cell growth studies of large-deletion mutants. Using the circular and linear viewers for both whole genomes and the minimal genome, users can not only gain an overview of the genome structure but also retrieve information on contigs, gene products, mutants, deletions, and so forth. In particular, genome-wide exhaustive mutants are an essential resource for studying E. coli gene functions. Although the genomic database was constructed independently from the genetic resources database, users may seamlessly access both types of data. In addition to these data, the PEC database also provides a summary of homologous genes of other bacterial genomes and of protein structure information, with a comprehensive interface. The PEC is thus a convenient and useful platform for contemporary E. coli researchers.

  19. Croatian genetic heritage: Y-chromosome story.

    Science.gov (United States)

    Primorac, Dragan; Marjanović, Damir; Rudan, Pavao; Villems, Richard; Underhill, Peter A

    2011-06-01

    The aim of this article is to offer a concise interpretation of the scientific data about the topic of Croatian genetic heritage that was obtained over the past 10 years. We made a short overview of previously published articles by our and other groups, based mostly on Y-chromosome results. The data demonstrate that Croatian human population, as almost any other European population, represents remarkable genetic mixture. More than 3/4 of the contemporary Croatian men are most probably the offspring of Old Europeans who came here before and after the Last Glacial Maximum. The rest of the population is the offspring of the people who were arriving in this part of Europe through the southeastern route in the last 10,000 years, mostly during the neolithization process. We believe that the latest discoveries made with the techniques for whole-genome typing using the array technology, will help us understand the structure of Croatian population in more detail, as well as the aspects of its demographic history.

  20. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids

    Czech Academy of Sciences Publication Activity Database

    Bhattacharyya, Tanmoy; Reifová, R.; Gregorová, Soňa; Šimeček, Petr; Gergelits, Václav; Mistrik, M.; Martincová, Iva; Piálek, Jaroslav; Forejt, Jiří

    2014-01-01

    Roč. 10, č. 2 (2014), e1004088 ISSN 1553-7404 R&D Projects: GA AV ČR Premium Academiae of the Academy of Sciences of the Czech Republic; GA MŠk(CZ) LD11079; GA ČR GA206/08/0640; GA MŠk ED1.1.00/02.0109 Institutional support: RVO:68081766 ; RVO:68378050 Keywords : hybrid sterility * meiotic asynapsis * chromosome substitution strains Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.167, year: 2013

  1. Bloom syndrome and maternal uniparental disomy for chromosome 15

    Energy Technology Data Exchange (ETDEWEB)

    Woodage, T.; Prasad, M.; Trent, R.J.; Smith, A. (Children' s Hospital, Camperdown, New South Wales (New Zealand)); Dixon, J.W.; Romain, D.R.; Columbano-Green, L.M.; Selby, R.E. (Wellington Hospital (New Zealand)); Graham, D. (Waikato Hospital, Hamilton (New Zealand)); Rogan, P.K. (Pennsylvania State Univ., Hershey, PA (United States)) (and others)

    1994-07-01

    Bloom syndrome (BS) is an autosomal recessive disorder characterized by increases in the frequency of sister-chromatid exchange and in the incidence of malignancy. Chromosome-transfer studies have shown the BS locus to map to chromosome 15q. This report describes a subject with features of both BS and Prader-Willi syndrome (PWS). Molecular analysis showed maternal uniparental disomy for chromosome 15. Meiotic recombination between the two disomic chromosomes 15 has resulted in heterodisomy for proximal 15q and isodisomy for distal 15q. In this individual BS is probably due to homozygosity for a gene that is telomeric to D15S95 (15q25), rather than to genetic imprinting, the mechanism responsible for the development of PWS. This report represents the first application of disomy analysis to the regional localization of a disease gene. This strategy promises to be useful in the genetic mapping of other uncommon autosomal recessive conditions. 37 refs., 3 figs., 2 tabs.

  2. Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes

    Science.gov (United States)

    Cabral, Gabriela; Marques, André; Schubert, Veit; Pedrosa-Harand, Andrea; Schlögelhofer, Peter

    2014-01-01

    Meiosis is a specialized cell division in sexually reproducing organisms before gamete formation. Following DNA replication, the canonical sequence in species with monocentric chromosomes is characterized by reductional segregation of homologous chromosomes during the first and equational segregation of sister chromatids during the second meiotic division. Species with holocentric chromosomes employ specific adaptations to ensure regular disjunction during meiosis. Here we present the analysis of two closely related plant species with holocentric chromosomes that display an inversion of the canonical meiotic sequence, with the equational division preceding the reductional. In-depth analysis of the meiotic divisions of Rhynchospora pubera and R. tenuis reveals that during meiosis I sister chromatids are bi-oriented, display amphitelic attachment to the spindle and are subsequently separated. During prophase II, chromatids are connected by thin chromatin threads that appear instrumental for the regular disjunction of homologous non-sister chromatids in meiosis II. PMID:25295686

  3. Evolution of vertebrate sex chromosomes and dosage compensation.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2016-01-01

    Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.

  4. Condensins: universal organizers of chromosomes with diverse functions.

    Science.gov (United States)

    Hirano, Tatsuya

    2012-08-01

    Condensins are multisubunit protein complexes that play a fundamental role in the structural and functional organization of chromosomes in the three domains of life. Most eukaryotic species have two different types of condensin complexes, known as condensins I and II, that fulfill nonoverlapping functions and are subjected to differential regulation during mitosis and meiosis. Recent studies revealed that the two complexes contribute to a wide variety of interphase chromosome functions, such as gene regulation, recombination, and repair. Also emerging are their cell type- and tissue-specific functions and relevance to human disease. Biochemical and structural analyses of eukaryotic and bacterial condensins steadily uncover the mechanisms of action of this class of highly sophisticated molecular machines. Future studies on condensins will not only enhance our understanding of chromosome architecture and dynamics, but also help address a previously underappreciated yet profound set of questions in chromosome biology.

  5. Biological dosimetry: chromosomal aberration analysis for dose assessment

    International Nuclear Information System (INIS)

    1986-01-01

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  6. Chromosome aberrations in pesticide-exposed greenhouse workers

    DEFF Research Database (Denmark)

    Lander, B F; Knudsen, Lisbeth E.; Gamborg, M O

    2000-01-01

    OBJECTIVES: The aim of this study was to investigate the possibility of subtoxic exposure to pesticides causing chromosome aberrations in greenhouse workers. METHODS: In a cross-sectional and prospective study design chromosome aberration frequencies in cultured lymphocytes were examined for 116...... greenhouse workers exposed to a complex mixture of almost 50 insecticides, fungicides, and growth regulators and also for 29 nonsmoking, nonpesticide-exposed referents. RESULTS: The preseason frequencies of chromosome aberrations were slightly but not statistically significantly elevated for the greenhouse...... workers when they were compared with the referents. After a summer season of pesticide spraying in the greenhouses, the total frequencies of cells with chromosome aberrations were significantly higher than in the preseason samples (P=0.02) and also higher than for the referents (P=0.05). This finding...

  7. Chromosomal aberrations and micronuclei frequencies in Bulgarian control population

    International Nuclear Information System (INIS)

    Popova, I.; Hadjidekova, V.; Hristova, R.; Atanasova, P.

    2004-01-01

    The aim of this investigation is to represent the frequency of spontaneous chromosomal damages in peripheral blood lymphocytes of Bulgarian control population. Material and methods: The investigated group includes persons belonging to both sexes and different ages. Each of them is interviewed of their social and health status. Sixteen persons are examined using the chromosomal aberrations analysis and forty-five with micronucleus test. The frequency of chromosomal aberrations varied between 0 - 2.4 % and the mean value is 1.00 %. The frequency of cells with micronuclei varied between 4.5 - 24.5 % and the mean value 12,9 %. Further work on the investigation of spontaneous frequency of chromosomal damages is in progress. (authors)

  8. Particle-induced chromosome aberrations and mutations: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    1997-09-01

    This overview will focus on progress in chromosome and mutation studies achieved by the application of new techniques. Furthermore, recent relevant data on longterm genetic effects of densely ionizing radiation will be summarized. (orig./MG)

  9. Establishing working standards of chromosome aberrations analysis for biological dosimetry

    International Nuclear Information System (INIS)

    Bui Thi Kim Luyen; Tran Que; Pham Ngoc Duy; Nguyen Thi Kim Anh; Ha Thi Ngoc Lien

    2015-01-01

    Biological dosimetry is an dose assessment method using specify bio markers of radiation. IAEA (International Atomic Energy Agency) and ISO (International Organization for Standardization) defined that dicentric chromosome is specify for radiation, it is a gold standard for biodosimetry. Along with the documents published by IAEA, WHO, ISO and OECD, our results of study on the chromosome aberrations induced by radiation were organized systematically in nine standards that dealing with chromosome aberration test and micronucleus test in human peripheral blood lymphocytes in vitro. This standard addresses: the reference dose-effect for dose estimation, the minimum detection levels, cell culture, slide preparation, scoring procedure for chromosome aberrations use for biodosimetry, the criteria for converting aberration frequency into absorbed dose, reporting of results. Following these standards, the automatic analysis devices were calibrated for improving biological dosimetry method. This standard will be used to acquire and maintain accreditation of the Biological Dosimetry laboratory in Nuclear Research Institute. (author)

  10. Isodicentric chromosome 21: a novel aberration in acute myeloid leukemia.

    Science.gov (United States)

    Sankar, M; Tanaka, K; Arif, M; Shintani, T; Kumaravel, T S; Kyo, T; Dohy, H; Kamada, N

    1998-11-01

    We present here a 78-year-old female patient with acute myeloid leukemia (AML), French-American-British classification M2, exhibiting isodicentric chromosome 21, idic(21)(q22), at the time of diagnosis. The patient had three idic(21)(q22), besides the del(5)(q13q32), add(21)(q22), dic(21;22) (q22;q13), and +22. Fluorescence in situ hybridization studies with whole-chromosome painting and centromere-specific probes for chromosome 21 verified the diagnosis of idic(21)(q22). There were no distinct clinicohematological characteristics of AML with isodicentric 21. The patient was treated with remission-induction therapy followed by consolidation therapy. Two years later, the patient showed the disappearance of isodicentric 21 but retained del(5)(q13q32) and gained other chromosomal abnormalities, +add(17)(p11) and -16. To our knowledge, this is the first report of AML with acquired idic(21)(q22).

  11. Identification of micro satellite markers on chromosomes of bread ...

    African Journals Online (AJOL)

    Identification of micro satellite markers on chromosomes of bread wheat showing an association with karnal bunt resistance. M Kumar, OP Luthra, NR Yadav, L Chaudhary, N Saini, R Kumar, I Sharma, V Chawla ...

  12. Chromosome phylogenies of man, great apes, and Old World monkeys.

    Science.gov (United States)

    De Grouchy, J

    1987-08-31

    The karyotypes of man and of the closely related Pongidae--chimpanzee, gorilla, and orangutan--differ by a small number of well known rearrangements, mainly pericentric inversions and one fusion which reduced the chromosome number from 48 in the Pongidae to 46 in man. Dutrillaux et al. (1973, 1975, 1979) reconstructed the chromosomal phylogeny of the entire primate order. More and more distantly related species were compared thus moving backward in evolution to the common ancestors of the Pongidae, of the Cercopithecoidae, the Catarrhini, the Platyrrhini, the Prosimians, and finally the common ancestor of all primates. Descending the pyramid it becomes possible to assign the rearrangements that occurred in each phylum, and the one that led to man in particular. The main conclusions are that this phylogeny is compatible with the occurrence during evolution of simple chromosome rearrangements--inversions, fusions, reciprocal translocation, acquisition or loss of heterochromatin--and that it is entirely consistent with the known primate phylogeny based on physical morphology and molecular evolution. If heterochromatin is not taken into account, man has in common with the other primates practically all of his chromosomal material as determined by chromosome banding. However, it is arranged differently, according to species, on account of chromosome rearrangements. This interpretation has been confirmed by comparative gene mapping, which established that the same chromosome segments, identified by banding, carry the same genes (Finaz et al., 1973; Human Gene Mapping 8, 1985). A remarkable observation made by Dutrillaux is that different primate phyla seem to have adopted different chromosome rearrangements in the course of evolution: inversions for the Pongidae, Robertsonian fusions for the lemurs, etc. This observation may raise many questions, among which is that of an organized evolution. Also, the breakpoints of chromosomal rearrangements observed during evolution

  13. Mechanisms of telomere loss and their consequences for chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Muraki, Keiko; Nyhan, Kristine; Han, Limei; Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA (United States)

    2012-10-04

    The ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs) at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  14. Evolutionary rate of a gene affected by chromosomal position.

    Science.gov (United States)

    Perry, J; Ashworth, A

    1999-09-09

    Genes evolve at different rates depending on the strength of selective pressure to maintain their function. Chromosomal position can also have an influence [1] [2]. The pseudoautosomal region (PAR) of mammalian sex chromosomes is a small region of sequence identity that is the site of an obligatory pairing and recombination event between the X and Y chromosomes during male meiosis [3] [4] [5] [6]. During female meiosis, X chromosomes can pair and recombine along their entire length. Recombination in the PAR is therefore approximately 10 times greater in male meiosis compared with female meiosis [4] [5] [6]. The gene Fxy (also known as MID1 [7]) spans the pseudoautosomal boundary (PAB) in the laboratory mouse (Mus musculus domesticus, C57BL/6) such that the 5' three exons of the gene are located on the X chromosome but the seven exons encoding the carboxy-terminal two-thirds of the protein are located within the PAR and are therefore present on both the X and Y chromosomes [8]. In humans [7] [9], the rat, and the wild mouse species Mus spretus, the gene is entirely X-unique. Here, we report that the rate of sequence divergence of the 3' end of the Fxy gene is much higher (estimated at 170-fold higher for synonymous sites) when pseudoautosomal (present on both the X and Y chromosomes) than when X-unique. Thus, chromosomal position can directly affect the rate of evolution of a gene. This finding also provides support for the suggestion that regions of the genome with a high recombination frequency, such as the PAR, may have an intrinsically elevated rate of sequence divergence.

  15. Study on biological dosimetry of premature chromosome condensation technique

    International Nuclear Information System (INIS)

    Jiang Bo

    2005-01-01

    The premature chromosome condensation technique has been applied for biological dosimetry purpose. Premature chromo-some condensation was induced by incubating unstimulated human peripheral blood lymphocytes in the presence of okadaic acid or calyculin A (a phosphatase inhibitor) which eliminated the need for fusion with mitotic cells. It is now possible to examine the early damage induced by radiation. It is simple, exact when it combines with fluorecence in situ hybridization. (authors)

  16. Behavior of isolated nuclei and chromosomes of Rhynchosciara in vitro

    International Nuclear Information System (INIS)

    Cestari, A.N.; Simoes, L.C.G.

    1980-01-01

    Nuclei and chromosomes were isolated from salivary glands of Rhynchosciara by a method involving micropipette manipulation, after diluting the intercellular cement with a mixture of citric acid, tween 80 and sucrose. Culture media supplemented and not supplemented with different concentrations of lobster hemolymph or calf serum, were compared. In the best medium, isolated nuclei and chromosomes treated with tritiated precursors showed nucleic acid and protein synthesis. (Author) [pt

  17. Behavior of isolated nuclei and chromosomes of Rhynchosciara in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cestari, A N; Simoes, L C.G. [Sao Paulo Univ. (Brazil). Inst. de Biociencias

    1980-09-01

    Nuclei and chromosomes were isolated from salivary glands of Rhynchosciara by a method involving micropipette manipulation, after diluting the intercellular cement with a mixture of citric acid, tween 80 and sucrose. Culture media supplemented and not supplemented with different concentrations of lobster hemolymph or calf serum, were compared. In the best medium, isolated nuclei and chromosomes treated with tritiated precursors showed nucleic acid and protein synthesis.

  18. Growth Conditions Regulate the Requirements for Caulobacter Chromosome Segregation

    DEFF Research Database (Denmark)

    Shebelut, Conrad W.; Jensen, Rasmus Bugge; Gitai, Zemer

    2009-01-01

    Growth environments are important metabolic and developmental regulators. Here we demonstrate a growth environment-dependent effect on Caulobacter chromosome segregation of a small-molecule inhibitor of the MreB bacterial actin cytoskeleton. Our results also implicate ParAB as important segregation...... determinants, suggesting that multiple distinct mechanisms can mediate Caulobacter chromosome segregation and that their relative contributions can be environmentally regulated....

  19. Mechanisms of telomere loss and their consequences for chromosome instability

    International Nuclear Information System (INIS)

    Muraki, Keiko; Nyhan, Kristine; Han, Limei; Murnane, John P.

    2012-01-01

    The ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs) at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  20. Mechanisms of telomere loss and their consequences for chromosome instability

    Directory of Open Access Journals (Sweden)

    Keiko eMuraki

    2012-10-01

    Full Text Available The ends of chromosomes in mammals, called telomeres, are composed of a 6 base pair repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.