WorldWideScience

Sample records for chromium steels

  1. Localized Corrosion of Chromium Coated Steel

    NARCIS (Netherlands)

    Zhang, X.; Beentjes, P.; Mol, A.; Terryn, H.

    2006-01-01

    In this paper, we report on the studies of the local corrosion behaviour of chromium-coated ultra low carbon steel in NaCl solution using polarization, electrochemical impedance spectroscopy (EIS) and SVET.

  2. Stainless chromium-nickel steels. Chapter I

    International Nuclear Information System (INIS)

    The chemical composition is tabulated of 90 chromium-nickel stainless steels and alloys given in volume %. The values are also given of the corrosion resistance of the steels and alloys. The tables show data on the surface condition or the methods of material working, types and chemical composition of the medium where corrosion resistance tests were carried out, temperature, pressure, time of tests, corrosion rates, corrosion types, and literature references. A total of 35 references is given. (J.B.)

  3. Bainitic chromium-tungsten steels with 3 pct chromium

    International Nuclear Information System (INIS)

    Previous work on 3Cr-1.5MoV (nominally Fe-3Cr-2.5Mo-0.25V-0.1C), 2.25Cr-2W (Fe-2.25Cr-2W-0.1C), and 2.25Cr-2WV (Fe-2.25Cr-2W-0.25V-0.1C) steels indicated that the impact toughness of these steels depended on the microstructure of the bainite formed during continuous cooling from the austenization temperature. Microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of nonclassical microstructures were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2.25Cr-2W and 2.25Cr-2WV steel compositions to increase their hardenability. Charpy testing indicated that the new 3Cr-W and 3Cr-WV steels had improved impact toughness, as demonstrated by lower ductile-brittle transition temperatures and higher upper-shelf energies. This improvement occurred with less tempering than was necessary to achieve similar toughness for the 2.25Cr steels and for high-chromium (9 to 12 pct Cr) Cr-W and Cr-Mo steels

  4. Low-chromium reduced-activation chromium-tungsten steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J.; Maziasz, P.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Bainitic microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of non-classical bainite were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was found to be considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2 1/4Cr-2W and 2 1/4Cr-2WV steel compositions to increase their hardenability, and the microstructures and mechanical properties were examined.

  5. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    This study was undertaken to determine if chromium(+6) could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium(+3) to chromium(+6) by nitric acid; and the reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium(+3) to chromium(+6) was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the (+6) oxidation state and would not exist in the (+6) state in the final process waste solutions

  6. Chromium Enrichment on P11 Ferritic Steel by Pack Cementation

    Directory of Open Access Journals (Sweden)

    Fauzi F. A.

    2016-01-01

    Full Text Available The future thermal power plant is expected to operate at higher temperature to improve its efficiency and to reduce greenhouse gas emission. This target requires better corrosion properties of ferritic steels, which commonly used as materials for superheater and reheater of boiler tubes. In this work, chromium enrichment on the surface of ferritic steel is studied. The deposited chromium is expected to become a reservoir for the formation of chromia protective layer. Chromium was deposited on the substrate of steel by pack cementation process for two hours at the temperature of 850ºC, 950ºC and 1050ºC, respectively. XRD analysis indicated that chromium was successfully deposited at all temperatures. Somehow, SEM cross sectional image showed that continuous layer of chromium was not continuously formed at 850oC. Therefore, this research clarify that chromium enrichment by pack cementation may be conducted at the temperature above 950°C.

  7. Low-chromium reduced-activation ferritic steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J.; Kenik, E.A. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01

    Development of reduced-activation ferritic steels has concentrated on high-chromium (8-10 wt% Cr) steels. However, there are advantages for a low-chromium steel, and initial ORNL studies on reduced-activation steels were on compositions with 2.25 to 12% Cr. Those studies showed an Fe-2.25Cr-2W-0.25V-0.1C (2 1/4Cr-2WV) steel to have the highest strenglth of the steels studied. Although this steel had the best strength, Charpy impact properties were inferior to those of an Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) and an Fe-2.25Cr-2W-0.1C (2 1/4Cr-2W) steel. Therefore, further development of the low-chromium Cr-W steels was required. These results indicate that it is possible to develop low-chromium reduced-activation ferritic steels that have tensile and impact properties as good or better than those of high-chromium (7-9% Cr) steels. Further improvement of properties should be possible by optimizing the composition.

  8. Increase of chromium utilization in stainless steel melting

    International Nuclear Information System (INIS)

    The processes of deoxidizing when melting stainless 18-10 steels in electric are furnaces by the method of remelting with wastes are investigated. The dependences of amount of reduced chromium on silicon consumption are made more precise. It is shown that it is useful to apply aluminium for deoxidation of acid high-chromium slags. Based on the data on pilot melts the extent to which aluminium can be used as a reducing agent for chromium is estimated. 3 refs., 2 figs

  9. Chromium depletion from stainless steels during vacuum annealing

    International Nuclear Information System (INIS)

    The behaviour of chromium during selective evaporation by high temperature vacuum annealing has been investigated by means of energy dispersive X-ray analysis and by neutron activation analysis. It was established that the rate of chromium loss from austenitic stainless steels 316 and 321 is controlled by chromium inter-diffusion rather than tracer diffusion in the alloy. Two important parameters in selective removal of chromium from alloy steels are the variation in the chromium surface concentration with time and the depletion profile in the alloy. The present work gives support for the model in which loss of chromium is dependent on its diffusivity in the alloy and on an interface transfer coefficient. The results showed that the surface concentration of chromium decreased with increasing vacuum annealing time. The chromium depletion profile in the metal was in accord with the previous derived model, apart from an anomalous near surface region. Here the higher resolution of a neutron activation technique indicated a region within approximately 2 microns of the surface where the chromium concentration decreased more steeply than expected. (author)

  10. The diffusion of chromium in a duplex alloy steel

    International Nuclear Information System (INIS)

    Diffusion of chromium in a duplex stainless steel containing approximately 8% ferrite has been investigated in the temperature range 600 to 10000C using the standard serial sectioning technique. The resulting concentration profiles exhibited up to four distinct regions. The two main regions are attributed to volume diffusion in the austenite and ferrite phases, the other zones being due to short circuiting paths. Volume diffusion in the austenite phase is in good agreement with chromium diffusion in Type 316 steel. The chromium diffusion coefficient in the ferrite phase of approximate composition 25 wt % Cr, 5 wt % Ni is given by: Dsub(α) = (6.0(+11,-3)) x 10-6 exp - ((212+-5)/RT) m2s-1 the activation energy being expressed in kJ.mol-1. Little evidence was found for enhanced chromium diffusion along austenite/ferrite interface boundaries. (author)

  11. Chromium reduction from slag on electromelting of stainless steel

    International Nuclear Information System (INIS)

    Specific features of chromium reduction from the slag on electromelting of stainless steel type Kh18N10T according to one- or two-slag procedure were studied. It was shown that one-slag melting technology allows double decrease of chromium losses in the form of incompletely reduced oxides. This occurs due to additional chemical reactions between metal and slag on their combined pouring into the ladle. 1 ref.; 3 figs

  12. Chromium(III) and chromium(VI) surface treated galvanized steel for outdoor constructions: environmental aspects.

    Science.gov (United States)

    Lindström, David; Hedberg, Yolanda; Odnevall Wallinder, Inger

    2010-06-01

    The long-term degradation of chromium(III) (Zn-Cr(III)) and chromium(VI)-based (Zn-Cr(VI)) surface treatments on galvanized steel and their capacities to hinder the release of zinc induced by atmospheric corrosion at nonsheltered urban and marine exposure conditions for 2 years are investigated. Compared to bare zinc sheet, both surface treatments revealed high corrosion protection abilities and capacities to hinder the release of zinc, still evident after 2 years of exposure. The zinc barrier properties of the thinner Zn-Cr(VI) (10 nm) treatment were during the first 100 days of urban exposure slightly improved compared with Zn-Cr(III) (35 nm). However, their long-term protection capacities were inverse. Released concentrations of total chromium correspond to annual release rates less than 0.000032 (Zn-Cr(III)) and 0.00014 g Cr m(-2) yr(-1) (Zn-Cr(VI)) after 1 year of urban exposure. Aging by indoor storage of the surface treatments prior to outdoor exposure reduced the released Cr concentrations from the surface treatments. No Cr(VI) was released from the aged surfaces but from the freshly exposed Zn-Cr(VI). Marine exposure conditions resulted in a faster reduction of chromate to chromium(III)oxide compared with urban conditions, and a significantly lower amount of both chromium(III) and chromium(VI) released from Zn-Cr(VI) at the marine site compared with the urban site. PMID:20462267

  13. Fretting damage of high carbon chromium bearing steel

    OpenAIRE

    Kuno, Masato

    1988-01-01

    This thesis consists of four sections, the fretting wear properties of high carbon chromium bearing steel; the effect of debris during fretting wear; an introduction of a new fretting wear test apparatus used in this study; and the effects of fretting damage parameters on rolling bearings. The tests were operated under unlubricated conditions. Using a crossed cylinder contact arrangement, the tests were carried out with the normal load of 3N, slip amplitude of 50µm, and frequency of 30Hz ...

  14. Intragranular Chromium Nitride Precipitates in Duplex and Superduplex Stainless Steel

    OpenAIRE

    Iversen, Torunn Hjulstad

    2012-01-01

    Intragranular chromium nitrides is a phenomenon with detrimental effects on material properties in superduplex stainless steels which have not received much attention. Precipitation of nitrides occurs when the ferritic phase becomes supersaturated with nitrogen and there is insufficient time during cooling for diffusion of nitrogen into austenite. Heat treatment was carried out at between 1060◦C and 1160◦C to study the materials susceptibility to nitride precipitation with...

  15. Semisolid Slurry Preparation of Die Steel with High Chromium Content

    Institute of Scientific and Technical Information of China (English)

    MAO Wei-min; ZHAO Ai-min; ZHANG Li-juan; ZHONG Xue-you

    2004-01-01

    The semisolid slurry preparation of die steels Cr12 and Cr12MoV with high chromium content was studied. The results show that the semisolid slurry of both steels with solid of 40 %-60 % can be made by electromagnetic stirring method and is easy to be discharged from the bottom little hole of the stirring chamber. The sizes of the spherical primary austenite in the slurry of die steels Cr12 and Cr12MoV are 50-100 μm and 80-150 μm, respectively. The homogeneous temperature field and solute field for both steel melts are obtained. The strong temperature fluctuation in the melt with many fine primary austenite grains occurs and the remelting of the secondary arm roots at the same time is accelerated because of the electromagnetic stirring. These are the most important reasons for deposition of spherical primary austenite grains.

  16. Low-chromium reduced-activation ferritic steels

    International Nuclear Information System (INIS)

    Steels are being developed for fusion-reactor applications that contain only elements that produce radioactive isotopes that decay to low levels in a reasonable time. These reduced-activation or fast induced-radioactivity decay ferritic steels are being developed to be analogous to the Cr-Mo steels presently in the fusion program, but with molybdenum replaced by tungsten. In this paper, steels with 2-1/4% Cr will be discussed. To determine the effect of tungsten and vanadium on these steels, heats were produced with 2% W, with 0.25% V, with 1% W and 0.25% V, and with 2% W and 0.25% V. Tempering and microstructural studies were made and tensile and impact tests were conducted. Preliminary results indicate that it should be possible to develop a low-chromium Cr-W steel without molybdenum or niobium. Such steels should have properties as good as or better than the three Cr-Mo steels presently being considered as candidates for fusion-reactor applications. 22 refs., 12 figs., 3 tabs

  17. Microstructure of a high boron 9-12% chromium steel

    Energy Technology Data Exchange (ETDEWEB)

    Andren, H.O. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Physics

    2008-07-01

    Additions of small amounts of boron (10-100 ppm) to 9-12% chromium steels are often made since they have been found to be beneficial for the creep strength up to and above 600 C. The effect of boron is to restrict the coarsening of M{sub 23}C{sub 6} precipitates during service. It was found that increasing the boron content from 9 to 40 ppm gave a decrease in coarsening constant at 600 C by a factor of 2. The present understanding of boron solution, non-equilibrium grain boundary segregation, incorporation into M{sub 23}C{sub 6}, and diffusion is reviewed in the paper. A very high boron addition (300 ppm) was made in the trial TAF steel already in the 1950'ies. The microstructure of a similar trial steel, FT3B, has been studied detail. In this steel large Mo, Cr, Fe and V containing metal borides are formed rather than the expected BN, with the crystal structure M{sub 2}B{sub 2}. Nitrogen is therefore still available for the formation of VN. Due to tempering at a low temperature (690 C) to a high strength (830 MPa), this steel contained a dense distribution of very small VN precipitates, 5-15 nm in size. A similar VN distribution is probably the cause of the still unsurpassed creep strength of the TAF steel. (orig.)

  18. Boriding of high carbon high chromium cold work tool steel

    International Nuclear Information System (INIS)

    High-carbon high-chromium cold work tool steels are widely used for blanking and cold forming of punches and dies. It is always advantageous to obtain an increased wear resistant surface to improve life and performance of these steels. In this connection boriding of a high-carbon high-chromium cold work die steel, D3, was conducted in a mixture of 30% B4C, 70% borax at 950 °C for two, four and six hours. Case depth of the borided layer obtained was between 40 to 80 μm. After boriding, the surface hardness achieved was between 1430 to 1544 HV depending upon the process time. X-ray diffraction studies confirmed the formation of a duplex compound layer consisting of FeB and Fe2B. It is generally considered that FeB is undesirable because of its inherent brittleness. Post boriding treatment (homogenization) transformed the compound layer into single-phase layer of Fe2B, while surface hardness decreased to 1345-1430 HV. Pin-on-disc wer test showed that wear resistance of the borided samples was superior as compared to non-borided material and increased with boriding time

  19. Chromium-nickel stainless steel and method of its manufacture

    International Nuclear Information System (INIS)

    The chromium-nickel stainless steel is designed for the production of rolled bands to be welded onto the primary circuit component surfaces. The invention claims the steel composition. Phosphorus content is restricted to an amount of 0.005 to 0.025%, sulfur to 0.001 to 0.012%, oxygen to 0.001 to 0.008% aluminium to 0.005 to 0.05%, and titanium to 0.02 to 0.20%. The steel may also contain 0.01 to 0.15% of cerium, 0.01 to 0.15% of zirconium and 0.0001 to 0.005% of boron while the overall combined content of cerium, zirconium and boron does not exceed 0.25%. The initial material is nonalloyed waste, nickel metal and ferroalloys. The steel is deoxidized with aluminium and its chemical composition is adjusted with an addition of ferrochrome or nickel. The steel is then vacuum processed and after standing, it is cast at a temperature of 1520 to 1580 degC. (J.P.)

  20. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory

    Institute of Scientific and Technical Information of China (English)

    HUANG Shun-hong; PENG Bing; YANG Zhi-hui; CHAI Li-yuan; ZHOU Li-cheng

    2009-01-01

    The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by chromium. 45 soil samples obtained from different places of the slag heap in a steel alloy factory were analyzed for chromium contamination level and its effect on soil microorganisms and enzyme activities. The results show that the average concentrations of total Cr in the soil under the slag heap, adjacent to the slag heap and outside the factory exceed the threshold of Secondary Environmental Quality Standard for Soil in China by 354%, 540% and 184%, respectively, and are 15, 21 and 9 times higher than the local background value, respectively. Elevated chromium loadings result in changes in the activity of the soil microbe, as indicated by the negative correlations between soil microbial population and chromium contents. Dehydrogenase activity is greatly depressed by chromium in the soil. The results imply that dehydrogenase activity can be used as an indicator for the chromium pollution level in the area of the steel alloy factory.

  1. The oxidation and reduction of chromium of stainless steels in an eletric arc furnace

    Directory of Open Access Journals (Sweden)

    B. Arh

    2011-07-01

    Full Text Available The oxidation of chromium during the elaboration of stainless steels occurs with oxygen in solution blown inthe melt and with oxides in the slag. A higher content of silicon in the furnace charge decreases the extent of oxidation of chromium, however, the efficient reduction of chromium from the slag is of essential importance for a minimal loss of chromium. In this survey, the theory of the oxidation of chromium, its reduction from the slag and the conditions for the formation of foaming slag are discussed.

  2. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  3. Current Developments of Alloyed Steels for Hot Strip Roughing Mills : Characterization of High-Chromium Steel and Semi-High Speed Steel

    OpenAIRE

    LECOMTE-BECKERS, Jacqueline; Sinnaeve, Mario; Tchuindjang, Jérôme Tchoufack

    2012-01-01

    Two alloys grades for work rolls used in the roughing stand of Hot Strip Mill - high chromium steel (HCS) and semi-high-speed steel (semi-HSS), In this paper, the new semi-high-speed steel grade is studied

  4. Creep strength and ductility of 9 to 12% chromium steels

    DEFF Research Database (Denmark)

    Hald, John

    2004-01-01

    Steels", which covers creep data development and analysis for parent materials and welds of all ferritic creep resistant steels ranging from low alloy steels up to 12%Cr steels. The opinions stated in the paper represent the views of the author rather than the whole ECCC WG3A group.......The present paper focuses in on long-term creep properties of parent material of the new 9-12%Cr creep resistant steels, P91, E911 and P92 developed for use in advanced ultrasupercritical power plants. These steels have been at the center of activities in the ECCC Working Group 3A (WG3A) "Ferritic...

  5. Serum chromium levels sampled with steel needle versus plastic IV cannula. Does method matter?

    DEFF Research Database (Denmark)

    Penny, Jeannette Ø; Overgaard, Søren

    2010-01-01

    PURPOSE: Modern metal-on-metal (MoM) joint articulations releases metal ions to the body. Research tries to establish how much this elevates metal ion levels and whether it causes adverse effects. The steel needle that samples the blood may introduce additional chromium to the sample thereby caus...

  6. Recommended practices for welding of chromium-molybdenum steel piping and tubing

    International Nuclear Information System (INIS)

    This book contains recommendations for welding chromium-molybdenum steel pipe and tubing to itself and to various other materials. Subjects covered in detail are filler metal selection, joint design, preheating, and postheating. Particular emphasis is placed on the importance of maintaining interpass temperature and dangers inherent in interrupted heating cycles

  7. Activities of chromium oxides in slag in the process of argon-oxygen refining of corrosion-resistant steel

    International Nuclear Information System (INIS)

    On the basis of computer simulation results and available experimental data the behaviour of chromium oxides on stainless steel refining is studied. It is revealed that during melting and argon-oxygen refining of stainless steels chromium oxides occur in the solution if the slag contains not more than 25% (by mass) Cr2O3; this fact generates a need for accounting chromium oxide activity in thermodynamic calculations. An increase of Cr2O3 activity in the slag of this type results in increasing percentage ratio of chromium and carbon in the metal

  8. Creep and creep-fatigue behavior of high chromium steel weldment

    Institute of Scientific and Technical Information of China (English)

    Yukio TAKAHASHI; Masaaki TABUCHI

    2011-01-01

    Manuscript received I December 2010; in revised form 9 March 2011Strength of welded joints of high chromium steels is one of the important concerns for fabricators and operators of ultra supercritical thermal power plants. A number of creep as well as creep-fatigue tests with tensile hold have been carried out on the welded joints of two types of high chromium steels widely used in Japan, I.e. Grade 91 and 122 steels. It was found that failure occurred in fine grain heat-affected zone in all the creep-fatigue tests, even at a relatively low temperature and fairly short time where failure occurred in plain base metal region in simple creep testing. Four procedures were used to predict failure lives and their results were compared with the test results. A newly proposed energy-based approach gave the best estimation of failure life, without respect of the material and temperature.

  9. The electrochemistry of 13% chromium stainless steel in oilfield brines

    Energy Technology Data Exchange (ETDEWEB)

    Sidorin, Dmitry; Pletcher, Derek [Department of Chemistry, The University of Southampton, Southampton SO17 1BJ (United Kingdom); Hedges, Bill [BP Trinidad Ltd., P.O. Box 714, Port of Spain (Trinidad and Tobago)

    2005-07-25

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel. (author)

  10. The electrochemistry of 13% chromium stainless steel in oilfield brines

    International Nuclear Information System (INIS)

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel

  11. Abrasive Wear Behavior of High Chromium Cast Iron and Hadfield Steel-- A Comparison

    Institute of Scientific and Technical Information of China (English)

    Mehdi Mazar Atabaki; Sajjad Jafari; Hassan Abdollah-pour

    2012-01-01

    Wear properties of two different crushers used for grinding raw materials of cement industry are compared using pin-on-disk wear test.The wear test was carried out with different loads on a pin.Abrasive wear behavior of two alloys was evaluated by comparing mass loss,wear resistance,microhardness and friction coefficient.The microstructure of the specimens was detected using optical microscope.The results showed that abrasive wear of high chromium cast iron is lower than that of Hadfield steel.Due to the presence of M7C3 carbides on the high chromium cast iron matrix,impact crushers exhibited higher friction coefficient

  12. Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steel with Chromium and Carbon

    Science.gov (United States)

    Wu, Ming-Wei; Fan, Yu-Chi; Huang, Her-Yueh; Cai, Wen-Zhang

    2015-11-01

    Liquid phase sintering is an effective method to improve the densification of powder metallurgy materials. Boron is an excellent alloying element for liquid phase sintering of Fe-based materials. However, the roles of chromium and carbon, and particularly that of the former, on liquid phase sintering are still undetermined. This study demonstrated the effects of chromium and carbon on the microstructure, elemental distribution, boride structure, liquid formation, and densification of Fe-B-Cr and Fe-B-Cr-C steels during liquid phase sintering. The results showed that steels with 0.5 wt pct C densify faster than those without 0.5 wt pct C. Moreover, although only one liquid phase forms in Fe-B-Cr steel, adding 0.5 wt pct C reduces the formation temperature of the liquid phase by about 50 K (°C) and facilitates the formation of an additional liquid, resulting in better densification at 1473 K (1200 °C). In both Fe-B-Cr and Fe-B-Cr-C steels, increasing the chromium content from 1.5 to 3 wt pct raises the temperature of liquid formation by about 10 K (°C). Thermodynamic simulations and experimental results demonstrated that carbon atoms dissolved in austenite facilitate the eutectic reaction and reduce the formation temperature of the liquid phase. In contrast, both chromium and molybdenum atoms dissolved in austenite delay the eutectic reaction. Furthermore, the 3Cr-0.5Mo additive in the Fe-0.4B steel does not change the typical boride structure of M2B. With the addition of 0.5 wt pct C, the crystal structure is completely transformed from M2B boride to M3(B,C) boro-carbide.

  13. The relationship between microstructure and mechanical properties of ferritic chromium steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Peter; Cerjak, Horst [Graz Univ. of Technology (Austria); Toda, Yoshiaki; Hara, Toru; Abe, Fujio [National Institute for Materials Science (Japan)

    2008-07-01

    Welding as the major joining and repair technology for steels in thermal power plants has a significant influence on the steels microstructure and, therefore, on its properties. Heat-resistant martensitic 9-12% chromium steels show an affinity to the retention of delta ferrite in the heat-affected zone of their weldments. This is related to their high level of ferrite stabilizing alloying elements such as Cr, W or Mo. Retained delta ferrite in martensitic steel grades has a significant negative influence on creep strength, fatigue strength, toughness and oxidation resistance. In the long-term range of creep exposure, many weldments of martensitic heatresistant steels fail by Type IV cracking in the fine-grained region of the heat-affected zone. In this work, the formation of the heat-affected zone microstructures in martensitic chromium steels is studied by in-situ X-ray diffraction using synchrotron radiation, optical microscopy as well as most advanced electron microscopical methods. The observed microstructure is directly linked to the mechanical properties, i.e. ductility, toughness and creep strength. Characteristic failure modes are discussed in detail. (orig.)

  14. Corrosion of two kinds of cast steels containing chromium in hot concentrated alkaline

    Institute of Scientific and Technical Information of China (English)

    LI Wei; LIU Jun-quan; TU Xiao-hui

    2007-01-01

    A typical hot concentrated alkaline corrosion environment exists in alumina metallurgical industry, so that steel materials with outstanding alkaline corrosion resistance are strongly demanded for its processing equipment. In this paper, the corrosion resistance of two kinds of martensitic cast steels containing chromium in static 303 g/L NaOH alkaline solution at 85℃ was studied through polarization and potential-time curves, corrosion weight loss and corrosion morphology analysis. Experimental results showed that protection effect by passive film of cast steel containing Cr was temporary. The low carbon steel without Cr content also exhibited chemical passivity in the same solution. The corrosion mode of the tested Cr-containing cast steel was composed of active dissolving corrosion and caustic embrittlement cracking. Dissolving corrosion was the primary mechanism for the induced weight loss, while severe caustic embrittlement cracking was secondary. With the increase of chromium content in the cast steel, the tendency of the caustic embrittlement cracking decreased, while the active dissolving corrosion increased.

  15. Corrosion of two kinds of cast steels containing chromium in hot concentrated alkaline

    Directory of Open Access Journals (Sweden)

    LI Wei

    2007-02-01

    Full Text Available A typical hot concentrated alkaline corrosion environment exists in alumina metallurgical industry, so that steel materials with outstanding alkaline corrosion resistance are strongly demanded for its processing equipment. In this paper, the corrosion resistance of two kinds of martensitic cast steels containing chromium in static 303g/L NaOH alkaline solution at 85℃ was studied through polarization and potential-time curves, corrosion weight loss and corrosion morphology analysis. Experimental results showed that protection effect by passive film of cast steel containing Cr was temporary. The low carbon steel without Cr content also exhibited chemical passivity in the same solution. The corrosion mode of the tested Cr-containing cast steel was composed of active dissolving corrosion and caustic embrittlement cracking. Dissolving corrosion was the primary mechanism for the induced weight loss, while severe caustic embrittlement cracking was secondary. With the increase of chromium content in the cast steel, the tendency of the caustic embrittlement cracking decreased, while the active dissolving corrosion increased.

  16. Ionic nitriding of high chromium martensitic stainless steels

    International Nuclear Information System (INIS)

    Martensitic stainless steels are used in industrial applications where resistance to corrosion and mechanical resistance are needed simultaneously. These steels are normally used in tempering and annealing condition which gives them hardnesses of 500 and 600 HV (about 54 HRC). Ionic nitriding is an assisted diffusion technique that has recently been successfully applied to harden austenitic stainless steels without reducing their resistance to corrosion. The application with AISI 420 martensitic steels has not given good results yet, because in most cases, it affects their corrosion resistance. This work presents the results of the pulsed nitriding of martensitic steels with a higher chrome content, such as the M340 and M333 Boehler steels and they are compared with the same materials after tempering and annealing, without nitriding. The influence of the variations in the parameters of the process, such as the percentage of active time in the pulsed wave, partial nitrogen pressure, current density and effective tension in the microstructure, hardness and wear and corrosion resistance was studied. The microstructure was studied with an optic microscope; the wear resistance with abrasion tests following ASTM G-65 and corrosion with 100 hour long saline haze tests, in a device built according to ASTM B117. Hardness was found to rise to values of 1000 to 1350 HV in all the steels after ionic nitriding, the modified layers oscillated from 3 to 15 microns. As a result, wear resistance also increased, with differences depending on the microstructure and the thickness of the modified layer. However, corrosion resistance was not good, except in the case of the M333 steel test piece with less hardness and a less thick nitrided layer without a noticeable interphase (au)

  17. Cavitation erosion behaviour of stainless steels with constant nickel and variable chromium content

    Energy Technology Data Exchange (ETDEWEB)

    Bordeasu, Ilare; Mitelea, Ion [Politehnica Univ. Timisoara (Romania)

    2012-07-01

    The paper highlights new aspects in the evaluation of cavitation erosion resistance based on the chromium content variation and implicit on the Cr/Ni equivalent which constitutes the microstructure development using the information given by the Schaeffler diagram. The presented and analysed results show that it is possible to establish an optimum relation between the chromium and nickel content, in order to obtain a substantial increase of the cavitation erosion resistance. For this purpose, four stainless steels used in manufacturing of machinery parts, heavily subject to cavitation such as hydraulic turbine runners and pump impellers, were analyzed from the point of view of cavitation erosion. The cavitation erosion behaviour was evaluated by the microstructure behaviour investigated through optic and electronic microscopy and by comparisons with the characteristic curves for reference steels.

  18. Considerations upon the cavitation erosion resistance of stainless steel with variable chromium and nickel content

    Energy Technology Data Exchange (ETDEWEB)

    Karabenciov, A; Jurchela, A D; Bordeasu, I; Birau, N; Lustyan, A [Department of Hydraulic Machinery, ' Politehnica' University of Timisoara, Bv. Mihai Viteazu, no. 1, Timisoara, 300222 (Romania); Popoviciu, M, E-mail: karabenciov@yahoo.co [Academy of Romanian Scientists, Timisoara Branch (Romania)

    2010-08-15

    Paper presents results of experimental investigations regarding the cavitation erosion of eight different stainless steels with constant carbon content (0.1%). Four of them have constant chromium (12%) and variable nickel content. The other four have constant nickel (10%) and variable chromium content. Using the images of the eroded specimens, the parameters MDPR and MDP as well as the characteristic curves, the influence of chemical and structural modifications, upon the cavitation erosion, are put into evidence. The investigated steels, manufactured through casting, maintain the general composition of the materials with good cavitation erosion qualities. The experimental researches were carried out in Timisoara Hydraulic Machinery Laboratory on a magnetostrictive facility, taking into account the ASTM G32-2008 Standards.

  19. Chromium martensitic hot-work tool steels : damage, performance and microstructure

    OpenAIRE

    Sjöström, Johnny

    2004-01-01

    Chromium martensitic hot-work tool steel (AISI H13) is commonly used as die material in hot forming techniques such as die casting, hot rolling, extrusion and hot forging. They are developed to endure the severe conditions by high mechanical properties attained by a complex microstructure. Even though the hot-work tool steel has been improved over the years by alloying and heat treatment, damages still occur. Thermal fatigue is believed to be one of the most common failure mechanisms in hot f...

  20. Study of corrosion resistance of chromium-nickel steel in calcium - hypochlorite solution. Part 1. Steels uranus b6

    Directory of Open Access Journals (Sweden)

    Tošković D.

    2002-01-01

    Full Text Available Corrosion resistance of Cr - Ni (special steels specimen is tested by electrochemical methods, numerical method of linear polarization and polarization resistance method in calcium-hypochlorite (Ca(OCl2 solutions. With increasing of Ca(OCl2 concentration, pH value of the solution increases, as well as active chlorine concentration and corrosion activity of the medium. According to the quantitative method of the corrosion resistance determination it can be concluded that the steels tested in 1 wt % Ca(OCl2 solution are resistant, in 10 wt % solution constant, and in 50 wt % suspension less resistant. URANUS B6 showed the best corrosion resistance of all tested chromium - nickel steels in all tested corrosion mediums.

  1. MICROSTRUCTURE AND CORROSION RESISTANCE OF CHROMIUM NITRIDES OBTAINED BY VACUUM GAS NITRIDING OF ELECTROLYTIC CHROMIUM DEPOSITED ON AISI H13 STEEL

    Directory of Open Access Journals (Sweden)

    H. Cifuentes

    2013-06-01

    Full Text Available In this scientific research paper, the microstructure and corrosion resistance of chromium nitrides obtained from a duplex treatment consisting of an electroplated hard chromium coating applied on a steel AISI H13 follow by a thermochemical treatment in vacuum using NH3 as precursor gas of nitrogen, is evaluated. This type of duplex treatments combine the benefits of each individual treatment in order to obtain, with this synergic effect, compounds type CrxN more economic than those obtained by other kind of treatments e.g. physical vapor deposition (PVD. The results obtained by X-Ray Diffraction (XRD indicate the surface and subsurface transformation of the electrolytic hard chromium coating by formation of CrN and Cr2N phases. Likewise, potentiodynamic polarization tests indicate an increase in corrosion resistance of such kind of compounds in comparison with the obtained results with electroplated hard chromium.

  2. Bonding evolution with sintering temperature in low alloyed steels with chromium

    Directory of Open Access Journals (Sweden)

    Fuentes-Pacheco L.

    2009-01-01

    Full Text Available At present, high performance PM steels for automotive applications follow a processing route that comprises die compaction of water-atomized powder, followed by sintering and secondary treatments, and finishing operations. This study examines Cr-alloyed sintered steels with two level of alloying. In chromium-alloyed steels, the surface oxide on the powder is of critical importance for developing the bonding between the particles during sintering. Reduction of this oxide depends mainly on three factors: temperature, dew point of the atmosphere, and carbothermic reduction provided by the added graphite. The transformation of the initial surface oxide evolves sequence as temperature increases during sintering, depending on the oxide composition. Carbothermic reduction is supposed to be the controlling mechanism, even when sintering in hydrogen-containing atmospheres. The effect of carbothermic reduction can be monitored by investigating the behavior of the specimens under tensile testing, and studying the resultant fracture surfaces.

  3. Metallurgical and mechanical tests on the low activating martensitic chromium steel OPTIFER-IV

    International Nuclear Information System (INIS)

    Derived from a martensitic chromium-steel (1.4914) with high strength at elevated temperatures, a new low activating steel OPTIFER-IV, Chg. 986489, had been developed for an application as 'First Wall' - and as structural material for fusion devices. The alloying elements with high activation like Mo, Ni and Nb had been substituted by similar acting, but low activating elements like W and Ta. Some metallurgical and mechanical properties had been tested in order to decide the kind of alloying. The new steel is fully martensitic without δ-ferrite, fine-grained and well hardenable. The tensile properties satisfy the requirements, and the notch impact bending properties are excellent. (orig.)

  4. Autowave process of the localized plastic deformation of high-chromium steel saturated with hydrogen

    Science.gov (United States)

    Bochkareva, A. V.; Barannikova, S. A.; Li, Yu V.; Lunev, A. G.; Zuev, L. B.

    2016-06-01

    The deformation behavior of high-chromium stainless steel of sorbitic structure upon high-temperature tempering and of electrically saturated with hydrogen in the electrochemical cell during 12 hours is investigated. The stress-strain curves for each state were obtained. From the stress-strain curves, one can conclude that hydrogen markedly reduces the elongation to the fracture of specimen. Using double-exposed speckle photography method it was found that the plastic flow of the material is of a localized character. The pattern distribution of localized plastic flow domains at the linear hardening stage was investigated. Comparative study of autowave parameters was carried out for the tempered steel as well as the electrically saturated with hydrogen steel.

  5. Study of corrosion resistance of chromium-nickel steel in calcium-hypochlorite solution part 2: Steels Č 4574 and Č 4583

    Directory of Open Access Journals (Sweden)

    Tošković D.

    2003-01-01

    Full Text Available This paper shows the results of investigations of corrosion resistance of different samples of chromium-nickel steels Č 4574 and Č 4583 in calcium-hypochlorite solution, by potentiodynamic method. The paper presents continuation of investigations on steels URANUS B6 and Č 4578 published in reference [1]. In this paper comparison of the obtained results is carried out, too, in order to detect steel, which quality is the best choice for calcium hypo chlorite solution requirements.

  6. Simultaneous material flow analysis of nickel, chromium, and molybdenum used in alloy steel by means of input-output analysis.

    Science.gov (United States)

    Nakajima, Kenichi; Ohno, Hajime; Kondo, Yasushi; Matsubae, Kazuyo; Takeda, Osamu; Miki, Takahiro; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2013-05-01

    Steel is not elemental iron but rather a group of iron-based alloys containing many elements, especially chromium, nickel, and molybdenum. Steel recycling is expected to promote efficient resource use. However, open-loop recycling of steel could result in quality loss of nickel and molybdenum and/or material loss of chromium. Knowledge about alloying element substance flow is needed to avoid such losses. Material flow analyses (MFAs) indicate the importance of steel recycling to recovery of alloying elements. Flows of nickel, chromium, and molybdenum are interconnected, but MFAs have paid little attention to the interconnected flow of materials/substances in supply chains. This study combined a waste input-output material flow model and physical unit input-output analysis to perform a simultaneous MFA for nickel, chromium, and molybdenum in the Japanese economy in 2000. Results indicated the importance of recovery of these elements in recycling policies for end-of-life (EoL) vehicles and constructions. Improvement in EoL sorting technologies and implementation of designs for recycling/disassembly at the manufacturing phase are needed. Possible solutions include development of sorting processes for steel scrap and introduction of easier methods for identifying the composition of secondary resources. Recovery of steel scrap with a high alloy content will reduce primary inputs of alloying elements and contribute to more efficient resource use. PMID:23528100

  7. Effect of Rare Earth Elements on Thermal Fatigue Property of Low Chromium Semi-Steel

    Institute of Scientific and Technical Information of China (English)

    常立民; 刘建华; 张瑞军; 邵利; 于升学; 谌岩

    2003-01-01

    The effect of rare earth elements on eutectic carbide′s morphology of low chromium semi-steel in as-cast state and after heat treatment was investigated, and accordingly, the thermal fatigue property of this material was studied. The results show that RE can improve the eutectic carbide′s morphology, inhibit the formation and propagation of thermal fatigue cracks, therefore, promote the thermal fatigue property, which is more noticeable in case of the RE modification in combination with heat treatment. The optimal thermal fatigue property can be obtained when treated with 0.2% RE modification as well as normalization at 950 ℃ for 3 h.

  8. A study on Z-phase nucleation in martensitic chromium steels

    DEFF Research Database (Denmark)

    Golpayegani, Ardeshir; Andrén, Hans-Olof; Danielsen, Hilmar Kjartansson;

    2008-01-01

    9–12% chromium martensitic steels are liable to the precipitation of Z-phase, Cr(V,Nb)N, after long time exposure at 550–650 ◦C. This complex nitride consumes vanadium nitrides and causes the creep strength of the material to fall drastically after several thousand hours of exposure. In this work....... Furthermore, such a nucleation site would provide vanadium and nitrogen for the growth of Z-phase. The presence of niobium carbide has also been observed close to Z-phase nucleation sites, indicating niobium to be important for the nucleation and growth of Z-phase....

  9. Microstructural characterization of 5-9% chromium reduced-activation steels

    Energy Technology Data Exchange (ETDEWEB)

    Jayaram, R. [Univ. of Pittsburgh, PA (United States); Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    The microstructures of a 9Cr-2W-0.25-0.1C (9Cr-2WV), a 9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa), a 7Cr-2W-0.25V-0.07Ta-0.1C (7Cr-2WVTa), and a 5Cr-2W-0.25V-0.07Ta-0.1C (5Cr-2WVTa) steel (all compositions are in weight percent) have been characterized by Analytical Electron Microscopy (AEM) and Atom Probe Field Ion Microscopy (APFIM). The matrix in all four reduced-activation steels was 100% martensite. In the two 9Cr steels, the stable precipitates were blocky M{sub 23}C{sub 6} and small spherical MC. The two lower-chromium steels contained blocky M{sub 7}C{sub 3} and small needle-shaped carbonitrides in addition to M{sub 23}C{sub 6}. AEM and APFIM analysis revealed that in the steels containing tantalum, the majority of the tantalum was in solid solution. The experimental observations were in good agreement with phases and compositions predicted by phase equilibria calculations.

  10. Effect of chromium, tungsten, tantalum, and boron on mechanical properties of 5-9Cr-WVTaB steels

    International Nuclear Information System (INIS)

    The Cr-W-V-Ta reduced-activation ferritic/martensitic steels use tungsten and tantalum as substitutes for molybdenum and niobium in the Cr-Mo-V-Nb steels that the reduced-activation steels replaced as candidate materials for fusion applications. Studies were made to determine the effect of W, Ta, and Cr composition on the tensile and Charpy properties of the Cr-W-V-Ta; steels with 5%, 7%, and 9% Cr with 2% or 3% W and 0%, 0.05%, or 0.10% Ta were examined. Boron has a long history of use in steels to improve properties, and the effect of boron was also examined. Regardless of the chromium concentration, the steels with 2% W and 0.05-0.1% Ta generally had a better combination of tensile and Charpy properties than steels with 3% W. Boron had a negative effect on properties for the 5% and 7% Cr steels, but had a positive effect on the 9% Cr steel. When the 5, 7, and 9Cr steels containing 2% W and 0.05% Ta were compared, the tensile and Charpy properties of the 5 and 9Cr steels were better than those of the 7Cr steel, and overall, the properties of the 5Cr steel were better than those of the 9Cr steel. Such information will be useful if the properties of the reduced-activation steels are to be optimized

  11. Aluminium effect on steel with 12%-chromium and various manganese contents

    International Nuclear Information System (INIS)

    To increase heat resistance, aluminium has been added to medium-carbon chromium-manganese steels, and its effect on the phase composition and microstructure has been studied. The investigation of alloys has been carried out over polythermal sections of the five-component Fe-C-Cr- Mn system at the constant carbon, chromium and aluminium content and cariable concentrations of manganese in the range of 1150 - 650 deg C. To study phase and structure transformations of alloys at high temperatures, the structure-hardening method has been used. The hardness of alloys containing to 12.6% of manganese appreciably depends on the quenching temperature. It is substantially higher in the original alloy quenched at high temperatures compared to the quenching at lower temperatures. It is due to the transition of its base from martensite-ferrite to ferrite state at 1000 deg C. The results obtained and the data of x-ray diffraction analysis allow a polythermal section of the Fe-C-Cr-Mn-Al system to be constructed at the constant 12%-chromium content, 2.4%-aluminium, 0.37%-carbon and variable manganese contents

  12. The role of interstitial nitrogen in the precipitation hardening reactions in high-chromium ferritic steels

    International Nuclear Information System (INIS)

    The effects of exposure to temperatures in the range 475 - 800 C on the hardness and associated microstructure of high chromium ferritic steels has been investigated. Low-carbon 26Cr-1Mo steels containing 0,02 - 0,04% nitrogen were found to constitute an age hardening system when quenched from a temperature of nitrogen solubility and exposed at temperatures in the range 600 - 700 C. TEM observations on thin foils revealed that hardening was associated with the formation of a high density of Cr-N zones. Ageing at 475 C and 550 C produced hardening due to the formation of chromium-rich ferrite phases α' as result of the miscibility gap in the Fe-Cr phase diagram. However the presence of interstitial nitrogen in solution in the steel considerably reduced the rate of hardening, especially at 475 C. This type of decomposition occurs by a mechanism of nucleation and growth, forming zones similar to those formed during an ageing at 600 C. When depleted of interstitial nitrogen, the specimens aged at 475 C underwent spinodal decomposition. Thus nitrogen in solid solution was found to have a significant effect on the 475 C hardening reaction. Precision X-ray diffraction measurements revealed the presence of secondary diffraction peaks associated with the Bragg peaks, which confirmed the formation of Cr-rich phases during ageing at 475 C. The calculated associated lattice parameter measurements allowed estimates of the compositions of the decomposition phases to be made. These were calculated to be about 6-18% Cr in the Fe-rich and 60-80% Cr in the Cr-rich phases of the 26Cr-1Mo steel

  13. Simple and direct estimation chromium in different grades of steels using UV-visible spectrophotometer and associated measurement uncertainties

    International Nuclear Information System (INIS)

    Chromium is one of the important elements that provide desirable strength to different grades of steels which are chosen as structural materials for upcoming fast breeder reactors. Therefore its estimation is an important part of qualification of steels for desired applications. Several methods have been cited in literature for the estimation of chromium in steels which include most sophisticated instruments like XRFS, spark based OES, UV-Visible spectrophotometer and also classical volumetric titration. Being surface based techniques, both XRFS and spark OES have their own limitations of using matrix matching standards apart from usage of high cost instrumentation. Similarly, volumetric method being time consuming one and also the method cited in involves cumbersome chemical treatment to convert entire chromium in to measurable form of Cr (VI) and subsequent measurement by UV-Visible Spectrophotometer at 350 nm or 373 nm. As this method involves time consuming sample preparation step, it is also not a preferred method for an industrial laboratory where high analytical loads normally exists and quick analytical feedback is an issue. In view of limitations in the method cited above, an attempt has been made to develop a simple and direct method for estimation of chromium in different grades of steels containing chromium in the range of 4.75%-26%. Further, present paper also evaluates the measurement uncertainty (MU) in measurement of chromium in different grades of steels. The developed method involves the dissolution of steel in aqua-regia followed by perchloric acid fuming to convert total chromium to Cr (VI) and subsequent measurement at 447 nm after adding phosphoric acid to the suitable aliquot taken from stock solution. Phosphoric acid is added to mask iron present in solution. For the purpose to quantify measurement uncertainty, the methodology as given in EURACHEM/CITAC guide CG-4 has been followed. The expanded uncertainty at 95% confidence limit is

  14. Study of corrosion behavior of a 22% Cr duplex stainless steel : influence of nano-sized chromium nitrides and exposure temperature

    OpenAIRE

    Bettini, Eleonora; Kivisäkk, Ulf; Leygraf, Christofer; Pan, Jinshan

    2013-01-01

    Chromium nitrides may precipitate in duplex stainless steels during processing and their influence on the corrosion behavior is of great importance for the steel performance. In this study, the influence of nano-sized quenched-in chromium nitrides on the corrosion behavior of a heat treated 2205 duplex stainless steel was investigated at room temperature and 50 °C (just above critical pitting temperature). The microstructure was characterized by SEM/EDS and AFM analyses, and quenched-in nitri...

  15. In situ synchrotron X-ray diffraction study of the effect of chromium additions to the steel and solution on CO2 corrosion of pipeline steels

    International Nuclear Information System (INIS)

    Highlights: •We studied the effect of chromium on CO2 corrosion processes. •Chromium addition accelerates the onset of siderite and chukanovite precipitation. •One of the key effects is to decrease the critical supersaturation for siderite nucleation. -- Abstract: We demonstrate the important effects of chromium in the steel composition and of Cr3+ ions in solution on the nucleation and growth of corrosion layers in a CO2 environment. We propose that high-valent metal cations in solution (within the boundary layer) catalyse the nucleation of siderite, which otherwise has a high critical supersaturation for precipitation. One of the key effects of small alloy additions to the steel is to put into the local solution species that decrease the critical supersaturation for siderite and modify the growth rate of the scale, thereby promoting the formation of an adherent and protective scale

  16. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    Science.gov (United States)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  17. Tensile and pack compressive tests of some sheets of aluminum alloy, 1025 carbon steel, and chromium-nickel steel

    Science.gov (United States)

    Atchison, C S; Miller, James A

    1942-01-01

    Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength.

  18. Thermal Fatigue Behaviour of a Chromium Electroplated 32NiCrMo145 Steel

    Institute of Scientific and Technical Information of China (English)

    A.Abdollah-zadeh; M.S.Jamshidi; S.M.M.Hadavi

    2004-01-01

    Thermal fatigue behavior of hard chromium electroplated steel in three different crack intensities of high contraction (HC), medium contraction (MC) and Iow contraction (LC) was studied. Maximum and minimum temperatures during thermal cycle were 800 and 100℃, respectively. The topography and cross sections of the samples exposed to 50, 100 and 200 thermal cycles were studied. The thermal fatigue behavior was analyzed using the data obtained from surface roughness, crack networks and stress induced during cycles. Although the as-coated sample with LC chromium contained no crack, it appeared to have a high crack density after only 50 cycles. The crack depth and width in cyclically oxidized LC coating were much less than those in MC and HC coatings. It was concluded that the LC coating protected the substrate from having cracks or subsurface oxidation during thermal fatigue. The cracks in the HC and MC coatings increased in density as well as in depth by thermal cycles. Moreover, the opening of the cracks to the substrate resulted in sub-surface oxidation.

  19. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lapena, J.; Blazquez, F. [Ciemat, Madrid (Spain)

    2000-07-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigree. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs.

  20. Avoiding chromium transport from stainless steel interconnects into contact layers and oxygen electrodes in intermediate temperature solid oxide electrolysis stacks

    Science.gov (United States)

    Schlupp, Meike V. F.; Kim, Ji Woo; Brevet, Aude; Rado, Cyril; Couturier, Karine; Vogt, Ulrich F.; Lefebvre-Joud, Florence; Züttel, Andreas

    2014-12-01

    We investigated the ability of (La0.8Sr0.2)(Mn0.5Co0.5)O3-δ (LSMC) and La(Ni0.6Fe0.4)O3-δ (LNF) contact coatings to avoid the transport of Cr from steel interconnects to solid oxide electrolysis electrodes, especially to the anode. The transport of chromium from commercial Crofer 22 APU (ThyssenKrupp) and K41X (AISI441, Aperam Isbergues) steels through LSMC and LNF contact coatings into adjacent (La0.8Sr0.2)MnO3-δ (LSM) oxygen electrodes was investigated in an oxygen atmosphere at 700 °C. Chromium concentrations of up to 4 atom% were detected in the contact coatings after thermal treatments for 3000 h, which also lead to the presence of chromium in adjacent LSM electrodes. Introduction of a dense (Co,Mn)3O4 coating between steel and contact coating was necessary to prevent the diffusion of chromium into contact coatings and electrodes and should lead to extended stack performance and lifetime.

  1. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10-7 wt.% for Al-Fe-coated steels and 5*10-6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti3SiC2. The ceramic materials of SiC and Ti3SiC2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  2. Precipitation of Chromium Nitrides in the Super Duplex Stainless Steel 2507

    Science.gov (United States)

    Pettersson, Niklas; Pettersson, Rachel F. A.; Wessman, Sten

    2015-03-01

    Precipitation of chromium nitrides during cooling from temperatures in the range 1373 K to 1523 K (1100 °C to 1250 °C) has been studied for the super duplex stainless steel 2507 (UNS S32750). Characterization with optical, scanning and transmission electron microscopy was combined to quantify the precipitation process. Primarily Cr2N nitrides were found to precipitate with a high density in the interior of ferrite grains. An increased cooling rate and/or an increased austenite spacing clearly promoted nitride formation, resulting in precipitation within a higher fraction of the ferrite grains, and lager nitride particles. Furthermore, formation of the meta-stable CrN was induced by higher cooling rates. The toughness seemed unaffected by nitrides. A slight decrease in pitting resistance was, however, noticed for quenched samples with large amounts of precipitates. The limited adverse effect on pitting resistance is attributed to the small size (~200 nm) of most nitrides. Slower cooling of duplex stainless steels to allow nitrogen partitioning is suggested in order to avoid large nitrides, and thereby produce a size distribution with a smaller detrimental effect on pitting resistance.

  3. Effects of chromium content and sodium velocity on the compatibility of high-Cr ferritic steels in a sodium environment

    International Nuclear Information System (INIS)

    To obtain fundamental data on the compatibility of high-chromium ferritic steels in sodium, high-purity Fe-0.1C-1Mo-5, 9 or 13Cr ferritic steels were prepared by vacuum melting. Test specimens of these steels which were normalized and tempered and a reference type 316 stainless steel (316 ss) were exposed to two sodium-velocity regions for periods up to 10.8 Ms in a sodium loop system which had a direct resistance main heater and was made of SUS 316. The test temperature, the maximum temperature, of the loop system in this work was 873 K, the oxygen content of sodium was 1 - 2 ppm, and the sodium velocities were about 4.0 and 0.02 m/s. The specimens exposed to the high sodium-velocity region revealed that corrosion loss at a zero downstream position of the three kinds of ferritic steels was smaller than that of the reference 316 ss ; about one fifth for the 5 and 9 %Cr steels and one half for the 13 %Cr steel. The surface analysis showed deposition of Ni that dissolved at upstream for all the ferritic steels, deposition of Cr for the 5 %Cr steel, and selective dissolution of Cr for the 9 and 13 %Cr steels. The ferritic steels without Ni and with less amounts of Cr than the reference 316 ss would result in their smaller corrosion loss than the 316 ss. Transfer of carbon, nitrogen and oxygen was not remarkable, except the carburization of the 5 %Cr steel. The specimens of the three kinds of ferritic steels which were exposed to the low sodium-velocity region revealed much smaller corrosion loss than that in the high velocity region, deposition of both Ni and Cr, and no transfer of carbon, nitrogen and oxygen except for slight carburization of the 13 %Cr steel. (author)

  4. FORMATION OF CHROMIUM COATING AND COMPARATIVE EXAMINATION ON CORROSION RESISTANCE WITH 13Cr STEEL IN CO2-SATURATED SIMULATED OILFIELD BRINE

    OpenAIRE

    JIAOJUAN ZOU; FAQIN XIE; NAIMING LIN; XIAOFEI YAO; WEI TIAN; BIN TANG

    2013-01-01

    In order to enhance the surface properties of P110 oil casing tube steel and increase its usage during operation, chromium coating was fabricated by pack cementation. Scanning electron microscope, energy dispersive spectrometry and X-ray diffraction were used to investigate the surface morphology, cross-sectional microstructure, element distribution and phase constitutions of the coating. Comparative examinations on corrosion resistance between chromium coating and 13Cr stainless steel in CO2...

  5. Thermophysical Properties of a Chromium Nickel Molybdenum Steel in the Solid and Liquid Phases

    Science.gov (United States)

    Wilthan, B.; Reschab, H.; Tanzer, R.; Schützenhöfer, W.; Pottlacher, Gernot

    2008-02-01

    Numerical simulation of vacuum arc re-melting, pressurized or protective electro-slag re-melting, and ingot casting have become quite important in the metal industry. However, a major drawback of these simulation techniques is the lack of accurate thermophysical properties for temperatures above 1,500 K. Heat capacity, heat of fusion, density, and thermal conductivity are important input parameters for the heat transfer equation. Since, direct measurements of thermal conductivity of alloys in the liquid state are almost impossible, its estimation from electrical conductivity using the Wiedemann Franz law is very useful. The afore-mentioned thermophysical properties of several steels are investigated within the context of an ongoing project. Here, we present a full set of thermophysical data for the chromium nickel molybdenum steel meeting the standard DIN 1.4435 (X2CrNiMo18-14-3); these values will be used by our partner to simulate various re-melting and solidification processes. Wire-shaped samples of the steel are resistively volume-heated, as part of a fast capacitor discharge circuit. Time-resolved measurements with sub-μs resolution of current through the specimen are performed with a Pearson probe. The voltage drop across the specimen is measured with knife-edge contacts and ohmic voltage dividers, the temperature of the sample with a pyrometer, and the volumetric expansion of the wire with a fast acting CCD camera. These measurements enable the heat of fusion, the heat capacity, and the electrical resistivity to be determined as a function of temperature in the solid and liquid phases. The thermal conductivity and thermal diffusivity are estimated via the Wiedemann Franz law.

  6. Effect of Rare Earth Element on Formation and Propagation of Thermal Fatigue Crack in Low-Chromium Semi-Steel

    Institute of Scientific and Technical Information of China (English)

    XU Tao; LI Feng; CHEN Hua; YU Cui-yan

    2005-01-01

    The formation and growth of thermal fatigue crack in low-chromium semi-steel were investigated by means of optical microscope and scanning electron microscope, and the function of RE in low-chromium semi-steel was analyzed. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides, and the cracks not only grow and spread but also join each other. RE can improve the eutectic carbide′s morphology, inhibit the generation and propagation of thermal fatigue cracks, and therefore promote the activation energy for the crack′s propagation, which is especially more noticeable in case of the RE modification in combination with heat treatment. The mathematical model of the crack propagation is put forward.

  7. The development of carbides in the phase boundary between delta ferrite and martensite in 9-14% chromium steels

    International Nuclear Information System (INIS)

    Materials with a sufficient toughness have to be used for safety-relevant components. In martensitic 12% chromium steels delta ferrite may occur, at higher contents (>0,5%) the fracture toughness of the material may be reduced considerably. This means that the DBTT (ductile to brittle transition temperature) is shifted towards higher temperatures during impact tests. In two-phase steels consisting of delta-ferrite and martensite, this behavior of brittle fracture is found to be caused by the massive dendritic carbide surrounding the delta-ferrite. The generation of this carbide is described by means of CCT diagrams (continuous cooling transformation diagrams). Carbide formation depends on both the chromium content and the cooling velocity. (orig.)

  8. Deposition of chromium nitrides, oxy-nitrides and titanium carbides on steel substrates by DC magnetron sputtering

    International Nuclear Information System (INIS)

    The present paper deals with the deposition of chromium and titanium nitrides, oxynitrides, carbides and carbonitrides onto low carbon steel by reactive magnetron sputtering. The films were obtained by using different reactive gases (02, N2, CH4,). The process advancement and the corresponding film composition variations were investigated as a function of the specific reactivity of each gas. In addition, the cathode poisoning phenomena were studied. (author). 4 refs., 6 figs

  9. Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel

    International Nuclear Information System (INIS)

    Martensitic chrome steels with a high content of chromium incline to form delta ferrite frequently accompanied by massive dendritic carbide precipitations. Both phases mostly influence the mechanical properties of this steel in countercurrent manner. The relatively soft delta ferrite causes an increase of ductility and toughness, whilst the brittle dendritic carbides decreases both. Both phases mostly decrease the strength of the steel. One or the other influence will be dominant in dependence of the quantitative relation of the two phases. This is the cause for very different statements in the literature. The dendritic carbides should be avoided using a cooling rate of more than 103 K/min after the austenitization, because this phase mostly impairs the mechanical properties of the steel. However, the delta ferrite without dendritic carbides can be tolerated mostly. (orig.)

  10. SECM Study of Effect of Chromium Content on the Localized Corrosion Behavior of Low-Alloy Steels in Chloride Environment

    Science.gov (United States)

    Indira, K.; Nishimura, T.

    2016-10-01

    This paper investigates the effect of chromium (Cr) content (0, 1, 3 and 5% Cr) in epoxy-coated alloy steel against corrosion using in situ electrochemical techniques such as EIS and SECM in a 3% NaCl solution. The EIS results revealed that the epoxy-coated Cr steel exhibited higher impedance values than carbon steel, which is attributed to the greater resistance of Cr steel toward corrosion. Based on the cyclic voltammogram results, the tip potentials were set at -0.7, 0.04 and 0.60 V for determining the concentration of dissolved oxygen at cathodic region, and oxidation of Cr2+ and Fe2+ at anodic region, respectively. The SECM measurements showed that, the tip current in the anodic region has decreased with increase in Cr content of the sample, which indicates that the oxidation of Fe2+ and Cr2+ decreases (corrosion is reduced) with the increase in Cr content of the steel. Besides, 5% Cr steel can maintain the highest corrosion resistance, and 1 and 3% Cr steels have higher corrosion resistance than the 0% Cr steel. This higher corrosion resistance of Cr steel samples could be due to the formation of Cr-rich hydro-oxide layers [Cr(OH)3 as a corrosion product] on the surface of the samples. Thus, the epoxy-coated Cr alloy steel has greater corrosion resistance in a chloride-containing environment than the carbon steel. Hence, epoxy-coated Cr alloy steel can be successfully used as a construction material in structures.

  11. Assessment of hexavalent chromium release in Malaysian electric arc furnace steel slag for fertilizer usage

    Science.gov (United States)

    Bankole, L. K.; Rezan, S. A.; Sharif, N. M.

    2014-03-01

    This study investigates the leaching of hexavalent chromium (Cr (VI)) from electric arc furnace steel slag as Cr (VI) is classified as human carcinogen. Batch leaching tests were performed for 16 days. The lixiviants used were alkaline, de-ionized and rain water. After 16 days, Cr (VI) was found to be highest in alkaline water (0.03 mg/L) and lowest in de-ionized water (0.01 mg/L). Besides the lixiviants used, slag stirring speed and liquid to solid ratio also affect Cr (VI) released. The experimental work was complimented with slag characterization using XRF, XRD and SEM/EDX analysis. The leaching process was also simulated via Factsage software to calculate isothermal pourbaix diagrams. The Cr (VI) released was low and below the threshold of 0.1 mg/L set for public water systems. Recycle the slag as fertilizer should be considered safe as it does not exceed the safety limit set for Cr (VI) dissolution.

  12. Absorption of Nickel, Chromium, and Iron by the Root Surface of Primary Molars Covered with Stainless Steel Crowns

    Directory of Open Access Journals (Sweden)

    David Keinan

    2010-01-01

    Full Text Available Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ, was analyzed. An energy dispersive X-ray spectrometer (EDS was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (<.001. Significance. Stainless-steel crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible.

  13. Formation of Chromium Coating and Comparative Examination on Corrosion Resistance with 13Cr Steel in CO2-SATURATED Simulated Oilfield Brine

    Science.gov (United States)

    Zou, Jiaojuan; Xie, Faqin; Lin, Naiming; Yao, Xiaofei; Tian, Wei; Tang, Bin

    2013-07-01

    In order to enhance the surface properties of P110 oil casing tube steel and increase its usage during operation, chromium coating was fabricated by pack cementation. Scanning electron microscope, energy dispersive spectrometry and X-ray diffraction were used to investigate the surface morphology, cross-sectional microstructure, element distribution and phase constitutions of the coating. Comparative examinations on corrosion resistance between chromium coating and 13Cr stainless steel in CO2-saturated simulated oilfield brine were carried out via electrochemical measurements. The results showed that the obtained coating was uniform and compact, mainly consisted of CrxCy and doped with minor Cr2N. Chromizing treatment made it possible to create on the working surface of P110 steel with enhanced corrosion resistance, and the chromium coating indicated lower pitting corrosion sensitivity than that of 13Cr stainless steel.

  14. Analysis of the passive layer developed on stainless steels implanted with chromium; Analisis de las peliculas pasivas generadas en aceros inoxidables implantados con cromo

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, C. M.; Cristobal, M. J.; Novoa, X. R.; Pena, G.; Perez, M. C.

    2004-07-01

    This work studies the effect of chromium implantation on the development of passive layers generated electrochemically in alkaline medium over two stainless steels. The XPS analyses show that the layers generated on the implanted steels present less thickness together with similar composition compared to the unimplanted steels layers. However, SEM micrographs show that the layers grown on implanted steels present more defects and less adherence that the films on unimplanted steels. These changes together with the results obtained by Cyclic Voltammetry suggest an oxide structure modification, lattice structure or crystallinity state. (Author) 6 refs.

  15. Experimental studies on improving the performance of electrochemical machining of high carbon, high chromium die steel using jet patterns

    Directory of Open Access Journals (Sweden)

    V. Sathiyamoorthy

    2014-03-01

    Full Text Available Electrochemical machining (ECM is a non-traditional process used mainly to cut hard or difficult-to-cut metals, where the application of a more traditional process is not convenient. Stiff market competition and ever-growing demand for better, durable and reliable products has brought about a material revolution, which has greatly expanded the families of difficult-to-machine materials namely highcarbon,high-chromium die steel; stainless steel and superalloys. This investigation attempts to analyze the effect of electrolyte distribution on material removal rate (MRR and surface roughness (SR on electrochemical machining of high-carbon, high-chromium die steel using NaCl aqueous solution. Three electrolyte jet patterns namely straight jet in circular, inclined jet in circular and straight jet in spiral were used for this experimentation. The results reveal that electrolyte distribution significantly improves the performance of ECM and the straight jet in spiral pattern performs satisfactorily in obtaining better MRR and surface roughness.

  16. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    Directory of Open Access Journals (Sweden)

    Jianbo Sun

    2016-03-01

    Full Text Available The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels.

  17. Relation between various chromium compounds and some other elements in fumes from manual metal arc stainless steel welding.

    OpenAIRE

    Matczak, W; Chmielnicka, J

    1993-01-01

    For the years 1987-1990 160 individual samples of manual metal arc stainless steel (MMA/SS) welding fumes from the breathing zone of welders in four industrial plants were collected. Concentrations of soluble and insoluble chromium (Cr) III and Cr VI compounds as well as of some other welding fume elements (Fe, Mn, Ni, F) were determined. Concentration of welding fumes in the breathing zone ranged from 0.2 to 23.4 mg/m3. Total Cr amounted to 0.005-0.991 mg/m3 (including 0.005-0.842 mg/m3 Cr V...

  18. Surface analytical characterization of chromium-stabilized protecting oxide layers on stainless steel referring to activity buildup

    Science.gov (United States)

    Thieme, M.; Scharnweber, D.; Drechsler, L.; Heiser, C.; Adolphi, B.; Weiss, A.

    1992-08-01

    Surface analytical methods were used to characterize both protecting oxide layers formed by hydrothermal chromate treatment (HTCT) on stabilized austenitic stainless steel and hydrothermally grown corrosion product layers (CPL) within the scope of lowering the activity buildup in the primary circuit of nuclear power plants. Morphology, thickness and chromium depth distribution of the layers proved to be considerably different from each other. According to Raman microspectrometry, there were also alterations in the chemical nature of the oxide species. Preceding electropolishing gave rise to particular properties of the respective layers. Prerequisites for an optimal corrosion behaviour of the protecting layers are discussed. Titanium-containing precipitations were oxidatively transformed by HTCT.

  19. Effects of carbon content and microstructure on corrosion rate of 13% chromium steel in wet CO2 environments; Shitsujun CO2 kankyochu deno 13%Cr ko no fushoku ni oyobosu C ryo to kinzoku soshiki no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, T.; Asahi, H. [Nippon Steel Corp., Tokyo (Japan)

    1998-11-15

    Thirteen percent chromium steel is excellent in corrosion resistance of CO2. A large quantity of 13% chromium steel is used in oil and gas fields where CO2 is produced. Usually, AISI 420 13% chromium steel to which C was added 0.2% is used for an oil field tube. Since AISI 420 steel is tempered, chromium carbide is formed and the effective chromium amount in a parent phase is decreased to deteriorate the corrosion resistance of CO2. Therefore, it is desired to decrease the carbon content as far as possible for improvement of corrosion resistance of CO2. AISI 410 13% chromium steel with a carbon content of 0.1% is difficult to form {delta}-ferrite. It has a problem in manufacturing because the hot working performance is low. In this report, on the basis of AISI 420 13% chromium steel, the effects of composition on CO2 corrosion were investigated using the steel whose carbon content was changed. Ferrite, martensite, and tempered martensite differ in a corrosion rate. The corrosion rate increases in the order of martensite, ferrite, and tempered martensite. The corrosion rate of 13% chromium steel is represented by the product of the corrosion rate of each microstructure and the fraction of it. 11 refs., 12 figs., 2 tabs.

  20. Optimized chemical composition, working and heat treatment condition for resistance to irradiation assisted stress corrosion cracking of cold worked 316 and high-chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    The authors have reported that the primary water stress corrosion cracking (PWSCC) in baffle former bolts made of austenitic stainless steels for PWR after long-term operation is caused by irradiation-induced grain boundary segregation. The resistance to PWSCC of simulated austenitic stainless steels whose chemical compositions are simulated to the grain boundary chemical composition of 316 stainless steel after irradiation increased with decrease of the silicon content, increases of the chromium content, and precipitation of M23C6 carbides at the grain boundaries. In order to develop resistance to irradiation assisted stress corrosion cracking in austenitic stainless steels, optimized chemical compositions and heat treatment conditions for 316CW and high-chromium austenitic stainless steels for PWR baffle former bolts were investigated. For 316CW stainless steel, ultra-low-impurities and high-chromium content are beneficial. About 20% cold working before aging and after solution treatment has also been recommended to recover sensitization and make M23C6 carbides coherent with the matrix at the grain boundaries. Heating at 700 to 725degC for 20 to 50 h was selected as a suitable aging procedure. Cold working of 5 to 10% after aging produced the required mechanical properties. The optimized composition of the high-chromium austenitic stainless steel contents 30% chromium, 30% nickel, and ultra-low impurity levels. This composition also reduces the difference between its thermal expansion coefficient and that of 304 stainless steel for baffle plates. Aging at 700 to 725degC for longer than 40 h and cold working of 10 to 15% after aging were selected to meet mechanical property specifications. (author)

  1. Cavitation erosion resistance of two steels with the same percentage of Chromium and Nickel but different Carbon content

    International Nuclear Information System (INIS)

    Hydraulic machinery repair works necessitate new materials with improved cavitation erosion resistance and simultaneously good welding properties. The present paper is concerned with the behavior at cavitation of two steels with close contents of chromium (approximately 12%) and nickel (approximate 6%) but with different carbon content (for the first 0.1% C and the second 0.036% C). The reduced carbon content is necessary for an easy welding repair work. As a result of the different chemical content, as is shown by the Schäffler diagram, the steel containing 0.1% C has a structure formed by 60% austenite and 40% martensite while those with 0.036% C has completely martensitic structure. The laboratory tests were done in two vibratory devices one with piezoelectric crystals, respecting the ASME G32-2010 Standard and the other a magnetostrictive vibratory device with nickel tube. The evaluation of the cavitation resistance was obtained with the help of cavitation erosion characteristic curves MDE (t) and MDER (t). For analyzing the steel degradation, the eroded areas were also subjected to microscopic investigations. The results show that the steel with 0.1% C has better cavitation erosion behavior than that of the steel with 0.036% C

  2. Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications

    Science.gov (United States)

    Yang, Zhenguo; Xia, Guan-Guang; Wang, Chong-Min; Nie, Zimin; Templeton, Joshua; Stevenson, Jeffry W.; Singh, Prabhakar

    As part of an effort to develop cost-effective ferritic stainless steel-based interconnects for solid oxide fuel cell (SOFC) stacks, both bare AISI441 and AISI441 coated with (Mn,Co) 3O 4 protection layers were studied in terms of its metallurgical characteristics, oxidation behavior, and electrical performance. The addition of minor alloying elements, in particular Nb, led to formation of Laves phases both inside grains and along grain boundaries. In particular, the Laves phase which precipitated out along grain boundaries during exposure at intermediate SOFC operating temperatures was found to be rich in both Nb and Si. The capture of Si in the Laves phase minimized the Si activity in the alloy matrix and prevented formation of an insulating silica layer at the scale/metal interface, resulting in a reduction in area-specific electrical resistance (ASR). However, the relatively high oxidation rate of the steel, which leads to increasing ASR over time, and the need to prevent volatilization of chromium from the steel necessitates the application of a conductive protection layer on the steel. In particular, the application of a Mn 1.5Co 1.5O 4 spinel protection layer substantially improved the electrical performance of the 441 by reducing the oxidation rate.

  3. Study of structural transformations occuring in low carbon chromium-molybdenum ferritic steels: influence of small additions of vanadium and niobium

    International Nuclear Information System (INIS)

    This study has been carried out on several low carbon chromium-molybdenum ferritic steels: 2,25%0C to 13000C. In the case of alloys with high chromium concentration and additions of vanadium and niobium, the austenitic transformation is partial, and heat treating at higher temperatures results in increased delta transformation, a phenomenon which is accentuated by an important sensitivity to decarburization. Austenitic transformation during cooling leads to two types of CCT curves according to chromium content. Variations in chemical composition and austenitizing temperature significantly modify these diagrams, in particular those of the niobium stabilized steels. The morphology of the structures produced are very diverse, without important presence of residual austenite. The tempering behaviour in anisothermal and isothermal conditions was followed, and the temperature range limits within which precipitation reactions occur were determined in view of characterizing for each alloy the different types of precipitates formed and their influence on the mechanical resistance of the alloy after tempering

  4. Comparison of high temperature wear behaviour of plasma sprayed WC–Co coated and hard chromium plated AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Highlights: ► WC–12wt.%Co powders were deposited to a thickness of 300 μm on to steel substrates. ► The micro hardness of the above coatings was lower than that of chromium plating. ► Wear resistance of chromium coating was increased up to five times of AISI 304 austenitic stainless steel. ► Wear resistance of chromium coat higher than plasma coat at different temperatures. -- Abstract: The wear behaviour of plasma sprayed coating and hard chrome plating on AISI 304 austenitic stainless steel substrate is experimentally investigated in unlubricated conditions. Experiments were conducted at different temperatures (room temp, 100 °C, 200 °C and 300 °C) with 50 N load and 1 m/s sliding velocity. Wear tests were carried out by dry sliding contact of EN-24 medium carbon steel pin as counterpart on a pin-on-disc wear testing machine. In both coatings, specimens were characterised by hardness, microstructure, coating density and sliding wear resistance. Wear studies showed that the hard chromium coating exhibited improved tribological performance than that of the plasma sprayed WC–Co coating. X-ray diffraction analysis (XRD) of the coatings showed that the better wear resistance at high temperature has been attributed to the formation of a protective oxide layer at the surface during sliding. The wear mechanisms were investigated through scanning electron microscopy (SEM) and XRD. It was observed that the chromium coating provided higher hardness, good adhesion with the substrate and nearly five times the wear resistance than that obtained by uncoated AISI 304 austenitic stainless steel.

  5. A new 12% chromium steel strengthened by Z-phase precipitates

    DEFF Research Database (Denmark)

    Liu, Fang; Rashidi, Masoud; Johansson, Lennart;

    2016-01-01

    In order to increase the corrosion resistance and simultaneously maintain the creep resistance of 9-12% Cr steels at 650 degrees C, a new alloy design concept was proposed, using thermodynamically stable Z-phase (CrTaN) precipitates to strengthen the steel. A new trial Z-phase strengthened 12% Cr...... steel was produced and creep tested. The steel exhibited good long-term creep resistance. Dense nano-sized Z-phase precipitates were formed at an early stage, and coarsened slowly. They remained small after more than 10,000 h. (C) 2015 Elsevier Ltd. All rights reserved.......In order to increase the corrosion resistance and simultaneously maintain the creep resistance of 9-12% Cr steels at 650 degrees C, a new alloy design concept was proposed, using thermodynamically stable Z-phase (CrTaN) precipitates to strengthen the steel. A new trial Z-phase strengthened 12% Cr...

  6. The determination, by x-ray fluorescence analysis, of platinum, palladium, ruthenium, iron, and chromium in special steels

    International Nuclear Information System (INIS)

    This report describes the analysis of special corrosion-resistant steels for ruthenium, palladium, and platinum by X-ray-fluorescence spectrometry (XRFS) and a thin-film technique. The precision of this method varies from 1 to 7 per cent, depending upon the analyte and its concentrations. The accuracy is good and compares favourably with that of other methods. The direct determination of these elements on solid samples with the use of scattered radiation as a matrix correction is only partly successful and is not recommended. The three platinum-group elements, iron, and chromium can be determined successfully in solid samples by XRFS if an empirical interelement correction method is used. The correction factors are determined by a multiple-regression method. The precision of the determination of the platinum-group elements is about 1 per cent and that of iron and chromium about 0,2 per cent. The accuracy is in most cases better than 2 per cent for all the elements determined. The method can be implemented with the use of available computer software and a small microcomputer. The two recommended laboratory methods are given as appendices to the report

  7. Transformation behaviour of the high temperature martensitic steels with 8-14% chromium content

    International Nuclear Information System (INIS)

    Comprehensive development work on martensitic steels belonging to the socalled 12% Cr-steel group have been performed at the Institute for Materials Research of Forschungszentrum Karlsruhe in order to meet the various requirements in nuclear and conventional energy technology. The transformation characteristics of 29 different grades of steel and 38 heats have been determined and Continuous Cooling Transformation (CCT) diagrams have been prepared. The diagrams are described in a chronological sequence by subjects because the change in chemical composition can be correlated only partly with the transformation behavior in cases where several alloying elements are simultaneously subjected to changes. In the introduction the basic difference is shown between isothermal and CCT diagrams and the transformation behavior, respectively, by the example of the Nb-free steel 1.4922 (X20CrMoV 12 1) and the Nb-containing steel 1.4914 (X18CrMoVNb 12 1). (orig.)

  8. Kinetics of chromium evaporation from heat-resisting steel under reduced pressure

    Directory of Open Access Journals (Sweden)

    C. Kolmasiak

    2012-07-01

    Full Text Available This paper describes a kinetic analysis of the process of chromium evaporation from ferrous alloys smelted under reduced pressure. The study discussed comprised determination of the liquid phase mass transfer coefficient as well as the value of the constant evaporation rate. By applying these values as well as the values of the overall mass transfer coefficient estimated based on the relevant experimental data, the fractions of resistance of the individual process stages were established.

  9. Characterization of complex (B + C) diffusion layers formed on chromium and nickel-based low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Pertek, A.; Kulka, M

    2002-12-30

    Combined surface hardening with boron and carbon was used for low-carbon chromium and nickel-based steels. The microstructure, boron contents, carbon profiles and chosen properties of borided layers produced on the carburized steels have been examined. These complex (B+C) layers are termed borburized layers. The microhardness profiles and wear resistance of these layers have been studied. In the microstructure of the borocarburized layer two zones have been observed: iron borides (FeB+Fe{sub 2}B) and a carburized layer. The depth (70-125 {mu}m) and microhardness (1500-1800 HV) of iron borides zone have been found. The carbon content (1.2-1.94 wt.%) and microhardness (700-950 HV) beneath iron borides zone have been determined. The microhardness gradient in borocarburized layer has been reduced in comparison with the only borided layer. An increase of distance from the surface is accompanied by a decrease of carbon content and microhardness in the carburized zone. The carbon and microhardness profiles of borided, carburized and borocarburized layers have been presented. A positive influence of complex layers (B+C) on the wear resistance was determined. The wear resistance of the borocarburized layer was determined to be greater in comparison with that for only borided or only carburized layers.

  10. The present status of development of high chromium steel for FBR

    International Nuclear Information System (INIS)

    Authors perform a series of material tests for some high Cr steels to propose the most suitable high Cr steel specification for FBR pipes. Firstly, thermal expansion and heat conductivity of several high Cr steels are measured to predict optimum Cr content for FBR structural material. Secondly, influence of heat treatment conditions on long term ductility and toughness is studied to obtain the suitable properties for FBR components. Thirdly, focusing on tungsten (W) and molybdenum (Mo) which may form Laves phase, the most optimum balance of these elements is investigated based on long-term material tests and metallurgical examination results. Considering the results of the studies, a provisional specification of high Cr steel for FBR pipes is proposed. (orig.)

  11. The influence of aging on the intergranular corrosion of 22 chromium-5 nickel duplex stainless steel

    International Nuclear Information System (INIS)

    Duplex stainless steels are widely used in severe corrosion environments because of their good corrosion performance. This paper deals with the influence of aging treatments on the intergranular corrosion (IGC) resistance of a commercial duplex stainless steel, SAF 2205. Duplex stainless steel was given aging treatments in the range 773-1173 K for time periods ranging from 6 min to 100 h. Optical microscopy and XRD was carried out on the aged stainless steels for the microstructural study. The aged samples were evaluated for the IGC susceptibility with the ASTM standard practices. Potentiodynamic cyclic polarization studies were also carried out to investigate the influence of aging treatments on the passivity breakdown. The results indicate that the sigma phase gets precipitated and is responsible for grain boundary attack. (author)

  12. ATOM PROBE MICROANALYSIS OF WELD METAL IN A SUBMERGED ARC WELDED CHROMIUM-MOLYBDENUM STEEL

    OpenAIRE

    Josefsson, B.; Kvist, A.; Andrén, H.

    1987-01-01

    A submerged arc welded 2.25Cr - 1Mo steel has been investigated using electron microscopy and atom probe field ion microscopy. The bainitic microstructure of the as-welded steel consisted of ferrite and martensite. During heat treatment at 690°C the martensite transformed to ferrite and cementite and needle-shaped (Cr,Mo)2C carbides precipitated. Together with a substantial decrease in dislocation density, this resulted in an improvement of the toughness.

  13. Problems of phase identification in high-nitrogen chromium-manganese cast steel

    OpenAIRE

    Z. Pirowski

    2008-01-01

    An atzcrnpt has been madc to offcr an intcrprctation of ihc rnicrostructurc of chromium-mangancx cast stccl aftcr adding to 1his stccla targc amount of nitrogcn as an alloying clcrncnr. Nitropcn was addcd 10 rhc cast stccl by two mcthods: rhc first mcthod consistcrl inadding a nitridcd fcrrornangancsc, the second method in rcmclting thc nitrogen-rscc alloy undcr rhc atrnosphcrc of nitrogen maintaininghigh N1 prcssurc abovc the mctal meSt (33 MPa).Somc imponant diffcrcnces in the microstructur...

  14. Mössbauer studies of medium-carbon, high-chromium martensitic steels

    Science.gov (United States)

    Peters, J. A.; Kolk, B.; Bleloch, A. L.

    1986-02-01

    57Fe Mössbauer effect spectroscopy is employed to determine the relationship between the microstructure and the mechanical properties of martensitic steels with base composition Fe-10wt%Cr-0,26wt%C. The microstructure consists predominantly of two phases: martensite and austenite. The effect of low concentrations of both Mn and Ni on the structure and the mechanical properties of these steels is studied. The results indicate that Mn and Ni additions are equally effective in increasing the fraction of retained austenite. The austenite is an important phase since it is considered to be beneficial to the toughness of steel. However, we find that the impact toughness first decreases and then increases as a function of the fraction of austenite.

  15. On the nature of iron-chromium oxides in stainless steel steelmaking slags

    Science.gov (United States)

    Matteazzi, P.; Magrini, M.; Ramous, E.

    1986-02-01

    A number of slags from electric steelmaking production of AISI 420 and AISI 304 steels, were examined by Mössbauer spectroscopy. The slag samples were taken before and after oxygen blowing. The slag constitution showed the presence of a metallic part, MO mixed oxide and Fe-Cr spinel (Fe2+ Fe{x/3+} Cr2-xO4' x<1).

  16. On the nature of iron-chromium oxides in stainless steel steelmaking slags

    International Nuclear Information System (INIS)

    A number of slags from electric steelmaking production of AISI 420 and AISI 304 steels, were examined by Moessbauer spectroscopy. The slag samples were taken before and after oxygen blowing. The slag constitution showed the presence of a metallic part, MO mixed oxide and Fe-Cr spinel. (Auth.)

  17. Fracture Toughness and Strength in a New Class of Bainitic Chromium-Tungsten Steels

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S. X.; Sikka, V. K.

    2006-06-01

    This project dealt with developing an understanding of the toughening and stengthening mechanisms for a new class of Fe-3Cr-W(V) steels developed at Oak Ridge National Laboratory (ORNL) in collaboration with Nooter Corporation and other industrial partners. The new steele had 50% higher tensile strength up to 650 degrees Celsius than currently used steels and the potential for not requiring any postweld heat treatment (PWHT) and for reducing equipment weight by 25%. This project was closely related to the Nooter project described in the report Development of a New Class of Fe-3Cr-W(V) Ferritic steels for Industrial Process Applications (ORNL/TM-2005/82). The project was carried out jointly by the University of Pittsburgh and ORNL. The University of Pittsburgh carried out fracture toughness measurements and microstructural analysis on base metal and welded plates prepared at ORNL. The project focused on three areas. The first dealt with detailed microstructural analysis of base compositions of 3Cr-3WV and 3Cr-3WBV(Ta) in both normalized (N) and normalized and tempered (NT) conditions. The second aspect of the prject dealt with determining tensile properties and fracture toughness values of K{subIC} at room temperature for both 3Cr-3Wv and 3Cr-3WV(Ta) compositions. The third focus of the project was to measure the fracture toughness values of the base metal and the heat-affectged zone (HAZ) of a plate of Fe-3Cr-W(Mo)V steel plate welded by the gas tungsten are (GTA) process. The HAZ toughness was measured in both the as-welded and the PWHT condition.

  18. Investigations of structural transformation within metal (austenite chromium-manganese steel) at the external surface of steam superheating tubes

    Science.gov (United States)

    Bogachev, V. A.; Pshechenkova, T. P.; Shumovskaya, M. A.

    2016-04-01

    The elemental composition of an altered layer at the external surface of a steam superheating tube of grade DI59 steel is investigated after long-term operation. It is shown that the layer is located between a scale and a matrix and depleted by silicon, manganese, copper, and chromium with the maximum oxidizer affinity, enriched by iron and nickel to 90%, and mainly composed of the α-Fe phase (ferrite) with the ferromagnetic properties. The layer formed as a result of selective oxidation and diffusion from the matrix into the metal scale with the less standard free energy of the formation of sulfides and oxides. A magnetic ferrite meter is used in the experimental investigation of the layer evolution by testing grade DI59 steel for heat resistance in air environment at temperatures of 585, 650, and 700°C for 15 × 103 h; creep at a temperature of 750°C and a stress of 60 MPa; and long-term strength at temperatures of 700 and 750°C and stresses of from 30 to 80 MPa. Specimens for tests are made of tubes under as-received conditions. The relationship between the ferrite phase content in the surface metal layer and the temperature and time of test is determined. The dependence is developed to evaluate the equivalent temperature for operation of the external surface of steam superheating tubes using data of magnetic ferritometry. It is shown that operation temperatures that are determined by the ferrite phase content and the σ phase concentration in the metal structure of steam superheating tubes with the significant operating time are close. It is proposed to use magnetic ferritometry for revelation of thermal nonuniformity and worst tubes of steam superheaters of HPP boilers.

  19. Effect of lubricant on pressure-stress parameters of hot rolling of chromium-nickel steels

    International Nuclear Information System (INIS)

    The results of the commercial investigation of water emulsions of the new process lubricants of Olon tekhnicheskii and of ET-2y emulsol in hot rolling of sheets made of 20Kh23N18 (EI 417) and 12Kh18N10T (EYa 1T) steels from 8 to 10 mm thick are presented. The experimental data indicate that the lubricants substantially lower the forward creep, contact friction coefficient, force, rolling moment and pressure of metal upon rolls. The effectiveness of the lubricants depends on the plastic properties of metal and thermal and mechanical deformation conditions. The lubricants also minimize transversal unequal thickness of hot-rolled sheets. The Olon lubricant has been introduced commercially in rolling of stainless steel

  20. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kocabas, Mustafa [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical and Materials Engineering Dept.; Danisman, Murat [Gedik Univ., Istanbul (Turkey). Electrical and Electronic Engineering Dept.; Cansever, Nurhan [Yildiz Technical Univ., Istanbul (Turkey); Uelker, Suekrue [Afyon Kocatepe Univ. (Turkey). Dept. of Mechanical Engineering

    2015-06-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  1. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  2. Studies of oxide reduction and nitrogen uptake in sintering of chromium-alloyed steel powder

    OpenAIRE

    Bergman, Ola

    2008-01-01

    The powder metallurgy (PM) process route is very competitive for mass production of structural steel components with complex shape, due to efficient material utilisation, low energy consumption, and short overall production time. The most commonly used alloying elements are the processing friendly metals Cu, Ni and Mo. However, the prices for these metals are today high and volatile, which threatens to make the PM process less competitive compared to conventional metal forming processes. Cons...

  3. Corrosion-electrochemical behavior of 13% chromium (Cr) martensitic stainless steel in hydrochloric acid (HCl) solutions

    International Nuclear Information System (INIS)

    Corrosion-electrochemical behavior of commercial API5CT grade L80 type tubing made of 13Cr martensitic stainless steel enriched with microalloying elements is studied in 6, 7.5, 9, 12 and 15% HCl solutions by electrochemical methods. The corrosion morphology was examined by means of EDAX scanning electron microscope (SEM) coupled with an ESCA analyzer. The soluble corrosion products were analyzed by atomic absorption spectroscopy and colorimetric methods. General, as well as localized, corrosion is present. The severest general corrosion with a maximum rate of 26 mm/year is obtained at 15% HCl. The localized corrosion which morphologically differs as function of HCl concentrations is revealed by SEM investigation. In all the above HCl solutions, the commercial 13% Cr martensitic stainless steel tubing shows no passive state. Above 6% HCl, the microalloying elements promote forming a discontinuous film of the corrosion products. The corrosion rate slightly decreases in 15% HCl compared to the published data on a conventional 13% Cr martensitic stainless steel tubing. This is due to both the chemical composition (silicon, manganese and vanadium) and microstructural properties. Copper seems to additionally accelerate the corrosion of the alloy

  4. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  5. Fabrication of plain carbon steel/high chromium white cast iron bimetal by a liquid-solid composite casting process

    Institute of Scientific and Technical Information of China (English)

    V Javaheri; H Rastegari; M Naseri

    2015-01-01

    High-chromium white cast iron (HCWCI) is one of the most widely used engineering materials in the mining and cement indus-tries. However, in some components, such as the pulverizer plates of ash mills, the poor machinability of HCWCI creates difficulties. The bimetal casting technique is a suitable method for improving the machinability of HCWCI by joining an easily machined layer of plain car-bon steel (PCS) to its hard part. In this study, the possibility of PCS/HCWCI bimetal casting was investigated using sand casting. The inves-tigation was conducted by optical and electron microscopy and non-destructive, impact toughness, and tensile tests. The hardness and chemical composition profiles on both sides of the interface were plotted in this study. The results indicated that a conventional and low-cost casting technique could be a reliable method for producing PCS/HCWCI bimetal. The interfacial microstructure comprised two distinct lay-ers:a very fine, partially spheroidized pearlite layer and a coarse full pearlite layer. Moreover, characterization of the microstructure revealed that the interface was free of defects.

  6. An organic-reagent-free method for determination of chromium(VI) in steel alloys, sewage sludge and wastewater.

    Science.gov (United States)

    Fan, Jing; Sun, Yuping; Wang, Jianji; Fan, Maohong

    2009-04-27

    One of the active areas of green chemistry research and development is in the development of new analytical methods and techniques that reduce and eliminate the use and generation of hazardous substances. In this work, a rapid and organic-reagent-free method was developed for the determination of chromium(VI) by sequential injection analysis (SIA). The method was based on the detection of a blue unstable intermediate compound resulting from the reaction of Cr(VI) with hydrogen peroxide (H(2)O(2)) in acidic medium. H(2)O(2) and its reaction products were environmentally friendly, and chromogenic reagents and organic solvents were not used in the proposed method. Different SIA parameters have been optimized and used to obtain the analytical figures of merit. Under the optimum experimental conditions, the linear range for Cr(VI) was 0.5-100.0 microg mL(-1), and the detection limit was 0.16 microg mL(-1). The sample throughput was 80 h(-1), and the total volume of only 145 microL was consumed in each determination of Cr(VI). The method was applied for the determination of Cr(VI) in seven real samples, including alloy steel, sewage sludge and wastewater samples, and the results were compared with those obtained by atomic absorption spectrometry as well as with the certified value of Cr(VI) in standard reference material. Statistical analysis revealed that there was no significant difference at 95% confidence level. PMID:19362620

  7. Ratchetting behavior of advanced 9–12% chromium ferrite steel under creep–fatigue loadings: Fracture modes and dislocation patterns

    International Nuclear Information System (INIS)

    Highlights: ► Additional fatigue damage triggers the transition from ductility to brittle fracture. ► Dislocation disintegration is the main microstructural origin of premature breakdown. ► Additional fatigue damage can be ascribed to ratchetting formed in stress change. - Abstract: In order to reveal the physical mechanisms of ratchetting process under creep–fatigue loadings, following ratchetting tests in advanced 9–12% chromium ferrite steel, a study of associated fracture modes and dislocation patterns explored by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations is presented in this paper. Two main domains were observed depending both on the peak hold time and on the stress ratio, in which the ratchetting deformation and failure mechanisms were different. These two damage domains correspond to two distinct creep–ratchetting interaction mechanisms. Particular attention was paid to the dependence of ratchetting damage behavior on the stability of dislocation substructure. In addition, an attempt is made to correlate the results of the microstructural investigations with the variations of internal stress.

  8. Loading rate effect on phase transformations in metastable chromium-nickel-manganese austenitic steels

    International Nuclear Information System (INIS)

    Investigation results are compared for metastable austenitic stainless steels tested on bending under static and dynamic conditions. The absence of qualitative difference in kinetics of phase transformations at various loading rates is shown. The observed decrease of martensite amount under dynamic bending is explained by the action of two factors: the intensity of phase transformations decreases due to a temperature increase in a deformation zone; an area of phase transformation is narrowed down due to deformation concentration in the vicinity of the point of load application. 3 refs., 1 fig., 3 tabs

  9. Influence of alloying elements and nitrogen content on deformation resistance of chromium-nickel stainless steels

    International Nuclear Information System (INIS)

    Four groups of steels with a type Kh20N15 matrix differing in the contents of nitrogen and additional alloying element (Cu, Si, V or Nb) were studied for the influence of the alloying system on deformation resistance in hot rolling. The one-pass rolling was carried out at 900, 1000, 1100 and 1200 deg C with 20, 40 and 60 % reductions. Experimental data statistical processing showed that vanadium alloying results in a sharp increase of nitrogen content influence comparable with strain hardening. The hardening effect in copper- and silicon-containing alloys almost is independent of nitrogen concentration. Niobium-containing alloys lie between two above mentioned groups

  10. Investigation of microstructure and thermal stability of pulsed plasma processed chromium ferritic-martensitic steels

    Science.gov (United States)

    Emelyanova, O.; Dzhumaev, P.; Yakushin, V.; Polsky, V.

    2016-04-01

    This paper presents results of the microstructural evolution and thermal stability of the promising Russian ferritic-martensitic steels (EP 823, EP 900, EK 181 and ChS 139) for the nuclear and fusion application after surface modification by high temperature pulsed plasma flows (HTPPF) treatment. Investigations of microstructure, topography and elemental content changes associated with irradiation by nitrogen plasma with energy density 19-28 J/ cm2 and pulse duration 20 μs were carried out. Changes in microstructure and elemental content occurring in the modified surface layer were characterized by means of scanning electron microscopy (SEM) and X-ray microanalysis (EDS and WDS). It was shown that independently of initial microstructure and phase composition, HTPPF treatment of ferritic- martensitic steels leads to formation of ultrafine homogeneous structure in the near surface layers with typical grain size ∼100 nm. Results of microstructure investigations after annealing during 1 hour demonstrates significant thermal stability of nanostructure formed by HTPPF treatment.

  11. Phase transformation and long-term service of high-temperature martensitic chromium steels

    Science.gov (United States)

    Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.

    2001-02-01

    Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.

  12. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    Science.gov (United States)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  13. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.

    Science.gov (United States)

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this

  14. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.

    Science.gov (United States)

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this

  15. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace

    Science.gov (United States)

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T.

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr6+). Elemental manganese, nickel, chromium, iron emissions per unit length of weld and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered and analyzed by inductively-coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr6+. GMAW processes used were Surface Tension Transfer™, Regulated Metal Deposition™, Cold Metal Transfer™, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr6+ ranged from 50 to 7800 μg/min, and Cr6+ generation rates per g electrode ranged from 1 to 270μg/g. Elemental Cr generation rates spanned 13 to 330μg/g. Manganese emission rates ranged from 50 to 300μg/g. Nickel emission rates ranged from 4 to140 μg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as 5 times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes

  16. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    International Nuclear Information System (INIS)

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an early process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information

  17. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Michelic, S.K., E-mail: susanne.michelic@unileoben.ac.at [Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Loder, D. [Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Reip, T.; Ardehali Barani, A. [Outokumpu Nirosta GmbH, Essener Straße 244, 44793 Bochum (Germany); Bernhard, C. [Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2015-02-15

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an early process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information

  18. Hot rolling of chromium - nickel - manganese stainless steel containing nitrogen and boron

    International Nuclear Information System (INIS)

    The strength of stainless steel of the 03Kh2ON16AG6 type increases perceptibly with an increase in the nitrogen content from 0.11 to 0.37%. At the same time, however, its ductility in the region of hot deformation temperatures (red brittleness range of 800 to 1,000 deg C) decreases. Microalloying with boron (0.002 to 0.005% by calculation) permits enhancing the hot ductility to an acceptable level without adversely affecting the working properties. The mechaniusm of boron effect is analyzed. The temperature at which ingots are heated prior to rolling to achieve the desired effect must be sufficiently low. Optimum condition for two stage heating of 6.2-ton ingots are recommeded

  19. Diffusion characteristics of plasma nitrided hard chromium on AISI 1010 steel

    Energy Technology Data Exchange (ETDEWEB)

    Danisman, Murat [Gedik Univ., Istanbul (Turkey). Electronic Engineering Dept.; Kocabas, Mustafa; Cansever, Nurhan [Yildiz Technical Univ., Istanbul (Turkey)

    2015-06-01

    In order to investigate the different Cr-N formation characteristics of plasma nitrided hard Cr coatings, Cr was electrodeposited on AISI 1010 steel and plasma nitrided at 600, 700 and 800 C for 3 h, 5 h and 7 h, respectively. Phase analyses of resulting Cr-N phases and grain size of Cr layer before and after nitriding process were calculated by X-ray diffraction analysis. Structure of nitride layer and its thickness were analyzed using scanning electron microscopy micrographs. The micrographs indicated that samples consisted of three distinctive layers. In order to distinguish these layers, scanning electron microscopy and energy dispersive spectroscopy (EDX) analysis were used as well as elemental distribution versus depth was plotted. The Cr-N diffusion was investigated by layer thickness measurements, and diffusion coefficient as well as activation energies were calculated.

  20. Creep crack growth in weld metal/base metal/fusion zone regions in chromium molybdenum steels

    Energy Technology Data Exchange (ETDEWEB)

    Norris, R.H.; Saxena, A.

    1996-11-01

    An intensive study of the elevated temperature crack growth behavior of the base metal, weld metal, and heat-affected zone regions was performed on 1{1/4} chromium (Cr)-{1/2} molybdenum (Mo) and 2{1/4} Cr-1 Mo steel weldments at 538 C. Creep tests were conducted on samples removed from the weld and base metal regions of the two alloys to determine the creep deformation properties of the two different regions, whereas constant load creep crack growth tests were performed on compact-type specimens taken from all three aforementioned regions of both alloys. After the mechanical testing of the materials, extensive characterization analyses were performed on samples removed from the test specimens, which included microhardness testing, metallurgical analysis, scanning electron microscopic analysis (SEM), Auger electron spectrography (AES), cleanliness analysis, and quantification of creep-related damage. By using the information generated in this study, a model was developed to describe the crack growth in these alloys in terms of the accumulated creep damage ahead of the advancing crack front. The creep deformation behavior of these alloys is dominated by secondary and tertiary creep. The creep crack growth behavior of the alloys showed good correlation between the crack growth rate (da/dt) and the crack tip parameter (C{sub t}) in the weld metal and heat-affected zone regions. Creep crack propagation appears to occur by continuous nucleation, growth, and coalescence of grain boundary cavities. The model proposed to describe the creep crack growth in these alloys shows good agreement with the experimental results. 81 refs.

  1. Aluminide coatings on iron-chromium-molybdenum steel synthesized by pack cementation for power generation applications

    Science.gov (United States)

    Wang, Yongqing

    Aluminide coatings on ferritic/martensite Fe-9Cr-1Mo steel substrates for power generation applications were developed via a pack cementation process at both high temperatures (1050°C) and low temperatures (650 and 700°C). Thermodynamic analysis was first conducted using HSC 5.0 software to provide a guideline for the selection of a masteralloy and the amount of the activator in the pack. Equilibrium partial pressures of halide gaseous species were calculated for packs containing Cr-Al binary alloys with Al contents varying from 5wt%Al to pure Al at both 1050°C and 700°C (Except for 650°C, at which only pure Al masteralloy was used). The calculation was also made for packs containing Hf, HfO2 or HfCl4 for developing Hf-modified aluminide coatings. At 1050°C, both simple and Hf-modified aluminide coatings were synthesized using a Cr-25wt.%Al binary masteralloy with a noncontact pack arrangement. Oxidation testing in air + 10vol.% H2O at 700°C indicates that simple pack aluminide coatings exhibited similar oxidation behavior to the model coatings fabricated via chemical vapor deposition (CVD). For up to 4,600h, Hf-modified aluminide coatings showed an improved oxidation resistance to CVD coatings. Low temperature aluminide coatings were synthesized at temperatures of 650 and 700°C, below the tempering temperature of the ferritic/martensite steel substrate. Initial coating development showed that a continuous Fe 2Al5 coating layer was deposited at 650°C with pure Al masteralloy. However, the coating thickness was not uniform and cracks were observed in the coatings. Cr-25wt%Al and Cr-15wt.%Al binary alloys with reduced Al activities were used to reduce the tendency of forming the brittle, Al-rich Fe2Al5 phase. With Cr-25wt.%Al masteralloy at 700°C, the synthesized coating consisted of a thin layer of Fe2Al 5 and an underlying layer of FeAl. The masteralloy of Cr-15wt.%Al was then utilized to further reduce the Al activity, and FeAl coatings with improved

  2. Internal damage processes in low alloy chromium-molybdenum steels during high-temperature creep service

    International Nuclear Information System (INIS)

    Results are presented of investigations on structure of low alloy Cr-Mo steels exhibiting internal damage after long-term creep service. It was demonstrated that intercrystalline cavitation cracks were the dominant factor in service damage of power station boiler components operating in creep regimes. Consecutive stages in development of internal damage involving intercrystalline cavitation cracking were discussed and illustrated by means of micrographs. The results seem to indicate that nucleation of creep cavities in materials under consideration is related to gain boundary slip. Evidence confirming the shear mechanism proposed by Sklenicka and Saxl for cavity coalescence was obtained. Occurrence of intercrystalline service cracking was demonstrated. Micrographs were used to illustrate wedge service nucleation modes on triple junctions depending on the direction of slip according to Change and Grant. A classification of internal damages in relation to life exhaustion was proposed for materials under consideration. A method used in industrial practice for evaluation and qualification of creep-damaged materials was presented. (author)

  3. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...

  4. Sigma-phase formation in high chromium ferritic steels at 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Niewolak, L., E-mail: l.niewolak@fz-juelich.de [Forschungszentrum Jülich, IEF-2, 52428 Jülich (Germany); Garcia-Fresnillo, L.; Meier, G.H. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA (United States); Quadakkers, W.J. [Forschungszentrum Jülich, IEF-2, 52428 Jülich (Germany)

    2015-07-25

    Highlights: • Formation of σ-FeCr phase at 650 °C in alloys Fe–30%Cr–2%(Mn,Mo,W) was investigated. • Formation of σ-FeCr phase was accelerated by interdiffusion with Ni-coating. • Mechanism of heterogeneous nucleation of σ-FeCr at BCC/FCC interface was discussed. • Mechanisms of homogenous and heterogeneous nucleation were discussed. • Improvement of isothermal section of Fe–Cr–Ni phase diagram at 650 °C was proposed. - Abstract: A binary Fe–30 wt.%Cr alloy and corresponding ternary alloys containing manganese, molybdenum or tungsten were studied with respect to σ-phase formation at 650 °C. Although even after 3000 h exposure complete equilibration was not attained, the presence of tungsten and especially molybdenum was found to promote σ-phase formation. More extensive σ-phase formation was observed in the tungsten and especially in the molybdenum-containing alloys than in the binary and manganese-containing alloy. Apparently the bulk free energy decrease driving the nucleation of σ-phase is substantially larger when tungsten or molybdenum are present in the alloy. The presence of a nickel layer, to simulate the contact between ferritic steel interconnects and nickel mesh in a Solid Oxide Fuel Cell (SOFC) results in the formation of an austenitic zone and in accelerated formation of a σ-phase rich layer at the ferrite/austenite interface, due to interdiffusion processes. This interface acts as a highly efficient heterogeneity for the nucleation of σ-phase. The nucleation is enhanced by an increased Cr/Fe-ratio at that interface. Several possible modes for the growth of the σ layer were identified but the available experimental data were not sufficient to distinguish among these. The σ-rich layer, which appears to act as an interdiffusion barrier, is thicker in the case of the binary Fe–Cr and the Fe–Cr–Mn alloy than for the molybdenum- or tungsten-rich alloys. The results show that the stability range of σ-phase is larger

  5. Influence of chemical composition, heat treatment and structure on the properties of heat-treatable nickel-chromium-molybdenum-vanadium steels for heavy forgings, especially for low-pressure turbine and generator shafts

    International Nuclear Information System (INIS)

    The following report deals with the optimization of the chemical composition of nickel-chromium-molybdenum-vanadium steels. The influence of nickel, chromium, molybdenum, and carbon on the through hardening and tempering and the structure-specific effect of the alloying elements were investigated. Measures to suppress temper brittleness are discussed, a fracture mechanics assessment is given. Furthermore, the magnetic properties and problems of heat treatment, especially in obtaining fine grain, are discussed. Examples for possibilities and limits particularly of 26 NiCrMoV 14 5 steel are discussed. (GSCH/LH)

  6. Effect of Coating Thickness on Performance of Chromium Plating Steel Plate%镀层厚度对镀铬钢板性能的影响

    Institute of Scientific and Technical Information of China (English)

    吴首民; 陈声鹤; 周庚瑞; 高发明; 于升学

    2011-01-01

    利用两步法在二次冷轧钢板表面电镀金属铬层和氧化铬层得到了镀铬钢板,用分光光度计测试了镀铬钢板的铁溶出量,应用电化学方法测试镀铬钢板的极化曲线,采用湿热试验、盐雾试验和贴滤纸法评价了镀铬钢板的耐蚀性能,采用落锤法评定了镀铬钢板与油漆的结合强度,用扫描电镜观察了表面形貌.结果表明:在氧化铬层厚度一定时随着镀铬层厚度(单位面积质量)的增加,铁溶出值减小,耐湿热和盐雾性能增强,但耐盐雾性能都较差;在镀层总厚度一定时,镀铬钢板与油漆结合性能随氧化铬层厚度增大而增强;钢板电镀铬后,焊接性能变差.%Chromium plating steel plates containing chromium and chromium oxide on the surface of double cold rolling sheet by two-step method. The iron dissolved quantity and polarization curves of the plates were tested using spectrophotometer and electrochemical method. The corrosion resistance of the plates was evaluated by means of damp-heat test, salt-fog test and pasting filter paper method. The bonding strength of the plates with paint was studied by drop weight method, and the scanning electron microscopy was performed to observe the surface morphology. The results show that when the thickness of the chromium oxide coating was stable, with the increase of the thickness (weight per unit area) of the Cr plating coating, iron dissolved quantity decreased, damp-heat resistance and salt-fog performance enhanced, while the salt-fog resistance was poor. When the thickness of the whole chromium coating was stable, the bonding properties of the plates with paint increased with increasing the chromium oxide thickness. The weldability of the plates after electroplating Cr became poor.

  7. Effect of molybdenum content on creep-rupture strength and toughness of 9 % chromium ferritic heat resisting steels containing V and Nb

    International Nuclear Information System (INIS)

    The effect of molybdenum content on creep-rupture properties and room-temperature toughness of high chromium ferritic heat resisting steels was investigated. Molybdenum content was varied from 1 to 2 wt%. In order to obtain 9Cr-Mo-V-Nb ferritic steels with both high creep-rupture strength and superior toughness, the amount of delta ferrite was controlled below 25 %, and the optimum tempering condition and mechanical properties after simulated welding have been investigated. The influence of molybdenum content on creep-rupture strength and Charpy absorbed energy was investigated with respect to the ratio of delta ferrite to tempered martensite, the precipitates, and the microstructures. Charpy absorbed energy of the 0.05C-9Cr-1Mo-0.15V-0.05Nb steel tempered at 800deg C and then heated at 600∼650deg C for 104 h was as high as 20∼30 kgf-m. By contrast, Charpy absorbed energy of 0.05C-9Cr-2Mo-0.15V-0.05Nb steel was reduced to about 4kgf-m after heating at 600∼650deg C for 104 h. It is considered that the steel of 1Mo shows superior toughness because of its low carbon content and a single phase of martensite. It was concluded that combination of superior creep-rupture strength and toughness can be obtained by optimum heat treatment for the 9Cr-1Mo-V-Nb steel containing 0.05 wt%C. (author)

  8. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Although the ability of sulfate-reducing bacteria to enhance the corrosion of steel is now widely accepted, the actual processes involved in such phenomena are still discussed. This work is dedicated to the study of the exact roles played in corrosion processes firstly, by the presence of D. vulgaris cells and, secondly, by chemical factors such as the material composition and the accumulation of sulfide ions in the solution. The use of microbiological, electrochemical and analytical experimental techniques lead to results that show the interdependence of the bacteria and the material as well as the importance of the steel composition in the adhesion of the micro-organisms and the general corrosion rates. The bacteria cells and dissolved sulfide ions do not markedly influence the general corrosion rates. They however induce surface state modifications that can result in localized corrosion phenomena

  9. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...... by replacement of the nitride ions with oxide ions in the molten carbonate electrolyte....

  10. Influence of additional alloying with nitrogen on structure and properties of high chromium steel Kh17 after hot rolling

    International Nuclear Information System (INIS)

    A study was made into the structure and mechanical properties of steel Kh17 with 0.16% N after hot rolling under various conditions. It is shown that nitrogen alloying promotes steel transition into a two-phase state (α+γ) in heating above 850 deg C and affects mechanical properties of the steel in a hot rolled state. Impact strength is at its maximum in nitrogen containing steel kh17 if the rolling is in the temperature range of α-phase solid solution. Depending on the temperatures of hot rolling beginning and completion the distinctions in steel microstructure are investigated

  11. Nickel-chromium plasma spray coatings: A way to enhance degradation resistance of boiler tube steels in boiler environment

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, B.S.; Prakash, S.

    2006-03-15

    Boiler tube steels, namely low carbon steel ASTM-SA210-Grade A1 (GrA1), 1Cr-0.5Mo steel ASTM-SA213-T-11 (T11), and 2.25Cr-1Mo steel ASTM-SA213-T-22 (T22), were used as substrate steels. Ni-22Cr-10AI-1Y powder was sprayed as a bond coat 150 {mu}m thick before a 200 {mu}m final coating of Ni-20Cr was applied. Coatings were characterized prior to testing in the environment of a coal fired boiler. The uncoated and coated steels were inserted in the platen superheater zone of a coal fired boiler at around 755{sup o}C for 10 cycles, each 100 h. Coated steels showed lower degradation (erosion-corrosion) rate than uncoated steels showed. The lowest rate was observed in the case of Ni-20Cr coated T11 steel. Among the uncoated steels, the observed rate of degradation was the lowest for the T22 steel.

  12. Nickel-chromium plasma spray coatings: A way to enhance degradation resistance of boiler tube steels in boiler environment

    Science.gov (United States)

    Sidhu, Buta Singh; Prakash, S.

    2006-03-01

    Boiler tube steels, namely low carbon steel ASTM-SA-210-Grades A1 (GrA1), 1Cr-0.5Mo steel ASTM-SA213-T-11 (T11), and 2.25Cr-1 Mo steel ASTM-SA213-T-22(T22), were used as substrate steels. Ni-22Cr-10Al-1Y powder was sprayed as a bond coat 150 μm thick before a 200 μm final coating of Ni-20Cr was applied Coatings were characterized prior to testing in the environment of a coal fire boiler. The uncoated and coated steels were inserted in the platen superheater zone of a coal fired boiler at around 755°C for 10 cycles, each 100 h. Coated steels showed lower degradation (erosion-corrosion) rate than uncoated steels showed. The lowest rate was observed in the case of Ni-20Cr coated T11 steel. Among the uncoated steels, the observed rate of degradation was the lowest for the T22 steel.

  13. Influence of cold work and sigma phase on the pitting corrosion behavior of 25 chromium super duplex stainless steel in 3.5% sodium chloride solution.

    Energy Technology Data Exchange (ETDEWEB)

    Elhoud, A.; Deans, W. [School of Engineering, Kings College, University of Aberdeen (United Kingdom); Ezuber, H. [College of Engineering, University of Bahrain (Bahrain)

    2010-03-15

    The effect of cold work (up to 16% strain) and sigma phase precipitation (at 850 C for 10 and 60 min) on the pitting resistance of 25 chromium super duplex stainless steel were investigated in 3.5% sodium chloride solution at 70 and 90 C. Anodic polarization scans for cold worked samples revealed immunity to pitting attack at 70 C even with 16% strain. At 90 C, the alloy still showed high pitting resistance, pitting occurring at about 600 mV (SCE) for the 16% plastic strain samples. A serious deterioration of the pitting corrosion resistance was found after heating the alloy at 850 C for 10 min resulting in a clear drop in the pitting potential at 90 C. After heating for 60 min, the material showed rapid deterioration of pitting corrosion resistance at 70 C. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Effect of a Shot Peening Pre Treatment on the Fatigue Behaviour of Hard Chromium on Electroless Nickel Interlayer Coated AISI 4340 Aeronautical Steel

    Directory of Open Access Journals (Sweden)

    Nascimento Marcelino P.

    2002-01-01

    Full Text Available Multiple layer systems of coatings are considered to have larger resistance to crack propagation in comparison to coatings with simple layer. With regard to fatigue, it is possible to improve the resistance of a component with the application of shot peening treatment, whose compressive residual stresses delay or eliminate the initiation and propagation of fatigue cracks. The aim of this study is to analyse the effects on rotating bending fatigue behaviour of hard chromium fraction three-quarters electroless nickel multilayer system coated AISI 4340 high strength steel submitted to shot peening pre treatment. Results indicated that the interaction between the shot peening process with the multilayer system was not satisfactory, resulting in intense delamination. Fracture surface analysis by SEM was performed toward to identify the fatigue crack origin, as well as the coating-substrate delamination process.

  15. Steel dust in the New York City subway system as a source of manganese, chromium, and iron exposures for transit workers.

    Science.gov (United States)

    Chillrud, Steven N; Grass, David; Ross, James M; Coulibaly, Drissa; Slavkovich, Vesna; Epstein, David; Sax, Sonja N; Pederson, Dee; Johnson, David; Spengler, John D; Kinney, Patrick L; Simpson, H James; Brandt-Rauf, Paul

    2005-03-01

    The United States Clean Air Act Amendments of 1990 reflected increasing concern about potential effects of low-level airborne metal exposure on a wide array of illnesses. Here we summarize results demonstrating that the New York City (NYC) subway system provides an important microenvironment for metal exposures for NYC commuters and subway workers and also describe an ongoing pilot study of NYC transit workers' exposure to steel dust. Results from the TEACH (Toxic Exposure Assessment, a Columbia and Harvard) study in 1999 of 41 high-school students strongly suggest that elevated levels of iron, manganese, and chromium in personal air samples were due to exposure to steel dust in the NYC subway. Airborne concentrations of these three metals associated with fine particulate matter were observed to be more than 100 times greater in the subway environment than in home indoor or outdoor settings in NYC. While there are currently no known health effects at the airborne levels observed in the subway system, the primary aim of the ongoing pilot study is to ascertain whether the levels of these metals in the subway air affect concentrations of these metals or related metabolites in the blood or urine of exposed transit workers, who due to their job activities could plausibly have appreciably higher exposures than typical commuters. The study design involves recruitment of 40 transit workers representing a large range in expected exposures to steel dust, the collection of personal air samples of fine particulate matter, and the collection of blood and urine samples from each monitored transit worker. PMID:15738337

  16. Interfacial morphology and corrosion resistance of Fe-B cast steel containing chromium and nickel in liquid zinc

    International Nuclear Information System (INIS)

    Highlights: → Fe-B steels containing Cr and Ni exhibit the best corrosion resistance in liquid zinc. → Surface layers show gamma-Fe3Zn10, delta-FeZn10, zeta-FeZn13 and eta-Zn. → Cr and Ni can enrich at the interface during the corrosion process. → Corrosion processes include leaching, formation of compounds and spalling of borides. - Abstract: The interfacial morphology and corrosion resistance of low carbon Fe-B cast steels in zinc bath at 520 deg. C were investigated. The results show Fe-B cast steel containing high Cr and Ni exhibits the best corrosion resistance to liquid zinc. The corrosion layers are composed of Γ-Fe3Zn10, δ-FeZn10, ξ-FeZn13 and η-Zn. The corrosion behaviour of Fe-B cast steels includes the following processes: the preferential leach and dissolution of Cr and Ni, the formation of Fe-Zn compounds controlled by zinc atom diffusion, and the spalling of borides without the supporting role of α-(Fe, Cr) matrix corroded by liquid zinc.

  17. Implications of total content of silicon, aluminium, chromium and formation of thin ferrite films on low ductility at high temperature in non oriented electrical steels

    Directory of Open Access Journals (Sweden)

    Equihua-Guillén, F.

    2011-10-01

    Full Text Available This work shows evidence of the implications of total additions of silicon, aluminium and chromium on low ductility during hot rolling in non-oriented electrical steels. This paper explains the reason of ductility loss at temperatures between 950 - 1000°C in electrical steels which exhibit higher Ar3 transformation temperature than C-Mn and microalloyed steels. The empirical equations to determine Ar3 temperature do not consider silicon and aluminium elements. The results show that high content of silicon, aluminium and residual concentration of chromiun considerably increases Ar3 transformation temperature in non-oriented electrical steels. The low ductility at high temperature occurs between Ae3 and Ar3 transformation temperatures. In addition, the results of this work show evidence of thin ferrite films formed near Ar3 temperature and their implications on ductility loss at high temperature.

    Este trabajo muestra evidencia de las implicaciones de la cantidad total de silicio, aluminio y cromo sobre la baja ductilidad en aceros eléctricos durante la laminación en caliente. Este artículo explica la razón de la pérdida de ductilidad a temperaturas entre 950 y 1.000°C en aceros eléctricos. Las ecuaciones empíricas para determinar la temperatura Ar3 no consideran los elementos aluminio y silicio. Los resultados muestran que altos contenidos de silicio, aluminio y la concentración residual de cromo incrementan considerablemente la temperatura de transformación Ar3 en aceros eléctricos de grano no orientado. La baja ductilidad a elevada temperatura ocurre entre las temperaturas de transformación Ae3 y Ar3. Adicionalmente, los resultados de este trabajo muestran evidencia de películas delgadas de ferrita formadas a temperaturas cercanas a Ar3 y sus implicaciones sobre la pérdida de

  18. Study of the structure and properties of metal of the major steam lines of a CCGT-420 unit made from high-chromium X10CrMoVNb9-1 (P91) steel

    Science.gov (United States)

    Grin', E. A.; Anokhov, A. E.; Pchelintsev, A. V.; Krüger, E.-T.

    2016-07-01

    The technology of manufacture of live steam lines and hot reheat lines at FINOW Rohrsysteme GmbH are discussed. These pipelines are designed for high-performance CCGT units and are made from high-chromium martensitic steel X10CrMoVNb9-1 (P91). The principles of certification and evaluation of conformance of thermal and mechanical equipment made from new construction materials with the TRCU 032-2013 technical regulation of the Customs Union are detailed. The requirements outlined in Russian and international regulatory documents regarding the manufacture of pipes and semifinished products for pipeline systems are compared. The characteristic features of high-chromium martensitic steel, which define the requirements for its heat treatment and welding, are outlined. The methodology and the results of a comprehensive analysis of metal of pipes, fittings, and weld joints of steam lines are presented. It is demonstrated that the short-term mechanical properties of metal (P91 steel) of pipes, bends, and weld joints meet the requirements of European standards and Russian technical specifications. The experimental data on long-term strength of metal of pipes from a live steam line virtually match the corresponding reference curve from the European standard, while certain experimental points for metal of bends of this steam line and metal of pipes and bends from a hot reheat line lie below the reference curve, but they definitely stay within the qualifying (20%) interval of the scatter band. The presence of a weakened layer in the heat-affected zone of weld joints of steel P91 is established. It is shown that the properties of this zone govern the short-term and long-term strength of weld joints in general. The results of synthesis and analysis of research data support the notion that the certification testing of steam lines and other equipment made from chromium steels should necessarily involve the determination of long-term strength parameters.

  19. Characterization of surface hardening in a nitrated chromium steel by microwave plasma type ECR (Electron Cyclotron Resonance)

    International Nuclear Information System (INIS)

    With this work it is demonstrated the possibility of performing the nitriding process by using a CVD-ECR source, based on the results obtained after treating several samples of AISI H-12 steel. Also, the main operating parameters (time of treatment, sample temperatures and gas mixture) are determined during nitriding of this steel with the mentioned source. Samples used before nitriding were quenched and tempered at 580 Centigrade degrees. Several experiments were done by using a pure nitrogen plasma with exposure times of the samples of 20 minutes at temperatures from 450 to 550 Centigrade degrees, and by using a N2 - H2 plasma with exposure times of the samples of 20, 30 and 40 minutes at temperatures from 350 to 550 Centigrade degrees. Metallography, microhardness, EDS and Auger analysis were done to observe changes suffered for the samples after treatment. (Author)

  20. 不锈钢中铬的X射线荧光光谱分析%ANALYSIS OF CHROMIUM IN STAINLESS STEEL ALLOY BY X- RAY FLUORESCENCE SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    刘海东; 侯丽华

    2011-01-01

    以北京钢铁研究院研制的GSB 03-2028系列不锈钢标准物质作为光谱标样,采用基本参数法校正基体效应,建立了X射线荧光光谱测定不锈钢中铬元素的方法.用该方法对标准样品进行分析,分析结果和化学法分析值相吻合,10次制样测量,测定结果的相对标准偏差约为0.14%.%X - ray fluorescence spectrometric method was developed for determination of chromium in stainless steel alloy of GSB 03 - 2028 series of standard samples from Beijing Research Institute of ferrous metal. The inter-element effect was corrected by fundamental parameter method. The results were in agreement with those from AAS and chemical method with relative standard deviation of 0.14% (n=10).

  1. Control of exposure to hexavalent chromium and ozone in gas metal arc welding of stainless steels by use of a secondary shield gas.

    Science.gov (United States)

    Dennis, John H; French, Michael J; Hewitt, Peter J; Mortazavi, Seyed B; Redding, Christopher A J

    2002-01-01

    Previous work has demonstrated that the shield gas composition in gas metal arc welding can have a considerable effect on hexavalent chromium [Cr(VI)] concentration in the fume and on ozone concentrations near the arc. Normally a single shield gas is used. This paper describes a double shroud torch that allows used of concentric shield gases of different compositions. A solid stainless steel wire was used for welding. The double shroud torch used secondary shield gases containing small amounts of the reducing agents NO and C2H4. The Cr(VI) concentration in the fume and ozone concentration at a fixed point relative to the arc were measured and compared with results when using a single shield gas. Use of the reducing agents in secondary shielding using the double shroud torch was found to offer advantages for ozone concentration reduction compared with use in a conventional torch, but this was not found to be an advantage for reducing Cr(VI) concentrations.

  2. Influence of process parameters on thickness and wear resistance of rare earth modified chromium coatings on P110 steel synthesized by pack cementation

    Institute of Scientific and Technical Information of China (English)

    LIN Naiming; XIE Faqin; WU Xiangqing; TIAN Wei

    2011-01-01

    The pack cementation was employed to produce rare earth modified chromium coatings on P110 steel aiming at improving its performance and increasing the usage lifetime during operation. The orthogonal array design (OAD) was applied to set experiments. Contents of NH4Cl, types of RE, contents of RE, test temperature and soaking time were the main factors, and each factor was endowed with four levels.While the range analysis and analysis of variance were used to investigate the results of OAD tests on thickness and wear resistance. The results indicated that for a promising coating with higher thickness value and excellent anti-wear property, the test temperature was the most significant process factor. The potential promising conditions for chromizing treatment were: adding 1% NH4Cl and 1% LaCl3, maintaining the test temperature at 1000 ℃ for 8 h. The results of verification showed that the coating formed under the optimal process parameter had a valid thickness of 28 μm and a reduction of 0.32 mg in wear resistance test.

  3. Electrochemical investigation of the two-stage decomposition of oxide deposits on a high-alloy chromium nickel steel by the MOPAC decontamination process

    International Nuclear Information System (INIS)

    The dissertation explains the application of the MOPAC technique for decomposition of oxide layers deposited under PWR conditions on an austenitic, high-alloy chromium nickel steel (DIN material number 1.4550). The examinations were mainly done by impedance spectrometry. With this technique, Cr(III)-oxide is oxidized to chromate in a first step, in 'oxidation solution', and the remaining oxide deposit is then dissolved in 'decontamination solution'. The various specimens used for the examinations were pre-treated ('oxidized') in water in an autoclave at 300deg C and 160 bar, remaining there for either one, two, three, six, or eight months. Extensive pre-experiments were carried out with polished sections of the same material. Comparison of the impedance spectra of these specimens with those of specimens from the autoclave were expected to yield data allowing assignment of impedance spectra to specific transformations in the oxide layers produced in the autoclave. It was found out that the treatment in oxidation solution is the decisive step for oxide decomposition, and hence for the entire result of the decontamination process. (orig.)

  4. The influence of chromium on the pearlite-austenite transformation kinetics of the Fe–Cr–C ternary steels

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingnan; Liu, Yaohui, E-mail: liuyaohui2005@126.com; Liu, Jia' an; Song, Yulai; Li, Shasha; Zhang, Renhang; Li, Tuanjie; Liang, Yan

    2015-11-05

    The Fe–Cr–C ternary steels containing different contents of Cr were successfully cast and further processed in the lab. Differential scanning calorimetry (DSC), optical microscope (OM), and scanning electron microscope (SEM) were employed to investigate the transformation of the Fe–Cr–C ternary steels from pearlite to austenite. It is found that the values of Ac1 and Ac3 are raised with increase in the content of Cr. In addition, the information on the transformation kinetics was obtained from experiment results and the Johnson-Mehl-Avrami-Kolmogorov model (JMAK). The obtained austenitic transformation kinetic process has been described in three overlapping steps: site saturation nucleation, diffusion-controlled growth, and impingement correction. The pre-exponential factor for diffusion decreases firstly and then increases. The activation energy for diffusion increases with the Cr content. In addition, Cr strongly affects the effective diffusion distance, the austenite nucleation sites, and the carbon activity gradient during the austenitic transformation kinetic process. - Highlights: • The pearlite-austenite transformation kinetics is researched by DSC. • The transformation kinetics is analyzed by experiment results and the JMAK model. • The activation energy and the diffusion coefficient are discussed.

  5. Effect of CO2 and pressure on the stability of steels with different amounts of chromium in saline water

    International Nuclear Information System (INIS)

    Highlights: ► Corrosion behaviour of X20Cr13, X46Cr13 and 42CrMo4 under CCS conditions. ► Long term exposure of samples (up to 1 year) in laboratory experiments. ► Kinetic, microstructural and phase analysis of the corrosion products. ► Influence of pressure is shown by different phases and lower corrosion rate. - Abstract: CO2-induced corrosion of casing and tubing steels is a relevant safety issue for compressing emission gasses into deep geological layers (CCS, Carbon Capture and Storage). The influence of CO2 and pressure of the surrounding media on steels is demonstrated in laboratory experiments providing a corrosive environment similar to a geological onshore CCS-site in the Northern German Basin (T = 60 °C, p = 1 - 100 bar, Stuttgart Aquifer, CO2-flow rate of 3 l/h, 700–8000 h exposure time). Corrosion kinetics and microstructures were characterized using specimens of heat treated 42CrMo4 (1.7225, casing) and soft annealed X46Cr13 (1.4034, tubing).

  6. Electrolytic dissolving ferritic stainless steel by layers and determination of chromium and silicon in the surface and the matrix of the stainless steel%电解法逐层溶解铁素体不锈钢并测定表层和基体中铬和硅的含量

    Institute of Scientific and Technical Information of China (English)

    张进; 杨建男

    2001-01-01

    以待分析的铁素体不锈钢和碳棒分别作为阳极和阴极,用由阴离子交换膜隔开的三室电解池作为采样器,对该钢样进行逐层溶解,并用氧化还原滴定法测定每一层中铬的含量。经测定,厚度约为0.03mm的表层中铬的平均含量为7.82%,基体中铬的含量为17.20%,另该表层中硅的含量为1.69%,基体中硅的含量为0.0774%,即该不锈钢表层为贫铬富硅层。%The ferritic stainless steel to be analyzed and carbon rods were used as anode and cathode, respectively. The dissolver was a triple-chamber electrolyser with the membrane placed between the chambers. The stainless steel sample was dissolved by layers, and chromium content of each layer was determined by the redox titration. The average chromium content of the surface layer about 0.03 mm thick is 7.82%, and that of the matrix of the steel is 17.20%. Silicon contents of the surface layer and the matrix are 1.69% and 0.0774%, respectively. That is to say, the surface of the ferritic stainless steel is a lager of poor chromium and rich silicon.

  7. Steel

    International Nuclear Information System (INIS)

    Composition of age hardening steel, % : Fe - (12.0-12.4) Cr - (2-2.7) Ni (0.5-0.6) Ti - (1.0-1.2) Mn - (0.03 - 0.04) C having high values of magnetoelastic internal friction and mechanical properties as well as an ability to operate under the conditions of alternating loadings are proposed. Damping properties of the steel permit to improve labour conditions. Data for the above steel on internal friction, impact strength and tensile properties are given

  8. The compatibility of chromium-aluminium steels with high pressure carbon dioxid at intermediate- temperatures; Compatibilite des aciers au chrome-aluminium avec le gaz carbonique sous pression aux temperatures moyennes

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, D.; Loriers, H.; David, R.; Darras, E. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    With a view to their use in the exchangers of nuclear reactors of the graphite-gas or heavy water-gas types, the behaviour of chromium-aluminium steels containing up to 7 per cent chromium and 1.5 per cent aluminium has been studied in the presence of high-pressure carbon dioxide at temperatures of between 400 and 700 deg. C. The two most interesting grades of steel (2 per cent Cr - 0.35 per cent Al - 0.35 per cent Mo and 7 per cent Cr - 1.5 per cent Al - 0.6 per cent Si) are still compatible with carbon dioxide up to 550 and 600 deg. C respectively. A hot dip aluminised coating considerably increases resistance to oxidation of the first grade and should make possible its use up to temperatures of at least 600 deg. C. (authors) [French] Dans l'optique de leur emploi dans les echangeurs de reacteurs nucleaires des filieres graphite-gaz ou eau lourde-gaz, le comportement en presence de gaz carbonique sous pression d'aciers au chrome-aluminium, contenant jusqu'a 7 pour cent de chrome et 1,5 pour cent d'aluminium a ete etudie entre 400 et 700 deg. C. Les deux nuances les plus interessantes (2 pour cent Cr - 0,35 pour cent Al - 0,35 pour cent Mo et 7 pour cent Cr - 1,5 pour cent Al - 0,6 pour cent Si) restent compatibles avec le gaz carbonique jusqu'a 550 et 600 deg. C respectivement. Un revetement d'aluminium, effectue par immersion dans un bain fondu, ameliore notablement la resistance a l'oxydation de la premiere et doit permettre son empioi jusqu'a 600 deg. C au moins. (auteurs)

  9. Effect of a Shot Peening Pre Treatment on the Fatigue Behaviour of Hard Chromium on Electroless Nickel Interlayer Coated AISI 4340 Aeronautical Steel

    OpenAIRE

    Marcelino P. Nascimento; Marcelo A.S. Torres; Renato C. Souza; Herman J.C. Voorwald

    2002-01-01

    Multiple layer systems of coatings are considered to have larger resistance to crack propagation in comparison to coatings with simple layer. With regard to fatigue, it is possible to improve the resistance of a component with the application of shot peening treatment, whose compressive residual stresses delay or eliminate the initiation and propagation of fatigue cracks. The aim of this study is to analyse the effects on rotating bending fatigue behaviour of hard chromium fraction three-quar...

  10. Influence of nitrogen on the corrosion behaviour of solution treated and annealed austenitic 18/10 chromium-nickel and 18/12 chromium-nickel-molybdenum steels. Pt. 1

    International Nuclear Information System (INIS)

    Investigations into the corrosion behaviour of CrNi steels with (weight-%) 0.019-0.029 C, 18.5 Cr, 11 Ni, 0.022-0.138 N and 0.020 to 0.031 C, 17.2 Cr, 13 Ni, 2.6 Mo, 0.028 to 0.130 N by the Strauss-Test, the Strauss-Test under rigid condition and the Huey-Test. The first part of this paper is devoted in particular to the analysis of structural constituents and in particular to precipitations. In the molybdenum-free steel heat treatment results in precipitation of M23C6 and Cr2N, the precipitation of the first being independent from nitrogen content. In the case of the molybdenum-bearing steels the precipitation of M23C6 is independent from nitrogen content too but is shifted toward higher temperatures. The precipitation of Cr2N is slowed down by Mo. The precipitation of other phases (chi-, sigma- and Z-phases) is affected differently by nitrogen. (orig.)

  11. Performance of chromium nitride based coatings under plastic processing conditions

    OpenAIRE

    Cunha, l.; Andritschky, M.; Pischow, K.; Wang, Z.(Institute of High Energy Physics, Beijing, China); Zarychta, A.; Miranda, A. S.; A.M. Cunha

    2000-01-01

    Chromium nitride based coatings were produced in the form of monolithic and multilayer coatings, by DC and RF reactive magnetron sputtering. These coatings were deposited onto stainless steel and tool steel substrates. Chromium nitride coatings have;proved to be wear and corrosion resistant. The combination of these characteristics was necessary to protect surfaces during plastic processing. In order to select the best coatings, some mechanical and tribological tests were performed. Har...

  12. Comparative Tensile Flow and Work-Hardening Behavior of 9 Pct Chromium Ferritic-Martensitic Steels in the Framework of the Estrin-Mecking Internal-Variable Approach

    Science.gov (United States)

    Choudhary, B. K.; Christopher, J.

    2016-06-01

    The comparative tensile flow and work-hardening behavior of P9 steel in two different product forms, normalized and tempered plate and thick section tube plate forging, and P91 steel were investigated in the framework of the dislocation dynamics based Estrin-Mecking (E-M) one-internal-variable approach. The analysis indicated that the flow behavior of P9 and P91 steels was adequately described by the E-M approach in a wide range of temperatures. It was suggested that dislocation dense martensite lath/cell boundaries and precipitates together act as effective barriers to dislocation motion in P9 and P91 steels. At room and intermediate temperatures, the evolution of the internal-state variable, i.e., the dislocation density with plastic strain, exhibited insignificant variations with respect to temperature. At high temperatures, a rapid evolution of dislocation density with plastic strain toward saturation with increasing temperature was observed. The softer P9 steel tube plate forging exhibited higher work hardening in terms of larger gains in the dislocation density and flow stress contribution from dislocations than the P9 steel plate and P91 steel at temperatures ranging from 300 K to 873 K (27 °C to 600 °C). The evaluation of activation energy suggests that the deformation is controlled by cross-slip of dislocations at room and intermediate temperatures, and climb of dislocations at high temperatures. The relative influence of initial microstructure on flow and work-hardening parameters associated with the E-M approach was discussed in the three temperature regimes displayed by P9 and P91 steels.

  13. Effect of chromium and molybdenum on corrosion resistance of super 13Cr martensitic stainless steel in CO{sub 2} environment

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, Hisashi; Kondo, Kunio; Hirata, Hiroyuki [Sumitomo Metal Industries, Ltd., Amagasaki (Japan). Corporate R and D Labs.; Ueda, Masakatsu; Mori, Tomoki [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

    1998-12-31

    The effect of Cr and Mo on the corrosion resistance of super 13Cr stainless steel in CO{sub 2} environment has been investigated by the electrochemical technique and the surface film analysis. The corrosion rate in CO{sub 2} environment at elevated temperatures is reduced with the increase in the effective Cr content. The pitting resistance is improved by the addition of more than 0.25 mass% Mo, because Mo is effective to stabilize the passive film in the CO{sub 2} environment. The effect of the Mo content on the SSC susceptibility in CO{sub 2} environment with a little amount of H{sub 2}S has been also studied. Mo is also effective to improve the SSC resistance by the formation of Mo sulfide in the outer layer of the surface film, because the Mo sulfide film can assist the formation and/or stabilization of the Cr oxide passive film in the inner layer even in the CO{sub 2} environment with a little amount of H{sub 2}S at room temperature. Based on these results, O.O1C-13Cr-5.2Ni-0.7Mo steel chemical compositions has been determined to improve the corrosion resistance of 13Cr martensitic stainless steel. The applicable environment of the developed steel will be discussed compared with super 13Cr stainless steel containing 2mass% Mo and conventional 13Cr steel.

  14. Electrodeposition of black chromium thin films from trivalent chromium-ionic liquid solution

    OpenAIRE

    Eugénio, S.; Vilar, Rui; C. M. Rangel; Baskaran, I.

    2009-01-01

    In the present study, black chromium thin films were electrodeposited from a solution of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIm][BF4] ionic liquid containing trivalent chromium (Cr(III)). Homogeneous and well adherent coatings have been obtained on nickel, copper and stainless steel substrates. The nucleation and growth of the films were investigated by cyclic voltammetry and current-density/time transient techniques. SEM/EDS, XPS and XRD were used to study the morphology, chem...

  15. Plasma nitriding of AISI 304L and AISI 316L stainless steels: effect of time in the formation of S phase and the chromium nitrides; Nitretacao a plasma dos acos inoxidaveis AISI 304L e AISI 316L: efeito do tempo na formacao da fase S e dos nitretos de cromo

    Energy Technology Data Exchange (ETDEWEB)

    Souza, D.A. de; Barbosa, G.C.; Pinto, F.A.M.; Gontijo, L.C. [Instituto Federal de Educacao, Ciencia e Tecnologia do Espirito Santo - IFES, Vitoria, ES (Brazil); Canal, G.P.; Cunha, A.G., E-mail: disouzam@yahoo.com.br [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Dept. de Fisica

    2009-07-01

    Plasma nitriding can improve hardness and wear resistance of austenitic stainless steels without losses in corrosion resistance. This fact relies on a nitrided layer constituted only by S phase, without chromium nitrides precipitation. In this work, the effect of nitriding time on phases formed on nitrided layer was investigated in two austenitic stainless steels: AISI 304L e AISI 316L. The samples were nitrided at 420 deg C, using a mixture of 60 % N{sub 2} and 40% H{sub 2}, during 5, 7 and 9 hours. It was noted that chromium nitrides were formed on samples of AISI 304L, nitrided for 7 e 9 hours, while all nitrided samples of AISI 316L showed only formation of S phase. The nitrided layers were characterized using optical microscope and x-ray diffraction. (author)

  16. Microstructural and fractographic investigations of a Nb-bearing martensitic 12% chromium-steel (DIN 1.4914) with a lowered nitrogen-content

    International Nuclear Information System (INIS)

    The martensitic steel DIN 1.4914 is favored as structural material for Fast Breeder Reactors. For the use as wrapper tube a new delta-ferrite free melt was developed with a strongly reduced nitrogen - and a low carbon content for achieving a low ductile-to-brittle transition temperature (DBTT). The material was investigated systematically in its microstructure depending on the austenitization and the tempering. The microstructure influences the fracture behaviour of the steel. As a main result the fractures of tensile and impact tested samples are predominatly formed by the inclusions and the secondary precipitates. (orig.)

  17. Distribution of soluble and precipitated iron and chromium products generated by anodic dissolution of 316L stainless steel and alloy C-22: final report

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J; Farmer, J; Gordon, S; King, K; Logotetta, L; Silberman, D

    1999-08-11

    At near neutral pH and at applied potentials above the threshold potential for localized breakdown of the passive film, virtually all of the dissolved chromium appeared to be in the hexavalent oxidation state (Cr(VI)). In acidic environments, such as crevice solutions formed during the crevice corrosion of 316L and C-22 samples in 4 M NaCl, virtually all of the dissolved chromium appeared to be in the trivalent oxidation state (Cr(III)). These general observations appear to be consistent with the Pourbaix diagram for chromium (Pourbaix 1974), pp. 307-321. At high pH and high anodic polarization (pH {approximately} 8 and 800 mV vs. SHE), the predominate species is believed to be the soluble chromate anion (CrO{sub 4}{sup 2{minus}}). At the same pH, but lower polarization (pH {approximately} 8 and 0 mV vs. SHE), the predominate species are believed to be precipitates such as trivalent Cr(OH){sub 3} {center_dot} n(H{sub 2}O) and hexavalent Cr{sub 2}O{sub 3}. In acidified environments such as those found in crevices (pH < 3), soluble Cr{sup 3+} is expected to form over a wide range of potential extending from 400 mV vs. SHE to approximately 1200 mV vs. SHE. Again, this is consistent with the observations from the creviced samples. In earlier studies by the principal investigator, it has been found that low-level chromium contamination in ground water is usually in the hexavalent oxidation state (Farmer et al. 1996). In general, dissolved iron measured during the crevice experiments appears to be Fe(II) in acidic media and Fe(III) in near-neutral and alkaline solutions (table 3). In the case of cyclic polarization measurements, the dissolved iron measured at the end of some cyclic polarization measurements with C-22 appeared to be in the Fe(III) state. This is probably due to the high electrochemical potential at which these species were generated during the potential scan. Note that the reversal potential was approximately 1200 mV vs. Ag/AgCl during these scans. These

  18. Standard practice for determining the susceptibility of stainless steels and related Nickel-Chromium-Iron Alloys to stress-corrosion cracking in polythionic acids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for preparing and conducting the polythionic acid test at room temperature, 22 to 25°C (72 to 77°F), to determine the relative susceptibility of stainless steels or other related materials (nickel-chromiumiron alloys) to intergranular stress corrosion cracking. 1.2 This practice can be used to evaluate stainless steels or other materials in the “as received” condition or after being subjected to high-temperature service, 482 to 815°C (900 to 1500°F), for prolonged periods of time. 1.3 This practice can be applied to wrought products, castings, and weld metal of stainless steels or other related materials to be used in environments containing sulfur or sulfides. Other materials capable of being sensitized can also be tested in accordance with this test. 1.4 This practice may be used with a variety of stress corrosion test specimens, surface finishes, and methods of applying stress. 1.5 This standard does not purport to address all of the safety concerns, if any, ...

  19. Changes In Properties and Microstructure of High-Chromium 9-12%Cr Steels Due to Long-Term Exposure at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Zieliński A.

    2016-06-01

    Full Text Available This paper presents the characteristics of the performance of P91 (X10CrMoVNb9-1, P92 (X10CrWMoVNb9-2 and VM12 (X12CrCoWVNb12-2-2 steels used for condition assessment of the pressure components of boilers with supercritical steam parameters. Studies on the mechanical properties, microstructure tests using scanning and transmission electron microscopy, and X-ray analysis of the phase composition of precipitates were performed for selected steels in the as-received condition and after long-term annealing. These steel characteristics are used for the evaluation of the microstructural changes and mechanical properties of the material of components after long-term service. The result of this study is the database of material characteristics representing the mechanical properties related to the microstructure analysis and it can be used for diagnosis of the components of pressure parts of power boilers.

  20. 直读光谱仪测定不锈钢食具容器铬含量的不确定度评定%Determination of Chromium Content in Stainless Steel Food Containers Uncertainty Evaluation by Direct Reading Spectrometer

    Institute of Scientific and Technical Information of China (English)

    邱建华; 张树潮; 詹铁成

    2013-01-01

    依据JJF1059-1999《测量不确定度评定与表示》,利用真空直读光谱仪测定不锈钢食具容器化学成分含量,以铬元素为例,通过建立数学模型,从人、机、料、法、环、溯六方面分析评定铬元素含量的测量不确定度.分析各不确定度的分量,得出校准曲线和标准样品的均匀性对测量不确定度影响最大的结论,为今后仪器操作者如何提高检测准确性提供理论参考.%On the basis of JJF1059-1999 evaluation and expression of uncertainty in measurement, using vacuum direct reading spectrometer for determination of chemical composition content in stainless steel food containers, with Cr element as an example, through the establishment of the mathematical model, the measurement uncertainty of chromium content was evaluated from six factors including man, machine, material, method, central, back analysis. Analyzing the uncertainty components, a calibration curve and standard sample homogeneity of uncertainty in measurement for influential conclusion were drawn. It can provide the theory reference for future equipment operators how to improve the accuracy of testing.

  1. Determination of Nitrogen in Chromium Stainless Steel by Spark Source Optical Emission Spectrometry%火花源原子发射光谱法测定铬不锈钢中氮含量的研究与应用

    Institute of Scientific and Technical Information of China (English)

    王化明; 陈学军

    2009-01-01

    The determination of nitrogen in chromium stainless steel by spark source optical emission spectrometry was studied. The optimum conditions for the detection have been experimentally studied to eliminate the spectral interference and matrix effects. Furthermore, many other issues such as sample selection, preparation, set value and on-line analysis were also discussed. The detection range for nitrogen was from 0.00% to 0.073% with a detection limit of 0.0005%. This paper provides an accurate, timely technique for on-line control analysis with good reproducibility.%本文通过实验确定火花源原子发射光谱法测定铬不锈钢样品氮的最佳分析条件,消除光谱干扰和基体效应,制作氮的光谱校准曲线以实现铬不锈钢中氮含量的准确测定,并对铬不锈钢样品选择、制备和定值,现场样品分析等问题进行了讨论.本方法的分析范围在0.00%~0.0730%之间,检出限为0.0005%.该方法用于在线控制分析,准确、及时、重现性好.

  2. 电流密度分配制度对铬系无锡钢耐蚀性的影响%Effect of current density distribution scheme on corrosion resistance of chromium-type tin-free steel

    Institute of Scientific and Technical Information of China (English)

    黄久贵

    2012-01-01

    The differences of surface morphologies of tin-free steels obtained with different current density distribution schemes were studied by scanning electron microscopy. The results showed that there exist many pores on rough surface of the tin-free steel obtained by increasing the current density gradually. The tin-free steel obtained by applying a constant current density has a fine surface with many pores. The surface porosity and morphology of tin-free steel were evidently improved by decreasing the current density gradually. The surface of the chromium coating obtained by applying low and high current density alternately is uniform, smooth, and less porous. The analysis of polarization curves in 3.5wt% NaCl solution and neutral salt spray (NSS) test showed that the tin-free steel obtained by alternating current density has better corrosion resistance than those obtained with other current density distribution schemes. The equations presenting the relationship between NSS test temperature and time of the first rust spot appearance were established for the tin-free steels obtained with different current density distribution schemes.%采用扫描电镜分析了不同电流密度分配制度下所得无锡钢板表面形貌的差异.结果表明,电流密度逐渐增大的分配制度获取的无锡钢表面存在较多孔隙,且镀层表面粗糙.电流密度平均分配时获取的无锡钢表面尽管同样存在较多孔隙,但是镀层表面较为细腻.电流密度逐渐减小的分配制度获取的无锡钢表面孔隙率和状态均明显改善.电流密度交叉式分配制度获取的无锡钢表面孔隙率少,且铬镀层均匀、细腻.根据3.5%(质量分数)NaCl溶液中的极化曲线和中性盐雾试验分析可知,与其他电流密度分配制度相比,交叉式电流密度分配制度获取的无锡钢耐蚀性较好.建立了不同电流密度分配制度下所得无锡钢在中性盐雾试验中的点蚀产生时间与试验温度的方程.

  3. Chromium in diet

    Science.gov (United States)

    The best source of chromium is brewer's yeast. However, many people do not use brewer's yeast because it causes bloating ( abdominal distention ) and nausea . Other good sources of chromium include ...

  4. Chromium and Genomic Stability

    OpenAIRE

    Wise, Sandra S.; Wise, John Pierce

    2011-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as high...

  5. A numerical approach to predict the long-term creep behaviour and precipitate back-stress evolution of 9-12% chromium steels

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, I.; Cerjak, H. [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Kozeschnik, E. [Vienna Univ. of Technology (Austria). Inst. of Materials Science and Technology; Vienna Univ. of Technology (Austria). Christian Doppler Lab. ' Early Stages of Precipitation'

    2010-07-01

    The mechanical properties of modern 9-12% Cr steels are significantly influenced by the presence and stability of different precipitate populations. These secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service, which leads to a remarkable change in the obstacle effect of these precipitates on dislocation movement. In the present work, the experimentally observed creep rupture strength of a modified 9-12% Cr steel developed in the European COST Group is compared to the calculated maximum obstacle effect (Orowan threshold stress) caused by the precipitates present in the investigated alloy for different heat treatment conditions. It is shown that the differences in creep rupture strength caused by different heat treatments disappear after long time service. This observation is discussed on the basis of the calculated evolution of the precipitate microstructure. The concept of boosting long-term creep rupture strength by maximizing the initial creep strength with optimum quality heat treatment parameters for precipitation strengthening is critically assessed. (orig.)

  6. Caracterização por XPS de filmes passivos formados sobre aços de baixa liga em meio de bicarbonato XPS characterization of passive films formed on mild steels in bicarbonate medium

    Directory of Open Access Journals (Sweden)

    Valéria Almeida Alves

    2005-03-01

    Full Text Available Passive films formed in bicarbonate solutions on carbon steel, chromium steel and high speed steel have been characterized by XPS. The passive films formed on chromium and high speed steels showed superior protective properties than those formed on carbon steel. It was confirmed by XPS that the steel composition influences the passive film composition. Chromium oxide and hydroxide, as well as molybdenum and tungsten oxides and hydroxides are present in the passive film of chromium steel and high speed steel, respectively, besides iron oxide and hydroxide. The more complex composition of the oxide film on high speed steel explains its electrochemical behaviour and highest corrosion resistance.

  7. Investigations of the oxidation-induced service life of chromium steels for high temperature fuel cell application (SOFC); Untersuchungen zur oxidationsbedingten Lebensdauer von Chromstaehlen fuer die Anwendung in der Hochtemperaturbrennstoffzelle (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Ertl, S.T.

    2006-08-17

    The increasing energy consumption of future automobiles should be covered by a solid oxide fuel cell (SOFC) used as an additional energy supply (auxiliary power unit). The application of a SOFC with about 5 kW power in cars requires small size, low weight and an economic fabrication. To achieve this goal the interconnector and the metallic anode substrate (depending on an alternative concept of construction) should be manufactured out of thin Crofer22APU, a high chromium ferritic steel. The scale formation mechanisms on Crofer22APU sheets, wires and powder metallurgical produced foils of different thicknesses were investigated in several atmospheres of water vapour/hydrogen at 800 and 900 C, simulating the anode conditions. For scale characterization a number of conventional analysis techniques such as optical metallography, scanning electron microscopy and X-ray diffraction were used in combination with deflection testing in monofacial oxidation and two-stage oxidation studies using {sup 18}O and H{sub 2} {sup 18}O tracer. With these results a theoretical model for the determination of lifetime was developed for Crofer22APU components in simulated anode gas. It was found that the lifetime at a given temperature depends not only on the surface-to-volume ratio, but also on the geometry of the component (e.g. sheet or wire). The critical Cr content required for breakaway oxidation depends on microcrack formation in the surface oxide scale, which occurs on ridges of a sheet during thermal cycling. The development of a metallic interconnector and a metallic anode substrate requires measures to avoid interdiffusion between the alloy and the bordering nickel-YSZ (yttrium stabilized zirconia) cermet of the anode, or depending on the conception of the stack, the bordering nickel-YSZ cermet of the anode functional layer. Therefore the suitability of preoxidation layers after different preoxidation conditions was tested. It was found that the inhibition of the interdiffusion

  8. Contingency plans for chromium utilization. Publication NMAB-335

    International Nuclear Information System (INIS)

    The United States depends entirely on foreign sources for the critical material, chromium, making it very vulnerable to supply disruptions. This vulnerability results because chromium is essential for the fabrication of corrosion-resisting steels and high-temperature, oxidation-resisting alloys in applications that are vital to the nation's technological well-being; because no substitutes are known for these materials in those applications; and because the known, substantial deposits of chromite ore are only in a few geographical locations that could become inaccessible to the United States as a result of political actions. The effectiveness of programs such as stockpiling, conservation, and research and development for substitutes to reduce the impact of disruption of imports of chromite and ferrochromium are discussed. Alternatives for decreasing chromium consumption also are identified for chromium-containing materials in the areas of design, processing, and substitution

  9. Chromium speciation in rainwater: temporal variability and atmospheric deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kieber, R.J.; Willey, J.D.; Zvalaren, S.D. [University of North Carolina at Wilmington, Wilmington, NC (United States). Dept. of Chemistry

    2002-12-15

    Chromium is released into the atmosphere by a variety of anthropogenic activities which include steel manufacturing, leather tanning, wood presentation and fossil fuel combustion. The concentrations of the various chromium species were determined in 89 rainwater samples collected in Wilmington, NC from October 1, 1999 to December 31, 2001. Volume weighted annual average concentrations of Cr{sub total}, particulate Cr, Cr(III)(aq), and Cr(VI)(aq) were 4.6, 2.2, 0.8 and 1.2 nM, respectively. There was distinct seasonal and diurnal variability in the concentrations of the various chromium species. Chromium emissions to the global atmosphere by both natural and anthropogenic sources are estimated to be 2.2 x 10{sup 9} mol/yr. Using rainwater concentration data along with other published rainwater Cr concentrations and an estimate for total global annual rain, the total global flux of chromium removed from the atmosphere via wet deposition is 2.1 x 10{sup 9} mol/yr. This represents complete removal of Cr and indicates that essentially all chromium released into the global atmosphere is removed via rain. About half this chromium is dissolved with roughly equal concentrations of toxic Cr(VI) and relatively harmless Cr(III) species. 48 refs., 4 figs., 3 tabs.

  10. Thermal fatigue of high chromium steel rolls

    OpenAIRE

    Valverde Montraveta, Gerard

    2013-01-01

    Within the master work the phenomenon of appearance of firecracks on the surface of the work rolls that occur during hot rolling of flat products in the case of regular rolling conditions and in the case of the rolling mill stalls was investigated. During hot rolling work rolls are subjected to successive heating and cooling conditions. Their surface is exposed to rapid temperature changes due to the contact with hot rolled material and due to cold water used for rolls cooling. These cyclic h...

  11. Substoichiometric extraction of chromium

    International Nuclear Information System (INIS)

    Substoichiometric extraction of chromium with tetraphenylarsonium chloride (TPACl), tri-n-octylamine (TNOA), diethylammonium diethyldithiocarbamate (DDDC) and ammonium pyrrolidinedithiocarbamate (APDC) was examined in detail. Chromium can be extracted substoichiometrically in a pH range, which is 1.1-2.6 for the TPACl compound, 0.6-2.3 for the TNOA compound, 5.1-6.4 for the DDDC chelate and 3.9-4.9 for the APDC chelate. Chromium in high-purity calcium carbonate, Orchard Leaves (NBS SRM-1571) and Brewers Yeast (NBS SRM-1569) was determined by neutron activation analysis combined with substoichiometric extraction by DDDC and APDC. The values of 2.0+-0.02 ppm and 2.6+-0.2 ppm were obtained for Brewers Yeast and Orchard Leaves, respectively. These values were in good agreement with those reported by NBS. The reaction mechanism and the reaction ratio between hexavalent chromium and dithiocarbamate are also discussed. (author)

  12. The carcinogenicity of chromium

    OpenAIRE

    Norseth, Tor

    1981-01-01

    The carcinogenicity of chromium compounds is reviewed with specific attention to the gaps in knowledge for risk estimation and research needs. The most important problems at present are whether trivalent chromium compounds cause cancer, and whether there is a difference in cancer causing effects between the soluble and the slightly soluble hexavalent compounds in the practical exposure situation. Dose estimates for risk estimation based on epidemiological investigations are also lacking. Pres...

  13. Obtaining decorative chromium plating from trivalent chromium solutions

    OpenAIRE

    Óscar Javier Suárez García

    2010-01-01

    The present work was aimed at a qualitative evaluation, in the laboratory, of different alternatives for assembling and operating a trivalent chromium bath for decorative chromium plating. Different chromium concentration solutions and different complexing agents were used. The initial result of this analysis was that chloride, formate and acetate solutions produced the best results. Solution preparation conditions were evaluated: temperature, chromium III complex formation time and also ...

  14. The analytical biochemistry of chromium.

    OpenAIRE

    Katz, S A

    1991-01-01

    The essentiality and carcinogenicity of chromium depend on its chemical form. Oxidation state and solubility are particularly important in determining the biological effects of chromium compounds. For this reason, total chromium measurements are of little value in assessing its nutritional benefits or its toxicological hazards. Aqueous sodium carbonate-sodium hydroxide solutions have been successfully used for extracting hexavalent chromium from a variety of environmental and biological matri...

  15. Chromium in potatoes

    International Nuclear Information System (INIS)

    Chromium concentration in potatoes was determined, and tubes were labeled either intrinsically or extrinsically with radioactive chromate (51Cr). A labeled chromium complex was isolated from preparations of raw, baked, or fried potatoes and chromatographed on gel permeation media. Potato pulp and peel contained 1.63 and 2.70 μg of Cr/g tissue, respectively. There was no correlation between the two, nor did they respond similarly to changes of variety or locations. No significant differences were apparent in relative migration of the isolated complexes except between raw and cooked extrinsically labeled preparations

  16. Biodegradation of nickel and chromium from space maintainers: An in vitro study

    OpenAIRE

    Bhaskar V; Subba Reddy V

    2010-01-01

    Band materials are often used in the practice of pediatric dentistry. Nickel and Chromium are the main ingredients of these materials. The potential health hazards of nickel and chromium and their compounds have been the focus of attention for more than 100 years. It has established that these metals could cause hypersensitivity. The study was undertaken to analyze in vitro biodegradation of space maintainers made out of stainless steel band materials from manufacturers Dentaurum and Unitek. ...

  17. Investigations on the Oxidation of Iron-chromium and Iron-vanadium Molten Alloys

    OpenAIRE

    Wang, Haijuan

    2010-01-01

    With the progress of high alloy steelmaking processes, it is essential to minimize the loss of valuable metals, like chromium and vanadium during the decarburization process, from both economic as well as environmental view points. One unique technique to realize this aim, used in the present work, is the decarburization of high alloy steel grades using oxygen with CO2 in order to reduce the partial pressure of oxygen. In the present work, the investigation on the oxidation of iron-chromium a...

  18. Bioleaching of hexavalent chromium from soils using acidithiobacillus thiooxidans

    OpenAIRE

    Fonseca, Bruna; Rodrigues, Joana; Queiroz, A.M.; Tavares, Teresa

    2010-01-01

    The continuous and growing degradation of the environment, due to several anthropogenic activities, is a main concern of the scientific community. Consequently, the development of low cost techniques to clean air, water and soils are under intense investigation. In this study, the focused problem is the soil contamination by hexavalent chromium, which is known for its several industrial applications - production of stainless steel, textile dyes, wood preservation and leather tanning - its hig...

  19. Stainless steel denitriding with slag

    International Nuclear Information System (INIS)

    Calculation and experimental methods were used to investigate the process of titanium nitride formation when alloying chromium nickel stainless steels with titanium. At common concentrations of titanium and nitrogen, titanium nitrides were observed to be precipitated from the melt into slag in amounts of 0.1% and more. The laboratory study of the slag influence of the process of steel refining from titanium nitrides showed that the slag containing calcium, aluminium and magnesium oxides is favourable to the denitriding of steel. In addition, the possibility of direct transition of dissolved nitrogen from the metal into the slag is revealed. 7 refs., 1 fig., 2 tabs

  20. Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria

    Science.gov (United States)

    He, Zhiguo; Hu, Yuting; Yin, Zhen; Hu, Yuehua; Zhong, Hui

    2016-06-01

    Three soil samples obtained from different sites adjacent to a chromium slag heap in a steel alloy factory were taken to examine the effect of chromium contamination on soil bacterial diversity as determined by construction of 16S rDNA clone libraries and sequencing of selected clones based on restriction fragment length polymorphism (RFLP) analysis. Results revealed that Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Alphaproteobacteria occurred in all three soil samples, although the three samples differed in their total diversity. Sample 1 had the highest microbial diversity covering 12 different classes, while Sample 3 had the lowest microbial diversity. Strains of six different species were successfully isolated, one of which was identified as Zobellella denitrificans. To our knowledge, this is the first report of a strain belonging to the genus Zobellella able to resist and reduce chromium. Among all isolates studied, Bacillus odysseyi YH2 exhibited the highest Cr(VI)-reducing capability, with a total removal of 23.5 % of an initial Cr(VI) concentration of 350 mg L-1.

  1. Groundwater contaminant by hexavalent chromium

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, C. [Univ. of Texas, Austin, TX (United States)

    1995-11-01

    Oxidation of trivalent chromium to hexavalent chromium has been investigated as a function of total manganese in soils as well as various incubation conditions. Chromium and manganese contents were analyzed by atomic absorption (graphite furnace and flame emission respectively) following acid digestion. Total hexavalent chromium generation capacity was determined by addition of 0.001 M CrCL3, incubation, and analysis by s-diphenyl carbazide. Samples were then leached with CaSO{sub 4} and MgSO{sub 4} and incubated in various environments (oven, freeze-drier, field moist, ultrafreeze) to test for geogenic generation of Cr(IV). The degree of geogenic generation of hexavalent chromium was compared with total Mn and Cr content as well as hexavalent generational capacity.

  2. Effect of machining on the deformability of steel in surface-active medium at lower temperatures

    International Nuclear Information System (INIS)

    The effect of some machining methods of carbon steel, chromium steel, and chromium nickel steel, and that of low temperatures on the principle characteristics of formability during impact bending in air and a surface-active environment have been studied. The temperature decrease from the ambient to -80 deg is shown to reduce steel formability as evaluated by deflection (f) and to increase the forming force. The variation of these characteristics with lowering temperature, however, is greatly affected by machining process conditions. The FRHT (Friction-Hardening Treatment) on the white layer assures minimum ductility losses, and increases steel strength at low temperatures both in air and in the surface-active environment

  3. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been e...... established that codeposition of Cr2O3 nanoparticles is a general feature of DC chromium electrodeposition....

  4. The adhesion of hot-filament CVD diamond films on AISI type 316 austenitic stainless steel

    NARCIS (Netherlands)

    Buijnsters, J.G.; Shankar, P.; Enckevort, W.J.P. van; Schermer, J.J.; Meulen, J.J. ter

    2004-01-01

    Steel ball indentation and scratch adhesion testing of hot filament chemical vapour deposited diamond films onto AISI type 316 austenitic stainless steel substrates using two different interlayer systems, namely chromium nitride and borided steel, have been investigated. In order to compare the adhe

  5. Characterisation of exposure to total and hexavalent chromium of welders using biological monitoring.

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Heussen, G.A.; Peer, P.G.M.; Verbist, K.; Anzion, R.; Willems, J.

    2008-01-01

    Inhalation exposure to total and hexavalent chromium (TCr and HCr) was assessed by personal air sampling and biological monitoring in 53 welders and 20 references. Median inhalation exposure levels of TCr were 1.3, 6.0, and 5.4 microg/m(3) for welders of mild steel (MS, <5% alloys), high alloy st

  6. Chromium reduction in Pseudomonas putida.

    OpenAIRE

    Ishibashi, Y.; Cervantes, C; Silver, S

    1990-01-01

    Reduction of hexavalent chromium (chromate) to less-toxic trivalent chromium was studied by using cell suspensions and cell-free supernatant fluids from Pseudomonas putida PRS2000. Chromate reductase activity was associated with soluble protein and not with the membrane fraction. The crude enzyme activity was heat labile and showed a Km of 40 microM CrO4(2-). Neither sulfate nor nitrate affected chromate reduction either in vitro or with intact cells.

  7. Clean steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.

    1995-03-01

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

  8. Influence of chromium on the initial corrosion behavior of low alloy steels in the CO2-O2-H2S-SO2 wet-dry corrosion environment of cargo oil tankers

    Institute of Scientific and Technical Information of China (English)

    Qing-he Zhao; Wei Liu; Jie Zhao; Dong Zhang; Peng-cheng Liu; Min-xu Lu

    2015-01-01

    The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2wet–dry corrosion envi-ronment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance (Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.

  9. Characteristic Features of Nanoscale Сarbide Inclusions Nucleation and Growth When Carburizing Steels

    Directory of Open Access Journals (Sweden)

    L.I. Roslyakova

    1990-01-01

    Full Text Available Thermodynamic calculations of the free energy of the formation of cementite type nanoscale carbides in supersaturated austenite alloyed with chromium and manganese are presented. It is shown that when carburizing steel, chromium stabilizing cementite facilitates its separation, in the form of dispersed inclusions. Manganese stabilizes cementite much weaker than chromium, though facilitates the growth of carbide inclusions due to the formation of the intermediate ε-phase at a reduced carbon content.

  10. Thick tool steel coatings with laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; de Oliveira, U.; De Hosson, J. Th. M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2007-01-01

    This paper concentrates on thick and crack-free laser clad coatings (up to 3 mm). The coating material is a chromium-molybdenum-tungsten-vanadium alloyed high-speed steel that shows high wear resistance, high compressive strength, good toughness, very good dimensional stability on heat treatment and

  11. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    OpenAIRE

    Oladayo OLANIRAN; Peter Apata OLUBAMBI; Benjamin Omotayo ADEWUYI; Joseph Ajibade OMOTOYINBO; Ayodeji Ebenezar AFOLABI; Davies FOLORUNSO; Adekunle ADEGBOLA; Emanuel IGBAFEN

    2015-01-01

    Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction) dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr) and Nickel (Ni) were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail...

  12. Alumina Fiber-Reinforced 9310 Steel Metal Matrix Composite for Rotorcraft Drive System Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — AISI 9310 nickel-chromium-molybdenum alloy steel is used extensively in military helicopter rotor shafts and gears. This reliable alloy provides excellent fatigue...

  13. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  14. Reduction of peeling defect rate of chromium coatings electroplated on steels by using lean six sigma method%采用精益六西格玛降低钢铁件电镀铬镀层的起皮缺陷率

    Institute of Scientific and Technical Information of China (English)

    杨改航; 李福军

    2014-01-01

    某公司钢铁件电镀铬层的外观起皮缺陷率较高,导致一次交验合格率低。根据六西格玛的思路,以电镀原理作根据,借助Minitab软件逐步筛选出关键影响因素,发现影响最大的是电源设备,其次是活化时间。提出改直流电源为脉冲电源,以及将活化时间从原来的2~8s调整为6~8s。对改进措施实施后的生产情况进行监控,最终将起皮缺陷率维持在3.4%以下。%The first time yield of the chromium-plated steel parts was low in a company due to the peeling defect of coatings. The causes were analyzed using Minitab software based on the principle of electroplating and the theory of lean six sigma. The power supply and activation time were found to be the most important factors. It was suggested to change the direct current power supply to pulsed current power supply, and adjust the activation from 2-8 s to 6-8 s. Through the implementation and monitoring of the improvement measures, the rate of peeling defect maintained below 3.4%.

  15. Hydrogen permeation through chromium

    International Nuclear Information System (INIS)

    Steady state and non-steady state measurements of hydrogen permeation through metallic chromium are reported. The experiments have been conducted by use of hydrogen and deuterium within a pressure range of 10-8 - 1 bar and temperatures between 600 - 8000C. Numerical values for the physical quantities permeability, diffusion constant and solubility could be derived. At an upstream pressure above around 10-3 bar classical Sieverts-low was found (permeation rate proportional √p) with activation energies Qsub(perm) = 65 kJoule/mole, Qsub(Diff) = 4-8 kJoule/mole, Qsub(Sol) = 57-61 kJoule/mole for the respective processes involved. The isotopic effect between H and D of the permeabilities could be represented by a factor of 1,5 independence on temperature. All non steady-state measurements could be approximated reasonably well by classical diffusion kinetics. Below up-stream pressures of approx.= 10-7 bar the kinetics was no longer diffusion controlled, the dependence on up-stream pressure changed from √p -> p, the activation energy for permetation increased to 127 kJoule/mole and the isotopic factor resulted in about 2-3. (orig.)

  16. Propuesta para la recuperación de los machetes Zuazaga de los centrales azucareros con electrodos de acero al cromo. // Proposal for Recuperation of Sugar Mill Cut Cane by Using Chromium Steel Electrodes.

    Directory of Open Access Journals (Sweden)

    R. Collazo-Carceller

    2009-09-01

    Full Text Available El trabajo resume el estudio y análisis desarrollado, para la presentación de una propuestatecnológica de recuperación de los machetes Zuazaga, en nuestros centrales azucareros. Sedeterminó la influencia de los parámetros, energía introducida (Hi, número de capas (Nc y anchodel depósito (Ad, en la morfología y el incremento de la resistencia al desgaste abrasivo, utilizandoel electrodo de acero al cromo DUR 600. Se realizó una valoración económica de la propuestatecnológica.Palabras claves: morfología, desgaste abrasivo, parámetro de soldadura, dendrites._____________________________________________________________________________AbstractThis work, sumarises the study and the analisys developed, to prupose the Zuazaga cut canethecnology recuperation, in aur sugar mills. The parameters influency was determinated, Heatinput (Hi, Number of layers (Nc and the Cord whith (Ad, in the mofology and the abrasive wearresistance increase, using the cromiun steel UTP DUR - 600. The economical calculation of thethecnology was done.Key words: morphology abrasive wear, welding parameters. dendrites, modeling

  17. Microstructure and properties of laser surface alloyed PM austenitic stainless steel

    OpenAIRE

    Z. Brytan; M. Bonek; L.A. Dobrzański

    2010-01-01

    Purpose: The purpose of this paper is to analyse the effect of laser surface alloying with chromium on the microstructural changes and properties of vacuum sintered austenitic stainless steel type AISI 316L (EN 1.4404).Design/methodology/approach: Surface modification of AISI 316L sintered austenitic stainless steel was carried out by laser surface alloying with chromium powder using high power diode laser (HPDL). The influence of laser alloying conditions, both laser beam power (between 0.7 ...

  18. Chromium(III) -- chromium(VI) interconversions in seawater

    NARCIS (Netherlands)

    Weijden, C.H. van der; Reith, M.

    1982-01-01

    The stable form of dissolved chromium in oxygenated seawater is Cr(VI). But Cr(III)-species are also present at an analytically significant level. It is shown that Cr(III) is oxidized only slowly by dissolved oxygen, and that manganese oxide is a strong catalyst for such oxidation. However, the low

  19. Heat treatment and effects of Cr and Ni in low alloy steel

    Indian Academy of Sciences (India)

    Mohammad Abdur Razzak

    2011-12-01

    The effects of Cr and Ni on low carbon steel was observed. Undissolved carbide particles refine the austenite grain size. In the presence of nickel, chromium carbide is less effective in austenite grain refinement than chromium carbide in absence of nickel at temperature below 975°C. Nickel does not produce any austenite grain refinement but presence of nickel promotes the formation of acicular ferrites. It was also found that Ni and Cr as chromium carbide also refines the ferrite grain size and morphology. Cr as chromium carbide is more effective in refining ferrite grain size than nickel.

  20. Experimental and Theoretical Investigations of Hot Isostatically Pressed-Produced Stainless Steel/High Alloy Tool Steel Compound Materials

    Science.gov (United States)

    Lindwall, Greta; Flyg, Jesper; Frisk, Karin; Sandberg, Odd

    2011-05-01

    Consolidation of tool steel powders and simultaneous joining to a stainless 316L steel are performed by hot isostatic pressing (HIP). Two tool steel grades are considered: a high vanadium alloyed carbon tool steel, and a high vanadium and chromium alloyed nitrogen tool steel. The boundary layer arising during diffusion bonding is in focus and, in particular, the diffusion of carbon and nitrogen over the joint. Measurements of the elemental concentration profiles and corrosion tests by the double loop-electrochemical potentiokinetic reactivation (DL-EPR) method are performed. Comparative calculations with the DICTRA software are performed and are found to be in agreement with the experimental results. It is found that the carbon tool steel grade has a more critical influence on the corrosion resistance of the stainless 316L steel in comparison to the nitrogen tool steel grade.

  1. Chromized Layers Produced on Steel Surface by Means of CVD

    Institute of Scientific and Technical Information of China (English)

    KASPRZYCKA Ewa; BOGDA(N)SKI Bogdan; JEZIORSKI Leopold; JASI(N)SKI J(o)zef; TORBUS Roman

    2004-01-01

    Chemical vapour deposition of chromium on the surface of carbon steel has been investigated using a novel CVD method that combines the low cost of pack cementation method with advantages of vacuum technique. The processes have been performed in chromium chlorides atmosphere at a low pressure range from 1 to 800 hPa, the treatment temperature 800 to 950℃. Studies of the layers thickness, the phase composition, Cr, C and Fe depth profiles in diffusion zone have been conducted. The effect of the vacuum level during the process and the process parameters such as time and temperature on layer diffusion growth on the carbon steel surface has been investigated.

  2. Determination of chromium combined with DNA, RNA and protein in chromium-rich brewer's yeast

    International Nuclear Information System (INIS)

    The contents of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast were determined with the neutron activation analysis in order to study the combination of Cr with DNA, RNA and protein in chromium-rich brewer's yeast. The results showed that the extracting rats and concentrations of DNA, RNA and protein had no significant difference in two types of yeast, but the chromium contents of DNA, RNA and protein in the chromium-rich yeast were significantly higher than those in the normal. In addition, the content of chromium in DNA was much higher than that in RNA and protein, which indicated that the inorganic chromium compounds entered into the yeast cell, during the yeast cultivation in the culture medium containing chromium were converted into organic chromium compounds combined with DNA, RNA and protein

  3. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  4. Analysis of the structure of castings made from chromium white cast iron resistant to abrasive wear

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-10-01

    Full Text Available It has been proved that an addition of boron carbide and disintegrated steel scrap introduced as an inoculant to the chromium white cast iron changes the structure of castings. The said operation increases the number of crystallization nuclei for dendrites of the primary austenite. In this case, the iron particles act as substrates for the nucleation of primary austenite due to a similar crystallographic lattice. The more numerous are the dendrites of primary austenite and the structure more refined and the mechanical properties higher. Castings after B4C inoculation revealed a different structure of fine grained fracture. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  5. Synthesis of chromium and ferrochromium alloy in molten salts by the electro-reduction method

    Directory of Open Access Journals (Sweden)

    Ge X.

    2015-01-01

    Full Text Available In this work, we successfully applied the Fray-Farthing-Chen Cambridge electro-reduction process on the preparation of chromium from chromium oxide, and for the first time, the synthesis of ferrochromium alloy from chromium oxide and iron oxide mixture and the chromite ore in molten calcium chloride. The present work systematically investigated the influences of sintered temperature of the solid precursor, electrochemical potential, electrolysis temperature and time on the products by using a set of advanced characterization techniques, including XRD and SEM/EDS analyses. In particular, our results show that this process is energy-friendly and technically-feasible for the direct extraction of ferrochromium alloy from chromite ore. Our findings thus provide useful insights for designing a novel green process to produce ferrochromium alloy from low-grade chromite ore or stainless steel slag.

  6. Plant Line Trial Evaluation of Viable Non-Chromium Passivation Systems for Electrolytin Tinplate, ETP (TRP 9911)

    Energy Technology Data Exchange (ETDEWEB)

    John A. Sinsel

    2003-06-30

    Plant trial evaluations have been completed for two zirconium-based, non-chromium passivation systems previously identified as possible alternatives to cathodic dichromate (CDC) passivation for electrolytic tinplate (ETP). These trials were done on a commercial electrolytic tin plating line at Weirton Steel and extensive evaluations of the materials resulting from these trials have been completed. All this was accomplished as a collaborative effort under the AISI Technology Roadmap Program and was executed by seven North American Tin Mill Products producers [Bethlehem Steel (now acquired by International Steel Group (ISG)), Dofasco Inc., National Steel (now acquired by U.S. Steel), U.S. Steel, USS-Posco, Weirton Steel, and Wheeling-Pittsburgh Steel] with funding partially from the Department of Energy (DOE) and partially on an equal cost sharing basis among project participants. The initial phases of this project involved optimization of application procedures for the non-chromium systems in the laboratories at Bethlehem Steel and Betz Dearborn followed by extensive testing with various lacquer formulations and food simulants in the laboratories at Valspar and PPG. Work was also completed at Dofasco and Weirton Steel to develop methods to prevent precipitation of insoluble solids as a function of time from the zirconate system. The results of this testing indicated that sulfide staining characteristics for the non-chromium passivation systems could be minimized but not totally eliminated and neither system was found to perform quite as good, in this respect, as the standard CDC system. As for the stability of zirconate treatment, a method was developed to stabilize this system for a sufficient period of time to conduct plant trial evaluations but, working with a major supplier of zirconium orthosulfate, a method for long term stabilization is still under development.

  7. Synthesis of chromium containing pigments from chromium galvanic sludges.

    Science.gov (United States)

    Andreola, F; Barbieri, L; Bondioli, F; Cannio, M; Ferrari, A M; Lancellotti, I

    2008-08-15

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr(0.04)Sn(0.97)SiO(5) and green Ca(3)Cr(2)(SiO(4))(3) were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr(2)O(3). The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr(2)O(3). PMID:18289775

  8. Synthesis of chromium containing pigments from chromium galvanic sludges

    Energy Technology Data Exchange (ETDEWEB)

    Andreola, F.; Barbieri, L. [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Bondioli, F. [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy)], E-mail: bondioli.federica@unimore.it; Cannio, M. [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Ferrari, A.M. [Dipartimento di Scienza e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, Viale Amendola 2, 42100 Reggio Emilia (Italy); Lancellotti, I. [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy)

    2008-08-15

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr{sub 0.04}Sn{sub 0.97}SiO{sub 5} and green Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3} were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr{sub 2}O{sub 3}. The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr{sub 2}O{sub 3}.

  9. A fundamental study of chromium deposition on solid oxide fuel cell cathode materials

    Science.gov (United States)

    Tucker, Michael C.; Kurokawa, Hideto; Jacobson, Craig P.; De Jonghe, Lutgard C.; Visco, Steven J.

    Chromium contamination of metal oxides and SOFC cathode catalysts is studied in the range 700-1000 °C. Samples are exposed to a moist air atmosphere saturated with volatile Cr species in the presence and absence of direct contact between the sample and ferritic stainless steel powder. Chromium contamination of the samples is observed to occur via two separate pathways: surface diffusion from the stainless steel surface and vapor deposition from the atmosphere. Surface diffusion dominates in all cases. Surface diffusion is found to be a significant source of Cr contamination for LSM and LSCF at 700, 800, and 1000 °C. Vapor deposition of Cr onto LSCF was observed at each of these temperatures, but was not observed for LSM at 700 or 800 °C. Comparison of the behavior for LSM, LSCF, and single metal oxides suggests that Mn and Co, respectively, are responsible for the Cr contamination of these catalysts.

  10. Tissues and urinary chromium concentrations in rats fed high-chromium diets

    International Nuclear Information System (INIS)

    Complete text of publication follows. Chromium is an essential trace elements and enhances the function of insulin as a form of chromodulin. In the subjects with a certain type of diabetics, 200 to 1,000 μg/d of chromium is administered to reduced the symptoms of diabetics. However, although there are not any health-promotive effects of chromium-administration in healthy subjects, various types of chromium supplements are commercially available in many countries; the adverse effects caused by an excessive chromium intake are feared. In the present study, to clarify the tolerable upper limit of chromium, tissue and urinary chromium concentrations, liver function and iron status were examined in rats fed high-chromium diets. Thirty-six male 4-weeks Wistar rats were divided into six groups and fed casein-based diets containing 1, 10 or 100 μg/g of chromium as chromium chloride (CrCl3) or chromium picolinate (CrPic) for 4 weeks. After the feeding, chromium concentrations in liver, kidney, small intestine and tibia were determined by inductively coupled plasma-mass spectrometry. In addition, urine samples were collected on 3rd to 4th week and their chromium concentrations were also determined. Chromium concentrations in liver, kidney, small intestine and tibia were elevated with increase of dietary chromium concentration. Urinary chromium excretion was also elevated with the increase of dietary chromium and the rate of urinary chromium excretion was less than 2% to dietary chromium intake in all the experimental groups. In the administration of 100 μg/g of chromium, rats given CrCl3 showed significantly higher tibia chromium concentration and lower urinary chromium excretion than those given CrPic. There were not any differences in iron status among the experimental groups. Activities of serum aspartate aminotransferase and alanine aminotransferase in rats fed diet containing 100 μg/g of chromium as CrPic were significantly higher than those in rats fed other diets.

  11. Male-mediated spontaneous abortion among spouses of stainless steel welders

    DEFF Research Database (Denmark)

    Hjollund, N H; Bonde, Jens Peter; Jensen, Tina Kold;

    2000-01-01

    Male-mediated spontaneous abortion has never been documented for humans. The welding of stainless steel is associated with the pulmonary absorption of hexavalent chromium, which has genotoxic effects on germ cells in rodents. Clinical and early subclinical spontaneous abortions were examined among...... spouses of stainless-steel welders....

  12. Polypyrrole electrochemistry: Environmentally friendly corrosion protection of steel: (im)possibilities

    NARCIS (Netherlands)

    Hamer, W.J.

    2005-01-01

    Chromate compounds have been widely used to improve the corrosion protection of galvanised steel and aluminium objects in the past decades. The hexavalent chromium in chromate enhances the adherence of coatings to galvanised steel and aluminium. Additionally, if the passive layers on these material

  13. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag

    International Nuclear Information System (INIS)

    Hexavalent chromium (Cr) is a toxic element causing serious environmental threat. Recently, more and more attention is paid to the bio-remediation of Cr (VI) in the contaminated soils. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag at a steel-alloy factory in Hunan Province, China, was investigated in the present study. The results showed that when sufficient nutrients were amended into the contaminated soils, total Cr (VI) concentration declined from the initial value of 462.8 to 10 mg kg-1 at 10 days and the removal rate was 97.8%. Water soluble Cr (VI) decreased from the initial concentration of 383.8 to 1.7 mg kg-1. Exchangeable Cr (VI) and carbonates-bound Cr (VI) were removed by 92.6% and 82.4%, respectively. Meanwhile, four Cr (VI) resistant bacterial strains were isolated from the soil under the chromium-containing slag. Only one strain showed a high ability for Cr (VI) reduction in liquid culture. This strain was identified as Pannonibacter phragmitetus sp. by gene sequencing of 16S rRNA. X-ray photoelectron spectroscope (XPS) analysis indicated that Cr (VI) was reduced into trivalent chromium. The results suggest that indigenous bacterial strains have potential application for Cr (VI) remediation in the soils contaminated by chromium-containing slag.

  14. A Comparative Study of Biodegradation of Nickel and Chromium from Space Maintainers: An in vitro Study

    OpenAIRE

    Anand, Ashish; Sharma, Arun; Kumar, Piush; Sandhu, Meera; Sachdeva, Shobhit; Sachdev, Vinod

    2015-01-01

    ABSTRACT Objective: The aim of the study was to compare and evaluate the in vitro biodegradation of nickel and chromium from space maintainers, made of three different companies, i.e (Dantaurum, Rocky mountain and Dtech) in artificial saliva. Materials and methods: The study comprised of 30 space maintainers out of which 10 were fabricated using Dantaurum, 10 using Rocky mountain and 10 using Dtech band materials. Stainless steel wire (Dantaurum, Rocky mountain and Konark) was used for making...

  15. Soils contaminated with hexavalent chromium

    OpenAIRE

    Fonseca, Bruna Catarina da Silva

    2011-01-01

    Tese de doutoramento em Engenharia Química e Biológica The interest in environmental soil science has been growing in the last years due to the continuous degradation of this major natural resource. With this in mind, and because chromium and lead are two of the most toxic heavy metals frequently detected as soil contaminants in the Portuguese territory, the study and development of few remediation techniques and the indissociable description of the sorption and migration of...

  16. Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jøns, O; Nielsen, B

    1992-01-01

    A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both sp...

  17. 75 FR 10207 - Certain Cut-to-Length Carbon-Quality Steel Plate From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2010-03-05

    .... Also, specifically included in the scope of the order are high strength, low alloy (HSLA) steels. HSLA steels are recognized as steels with micro-alloying levels of elements such as chromium, copper, niobium... Review and Intent To Rescind Administrative Review in Part, 74 FR 48716 (September 24, 2009),...

  18. 77 FR 264 - Certain Cut-To-Length Carbon-Quality Steel Plate From India, Indonesia, and the Republic of Korea...

    Science.gov (United States)

    2012-01-04

    ... within the scope. Also, specifically included in the scope are high strength, low alloy (``HSLA'') steels. HSLA steels are recognized as steels with micro- alloying levels of elements such as chromium, copper... ``Act''), respectively. See Initiation of Five-Year (``Sunset'') Review, 75 FR 67082 (November 1,...

  19. Inoculation of chromium white cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-01-01

    Full Text Available It has been proved that an addition of boron carbide introduced as an inoculant to the chromium white cast iron changes the structureof castings. Castings after inoculation revealed a different structure with numerous grains. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  20. REMOVAL OF HEXAVALENT CHROMIUM FROM DRINKING WATER

    OpenAIRE

    A. R. Asgari ، F. Vaezi ، S. Nasseri ، O. Dördelmann ، A. H. Mahvi ، E. Dehghani Fard

    2008-01-01

    Removal of chromium can be accomplished by various methods but none of them is cost-effective in meeting drinking water standards. For this study, granular ferric hydroxide was used as adsorbent for removal of hexavalent chromium. Besides, the effects of changing contact time, pH and concentrations of competitive anions were determined for different amounts of granular ferric hydroxide. It was found that granular ferric hydroxide has a high capacity for adsorption of hexavalent chromium from ...

  1. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana

    2015-05-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  2. Investigation of the corrosion fatigue behaviour of turbineblade steels in the region of initial steam condensation

    International Nuclear Information System (INIS)

    The fact that a large proportion of the total number of turbine failures is due to blade damage, particularly in the region of initial steam condensation, led to comprehensive investigations of the behaviour of 12/13% chromium steels. 17% Cr-4% Ni steel, duplex stainless steels and titanium alloys with regard to pitting corrosion and corrosion fatigue. The corrosion fatigue strength of these materials after a specific number of cycles in media representative of operating conditions is dependent principially on whether or not pitting corrosion and/or hydrogen-induced crack propagation along cleavage planes occur during dynamic loading in the relevant environment. With optimisation of heat treatment, duplex stainless steels free from copper, 17% Cr-4% Ni steel and the titanium alloy, TiAl6V4 offer better corrosion fatigue behaviour than the 12/13% chromium steels, performance improving in the order as listed. (orig.)

  3. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  4. Purity of food cooked in stainless steel utensils.

    Science.gov (United States)

    Flint, G N; Packirisamy, S

    1997-01-01

    An extensive programme of cooking operations, using household recipes, has shown that, apart from aberrant values associated with new pans on first use, the contribution made by 19% Cr/9% Ni stainless steel cooking utensils to chromium and nickel in the diet is negligible. New pans, if first used with acid fruits, showed a greater pick-up of chromium and nickel, ranging from approximately 1/20 to 1/3 and 1/20 to 1/2 of the normal daily intake of chromium and nickel respectively. This situation did not recur in subsequent usage, even after the pan had been cleaned by abrasion. A higher rate of chromium and nickel release in new pans on first use was observed on products from four manufactures and appears to be related to surface finish, since treatment of the surface of a new pan was partly, and in the case of electropolishing, wholly effective in eliminating their initial high release. PMID:9102344

  5. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C;

    1992-01-01

    of the dichromate solution. Chromium skin levels increased with increasing concentrations of applied chromium salts up to 0.034 M Cr. The amount of chromium in recipient phase and skin layers increased with increasing pH when the applied solution contained potassium dichromate. This was ascribed to a decreased skin...... barrier function of the skin. The amount of chromium found in all skin layers after application of chromium chloride decreased with increasing pH due to lower solubility of the salt. The % of chromium found in the recipient phase as chromium(VI) increased with increasing total chromium concentration...... indicating a limited reduction ability of the skin in vitro....

  6. Reduction of chromium oxide from slags

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Paredes, J.

    2005-12-01

    Full Text Available Experimental and theoretical work were performed to estimate the effect of slag basicity and amount of reducing agents on the reduction of chromium oxide from the slag which interacted with molten steel at 1,600 °C. The slag system contained CaO, MgO, SiO2, CaF2 and Cr2O3 together with Fe-alloys (Fe-Si and Fe-Si-Mg. The CaF2 and MgO contents in the slags were 10 mass % each; Cr2O3 was 25%. The amount of the ferroalloys ranged from 12.5 to 50 g per 100 g of slag. The (CaO+MgO/SiO2 ratio was held at 1 and 2. The Cr yield was determined using both Fe-alloys as reducing agents. Some estimations were made to determine the theoretical effect of temperature, slag basicity, (CaO+MgO/SiO2, and amount of reducing agents in the slag on the chromium recovery. The FACT (Facility for the Analysis of Chemical Thermodynamics computational package is used to determine the equilibrium between the slag and molten steel.

    En el presente trabajo se realiza un estudio teórico y experimental para determinar el efecto de la basicidad de la escoria y la cantidad de agentes reductores sobre la reducción de óxidos de cromo contenidos en la escoria, la cual está en contacto con acero líquido a 1.600 °C. La escoria se prepara con los reactivos CaO, MgO, SiO2, CaF2 y ferroaleaciones (Fe-Si y Fe-Si-Mg. Los contenidos de CaF2 y MgO en la escoria son de 10 %, cada uno, y el de Cr2O3 es 25 %. La cantidad de la ferroaleación varía de 12,5 a 50 g por cada 100 g de escoria. La relación (CaO+MgO/SiO2 tiene los valores de 1 y 2. Se determina la eficiencia de recuperación de cromo empleando los dos tipos de ferroaleaciones. Se realizaron cálculos para determinar el efecto teórico de la temperatura, la basicidad de la escoria, (CaO+MgO/SiO2, y la cantidad de agentes reductores sobre la reducci

  7. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  8. Recent advances in creep-resistant steels for power plant applications

    Indian Academy of Sciences (India)

    P J Ennis; A Czyrska-Filemonowicz

    2003-06-01

    The higher steam temperatures and pressures required to achieve increase in thermal efficiency of fossil fuel-fired power-generation plants necessitate the use of steels with improved creep rupture strength. The 9% chromium steels developed during the last three decades are of great interest in such applications. In this report, the development of steels P91, P92 and E911 is described. It is shown that the martensitic transformation in these three steels produces high dislocation density that confers significant transient hardening. However, the dislocation density decreases during exposure at service temperatures due to recovery effects and for long-term creep strength the sub-grain structure produced under different conditions is most important. The changes in the microstructure mean that great care is needed in the extrapolation of experimental data to obtain design values. Only data from tests with rupture times above 3,000 h provide reasonable extrapolated values. It is further shown that for the 9% chromium steels, oxidation resistance in steam is not sufficiently high for their use as thin-walled components at temperatures of 600°C and above. The potential for the development of steels of higher chromium contents (above 11%) to give an improvement in steam oxidation resistance whilst maintaining creep resistance to the 9% chromium steels is discussed.

  9. MORPHOLOGY MODIFICATION OF CARBON CHROME MOLYBDENUM STEEL STRUCTURE INFLUENCED BY HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available The influence of temperature and time parameters of thermal treatment on structural change and properties of carbon chromium molybdenum steel has been studied. It has been shown that there are considerable areas with grainy morphology of cementite after high temperature tempering in the structure of steel. It assures reduction of steel microhardness by 25%, and there are no substantial structural changes after medium temperature tempering.

  10. MORPHOLOGY MODIFICATION OF CARBON CHROME MOLYBDENUM STEEL STRUCTURE INFLUENCEDBY HEAT TREATMENT

    OpenAIRE

    Lutsenko, V.; Anelkin, N.; Golubenko, T.; Scherbakov, V.; Lutsenko, O.

    2011-01-01

    The influence of temperature and time parameters of thermal treatment on structural change and properties of carbon chromium molybdenum steel has been studied. It has been shown that there are considerable areas with grainy morphology of cementite after high temperature tempering in the structure of steel. It assures reduction of steel microhardness by 25%, and there are no substantial structural changes after medium temperature tempering.

  11. Morphology modification of carbon chrome molybdenum steel structure influenced by heat treatment

    OpenAIRE

    V. A. Lutsenko; N. L. Anelkin; T. N. Golubenko; Scherbakov, V. I.; O. V. Lutsenko

    2011-01-01

    The influence of temperature and time parameters of thermal treatment on structural change and properties of carbon chromium molybdenum steel has been studied. It has been shown that there are considerable areas with grainy morphology of cementite after high temperature tempering in the structure of steel. It assures reduction of steel microhardness by 25%, and there are no substantial structural changes after medium temperature tempering.

  12. Steel Spring

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Tarnished Hebei Iron and Steel Group regains chance to shine A lthough it is too early to tell whether the steel-making sector has emerged [from its gloom, a big divide is openling between China’s large and small producers. While most of the marginal players are still reeling from a market contagion, steel titans like the Shanghai-based Baosteel

  13. Electrodeposition of chromium from trivalent chromium urea bath containing sulfate and chloride

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The reduction of Cr( Ⅲ) to Cr( Ⅱ ) on copper electrode in trivalent chromium urea bath containing chromium sulfate and chromium chloride as chromium source has been investigated by potentiodynamic sweep. The transfer coefficient α for reduction of Cr( Ⅲ ) to Cr( Ⅱ ) on copper electrode was calculated as 0.46. The reduction is a quasi-reversible process. J-t responses at different potential steps showed that the generation and adsorption characteristics of carboxylate bridged oligomer are relevant to cathode potential. The interface behavior between electrode and solution for Cr( Ⅲ ) complex is a critical factor influencing sustained electrode position of chromium. The hypotheses of the electro-inducing polymerization of Cr( Ⅲ ) was proposed. The potential scope in which sustained chromium deposits can be prepared is from- 1.3 V to- 1.7 V (vs SCE) in the urea bath. Bright chromium deposits with thickness of 30 μm can be prepared in the bath.

  14. Alkane dehydrogenation over supported chromium oxide catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    1999-01-01

    The dehydrogenation of alkanes over supported chromium oxide catalysts in the absence of oxygen is of high interest for the industrial production of propene and isobutene. In this review, a critical overview is given of the current knowledge nowadays available about chromium-based dehydrogenation ca

  15. Super austenitic stainless steels - a promising replacement for the currently used type 316L stainless steel as the construction material for flue-gas desulphurization plant

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, N.; Rajeswari, S. [University of Madras, Madras (India). Dept. of Analytical Chemistry

    1996-12-15

    Potentiodynamic anodic cyclic polarization experiments on type 316L stainless steel and 6Mo super austenitic stainless steels were carried out in simulated flue-gas desulphurization (FGD) environment in order to assess the localized corrosion resistance. The pitting corrosion resistance was higher in the case of the super austenitic stainless steel containing 6Mo and a higher amount of nitrogen. The accelerated leaching study conducted for the alloys showed that the super austenitic stainless steels have a little tendency for leaching of metal ions such as iron, chromium and nickel at different impressed potentials. This may be due to surface segregation of nitrogen as CrN, which would, in turn, enrich a chromium and molybdenum mixed oxide film and thus impede the release of metal ions. The present study indicates that the 6Mo super austenitics can be adopted as a promising replacement for the currently used type 316L stainless steel as the construction material for FGD plants.

  16. Plasma assisted metal-organic chemical vapor deposition of hard chromium nitride thin film coatings using chromium(III) acetylacetonate as the precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Arup; Kuppusami, P.; Lawrence, Falix; Raghunathan, V.S.; Antony Premkumar, P.; Nagaraja, K.S

    2004-06-15

    A new technique has been developed for depositing hard nanocrystalline chromium nitride (CrN) thin films on metallic and ceramic substrates using plasma assisted metal-organic chemical vapor deposition (PAMOCVD) technique. In this low temperature and environment-friendly process, a volatile mixture of chromium(III) acetylacetonate and either ammonium iodide or ammonium bifluoride were used as precursors. Nitrogen and hydrogen have been used as the gas precursors. By optimizing the processing conditions, a maximum deposition rate of {approx}0.9 {mu}m/h was obtained. A comprehensive characterization of the CrN films was carried out using X-ray diffraction (XRD), microhardness, and microscopy. The microstructure of the CrN films deposited on well-polished stainless steel (SS) showed globular particles, while a relatively smooth surface morphology was observed for coatings deposited on polished yittria-stabilized zirconia (YSZ)

  17. Oxidation and erosion-oxidation behavior of steels

    Directory of Open Access Journals (Sweden)

    Stela Maria de Carvalho Fernandes

    2008-03-01

    Full Text Available The high temperature oxidation and erosion-oxidation (E-O behavior of steels AISI 1020, 304, 310, and 410 were determined. These steels were selected to evaluate the effect of chromium content on its E-O resistance. The oxidation behavior was determined in a thermogravimetric analyzer. A test rig in which a specimen assembly was rotated through a fluidized bed of erodent particles was used to determine the E-O behavior. Alumina powder (200 µm was used as the erodent. The E-O tests were carried out in the temperature range 25-600 °C, with average particle impact velocities of 3.5 and 15 ms-1 and impact angle of 90°. The oxidation resistance of the steels increased with chromium content. The E-O behavior of the steels was determined as wastage. The E-O wastage of the steels exposed to particle impact at low velocity was low but increased with temperature above 300 °C. The E-O wastage of the different steels exposed to particle impact at high velocity was quite similar. The wastage increased with increase in temperature above 500 °C. The increases in E-O wastage of the steels observed at temperatures above 300, 400 or 500 °C, depending on the steel, were due mainly to a transition in the dominant wastage process, from 'erosion' to 'erosion-oxidation'.

  18. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  19. Electrochemical reduction of hexavalent chromium in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, S. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    Electrochemical reduction of hexavalent chromium (Cr{sup +6}) to its trivalent state (Cr{sup +3}) is showing promising results in treating ground water at Lawrence Livermore National Laboratory`s (LLNL`s) Main Site. An electrolytic cell using stainless-steel and brass electrodes has been found to offer the most efficient reduction while yielding the least amount of precipitate. Trials have successfully lowered concentrations of Cr{sup +6} to below 11 parts per billion (micrograms/liter), the California state standard. We ran several trials to determine optimal voltage for running the cell; each trial consisted of applying a voltage between 6V and 48V for ten minutes through samples obtained at Treatment Facility C(TFC). No conclusive data has been obtained yet.

  20. Microstructural Characterization and the Effect of Phase Transformations on Toughness of the UNS S31803 Duplex Stainless Steel Aged Treated at 850 °C

    OpenAIRE

    Igor Zucato; Margarete C. Moreira; Izabel F. Machado; Susana M. Giampietri Lebrão

    2002-01-01

    Duplex stainless steels, with ferritic-austenitic microstructure, have excellent mechanical properties and corrosion resistance. However, when duplex stainless steels are exposed to temperatures between 600 and 1000 °C, some phase transformations can occur such as chromium nitrides precipitation, chromium carbides precipitation and the sigma phase formation. The formation of such compounds leads to loss in both corrosion resistance and fracture toughness. The negative effects of the formation...

  1. Stainless Steel Bipolar Plates Deposited with Multilayer Films for PEMFC Applications

    Science.gov (United States)

    Cho, Hyun; Yun, Young-Hoon

    2013-08-01

    A chromium nitride (CrN, Cr2N)/chromium (Cr)/indium-tin-oxide (ITO) system and a gold (Au)/titanium (Ti) system were separately deposited using a sputtering method and an E-beam method, respectively, onto stainless steel 316 and 304 plates. The XRD patterns of the deposited stainless steel plates showed the crystalline phase of typical indium-tin oxide and of metallic phases, such as chromium, gold, and the metal substrate, as well as those of external chromium nitride films. The nitride films were composed of two metal nitride phases that consisted of CrN and Cr2N compounds. The surface morphologies of the modified stainless steel bipolar plates were observed using atomic force microscopy and FE-SEM. The chromium nitride (CrN, Cr2N)/chromium (Cr)/indium-tin-oxide (ITO) multilayer that was formed on the stainless steel plates had a surface microstructural morphology that consisted of fine columnar grains 10 nm in diameter and 60 nm in length. The external gold films that were formed on the stainless steel plates had a grain microstructure approximately 100 nm in diameter. The grain size of the external surface of the stainless steel plates with the gold (Au)/titanium (Ti) system increased with increasing gold film thickness. The electrical resistances and water contact angles of the stainless steel bipolar plates that were covered with the multilayer films were examined as a function of the thickness of the ITO film or of the external gold film. In the corrosion test, ICP-MS results indicated that the gold (Au)/titanium (Ti) films showed relatively excellent chemical stability after exposure to H2SO4 solution with pH 3 at 80 °C.

  2. [Bioremediation of chromium (VI) contaminated site by reduction and microbial stabilization of chromium].

    Science.gov (United States)

    Zheng, Jia-Chuan; Zhang, Jian-Rong; Liu, Xi-Wen; Xu, Qian; Shi, Wei-Lin

    2014-10-01

    Chromium (VI) contaminated soil samples were collected from a chemical plant in Suzhou. Firstly, the reduced soil was prepared by adding reagent (Stone-sulfure reagent) into polluted soil to transfer most chromium (VI) into chromium (III), then a nutrient solution was introduced into the reduced soil, and the stabilized soil was obtained after 60 days culturing. The chromium (VI) content of the three kinds of soil was analyzed. The results showed that the chromium (VI) content in toxicity characteristic leaching liquid (TCLL) dropped by 96. 8% (from 8.26 mg · L(-1) to 0.26 mg · L(-1)), and the total chromium content dropped by 95.7% (from 14.66 mg · L(-1) to 0.63 mg · L(-1)) after bioremediation in 5% nutrient solution. Additionally, the durability of chromium stabilization was tested by potassium permanganate oxidation and sterilization of microbe-treated soil. After oxidation, the chromium (VI) content in TCLL of the reduced soil was increased from 8.26 mg · L(-1) to 14.68 mg · L(-1). However, the content after bioremediation was decreased to 2.68 mg · L(-1). The results of sterilization demonstrated that the death of microbe had no significant effect on the stabilization of chromium. Consequently, the research in this paper demonstrated the feasibility of bioremediation of chromium (VI) polluted soil through reduction followed by stabilization/soilidification, and provided a technique with low cost but high efficiency.

  3. High chromium martensitic stainless linepipes

    Energy Technology Data Exchange (ETDEWEB)

    Asahi, H.; Muraki, T.; Inoue, H.; Tamehiro, H. [Nippon Steel Corp., Futtsu, Chiba (Japan). Steel Research Labs.

    1996-12-01

    Effects of chemical compositions on major properties of high Cr martensitic stainless steels with low C content for linepipe were investigated. Cr to CO{sub 2}-corrosion, Ni and N to low temperature toughness in HAZ and Mo to SSC resistances were clarified to be major governing factors. Three steels with different targeted performs which were developed based on the fundamental study results were easily arc-welded without pre-heating and showed good performance for both the base metal and heat affected zone of the weld. Galvanic corrosion in welded portion and hydrogen embrittlement under cathodic protection condition were also found not to be a serious problem.

  4. LASER SURFACE ALLOYING OF A MILD STEEL FOR CORROSION RESISTANCE IMPROVEMENT

    OpenAIRE

    Fouquet, F.; Renaud, L.; Millet, J.; Mazille, H.

    1991-01-01

    Surface alloys were produced by laser melting of different predeposits into the outer part of a mild steel substrate. Three types of coatings were used : electroless nickel (containing phosphorous), electroless nickel in which chromium carbide particles were introduced during deposition and duplex coatings made of, first, a nickel layer (electroless or electrodeposited) and then, a chromium layer. The surface alloying treatments were performed using a cw high power CO2 laser and the multiple ...

  5. Chromium

    Science.gov (United States)

    ... 6+), a toxic form that results from industrial pollution. This fact sheet focuses exclusively on trivalent (3+) ... 1 medium 1 Banana, 1 medium 1 Green beans, ½ cup 1 What are recommended intakes of ...

  6. Reproductive toxicological aspects of chromium in males

    International Nuclear Information System (INIS)

    To expand our present understanding of the effects of chromium on male fertility a number of studies were designed to achieve this through the use of chromium intoxicated experimental animals and through investigation of sexual hormones and sperm quality in welders. Also in view of the lack of an experimental model for effects of noxious substance on the epididymal spermatozoa the main objectives of the series of studies reviewed here were: A. To establish a model for evaluation of epididymal sperm count and motility in the rat. B. To investigate and compare the effects of tri- and hexavalent chromium on epididymal spermatozoa. Further to describe the effects of low-dose long-time exposure of rats to the most toxicological interesting chromium oxidative state - hexavalent chromium. C. By the use of autoradiography and γ-countinuing to expand the present knowledge on the distribution of chromium in the body with special reference to the male reproductive organs. D. To describe the effects of exposure to hexavalent chromium in welding fume on levels of sexual hormones and semen parameters in welders. (EG)

  7. Experimental evaluation of chromium-carbide-based solid lubricant coatings for use to 760 C

    Science.gov (United States)

    Dellacorte, Christopher

    1987-01-01

    A research program is described which further developed and investigated chromium carbide based self-lubricating coatings for use to 760 C. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The three coating components were blended in powder form, applied to stainless steel substrates by plasma spraying and then diamond ground to the desired coating thickness. A variety of coating compositions was tested to determine the coating composition which gave optimum tribological results. Coatings were tested in air, helium, and hydrogen at temperatures from 25 to 760 C. Several counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications, such as piston ring/cylinder liner couples for Stirling engines. In general, silver and fluoride additions to chromium carbide reduced the friction coefficient and increased the wear resistance relative to the unmodified coating. The lubricant additives acted synergistically in reducing friction and wear.

  8. Biodegradation of nickel and chromium from space maintainers: an in vitro study.

    Science.gov (United States)

    Bhaskar, V; Subba Reddy, V V

    2010-01-01

    Band materials are often used in the practice of pediatric dentistry. Nickel and Chromium are the main ingredients of these materials. The potential health hazards of nickel and chromium and their compounds have been the focus of attention for more than 100 years. It has established that these metals could cause hypersensitivity. The study was undertaken to analyze in vitro biodegradation of space maintainers made out of stainless steel band materials from manufacturers Dentaurum and Unitek. The leaching effect simulating the use of one, two, three, and four space maintainers in clinical practice was studied by keeping the respective number of space maintainers in the artificial saliva incubating at 37 degrees C and analyzing for nickel and chromium release after 1,7,14,21 and 28 days using atomic absorption spectrophotometer. Results showed that there was measurable release of both nickel and chromium which reached maximum level at the end of 7 days which was statistically significant (P < 0.05) and was very much below the dietary average intake even for four bands used and was not capable of causing any toxicity.

  9. Biodegradation of nickel and chromium from space maintainers: An in vitro study

    Directory of Open Access Journals (Sweden)

    Bhaskar V

    2010-03-01

    Full Text Available Band materials are often used in the practice of pediatric dentistry. Nickel and Chromium are the main ingredients of these materials. The potential health hazards of nickel and chromium and their compounds have been the focus of attention for more than 100 years. It has established that these metals could cause hypersensitivity. The study was undertaken to analyze in vitro biodegradation of space maintainers made out of stainless steel band materials from manufacturers Dentaurum and Unitek. The leaching effect simulating the use of one, two, three, and four space maintainers in clinical practice was studied by keeping the respective number of space maintainers in the artificial saliva incubating at 37°C and analyzing for nickel and chromium release after 1,7,14,21 and 28 days using atomic absorption spectrophotometer. Results showed that there was measurable release of both nickel and chromium which reached maximum level at the end of 7 days which was statistically significant (P < 0.05 and was very much below the dietary average intake even for four bands used and was not capable of causing any toxicity.

  10. Synthesis of Chromium (Ⅲ) 5-aminosalicylate

    Institute of Scientific and Technical Information of China (English)

    LI Wei; HAO Er-jun; JIANG Yu-qin

    2004-01-01

    As we all known that diabetes is a chronic disease with major health consequences.Research has revealed that the occurrence of diabetes have great thing to do with the chromium deficient. Almost 40 years after the first report of glucose tolerance factor(GTF) [1], no conclusive evidence for an isolable ,biologically active form of chromium exited. Three materials have been proposed to be the biologically active form of chromium: "glucose tolerance factor", chromium Picolinate and low-molecular-weight chromium-binding substance (LWMCr) [2] . So there is potential for the design of new chromium drugs .5-Aminosalicylic acid (5-ASA) is identified as an active component in the therapy of inflammatory bowel disease (IBD) such as Crohn's disease and ulcerative colitis . The therapeutic action of 5-ASA is believed to be coupled to its ability to act as a free radical scavenger [3-4],acting locally on the inflamed colonic mucosa [5-7]. However, the clinical use of 5-ASA is limited, since orally administered 5-ASA is rapidly and completely absorbed from the upper gastrointestinal tract and therefore the local therapeutic effects of 5-ASA in the colon is hardly expected.In this paper, we report the synthesis of chromium(Ⅲ)5-aminosalicylate from 5-ASA and CrCl3. 6H2O.The synthesis route is as follow:The complex has been characterized by elemental analysis, IR spectra, X-ray powder diffractionand TG-DTA . They indicate that the structure is tris(5-ASA) Chromium . Experiments show that thecomplex has a good activity for supplement tiny dietary chromium, lowering blood glucose levels,lowering serum lipid levels and in creasing lean body mass .

  11. Characteristics of chromium-allergic dermatitis patients prior to regulatory intervention for chromium in leather

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus;

    2014-01-01

    BACKGROUND: Chromium-tanned leather articles currently constitute the most important cause of contact allergy to chromium in Denmark. A regulation on the content of hexavalent chromium in leather was adopted in November 2013 by the EU member states. OBJECTIVES: To characterize patients...... with chromium allergy and their disease, to serve as a baseline for future studies on the potential effect of the new regulation on chromium in leather. METHODS: A questionnaire case-control study was performed on 155 dermatitis patients with positive patch test reactions to potassium dichromate and a matched...... control group of 621 dermatitis patients. Comparisons were made by use of a χ(2) -test and the Mann-Whitney U-test. Logistic regression analyses were used to test for associations. RESULTS: Sixty-six per cent of chromium-allergic patients had a positive history of contact dermatitis caused by leather...

  12. Chromium in leather footwear-risk assessment of chromium allergy and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Strandesen, Maria; Poulsen, Pia B;

    2012-01-01

    Background. Chromium-tanned leather footwear, which releases >3 ppm hexavalent Cr(VI), may pose a risk of sensitizing and eliciting allergic dermatitis. Objectives. To determine the content and potential release of chromium in leather footwear and to discuss the prevention of chromium contact...... allergy and dermatitis. Methods. Sixty pairs of leather shoes, sandals and boots (20 children's, 20 men's, and 20 women's) were purchased in Copenhagen and examined with X-ray fluorescence spectroscopy. Chromium was extracted according to the International Standard, ISO 17075. The detection level for Cr......(VI) was 3 ppm. Results. Chromium was identified in 95% of leather footwear products, the median content being 1.7% (range 0-3.3%). No association with store category or footwear category was found. A tendency for there to be a higher chromium content in footwear with high prices was shown (p(trend) = 0...

  13. XPS Analysis of AISI 304L Stainless Steel Surface after Electropolishing

    Directory of Open Access Journals (Sweden)

    Rokosz K.

    2015-03-01

    Full Text Available In the paper, the passive surface layers of AISI 304L after standard (EP50 and very-high-current density electropolishing (EP1000 in a mixture of orthophosphoric and sulfuric acids in a 1:4 ratio, are presented. The main finding of the presented studies is enrichment of the steel surface film in chromium: total chromium to total iron ratio was equal to 6.6 after EP50 and to 2.8 after EP1000; on the other hand, chromium compounds to iron compounds ratio was equal to 10.1 after EP50, and 3.9 after EP1000.

  14. Stress corrosion cracking of stainless steels in NaCl solutions

    Science.gov (United States)

    Speidel, Markus O.

    1981-05-01

    The metallurgical influences on the stress corrosion resistance of many commercial stainless steels have been studied using the fracture mechanics approach. The straight-chromium ferritic stainless steels, two-phase ferritic-austenitic stainless steels and high-nickel solid solutions (like alloys 800 and 600) investigated are all fully resistant to stress corrosion cracking at stress intensity (K1) levels ≤ MN • m-3/2 in 22 pct NaCl solutions at 105 °C. Martensitic stainless steels, austenitic stainless steels and precipitation hardened superalloys, all with about 18 pct chromium, may be highly susceptible to stress corrosion cracking, depending on heat treatment and other alloying elements. Molybdenum additions improve the stress corrosion cracking resistance of austenitic stainless steels significantly. The fracture mechanics approach to stress corrosion testing of stainless steels yields results which are consistent with both the service experience and the results from testing with smooth specimens. In particular, the well known “Copson curve” is reproduced by plotting the stress corrosion threshold stress intensity (ATISCC) vs the nickel content of stainless steels with about 18 pct chromium.

  15. Iron chromium potential to model high-chromium ferritic alloys

    OpenAIRE

    Bonny, Giovanni; Pasianot, Roberto C; Terentyev, Dmitry; Malerba, Lorenzo

    2011-01-01

    Abstract In this paper we present a Fe-Cr interatomic potential to model high-Cr ferritic steels. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The here developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and exper...

  16. Corrosion Behavior of Austenitic and Duplex Stainless Steels in Lithium Bromide

    Directory of Open Access Journals (Sweden)

    Ayo Samuel AFOLABI

    2009-07-01

    Full Text Available The corrosion behavior of austenitic and duplex stainless steels in various concentrations of lithium, bromide solution was investigated by using the conventional weight loss measurement method. The results obtained show that corrosion of these steels occurred due to the aggressive bromide ion in the medium. Duplex stainless steel shows a greater resistance to corrosion than austenitic stainless steel in the medium. This was attributed to equal volume proportion of ferrite and austenite in the structure of duplex stainless steel coupled with higher content of chromium in its composition. Both steels produced electrochemical noise at increased concentrations of lithium bromide due to continuous film breakdown and repair caused by reduction in medium concentration by the alkaline corrosion product while surface passivity observed in duplex stainless steel is attributed to film stability on this steel.

  17. Potentiometry: A Chromium (III) -- EDTA Complex

    Science.gov (United States)

    Hoppe, J. I.; Howell, P. J.

    1975-01-01

    Describes an experiment that involves the preparation of a chromium (III)-EDTA compound, a study of its infrared spectrum, and the potentiometric determination of two successive acid dissociation constants. (Author/GS)

  18. AEROSOL BEHAVIOR IN CHROMIUM WASTE INCINERATION

    Institute of Scientific and Technical Information of China (English)

    Suyuan Yu

    2003-01-01

    Cr2O3 is considered as the dominant incineration product during the combustion disposal of chromium waste. A hydrogen/air diffusion flame was employed to simulate the industrial process of incineration. Cr2O3 aerosols were generated inside the flame by the gas phase reaction of chromium and oxygen. Chromium came from the rapid decomposition of chromium hexacarbonyl (Cr(CO)6) at room temperature and was carried into the combustion chamber by hydrogen. Aerosol and clusters can then be easily formed in the flame by nucleation and coagulation. A two dimensional Discrete-Sectional Model (DSM) was adopted to calculate the Cr2O3 aerosol behavior. The experimental measurement method was Dynamic Light Scattering. The numerically predicted results agreed well with those of the experimental measurement. Both results show that the Cr2O3 aerosol size reached about 70 nanometers at the flame top.

  19. Study on fragmentation and dissolution behavior of carbide in a hot-rolled hypereutectic high chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei; Jiang, Yehua, E-mail: jiangyehua@kmust.edu.cn; Xiao, Han; Tan, Jun

    2015-01-05

    Highlights: • The method to prepare Carbon steel/High chromium iron is totally new. • High chromium iron can achieve small plastic deformation during hot rolling process. • Carbides in high chromium irons are crushed, refined obviously and becoming isolated, which is benefit to improve the impact toughness. • The carbide fragmentation and dissolution behavior of the hot-rolled HCCI were analyzed. - Abstract: A sandwich-structured composite containing a hypereutectic high chromium cast iron (HCCI) and low carbon steel (LCS) claddings was newly fabricated by centrifugal casting, then the blank was hot-rolled into composite plate. The carbide fragmentation and dissolution behavior of the hot-rolled HCCI were analyzed. During hot rolling, significant refinement of carbides was discovered in hot-rolled HCCI specimens. The carbides were broken and partly dissolved into the austenite matrix. The results show that carbides are firstly dissolved under the action of stress. There are grooves appeared at the boundaries of the carbides. The grooves reduce the cross section of the carbide. When the cross section of the carbide reaches to the required minimum critical cross section, the carbide breaks through the tensile force. After break, carbides continue to dissolve since more interfaces between the matrix and carbides are generated. The secondary carbides precipitated due to the dissolution are index as fcc and stacking faults parallel to the {1 1 1} are observed.

  20. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H; Koenig, H. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  1. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  2. PLEPS study of ions implanted RAFM steels

    Science.gov (United States)

    Sojak, S.; Slugeň, V.; Egger, W.; Ravelli, L.; Petriska, M.; Veterníková, J.; Stacho, M.; Sabelová, V.

    2014-04-01

    Current nuclear power plants (NPP) require radiation, heat and mechanical resistance of their structural materials with the ability to stay operational during NPP planned lifetime. Radiation damage much higher, than in the current NPP, is expected in new generations of nuclear power plants, such as Generation IV and fusion reactors. Investigation of perspective structural materials for new generations of nuclear power plants is among others focused on study of reduced activation ferritic/martensitic (RAFM) steels. These steels have good characteristics as reduced activation, good resistance to volume swelling, good radiation, and heat resistance. Our experiments were focused on the study of microstructural changes of binary Fe-Cr alloys with different chromium content after irradiation, experimentally simulated by ion implantations. Fe-Cr alloys were examined, by Pulsed Low Energy Positron System (PLEPS) at FRM II reactor in Garching (Munich), after helium ion implantations at the dose of 0.1 C/cm2. The investigation was focused on the chromium effect and the radiation defects resistivity. In particular, the vacancy type defects (monovacancies, vacancy clusters) have been studied. Based on our previous results achieved by conventional lifetime technique, the decrease of the defects size with increasing content of chromium is expected also for PLEPS measurements.

  3. Synthesis and Characterization of Chromium Oxide Nanoparticles

    OpenAIRE

    Vivek Sheel Jaswal; Avnish Kumar Arora; Joginder Singh; Mayank Kinger; Vishnu Dev Gupta

    2014-01-01

    Chromium oxide nanoparticles (NPs)have been rapidly synthesized by precipitation method using ammomia as precipitating agent and are characterized by using X-ray Diffraction (XRD), Thermo Gravimetric Analysis (TGA), UV-Visible absorption (UV), Infrared Spectoscopy (IR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). XRD studies show that chromium oxide NP is formed as Cr2O3 and it has hexagonal structure. The shape and particle size of the synthesized Cr2O3 NP...

  4. Steel Planning

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    China releases a new plan for the iron and steel industry centered on industrial upgrades The new 12th Five-Year Plan (2011-15) for China’s iron and steel industry, recently released on the website of the Ministry of Industry and Information

  5. Graphitization in chromium cast iron

    OpenAIRE

    LECOMTE-BECKERS, Jacqueline; Terziev, L.; Breyer, J. P.

    1998-01-01

    Some trials with graphite Hi-Cr iron rolls have been done mainly in Japan, for the rolling of stainless steel. This material could lead to good compromise between oxidation, wear and thermal behaviour. By using thermal analysis and resistometry, the conditions for secondary graphite formation have been studied. The amount and volume of free graphite may be strongly increased by a suitable heat treatment, allowing a good thermal conductivity as well as high wear and mechanical properties.

  6. Growth of lamellar pearlite in the weld zone between dissimilar steels

    Science.gov (United States)

    Nikulina, A. A.; Smirnov, A. I.; Bataev, I. A.; Bataev, A. A.; Popelyukh, A. I.

    2016-01-01

    Transmission electron microscopy is used to study the welds between high-carbon pearlitic and chromium-nickel austenitic steel workpieces performed by flash butt welding. It has been established that lamellar pearlite colonies alloyed with chromium and nickel are formed in the weld zones between dissimilar steels. Thin austenite interlayers have been detected in the center of ferrite plates. The structure formed presents the C-F-A-F-C-F-A-F (and so on) sequence of three plate-shaped phases. The ferrite-cementite structure in alloyed-pearlite colonies is finer than that in unalloyed pearlite.

  7. Influence of Surface Treatment on the Corrosion Resistance of Stainless Steel in Simulated Human Body Environment

    Institute of Scientific and Technical Information of China (English)

    Esmaeil Jafari; Mohammad Jafar Hadianfard

    2009-01-01

    In the present research, the influence of chromium enrichment by surface treatment on corrosion resistance of type 316L stainless steel in body environment was investigated. For this study, weight loss test during 18 months, cyclic and liner polarization tests before and after surface treatment and metallography by electron and light microscopy were used to evaluate the effectiveness of the proposed method. In addition, X-ray photoelectron spectroscopy (XPS) method was used to determine the chromium concentration in the surface layer after surface treatment. Results show that the surface treatment has improved corrosion resistance of the type 316L stainless steel in body environment.

  8. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

  9. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

  10. An Evaluation of Welding Processes to Reduce Hexavalent Chromium Exposures and Reduce Costs by Using Better Welding Techniques

    OpenAIRE

    Keane, Michael J.

    2014-01-01

    A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) processes. Using a conical chamber, fumes were collected, and fume generation rates and hexavalent chr...

  11. Bioremediation of chromium solutions and chromium containing wastewaters.

    Science.gov (United States)

    Malaviya, Piyush; Singh, Asha

    2016-08-01

    Cr(VI) represents a serious threat to human health, living resources and ecological system as it is persistent, carcinogenic and toxic, whereas, Cr(III), another stable oxidation state of Cr, is less toxic and can be readily precipitated out of solution. The conventional methods of Cr(VI) removal from wastewaters comprise of chemical reduction followed by chemical precipitation. However, these methods utilize large amounts of chemicals and generate toxic sludge. This necessitates the need for devising an eco-technological strategy that would use the untapped potential of the biological world for remediation of Cr(VI) containing wastewaters. Among several viable approaches, biotransformation of Cr(VI) to relatively non-toxic Cr(III) by chromium resistant bacteria offers an economical- and environment-friendly option for its detoxification. Various studies on use of Cr(VI) tolerant viable bacterial isolates for treatment of Cr(VI) containing solutions and wastewater have been reported. Therefore, a detailed account of mechanisms and processes involved in bioreduction of Cr(VI) from solutions and wastewaters by bacterial isolates are the focus of this review article in addition to a discussion on toxicity of Cr(VI) on bacterial strains and various factors affecting Cr(VI) bioreduction. PMID:25358056

  12. Enhancement of surface properties of SAE 1020 by chromium plasma immersion recoil implantation

    Science.gov (United States)

    Ueda, M.; Mello, C. B.; Beloto, A. F.; Rossi, J. O.; Reuther, H.

    2007-04-01

    SAE 1020 steel is commonly used as concrete reinforcement and small machine parts, but despite its good mechanical properties, as ductility, hardness and wear resistance, it is susceptible to severe corrosion. It is well known that chromium content above 12% in Fe alloys increases their corrosion resistance. In order to obtain this improvement, we studied the introduction of chromium atoms into the matrix of SAE 1020 steel by recoil implantation process using a plasma immersion ion implantation (PIII) system. Potentiodynamic scans showed that the presence of Cr film leads to a gain in the corrosion potential, from -650 mV to -400 mV. After PIII treatment, the corrosion potential increased further to -340 mV, but the corrosion current density presented no significant change. Vickers microhardness tests showed surface hardness increase of up to about 27% for the treated samples. Auger electron spectroscopy showed that, for a 30 nm film, Cr was introduced for about 20 nm into the steel matrix. Tribology tests, of pin-on-disk type, showed that friction coefficient of treated samples was reduced by about 50% and a change in wear mechanism, from adhesive to abrasive mode, occurred.

  13. A mortality study among mild steel and stainless steel welders.

    Science.gov (United States)

    Moulin, J J; Wild, P; Haguenoer, J M; Faucon, D; De Gaudemaris, R; Mur, J M; Mereau, M; Gary, Y; Toamain, J P; Birembaut, Y

    1993-03-01

    A mortality study was carried out in conjunction with the European mortality study among welders coordinated by the International Agency for Research on Cancer (IARC). The study was aimed at assessing risks for lung cancer in relation to exposure to asbestos, welding fumes containing chromium and nickel, and tobacco smoke. The study included a cohort of 2721 welders and an internal comparison group of 6683 manual workers employed in 13 factories in France. The mortality of the two cohorts was studied from 1975 to 1988 by the historical prospective method. Job histories of welders were traced including welding processes used, metals welded, and proportion of worktime spent in welding. Data on smoking habits were collected from medical records. The observed number of deaths were compared with those expected (standardised mortality ratio (SMR)) based on national rates with adjustments for age, sex, and calendar time. The smoking habits of 87% of the whole study population were known. The distribution of welders and controls according to smoking was not statistically different. The overall mortality was slightly higher for welders (SMR = 1.02, 95% confidence interval (95% CI) 0.89-1.18) than for controls (SMR = 0.91, 95% CI 0.84-0.99). For lung cancer, the SMR was 1.24 (95% CI 0.75-1.94) for welders, whereas the corresponding value was lower for controls (SMR = 0.94, 95% CI 0.68-1.26). The SMR for lung cancer was 1.59 among non-shipyard mild steel welders (95% CI 0.73-3.02). This contrasted with the results for all stainless steel welders (SMR = 0.92, 95% CI 0.19-2.69), and for stainless steel welders predominantly exposed to chromium VI (SMR = 1.03, 95% CI 0.12-3.71). Moreover, SMRs for lung cancer for mild steel welders tended to increase with duration of exposure and time since first exposure, leading to significant excesses for duration > or = 20 years and latency > or = 20 years. Such a pattern was not found for stainless steel welders.

  14. Investigation of alternative phosphating treatments for nickel and hexavalent chromium elimination

    International Nuclear Information System (INIS)

    The phosphating processes are widely used in industry as surface treatments for metals, especially for low thickness plates, improving the adhesion between the metallic surface and the paint coating, and increasing the durability of paint systems against corrosion attacks. The tricationic phosphates containing zinc, nickel and manganese are commonly applied on steel. There is much discussion about the replacement of nickel by another element in order to have an environmentally friendly phosphating process. Niobium as a replacement for nickel has been evaluated. The most significant environmental impacts of phosphating processes are related to the presence of nickel and hexavalent chromium used in the process, this last as a passivation treatment. Nickel and hexavalent chromium are harmful to human and environment leading to contamination of water and soil. In the present study phosphate layers containing zinc, manganese and niobium have been evaluated and characterized on galvanized steel, and the results were compared with phosphates containing zinc, manganese and nickel, or a bicationic phosphate layer with zinc and manganese. Although the use of hexavalent chromium is not recommended worldwide, it is still used in processes for sealing the porosity of phosphate layers. This element is carcinogenic and has been associated with various diseases. Due to the passivation characteristics of niobium, this study also evaluated the tricationic bath containing niobium ammonium oxalate as a passivation treatment. The results showed that it could act as a replacement for the hexavalent chromium. The results of the present study showed that formulations containing niobium are potential replacements for hexavalent chromium and similar corrosion protection was obtained for the phosphate containing nickel or that with niobium. The morphology observed by scanning electron microscopy, gravimetric tests, porosity and adhesion evaluation results indicated that the phosphate

  15. A Comparative Study of Biodegradation of Nickel and Chromium from Space Maintainers: An in vitro Study

    Science.gov (United States)

    Anand, Ashish; Sharma, Arun; Kumar, Piush; Sachdeva, Shobhit; Sachdev, Vinod

    2015-01-01

    ABSTRACT Objective: The aim of the study was to compare and evaluate the in vitro biodegradation of nickel and chromium from space maintainers, made of three different companies, i.e (Dantaurum, Rocky mountain and Dtech) in artificial saliva. Materials and methods: The study comprised of 30 space maintainers out of which 10 were fabricated using Dantaurum, 10 using Rocky mountain and 10 using Dtech band materials. Stainless steel wire (Dantaurum, Rocky mountain and Konark) was used for making loops and Leone solder and flux was used for soldering. Each group was further divided into four subgroups containing 1, 2, 3 and 4 space maintainers respectively. The space maintainers in each subgroup were placed in separate glass beakers containing 100 ml of artificial saliva at 37°C for 4 weeks. Salivary samples from each beaker was analyzed for nickel and chromium ions separately on days 1, 7, 14, 21 and 28 days using inductively coupled plasma-optical emission spectrophotometer. Results: Total release of nickel and chromium from all band and loop space maintainers ranged from 0.020 to 1.524 ppm and 0.002 to 0.289 ppm respectively. The release of nickel and chromium between the groups and within the groups was not significant (p space maintainers made of Dantaurum, Rocky mountain and Dtech which could cause any toxicity. How to cite this article: Anand A, Sharma A, Kumar P, Sandhu M, Sachdeva S, Sachdev V. A Comparative Study of Biodegradation of Nickel and Chromium from Space Maintainers: An in vitro Study. Int J Clin Pediatr Dent 2015; 8(1):37-41. PMID:26124579

  16. Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process.

    Science.gov (United States)

    Dharnaik, Amit Shivputra; Ghosh, Pranab Kumar

    2014-01-01

    In the present investigation, the performance of a laboratory-scale plate and frame-type electrochemical ion-exchange (EIX) cell on removal ofhexavalent chromium from synthetic wastewater containing 5 mg/l of Cr(VI) was evaluated under varying applied voltages. Ruthenium dioxide-coated titanium plate (RuO2/Ti) was used as anode and stainless steel plates as cathode. The EIX cell was run at different hydraulic retention time (HRT). Before using in the electrochemical cell, the capacity of ion-exchange resin was evaluated through kinetic and isotherm equilibrium tests in batch mode. The batch kinetic study result showed that the equilibrium time for effective ion exchange with resin is 2 h. The isotherm equilibrium data fit well to both Freundlich and Langmuir isotherms. Maximum capacity (qm) of resin calculated from Langmuir isotherm was 71.42 mg/g. Up to 99% of chromium removal was noticed in the EIX cell containing fresh resin at applied voltages of 10 V and higher. Migration of chromium ion to anode chamber was not noticed while performing the experiment with fresh resin. As high as 50% removal of chromium was observed from the middle chamber containing exhausted resin at an applied voltage of 25 V when the influent flow rate was maintained at 45 min of HRT. The performance of the reactor was increased to 72% when the influent flow rate was decreased to maintain at 90 min of HRT. Build-up of chromium in the anode chamber took place when exhausted resin was used in the process. PMID:25145180

  17. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    Science.gov (United States)

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated.

  18. Diminishing Chromium Use on Combined Chromium-Gambier Tanning Process Upon the Characteristics of Tanned Leather

    Directory of Open Access Journals (Sweden)

    A. Kasim

    2014-04-01

    Full Text Available The research was aimed to investigate the influence of minimizing chromium use on combined chromium-gambier process upon the characteristics of tanned leather. At the first stage of tanning process, chromium was used and in the second stage it was replaced by gambier. The raw material used was dried saline-preserved goat skin. The treatments applied on the tanning process were the different concentrations of chromium ranging from the highest level of 6% to the lowest level of 1% which was then re-tanned by using 8% concentration of gambier. The examination parameters included chemical and physical properties as well as visual investigation on the tanned leather in accordance with SNI-06-0463-1989-A. The result showed that the tanning process by using 2% chromium in the first step and 8% gambier in the second step was a treatment combination producing tanned leather that met the standard. The examination on tanned leather resulted from such treatment showed 56.33% rawhide, 17.45% of bound tannin, 31.22% of tanning level, tensile strength 386.30 kg/cm2, flexibility 31.91%, leather width 1.3 mm, density 0.75 g/cm3, the leather was quite elastic with light brownish color. In conclusion, minimizing the use of chromium in the combined tanning process of chromium and gambier can be implemented to the lowest of 2% chromium concentration and 8% gambier in the first and second step, respectively.

  19. Lateral stress evolution in chromium sulfide cermets with varying excess chromium

    Science.gov (United States)

    Petel, O. E.; Appleby-Thomas, G. J.; Wood, D. C.; Capozzi, A.; Nabavi, A.; Goroshin, S.; Frost, D. L.; Hazell, P. J.

    2016-04-01

    The shock response of chromium sulfide-chromium, a cermet of potential interest as a matrix material for ballistic applications, has been investigated at two molar ratios. Using a combustion synthesis technique allowed for control of the molar ratio of the material, which was investigated under near-stoichiometric (cermet) and excess chromium (interpenetrating composite) conditions, representing chromium:sulfur molar ratios of 1.15:1 and 4:1, respectively. The compacts were investigated via the plate-impact technique, which allowed the material to be loaded under a one-dimensional state of strain. Embedded manganin stress gauges were employed to monitor the temporal evolution of longitudinal and lateral components of stress in both materials. Comparison of these two components has allowed assessment of the variation of material shear strength both with impact pressure/strain-rate and time for the two molar ratio conditions. The two materials exhibited identical material strength despite variations in their excess chromium contents.

  20. Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling

    International Nuclear Information System (INIS)

    Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that

  1. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  2. Chromium carbide coatings obtained by the hybrid PVD methods

    Directory of Open Access Journals (Sweden)

    M. Richert

    2010-11-01

    Full Text Available Purpose: With the use of the Arc-PVD and Arc-EB PVD hybrid method, the chromium carbide coatings were deposited on steel substrate. Two kinds of coatings were obtained. The nanostructure coatings were formed by deposition of chromium carbide films by Arc PVD evaporation technique. The multilayer coatings were produced by Arc-EB PVD hybrid technology. In the second case the amorphous phase in majority was found in samples, identified by X-ray investigations.Design/methodology/approach: The Arc PVD and combination Arc-EB PVD methods were used for carbide coatings deposition. The special hybrid multisource device, produced in the Institute for Sustainable Technologies – National Research Institute (ITeE –PIB in Radom, was used for sample deposition. The microstructures of coatings were investigated by JEM 20101 ARP transmission electron microscopy (TEM, TESLA BS500 scanning electron microscopy (SEM and Olympus GX50 optical microscopy (MO. The X-ray diffraction was utilized to identify phase configuration in coatingsFindings: The microstructure of deposited coatings differs depending on the deposition method used. The Arc PVD deposition produced nanometric coatings with the Cr3C2, Cr23C6, Cr7C3 and CrC carbides built from nanometric in size clusters. In the case of the Arc-EB PVD hybrid technology in majority of cases the amorphous microstructure of coatings was found. The hybrid coatings consist of alternating layers of Ni/Cr-Cr3C2.Practical implications: The performed investigations provide information, which could be useful in the industrial practice for the production of wear resistant coatings on different equipments and tools.Originality/value: It was assumed that by using different kinds of PVD methods the different microstructures of coatings could be formed.

  3. Alloyed steel

    International Nuclear Information System (INIS)

    The composition and properties are listed of alloyed steel for use in the manufacture of steam generators, collectors, spacers, emergency tanks, and other components of nuclear power plants. The steel consists of 0.08 to 0.11% w.w. C, 0.6 to 1.4% w.w. Mn, 0.35 to 0.6% w.w. Mo, 0.02 to 0.07% w.w. Al, 0.17 to 0.37% w.w. Si, 1.7 to 2.7% w.w. Ni, 0.03 to 0.07% w.w. V, 0.005 to 0.012% w.w. N, and the rest is Fe. The said steel showed a sufficiently low transition temperature between brittle and tough structures, a greater depth of hardenability, and better weldability than similar steels. (B.S.)

  4. Serum chromium levels in gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    P G Sundararaman

    2012-01-01

    Full Text Available Objective: To measure serum chromium level in women with gestational diabetes mellitus (GDM from Chennai, South India. Materials and Methods: Thirty women with gestational diabetes, 60 age matched controls. Inclusion criteria: Gestational age 22-28 weeks, age group 20-35 years. Exclusion Criteria: Gestational age beyond 28 weeks, malnutrition or presence of infection. Serum chromium was measured using inductive couple plasma emission spectrometer. Results: Serum chromium levels of women with GDM, 1.59+/-0.02 ng/ml (range: 0.16-4.0 ng/ml were lower than in controls (4.58+/-0.62 ng/ml; range 0.82-5.33 ng/ml (P < 0.001. However, there were no significant differences among cases and controls when subdivided by parity. Conclusions: Women with GDM from a South Indian city had lower levels of serum chromium compared to pregnant women without GDM. Studies may be done whether chromium supplementation is useful in this group of women.

  5. Steel welding.

    OpenAIRE

    Kučera, Marek

    2011-01-01

    Topic of the thesis concerns the problem of steel welding. The aim was to give acomprehensive overview on the topic, describe the known methods, advantages and disadvantages of welding technology. The introductory part is focused on introducing the basics of the process required to produce high-quality connections. Chapter three offers an overview of known and used welding methods with thein brief description of the method. The next chapter describes steel as material suitable for welding....

  6. Influence of manganese and nickel on properties of low-carbon steels with 13% Cr

    International Nuclear Information System (INIS)

    Studied is the influence of manganese and nickel on mechanical properties and resistance-to-corrosion of the 13% content chromium steels containing 0.1-0.2%C. It is shown that manganese introduction results is the increase of strength characteristics of hardened steels because of delta-ferrite formation suppresion and solid solution strengthening. The delayed cooling during hardening permits to increase ductility and impact strength. Low-carbon 13% content chromium steels alloyed with nickel, molybdenum and aluminium have high heat resistance at temperatures up to 500 deg C due to the precipitation of intermetallics atlading. Chrome-manganese and chrome-nickel steels have a high resistance-to-corrosion in the hardened state in the neutral and weak-acid media

  7. Flashlamp-pumped lasing of chromium-doped GSG garnet

    International Nuclear Information System (INIS)

    The implications for the practical use of chromium:GSGG in lamp-pumped tunable lasers are discussed in this paper. The authors report here some major improvements in the performance of the flashlamp-pumped chromium:GSGG laser

  8. Current status and recent research achievements in ferritic/martensitic steels

    International Nuclear Information System (INIS)

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe–Cr alloys, the chromium range was narrowed to 7–9% and the first RAFM was industrially produced in Japan (F82H: Fe–8%Cr–2%W–TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe–9%Cr–1%W–TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx

  9. Surface hardening of steels by alloying under laser heating with subsequent chemical thermal treatment

    International Nuclear Information System (INIS)

    The combination of laser alloying of carbon and low-chromium steels (20, 40, 45, 20Kh and 40Kh) with nitride-forming elements (V, Cr, Mo, Al) and subsequent nitriding is under consideration as a promising technology of enhancing wear resistance of steels. It is shown that the technology proposed permits increasing microhardness, wear resistance and favourable distribution of residual stresses in surface layers

  10. Molybdenum effect on the properties of high-strength stainless steels type 14Cr-6Ni

    International Nuclear Information System (INIS)

    Molybdenum effect on the physicochemical properties and microstructure of 07Kh14N6 steel welded specimens has been investigated. The relationship is shown of deterioration of strength properties and stress corrosion resistance of stainless martensitic steels with grain boundaries state (presence of carbide) network) and matrix decomposition into two types of solid solutions - enriched and leaned by chromium. The role of molybdenum in improvement of these properties is pointed out

  11. Description Of Alloy Layer Formation On A Cast Steel Substrate

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2015-09-01

    Full Text Available A description of alloy layer formation on a steel substrate is presented. Two types of formation are considered: diffusion of carbon and chromium into the solid from the pad in the direction of the cast steel within the FeCrC (grains and diffusion in a layer of liquid chromium cast iron formed in a preceding step. The influence of silicon in the pad on the pad’s transformation into the liquid is also examined. Solidus and liquidus temperatures of high carbon ferrochromium are determined. The larger the content of Si is used in the experiment, the lower the solidus temperature of the FeCrC alloy is observed. This results from the higher intensity of the elements’ diffusion and faster formation of the liquid.

  12. Determination of chromium combined with DNA, RNA and proteins in chromium-rich brewer's yeast by NAA

    International Nuclear Information System (INIS)

    The content of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast was determined by neutron activation analysis (NAA). Our results show that the extracted relative amounts and concentrations of DNA, RNA and proteins have no significant difference for two types of yeast, but the chromium content in DNA, RNA and proteins fractions extracted from the chromium-rich yeast are substantially higher than those from the normal. In addition, the concentration of chromium in DNA is much higher than that in RNA and proteins. It is evident that the inorganic chromium compounds can enter the yeast cell during the yeast cultivation in the chromium-containing culture medium and are converted into organic chromium species, which are combined with DNA, RNA and proteins. (author)

  13. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions.

  14. Chromium allergy and dermatitis: prevalence and main findings

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl;

    2015-01-01

    The history of chromium as an allergen goes back more than a century, and includesan interventional success with national legislation that led to significant changes inthe epidemiology of chromium allergy in construction workers. The 2015 EU Leather Regulation once again put a focus on chromium...

  15. Thermodynamic properties of chromium bearing slags and minerals. A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yanping; Holappa, L.

    1996-12-31

    In this report, the thermodynamic properties of chromium bearing slags and minerals were reviewed based on the available information in the literature. It includes the analysing methods for oxidation state of chromium in slags, oxidation state of chromium and activities of chromium oxides in slags and minerals. The phase diagrams of chromium oxide systems and chromium distributions between slag and metal phases are also covered ill this review. Concerning the analysing methods, it was found that most of the available approaches are limited to iron free slag systems and the sample preparation is very sensitive to the analysing results. In silicate slags under reducing atmosphere, divalent and trivalent chromium co-exist in the slags. It is agreed that the fraction of divalent chromium to total chromium increases with higher temperature, lower slag basicity and oxygen potential. For the slags under oxidising atmosphere, trivalent, pentavalent and hexavalent states were reported to be stable. The activities of CrO and CrO{sub 1.5} were concluded to have positive deviation from ideal solution. Slag basicity has a positive effect and temperature has a negative effect on the activities of chromium oxides. The phase diagrams of the Cr-O, binary, and ternary chromium containing oxide systems have been examined systematically. The analysis shows that the data on the quaternary and quinary systems are insufficient, and require further investigation. The most important features of the chromium containing silicate slags are the large miscibility gaps and the stability of the chromite spinel. (orig.) (76 refs.)

  16. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  17. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions. PMID:26361854

  18. Mitigation of Hexavalent Chromium in Storm Water Resulting from Demolition of Large Concrete Structure at the East Tennessee Technology Park - 12286

    Energy Technology Data Exchange (ETDEWEB)

    Britto, Ronnie; Brown, Bridget; Hale, Timothy B.; Hensley, Janice L.; Johnson, Robert T.; Patel, Madhu [Tetra Tech, Inc. (United States); Emery, Jerry A. [Energy Solutions, Inc. (United States); Gaston, Clyde [LATA-SHARP Remediation Services - LSRS (United States); Queen, David C. [U.S. DOE-ORO (United States)

    2012-07-01

    American Recovery and Reinvestment Act (ARRA) funding was provided to supplement the environmental management program at several DOE sites, including the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Demolition of the ETTP K-33 Building, the largest building to be demolished to date in Oak Ridge, was awarded to LSRS in FY-2010 under the ARRA program. The K-33 building was an 82 foot tall 2-story structure covering approximately 32 acres. Once this massive building was brought down to the ground, the debris was segregated and consolidated into piles of concrete rubble and steel across the remaining pad. The process of demolishing the building, tracking across concrete debris with heavy equipment, and stockpiling the concrete rubble caused it to become pulverized. During and after storm events, hexavalent chromium leached from the residual cement present in the large quantities of concrete. Storm water control measures were present to preclude migration of contaminants off-site, but these control measures were not designed to control hexavalent chromium dissolved in storm water from reaching nearby receiving water. The following was implemented to mitigate hexavalent chromium in storm water: - Steel wool was distributed around K-33 site catch basins and in water pools as an initial step in addressing hexavalent chromium. - Since the piles of concrete were too massive and unsafe to tarp, they were placed into windrows in an effort to reduce total surface area. - A Hach colorimetric field meter was acquired by the K-33 project to provide realtime results of hexavalent chromium in site surface water. - Three hexavalent chromium treatment systems were installed at three separate catch basins that receive integrated storm water flow from the K-33 site. Sodium bisulfite is being used as a reducing agent for the immobilization of hexavalent chromium while also assisting in lowering pH. Concentrations initially were 310 - 474 ppb of hexavalent chromium in

  19. Collisional properties of trapped cold chromium atoms

    CERN Document Server

    Pavlovich, Z; Côté, R; Sadeghpour, H R; Pavlovic, Zoran; Roos, Bjoern O.; Côté, Robin

    2004-01-01

    We report on calculations of the elastic cross section and thermalization rate for collision between two maximally spin-polarized chromium atoms in the cold and ultracold regimes, relevant to buffer-gas and magneto-optical cooling of chromium atoms. We calculate ab initio potential energy curves for Cr2 and the van der Waals coefficient C6, and construct interaction potentials between two colliding Cr atoms. We explore the effect of shape resonances on elastic cross section, and find that they dramatically affect the thermalization rate. Our calculated value for the s-wave scattering length is compared in magnitude with a recent measurement at ultracold temperatures.

  20. Studying chromium biosorption using arabica coffee leaves

    Directory of Open Access Journals (Sweden)

    Luis Carlos Florez García

    2010-05-01

    Full Text Available This work was aimed at providing an alternative for removing heavy metals such as chromium from waste water (effluent from the leather industry and galvanoplasty (coating with a thin layer of metal by electrochemical means, using coffee leaves as bio- mass. Using arabica coffee (Castle variety leaves led to 82% chromium removal efficiency for 1,000 mg/L synthetic dissolutions in 4 pH dissolution operating conditions, 0 rpm agitation, 0.149 mm diameter biomass particle size and 0.85 g/ml biomass / dissolution volume ratio.

  1. Strategies for chromium bioremediation of tannery effluent.

    Science.gov (United States)

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  2. Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

  3. The three dimensional distribution of chromium and nickel alloy welding fumes.

    Directory of Open Access Journals (Sweden)

    Takeoka,Kiyoshi

    1991-08-01

    Full Text Available In the present study, the fumes generated from manual metal arc (MMA and submerged metal arc (SMA welding of low temperature service steel, and the chromium and nickel percentages in these fumes, were measured at various horizontal distances and vertical heights from the arc in order to obtain a three dimensional distribution. The MMA welding fume concentrations were significantly higher than the SMA welding fume concentrations. The highest fume concentration on the horizontal was shown in the fumes collected directly above the arc. The fume concentration vertically was highest at 50 cm height and reduced by half at 150 cm height. The fume concentration at 250 cm height was scarcely different from that at 150 cm height. The distribution of the chromium concentration vertically was analogous to the fume concentration, and a statistically significant difference in the chromium percentages was not found at the different heights. The nickel concentrations were not statistically significant within the welding processes, but the nickel percentages in the SMA welding fumes were statistically higher than in the MMA welding fumes. The highest nickel concentration on the horizontal was found in the fumes collected directly above the arc. The highest nickel concentration vertically showed in the fume samples collected at 50 cm height, but the greater the height the larger the nickel percentage in the fumes.

  4. Review on Pretreatment of Effluent Released from Steel Industry

    OpenAIRE

    Meena Vangalpati1

    2014-01-01

    There are many reasons for the environmental pollution.One of the main reason is the vast industrialization, which contributes to 78% of the world’s pollution.There are various industries like leather,food,automobile,pharmaceutical,leather,textile,etc,responsible for the destruction of nature. Steel is one of the major metal produced in huge quantities which releases toxic effluents like nickel,copper,cadmium,lead,nitrates,chromium .These elements lead to great destruction in ...

  5. Wrought Cr--W--V bainitic/ferritic steel compositions

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, Ronald L.; Maziasz, Philip J.; Sikka, Vinod Kumar; Santella, Michael L.; Babu, Sudarsanam Suresh; Jawad, Maan H.

    2006-07-11

    A high-strength, high-toughness steel alloy includes, generally, about 2.5% to about 4% chromium, about 1.5% to about 3.5% tungsten, about 0.1% to about 0.5% vanadium, and about 0.05% to 0.25% carbon with the balance iron, wherein the percentages are by total weight of the composition, wherein the alloy is heated to an austenitizing temperature and then cooled to produce an austenite transformation product.

  6. Stainless steel: Recovery of properties after exposure to detrimental phases

    OpenAIRE

    Skaare, Andreas

    2015-01-01

    High alloyed stainless steel provides a desirable combination of corrosion resistance and mechanical properties, being a preferred material when ductility, overall strength and resistance to harsh environments are required. High service temperatures where alloy elements, as chromium and molybdenum, are present, is a well-known recipe for the precipitation of detrimental phases in the material. Even a small amount of these precipitations may impair the mechanical and corrosion properties. T...

  7. Stabilization of final titanium concentration in stainless steel

    International Nuclear Information System (INIS)

    The technology of combined alloying of stainless steel type 08-12Kh18N10T with 30%-ferrotitanium and metallic spongy titanium is developed and put into practice. This permits to stabilize titanium assimilation at the level of 40-60 % in two-slag melting process and to increase chromium recovering from the slag. Stabilization of titanium assimilation promotes its homogeneous distribution in final metal after electroslag remelting. 2 refs. 3 figs

  8. Thermodynamic Modeling as a Strategy for Casting High Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Peri Reddy V; S Raman Sankaranarayanan

    2009-01-01

    Strategies based on thermodynamic calculations can be used to overcome the problems associated with oxides encountered in steel plant operations, which can lead to certain difficulties in the process such as clogging of submerged entry nozzle during continuous casting. Approaches to producing high alloy steels by continuous casting have been taken. One of the strategies to avoid the oxidation of chromium is to add a small amount of other elements (subject to other constraints), which do not cause subsequent problems. The problem has been studied using the Thermo-CalcR software, with related databases; and the results obtained for different process conditions or generic com-positions have been presented.

  9. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    Directory of Open Access Journals (Sweden)

    Oladayo OLANIRAN

    2015-05-01

    Full Text Available Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr and Nickel (Ni were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail using scanning electron microscopy (SEM and X-ray diffraction (XRD. The microstructural evolution and phase formation during oxide dispersion strengthening of duplex stainless steel composites were investigated. The influence of composition variation of the reinforcements on the microstructural and corrosion behaviour in simulated mine water of the composites were investigated. In this manuscript, it was established that composition has great influence on the structure/properties relationship of the composites developed.

  10. Enhanced Wear Properties of Steel : A Combination of Ion Implantation Metallurgy and Laser Metallurgy

    NARCIS (Netherlands)

    Beurs, H. de; Hosson, J.Th.M. De

    1988-01-01

    Laser surface melting of a chromium steel results in tensile stresses, which have deleterious effects on its wear behaviour. Implantations at 360 K with neon and nitrogen have been carried out in order to convert these stresses into compressive ones. Herewith an additional increase in hardness has b

  11. Serum Chrome levels sampled with steel needle vs. plastic IV cannula

    DEFF Research Database (Denmark)

    Penny, Jeannette Østergaard; Overgaard, Søren

    2010-01-01

      Modern Metal-on-metal (MoM) joint articulations releases metal ions to the body. Research tries to establish how much this elevates metal ion levels and whether it causes adverse effects. The steel needle that samples the blood may introduce additional chromium to the sample thereby causing bia...

  12. Male-mediated spontaneous abortion among spouses of stainless steel welders

    DEFF Research Database (Denmark)

    Hjollund, N H; Bonde, J P; Jensen, T K;

    2000-01-01

    Male-mediated spontaneous abortion has never been documented for humans. The welding of stainless steel is associated with the pulmonary absorption of hexavalent chromium, which has genotoxic effects on germ cells in rodents. Clinical and early subclinical spontaneous abortions were examined among...

  13. Reactive Boride Brazing on Low-Alloy Automotive Grade Steel

    Science.gov (United States)

    Palanisamy, B.; Upadhyaya, A.

    2011-11-01

    Brazing is a widely used process to improve the performance of steels used in automotive applications. The substrate material is often exposed to harsh conditions in these applications and may affect the service life of the component. Reactive boride brazing aims to improve the mechanical properties of the substrate material by forming a ceramic-metal composite coating in a single-step process in situ. In this study, sintered Ancor 4300 low-alloy steel is used as the substrate with chromium-rich braze and chromium-lean braze materials. The mechanical properties of the brazed samples were studied in detail using microindentation hardness measurements and the transverse rupture test. The results indicate that the brazed superlayer has a 10 times higher hardness. There was a significant improvement in the transverse rupture strength of the steel brazed with the chromium-rich boride as compared to the pure substrate material. In an effort to reduce processing time, green compacts of the substrate were also directly brazed and yielded favorable results.

  14. Reduction of Hexavalent Chromium by Viable Cells of Chromium Resistant Bacteria Isolated from Chromite Mining Environment

    OpenAIRE

    Satarupa Dey; Baishali Pandit; A. K. Paul

    2014-01-01

    Environmental contamination of hexavalent chromium [Cr(VI)] is of serious concern for its toxicity as well as mutagenic and carcinogenic effects. Bacterial chromate reduction is a cost-effective technology for detoxification as well as removal of Cr(VI) from polluted environment. Chromium resistant and reducing bacteria, belonging to Arthrobacter, Pseudomonas, and Corynebacterium isolated from chromite mine overburden and seepage samples of Orissa, India, were found to tolerate 12–18 mM Cr(VI...

  15. Reduction of Chromium-VI by Chromium Resistant Lactobacilli: A Prospective Bacterium for Bioremediation

    OpenAIRE

    Mishra, Ritesh; Sinha, Vartika; Kannan, Ambrose; Upreti, Raj K.

    2012-01-01

    Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr (VI) and Cr (III). Highly soluble hexavalent chromium is carcinogenic due to its oxidizing nature. It is well established that the intestinal bacteria including Lactobacilli have regulatory effect on intestinal homeostasis and a breakdown in the relationship between intestinal cells and bacteria results in the manifestation of gastrointestinal (GI) disorders. In this study Cr (VI) resistance was developed in La...

  16. The electronic structure of antiferromagnetic chromium

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1981-01-01

    The author has used the local spin density formalism to perform self-consistent calculations of the electronic structure of chromium in the non-magnetic and commensurate antiferromagnetic phases, as a function of the lattice parameter. A change of a few per cent in the atomic radius brings...

  17. Flashlamp-pumped lasing of chromium: GSGG

    International Nuclear Information System (INIS)

    Lasing action in chromium-doped gadolinium scandium gallium garnet (Cr:GSGG) is well established for both CW/sup (1)/ and flashlamp/sup (2)/ pumping. This paper describes an investigation of flashlamp-pumped Cr:GSGG lasers and indicates some of the factors which limit performance

  18. Defect structure of electrodeposited chromium layers

    CERN Document Server

    Marek, T; Vertes, A; El-Sharif, M; McDougall, J; Chisolm, C U

    2000-01-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  19. 29 CFR 1910.1026 - Chromium (VI).

    Science.gov (United States)

    2010-07-01

    ... Enhancements In Lieu of LEV Retrofitting • Eductors. Many chemical baths are currently mixed via air agitation... requirements of the Hazard Communication Standard, 29 CFR 1910.1200. (3) Cleaning and replacement. (i) The... CFR 1910.141. Where skin contact with chromium (VI) occurs, the employer shall provide...

  20. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    Science.gov (United States)

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively. PMID:26971177

  1. Development status und future possibilities for martensitic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J. [Technical Univ. Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering

    2010-07-01

    In the last four decades new stronger modified 9%Cr martensitic creep resistant steels have been introduced in power plants, which has enabled increases in maximum achievable steam conditions from the previous 250 bar and 540-560 C up to the values of 300 bar and 600-620 C currently being introduced all over the world. In order to further increase the steam parameters of steel based power plants up to a target value of 650 C/325 bar it is necessary to double the creep strength of the martensitic steels. At the same time the resistance against steam oxidation must be improved by an increase of the chromium content in the steels from 9% to 12%. However, so far all attempts to make stronger 12%Cr steels have led to breakdowns in long-term creep strength. Significant progress has been achieved in the understanding of microstructure stability of the martensitic 9-12%Cr steels: Observed microstructure instabilities in 11-12%Cr steels are explained by Z-phase precipitation, which dissolves fine MN nitrides. Improved understanding of effects of B and N on long-term creep properties has formed the basis of a series of new stronger 9%Cr test alloys with improved creep strength. In parallel 9%Cr test steels with low C content show very promising behavior in long-term tests. However, the 9%Cr steels must be surface coated to protect against steam oxidation at high temperature applications above 620%C. A possibility to use fine Z-phases for strengthening of the martensitic steels has been identified, and this opens a new pathway for development of stable strong 12%Cr steels. There are still good prospects for the realization of a 325 bar / 650 C steam power plant all based on steel. (orig.)

  2. A Kinetic Model of Chromium in a Flame

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chromium has been identified as a carcinogenic metal.Incineration is the useful method for disposal of toxic chromium hazard waste and a chromium kinetic model in a flame is very important to study chromium oxidation.Chromium chemical kinetics over a range of temperatures of a hydrogen/air flame is proposed.Nine chromium compounds and fifty-eight reversible chemical reactions were considered The forward reaction rates are calculated based on the molecular collision approach for unknown ones and Arrhenius's Law for known ones.The backward reaction rates were calculated according to forward reaction rates, the equilibrium constants and chemical thermodynamics.It is verified by several equilibrium cases and is tested by a hydrogen/air diffusion flame.The results show that the kinetic model could be used in cases in which the chromium kinetics play an important role in a flame

  3. Thermomechanically-controlled Processing for Producing Ship-building Steels

    Directory of Open Access Journals (Sweden)

    B. Basu

    2005-01-01

    Full Text Available The thermomechanically-controlled processing of a newly developed high-strength lowalloy steel has been designed in such a way that the problems, normally faced in producing thequench and tempered steels, have been mitigated and the final product (steel plates are available in as rolled condition rather than quench and tempered steels.A low-carbon, low-alloy steel having nickel, chromium, copper, niobium, boron, has been designed for ease of welding, improved weldability over the conventional steels, and responsiveto the thermomechanically-controlled processing. A number of laboratory-scale batches of the alloy were made with different combinations of thermomechanically-controlled processingparameters. The different thermomechanically-controlled processing parameters studied include (i slab-reheating temperature,~ (ii. def.orm ation above recrvstallisation temperature, (iiideformation below recrystallisation temperature, and (iv finish-rolling temperature. The thermomechanically-processed steel plates, under certain combinations of  thermomechanically-controlled ~rocessi-ne.o arameters. showed excellent combination of imvact and tensile n.r on. erties. In this paper, the microstructure-property correlation has been made to throw light on the type of microstructure required to obtain such superior package of mechanical properties. Further, the optimised laboratory-scale thermomechanically-controlled processing parameters, which were used to process newer hatches of the steel made through industrial route, have delivered encouraging results.

  4. Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: Effect of scrap iron shape and size.

    Science.gov (United States)

    Gheju, M; Balcu, I

    2010-10-15

    Hexavalent chromium reduction with scrap iron has the advantage that two wastes are treated simultaneously. The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using as reducing agent the following scrap iron shapes and sizes: (1) spiral fibers, (2) shavings, and (3) powder. The shape and size of scrap iron were found to have a significant influence on chromium and iron species concentration in column effluent, on column effluent pH and on Cr(VI) reduction mechanism. While for large scrap iron particles (spiral fibers) homogeneous reduction is the dominant Cr(VI) reduction process, for small scrap iron particles (powder) heterogeneous reduction appears to be the dominant reaction contributing to Cr(VI) reduction. All three shapes and sizes investigated in this work have both advantages and disadvantages. If found in sufficient quantities, scrap iron powder seem to be the optimum shape and size for the continuous reduction of Cr(VI), due to the following advantages: (1) the greatest reduction capacity, (2) the most important pH increase in column effluent (up to 6.3), (3) no chromium was detected in the column effluent during the first 60 h of the experiment, and (4) the lowest steady-state Cr(VI) concentration observed in column effluent (3.7 mg/L). But, despite of a lower reduction capacity in comparison with powder particles, spiral fibers and shavings have the advantage to result in large quantities from the mechanic processing of steel.

  5. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective

    Directory of Open Access Journals (Sweden)

    Hedberg Yolanda

    2010-09-01

    Full Text Available Abstract Background Production of ferrochromium alloys (FeCr, master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr, ferrosiliconchromium (FeSiCr, stainless steel (316L, iron (Fe, chromium (Cr, and chromium(IIIoxide (Cr2O3, in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549. Results The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death

  6. Hegelian Steel

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    2015-01-01

    Even in our globalized world the notion of national economies remain incredibly strong, just as a considerable part of the literature on transnational governance and globalization continue to rely on a zero-sum perspective concerning the relationship between the national and the transnational. De...... of the European steel industry....

  7. Chromium vaporization from mechanically deformed pre-coated interconnects in Solid Oxide Fuel Cells

    Science.gov (United States)

    Falk-Windisch, Hannes; Sattari, Mohammad; Svensson, Jan-Erik; Froitzheim, Jan

    2015-11-01

    Cathode poisoning, associated with Cr evaporation from interconnect material, is one of the most important degradation mechanisms in Solid Oxide Fuel Cells when Cr2O3-forming steels are used as the interconnect material. Coating these steels with a thin Co layer has proven to decrease Cr vaporization. To reduce production costs, it is suggested that thin metallic PVD coatings be applied to each steel strip before pressing the material into interconnect shape. This process would enable high volume production without the need for an extra post-coating step. However, when the pre-coated material is mechanically deformed, cracks may form and lower the quality of the coating. In the present study, Chromium volatilization is measured in an air-3% H2O environment at 850 °C for 336 h. Three materials coated with 600 nm Co are investigated and compared to an uncoated material. The effect of deformation is investigated on real interconnects. Microscopy observations reveal the presence of cracks in the order of several μm on the deformed pre-coated steel. However, upon exposure, the cracks can heal and form a continuous surface oxide rich in Co and Mn. As an effect of the rapid healing, no increase in Cr vaporization is measured for the pre-coated material.

  8. Fatigue behavior of functionally graded steel produced by electro-slag remelting

    International Nuclear Information System (INIS)

    The present study attempts to investigate the fatigue behavior of functionally graded steel (FGS) produced through electroslag remelting (ESR) process. To produce FGSs, two different slices of plain carbon steel and austenitic stainless steel were welded and used as ESR's electrode. Some of alloying elements in austenitic stainless steel, such as Nickel and Chromium, as well as carbon in plain carbon steel may be replaced during remelting stage; graded layers (austenite and martensite layers) may also be fabricated. Vickers micro-hardness test and scanning electron microscopy (SEM) of FGS were performed and variations in hardness and microstructure were observed. SEM images exhibited multi-phase graded steel. The rotating bending fatigue test was performed on specimens. The fatigue test results showed improvement in fatigue limit of FGS in comparison with that of its ingredients. SEM's images of fatigue fracture surfaces in FGS showed deviation and branching in crack propagation when crack propagates from graded austenite to graded martensite phase

  9. Method and equipment for measurement of residual stresses in erection welded butts of pipelines made of clad steel

    International Nuclear Information System (INIS)

    Investigations into determination of residual stresses on welded joints of pipelines of 34 mm thick 22 K pearlitic steel cladded with a 4 mm thick layer of chromium-nickel steel are conducted under mounting at the Kursk NPP. Mounting welded joints of the pipelines of clad steel are under the effect of residual stresses, particularly, joints of tube-knee type, where the level of residual stresses reaches 450-550 MPa. Repair of mounting welded joints of pipeles of clad steel is stated to result in increase of residual stresses on the surface of the joints

  10. ADHESION STRENGTH OF TiN COATINGS AT VARIOUS ION ETCHING DEPOSITED ON TOOL STEELS USING CATHODIC ARC PVD TECHNIQUE

    OpenAIRE

    MUBARAK ALI; ESAH HAMZAH; NOUMAN ALI

    2009-01-01

    Titanium nitride (TiN) widely used as hard coating material was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The goal of this study was to examine the effect of ion etching with and without titanium (Ti) and chromium (Cr) on the adhesion strength of TiN coatings deposited on tool steels. From the scratch tester, it was observed that by increasing Ti ion etching showed an increase in adhesion strength of the deposited coatings. ...

  11. Carburization of stainless steel furnace tubes

    International Nuclear Information System (INIS)

    Stainless steel containing molybdenum are usually recommended to resist naphtenic acid corrosion in vacuum heaters. In 1993 the original 5Cr-1/2Mo roof tubes of the furnace in a vacuum unit were replaced by stainless steel 316 Ti to minimize tube replacement and increase heater reliability. Unexpectedly, some of the new tubes failed after only three years of service and just one year after undergoing the last inspection. The damage occurred in the form of deep holes and perforations, starting from the outside tube surface on the fireside. Coke build-up occurred due to severe operating conditions, overheating the tubes on the fireside, above 675 Centigrade. Metallographic and Scanning Electron Microscopy (Sem) examination revealed internal and external carburization of the material due to the presence of coke and combustion ashes, respectively. The increase in the skin metal temperature facilitated the diffusion of carbon from these carbon-rich deposits into the low carbon content material (0.023%). Depletion of chromium at the grain boundaries due to the massive formation of chromium carbides, resulted in a severe intergranular corrosion attack by molten salts rich in vanadium and sulfur produced by asphalt burning. Normal operating practice demands the use of steam for the heater tubes to control coke build-up. This practice had been first reduced and then eliminated, during the past two years prior to the failure, because of economic incentives. This paper describes the root cause analysis conducted to account for these premature tube failures. (Author)

  12. CHROMIUM INDUCED CYTOTOXICITY IN BLACKGRAM (VIGNA MUNGO L.

    Directory of Open Access Journals (Sweden)

    A. Chidambaram ، P. Sundaramoorthy ، A. Murugan ، K. Sankar Ganesh ، L. Baskaran

    2009-01-01

    Full Text Available Chromium is known to be highly toxic to biological systems. This study was designed to determine the mutagenic effects of different concentrations (0, 10, 25, 50, 100 and 200 mg/L of hexavalent chromium on root tip cells of blackgram (Vigna mungo L. Hepper. The blackgram seeds were equi-spacially arranged in sterilized petriplates lined with filter paper and they were treated with different concentrations of chromium solution. In germination studies, the morphological growth parameters such as germination percentage, root length, shoot length fresh weight and dry weight of blackgram seedlings were decreased with increasing dose of chromium concentrations. No germination of blackgram seeds was recorded at 300mg/l chromium concentration. Chromosome aberration assay was used to determine the mitotic indices and rate of chromosome aberration in blackgram root tip cells due to chromium treatment. The results showed that the mitotic indices were complicated due to different concentrations of chromium. However, the increase in chromium concentration has led to a gradual increase in the percentage of chromosomal aberration and mitotic index. The chromosome length, absolute chromosome length and average chromosome lengths were gradually found to decrease. There was no considerable change in 2n number of chromosome with the increase in chromium concentrations. It is concluded that the hexavalent chromium has significant mutagenic effect on the root tip cells of blackgram.

  13. Chromium supplementation improved post-stroke brain infarction and hyperglycemia.

    Science.gov (United States)

    Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung

    2016-04-01

    Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia. PMID:26477944

  14. Cleaning the magnesium oxide contaminated stainless steel system using a high temperature decontamination process

    International Nuclear Information System (INIS)

    A high pressure and high temperature (HTHP) system made of stainless steel-316, that simulates the reactor coolant systems of pressurized water reactors has been constructed for carrying out experimental investigations on power reactor water chemistry. After two months of operation at 280 C, magnesium was observed in the coolant. This was attributed to the failure of some heater pins that contained magnesium oxide as insulator. This magnesium oxide got distributed over the entire system. In order to remove the magnesium that had deposited and reacted over the oxide film formed over the stainless steel surfaces, the system was chemically cleaned using a mixture of nitrilo-tri-acetic-acid (NTA) and N2H4 at high temperature. The chromium containing oxide film formed over the stainless steel surfaces are normally removed using oxidizing pretreatment followed by treatment with reducing formulation. A minimum of three such cycles are required to complete the dissolution of contaminated oxide film. It has been proved elsewhere that chromium-containing oxides can be dissolved by simple chelating agents but at a relatively higher temperature (150-180 C) with NTA. Thus, NTA based process was tested for its capability to remove the magnesium contaminated oxide film formed over stainless steel. In addition to stainless steel, the system has few carbon steel areas. Hence, the compatibility of stainless steel and carbon steel to the NTA-N2H4 mixture was determined. Tests were carried out at different concentrations of NTA and at different pH. It was observed that carbon steel corrosion rates were quite high at low pH. With increasing pH, the corrosion rate decreased. The surface roughening observed at low pH was not observed at pH 8.0. Hence, it was decided to carry out the cleaning at pH 7.0 and with NTA concentration of 5 mM. Visual examination of the test flanges after the cleaning indicated complete removal of the oxide film. Results of chemical analysis indicated that

  15. Improvement of wear resistance of sprayed layer on 52100 steel by friction stir processing

    Science.gov (United States)

    Rahbar-kelishami, A.; Abdollah-zadeh, A.; Hadavi, M. M.; Seraj, R. A.; Gerlich, A. P.

    2014-10-01

    The influence of friction stir processing (FSP) on wear resistance is studied on a thermally sprayed coating in terms of microstructure and mechanical properties. A high-chromium steel coating sprayed on AISI 52100 steel has been processed, and it is shown that FSP can improve the sprayed layer wear resistance compared to the as-sprayed and quenched and tempered condition. It is suggested that improved toughness is the main contribution to wear performance rather than hardness. It is observed that FSP provides increased hardness and toughness simultaneously, while tempering of the quenched AISI 52100 steel increases toughness while hardness decreases.

  16. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    Science.gov (United States)

    Adhe, K. M.; Kain, V.; Madangopal, K.; Gadiyar, H. S.

    1996-08-01

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 °C for 30 min to 10 h. The heat-treated samples then undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 °C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted.

  17. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    International Nuclear Information System (INIS)

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 C for 30 min to 10 h. The heat-treated samples than undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted

  18. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Liao, Y.P.; Jons, O.

    1997-01-01

    A sensitive method for the simultaneous determination of chromium(III) and chromium(VI) was chromatography and chemiluminescence detection. Two Dionex ion-exchange guard columns in series, CG5 and AG7, were used to separate chromium(III) from chromium(VI). Chromium(VI) was reduced by potassium su...

  19. Influence of ferrite decomposition mechanisms on the corrosion resistance of an aged duplex stainless steel

    International Nuclear Information System (INIS)

    The effect of long term aging of a duplex stainless steel type X6 CrNiMoCu25-6 on pitting and intergranular corrosion was investigated by various electrochemical methods including cyclic potentiodynamic tests, potentio-kinetic tests and DL-EPR (Double Loop Electrochemical Potentio-kinetic Reactivation) tests. It was established that the spinodal decomposition of ferrite (α' + G) after aging at 400 C during 1000 h leads to localized chromium depletion (wavelength 20 nm) without any detrimental effect on the pitting and intergranular resistance of this steel in synthetic sea water, compared to the annealed steel. However, aging at 500 C for 1000 h generates carbides and intermetallic phases by nucleation and growth producing larger chromium depleted areas, which results in lower pitting and intergranular corrosion resistance in synthetic sea water. (authors)

  20. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept.

  1. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept. PMID:20031309

  2. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    International Nuclear Information System (INIS)

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr2O3 layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr2O3 layer. The α-Cr2O3 layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%

  3. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  4. Synthesis and Characterization of Chromium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vivek Sheel Jaswal

    2014-06-01

    Full Text Available Chromium oxide nanoparticles (NPshave been rapidly synthesized by precipitation method using ammomia as precipitating agent and are characterized by using X-ray Diffraction (XRD, Thermo Gravimetric Analysis (TGA, UV-Visible absorption (UV, Infrared Spectoscopy (IR, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM. XRD studies show that chromium oxide NP is formed as Cr2O3 and it has hexagonal structure. The shape and particle size of the synthesized Cr2O3 NPs is determined by SEM and TEM. The images showed that the size of NPs of Cr2O3 varied from 20 nm to 70 nm with average crystalline size 45 nm. UV-Visible absorption and IR spectoscopy confirm the formation of nanosized Cr2O3. TGA verifies that the Cr2O3 NPs are thermally stable upto 1000 °C.

  5. Microstructure and abrasive wear properties of M(Cr,Fe)7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW) process

    OpenAIRE

    Buytoz, Soner; M.Mustafa YILDIRIM

    2010-01-01

    In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW) process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectroscopy (EDS). Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were c...

  6. CHROMIUM(II) AMIDES - SYNTHESIS AND STRUCTURES

    NARCIS (Netherlands)

    EDEMA, JJH; GAMBAROTTA, S; MEETSMA, A; SPEK, AL; SMEETS, WJJ; CHIANG, MY

    1993-01-01

    A novel class of mono- and di-meric chromium(II) amides has been prepared and characterized. Reaction of [CrCl2(thf)2] (thf = tetrahydrofuran) with 2 equivalents of M(NR2) (R = C6H11, Pr(i), Ph, or phenothiazinyl; M = Li or Na) allowed the formation of the homoleptic amides [{Cr(mu-NR2)(NR2)}2] (R =

  7. Dimensionally Controlled Lithiation of Chromium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Fister, Tim T. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Xianyi [Northwestern Univ., Evanston, IL (United States); Esbenshade, Jennifer [Univ. of Illinois, Urbana-Champaign, IL (United States); Chen, Xiao [Northwestern Univ., Evanston, IL (United States); Wu, Jinsong [Northwestern Univ., Evanston, IL (United States); Dravid, Vinayak [Northwestern Univ., Evanston, IL (United States); Bedzyk, Michael [Northwestern Univ., Evanston, IL (United States); Long, Brandon [Argonne National Lab. (ANL), Argonne, IL (United States); Gewirth, Andrew A. [Univ. of Illinois, Urbana-Champaign, IL (United States); Shi, Bing [Argonne National Lab. (ANL), Argonne, IL (United States); Schlepütz, Christian M. [Argonne National Lab. (ANL), Argonne, IL (United States); Fenter, Paul [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-12

    Oxide conversion reactions are an alternative approach for high capacity lithium ion batteries but are known to suffer from structural irreversibility associated with the phase separation and reconstitution of reduced metal species and Li2O. In particular, the morphology of the reduced metal species is thought to play a critical role in the electrochemical properties of a conversion material. Here we use a model electrode with alternating layers of chromium and chromium oxide to better understand and control these phase changes in real-time and at molecular length scales. Despite lacking crystallinity at the atomic scale, this superstructure is observed (with X-ray reflectivity, XR) to lithiate and delithiate in a purely one-dimensional manner, preserving the layered structure. The XR data show that the metal layers act as nucleation sites for the reduction of chromium in the conversion reaction. Irreversibility during delithiation is due to the formation of a ternary phase, LiCrO2, which can be further delithiated at higher potentials. The results reveal that the combination of confining lithiation to nanoscale sheets of Li2O and the availability of reaction sites in the metal layers in the layered structure is a strategy for improving the reversibility and mass transport properties that can be used in a wide range of conversion materials.

  8. Chromium--a material for fusion technology

    International Nuclear Information System (INIS)

    Due to their low neutron-induced radioactivity chromium based materials are considered to be candidates for structure materials in fusion technology. In this paper investigations are presented of unirradiated chromium with a purity of 99.96% (DUCROPUR) and a dispersion strengthened chromium alloy Cr5Fe1Y2O3 (DUCROLLOY). Both materials have been produced in a powder metallurgical route. Mechanical tests of smooth and pre-cracked specimens have been performed in a wide temperature range. Below 280 deg. C the fracture toughness values of DUCROPUR are very low (1/2), above the transition temperature they exceed 500 MPa m1/2. Large plastic deformations have been observed. DUCROLLOY does not indicate such a significant increase of fracture toughness in the tested temperature range. But above 400 deg. C large plastic deformations can be obtained in bending samples, too. The fatigue crack propagation behaviour of DUCROPUR at 300 deg. C is similar to that of a ductile metal

  9. Effect of polyethylene glycol on electrochemically deposited trivalent chromium layers

    Institute of Scientific and Technical Information of China (English)

    Joo-Yul LEE; Man KIM; Sik-Chol KWON

    2009-01-01

    The structural characteristics of the trivalent chromium deposits and their interfacial behavior in the plating solution with and without polyethylene glycol molecules were observed by using various electrochemical methods such as cyclic voltammetry, open circuit potential transition, electrochemical impedance spectroscopy, scanning electron microscopy and X-ray photoelectron spectrometry. It is shown that the polyethylene glycol molecules make the reductive current density lower in the trivalent chromium plating system and promote a hydrogen evolution reaction through their adsorption on the electrode surface. And the trivalent chromium layer formed from the polyethylene glycol-containing solution has somewhat higher density of cracks on its surface and results in a lower film resistance, lower polarization resistance, and higher capacitance in a corrosive atmosphere. It is also revealed that the formation of chromium carbide layer is facilitated in the presence of polyethylene glycol, which means easier electrochemical codeposition of chromium and carbon, not single chromium deposition.

  10. Effect of heat treatment and irradiation temperature on impact behavior of irradiated reduced-activation ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1998-03-01

    Charpy tests were conducted on eight normalized-and-tempered reduced-activation ferritic steels irradiated in two different normalized conditions. Irradiation was conducted in the Fast Flux Test Facility at 393 C to {approx}14 dpa on steels with 2.25, 5, 9, and 12% Cr (0.1% C) with varying amounts of W, V, and Ta. The different normalization treatments involved changing the cooling rate after austenitization. The faster cooling rate produced 100% bainite in the 2.25 Cr steels, compared to duplex structures of bainite and polygonal ferrite for the slower cooling rate. For both cooling rates, martensite formed in the 5 and 9% Cr steels, and martensite with {approx}25% {delta}-ferrite formed in the 12% Cr steel. Irradiation caused an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy. The difference in microstructure in the low-chromium steels due to the different heat treatments had little effect on properties. For the high-chromium martensitic steels, only the 5 Cr steel was affected by heat treatment. When the results at 393 C were compared with previous results at 365 C, all but a 5 Cr and a 9 Cr steel showed the expected decrease in the shift in DBTT with increasing temperature.

  11. New technology for comprehensive utilization of aluminum-chromium residue from chromium salts production

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bin; QI Tian-gui; JIANG Xin-min; ZHOU Qiu-sheng; LIU Gui-hua; PENG Zhi-hong; HAN Deng-lun; ZHANG Zhong-yuan; YANG Kun-shan

    2008-01-01

    Colloidal aluminum-chromium residue(ACR) was mass-produced in chromate production process, and the large energy consumption and high recovery cost existed in traditional methods of utilizing such ACR. To overcome those problems, a new comprehensive method was proposed to deal with the ACR, and was proven valid in industry. In the new process, the chromate was separated firstly from the colloidal ACR by ripening and washing with additives, by which more than 95% hexavalent chromium was recovered. The chromium-free aluminum residue(CFAR), after properly dispersed, was digested at 120-130 ℃ and more than 90% alumina can be recovered. And then the pregnant aluminate solution obtained from digestion was seeded to precipitate aluminum hydroxide. This new method can successfully recover both alumina and sodium chromate, and thus realize the comprehensive utilization of ACR from chromate industry.

  12. Evaluation of porous 430L stainless steel for SOFC operation at intermediate temperatures

    Science.gov (United States)

    Molin, Sebastian; Kusz, Boguslaw; Gazda, Maria; Jasinski, Piotr

    In this paper a 430L porous stainless steel is evaluated for possible SOFC applications. Recently, there are extensive studies related to dense stainless steels for fuel cell purposes, but only very few publications deal with porous stainless steel. In this report porous substrates, which are prepared by die-pressing and sintering in hydrogen of commercially available 430L stainless steel powders, are investigated. Prepared samples are characterized by scanning electron microscopy, X-ray diffractometry and cyclic thermogravimetry in air and humidified hydrogen at 400 °C and 800 °C. The electrical properties of steel and oxide scale measured in air are investigated as well. The results show that at high temperatures porous steel in comparison to dense steel behaves differently. It was found that porous 430L has reduced oxidation resistance both in air and in humidified hydrogen. This is connected to its high surface area and grain boundaries, which after sintering are prone to oxidation. Formed oxide scale is mainly composed of iron oxide after the oxidation in air and chromium oxide after the oxidation in humidified hydrogen. In case of dense substrates only chromium oxide scale usually occurs. Iron oxide is also a cause of relatively high area-specific resistance, which reaches the literature limit of 100 mΩ cm 2 when oxidizing in air only after about 70 h at 800 °C.

  13. Initial oxidation of duplex stainless steel 2205

    Energy Technology Data Exchange (ETDEWEB)

    Donik, E.; Kocijan, A.; Jenko, M. [Institute of metals and technology, Ljubljana (Slovenia)

    2009-07-01

    Due to superior mechanical and corrosion properties of duplex stainless steels which result in weight reduction of the constructions, thus contributing to the decreases in total costs and also due to the large and versatile usage of the alloy, duplex stainless steel is gradually displacing stainless steels of the AISI 300 series. Pickling of duplex stainless steel has proven to be much more difficult than that of standard austenitic grade (AISI 300 series). There is no complete agreement in the literature on scale (high temperature oxidation) dissolution mechanism in neutral pickling solutions. During annealing, duplex stainless steel is heated in annealing furnace up to 1050 C and is kept at this temperature for some time to soften the metal in order to release the work hardening induced by hot and cold rolling. The elimination of surface defects by forming the oxide scale is required to improve the corrosion resistance. Three different techniques were used to produce thin oxide layers on polished and sputter cleaned duplex stainless steel samples. They were exposed to 10{sup -5} mb pure oxygen inside the vacuum chamber, exposed to ambient conditions for 24 hours and plasma oxidized. Oxide layers thus produced were analysed using XPS depth profiling for determination of the oxide layer's composition with depth. It was found that all techniques produce oxide layer with different traces of metallic components and with chromium oxide maximum concentration shifted towards the oxide layer - bulk metal interface. Depletion of Cr in bulk immediately below the interface was also observed. Simplified ARXPS procedure was used to corroborate thickness estimates for thinnest oxide layers. (authors)

  14. Analysis of molybdenum, chromium, vanadium and iron by polarographic techniques

    International Nuclear Information System (INIS)

    The application of direct current Tast polarograph, differential pulse polarography and phase-selective alternative current Tast polarography to the problem of determining molybdenum, chromium, vanadium and iron in various supporting electrolytes is reported. The effect of the supporting electrolyte on the wave/peak potential and sensitivity of the metal ion have been examined. The polarographic methods were applied for simultaneous determination of chromium (3)/chromium (6), vanadium (4), vanadium (5) and iron (2)/iron (3) in different supporting electrolytes

  15. A REVIEW OF BIOSORPTION OF CHROMIUM IONS BY MICROORGANISMS

    OpenAIRE

    Inga Zinicovscaia

    2012-01-01

    Due to its widespread industrial use, chromium has become a serious pollutant in diverse environmental settings. The main source of chromium pollution including the Republic o Moldova is industry. It is a great need to develop new eco-friendly methods of chromium removal. Biosorption of heavy metals is a most promising technology involved in the removal of toxic metals from industrial waste streams and natural waters. This article is an extended abstract of a communication presented at the...

  16. CHROMIUM INDUCED CYTOTOXICITY IN BLACKGRAM (VIGNA MUNGO L.)

    OpenAIRE

    A. Chidambaram ، P. Sundaramoorthy ، A. Murugan ، K. Sankar Ganesh ، L. Baskaran

    2009-01-01

    Chromium is known to be highly toxic to biological systems. This study was designed to determine the mutagenic effects of different concentrations (0, 10, 25, 50, 100 and 200 mg/L) of hexavalent chromium on root tip cells of blackgram (Vigna mungo L. Hepper). The blackgram seeds were equi-spacially arranged in sterilized petriplates lined with filter paper and they were treated with different concentrations of chromium solution. In germination studies, the morphological growth parameters such...

  17. Processes affecting the remediation of chromium-contaminated sites.

    OpenAIRE

    Palmer, C.D.; Wittbrodt, P R

    1991-01-01

    The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium-laden waters. Redox reactions, chemical speciation, adsorption/desorption phenomena, and precipitat...

  18. Production of a chromium Bose-Einstein condensate

    OpenAIRE

    Griesmaier, Axel; Stuhler, Jürgen; Pfau, Tilman

    2005-01-01

    The recent achievement of Bose-Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 {$\\mu$}B, in contrast to other Bose- Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in ...

  19. Long term corrosion of Cr-Mo steels in superheated steam at 482 and 538 C

    International Nuclear Information System (INIS)

    The corrosion of several Cr-Mo ferritic steels was investigated in superheated steam at an operating power plant. Tests were conducted at 482 and 538 C (900 and 1000 F) in a once-through loop for times up to 28,000 hours (3.2 years). Chromium concentrations ranged from 2.0 to 11.4%, and the effect of surface preparation on corrosion was investigated. Only one of many specimens showed evidence of exfoliation at 482 C, but at 538 C, exfoliation occurred on at least some of the specimens of most materials; the exceptions were the alloy with the highest chromium content (Sandvik HT-9), one heat of 9 Cr-1 Mo steel with the highest silicon content, and Sumitomo 9 Cr-2 Mo steel, which was in test for only 19,000 hours. Parabolic oxidation kinetics adequately described the corrosion process for about the first year, after which corrosion rates were constant, and lower than predicted from extrapolation of the initial part of the penetration versus time curves. With chromium concentrations between 2 and 9%, corrosion behavior was independent of chromium content, and corrosion was slightly less with Sandvik HT-9. Corrosion was nearly independent of surface preparation, but in two cases, the presence of mill scale on the surface prior to steam exposure seemed to retard oxidation in steam

  20. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  1. Defect transformation in GSGG crystals during chromium ion activation

    International Nuclear Information System (INIS)

    Absorption and induced absorption spectra, dose dependence of induced absorption, thermoluminescence of GSGG crystals, nominally pure and activated with chromium and neodymium ions in different concentrations, are investigated. It is shown that it is chromium ion presence in large concentration that decreases the induced coloration in GSGG crystals after γ-irradiation at 300 K. Optimum concentration of chromium ions for the minimum of induced coloration are found. The mechanism of decrease of induced coloration consisting in Fermi level displacement by chromium ion activation is established. Defect concentration and localization and recombination possibilities of electrons and holes in GSGG crystals are estimated by computer simulation

  2. Tribological Characteristics of Chromium-active Carbon Electroplated Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    GUKa-fi; HUAMeng; Yi-min

    2004-01-01

    A process of chromium electroplating using a standard bath with additives and active carbon particles was reported, and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table wear tester were i nvestig(aed. Experimental results indicate that the electroplated chromium-active carbon composite coatings exhibited the low friction coefficient anti excellent anti-wear properties whets coffered with the normal chromium electroplated ones. The formation of active carbon particles within the chromium matrices can be explained by SEM analysis and the mechanis of wear resistance of the composite coatings were studied.

  3. Method of trivalent chromium concentration determination by atomic spectrometry

    Science.gov (United States)

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  4. Influence of Chelating Agents on Chromium Fate in Sediment

    Institute of Scientific and Technical Information of China (English)

    WANGXIAOCHANG; SUNJINHE; 等

    1996-01-01

    A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment.The amount of adsorbed chromium(VI) in sediment decreased slightly by 5%-10% because of addition of chelating agents.Chelating agents inhibited the removal of Cr(Ⅲ)by sediment from solutions and the inhibiting effect was in the order:citric acid>tartaric acid>EDTA,Salicylic acid.No effect of chelating agents on desorption of chromium in sediment was observed.

  5. The effect of chemical composition on the behaviour of austenitic corrosion-resistant steels in high-temperature sodium

    International Nuclear Information System (INIS)

    Nonstabilized and stabilized chromium-nickel and chromium-nickel-molybdenum steels were studied in an experimental sodium loop. Sodium volume in the loop was ca. 6 l, sodium circulation rate was 0.1 m/s at the temperature gradient ΔT=100 degC. Steel samples were in the shape of slabs 60x12x1 mm in dimension. Prior to exposure, the samples were ground with metallographic paper, gradually of finer grits, cleaned in diluted ammonia, degreased and weighed. After the 1000-hour exposure the samples were removed under the argon atmosphere, cleaned, dried, and weighed. The chemical composition of steels is tabulated. The effect of chemical composition was shown on the corrosion behaviour of austenitic corrosion resistant steels in high-temperature sodium at convection flow. The obtained results indicate the action of carbon, molybdenum and the stabilizer (Ti). For chromium-nickel nonstabilized steels the possibility was shown of interpreting the weight changes using the carbon transfer analysis. In other materials the observed weight changes were interpreted using the concept of competition behaviour of alphagenous and gammagenous elements during the change in alloy elements diffusion in sodium. It was also shown that after high-temperature exposure in either the sodium or the argon atmosphere the mechanical properties of austenitic steels mainly depended on the process of the carbon exchange of these materials with sodium. (J.B.)

  6. Thermodynamic Calculation Study on Effect of Manganese on Stability of Austenite in High Nitrogen Stainless Steels

    Science.gov (United States)

    Wang, Qingchuan; Zhang, Bingchun; Yang, Ke

    2016-07-01

    A series of high nitrogen steels were studied by using thermodynamic calculations to investigate the effect of manganese on the stability of austenite. Surprisingly, it was found that the austenite stabilizing ability of manganese was strongly weakened by chromium, but it was strengthened by molybdenum. In addition, with an increase of manganese content, the ferrite stabilizing ability of chromium significantly increased, but that of molybdenum decreased. Therefore, strong interactions exist between manganese and the other alloying elements, which should be the main reason for the difference among different constituent diagrams.

  7. Effect of V and Nb on the Microstructure and Creep Property of High Chromium (12%Cr) Ferritic Steel%V和Nb对12%Cr铁索体钢微观组织和蠕变特性的影响

    Institute of Scientific and Technical Information of China (English)

    沈喜训; 刘俊亮; 徐洲

    2012-01-01

    The effect of trace amounts of vanadium and niobium on the microstructure and the distribution and morphology of precipitates of 12%Cr ferritic heat resistant steel was studied by the optical microscopy (OM) and the transmission electron microscopy (TEM) equipped with energy dispersive X-ray spectroscopy (EDS). The testing results illuminated that the ferrite steel with V and Nb holds a narrow martensite lath structure. It is also found that the M23C6-type carbides combined with the MX-type carbonitrides, have fine small particle size and precipitate along all sorts of boundaries and in the δ-ferrite phase in the manner of acicular or clubbed shape while the M23C6-type carbides singly precipitated present a rectangle or ellipse shape with a relative larger particle size. The above optimized structure and the dispersed strengthening from MX-type carbinitrides itself restrain the recovery and recrystallization of tempered martensite structure, and thus improve the creep-resistant of ferrite steel.%利用光学显微镜和透射电子显微镜以及光电子能谱分析方法,研究了元素V和Nb对12%Cr铁素体耐热钢的微观组织和析出相的形态和分布的影响.结果表明:添加V和Nb的铁素体钢具有更窄的马氏体板条组织;附于MX型碳氮化物生长的M23C6碳化物呈细小的针状或短棒状析出,而单独析出的M23 C6尺寸较大,呈椭圆形.这些组织上的优化和MX型碳氮化物的弥散析出有效抑制了回火马氏体组织的回复和再结晶,提高了铁素体钢的蠕变抗力.

  8. Corrosion behavior of carbon steels under tuff repository environmental conditions

    International Nuclear Information System (INIS)

    Carbon steels may be used for borehole liners in a potential high-level nuclear waste repository in tuff in Nevada. Borehole liners are needed to facilitate emplacement of the waste packages and to facilitate retrieval of the packages, if required. Corrosion rates of low carbon structural steels AISI 1020 and ASTM A-36 were determined in J-13 well water and in saturated steam at 1000C. Tests were conducted in air-sparged J-13 water to attain more oxidizing conditions representative of irradiated aqueous environments. A limited number of irradiation corrosion and stress corrosion tests were performed. Chromium-molybdenum alloy steels and cast irons were also tested. These materials showed lower general corrosion but were susceptible to stress corrosion cracking when welded. 4 references, 4 tables

  9. MODULATED STRUCTURES AND ORDERING STRUCTURES IN ALLOYING AUSTENITIC MANGANESE STEEL

    Institute of Scientific and Technical Information of China (English)

    L. He; Z.H. Jin; J.D. Lu

    2001-01-01

    The microstructure of Fe-10Mn-2Cr-1.5C alloy has been investigated with transmission electron microscopy and X-ray diffractometer. The superlattice diffraction spots and satellite reflection pattrens have been observed in the present alloy, which means the appearence of the ordering structure and modulated structure in the alloy. It is also proved by X-ray diffraction analysis that the austenite in the alloy is more stable than that in traditional austenitic manganese steel. On the basis of this investigation,it is suggested that the C-Mn ordering clusters exist in austenitic manganese steel and the chromium can strengthen this effect by linking the weaker C-Mn couples together,which may play an important role in work hardening of austenitic manganese steel.

  10. Investigation on different oxides as candidates for nano-sized ODS particles in reduced-activation ferritic (RAF) steels

    Science.gov (United States)

    Hoffmann, Jan; Rieth, Michael; Lindau, Rainer; Klimenkov, Michael; Möslang, Anton; Sandim, Hugo Ricardo Zschommler

    2013-11-01

    Future generation reactor concepts are based on materials that can stand higher temperatures and higher neutron doses in corrosive environments. Oxide dispersion strengthened steels with chromium contents ranging from 9 to 14 wt.% - produced by mechanical alloying - are typical candidate materials for future structural materials in fission and fusion power plants.

  11. A ferric-austenitic CrNiMoN steel alloy to be used as material to manufacture welded components

    International Nuclear Information System (INIS)

    A chromium-nickel-molybdenum-nitrogen steel alloy (ferritic-austenite) is used to manufacture welded articles which without thermal treatment are resistant to pitting corrosion, intergranular corrosion (Monypenny-Stauss test) or boiling in 65% nitric acid with subsequent cross-breaking test. (IHOE)

  12. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  13. 含镍、铬固体废弃物资源化利用工艺研究%The Technical Study on Recycling of Waste Containing Nickel and Chromium

    Institute of Scientific and Technical Information of China (English)

    赵海泉; 齐渊洪; 史永林; 冯焕林; 那贤昭

    2015-01-01

    不锈钢尘、泥及氧化铁皮等固体废弃物因含有大量的镍、铬等重金属,如处理不当,不仅造成资源浪费,而且严重污染环境,尤其存在六价铬污染。镍、铬是不锈钢生产必需的合金,随着资源日益枯竭,镍、铬资源的回收对不锈钢产业的可持续发展意义远大。在研究含镍、铬固体废弃物基本特性及其当前回收利用基础上,阐述了OXYCUP工艺的机理及优点。该工艺首先将不锈钢除尘灰、尘泥、氧化铁皮等废弃资源制成含碳砖;再经富氧竖炉冶炼出含铬镍铁水,返回到不锈钢冶炼工序利用,回收镍、铬资源,实现了含铬镍废弃资源循环利用,降低了不锈钢生产成本,实现了不锈钢生产的绿色、环保运营。%Solid waste of dust, mud and skin composed by oxide from producing stainless steel contain large amounts of Nickel, Chromium and other heavy metal. If they are not disposed properly, it works not only the waste of resource, but also the serious environmental pollution, especially pollution of six-price chromium. Nickel and Chromium alloy are necessary for stainless steel production, along with the nickel and chromium drying up, it is important for continuance advancing development of stainless steel industry that nickel, chromium is reused into producing stainless steel. In the research base of basic characteristics and using of solid waste containing nickel and chromium generated in the stainless steel production process, the paper expound the Oxycup technics. Firstly making bricks containing carbon in use of stainless steel dust, mud, iron oxide and other waste;then the bricks is smelt into high nickel-chromium alloy by Oxycup;lastly the alloy is returned to producing stainless steel by way of material, in order to reuse nickel and chromium , achieve the nickel chromium recycling, reduce the production cost of stainless steel, and realize that the production of stainless steel

  14. Effect of Alloying Elements on Thermal Wear of Cast Hot-Forging Die Steels

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-qi; CHEN Kang-min; CUI Xiang-hong; JIANG Qi-chuan; HONG Bian

    2006-01-01

    The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hot-forging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (1.5-2.5) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hot-forging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface.

  15. IRIS Toxicological Review of Hexavalent Chromium (2010 External Review Draft)

    Science.gov (United States)

    [UPDATE] New Schedule for IRIS Hexavalent Chromium Assessment In Feb 2012, EPA developed a new schedule for completing the IRIS hexavalent chromium assessment. Based on the recommendations of the external peer review panel, which met in May 2011 to review the dra...

  16. Chromium and Polyphenols From Cinnamon Improve Insulin Sensitivity

    Science.gov (United States)

    Naturally occurring compounds that have been shown to improve insulin sensitivity include chromium and polyphenols found in cinnamon. These compounds also have similar effects on insulin signaling and glucose control. The signs of chromium deficiency are similar to those for the metabolic syndrome ...

  17. Safety, absorption, and antioxidant effects of chromium histidine

    Science.gov (United States)

    Supplemental chromium has been shown to be involved in the alleviation of the metabolic syndrome, glucose intolerance, polycystic ovary syndrome, depression, excess body fat, and gestational, steroid-induced, and type 2 diabetes. Chromium amino acid complexes that contained histidine displayed cons...

  18. Toxicity and adaptation of Dictyosphaerium chlorelloides to extreme chromium contamination.

    Science.gov (United States)

    Sánchez-Fortún, Sebastián; López-Rodas, Victoria; Navarro, Macarena; Marvá, Fernando; D'ors, Ana; Rouco, Mónica; Haigh-Florez, David; Costas, Eduardo

    2009-09-01

    Metals are often spilled by industries into inland water environments, with adverse consequences. Numerous papers have reported that heavy metals produce massive destruction of algae. Nevertheless, algal populations seem to become tolerant when they have had previous exposures to heavy metals. Because the mechanisms allowing heavy metal tolerance of algae are not yet known, the present study analyzed the effect of hexavalent chromium on growth and photosynthetic performance of Dictyosphaerium chlorelloides, stressing on the adaptation mechanisms to chromium contamination. Growth and photosynthetic performance of algal cells were inhibited by Cr(VI) at 10 mg/L, and the 72-h median inhibition concentration was established as 1.64 and 1.54 mg/L, respectively. However, after further incubation for a three month period in an environment with 25 mg/L of chromium, some rare, chromium-resistant cells occasionally were found. A Luria-Delbrück fluctuation analysis was performed to distinguish between resistant algae arising from rare, spontaneous mutations and resistant algae arising from physiological adaptation and other adaptive mechanisms. Resistant cells arose only by spontaneous mutations before the addition of chromium, with a rate of 1.77 x 10(-6) mutants per cell division. From a practical point of view, the use of both chromium-sensitive and chromium-resistant genotypes could make possible a specific algal biosensor for chromium. PMID:19323601

  19. Residual Chromium in Leather by Instrumental Neutron Activation Analysis

    Directory of Open Access Journals (Sweden)

    S. Okoh

    2012-01-01

    Full Text Available Problem statement: Most tanning processes employ the use of chromium sulphate. For chromium tanned leather, finished products may contain high amount of residual chromium. This may pose some health hazards, since chromium is known to be toxic at elevated concentration. This justifies the need for the study. Approach: Various samples of leather were collected from a tannery, a leather crafts market, a leather dump site and from local tanners all in Kano, Nigeria in 2009. The samples were irradiated for 6 h in the inner site of the Nigerian Research Reactor (NIRR-1 at a flux of 5×1011 ncm-2 sec-1. Results: After evaluating the spectrum, the mean results for chromium in the samples were determined as 2.33±0.3, 2.23±0.3 and 2.93±0.4% for samples from the tannery, leather crafts market and leather dump sites respectively. Chromium concentration in samples collected from local tanners who use tannins from Acacia nilotica as tanning agent was below the detection limit of Instrumental Neutron Activation Analysis (INAA technique used in the study. Conclusion: Although, the concentrations of chromium in the analysed samples were not much higher than what were obtained in literature, they may be enough to sensitize the population that is allergic to chromium.

  20. Corrosion behavior of duplex stainless steel in sulphuric acid

    International Nuclear Information System (INIS)

    Duplex stainless steels are alloyed and processed to develop microstructure of roughly equal amounts of ferrite and austenite. Duplex stainless steel constitute a new class of materials because they have balanced amounts of ferrite and austenite. Since they have high content of chromium and molybdenum present, thus they have good corrosion resistance. Their corrosion resistance is double to that of annealed austenitic stainless steels with regard to pitting, crevice corrosion, sulphide stress corrosion, and chloride stress corrosion environments. The corrosion behavior of duplex stainless steel in various concentrations of sulphuric acid was studied. The reactions were carried out by placing the steel specimen in a beaker containing a known concentration of sulphuric acid at room temperature for a definite period. Pits were initiated in duplex stainless steel specimen and the propagation of pits depends upon the concentration of the acid solution in which the sample is in contact. The weight loss for definite period of time were measured and corrosion rates were calculated in millimetres per year. The corrosion rates increases with an increase in acid concentration at room temperature. A comparison of the results obtained from various concentrations of sulphuric acid with the same concentrations of nitric acid is also discussed. (author)

  1. The properties and weldability of low activation ferritic steels

    International Nuclear Information System (INIS)

    A series of ferritic steels patterned on the chromium-molybdenum alloys, 2 1/4Cr--1Mo, 9Cr--1MoVNb and 12Cr--1MoVW, were tested for weldability. These steels are being developed as candidates for the first wall and blanket structures of fusion reactors. Use of these materials will minimize the long term radioactive hazards associated with disposal after service. In these low activation alloys, elements which become activated during irradiation with long half lives (Mo and Nb) are replaced. The major changes include the replacement of molybdenum with tungsten, the addition of vanadium in 2 1/4% Cr steels, and the replacement of niobium in the 9% Cr steel with tantalum. These replacement elements radically modify both the mechanical properties and weldability of the alloys. In this study, the effect of the alloy modifications on the microstructure and the mechanical properties of the welds are presented. Bainitic steels (2 1/4 Cr%) usually exhibit good weldability, while the martensitic steels (5, 9 and 12 Cr%) are suspectable to embrittlement in the heat affected zone (HAZ). The objective of this study was to characterize the welded microstructure and mechanical properties of these low activation alloys. Autogeneous bead-on-plate welds were produced using the gas tungsten arc welding (GTAW) process. Microstructure, microhardness, weld bend and tensile test results are reported for the base metal, heat affected zone and fusion zone of the weld. 46 refs., 36 figs., 14 tabs

  2. Weldability of stabilized 2 1/4Cr 1Mo Nb steel for tubes of fast reactor steam generators

    International Nuclear Information System (INIS)

    Thermorestor-W equipment was used in the study of hot and cold crackability of low-alloy chromium-molybdenum steel stabilized with niobium. The steel is designed for tubes of fast reactor steam generators. The effect of pre-heating was studied with respect to weldability. The steel is stabilized to a degree which excludes sodium-induced decarburization. Samples of three melts were used in the experiments. The steel was found not to be subject to cold crackability; however, hot crackability may be expected. It was also found that overstabilization of the steel led to an amount of eutectic sufficient for crack self-sealing. This effect, however, is not acceptable with regard to notch impact strength. In view of the possible occurrence of annealing cracks, heating rate control is recommended when the steel is heated to the annealing point. (Z.M.)

  3. CHROMIUM BIOACCUMULATION FROM COMPOSTS AND VERMICOMPOSTS BASED ON TANNERY SLUDGES

    Directory of Open Access Journals (Sweden)

    Krzysztof GONDEK

    2008-07-01

    Full Text Available Storage of waste substances is not indifferent to ecological equilibrium in the environment therefore should not be the ultimate way to limit waste arduousness. Therefore, the conducted investigations aimed to determine the effect of tannery composts and vermicomposts loaded with chromium on this element bioaccumulation in earthworm bodies and biomass of selected plants. Chromium in composts and vermicomposts based on tannery sludges occurred in small quantities and easily soluble compounds. Chromium concentrations in redworm biomass points to this metal accumulation in Eisenia fetida body tissues. This element content in redworm biomass was signifi cantly positively correlated with its content in composts. Chromium content in plants was diversifi ed and on treatments was generally smaller than on mineral treatment or farmyard manure. Chromium absorbed by plants was stored mainly in the root systems, and over the norm content of this element found in vermicomposts did not cause its excessive accumulation in plant biomass.

  4. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Wang, Yuan-Shan; Pan, Zhi-Yan; Lang, Jian-Min; Xu, Jian-Miao; Zheng, Yu-Guo

    2007-08-17

    Chromium in tannery sludge will cause serious environmental problems and is toxic to organisms. The acidophilic sulfur-oxidizing Acidithiobacillus thiooxidans can leach heavy metals form urban and industrial wastes. This study examined the ability of an indigenous sulfur-oxidizing A. thiooxidans to leach chromium from tannery sludge. The results showed that the pH of sludge mixture inoculated with the indigenous A. thiooxidans decreased to around 2.0 after 4 days. After 6 days incubation in shaking flasks at 30 degrees C and 160 rpm, up to 99% of chromium was solubilized from tannery sludge. When treated in a 2-l bubble column bioreactor for 5 days at 30 degrees C and aeration of 0.5 vvm, 99.7% of chromium was leached from tannery sludge. The results demonstrated that chromium in tannery sludge can be efficiently leached by the indigenous A. thiooxidans.

  5. Biosorption potency of Aspergillus niger for removal of chromium (VI).

    Science.gov (United States)

    Srivastava, Shaili; Thakur, Indu Shekhar

    2006-09-01

    Aspergillus niger isolated from soil and effluent of leather tanning mills had higher activity to remove chromium. The potency of Aspergillus niger was evaluated in shake flask culture by absorption of chromium at pH 6 and temperature 30 degrees C. The results of the study indicated removal of more than 75% chromium by Aspergillus niger determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometry after 7 days. Study of microbial Cr(VI) reduction and identification of reduction intermediates has been hindered by the lack of analytical techniques that can identify the oxidation state with subcellular spatial resolution. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), which indicated an accumulation of chromium in the fungal mycelium. PMID:16874547

  6. The effect of chromium coating in RP technology for airfoil manufacturing

    Indian Academy of Sciences (India)

    S Daneshmand; C Aghanajafi; A Ahmadi Nadooshan

    2010-10-01

    Most wind tunnel models are fabricated of all metal components using computerized numerical control (CNC) milling machines. Fabrication of metal wind tunnel models is very expensive and time consuming. The models can require months to manufacture and are often made by small high technology companies that specialize in wind tunnel model manufacture. Using rapid prototype manufacturing techniques and materials in this way significantly reduces time and cost of production of wind tunnel models. This study was done by fused deposition modelling and their ability to make components for wind tunnel models in a timely and cost effective manner. This paper discusses the application of wind tunnel model configuration constructed using FDM and FDM with chromium coating for subsonic wind tunnel testing. A study was undertaken comparing a rapid prototyping model constructed of FDM technologies using polycarbonate to that of a standard machined steel model. Results from this study show relatively good agreement among the three models and rapid prototyping method with chromium coating does have an effect on the aerodynamic characteristics which produced satisfactory results.

  7. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Serdar, Marijana [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Meral, Cagla [Middle East Technical University, Department of Civil Engineering, Ankara (Turkey); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bjegovic, Dubravka [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Wenk, Hans-Rudolf [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  8. High-Power Diode Laser-Treated 13Cr4Ni Stainless Steel for Hydro Turbines

    Science.gov (United States)

    Mann, B. S.

    2014-06-01

    The cast martensitic chromium nickel stainless steels such as 13Cr4Ni, 16Cr5Ni, and 17Cr4Ni PH have found wide application in hydro turbines. These steels have adequate corrosion resistance with good mechanical properties because of chromium content of more than 12%. The 13Cr4Ni stainless steel is most widely used among these steels; however, lacks silt, cavitation, and water impingement erosion resistances (SER, CER, and WIER). This article deals with characterizing 13Cr4Ni stainless steel for silt, cavitation, and water impingement erosion; and studying its improved SER, CER, and WIER behavior after high-power diode laser (HPDL) surface treatment. The WIER and CER have improved significantly after laser treatment, whereas there is a marginal improvement in SER. The main reason for improved WIER and CER is due to its increased surface hardness and formation of fine-grained microstructure after HPDL surface treatment. CER and WIER of HPDL-treated 13Cr4Ni stainless steel samples have been evaluated as per ASTM G32-2003 and ASTM G73-1978, respectively; and these were correlated with microstructure and mechanical properties such as ultimate tensile strength, modified ultimate resilience, and microhardness. The erosion damage mechanism, compared on the basis of scanning electron micrographs and mechanical properties, is discussed and reported in this article.

  9. Selenium protection from cadmium and chromium poisoning

    International Nuclear Information System (INIS)

    The interaction of selenium with cadmium and chromium was studied in 168 chicken-broilers (DWCxWR) divided into four equal groups. Eight-week old control animals received an intravenous dose of /sup 115m/Cd Chloride 370 KBq/Kg (Group I), or 51Cr Chloride 370 KBq/Kg (Group II). The kinetics of these isotopes were studied by scintillation spectrometry (NaI/TI) carried out for whole blood, plasma, plasma proteins, urine, feces and homogenates of all organs at various time intervals. Animals in Groups III and IV received eight subcutaneous doses of sodium selenate (5ug) at 8-week intervals prior to /sup 115m/Cd or 51Cr. The kinetics of these elements were studied as in the previous two groups. It was found that selenium affected those kinetics in two ways: (a) by increasing the excretion of Cd by 11 +/- 3% (P < 0.001) and that of Cr by 7 +/- 1% (P < 0.001); and (b) by favoring redistribution of those elements, with significant (P < 0.001) reductions in liver, endocrine glands and kidney and increases (P < 0.01) in bone. The study suggests that selenium protects the animals' vital organs from environmental pollutants, such as cadmium and chromium

  10. Cesium corrosion process in Fe–Cr steel

    International Nuclear Information System (INIS)

    A cesium corrosion out-pile test was performed to Fe–Cr steel in a simulated fuel pin environment. In order to specify the corrosion products, the corroded area was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A cesium corrosion process in Fe–Cr steel was successfully developed proceeding from both experimental results and thermochemical consideration. The corroded area was mainly formed by Fe layer and Fe depleted oxidized layer. The Fe depleted oxidized layer was formed by Cr0.5Fe0.5 and Cr2O3. The presumed main corrosion reactions were 2Cr+2/3 O2→Cr2O3(ΔG650°C=-894.1kJ/mol) and Cr23C6+46Cs+46O2→23Cs2CrO4+6C(ΔG650°C=-25018.1kJ/mol). Factors of these reactions are chromium, carbon, oxygen and cesium. Therefore, cesium corrosion progression must be dependent on the chromium content, carbon content in the steel, the supply rate of oxygen and temperature which correlated with the diffusion rate of cesium and oxygen into the specimen

  11. Effect of grain refinement and electrochemical nitridation on corrosion resistance of the 316L stainless steel for bipolar plates in PEMFCs environment

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Hongyun, Luo

    2015-10-01

    The stain-induced nanocrystalline α'-martensite was obtained by cryogenic cold rolling at liquid-nitrogen temperature for 316L stainless steel. The electrochemical results showed nanocrystalline 316L stainless steel deteriorated its corrosion resistance in a typical proton exchange membrane fuel cell environment compared with coarse grained one. However, comparing with electrochemically nitrided coarse grained stainless steel, electrochemically nitrided nanocrystalline stainless steel improved significantly corrosion resistance in the same environment, which was supported further by Mott-Shottky analysis. X-ray photoelectron spectroscopy analysis revealed that the nanocrystalline promoted the enrichment of nitrogen and chromium and inhibited form of NH3 on the surface, which could significantly improve the corrosion resistance of the 316L stainless steel. The present study showed that the electrochemically nitrided 316L stainless steel was more suitable for the bipolar plates in proton exchange membrane fuel cell environment than the untreated one, especially for nanocrystalline stainless steel.

  12. Improved corrosion resistance and interfacial contact resistance of 316L stainless-steel for proton exchange membrane fuel cell bipolar plates by chromizing surface treatment

    Science.gov (United States)

    Lee, S. B.; Cho, K. H.; Lee, W. G.; Jang, H.

    The electrochemical performance and electrical contact resistance of chromized 316 stainless-steel (SS) are investigated under simulated operating condition in a proton-exchange membrane fuel cell (PEMFC). The corrosion resistance of the chromized stainless steel is assessed by potentiodynamic and potentiostatic tests and the interfacial contact resistance (ICR) is examined by measuring the electrical contact resistance as a function of the compaction force. The results show that the chromizing surface treatment improves the corrosion resistance of the stainless steel due to the high-chromium concentration in the diffuse coating layer. On the other hand, the excess Chromium content on the surface increases the contact resistance of the steel plate to a level that is excessively high for commercial applications. This study examines the root cause of the high-contact resistance after chromizing and reports the optimum process to improve the corrosion resistance without sacrificing the ICR by obtaining a chrome carbide on the outer layer.

  13. Standard Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel-Chromium-Molybdenum (UNS N08367), Nickel-Chromium-Molybdenum-Columbium (Nb) (UNS N06625), Nickel-Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel-Chromium-Molybdenum (UNS N08367), Nickel-Chromium-Molybdenum-Columbium (Nb) (UNS N06625), Nickel-Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts

  14. 75 FR 65067 - National Emission Standards for Hazardous Air Pollutant Emissions: Hard and Decorative Chromium...

    Science.gov (United States)

    2010-10-21

    ... Decorative Chromium Electroplating and Chromium Anodizing Tanks; Group I Polymers and Resins; Marine Tank...: Hard and Decorative Chromium Electroplating and Chromium Anodizing Tanks; Group I Polymers and Resins... Tanks. Group I Polymers and Resins Production.. Scott Throwe, (202) 564-7013,...

  15. Wear Resistance of H13 and a New Hot-Work Die Steel at High temperature

    Science.gov (United States)

    Li, Shuang; Wu, Xiaochun; Chen, Shihao; Li, Junwan

    2016-07-01

    The friction and wear behaviors of a new hot-work die steel, SDCM-SS, were studied at high temperature under dry air conditions. The wear mechanism and microstructural characteristics of the SDCM-SS steel were also investigated. The results showed that the SDCM-SS steel had greater wear resistance compared with H13 steel; this was owed to its high oxidizability and temper stability. These features facilitate the generation, growth, and maintenance of a tribo-oxide layer at high temperature under relatively stable conditions. The high oxidizability and thermal stability of the SDCM-SS steel originate from its particular alloy design. No chromium is added to the steel; this ensures that the material has high oxidizability, and facilitates the generation of tribo-oxides during the sliding process. Molybdenum, tungsten, and vanadium additions promote the high temper resistance and stability of the steel. Many fine Mo2C and VC carbides precipitate during the tempering of SDCM-SS steel. During sliding, these carbides can delay the recovery process and postpone martensitic softening. The high temper stability postpones the transition from mild to severe wear and ensures that conditions of mild oxidative wear are maintained. Mild oxidative wear is the dominant wear mechanism for SDCM-SS steel between 400 and 700 °C.

  16. Chromium-induced membrane damage: protective role of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100gbody weight). It has been observed that the intoxication with chromium ( i. p. ) at the dose of 0.8 mg/100g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospbolipid of both liver and kidney. The alkaline pbosphatase, total ATPase and Na + -K + -ATPase activities were significantly decreased in both liver and kidney after chromium treatment,except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid ( i.p. at the dose of 0.5 mg,/100g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  17. Bioavailability of a potato chromium complex to the laboratory rat

    International Nuclear Information System (INIS)

    Research objectives were to study the effect of food source, preparation method and chemical form on bioavailability of chromium. Chromium concentration in potatoes was determined and tubers labeled either intrinsically or extrinsically with radioactive chromate. A labeled chromium complexes was isolated from preparations of raw, baked or fried potatoes and chromatographed on gel permeation media. Availability of the potato chromium complex to the rat was examined in three feeding studies. Animals were dosed with radioactive extrinsically or intrinsically labeled potato extract or with chromate. A labeled chromium complex was isolated from gastrointestinal contents of rats and chromatographed. Potato pulp and peel contained 1.63 and 2.70 μg Cr/g tissue respectively. True and apparent absorption from extrinsically labeled feedings were 33.4 +/- 4.7 and 29.8 +/- 11.2% respectively, and no differences existed between absorption from raw and cooked potatoes. Absorption from the extrinsic labeled potatoes differed significantly from absorption of inorganic chromatium. Apparent absorption of raw (11.1 +/- 7.9%) and cooked (-0.7 +/- 2.8%) intrinsically labeled feedings differed significantly. Absorption of inorganic chromium was 17.8% (true) and 11.5% (apparent). Examination of the chromium complex isolated from gastrointestinal tract contents showed enlargement of the complex in the stomach after consumption

  18. Stabilization of chromium salt in ordinary portland cement

    Indian Academy of Sciences (India)

    Damir Barbir; Pero Dabić; Petar Krolo

    2012-12-01

    Ordinary Portland cement (OPC) samples containing the chromium salt have been investigated using differential microcalorimetry, conductometry and Fourier transform infrared spectroscopic analysis. The effect of chromium on OPC hydration was evaluated by continuous observing of early hydration. The microcalorimetrical results show that with increasing the share of chromium salt, heat maximums assume lower values and the occurrence of the maximum registered in the earlier hydration times. Conductometrical measurements show that with increasing addition of chromium salt, curve did not show any specific shape, immediate drop in specific conductivity is noticed and the maximum is reached earlier. This coincides with microcalorimetrical results. It can be concluded that the addition of chromium does not affect the mechanism of the hydration process, but it does affect the kinetic parameters and dynamics of the cement hydration process. It was found that chromium salt addition to the cement–water system is acceptable up to 2 wt.%. According to standard EN 196-3 for OPC, the beginning of binding time should occur after 60 minutes. Increased amount of chromium over 2 wt.% significantly accelerate the beginning of binding time and for the system it is not acceptable.

  19. Workshop on effects of chromium coating on Nb3Sn superconductor strand: Proceedings

    International Nuclear Information System (INIS)

    This report discusses the following topics: Chromium coating on superconductor strand -- an overview; technology of chromium plating; comparison of wires plated by different platers; search for chromium in copper; strand manufactures' presentations; chromium plating at the Lawrence Livermore National Laboratory; a first look at a chromium plating process development project tailored for T.P.X. and I.T.E.R. strand; and influence of chromium diffusion and related phenomena on the reference ratios of bare and chromium plated Nb3Sn strand

  20. Workshop on effects of chromium coating on Nb{sub 3}Sn superconductor strand: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-12

    This report discusses the following topics: Chromium coating on superconductor strand -- an overview; technology of chromium plating; comparison of wires plated by different platers; search for chromium in copper; strand manufactures` presentations; chromium plating at the Lawrence Livermore National Laboratory; a first look at a chromium plating process development project tailored for T.P.X. and I.T.E.R. strand; and influence of chromium diffusion and related phenomena on the reference ratios of bare and chromium plated Nb{sub 3}Sn strand.

  1. Ultrahigh carbon steels, Damascus steels, and superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Sherby, O.D. [Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Wadsworth, J. [Lawrence Livermore National Lab., CA (United States)

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  2. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  3. Airborne exposure to inhalable hexavalent chromium in welders and other occupations: Estimates from the German MEGA database.

    Science.gov (United States)

    Pesch, Beate; Kendzia, Benjamin; Hauptmann, Kristin; Van Gelder, Rainer; Stamm, Roger; Hahn, Jens-Uwe; Zschiesche, Wolfgang; Behrens, Thomas; Weiss, Tobias; Siemiatycki, Jack; Lavoué, Jerome; Jöckel, Karl-Heinz; Brüning, Thomas

    2015-07-01

    This study aimed to estimate occupational exposure to inhalable hexavalent chromium (Cr(VI)) using the exposure database MEGA. The database has been compiling Cr(VI) concentrations and ancillary data about measurements at German workplaces. We analysed 3659 personal measurements of inhalable Cr(VI) collected between 1994 and 2009. Cr(VI) was determined spectrophotometrically at 540 nm after reaction with diphenylcarbazide. We assigned the measurements to pre-defined at-risk occupations using the information provided about the workplaces. Two-thirds of the measurements were below the limit of quantification (LOQ) and multiply imputed according to the distribution above LOQ. The 75th percentile value was 5.2 μg/m(3) and the 95th percentile was 57.2 μg/m(3). We predicted the geometric mean for 2h sampling in the year 2000, and the time trend of Cr(VI) exposure in these settings with and without adjustment for the duration of measurements. The largest dataset was available for welding (N = 1898), which could be further detailed according to technique. The geometric means were above 5 μg/m(3) in the following situations: spray painting, shielded metal arc welding, and flux-cored arc welding if applied to stainless steel. The geometric means were between 1 μg/m(3) and 5 μg/m(3) for gas metal arc welding of stainless steel, cutting, hard-chromium plating, metal spraying and in the chemical chromium industry. The exposure profiles described here are useful for epidemiologic and industrial health purposes. Exposure to Cr(VI) varies not only between occupations, but also within occupations as shown for welders. In epidemiologic studies, it would be desirable to collect exposure-specific information in addition to the job title. PMID:25979374

  4. THE CONSEQUENCES ON BLOOD GSH DYNAMICS ON WISTAR FEMALE RATS AT AD LIBITUM CHROMIUM (VI ADMINISTRATION DURING THE GESTATION AFTER THE WEAN

    Directory of Open Access Journals (Sweden)

    CORINA GRĂVILĂ

    2013-07-01

    Full Text Available Chromium (VI is a widely used industrial chemical, extensively used in paints, metal finishes, steel including stainless steel manufacturing, alloy cast irons, chrome, and wood treatment. In nature chromium occurs in divalent, trivalent and hexavalent forms. Hexavalent chromium predominates over the trivalent form in natural waters. We have studied the influence of potassium dichromate (K2Cr2O7 on blood GSH values in rats. This study was carried out on 28 Wistar adult female rats, divided in 3 experimental groups (E and one control group (C. The rats were feed with 25ppm (LOAEL, 50ppm and 75ppm potassium dichromate, ad libitum, in drinking water, during the gestation. The control batch received tap water. Reduced glutathione (GSH was measured quantitatively after the wean using a Perkin-Elmer spectrophotometer, through Beutler et al. method, at 412nm. This study reports that potassium dichromate exposure induced the depletion of blood GSH because Cr(VI can generate reactive oxygen species (ROS. It can induce oxidative stress and toxicity.

  5. Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity

    OpenAIRE

    B. Dheeba; Sampathkumar, P; Kannan, K.

    2015-01-01

    Zea mays (maize) and Vigna radiata (green gram) are found to be the chromium (Cr) tolerant and sensitive plants, respectively. In the present paper, we investigate the reduction of the toxicity of Cr in the sensitive plants by the mixed crop cultivation in the field using various amendments. Further, the potassium dichromate was used as the source of hexavalent Cr. The results indicated that Cr adversely affects both the growth and yield of plants. The soil properties vary with Cr and differe...

  6. [Kinetics of cell division in peripheral blood lymphocytes of stainless steel welders].

    Science.gov (United States)

    Myślak, M; Kośmider, K

    1997-01-01

    Stainless steel welders are not potential occupational risk of geno- and cytotoxic exposure to chemical mutagens and carcinogens contained in welding fumes. The studies of biological activity of welding fumes evidence their cytotoxicity which depends on chromium and nickel content. In 20 stainless steel welders exposed to chromium and nickel contained in welding fumes, kinetics of cell division was assessed in the culture of peripheral blood lymphocytes. No significant differences were found in the cell division rates between the group of exposed welders and the controls. In welders who smoke, the number of cells present after 70 hrs in the third mitotic division, was reduced in comparison to smokers in the control group what may be considered as a symptom of cytotoxic effect of a combined exposure to welding fumes and tobacco smoke.

  7. Laser Alloyed Coatings of TiB2/Graphite on 9Cr18 Stainless Steel Surface

    Institute of Scientific and Technical Information of China (English)

    YING Li-xia; WANG Li-qin; JIA Xiao-mei; GU Le

    2007-01-01

    Modified coatings including carbide of iron, nickel, chromium, silicon, and titanium are obtained on 9Cr18 stainless steel surface by laser alloying. The processing method, the microstructure, the interface, the tribological properties, and the forming mechanisms of the coatings are analyzed. The results show that the microstructure of the alloyed coatings is mainly irregular FeC crystals. Carbides of chromium and iron are around the FeC crystals. Small granular TiC disperses in the alloyed coatings. The microhardness of the alloyed coatings is greatly improved because of the occurrence of carbide with high hardness. At the same time, the wear resistance of the alloyed coatings are higher than that of 9Cr18 stainless steel.

  8. A REVIEW OF BIOSORPTION OF CHROMIUM IONS BY MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Inga Zinicovscaia

    2012-12-01

    Full Text Available Due to its widespread industrial use, chromium has become a serious pollutant in diverse environmental settings. The main source of chromium pollution including the Republic o Moldova is industry. It is a great need to develop new eco-friendly methods of chromium removal. Biosorption of heavy metals is a most promising technology involved in the removal of toxic metals from industrial waste streams and natural waters. This article is an extended abstract of a communication presented at the Conference Ecological Chemistry 2012

  9. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    Energy Technology Data Exchange (ETDEWEB)

    Durmaz, M., E-mail: mdurmaz@sakarya.edu.tr; Abakay, E.; Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey); Kilinc, B. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layer formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr{sub 2}N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV{sub 0.025}. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.

  10. Hardening of aged duplex stainless steels by spinodal decomposition.

    Science.gov (United States)

    Danoix, F; Auger, P; Blavette, D

    2004-06-01

    Mechanical properties, such as hardness and impact toughness, of ferrite-containing stainless steels are greatly affected by long-term aging at intermediate temperatures. It is known that the alpha-alpha' spinodal decomposition occurring in the iron-chromium-based ferrite is responsible for this aging susceptibility. This decomposition can be characterized unambiguously by atom probe analysis, allowing comparison both with the existing theories of spinodal decomposition and the evolution of some mechanical properties. It is then possible to predict the evolution of hardness of industrial components during service, based on the detailed knowledge of the involved aging process. PMID:15233853

  11. Thermal incorporation behavior during the reduction and stabilization of chromium wastes

    OpenAIRE

    Yang, Jun; 楊駿

    2015-01-01

    The possibility of employing periclase to stabilize chromium in chromium wastes into spinel-based ceramics through thermal method was investigated by heating mixture of simulated chromium waste and magnesium oxide. Different types of magnesium oxide precursors were introduced to incorporate chromium oxide into magnesiochromite (MgCr2O4) ranging from 550 ºC to 1350 ºC. Magnesium oxide precursors of both types can effectively incorporate chromium oxide but via different mechanisms. Three main f...

  12. Effects of Supplemental Dietary Chromium on Yield and Nutrient Digestibility of Laying Hens Under Low Temperature

    OpenAIRE

    ŞAHİN, Kazım; ERTAŞ, O. Nihat; GÜLER, Talat; ÇİFTÇİ, Mehmet

    2001-01-01

    This study was conducted to determine the effects of chromium picolinate (CrPi) added into diet containing 710.3 ppb chromium on yield and nutrient digestibility of laying hens at low temperature. Forty-six-week-old laying hens were randomly assigned to four groups of 30 hens per group. Treatment groups were fed different supplemental dietary chromium levels. Thus, hens were fed diets with no supplemental chromium (Control Group), 100 ppb of supplemental chromium (100 Group), 200 ppb of s...

  13. The fate of chromium during tropical weathering

    DEFF Research Database (Denmark)

    Berger, Alfons; Frei, Robert

    2014-01-01

    We performed a mineral, geochemical and Cr–Sr–Pb isotope study on a laterite profile developed on ca. 540 Ma old tonalitic bedrock in Madagascar with special emphasis on the behavior of chromium during tropical weathering. The observed strong depletions of Ca, Si, and P, and enrichment of Fe and Al...... of the soil profile relative to stage one altered saprolite. This gain in Cr is accompanied by decreasing δ53Cr values and can be explained by partial immobilization (possibly by adsorption/coprecipitation on/with Fe-oxy-hydroxides) of mobile Cr(III) during upward transport in the weathering profile....... The negatively fractionated δ53Cr values measured in the weathering profile relative to the unaltered tonalitic bedrock characterized by a high temperature magmatic inventory Cr isotope signature are consistent with loss of a positively fractionated Cr(VI) pool formed during weathering. The predicted existence...

  14. Evaluation of chromium in red blood cells as an indicator of exposure to hexavalent chromium: An in vitro study.

    Science.gov (United States)

    Devoy, Jérôme; Géhin, Antoine; Müller, Samuel; Melczer, Mathieu; Remy, Aurélie; Antoine, Guillaume; Sponne, Isabelle

    2016-07-25

    Chromium(VI) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and whole blood (i.e., including plasma) are indicative of recent exposure, chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure. Before recommending Cr in RBC as a biological indicator of Cr(VI) exposure, in-vitro studies must be undertaken to assess its reliability. The present study examines the relationship between the chromium added to a blood sample and that subsequently found in the RBC. After incubation of total blood with chromium, RBC were isolated, counted and their viability assessed. Direct analysis of chromium in RBC was conducted using Atomic Absorption Spectrometry. Hexavalent, but not trivalent Cr, was seen to accumulate in the RBC and we found a strong correlation between the Cr(VI) concentration added to a blood sample and the amount of Cr in RBC. This relationship appears to be independent of the chemical properties of the human blood samples (e.g., different blood donors or different reducing capacities). Even though in-vivo studies are still needed to integrate our understanding of Cr(VI) toxicokinetics, our findings reinforce the idea that a single determination of the chromium concentration in RBC would enable biomonitoring of critical cases of Cr(VI) exposure. PMID:27178267

  15. Corrosion behavior of some transition metals and 4340 steel metals exposed to sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Natishan, P.M.; Jones-Meehan, J.; Loeb, G.I.; Little, B.J.; Ray, R.; Beard, M.

    1999-11-01

    Microbial colonization of metals (zirconium, chromium, niobium, tantalum, molybdenum, tungsten, and type 4340 steel [UNS G43400]) and susceptibility of these metals to microbiologically influenced corrosion by sulfate-reducing bacteria was investigated. Environmental scanning electron microscopy characterization after 12 months and 21 months showed patchy biofilms on all metals except tungsten. Weight loss after 24 months for zirconium and niobium were either nonexistent or negligible, indicating that these metals did not experience MIC under the test conditions.

  16. Service behaviour of high speed steel rolling rolls used in hot strip mills

    International Nuclear Information System (INIS)

    Work rolls used in hot strip mills may be able to carry out severe actions: very high thermal stresses and wear, along with mechanical stresses due to normal rolling loads, which develop in the presence of cracks, produced by the former actions. The microstructure and the mechanical behaviour (strength and toughness) of high speed steels, which recently have been introduced in this applications, were studied in this work in comparison with high chromium cast irons. (Author) 7 refs

  17. Microstructure and properties of laser surface alloyed PM austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Z. Brytan

    2010-05-01

    Full Text Available Purpose: The purpose of this paper is to analyse the effect of laser surface alloying with chromium on the microstructural changes and properties of vacuum sintered austenitic stainless steel type AISI 316L (EN 1.4404.Design/methodology/approach: Surface modification of AISI 316L sintered austenitic stainless steel was carried out by laser surface alloying with chromium powder using high power diode laser (HPDL. The influence of laser alloying conditions, both laser beam power (between 0.7 and 2.0 kW and powder feed rate (1.0-4.5 g/min at constant scanning rate of 0.5m/min on the width of alloyed surface layer, penetration depth, microstructure evaluated by LOM, SEM x-ray analysis, surface roughness and microhardness were presented.Findings: The microstructures of Cr laser alloyed surface consist of different zones, starting from the superficial zone rich in alloying powder particles embedded in the surface; these particles protrude from the surface and thus considerably increase the surface roughness. Next is alloyed zone enriched in alloying element where ferrite and austenite coexists. The following transient zone is located between properly alloyed material and the base metal and can be considered as a very narrow HAZ zone. The optimal microstructure homogeneity of Cr alloyed austenitic stainless steel was obtained for powder feed rate of 2.0 and 4.5 g/min and laser beam power of 1.4 kW and 2 kW.Practical implications: Laser surface alloying can be an efficient method of surface layer modification of sintered stainless steel and by this way the surface chromium enrichment can produce microstructural changes affecting mechanical properties.Originality/value: Application of high power diode laser can guarantee uniform heating of treated surface, thus uniform thermal cycle across treated area and uniform penetration depth of chromium alloyed surface layer.

  18. Reduced creep strength and ductility of Type 304 steel in sodium

    International Nuclear Information System (INIS)

    Reductions in creep strength and ductility have been observed in Type 304 steel tested in flowing sodium. This effect is associated with a reduction in the extent of tertiary creep arising from more extensive surface grain boundary cracking in sodium. A mechanism involving the dissolution of chromium rich grain boundary carbides to allow the formation of a relatively brittle sodium chromite phase has been used to explain these results. (author)

  19. Hydrometallurgical treatments of steel making flue dusts. Tratamientos hidrometalurgicos de polvos de aceria

    Energy Technology Data Exchange (ETDEWEB)

    Alguacil, F.J.; Caravaca, C.; Cobo, A. (Centro Nacional de Investigaciones Metalurgica, CSIC, Madrid, (Spain))

    1994-01-01

    Steel making flue dusts are classified in most industrialized countries as hazardous residues because the metals contained such as cadmium, chromium and lead, among others metals, tend to leach under slightly acidic rainfall conditions. In the present work a number of hydrometallurgical processes in various stages of development, including some industrial ones, have surveyed. Those processes have been critically described in terms of chemistry, produced recovery and detoxification of the dusts. (Author) 21 refs.

  20. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    OpenAIRE

    Rômulo Ribeiro Magalhães de Sousa; Francisco Odolberto de Araújo; José Alzamir Pereira da Costa; Antonio Maia de Oliveira; Mineia Sampaio Melo; Clodomiro Alves Junior

    2012-01-01

    AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN), with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  1. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    Directory of Open Access Journals (Sweden)

    Rômulo Ribeiro Magalhães de Sousa

    2012-04-01

    Full Text Available AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN, with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  2. Corrosion stability of ferritic stainless steels for solid oxide electrolyser cell interconnects

    DEFF Research Database (Denmark)

    Palcut, Marián; Mikkelsen, Lars; Neufeld, Kai;

    2010-01-01

    Long-term oxidation behaviour of eight ferritic steels with 20–29 wt.% chromium (F 20 T, TUS 220 M, AL 453, Crofer 22 APU, Crofer 22 H, Sanergy HT, E-Brite and AL 29-4C) has been studied. The samples were cut into square coupons, ground and annealed for 140–1000 h at 1173 K in flowing, wet hydrogen...

  3. Effects of Chromium(VI) and Chromium(III) on Desulfovibrio vulgaris Cells

    Energy Technology Data Exchange (ETDEWEB)

    M.E. Clark; A. Klonowska; S.B. Thieman; B. Giles; J.D. Wall; and M.W. Fields

    2007-04-19

    Desulfovibrio vulgaris ATCC 29579 is a well studied sulfate reducer that has known capabilities of reducing heavy metals and radionuclides, like chromium and uranium. Cultures grown in a defined medium (i.e. LS4D) had a lag period of approximately 40 h when exposed to 50 μMof Cr(VI). Substrate analysis revealed that although chromium is reduced within the first 5 h, growth does not resume for another 35 h. During this time, small amounts of lactate are still utilized but the reduction of sulfate does not occur. Sulfate reduction occurs concurrently with the accumulation of acetate approximately 40 h after inoculation, when growth resumes. Similar amounts of hydrogen are produced during this time compared to hydrogen production by cells not exposed to Cr(VI); therefore an accumulation of hydrogen cannot account for the utilization of lactate. There is a significant decrease in the carbohydrate to protein ratio at approximately 25 h, and this result indicated that lactate is not converted to glycogen. Most probable number analysis indicated that cell viability decreased steadily after inoculation and reached approximately 6 x 104 cells/ml 20 h post-chromium exposure. Regeneration of reducing conditions during chromium exposure does not induce growth and in fact may make the growth conditions even more unfavorable. This result suggested that an increase in Eh was not solely responsible for the decline in viability. Cell pellets collected 10 h after chromium-exposure were unable to resume growth when suspended into fresh medium. Supernatants from these pellets were able to support cell growth upon re- inoculation. D. vulgaris cells treated with a non-dose dependent addition of ascorbate at the same time of Cr(VI) addition did not enter a lag period. Ascorbate added 3 h post-Cr(VI) exposure did not prevent the growth lag. These results indicated that Desulfovibrio utilized lactate to reduce Cr(VI) without the reduction of sulfate, that the decline in cell viability and

  4. Scientific Opinion on ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2012-11-01

    Full Text Available The Panel on Food Additives and Nutrient Sources added to Food (ANS provides a scientific opinion re-evaluating the safety of ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source. ChromoPrecise® is a yeast preparation with an enriched trivalent chromium content, obtained by culture of Saccharomyces cerevisiae in the presence of chromium chloride. A daily intake of 100 µg chromium(III. There are limited data on the nature and identity of the organic chromium(III compounds contained in chromium-enriched yeast and on their toxicokinetic and toxicodynamic behaviour in the body. Overall, the Panel concluded that the bioavailability in man of chromium from chromium-enriched yeast is potentially up to approximately ten times higher than that of chromium from chromium chloride. A NOAEL of 2500 mg/kg bw/day ChromoPrecise® was identified in a 90-day feeding study in rats; no evidence of adverse effects of chromium yeasts were reported in other animal studies investigating the effects of dietary supplementation with chromium yeast. ChromoPrecise® chromium yeast was non-genotoxic in a range of in vitro genotoxicity studies. Although no information was available on the chronic toxicity, carcinogenicity or reproductive toxicity of ChromoPrecise® chromium yeast, the ANS Panel has previously concluded that trivalent chromium is not carcinogenic, and limited data on other chromium yeasts provide no evidence of an effect on reproductive endpoints. No adverse effects have been reported in clinical efficacy trials with chromium yeasts. The Panel concluded that the use of ChromoPrecise® chromium yeast in food supplements is not of concern, despite the lack of data on the nature and identity of the organic chromium(III compounds contained in the product, provided that the intake does not exceed 250 μg/day, as recommended by the WHO.

  5. Microstructures and properties of low-alloy fire resistant steel

    Indian Academy of Sciences (India)

    Bimal Kumar Panigrahi

    2006-02-01

    Microstructures and properties of weldable quality low-alloy fire resistant structural steels (YS: 287–415 MPa) and TMT rebar (YS: 624 MPa) have been investigated. The study showed that it is possible to obtain two-thirds of room temperature yield stress at 600°C with 0.20–0.25% Mo and 0.30–0.55% Cr in low carbon hot rolled structural steel. Microalloying the Cr–Mo steel by niobium or vanadium singly or in combination resulted in higher guaranteed elevated temperature yield stress (250–280 MPa). The final rolling temperature should be maintained above austenite recrystallization stop temperature (∼ 900° C) to minimize dislocation hardening. In a quenched and self-tempered 600 MPa class TMT reinforcement bar steel (YS: 624 MPa), low chromium (0.55%) addition produced the requisite yield stress at 600°C. The low-alloy fire resistant steel will have superior thermal conductivity up to 600°C (> 30 W/m.k) compared to more concentrated alloys.

  6. Cracking in stabilized austenitic stainless steel piping of German boiling water reactors - characteristic features and root cause

    International Nuclear Information System (INIS)

    Cracks have been found in the welds of piping systems made from stabilized austenitic stainless steels in German boiling water reactors (BWR). In the course of the intensive failure analysis metallographic examinations, microstructural investigations by electron microscopy, corrosion experiments and welding tests have been performed. The results show that cracking under the given medium conditions is due to intergranular stress corrosion cracking (IGSCC) in those parts of the heat affected zone (HAZ) which are overheated during welding and where solution of titanium carbides and subsequent precipitation of chromium carbides and depletion of chromium along the affected grain boundaries could occur. (orig.)

  7. Use of local electrochemical techniques for corrosion studies of stainless steels

    OpenAIRE

    Fuertes, Nuria

    2016-01-01

    The excellent corrosion resistance of stainless steels arises from the presence of a passive film on its surface. Above 10.5wt% Cr a chromium oxide of 1-3 nm is formed on the surface of the metal that in case of damage will reform and hinder further dissolution of the metal. However, the passivity of the stainless steel can be altered by material factors and external factors; such as the composition of the underlying phases, external loads or thermal treatments. In this work the local electro...

  8. The use of slime formed in grinding for stainless steel melting

    International Nuclear Information System (INIS)

    A study was made in to the properties of slime resulted from abrasive grinding of 12Kh18N10T steel slabs. The possibility of using the slime remelted in electric arc furnaces as a furnace burden for steel melting has been shown. To decrease chromium losses with slag and to desulphurize the metal a number of additional measures should be undertaken. They are as follows: more deep deoxidation of the slag, an increase of slag basicity, the use of the possibility of slag desulphurizing at the outlet of the furnace

  9. Reinforcing the Steel Sector

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By pushing forward mergers between steel-makers, China gears up to consolidate the large but fragmented industryIn a government effort to consolidate the crowded steel industry and position it for fierce global competition, the state-

  10. Structural transformations in hull material clad by nitrogen stainless steel using various methods

    Science.gov (United States)

    Sagaradze, V. V.; Kataeva, N. V.; Mushnikova, S. Yu.; Khar'kov, O. A.; Kalinin, G. Yu.; Yampol'skii, V. D.

    2014-02-01

    Specimens of a 10N3KhDMBF shipbuilding hull steel were clad by a 04Kh20N6G11M2AFB nitrogen austenitic steel using various treatment conditions, which included hot rolling, austenitic facing, and explosive welding followed by hot rolling and heat treatment. Between the base and cladding materials, an intermediate layer with variable concentrations of chromium, manganese, and nickel was found, in which a martensitic structure was formed. In all the cases, the strength of bonding of the cladding layer to the hull steel (determined in tests for shear to fracture) was fairly high (σsh = 437-520 MPa). The only exception was the specimen produced by unidirectional facing without subsequent hot rolling (σsh = 308 MPa), in which nonfusions between the faced beads of stainless steel were detected.

  11. Changes of structure of austenitic steel caused by hot deformation

    International Nuclear Information System (INIS)

    The phenomena taking place during hot deformation and reconstruction of the microstructure of chromium-manganese and chromium-nickel austenitic steels of low SFE were analyzed. In particular, the problems of recovery of dynamic recrystallization as well as changes of the microstructure after deformation were analyzed. The research of hot deformation carried out by means of the torsion test on a torsional plastometer allowed to determine the impact of the deformation conditions (ε, ε', T) on austenitic steel workability and to capture basic differences in strengthening and softening of manganese in relation to the austenite more extensively tested austenite in Cr-Ni steel. The differences in deformation of both materials up to maximal yield stress εm result from various dislocation splitting and association ability during deformation process. Manganese austenite is generally susceptible to splitting of dislocation in initial phases of deformation - that is why the strengthening intensity is so high. Carbon is additional factor strongly strengthening solid solution. The process of dynamic recrystallization of Cr-Mn steel (SFE approx. 50 mJ/m2) deformed at 900oC takes place through dislocation climbing within boundaries of adjacent subgrains and their coalescence. Nucleation of new grains and growth in the process of dynamic recrystallization of Cr-Ni steel (SFE approx. 20 mJ/m2) takes place through migration of high-angle grain boundaries as well as through the mechanism of subgrain coalescence. In the whole range of the steady plastic flow of samples of both steel grades, the size of grain formed in the result of dynamic recrystallization practically does not depend on the ε deformation size, but only on deformation conditions (T, ε'). Regardless the initial grain size of the tested austenitic steel grades practically the same grain sizes were obtained during dynamic recrystallization at the temperature of 1000-1100oC. No considerable influence of other

  12. Fabrication of high rate chromium getter sources for fusion applications

    International Nuclear Information System (INIS)

    Design and fabrication techniques are described for the manufacture of large-capacity chromium getter sources, analogous to the commercially available titanium getter source known as Ti-Ball, manufactured by Varian Associates

  13. IRIS Toxicological Review of Hexavalent Chromium (Peer Review Plan)

    Science.gov (United States)

    EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of hexavalent chromium that will appear on the Integrated Risk Information System (IRIS) database.

  14. Chromium and Polyphenols from Cinnamon and Insulin Sensitivity

    Science.gov (United States)

    Factors that improve insulin sensitivity usually lead to improvements in risk factors associated with the metabolic syndrome, diabetes, and cardiovascular diseases. Naturally occurring bioactive compounds that have been shown to improve insulin sensitivity include chromium and polyphenols found in ...

  15. Estimation of individual dust exposure by magnetopneumography in stainless steel production.

    Science.gov (United States)

    Huvinen, M; Oksanen, L; Kalliomäki, K; Kalliomäki, P L; Moilanen, M

    1997-06-20

    The objectives of the study were to measure the magnetic dust lung burden of workers in stainless steel production by magnetopneumography (MPG) and to investigate the relationship of the results with air-borne concentrations of dust, total and hexavalent chromium as well as urinary excretion of chromium. There were 128 workers from the chromite mine, sintering plant, ferrochrome smelter, stainless steel smelting shop, cold rolling mill and welding shop in the exposed groups and five persons from the office staff in the control group. The remanent magnetic field (RMF) in the lungs was slightly elevated among workers in the ferrochromium and steel smelting shops; the levels were, however, lower than those reported for welders earlier and those observed in the welding/repair shop. Workers in the mine, concentrator and sintering plants and in the cold rolling mill exhibited remanent magnetic fields comparable to the referents. There was a relationship between the RMF and the actual urinary chromium concentration. Miners and concentrator and sintering plant workers showed retarded relaxation rate (ReR) of the remanent magnetic field. However, the RMF of the first two of these groups were low (< 0.1 nT) and this made it difficult to measure the ReR accurately. The duration of exposure correlated weakly but significantly with the relaxation rate, while smoking was not related to it.

  16. Biosorption of Chromium (VI) from Aqueous Solutions onto Fungal Biomass

    OpenAIRE

    Ismael Acosta R.; Xöchitl Rodríguez; Conrado Gutiérrez; Ma. de Guadalupe Moctezuma

    2004-01-01

    The biosorption of chromium (VI) on eighteen different natural biosorbents: Natural sediment, chitosan, chitin, Aspergillus flavus I-V, Aspergillus fumigatus I-ll, Helmintosporium sp, Cladosporium sp, Mucor rouxii mutant, M. rouxii IM-80, Mucor sp-I and 2, Candida albicans and Cryptococcus neoformans was studied in this work. It was found that the biomass of C. neoformans, natural sediment, Helmintosporium sp and chitosan was more efficient to remove chromium (VI) (determined spectrophotometr...

  17. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  18. Thermodynamic Equilibrium Diagrams of Sulphur-Chromium System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The chemical and electrochemical equilibria in the presence of gaseous phase were investigated. Many substances, which consisted of sulphur and chromium, were considered. Various thermodynamic equilibria were calculated in different pressures. Calculation results were shown as log p―1/T and E―T diagrams. These diagrams may be used to study the corrosion of chromium in sulphur-containing circumstances. The diagrams are also used to thermodynami-cally determine the existence area of various substances and so on.

  19. Stereology of carbide phase in modified hypereutectic chromium cast iron

    OpenAIRE

    J. Suchoń; A. Studnicki; M. Przybył

    2010-01-01

    In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C), ferroniobium (FeNb) and mixture of ferroniobium and rare-earth (RE). The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  20. SCIENCE AND TECHNOLOGY ACTIVITIES FOR CHROMIUM IN THE 100 AREAS

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2009-07-02

    {sm_bullet} Primary Objective: Protect the Columbia River - Focus is control and treatment of contamination at or near the shoreline, which is influenced by bank storage {sm_bullet} Secondary Objective: Reduce hexavalent chromium to <48 parts per billion (ppb) in aquifer (drinking water standard) - Large plumes with isolated areas of high chromium concentrations (> 40,000 ppb), - Unknown source location(s); probably originating in reactor operation areas

  1. Genetic Predisposition for Dermal Problems in Hexavalent Chromium Exposed Population

    OpenAIRE

    Priti Sharma; Vipin Bihari; Agarwal, Sudhir K.; Goel, Sudhir K.

    2012-01-01

    We studied the effect of genetic susceptibility on hexavalent chromium induced dermal adversities. The health status of population was examined from the areas of Kanpur (India) having the elevated hexavalent chromium levels in groundwater. Blood samples were collected for DNA isolation to conduct polymorphic determination of genes, namely: NQO1 (C609T), hOGG1 (C1245G), GSTT1, and GSTM1 (deletion). Symptomatic exposed subjects (n = 38) were compared with asymptomatic exposed subjects (n = 108)...

  2. DANGER OF HEXAVALENT CHROMIUM AND STRATEGY FOR THE REMEDITATION

    OpenAIRE

    Aniruddha Roy; Ayan Das; Nirmal Paul

    2013-01-01

    Some metals as micronutrients have a major role in the life and growth process of plants and animals. However, certain forms of some metals may also act as toxic material even in relatively small quantities. Chromium is such a metal, whose concentration above a certain limit may cause a serious problem to the health of living organisms. Chromium (Cr) may occur in several chemical forms in organic and inorganic systems. In biological systems only Cr (III) and Cr (VI) are signifi...

  3. Hexavalent chromium exposure and control in welding tasks.

    Science.gov (United States)

    Meeker, John D; Susi, Pam; Flynn, Michael R

    2010-11-01

    Studies of exposure to the lung carcinogen hexavalent chromium (CrVI) from welding tasks are limited, especially within the construction industry where overexposure may be common. In addition, despite the OSHA requirement that the use of engineering controls such as local exhaust ventilation (LEV) first be considered before relying on other strategies to reduce worker exposure to CrVI, data on the effectiveness of LEV to reduce CrVI exposures from welding are lacking. The goal of the present study was to characterize breathing zone air concentrations of CrVI during welding tasks and primary contributing factors in four datasets: (1) OSHA compliance data; (2) a publicly available database from The Welding Institute (TWI); (3) field survey data of construction welders collected by the Center for Construction Research and Training (CPWR); and (4) controlled welding trials conducted by CPWR to assess the effectiveness of a portable LEV unit to reduce CrVI exposure. In the OSHA (n = 181) and TWI (n = 124) datasets, which included very few samples from the construction industry, the OSHA permissible exposure level (PEL) for CrVI (5 μg/m(3)) was exceeded in 9% and 13% of samples, respectively. CrVI concentrations measured in the CPWR field surveys (n = 43) were considerably higher, and 25% of samples exceeded the PEL. In the TWI and CPWR datasets, base metal, welding process, and LEV use were important predictors of CrVI concentrations. Only weak-to-moderate correlations were found between total particulate matter and CrVI, suggesting that total particulate matter concentrations are not a good surrogate for CrVI exposure in retrospective studies. Finally, in the controlled welding trials, LEV reduced median CrVI concentrations by 68% (p = 0.02). In conclusion, overexposure to CrVI in stainless steel welding is likely widespread, especially in certain operations such as shielded metal arc welding, which is commonly used in construction. However, exposure could be

  4. Removal of Chromium and Lead from Industrial Wastewater Using

    Directory of Open Access Journals (Sweden)

    Mohamed Hilal

    2013-04-01

    Full Text Available In this research an attempt is made on the ability of aerobic treatment of synthetic solutions containing lead and chromium using effective microorganisms within the reactor. To achieve the desired objectives of the research, synthetic aqueous solutions of lead and chromium was used in the concentration of chromium and lead ions of 5, 10,50 and 100 mg / l .The work was done at constant pH equal to 4.5 and temperature of 30 ± 1 º C. Effective microorganisms solutions was added to the reactor at Vol.% of 1/50 ,1/100 ,1/500 and 1/1000, with retention time was 24 hours to measure the heavy metals concentration the atomic absorption device was used. The experimental results showed that each 1mg / l of lead and chromium ions need 24 mg of effective microorganisms to achieve removal of 92.0% and 82.60% for lead and chromium respectively. Increasing the concentration of effective microorganisms increases the surface of adsorption and thus increasing the removal efficiency. It is found that the microorganisms activity occur in the first five hours of processing and about 94% of adsorption capacity of biomass will take place. It is also found the selectivity of microorganisms to lead ions is higher than for chromium ions.

  5. Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants.

    Science.gov (United States)

    Lukina, A O; Boutin, C; Rowland, O; Carpenter, D J

    2016-11-01

    Elevated chromium levels in soil from mining can impact the environment, including plants. Mining of chromium is concentrated in South Africa, several Asian countries, and potentially in Northern Ontario, Canada, raising concerns since chromium toxicity to wild plants is poorly understood. In the first experiment, concentration-response tests were conducted to evaluate effects of chromium on terrestrial and wetland plants. Following established guidelines using artificial soil, seeds of 32 species were exposed to chromium (Cr(3+)) at concentrations simulating contamination (0-1000 mg kg(-1)). This study found that low levels of chromium (250 mg kg(-1)) adversely affected the germination of 22% of species (33% of all families), while higher levels (500 and 1000 mg kg(-1)) affected 69% and 94% of species, respectively, from 89% of the families. Secondly, effects on seedbanks were studied using soil collected in Northern Ontario and exposed to Cr(3+) at equivalent concentrations (0-1000 mg kg(-1)). Effects were less severe in the seedbank study with significant differences only observed at 1000 mg kg(-1). Seeds exposed to Cr(3+) during stratification were greatly affected. Seed size was a contributing factor as was possibly the seed coat barrier. This study represents an initial step in understanding Cr(3+) toxicity on wild plants and could form the basis for future risk assessments. PMID:27543852

  6. Lime enhanced chromium removal in advanced integrated wastewater pond system.

    Science.gov (United States)

    Tadesse, I; Isoaho, S A; Green, F B; Puhakka, J A

    2006-03-01

    The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.

  7. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  8. Enhancing tensile properties of ultrafine-grained medium-carbon steel utilizing fine carbides

    International Nuclear Information System (INIS)

    Highlights: → Tensile properties of UFG carbon steels were enhanced by imbedding fine carbides. → Thinner pearltic lamellae induced finer carbides after caliber-rolling process. → Superior tensile properties were attributed to the enhanced strain hardening rate. → Yield-point phenomenon in UFG steels resulted from stronger effect of particle growth. - Abstract: The aim of the present study is to evaluate the influence of nano-sized carbides upon tensile behavior in UFG medium-carbon steels and to develop a material with improved tensile properties. UFG medium-carbon steels with fine carbides were successfully fabricated by multi-pass caliber rolling at 773 K. Alloying chromium and molybdenum resulted in thinner pearlitic lamellae, which were transformed into finer particles after severe plastic deformation. The UFG steel containing the alloying elements exhibited superior tensile properties, which was attributed to the enhanced strain hardening rate by the imbedded finer particles. Subsequent annealing induced growth of grains and particles, which also recovered elongation at the expense of strength. All UFG steels investigated here showed a yield-point phenomenon due to the decreased hardening rate and lack of mobile dislocations and their sources. The deteriorating effect of particle growth overwhelmed the improving effect of grain growth after annealing of the UFG medium-carbon steel, leading to a reduced strain hardening rate. This resulted in a positive correlation between a grain size and Lueders elongation in the investigated UFG steels.

  9. Production of Nitrogen-Bearing Stainless Steel by Injecting Nitrogen Gas

    Institute of Scientific and Technical Information of China (English)

    SUN Li-yuan; LI Jing-she; ZHANG Li-feng; YANG Shu-feng

    2011-01-01

    To replace nickel-based stainless steel, a nitrogen-bearing stainless steel was produced to lower the production cost stemming from the shortage of nickel recourses. Thermodynamic model to calculate the saturated nitrogen content in the stainless steel was developed and the model was validated by experimental measurements performed with a high temperature induction furnace. Nitrogen gas under constant pressure was injected into the molten steel with a top lance. Thus, the nitrogen was transferred to the molten stainless steel. The effects of chemical composition, temperature, superficial active elements and nitrogen flow rate on the transfer of nitrogen to the steel were investigated and discussed. The results showed that the dissolution rate of nitrogen in the molten steel increases with a higher temperature and larger nitrogen flow rate but decreases significantly with an increase in the content of surface- active elements. Alloying elements such as chromium and manganese having a negative interaction coefficient can increase the dissolution of nitrogen in the molten steel. It was also proposed that the primary factor affecting the final saturated nitrogen content is temperature rather than the dissolved oxygen content.

  10. Corrosion protection by sonoelectrodeposited organic films on zinc coated steel.

    Science.gov (United States)

    Et Taouil, Abdeslam; Mahmoud, Mahmoud Mourad; Lallemand, Fabrice; Lallemand, Séverine; Gigandet, Marie-Pierre; Hihn, Jean-Yves

    2012-11-01

    A variety of coatings based on electrosynthesized polypyrrole were deposited on zinc coated steel in presence or absence of ultrasound, and studied in terms of corrosion protection. Cr III and Cr VI commercial passivation were used as references. Depth profiling showed a homogeneous deposit for Cr III, while SEM imaging revealed good surface homogeneity for Cr VI layers. These chromium-based passivations ensured good protection against corrosion. Polypyrrole (PPy) was also electrochemically deposited on zinc coated steel with and without high frequency ultrasound irradiation in aqueous sodium tartrate-molybdate solution. Such PPy coatings act as a physical barrier against corrosive species. PPy electrosynthesized in silent conditions exhibits similar properties to Cr VI passivation with respect to corrosion protection. Ultrasound leads to more compact and more homogeneous surface structures for PPy, as well as to more homogeneous distribution of doping molybdate anions within the film. Far better corrosion protection is exhibited for such sonicated films. PMID:22516111

  11. Experimental skin deposition of chromium on the hands following handling of samples of leather and metal

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P.; Jellesen, Morten Stendahl;

    2016-01-01

    Background: Chromium is an important skin sensitizer. Exposure to it has been regulated in cement, and recently in leather. Studies on the deposition of chromium ions on the skin as a result of handling different chromium-containing materials are sparse, but could improve the risk assessment...... of contact sensitization and allergic contact dermatitis caused by chromium. Objectives: To determine whether the handling of chromium-containing samples of leather and metal results in the deposition of chromium onto the skin. Methods: Five healthy volunteers participated. For 30 min, they handled samples...... of leather and metal known to contain and release chromium. Skin deposition of chromium was assessed with the acid wipe sampling technique. Results: Acid wipe sampling of the participants' fingers showed chromium deposition on the skin in all participants who had been exposed to leather (range 0.01–0.20 µg...

  12. Effect of Cr content, hardness and micro structure on flow-accelerated corrosion in carbon steel pipes. Examination of replaced carbon steel pipes

    International Nuclear Information System (INIS)

    68 replaced carbon steel piping in secondary system of pressurized water reactor (PWR) has been investigated by visual examination for checking thinning conditions. It is well known that the flow-accelerated corrosion (FAC) was inhibited by traces of Cr in steel. Therefore, the chemical compositions of those steels have been measured. In addition, the micro structure and hardness of those steels have been investigated. And the relationship between those material variables and FAC rate was considered. As the results, (1) The Cr contents in those steels were below 0.1 wt% except one sample. Minute quantities of chromium increase the resistance against FAC. But the water velocity was thought to be the dominant factor rather than chemical composition in steel, at least such as below 0.1%Cr. (2) Hardness of all piping has been satisfied the specifications of each materials. The hardness of steels was not correlated with wall thinning rate. (3) The micro structure was also not correlated with FAC rate. (author)

  13. USE OF TWO DIGESTION METHODS IN THE EVALUATION OF CHROMIUM CONTENT IN CATTLE'S MEAT SUPPLEMENTED WITH CHROMIUM CHELATES

    OpenAIRE

    R. L. T. Andrade; P.S.A. Moreira; R. Arruda; F. J. Lourenço; C. Palhari, F. F. Faria, V. B. Arevalo; Faria, F. F.; V. B. Arevalo

    2015-01-01

    The present study aimed to analyze the chromium content in beef using two digestion methods. There were used samples from 24 18-month-old male cattle, and twelve of them were supplemented and twelve were not supplemented with chromium chelate. These samples were evaluated by atomic absorption spectroscopy, previously submitted to digestion method using nitric acid (65%) with hydrogen peroxide (35%) and to digestion method, using solution of nitric perchloric acid in the proportion 3:1. Immedi...

  14. Activation of bentonite to remove the chromium from waste water produced by panning industry, and studying the chromium recovery efficiency

    International Nuclear Information System (INIS)

    The fast development of tanning industry led to an increase in environmental problems resulting from discharging its wastes to the surrounding environment. Thus solving this problem became one of the most important aims that the researchers work on. The chromium content of the industrial water wastes of the tanning industry considered as the main pollutant for the environment. The Aleppo Bentonite is used in early research to remove the chromium from the industrial waste water.The current research aims to find a method to activate the Aleppo Bentonite in order to increase the effective removal of chromium from the industrial waste water which is produced by tanning industry, as well as to specify the optimal conditions for chromium recovery.This study used the Aleppo Bentonite, whose origin is Tal Ajar-Aleppo to study the activation aspects using Sulfuric Acid, Hydrochloric Acid and Nitric Acid, in addition to study the recovery aspects using the same acids and hydrogen peroxide and to specify the optimal conditions for chromium recovery through applying some experiments based on three main factors: concentration, settling time and temperature.It was observed from the applied experiments that it is possible to recover chromium from Bentonite efficiently up to (80% - 90%) by treating the Bentonite with hydrogen peroxide(33% concentration) at room temperature, or by treating it with hydrogen peroxide(8.25% concentration) at 75oC, while the settling time factor proved that full recovery of chromium is obtained during the first hour, and increasing the time factor does not affect the efficiency of chromium recovery. (author)

  15. The steel scrap age.

    Science.gov (United States)

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-01

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  16. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  17. Investigation of alternative phosphating treatments for nickel and hexavalent chromium elimination; Investigacao de tratamentos alternativos de fosfatizacao para eliminacao do niquel e cromo hexavalente

    Energy Technology Data Exchange (ETDEWEB)

    Jazbinsek, Luiz Antonio Rossi

    2014-07-01

    The phosphating processes are widely used in industry as surface treatments for metals, especially for low thickness plates, improving the adhesion between the metallic surface and the paint coating, and increasing the durability of paint systems against corrosion attacks. The tricationic phosphates containing zinc, nickel and manganese are commonly applied on steel. There is much discussion about the replacement of nickel by another element in order to have an environmentally friendly phosphating process. Niobium as a replacement for nickel has been evaluated. The most significant environmental impacts of phosphating processes are related to the presence of nickel and hexavalent chromium used in the process, this last as a passivation treatment. Nickel and hexavalent chromium are harmful to human and environment leading to contamination of water and soil. In the present study phosphate layers containing zinc, manganese and niobium have been evaluated and characterized on galvanized steel, and the results were compared with phosphates containing zinc, manganese and nickel, or a bicationic phosphate layer with zinc and manganese. Although the use of hexavalent chromium is not recommended worldwide, it is still used in processes for sealing the porosity of phosphate layers. This element is carcinogenic and has been associated with various diseases. Due to the passivation characteristics of niobium, this study also evaluated the tricationic bath containing niobium ammonium oxalate as a passivation treatment. The results showed that it could act as a replacement for the hexavalent chromium. The results of the present study showed that formulations containing niobium are potential replacements for hexavalent chromium and similar corrosion protection was obtained for the phosphate containing nickel or that with niobium. The morphology observed by scanning electron microscopy, gravimetric tests, porosity and adhesion evaluation results indicated that the phosphate

  18. Development of high-chromium ferritic clad heat exchanger tubing. [Sanicro 28, Carpenter 20 Mo-76, Al-6XN, Monit, SEA-CURE, Inconel 625, Hastelloy C-276, Hastelloy G-3

    Energy Technology Data Exchange (ETDEWEB)

    Cox, T.B.; Sponseller, D.L.

    1986-05-01

    High chromium, corrosion resistant alloys are required to withstand the high temperatures and corrosive environment of coal gasification plants such as the Cool Water facility. The production of tubing for heat exchangers from high alloy materials is a priority goal of the EPRI gasification materials program. Because many high chromium alloys are very expensive and have little elevated temperature strength, it would be advantageous to clad the outside surface of low alloy, elevated temperature steel tubes with the corrosion resistant alloy and rely on the low alloy steel for structural strength. Evaluation of commercial alloys for possible use as monolithic or coextruded tubes identified four compositions suitable for evaporator tube applications and four compositions for superheater applications. In addition, a series of alloys containing 30% chromium were evaluated for their ability to be coextruded with 1.25Cr-0.5Mo steel, undergo welding and resist gasification corrosion. An alloy, nominally 30Cr-2Ni-2Mo, was successfully coextruded to various tubing sizes and provided to EPRI for testing in the Cool Water gasification plant. 18 refs., 28 figs., 28 tabs.

  19. Ion implantations of oxide dispersion strengthened steels

    Science.gov (United States)

    Sojak, S.; Simeg Veternikova, J.; Slugen, V.; Petriska, M.; Stacho, M.

    2015-12-01

    This paper is focused on a study of radiation damage and thermal stability of high chromium oxide dispersion strengthened steel MA 956 (20% Cr), which belongs to the most perspective structural materials for the newest generation of nuclear reactors - Generation IV. The radiation damage was simulated by the implantation of hydrogen ions up to the depth of about 5 μm, which was performed at a linear accelerator owned by Slovak University of Technology. The ODS steel MA 956 was available for study in as-received state after different thermal treatments as well as in ions implanted state. Energy of the hydrogen ions chosen for the implantation was 800 keV and the implantation fluence of 6.24 × 1017 ions/cm2. The investigated specimens were measured by non-destructive technique Positron Annihilation Lifetime Spectroscopy in order to study the defect behavior after different thermal treatments in the as-received state and after the hydrogen ions implantation. Although, different resistance to defect production was observed in individual specimens of MA 956 during the irradiation, all implanted specimens contain larger defects than the ones in as-received state.

  20. Low energy spin excitations in chromium metal

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Lab., NM (United States); Azuah, R.T. [Hahn-Meitner-Inst., Berlin (Germany); Stirling, W.G. [Univ. of Liverpool (United Kingdom). Dept. of Physics; Kulda, J. [Inst. Laue Langevin, Grenoble (France)

    1997-12-31

    Neutron scattering experiments with full polarization analysis have been performed with a single crystal of chromium to study the low-energy spin fluctuations in the transverse spin density wave (TSDW) state. A number of remarkable results have been found. Inelastic scattering observed close to the TSDW satellite positions at (1 {+-} {delta},0,0) does not behave as expected for magnon scattering. In particular, the scattering corresponds to almost equally strong magnetization fluctuations both parallel and perpendicular to the ordered moments of the TSDW phase. As the Neel temperature is approached from below, scattering at the commensurate wavevector (1,0,0) increases in intensity as a result of critical scattering at silent satellites (1,0, {+-} {delta}) being included within the spectrometer resolution function. This effect, first observed by Sternlieb et al, does not account for all of the inelastic scattering around the (1,0,0) position, however, Rather, there are further collective excitations, apparently emanating from the TSDW satellites, which correspond to magnetic fluctuations parallel to the ordered TSDW moments. These branches have a group velocity that is close to that of (1,0,0) longitudinal acoustic (LA) phonons, but assigning their origin to magneto-elastic scattering raises other unanswered questions.

  1. Nickel-free manganese bearing stainless steel in alkaline media-Electrochemistry and surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, B., E-mail: belsener@unica.i [Dipartimento di Chimica Inorganica ed Analitica, Universita di Cagliari, SS 554 bivio per Sestu, I-09042 Monserrato (Italy); ETH Zurich, Institute for Building Materials, ETH Hoenggerberg, CH-8093 Zurich (Switzerland); Addari, D. [Dipartimento di Chimica Inorganica ed Analitica, Universita di Cagliari, SS 554 bivio per Sestu, I-09042 Monserrato (Italy); Coray, S. [ETH Zurich, Institute for Building Materials, ETH Hoenggerberg, CH-8093 Zurich (Switzerland); Rossi, A., E-mail: rossi@unica.i [Dipartimento di Chimica Inorganica ed Analitica, Universita di Cagliari, SS 554 bivio per Sestu, I-09042 Monserrato (Italy)

    2011-04-30

    Research highlights: {yields} New nickel-free manganese bearing 18Cr18Mn2Mo stainless steel in alkaline media. {yields} XPS analysis shows Mo(VI) enrichment up to 6% in the passive film upon ageing. {yields} No pitting corrosion in alkaline media (pH 13) up to 4 M NaCl (14 wt%). {yields} Promising alternative stainless steel for reinforcement in concrete. - Abstract: The use of austenitic nickel-containing stainless steels as concrete reinforcement offers excellent corrosion protection for concrete structures in harsh chloride bearing environments but is often limited due to the very high costs of these materials. Manganese bearing nickel-free stainless steels can be a cost-effective alternative for corrosion resistant reinforcements. Little, however, is known about the electrochemistry and even less on surface chemistry of these materials in alkaline media simulating concrete pore solutions. In this work a combined electrochemical (ocp = open circuit potential) and XPS (X-ray photoelectron spectroscopy) surface analytical investigation on the austenitic manganese bearing DIN 1.4456 (X8CrMnMoN18-18-2) stainless steel immersed into 0.1 M NaOH and more complex alkaline concrete pore solutions was performed. The results show that the passive film composition changes with immersion time, being progressively enriched in chromium oxy-hydroxide becoming similar to the conventional nickel-containing stainless steels. The composition of the metal interface beneath the passive film is strongly depleted in manganese and enriched in iron; chromium has nearly the nominal composition. The results are discussed regarding the film growth mechanism (ageing) of the new nickel-free stainless steel in alkaline solutions compared to traditional austenitic steels. Combining the results from pitting potential measurements with the composition of the passive film and the underlying metal interface, it can be concluded that the resistance against localized corrosion of the new nickel

  2. Hexavalent Chromium Reduction and Its Distribution in the Cell and Medium by Chromium Resistant Fusarium solani

    Directory of Open Access Journals (Sweden)

    Mousumi Sen

    2013-01-01

    Full Text Available In the present work, batch biosorption of Cr(VI was studied using the fungal strain isolated from soil. The fungal strain was characterized as Fusarium solani. The total Cr distribution in the biomass (fungus and in the media obtained from the experiment conducted at 500 mg l -1 initial Cr(VI concentration and pH 5.0. The results indicated both intracellular and extracellular accumulation and enzymatic reduction of Cr(VI and this was supported by the Transmission Electron Microscopic (TEM observation at the same Cr(VI concentration and pH value. Chromium elution from Fusarium solani containing Cr was then tried out using a number of chromium eluting reagents and a maximum Cr could be eluted using 0.5N sodium hydroxide solution without destructing the biomass structure. The total Cr was recovered by pH adjustment from both biomass and media was found to be 44% of the initial Cr(VI concentration (500 mg l-1.

  3. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  4. The effect of σ-phase precipitation at 800°C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel

    OpenAIRE

    Wilms, M.E.; Gadgil, V.J.; Krougman, J.M.; IJsseling, F.P.

    1994-01-01

    Super-duplex stainless steels are recently developed high alloyed stainless steels that combine good mechanical properties with excellent corrosion resistance. Because of a high content of chromium and molybdenum, these alloys are susceptible to σ-phase precipitation during short exposure to temperatures between 650 and 950°C. The effect of 800°C aging on σ-phase formation and on the mechanical properties of a super-duplex stainless steel have been reported previously by the authors.1 This in...

  5. Effect of Heat Input Pulse on the Structure and Properties of Welded Joints of Steels Ferritic-Pearlitic Class, Operating Under Low-Frequency Temperature-Force Loading

    Science.gov (United States)

    Saraev, Y. N.; Bezborodov, V. P.; Putilova, E. A.

    2015-09-01

    We have investigated the influence of the modes of adaptive pulse-arc welding and surfacing on the structure and physical-mechanical properties of welded joints of steel 09Mn2Si and the surfaced composition of this steel coated with modified powder material of chromium carbide with the submicrocrystalline structure. It is shown that the pulsed mode of welding and surfacing can improve the homogeneity of the structure of the welded joint of steel and surfaced coating and reduce the grain size of metals in both of them. Structural changes lead to the increase in ductility and toughness of the weld metal.

  6. Electron transfer. 75. Reduction of carboxylato-bound chromium(V) with vanadium(IV). Intervention of chromium(IV)

    International Nuclear Information System (INIS)

    The chelated (carboxylato)chromium(V) anion bis(2-hydroxy-2-ethylbutyrato)oxochromate(V) (I), [(Lig)2Cr(O)]-, reacts with oxovanadium(IV) to form a strongly absorbing species (lambda/sub max/ = 515 nm; epsilon = 1.7 x 103 M-1) in the presence of 2-hydroxy-2-ethylbutyric acid buffers (pH 2-4). EPR data support 1:1 stoichiometry with VO2+ in deficiency, indicating the formation of a chromium(IV) species by reduction. With excess VO2+ a chromium(III) product was obtained. Spectral and ion-exchange properties of this product correspond to those observed for the titanium(III) and iron(II) reductions of chromium(V) and are consistent with the formulation of the product as a bis(hydroxycarboxylate) chelate of (H2O)2Cr/sup III/. With excess vanadium(IV), the reaction exhibits triphasic kinetics. The remaining step of the reaction is the reduction of the chromium(IV) intermediate with VO2+. Rates for all steps increase with decreasing [H+] and level off at low [H+]. The limiting rate constants for the formation of the chromium(IV) intermediate by the (Lig)3Cr(O)2- and (Lig)2Cr(O)- pathways are 2.8 x 103 and 2.2 x 102 M-1s-1. The bimolecular limiting rate constant for the reduction of chromium(IV) is computed to be 7.7 x 102 M-1 s-1. 33 references, 7 tables

  7. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.

    Science.gov (United States)

    Sandana Mala, John Geraldine; Unni Nair, Balachandran; Puvanakrishnan, Rengarajulu

    2006-06-01

    Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.

  8. Chromium propionate enhances adipogenic differentiation of bovine intramuscular adipocytes

    Directory of Open Access Journals (Sweden)

    Rebecca eTokach

    2015-09-01

    Full Text Available In vitro experiments were performed to determine the effects of increasing concentrations of chromium propionate on mRNA and protein abundance of different enzymes and receptors. Intramuscular and subcutaneous preadipocytes and bovine satellite cells were isolated from the longissimus muscle to determine the effect of treatment on glucose transporter type 4 (GLUT4 and peroxisome proliferator-activated receptor γ mRNA and GLUT4 protein abundance. Preadipocyte cultures were treated with differentiation media plus either sodium propionate or different concentrations of chromium propionate (CrPro for 96, 120, and 144 h before harvest. This study indicated adipogenesis of the bovine intramuscular adipocytes were more sensitive to the treatment of chromium propionate as compared to subcutaneous adipocytes. Enhancement of adenosine monophosphate-activated protein kinase and GLUT4 mRNA by CrPro treatment may enhance glucose uptake in intramuscular adipocytes. Chromium propionate decreased GLUT4 protein levels in muscle cell cultures suggesting those cells have increased efficiency of glucose uptake due to exposure to increased levels of CrPro. In contrast, each of the two adipogenic lines had opposing responses to the CrPro. It appeared that CrPro had the most stimulative effect of GLUT4 response in the intramuscular adipocytes as compared to subcutaneous adipocytes. These findings indicated opportunities to potentially augment marbling in beef cattle fed chromium propionate during the finishing phase.

  9. Anthropogenic chromium emissions in china from 1990 to 2009.

    Science.gov (United States)

    Cheng, Hongguang; Zhou, Tan; Li, Qian; Lu, Lu; Lin, Chunye

    2014-01-01

    An inventory of chromium emission into the atmosphere and water from anthropogenic activities in China was compiled for 1990 through to 2009. We estimate that the total emission of chromium to the atmosphere is about 1.92×10⁵ t. Coal and oil combustion were the two leading sources of chromium emission to the atmosphere in China, while the contribution of them showed opposite annual growth trend. In total, nearly 1.34×10⁴ t of chromium was discharged to water, mainly from six industrial categories in 20 years. Among them, the metal fabrication industry and the leather tanning sector were the dominant sources of chromium emissions, accounting for approximately 68.0% and 20.0% of the total emissions and representing increases of 15.6% and 10.3% annually, respectively. The spatial trends of Cr emissions show significant variation based on emissions from 2005 to 2009. The emission to the atmosphere was heaviest in Hebei, Shandong, Guangdong, Zhejiang and Shanxi, whose annual emissions reached more than 1000t for the high level of coal and oil consumption. In terms of emission to water, the largest contributors were Guangdong, Jiangsu, Shandong and Zhejiang, where most of the leather production and metal manufacturing occur and these four regions accounted for nearly 47.4% of the total emission to water. PMID:24505309

  10. Anthropogenic chromium emissions in china from 1990 to 2009.

    Directory of Open Access Journals (Sweden)

    Hongguang Cheng

    Full Text Available An inventory of chromium emission into the atmosphere and water from anthropogenic activities in China was compiled for 1990 through to 2009. We estimate that the total emission of chromium to the atmosphere is about 1.92×10⁵ t. Coal and oil combustion were the two leading sources of chromium emission to the atmosphere in China, while the contribution of them showed opposite annual growth trend. In total, nearly 1.34×10⁴ t of chromium was discharged to water, mainly from six industrial categories in 20 years. Among them, the metal fabrication industry and the leather tanning sector were the dominant sources of chromium emissions, accounting for approximately 68.0% and 20.0% of the total emissions and representing increases of 15.6% and 10.3% annually, respectively. The spatial trends of Cr emissions show significant variation based on emissions from 2005 to 2009. The emission to the atmosphere was heaviest in Hebei, Shandong, Guangdong, Zhejiang and Shanxi, whose annual emissions reached more than 1000t for the high level of coal and oil consumption. In terms of emission to water, the largest contributors were Guangdong, Jiangsu, Shandong and Zhejiang, where most of the leather production and metal manufacturing occur and these four regions accounted for nearly 47.4% of the total emission to water.

  11. Enhancement of chromium uptake in tanning using oxazolidine.

    Science.gov (United States)

    Sundarapandiyan, S; Brutto, Patrick E; Siddhartha, G; Ramesh, R; Ramanaiah, B; Saravanan, P; Mandal, A B

    2011-06-15

    Monocyclic and bicyclic oxazolidines were offered at three different junctures of chrome tanning process viz. prior to BCS offer, along with BCS and after basification. It was found that oxazolidine when offered after basification brought about better chromium uptake and reduction of chromium load in the wastewater. Offer of oxazolidine was also varied. Increase in offer of oxazolidine from 0.25% to 1% was found to enhance the chromium uptake and decrease the chromium load in wastewater. But the increase in uptake was not proportionate to the increase in oxazolidine offer more than 0.75%. Offer of 1% Zoldine ZA 78 (monocyclic oxazolidine) and Zoldine ZE (bicyclic oxazolidine) after basification brought about 63.4% and 73.1% enhancement in chrome content in leather compared to control where oxazolidine was not offered. The tone of the wetblue was found to be altered moderately. However this did not call for any process adjustments in wet-finishing. The oxazolidine treated leathers were found to be immensely fuller and tighter. It was found experimentally that offer of 1% of oxazolidine facilitated reduction in the offer of syntans administered for filling and grain tightening by around 46%. Oxazolidine could bring about significant reduction in cost of chemicals apart from resulting environmental benefits due to enhancement of chromium uptake during tanning. PMID:21536383

  12. Structure and properties of high-temperature austenitic steels for superheater tubes

    Science.gov (United States)

    Blinov, V. M.

    2009-12-01

    The structure and properties of high-temperature austenitic steels intended for superheater tubes are analyzed. Widely used Kh18N10T (AISI 304) and Kh16N13M3 (AISI 316) steels are found not to ensure a stable austenitic structure and stable properties during long-term thermal holding under stresses. The hardening of austenitic steels by fine particles of vanadium and niobium carbides and nitrides and γ'-phase and Fe2W and Fe2Mo Laves phase intermetallics is considered. The role of Cr23C6 chromium carbides, the σ phase, and coarse precipitates of an M 3B2 phase and a boron-containing eutectic in decreasing the time to failure and the stress-rupture strength of austenitic steels is established. The mechanism of increasing the stress-rupture strength of steels by boron additions is described. The chemical compositions, mechanical properties, stress-rupture strength, and creep characteristics of Russian and foreign austenitic steels used or designed for superheater tubes intended for operation under stress conditions at temperatures above 600°C are presented. The conditions are found for increasing the strength, plasticity, and thermodeformation stability of austenite in steels intended for superheater tubes operating at 700°C under high stresses for a long time.

  13. Electrochemical modification of chromium surfaces using 4-nitro- and4-fluorobenzenediazonium salts

    DEFF Research Database (Denmark)

    Hinge, Mogens; Cecatto, Marcel; Kingshott, Peter;

    2009-01-01

    Chromium surfaces can be electrografted with organic surface films using 4-nitro- or 4-fluorobenzenediazonium salts, despite the fact that the surfaces are covered with a protective chromium oxide layer...

  14. FORMATION AND DESTRUCTION OF HEXAVALENT CHROMIUM IN A LABORATORY SWIRL FLAME INCINERATOR

    Science.gov (United States)

    The partitioning of chromium (Cr) in combustion systems was investigated theoretically and experimentally. Theoretical predictions were based on chemical equilibrium and suggested that hexavalent chromium [Cr(VI)] was favored by the presence of chlorine (Cl) and diminished by the...

  15. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.

    Science.gov (United States)

    Zeng, Jing; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Sun, Zhao-Yong; Kida, Kenji

    2016-10-01

    In this study, a sulfur-oxidizing community was enriched from activated sludge generated in tannery wastewater treatment plants. Bioleaching of tannery sludge containing 0.9-1.2% chromium was investigated to evaluate the effectiveness of the enriched community, the effect of chromium binding forms on bioleaching efficiency, and the dominant microbes contributing to chromium bioleaching. Sludge samples inoculated with the enriched community presented 79.9-96.8% of chromium leaching efficiencies, much higher than those without the enriched community. High bioleaching efficiencies of over 95% were achieved for chromium in reducible fraction, while 60.9-97.9% were observed for chromium in oxidizable and residual fractions. Acidithiobacillus thiooxidans, the predominant bacteria in the enriched community, played an important role in bioleaching, whereas some indigenous heterotrophic species in sludge might have had a supporting role. The results indicated that A. thiooxidans-dominant enriched microbial community had high chromium bioleaching efficiency, and chromium binding forms affected the bioleaching performance.

  16. CHROMIUM ELECTROANALYSIS AT SCREEN PRINTED ELECTRODE MODIFIED BY THIN FILMS OF NICKEL

    Science.gov (United States)

    A rapid and potentially cost-effective electrochemical method is reported for analysis of chromium (VI) and Chromium(III) using a nickel modified screen printed carbon ink electrode. Electrochemical characteristics of nickel modified electrode as well voltammetric behavior f...

  17. Application of the AN-17M and AN-43 fluxes to welding of high-tensile steels

    International Nuclear Information System (INIS)

    The application experience of low-siliceous fluxes with an increased content of iron oxides used for welding the steels of the increased and high strength is considered. It is shown that in combination with certain grades of welding wire the considered fluxes ensure sufficient mechanical properties and impact viscosity in the course of welding carbon, chromium-molybdenum and nickel-chromium steels. In a number of cases the welded joints made by these fluxes without additional heat treatment are equal to the base metal in all the characteristics including fracture toughness and resistance to a spreading crack at negative temperature. The fluxes proved to be good at the welding of parogenerator casing for nuclear energy plants, pipe-lines, pressure vessels and also heavy-loaded constructions

  18. Scientific Opinion on chromium(III lactate tri-hydrate as a source of chromium added for nutritional purposes to foodstuff

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2012-10-01

    Full Text Available

    The Panel on Food Additives and Nutrient Sources added to Food provides a scientific opinion on the safety and bioavailability of chromium(III lactate tri-hydrate as a source of chromium(III added for nutritional purposes to foodstuffs. The safety of chromium itself, in terms of the amounts that may be consumed, is outside the remit of this Panel. No new data have been provided as regards the safety and bioavailability of chromium from chromium(III lactate tri-hydrate. The Panel concurs with its earlier views stating that no evidence was provided supporting the bioavailability of chromium from chromium(III lactate tri-hydrate. Chromium(III lactate tri-hydrate is claimed to be freely soluble in water, however, chromium(III lactate tri-hydrate exists as a weak complex that may influence the bioavailability of chromium(III in the gastrointestinal tract. The Panel re-iterates that because of the complex chemistry of chromium(III lactate tri-hydrate in aqueous solutions and its limited solubility at pH >5, the bioavailability of chromium(III from chromium(III lactate tri-hydrate is low. Based on a conservative exposure estimate, the Panel calculated the combined intake of chromium(III from supplements and from foods fortified with chromium(III lactate tri-hydrate, for both adults and children, to be approximately 240 μg chromium(III/day, which is below the value of 250 µg/day established by the WHO for supplemental intake of chromium that should not be exceeded. The Panel noted that the use of chromium(III lactate tri-hydrate in the form of a premix with lactose, added to foods, would result in an exposure at the mean for adults of approximately 7-37 mg lactose/day (0.12-0.62 μg lactose/kg bw/day and to 36-192 μg lactate/day (0.60-3.20 μg/kg bw/day. Given that subjects with lactose maldigestion will tolerate up to 12 g of lactose with no or minor symptoms, these levels are not of safety concern.

  19. Oxidation behavior of steels and Alloy 800 in supercritical water

    International Nuclear Information System (INIS)

    The oxidation behavior of a ferritic-martensitic steel T91 and a martensitic steel AISI 403 up to 750 h, and of AISI 316L and Alloy 800 up to 336 h in deaerated supercritical water, 450ºC-25 MPa, was investigated in this paper. After exposure up to 750 h, the weight gain data, for steels T91 and AISI 403, was fitted by ∆W=k tn, were n are similar for both steels and k is a little higher for T91. The oxide films grown in the steels were characterized using gravimetry, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction. The films were adherent and exhibited a low porosity. For this low oxygen content supercritical water exposure, the oxide scale exhibited a typical duplex structure, in which the scale is composed of an outer iron oxide layer of magnetite (Fe3O4) and an inner iron/chromium oxide layer of a non-stoichiometric iron chromite (Fe,Cr)3O4. Preliminary results, with AISI 316L and Alloy 800, for two exposure periods (168 and 336 h), are also reported. The morphology shown for the oxide films grown on both materials up to 336 h of oxidation in supercritical water, resembles that of a duplex layer film like that shown by stainless steels and Alloy 800 oxide films grown in a in a high temperature and pressure (220-350ºC) of a primary or secondary coolant of a plant. (author)

  20. Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species

    OpenAIRE

    Sivakumar, D.

    2016-01-01

    The isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI) in a tannery industry wastewater of Nagalkeni, Chennai.  The experiments were conducted to know biosorption potential of isolated fungi species for removing chromium(VI) in a tannery industry wastewater against the different pH, fungi biomass and chromium(VI) concentration (dilution ratio).  The results of this study indicated that the order of ...

  1. Investigation of hexavalent chromium removal from Synthetic wastewater by using Peaganum

    OpenAIRE

    Ali Akbar Taghizadeh; Maryam khodadadi; Taher Shahriary; Hadighe Dorri; mahla zaferanieh; rasoul khosravi

    2012-01-01

    Background and Aim: Discharge of industrial wastewater containing hexavalent chromium into the environment can have harmful effects to the types of organisms. So, chromium should remove before discharging to the environment with an effective method. The purpose of this study of is hexavalent chromium removed with Peganum harmala granular seeds(PGS).   Materials and Methods: In this experimental study, The removal of hexavalent chromium with using PGS, with changes in time, pH, adsorbent dose,...

  2. Microstructural Characterization and the Effect of Phase Transformations on Toughness of the UNS S31803 Duplex Stainless Steel Aged Treated at 850 °C

    Directory of Open Access Journals (Sweden)

    Igor Zucato

    2002-09-01

    Full Text Available Duplex stainless steels, with ferritic-austenitic microstructure, have excellent mechanical properties and corrosion resistance. However, when duplex stainless steels are exposed to temperatures between 600 and 1000 °C, some phase transformations can occur such as chromium nitrides precipitation, chromium carbides precipitation and the sigma phase formation. The formation of such compounds leads to loss in both corrosion resistance and fracture toughness. The negative effects of the formation of chromium nitrides, carbides and the sigma phase are due to the chromium depletion in the matrix. The phase transformations cited above occur initially at ferritic-austenitic interfaces and at the grain boundaries. The aim of this work is to identify and characterize the phase transformations, which occur when aging heat treatments are carried out at temperatures at which the kinetics is the fastest for the reactions mentioned. At first, the samples were annealed at 1100 °C for 40 min. The aging heat treatments were then carried out at 850 °C for 6, 40 e 600 min. Microstructural characterization was done by using optical microscopy with different etchings, in order to identify each phase formed in the duplex stainless steel during aging heat treatments. The toughness was also evaluated by using Charpy impact test. Impact tests show that loss of toughness was related to phase transformations.

  3. Influence of chromium, oxygen, carbon and nitrogen on iron viscosity

    International Nuclear Information System (INIS)

    Kinetic viscosity of 70 beforehand melted iron samples with additions of chromium (up to 2%) and carbon (up to 1%) has been investigated. Different conditions of melting brought about differences in oxygen and nitrogen contents. Viscosity of most samples has been determined in the 1550-1650 deg C temperature range. It is stated that small additions to pure iron of each of the investigated elements (O, Cr, C, N) decrease its viscosity. Combined effect of these additions on viscosity is inadditive. Simultaneous introduction of oxygen and carbon may result in increase of melt viscosity. The same fact is observed at combined introduction of chromium and nitrogen. Simultaneous introduction of other impurities-chromium with oxygen or carbon, nitrogen with oxygen causes amplification of their individual effect. Reasons for the observed regularities result from changes in energies of interparticle interactions in the melt and therefore rebuilding of structure of its short-range order

  4. A study of the process of desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    W.B. Amorim

    2003-09-01

    Full Text Available In this work the process of desorption of hexavalent chromium, a toxic metal ion, from the marine algae Sargassum sp, following biosorption experiments 2³ factorial design was studied. A technique was applied to three eluents: HCl, H2SO4 and EDTA. Three factors of importance were evaluated: concentration of eluent, the ratio between mass of biosorbent and volume of eluent (S/L and process time. A statistical analysis of the experimental results showed that the three variables evaluated are significant for all three eluents. The models for chromium desorption were validated, as the results agreed well with the observed values. Through use of the response surface methodology, a factorial design based optimization technique; it was possible to identify the most suitable eluent and the interval of values for the process variables that resulted in the most significant desorption of chromium, which is relevant information for work aiming at process optimization.

  5. Structural and magnetic properties of chromium doped zinc ferrite

    International Nuclear Information System (INIS)

    Zinc chromium ferrites with chemical formula ZnCrxFe2−xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by Sol - Gel technique. The structural as well as magnetic properties of the synthesized samples have been studied and reported here. The structural characterizations of the samples were analyzed by using X – Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The single phase spinel cubic structure of all the prepared samples was tested by XRD and FTIR. The particle size was observed to decrease from 18.636 nm to 6.125 nm by chromium doping and induced a tensile strain in all the zinc chromium mixed ferrites. The magnetic properties of few samples (x = 0.0, 0.4, 1.0) were investigated using Vibrating Sample Magnetometer (VSM)

  6. Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

    Directory of Open Access Journals (Sweden)

    Sayel Hanane

    2014-07-01

    Full Text Available Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

  7. Electron magnetic resonance investigation of chromium diffusion in yttria powders

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, R.S. de, E-mail: rsbiasi@ime.eb.b [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, Pr. General Tiburcio, 80, 22290-270 Rio de Janeiro, RJ (Brazil); Grillo, M.L.N., E-mail: mluciag@uerj.b [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil)

    2010-03-01

    The electron magnetic resonance (EMR) technique was used to investigate the diffusion of chromium in yttria (Y{sub 2}O{sub 3}) powders. The EMR absorption intensity was measured for several annealing times and three different temperatures of isothermal annealing: 1273, 1323 and 1373 K. The activation temperature for diffusion, calculated from the experimental data using a theoretical model based on the Fick equation, was found to be E{sub A}=342+-5 kJ mol{sup -1}. This value is larger than the activation energy for the diffusion of chromium in rutile (TiO{sub 2}), periclase (MgO) and cobalt monoxide (CoO) and smaller than the activation energy for the diffusion of chromium in chrysoberyl (BeAl{sub 2}O{sub 4}).

  8. Safety and efficacy of cobalt chromium alloy based sirolimus-eluting stent with bioabsorbable polymer in porcine model

    Institute of Scientific and Technical Information of China (English)

    WU Yi-zhe; SHEN Li; WANG Qi-bing; HU Xi; XIE Jian; QIAN Ju-ying; GE Jun-bo

    2012-01-01

    Background First generation drug-eluting stents (DESs) were based on 316L stainless steel and coated with a permanent polymer.The vessel wall of these DESs was inflammatory and late in-stent thrombosis was reported.Hence,cobalt chromium based DES coated with a bioabsorbable polymer was an alternate choice.Methods Cobalt chromium based DES with bioabsorbable polymer (Simrex stent) as well as control stents (Polymer stent and EXCELTM stent) were implanted into porcine arteries.At a designated time,angiography,quantitative coronary angiography (QCA) analysis,histomorphometry,and electron-microscopical follow-up were performed.Results A total of 98 stents of all the three groups were harvested.At week 24,percent diameter stenosis (%DS),late loss (LL),and percent area stenosis (%AS) of Simrex was (12.9±0.4)%,(0.35±0.02) mm,and (24.5±4.2)%,respectively,without significant difference in comparison to commercialized EXCELTM stent.Slight inflammatory reaction was seen around the stent strut of Simrex,just as in the other two groups.Electron-microscopical follow-up suggested that it might take 4-12 weeks for Simrex to complete its re-endothelialization process.Conclusions Cobalt chromium based,bioabsorbable polymer coated sirolimus-eluting stent showed excellent biocompatibility.During 24 weeks observation in porcine model,it was proved that this novel DES system successfully inhibited neointima hyperplasia and decreased in-stent stenosis.It is feasible to launch a clinical evaluation to improve the current prognosis of DES implantation.

  9. Studies on the process aspects related to chemical decontamination of chromium-containing alloys with redox processes

    International Nuclear Information System (INIS)

    Presence of chromium in the oxide layer makes oxidative pre-treatment with oxidizing agents such as potassium permanganate (KMnO4) a must for the decontamination of stainless steels and other chromium containing alloys. The effectiveness of pre-treatment with oxidizing reagent varies with the conditions of treatment such as temperature, concentration and whether the medium is acidic or alkaline. A comparative study of the two acidic oxidizing agents, i.e., nitric acid-permanganate and permanganic acid was made. The dissolution behavior of copper and its oxide in permanganic acid was found to be comparable to that of chromium oxide. Citric acid and ascorbic acid were investigated as alternatives to oxalic acid for the reduction/decomposition of permanganate left over after the oxidizing pre-treatment step. It has been established that the reduction of chromate by citric acid is instantaneous only in presence of Mn2+ ions. It has also been established that reduction of residual permanganate can be achieved with ascorbic acid and with minimum chemical requirement. The capabilities of nitrilotriacetic acid (NTA)-ascorbic acid mixture for the dissolution of hematite have been explored. This study would help to choose the suitable oxidizing agent, the reducing agent used for decomposition of permanganate and to optimize the concentration of reducing formulation so that the process of decontamination is achieved with a minimum requirement of chemicals. The generation of radioactive ion exchange resin as waste is therefore held at a minimum. Ion exchange studies with metal ion complexes of relevance to decontamination were carried out with a view to choose a suitable type of ion exchanger. It has been established that treatment of the ion exchange resin with brine solution can solve the problem of leaching out of non-ionic organics from the resin. (orig.)

  10. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.

    Science.gov (United States)

    Zhang, Xue-Hong; Liu, Jie; Huang, Hai-Tao; Chen, Jun; Zhu, Yi-Nian; Wang, Dun-Qiu

    2007-04-01

    Leersia hexandra Swartz (Gramineae), which occurs in Southern China, has been found to be a new chromium hyperaccumulator by means of field survey and pot-culture experiment. The field survey showed that this species had an extraordinary accumulation capacity for chromium. The maximum Cr concentration in the dry leaf matter was 2978 mg kg(-1) on the side of a pond near an electroplating factory. The average concentration of chromium in the leaves was 18.86 times as that in the pond sediment, and 297.41 times as that in the pond water. Under conditions of the nutrient solution culture, it was found that L. hexandra had a high tolerance and accumulation capacity to Cr(III) and Cr(VI). Under 60 mg l(-1) Cr(III) and 10 mg l(-1) Cr(VI) treatment, there was no significant decrease of biomass in the leaves of L. hexandra (p>0.05). The highest bioaccumulation coefficients of the leaves for Cr(III) and Cr(VI) were 486.8 and 72.1, respectively. However, L. hexandra had a higher accumulation capacity for Cr(III) than for Cr(VI). At the Cr(III) concentration of 10 mg l(-1) in the culture solution, the concentration of chromium in leaves was 4868 mg kg(-1), while at the same Cr(VI) concentration, the concentration of chromium in leaves was only 597 mg kg(-1). These results confirmed that L. hexandra is a chromium hyperaccumulator which grows rapidly with a great tolerance to Cr and broad ecological amplitude. This species could provide a new plant resource that explores the mechanism of Cr hyperaccumulation, and has potential for usage in the phytoremediation of Cr-contaminated soil and water. PMID:17207838

  11. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg....

  12. 75 FR 60454 - Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the...

    Science.gov (United States)

    2010-09-30

    ... AGENCY Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the..., ``Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the Integrated Risk..., 2010. The listening session on the draft assessment for hexavalent chromium will be held on November...

  13. 76 FR 20349 - Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the...

    Science.gov (United States)

    2011-04-12

    ... AGENCY Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the..., ``Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the Integrated Risk... workshop on the draft assessment for Hexavalent Chromium will be held on May 12, 2011, beginning at 8:30...

  14. 77 FR 61431 - Hexavalent Chromium Standards; Extension of the Office of Management and Budget's (OMB) Approval...

    Science.gov (United States)

    2012-10-09

    ... Occupational Safety and Health Administration Hexavalent Chromium Standards; Extension of the Office of...) approval of the information collection requirements specified in the Hexavalent Chromium Standards for... requirements specified in the Hexavalent Chromium (Cr(VI)) Standards for General Industry (29 CFR...

  15. Speciation dependent radiotracer studies on chromium preconcentration using iron doped calcium alginate biopolymer

    International Nuclear Information System (INIS)

    The work aims to study the differential attitude of Ca-alginate (CA) and Fe-doped calcium alginate (Fe-CA) and towards Cr(III) and Cr (IV) so that, depending on the oxidation state of chromium effluent, environmentally sustainable methodologies can be prescribed for removal of chromium. Throughout the experiment 51Cr has been used as the precursor of stable chromium

  16. Evaluation of flexural bond strength of porcelain to used nickel-chromium alloy in various percentages

    Directory of Open Access Journals (Sweden)

    VNV Madhav

    2012-01-01

    Fresh nickel-chromium alloy shows the greatest porcelain adherence.There is no significant change in bond strength of ceramic to alloy with up to 75% of used nickel-chromium alloy.At least 25%- of new alloy should be added when recycled nickel-chromium alloy is being used for metal ceramic restorations.

  17. Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity.

    Science.gov (United States)

    Dheeba, B; Sampathkumar, P; Kannan, K

    2015-01-01

    Zea mays (maize) and Vigna radiata (green gram) are found to be the chromium (Cr) tolerant and sensitive plants, respectively. In the present paper, we investigate the reduction of the toxicity of Cr in the sensitive plants by the mixed crop cultivation in the field using various amendments. Further, the potassium dichromate was used as the source of hexavalent Cr. The results indicated that Cr adversely affects both the growth and yield of plants. The soil properties vary with Cr and different fertilizer amendments and the yield of both plants were affected by Cr. We conclude that metal accumulation of seeds of green gram was higher than corn and the application of single fertilizer either farm yard manure (FYM) or nitrogen, phosphorous, and potassium (NPK) enhances the growth and yield of both the tolerant and sensitive plants in the mixed crop cultivations. PMID:25709647

  18. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys.

    Science.gov (United States)

    Chen, Bo; Xia, Gang; Cao, Xin-Ming; Wang, Jue; Xu, Bi-Yao; Huang, Pu; Chen, Yue; Jiang, Qing-Wu

    2013-03-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  19. Primary and secondary crystallization of modified hypoeutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2010-04-01

    Full Text Available The paper presents investigations of crystallization of modified hypoeutectic wear resistant chromium cast iron which contains carbon about 2% and chromium on three levels (12%, 18% and 25%. Three substances were applied to the modification ( boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and mischmetal (RE. The investigations of crystallization were conducted the DTA method in DTA-C and DTA-Is testers. The influence on the course of the process of primary and secondary crystallization was observed.

  20. Use of chitosan for chromium removal from exhausted tanning baths.

    Science.gov (United States)

    Cesaro, Raffaele; Fabbricino, Massimiliano; Lanzetta, Rosa; Mancino, Anna; Naviglio, Biagio; Parrilli, Michelangelo; Sartorio, Roberto; Tomaselli, Michele; Tortora, Gelsomina

    2008-01-01

    A novel approach, based on chitosan heavy-metal sequestrating ability, is proposed for chromium(III) removal from spent tanning liquor. Experimental results, obtained at lab-scale using real wastewater, are presented and discussed. Resulting efficiencies are extremely high, and strongly dependent on chitosan dose and pH value. Comparative analyses with other polysaccharides is also carried out showing that amine groups are more efficient than carboxyl and sulphate ones. Chromium recovery from sorption complexes and chitosan regeneration is finally proposed to optimize the whole process.