WorldWideScience

Sample records for chromium crvi exposure

  1. Synchrotron-based imaging of chromium and γ-H2AX immunostaining in the duodenum following repeated exposure to Cr(VI) in drinking water.

    Science.gov (United States)

    Thompson, Chad M; Seiter, Jennifer; Chappell, Mark A; Tappero, Ryan V; Proctor, Deborah M; Suh, Mina; Wolf, Jeffrey C; Haws, Laurie C; Vitale, Rock; Mittal, Liz; Kirman, Christopher R; Hays, Sean M; Harris, Mark A

    2015-01-01

    Current drinking water standards for chromium are for the combined total of both hexavalent and trivalent chromium (Cr(VI) and Cr(III)). However, recent studies have shown that Cr(III) is not carcinogenic to rodents, whereas mice chronically exposed to high levels of Cr(VI) developed duodenal tumors. These findings may suggest the need for environmental standards specific for Cr(VI). Whether the intestinal tumors arose through a mutagenic or non-mutagenic mode of action (MOA) greatly impacts how drinking water standards for Cr(VI) are derived. Herein, X-ray fluorescence (spectro)microscopy (µ-XRF) was used to image the Cr content in the villus and crypt regions of duodena from B6C3F1 mice exposed to 180 mg/l Cr(VI) in drinking water for 13 weeks. DNA damage was also assessed by γ-H2AX immunostaining. Exposure to Cr(VI) induced villus blunting and crypt hyperplasia in the duodenum--the latter evidenced by lengthening of the crypt compartment by ∼2-fold with a concomitant 1.5-fold increase in the number of crypt enterocytes. γ-H2AX immunostaining was elevated in villi, but not in the crypt compartment. µ-XRF maps revealed mean Cr levels >30 times higher in duodenal villi than crypt regions; mean Cr levels in crypt regions were only slightly above background signal. Despite the presence of Cr and elevated γ-H2AX immunoreactivity in villi, no aberrant foci indicative of transformation were evident. These findings do not support a MOA for intestinal carcinogenesis involving direct Cr-DNA interaction in intestinal stem cells, but rather support a non-mutagenic MOA involving chronic wounding of intestinal villi and crypt cell hyperplasia. PMID:25352572

  2. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI by an indigenously isolated bacterial strain

    Directory of Open Access Journals (Sweden)

    Das Alok

    2010-01-01

    Full Text Available Background : Hexavalent chromium [Cr(VI], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter. Materials and Methods: Our investigation involved microbial remediation of Cr(VI without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30oC. At about 50 mg/L initial Cr(VI concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI.

  3. Transcriptomic Analysis of Cultured Whale Skin Cells Exposed to Hexavalent Chromium [Cr(VI)

    OpenAIRE

    Pabuwal, Vagmita; Boswell, Mikki; Pasquali, Amanda; Wise, Sandra S.; Kumar, Suresh; Shen, Yingjia; Garcia, Tzintzuni; LaCerte, Carolyne; Wise, John Pierce; Warren, Wesley; Walter, Ronald B.

    2013-01-01

    Hexavalent chromium Cr(VI) is known to produce cytotoxic effects in humans and is a highly toxic environmental contaminant. Interestingly, it has been shown that free ranging sperm whales (Phyester macrocephalus) may have exceedingly high levels of Cr in their skin. Also, it has been demonstrated that skin cells from whales appear more resistant to both cytotoxicity and clastogenicity upon Cr exposure compared to human cells. However, the molecular genetic mechanisms employed in whale skin ce...

  4. Phytoremediation potential and nutrient status of Barringtonia acutangula Gaerth. Tree seedlings grown under different chromium (CrVI) treatments.

    Science.gov (United States)

    Kumar, Dharmendra; Tripathi, Durgesh Kumar; Chauhan, Devendra Kumar

    2014-02-01

    To investigate the effect of different chromium (CrVI) treatments on seedlings of semi-aquatic plant Barringtonia acutangula, hydroponic experiments were conducted. Results revealed that B. acutangula could tolerate much higher CrVI concentration accumulated about 751-2,703 mg kg(-1) dry weight in roots and 50-1,101 mg kg(-1) dry weight in shoots, respectively, under 1.0, 2.0, 3.0, 4.0, and 5.0 mM chromium treatments. CrVI exposure at 1.0-4.0 mM does not exhibit toxicity signs; however, up to 4.0 mM CrVI exposure causes significant decline in growth parameters. Content of macronutrients such as Ca and K decreased under different Cr treatments in roots and shoots, while Mg content of roots and shoots did not influence at the range of 1.0-4.0 mM Cr; however, significant decrease at 5.0 mM Cr, besides P content, significantly shows increasing trends, respectively. Interestingly, sulfur content of roots and shoots show increasing trends at 1.0-2.0 mM Cr; however, severe decrease of up to 3.0-5.0 mM is shown in CrVI treatments. Furthermore, micronutrients content were enhanced under CrVI treatments excluding Cu and Fe since they show significant reduction in shoots as well as in roots. Bioaccumulation factor were also calculated on the basis of results obtained which shows the value of >1 without viewing chromium toxicity symptoms. This study demonstrated that B. acutangula could tolerate CrVI concentrations up to 1.0-4.0 mM Cr which may be useful in chromium phytoremediation programs. PMID:24399023

  5. Evaluation of chromium in red blood cells as an indicator of exposure to hexavalent chromium: An in vitro study.

    Science.gov (United States)

    Devoy, Jérôme; Géhin, Antoine; Müller, Samuel; Melczer, Mathieu; Remy, Aurélie; Antoine, Guillaume; Sponne, Isabelle

    2016-07-25

    Chromium(VI) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and whole blood (i.e., including plasma) are indicative of recent exposure, chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure. Before recommending Cr in RBC as a biological indicator of Cr(VI) exposure, in-vitro studies must be undertaken to assess its reliability. The present study examines the relationship between the chromium added to a blood sample and that subsequently found in the RBC. After incubation of total blood with chromium, RBC were isolated, counted and their viability assessed. Direct analysis of chromium in RBC was conducted using Atomic Absorption Spectrometry. Hexavalent, but not trivalent Cr, was seen to accumulate in the RBC and we found a strong correlation between the Cr(VI) concentration added to a blood sample and the amount of Cr in RBC. This relationship appears to be independent of the chemical properties of the human blood samples (e.g., different blood donors or different reducing capacities). Even though in-vivo studies are still needed to integrate our understanding of Cr(VI) toxicokinetics, our findings reinforce the idea that a single determination of the chromium concentration in RBC would enable biomonitoring of critical cases of Cr(VI) exposure. PMID:27178267

  6. Hexavalent chromium exposure and control in welding tasks.

    Science.gov (United States)

    Meeker, John D; Susi, Pam; Flynn, Michael R

    2010-11-01

    Studies of exposure to the lung carcinogen hexavalent chromium (CrVI) from welding tasks are limited, especially within the construction industry where overexposure may be common. In addition, despite the OSHA requirement that the use of engineering controls such as local exhaust ventilation (LEV) first be considered before relying on other strategies to reduce worker exposure to CrVI, data on the effectiveness of LEV to reduce CrVI exposures from welding are lacking. The goal of the present study was to characterize breathing zone air concentrations of CrVI during welding tasks and primary contributing factors in four datasets: (1) OSHA compliance data; (2) a publicly available database from The Welding Institute (TWI); (3) field survey data of construction welders collected by the Center for Construction Research and Training (CPWR); and (4) controlled welding trials conducted by CPWR to assess the effectiveness of a portable LEV unit to reduce CrVI exposure. In the OSHA (n = 181) and TWI (n = 124) datasets, which included very few samples from the construction industry, the OSHA permissible exposure level (PEL) for CrVI (5 μg/m(3)) was exceeded in 9% and 13% of samples, respectively. CrVI concentrations measured in the CPWR field surveys (n = 43) were considerably higher, and 25% of samples exceeded the PEL. In the TWI and CPWR datasets, base metal, welding process, and LEV use were important predictors of CrVI concentrations. Only weak-to-moderate correlations were found between total particulate matter and CrVI, suggesting that total particulate matter concentrations are not a good surrogate for CrVI exposure in retrospective studies. Finally, in the controlled welding trials, LEV reduced median CrVI concentrations by 68% (p = 0.02). In conclusion, overexposure to CrVI in stainless steel welding is likely widespread, especially in certain operations such as shielded metal arc welding, which is commonly used in construction. However, exposure could be

  7. Transcriptomic analysis of cultured whale skin cells exposed to hexavalent chromium [Cr(VI)].

    Science.gov (United States)

    Pabuwal, Vagmita; Boswell, Mikki; Pasquali, Amanda; Wise, Sandra S; Kumar, Suresh; Shen, Yingjia; Garcia, Tzintzuni; Lacerte, Carolyne; Wise, John Pierce; Wise, John Pierce; Warren, Wesley; Walter, Ronald B

    2013-06-15

    Hexavalent chromium Cr(VI) is known to produce cytotoxic effects in humans and is a highly toxic environmental contaminant. Interestingly, it has been shown that free ranging sperm whales (Phyester macrocephalus) may have exceedingly high levels of Cr in their skin. Also, it has been demonstrated that skin cells from whales appear more resistant to both cytotoxicity and clastogenicity upon Cr exposure compared to human cells. However, the molecular genetic mechanisms employed in whale skin cells that might lead to Cr tolerance are unknown. In an effort to understand the underlying mechanisms of Cr(VI) tolerance and to illuminate global gene expression patterns modulated by Cr, we exposed whale skin cells in culture to varying levels of Cr(VI) (i.e., 0.0, 0.5, 1.0 and 5.0 μg/cm²) followed by short read (100 bp) next generation RNA sequencing (RNA-seq). RNA-seq reads from all exposures (≈280 million reads) were pooled to generate a de novo reference transcriptome assembly. The resulting whale reference assembly had 11K contigs and an N50 of 2954 bp. Using the reads from each dose (0.0, 0.5, 1.0 and 5.0 μg/cm²) we performed RNA-seq based gene expression analysis that identified 35 up-regulated genes and 19 down-regulated genes. The experimental results suggest that low dose exposure to Cr (1.0 μg/cm²) serves to induce up-regulation of oxidative stress response genes, DNA repair genes and cell cycle regulator genes. However, at higher doses (5.0 μg/cm²) the DNA repair genes appeared down-regulated while other genes that were induced suggest the initiation of cytotoxicity. The set of genes identified that show regulatory modulation at different Cr doses provide specific candidates for further studies aimed at determination of how whales exhibit resistance to Cr toxicity and what role(s) reactive oxygen species (ROS) may play in this process. PMID:23584427

  8. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies

    OpenAIRE

    Alma Rosa Netzahuatl-Muñoz; María del Carmen Cristiani-Urbina; Eliseo Cristiani-Urbina

    2015-01-01

    The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model describ...

  9. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater

    Science.gov (United States)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization’s maximum contaminant level for drinking water (50 μg L−1) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L−1. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ~1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42 μg kg−1, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a

  10. Chromium isotope variation along a contaminated groundwater plume: a coupled Cr(VI)- reduction, advective mixing perspective

    Science.gov (United States)

    Bullen, T.; Izbicki, J.

    2007-12-01

    Chromium (Cr) is a common contaminant in groundwater, used in electroplating, leather tanning, wood preservation, and as an anti-corrosion agent. Cr occurs in two oxidation states in groundwater: Cr(VI) is highly soluble and mobile, and is a carcinogen; Cr(III) is generally insoluble, immobile and less toxic than Cr(VI). Reduction of Cr(VI) to Cr(III) is thus a central issue in approaches to Cr(VI) contaminant remediation in aquifers. Aqueous Cr(VI) occurs mainly as the chromate (CrO22-) and bichromate (HCrO2-) oxyanions, while Cr(III) is mainly "hexaquo" Cr(H2O)63+. Cr has four naturally-occurring stable isotopes: 50Cr, 52Cr, 53Cr and 54Cr. When Cr(VI) is reduced to Cr(III), the strong Cr-O bond must be broken, resulting in isotopic selection. Ellis et al. (2002) demonstrated that for reduction of Cr(VI) on magnetite and in natural sediment slurries, the change of isotopic composition of the remnant Cr(VI) pool was described by a Rayleigh fractionation model having fractionation factor ɛCr(VI)-Cr(III) = 3.4‰. We attempted to use Cr isotopes as a monitor of Cr(VI) reduction at a field site in Hinkley, California (USA) where groundwater contaminated with Cr(VI) has been under assessment for remediation. Groundwater containing up to 5 ppm Cr(VI) has migrated down-gradient from the contamination source through the fluvial to alluvial sediments to form a well-defined plume. Uncontaminated groundwater in the aquifer immediately adjacent to the plume has naturally-occurring Cr(VI) of 4 ppb or less (CH2M-Hill). In early 2006, colleagues from CH2M-Hill collected 17 samples of groundwater from within and adjacent to the plume. On a plot of δ53Cr vs. log Cr(VI), the data array is strikingly linear and differs markedly from the trend predicted for reduction of Cr(VI) in the contaminated water. There appear to be two groups of data: four samples with δ53Cr >+2‰ and Cr(VI) 15 ppb. Simple mixing lines between the groundwater samples having <4 ppb Cr(VI), taken to be

  11. Hexavalent Chromium (Cr(VI)) Down-Regulates Acetylation of Histone H4 at Lysine 16 through Induction of Stressor Protein Nupr1.

    Science.gov (United States)

    Chen, Danqi; Kluz, Thomas; Fang, Lei; Zhang, Xiaoru; Sun, Hong; Jin, Chunyuan; Costa, Max

    2016-01-01

    The environmental and occupational carcinogen Hexavalent Chromium (Cr(VI)) has been shown to cause lung cancer in humans when inhaled. In spite of a considerable research effort, the mechanisms of Cr(VI)-induced carcinogenesis remain largely unknown. Nupr1 (nuclear protein 1) is a small, highly basic, and unfolded protein with molecular weight of 8,800 daltons and is induced by a variety of stressors. Studies in animal models have suggested that Nupr1 is a key factor in the development of lung and pancreatic cancers, with little known about the underlying molecular mechanisms. Here we report that the level of Nupr1 is significantly increased in human bronchial epithelial BEAS2B cells following exposure to Cr(VI) through epigenetic mechanisms. Interestingly, Cr(VI) exposure also results in the loss of acetylation at histone H4K16, which is considered a 'hallmark' of human cancer. Cr(VI)-induced reduction of H4K16 acetylation appears to be caused by the induction of Nupr1, since (a) overexpression of Nupr1 decreased the levels of both H4K16 acetylation and the histone acetyltransferase MOF (male absent on the first; also known as Kat8, Myst 1), which specifically acetylates H4K16; (b) the loss of acetylation of H4K16 upon Cr(VI) exposure is greatly compromised by knockdown of Nupr1. Moreover, Nupr1-induced reduction of H4K16 acetylation correlates with the transcriptional down-regulation at several genomic loci. Notably, overexpression of Nupr1 induces anchorage-independent cell growth and knockdown of Nupr1 expression prevents Cr(VI)-induced cell transformation. We propose that Cr(VI) induces Nupr1 and rapidly perturbs gene expression by downregulating H4K16 acetylation, thereby contributing to Cr(VI)-induced carcinogenesis. PMID:27285315

  12. Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process.

    Science.gov (United States)

    Dharnaik, Amit Shivputra; Ghosh, Pranab Kumar

    2014-01-01

    In the present investigation, the performance of a laboratory-scale plate and frame-type electrochemical ion-exchange (EIX) cell on removal ofhexavalent chromium from synthetic wastewater containing 5 mg/l of Cr(VI) was evaluated under varying applied voltages. Ruthenium dioxide-coated titanium plate (RuO2/Ti) was used as anode and stainless steel plates as cathode. The EIX cell was run at different hydraulic retention time (HRT). Before using in the electrochemical cell, the capacity of ion-exchange resin was evaluated through kinetic and isotherm equilibrium tests in batch mode. The batch kinetic study result showed that the equilibrium time for effective ion exchange with resin is 2 h. The isotherm equilibrium data fit well to both Freundlich and Langmuir isotherms. Maximum capacity (qm) of resin calculated from Langmuir isotherm was 71.42 mg/g. Up to 99% of chromium removal was noticed in the EIX cell containing fresh resin at applied voltages of 10 V and higher. Migration of chromium ion to anode chamber was not noticed while performing the experiment with fresh resin. As high as 50% removal of chromium was observed from the middle chamber containing exhausted resin at an applied voltage of 25 V when the influent flow rate was maintained at 45 min of HRT. The performance of the reactor was increased to 72% when the influent flow rate was decreased to maintain at 90 min of HRT. Build-up of chromium in the anode chamber took place when exhausted resin was used in the process. PMID:25145180

  13. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells.

    Science.gov (United States)

    Browning, Cynthia L; Qin, Qin; Kelly, Deborah F; Prakash, Rohit; Vanoli, Fabio; Jasin, Maria; Wise, John Pierce

    2016-09-01

    Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis. PMID:27449664

  14. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations.

    Science.gov (United States)

    Gheju, M; Balcu, I

    2011-11-30

    This work presents investigations on the total removal of chromium from Cr(VI) aqueous solutions by reduction with scrap iron and subsequent precipitation of the resulted cations with NaOH. The process was detrimentally affected by a compactly passivation film occurred at scrap iron surface, mainly composed of Cr(III) and Fe(III). Maximum removal efficiency of the Cr(total) and Fe(total) achieved in the clarifier under circumneutral and alkaline (pH 9.1) conditions was 98.5% and 100%, respectively. The optimum precipitation pH range which resulted from this study is 7.6-8.0. Fe(total) and Cr(total) were almost entirely removed in the clarifier as Fe(III) and Cr(III) species; however, after Cr(VI) breakthrough in column effluent, chromium was partially removed in the clarifier also as Cr(VI), by coprecipitation with cationic species. As long the column effluent was free of Cr(VI), the average Cr(total) removal efficiency of the packed column and clarifier was 10.8% and 78.8%, respectively. Our results clearly indicated that Cr(VI) contaminated wastewater can be successfully treated by combining reduction with scrap iron and chemical precipitation with NaOH.

  15. The influence of Chromium supplied by tanning and wet finishing processes on the formation of cr(vi in leather

    Directory of Open Access Journals (Sweden)

    W. F. Fuck

    2011-06-01

    Full Text Available Chromium used in leather manufacturing can be oxidized from the trivalent to the hexavalent state, causing environmental concerns. In this study, the influence of Cr(III from tanning, deacidification pH, fatliquors, chrome retanning and vegetable retanning on the formation of Cr(VI in leather was analyzed by comparing natural and aged samples. In wet-blue leather, even after aging and in fatliquored leathers that did not suffer the aging process, the presence of Cr(VI was always below the detection limit of 3 mg/kg. Considering the presence of Cr(VI, the supply of chromium during the retanning step had a more significant effect than during the tanning. In the fatliquoring process with sulfites, fish and synthetic fatliquor leather samples contained Cr(VI when aged, and the highest concentration detected was 26.7 mg/kg. The evaluation of Cr(VI formation led to recommendations for regulation in the leather industry.

  16. The influence of Chromium supplied by tanning and wet finishing processes on the formation of cr(vi) in leather

    OpenAIRE

    W. F. Fuck; M Gutterres; N. R. Marcílio; S. Bordingnon

    2011-01-01

    Chromium used in leather manufacturing can be oxidized from the trivalent to the hexavalent state, causing environmental concerns. In this study, the influence of Cr(III) from tanning, deacidification pH, fatliquors, chrome retanning and vegetable retanning on the formation of Cr(VI) in leather was analyzed by comparing natural and aged samples. In wet-blue leather, even after aging and in fatliquored leathers that did not suffer the aging process, the presence of Cr(VI) was always below the ...

  17. Simultaneously photocatalytic treatment of hexavalent chromium (Cr(VI)) and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngji [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Yonsei University, Department of Chemical and Biomolecular Engineering, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Joo, Hyunku [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Her, Namguk [Korea Army Academy at Young-Cheon, Department of Chemistry and Environmental Science, 135-1 Changhari, Kokyungmeon, Young-cheon, Gyeongbuk 770-849 (Korea, Republic of); Yoon, Yeomin [University of South Carolina, Department of Civil and Environmental Engineering, Columbia, SC 29208 (United States); Sohn, Jinsik [Kookmin University, School of Civil and Environmental Engineering, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Kim, Sungpyo [Korea University, Department of Environmental Engineering, Sejong 339-700 (Korea, Republic of); Yoon, Jaekyung, E-mail: jyoon@kier.re.kr [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2015-05-15

    Highlights: • Self-rotating reactor including TiO{sub 2} NTs is applied under solar irradiation. • Simultaneously photocatalysis of Cr(VI) and EDCs is observed to be up to 95%. • Photocatalytic reactions of Cr(VI) and EDCs are favorable under acidic pH. • Charge interaction and hole scavenge between TiO{sub 2} and pollutants are synergy factors. - Abstract: In this study, simultaneous treatments, reduction of hexavalent chromium (Cr(VI)) and oxidation of endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and 17β-estradiol (E2), were investigated with a rotating photocatalytic reactor including TiO{sub 2} nanotubes formed on titanium mesh substrates under solar UV irradiation. In the laboratory tests with a rotating type I reactor, synergy effects of the simultaneous photocatalytic reduction and oxidation of inorganic (Cr(VI)) and organic (BPA) pollutants were achieved. Particularly, the concurrent photocatalytic reduction of Cr(VI) and oxidation of BPA was higher under acidic conditions. The enhanced reaction efficiency of both pollutants was attributed to a stronger charge interaction between TiO{sub 2} nanotubes (positive charge) and the anionic form of Cr(VI) (negative charge), which are prevented recombination (electron–hole pair) by the hole scavenging effect of BPA. In the extended outdoor tests with a rotating type II reactor under solar irradiation, the experiment was extended to examine the simultaneous reduction of Cr(VI) in the presence of additional EDCs, such as EE2 and E2 as well as BPA. The findings showed that synergic effect of both photocatalytic reduction and oxidation was confirmed with single-component (Cr(VI) only), two-components (Cr(VI)/BPA, Cr(VI)/EE2, and Cr(VI)/E2), and four-components (Cr(VI)/BPA/EE2/E2) under various solar irradiation conditions.

  18. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers

    Directory of Open Access Journals (Sweden)

    Ren Xiao-Bin

    2011-04-01

    Full Text Available Abstract Background Occupational exposure to chromium compounds may result in adverse health effects. This study aims to investigate whether low-level hexavalent chromium (Cr(VI exposure can cause DNA damage in electroplating workers. Methods 157 electroplating workers and 93 control subjects with no history of occupational exposure to chromium were recruited in Hangzhou, China. Chromium levels in erythrocytes were determined by graphite furnace atomic absorption spectrophotometer. DNA damage in peripheral lymphocytes was evaluated with the alkaline comet assay by three parameters: Olive tail moment, tail length and percent of DNA in the comet tail (tail DNA%. Urinary 8-OHdG levels were measured by ELISA. Results Chromium concentration in erythrocytes was about two times higher in electroplating workers (median: 4.41 μg/L than that in control subjects (1.54 μg/L, P P P P Conclusion The findings in this study indicated that there was detectable chromium exposure in electroplating workers. Low-level occupational chromium exposure induced DNA damage.

  19. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures

    International Nuclear Information System (INIS)

    Highlights: • No published or well recognized MOA for Cr(VI)-induced lung tumors exists. • MOA analysis for Cr(VI)-induced lung cancer was conducted to inform risk assessment. • Cr(VI) epidemiologic, toxicokinetic, toxicological, mechanistic data were evaluated. • Weight of evidence does not support a mutagenic MOA for Cr(VI)-induced lung cancer. • Non-linear approaches should be considered for evaluating Cr(VI) lung cancer risk. - Abstract: Inhalation of hexavalent chromium [Cr(VI)] is associated with increased lung cancer risk among workers in several industries, most notably chromate production workers exposed to high concentrations of Cr(VI) (≥100 μg/m3), for which clear exposure–response relationships and respiratory irritation and tissue damage have been reported. Data from this industry are used to assess lung cancer risk associated with environmental and current occupational exposures, occurring at concentrations that are significantly lower. There is considerable uncertainty in the low dose extrapolation of historical occupational epidemiology data to assess risk at current exposures because no published or well recognized mode of action (MOA) for Cr(VI)-induced lung tumors exists. We conducted a MOA analysis for Cr(VI)-induced lung cancer evaluating toxicokinetic and toxicological data in humans and rodents and mechanistic data to assess plausibility, dose–response, and temporal concordance for potential MOAs. Toxicokinetic data support that extracellular reduction of Cr(VI), which limits intracellular absorption of Cr(VI) and Cr(VI)-induced toxicity, can be overwhelmed at high exposure levels. In vivo genotoxicity and mutagenicity data are mostly negative and do not support a mutagenic MOA. Further, both chronic bioassays and the epidemiologic literature support that lung cancer occurs at exposures that cause tissue damage. Based on this MOA analysis, the overall weight of evidence supports a MOA involving deposition and accumulation of

  20. Airborne exposure to inhalable hexavalent chromium in welders and other occupations: Estimates from the German MEGA database.

    Science.gov (United States)

    Pesch, Beate; Kendzia, Benjamin; Hauptmann, Kristin; Van Gelder, Rainer; Stamm, Roger; Hahn, Jens-Uwe; Zschiesche, Wolfgang; Behrens, Thomas; Weiss, Tobias; Siemiatycki, Jack; Lavoué, Jerome; Jöckel, Karl-Heinz; Brüning, Thomas

    2015-07-01

    This study aimed to estimate occupational exposure to inhalable hexavalent chromium (Cr(VI)) using the exposure database MEGA. The database has been compiling Cr(VI) concentrations and ancillary data about measurements at German workplaces. We analysed 3659 personal measurements of inhalable Cr(VI) collected between 1994 and 2009. Cr(VI) was determined spectrophotometrically at 540 nm after reaction with diphenylcarbazide. We assigned the measurements to pre-defined at-risk occupations using the information provided about the workplaces. Two-thirds of the measurements were below the limit of quantification (LOQ) and multiply imputed according to the distribution above LOQ. The 75th percentile value was 5.2 μg/m(3) and the 95th percentile was 57.2 μg/m(3). We predicted the geometric mean for 2h sampling in the year 2000, and the time trend of Cr(VI) exposure in these settings with and without adjustment for the duration of measurements. The largest dataset was available for welding (N = 1898), which could be further detailed according to technique. The geometric means were above 5 μg/m(3) in the following situations: spray painting, shielded metal arc welding, and flux-cored arc welding if applied to stainless steel. The geometric means were between 1 μg/m(3) and 5 μg/m(3) for gas metal arc welding of stainless steel, cutting, hard-chromium plating, metal spraying and in the chemical chromium industry. The exposure profiles described here are useful for epidemiologic and industrial health purposes. Exposure to Cr(VI) varies not only between occupations, but also within occupations as shown for welders. In epidemiologic studies, it would be desirable to collect exposure-specific information in addition to the job title. PMID:25979374

  1. Lethal and sub-lethal effects on the Asian common toad Duttaphrynus melanostictus from exposure to hexavalent chromium.

    Science.gov (United States)

    Fernando, Vindhya A K; Weerasena, Jagathpriya; Lakraj, G Pemantha; Perera, Inoka C; Dangalle, Chandima D; Handunnetti, Shiroma; Premawansa, Sunil; Wijesinghe, Mayuri R

    2016-08-01

    Chromium discharged in industrial effluents frequently occurs as an environmental pollutant, but the lethal and sub-lethal effects the heavy metal might cause in animals exposed to it have been insufficiently investigated. Selecting the amphibian Duttaphrynus melanostictus, we carried out laboratory tests to investigate the effects of short and long term exposure to hexavalent chromium (Cr(VI)) in both tadpoles and adult toads. The concentrations used were 0.002, 0.02, 0.2, 1.0 and 2.0mg/L, the first three corresponding to field levels. In vitro exposures were also carried out using toad erythrocytes and Cr(VI) concentrations of 0.0015, 0.003, 0.015, 0.03, 0.15mg/L. Mortality, growth retardation, developmental delays and structural aberrations were noted in the metal-treated tadpoles, with increasing incidence corresponding to increase in Cr(VI) level and duration of exposure. Many of the sub-lethal effects were evident with long term exposure to environmentally relevant levels of the toxicant. Changes in selected blood parameters and erythrocyte morphometry were also detected in Cr(VI) exposed toads, indicating anaemic and leucopenic conditions. In the genotoxicity study, DNA damage indicated by comet assay and increased micronuclei frequency, occurred at the low Cr(VI) concentrations tested. The multiple deleterious effects of exposure to chromium signal the need for monitoring and controlling the discharge of chromium to the environment. The dose-dependency and genotoxic effects observed in this widely distributed Asian toad indicates its suitability for monitoring heavy metal pollution in aquatic systems. PMID:27262939

  2. A plan for study of hexavalent chromium, CR(VI) in groundwater near a mapped plume, Hinkley, California, 2016

    Science.gov (United States)

    Izbicki, John A.; Groover, Krishangi

    2016-01-22

    The Pacific Gas and Electric Company (PG&E) Hinkley compressor station, in the Mojave Desert 80 miles northeast of Los Angeles, is used to compress natural gas as it is transported through a pipeline from Texas to California. Between 1952 and 1964, cooling water used at the compressor station was treated with a compound containing chromium to prevent corrosion. After cooling, the wastewater was discharged to unlined ponds, resulting in contamination of soil and groundwater in the underlying alluvial aquifer (Lahontan Regional Water Quality Control Board, 2013). Since 1964, cooling-water management practices have been used that do not contribute chromium to groundwater.In 2007, a PG&E study of the natural background concentrations of hexavalent chromium, Cr(VI), in groundwater estimated average concentrations in the Hinkley area to be 1.2 micrograms per liter (μg/L), with a 95-percent upper-confidence limit of 3.1 μg/L (CH2M-Hill, 2007). The 3.1 μg/L upper-confidence limit was adopted by the Lahontan Regional Water Quality Control Board (RWQCB) as the maximum background concentration used to map the plume extent. In response to criticism of the study’s methodology, and an increase in the mapped extent of the plume between 2008 and 2011, the Lahontan RWQCB (Lahontan Regional Water Quality Control Board, 2012) agreed that the 2007 PG&E background-concentration study be updated.The purpose of the updated background study is to evaluate the presence of natural and man-made Cr(VI) near Hinkley, Calif. The study also is to estimate natural background Cr(VI) concentrations in the aquifer upgradient and downgradient from the mapped Cr(VI) contamination plume, as well as in the plume and near its margins. The study was developed by the U.S. Geological Survey (USGS) in collaboration with a technical working group (TWG) composed of community members, the Independent Review Panel (IRP) Manager (Project Navigator, Ltd.), the Lahontan RWQCB, PG&E, and consultants for PG&E.&E.

  3. A plan for study of hexavalent chromium, CR(VI) in groundwater near a mapped plume, Hinkley, California, 2016

    Science.gov (United States)

    Izbicki, John A.; Groover, Krishangi

    2016-01-01

    The Pacific Gas and Electric Company (PG&E) Hinkley compressor station, in the Mojave Desert 80 miles northeast of Los Angeles, is used to compress natural gas as it is transported through a pipeline from Texas to California. Between 1952 and 1964, cooling water used at the compressor station was treated with a compound containing chromium to prevent corrosion. After cooling, the wastewater was discharged to unlined ponds, resulting in contamination of soil and groundwater in the underlying alluvial aquifer (Lahontan Regional Water Quality Control Board, 2013). Since 1964, cooling-water management practices have been used that do not contribute chromium to groundwater.In 2007, a PG&E study of the natural background concentrations of hexavalent chromium, Cr(VI), in groundwater estimated average concentrations in the Hinkley area to be 1.2 micrograms per liter (μg/L), with a 95-percent upper-confidence limit of 3.1 μg/L (CH2M-Hill, 2007). The 3.1 μg/L upper-confidence limit was adopted by the Lahontan Regional Water Quality Control Board (RWQCB) as the maximum background concentration used to map the plume extent. In response to criticism of the study’s methodology, and an increase in the mapped extent of the plume between 2008 and 2011, the Lahontan RWQCB (Lahontan Regional Water Quality Control Board, 2012) agreed that the 2007 PG&E background-concentration study be updated.The purpose of the updated background study is to evaluate the presence of natural and man-made Cr(VI) near Hinkley, Calif. The study also is to estimate natural background Cr(VI) concentrations in the aquifer upgradient and downgradient from the mapped Cr(VI) contamination plume, as well as in the plume and near its margins. The study was developed by the U.S. Geological Survey (USGS) in collaboration with a technical working group (TWG) composed of community members, the Independent Review Panel (IRP) Manager (Project Navigator, Ltd.), the Lahontan RWQCB, PG&E, and consultants for PG&E.&E.

  4. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Brent C. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); Constant, Stephanie L. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Patierno, Steven R. [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); GW Cancer Institute, The George Washington University, Washington, DC 20037 (United States); Jurjus, Rosalyn A. [Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037 (United States); Ceryak, Susan M., E-mail: phmsmc@gwumc.edu [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States)

    2012-02-15

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr(VI

  5. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    International Nuclear Information System (INIS)

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr(VI

  6. Determination of Hexavalent Chromium (Cr(VI)) Concentrations via Ion Chromatography and UV-Vis Spectrophotometry in Samples Collected from Nacogdoches Wastewater Treatment Plant, East Texas (USA)

    OpenAIRE

    Onchoke, Kefa K.; Sasu, Salomey A.

    2016-01-01

    The concentration of hexavalent chromium (Cr(VI)), a toxic environmental pollutant and carcinogen, was determined in samples collected from Nacogdoches Wastewater Treatment Plant (NWWTP) using ion chromatography and UV-visible spectrophotometry (IC, UV-Vis). On reaction with 1,5-diphenylcarbazide (DPC) Cr+6 forms a 1,5-diphenylcarbazide-Cr(VI) complex, which is then analyzed at 530 nm and 540 nm, respectively. Via ion chromatography Cr(VI) concentrations were in the range of 0.00190±0.0020 an...

  7. Accumulation and effects of Cr(VI) in Japanese medaka (Oryzias latipes) during chronic dissolved and dietary exposures.

    Science.gov (United States)

    Chen, Hongxing; Mu, Lei; Cao, Jinling; Mu, Jingli; Klerks, Paul L; Luo, Yongju; Guo, Zhongbao; Xie, Lingtian

    2016-07-01

    Chromium (Cr) is an essential metal and a nutritional supplement for both human and agricultural uses. It is also a pollutant from a variety of industrial uses. These uses can lead to elevated Cr levels in aquatic environments, where it can enter and affect aquatic organisms. Its accumulation and subsequent effects in fish have received relatively little attention, especially for chronic exposure. In the present study, Japanese medaka were chronically exposed to dissolved or dietary Cr(VI) for 3 months. Cr accumulation in liver, gills, intestine, and brain was evaluated. Effects on the antioxidant system, nervous system (acetylcholinesterase, AChE), digestive system (α-glucosidase, α-Glu), and tissue histology (liver and gills) were also assessed. Cr accumulation was observed in the intestine and liver of fish exposed to Cr-contaminated brine shrimp. However, chronic dissolved Cr exposure led to significant Cr accumulation in all organs tested. Analysis of the subcellular distribution of Cr in medaka livers revealed that 37% of the Cr was present in the heat stable protein fraction. The dissolved Cr exposure had pronounced effects on the antioxidant system in the liver, with an elevated ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and decreases in GSH and glutathione S-transferase (GST). The α-Glu activity in the intestine was significantly inhibited. In addition, Cr exposure caused histopathological alterations in the gills and liver. In general, the effects of dietary Cr were relatively minor, possible due to the much lower accumulation in the fish. Our results imply that Japanese medaka accumulate Cr mainly via uptake of dissolved Cr(VI).

  8. Accumulation and effects of Cr(VI) in Japanese medaka (Oryzias latipes) during chronic dissolved and dietary exposures.

    Science.gov (United States)

    Chen, Hongxing; Mu, Lei; Cao, Jinling; Mu, Jingli; Klerks, Paul L; Luo, Yongju; Guo, Zhongbao; Xie, Lingtian

    2016-07-01

    Chromium (Cr) is an essential metal and a nutritional supplement for both human and agricultural uses. It is also a pollutant from a variety of industrial uses. These uses can lead to elevated Cr levels in aquatic environments, where it can enter and affect aquatic organisms. Its accumulation and subsequent effects in fish have received relatively little attention, especially for chronic exposure. In the present study, Japanese medaka were chronically exposed to dissolved or dietary Cr(VI) for 3 months. Cr accumulation in liver, gills, intestine, and brain was evaluated. Effects on the antioxidant system, nervous system (acetylcholinesterase, AChE), digestive system (α-glucosidase, α-Glu), and tissue histology (liver and gills) were also assessed. Cr accumulation was observed in the intestine and liver of fish exposed to Cr-contaminated brine shrimp. However, chronic dissolved Cr exposure led to significant Cr accumulation in all organs tested. Analysis of the subcellular distribution of Cr in medaka livers revealed that 37% of the Cr was present in the heat stable protein fraction. The dissolved Cr exposure had pronounced effects on the antioxidant system in the liver, with an elevated ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and decreases in GSH and glutathione S-transferase (GST). The α-Glu activity in the intestine was significantly inhibited. In addition, Cr exposure caused histopathological alterations in the gills and liver. In general, the effects of dietary Cr were relatively minor, possible due to the much lower accumulation in the fish. Our results imply that Japanese medaka accumulate Cr mainly via uptake of dissolved Cr(VI). PMID:27162070

  9. Accurate quantification of total chromium and its speciation form Cr(VI) in water by ICP-DRC-IDMS and HPLC/ICP-DRC-IDMS.

    Science.gov (United States)

    Markiewicz, Barbara; Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-05-15

    Two analytical procedures have been developed for the determination of total chromium (TCr) and its highly toxic species, i.e. Cr(VI) in water samples using the following methods: inductively coupled plasma dynamic reaction cell isotope dilution mass spectrometry (ICP-DRC-IDMS) and high performance liquid chromatography inductively coupled plasma dynamic reaction cell isotope dilution mass spectrometry (HPLC/ICP-DRC-IDMS). Spectral interferences, predominantly occurring in chromium determination, were removed using a dynamic reaction cell (DRC). The presented procedures facilitate the quantification of trace amounts - below 1 µg L(-1) of TCr and individual Cr species - in various water matrices including drinking water and still bottled water with different mineral composition. Special attention has been paid to the adequate preparation of isotopically enriched (53)Cr(VI) standard solution in order to avoid artifacts in chromium speciation. Both procedures were fully validated as well as establishing the traceability and estimation of the uncertainty of measurement were carried out. Application of all of the above mentioned elements and of the isotope dilution technique, which provides the highest quality of metrological traceability, allowed to obtain reliable and high quality results of chromium determination in water samples. Additionally, the comparison of two methods: HPLC/ICP-DRC-MS and HPLC/ICP-DRC-IDMS for Cr(VI) determination, was submitted basing on the validation parameters. As a result, the lower values for these parameters were obtained using the second method. PMID:26992546

  10. Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, γ-H2AX immunostaining, and synchrotron X-ray fluorescence microscopy.

    Science.gov (United States)

    Thompson, Chad M; Wolf, Jeffrey C; Elbekai, Reem H; Paranjpe, Madhav G; Seiter, Jennifer M; Chappell, Mark A; Tappero, Ryan V; Suh, Mina; Proctor, Deborah M; Bichteler, Anne; Haws, Laurie C; Harris, Mark A

    2015-08-01

    Lifetime exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal damage and an increase in duodenal tumors in B6C3F1 mice. To assess whether these tumors could be the result of a direct mutagenic or genotoxic mode of action, we conducted a GLP-compliant 7-day drinking water study to assess crypt health along the entire length of the duodenum. Mice were exposed to water (vehicle control), 1.4, 21, or 180 ppm Cr(VI) via drinking water for 7 consecutive days. Crypt enterocytes in Swiss roll sections were scored as normal, mitotic, apoptotic, karyorrhectic, or as having micronuclei. A single oral gavage of 50mg/kg cyclophosphamide served as a positive control for micronucleus induction. Exposure to 21 and 180 ppm Cr(VI) significantly increased the number of crypt enterocytes. Micronuclei and γ-H2AX immunostaining were not elevated in the crypts of Cr(VI)-treated mice. In contrast, treatment with cyclophosphamide significantly increased numbers of crypt micronuclei and qualitatively increased γ-H2AX immunostaining. Synchrotron-based X-ray fluorescence (XRF) microscopy revealed the presence of strong Cr fluorescence in duodenal villi, but negligible Cr fluorescence in the crypt compartment. Together, these data indicate that Cr(VI) does not adversely effect the crypt compartment where intestinal stem cells reside, and provide additional evidence that the mode of action for Cr(VI)-induced intestinal cancer in B6C3F1 mice involves chronic villous wounding resulting in compensatory crypt enterocyte hyperplasia. PMID:26232259

  11. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington.

    Science.gov (United States)

    VanEngelen, Michael R; Peyton, Brent M; Mormile, Melanie R; Pinkart, Holly C

    2008-11-01

    Hexavalent chromium is one of the most widely distributed environmental contaminants. Given the carcinogenic and mutagenic consequences of Cr(VI) exposure, the release of Cr(VI) into the environment has long been a major concern. While many reports of microbial Cr(VI) reduction are in circulation, very few have demonstrated Cr(VI) reduction under alkaline conditions. Since Cr(VI) exhibits higher mobility in alkaline soils relative to pH neutral soils, and since Cr contamination of alkaline soils is associated with a number of industrial activities, microbial Cr(VI) reduction under alkaline conditions requires attention.Soda lakes are the most stable alkaline environments on earth, and contain a wide diversity of alkaliphilic organisms. In this study, a bacterial isolate belonging to the Halomonas genus was obtained from Soap Lake, a chemically stratified alkaline lake located in central Washington State. The ability of this isolate to reduce Cr(VI) and Fe(III) was assessed under alkaline (pH = 9), anoxic, non-growth conditions with acetate as an electron donor. Metal reduction rates were quantified using Monod kinetics. In addition, Cr(VI) reduction experiments were carried out in the presence of Fe(III) to evaluate the possible enhancement of Cr(VI) reduction rates through electron shuttling mechanisms. While Fe(III) reduction rates were slow compared to previously reported rates, Cr(VI) reduction rates fell within range of previously reported rates. PMID:18401687

  12. Selective reduction of Cr(VI) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis.

    Science.gov (United States)

    Zheng, Shan; Jiang, Wenjun; Rashid, Mamun; Cai, Yong; Dionysiou, Dionysios D; O'Shea, Kevin E

    2015-02-03

    The highly toxic Cr(VI) is a critical component in the Chromated Copper Arsenate (CCA) formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI) to less toxic Cr(III) in the presence of arsenate, As(V), and copper, Cu(II). The rapid conversion of Cr(VI) to Cr(III) during UV/TiO2 photocatalysis occurs over a range of concentrations, solution pH and at different Cr:As:Cu ratios. The reduction follows pseudo-first order kinetics and increases with decreasing solution pH. Saturation of the reaction solution with argon during UV/TiO2 photocatalysis had no significant effect on the Cr(VI) reduction demonstrating the reduction of Cr(VI) is independent of dissolved oxygen. Reduction of Cu(II) and As(V) does not occur under the photocatalytic conditions employed herein and the presence of these two in the tertiary mixtures had a minimal effect on Cr(VI) reduction. The Cr(VI) reduction was however, significantly enhanced by the addition of formic acid, which can act as a hole scavenger and enhance the reduction processes initiated by the conduction band electron. Our results demonstrate UV/TiO2 photocatalysis effectively reduces Cr(VI) in mixed waste streams under a variety of conditions.

  13. Biological monitoring of occupational exposure to different chromium compounds at various valency states

    Energy Technology Data Exchange (ETDEWEB)

    Mutti, A.; Pedroni, C.; Arfini, G.; Franchini, I.; Minoia, C.; Micoli, G.; Baldi, C.

    1984-01-01

    Chromium concentrations in the air were measured in seven different workroom environments, where exposure to water soluble hexavalent or trivalent compounds was expected. Urinary excretion of chromium was measured before and after the same arbitrarily chosen working day. End-of-shift urinary chromium and its increase above pre-exposure levels were closely related to the concentration of water soluble chromium (VI) in the air. The values corresponding to 50 micrograms m-3 in the air, which is the current threshold limit value in most countries, were 29.8 and 12.2 micrograms g-1 of creatinine, respectively. Urinary chromium in workers exposed to water insoluble chromates or to water soluble chromic (III) sulphate was definitely higher than that observed in subjects not occupationally exposed to chromium compounds, but it cannot be recommended as short-term exposure test for evaluation of the job-related hazard.

  14. Cr(VI) sorption/desorption on untreated and mussel-shell-treated soil materials: fractionation and effects of pH and chromium concentration

    Science.gov (United States)

    Otero, M.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J. C.; Arias-Estévez, M.; Fernández-Sanjurjo, M. J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.

    2015-04-01

    We used batch-type experiments to study Cr(VI) sorption/desorption on granitic material, forest soil, pyritic material, mussel shell, and on forest soil and granitic material amended with 12 t ha-1 (1.2 kg m -2) shell, considering the effects of varying Cr(VI) concentration and pH. Sequential extractions were carried out to fractionate adsorbed Cr(VI) and to determine the stability of Cr(VI) retention. The pyritic material had the highest Cr(VI) retention capacity, whereas the granitic material showed the lowest retention potential. When high Cr concentrations were added, some saturation of the adsorbent surfaces became apparent, but Cr release remained low. The highest Cr retention was achieved at a very acid pH value, with release progressively increasing as a function of increasing pH. The amendment with 12 t ha-1 mussel shell did not cause marked changes in Cr(VI) retention. Sorption data were satisfactory adjusted to the Freundlich model. Regarding Cr(VI) fractionation, the soluble fraction (weakly bound) was dominant in mussel shell and in the unamended and amended granitic material, whereas more stable fractions dominated in the pyritic material (residual fraction) and in the forest soil (oxidizable fraction). In conclusion, the pyritic material presented the highest Cr(VI) retention capacity, while the retention was low and weak on the granitic material; mussel shell was not characterized by a marked Cr(VI) retention potential, and it did not cause remarkable increase in Cr(VI) retention when used to amend the granitic material or the forest soil.

  15. Lactational exposure to hexavalent chromium delays puberty by impairing ovarian development, steroidogenesis and pituitary hormone synthesis in developing Wistar rats

    International Nuclear Information System (INIS)

    Hexavalent chromium (Cr-VI) is used in a wide range of industries. Cr-VI from chromate industries and atmospheric emissions contribute to the Cr contamination in the environment. Cr is a reproductive metal toxicant that can traverse the placental barrier and cause a wide range of fetal effects including ovotoxicity. Therefore, the goal of this study was to investigate the basic mechanisms involved in Cr(VI)-induced ovotoxicity, and the protective role of vitamin C on ovarian follicular development and function in Cr(VI)-induced reproductive toxicity using both in vivo and in vitro approaches. Lactating rats received potassium dichromate (200 mg/L) with or without vitamin C (500 mg/L), through drinking water from postpartum days 1-21. During postnatal days (PND) 1-21 the pups received Cr(VI) via the mother's milk. Pups from both control and treatment groups were continued on regular diet and water from PND-21 onwards, and euthanized on PND-21, -45 and -65. Cr(VI) decreased steroidogenesis, GH and PRL, increased FSH and did not alter LH. Cr(VI) delayed puberty, decreased follicle number, and extended estrous cycle. Spontaneously immortalized rat granulosa cells were treated with 12.5 μM (IC50) potassium dichromate for 12 and 24 h, with or without vitamin C pre-treatment. Cr(VI) decreased the mRNA expressions of StAR, SF-1, 17β-HSD-1, 17β-HSD-2, FSHR, LHR, ERα and ERβ. Vitamin C pre-treatment protected ovary and granulosa cells from the deleterious effects of Cr(VI) toxicity, both in vivo and in vitro. Therefore, Cr(VI) toxicity could be a potential risk to the reproductive system in developing females, and vitamin C plays a protective role against Cr(VI)-induced ovotoxicity

  16. Cr(VI reduction by cell-free extract of thermophillic Bacillus fusiformis NTR9

    Directory of Open Access Journals (Sweden)

    Pranee Pattanapipitpaisal

    2013-08-01

    Full Text Available Residual chromium compounds in discharged effluents is a serious problem, due to hexavalent chromium or chromate[Cr(VI] being extremely toxic and showing mutagenic and carcinogenic effects on biological systems. The bacterial enzymaticCr(VI reduction can occur and this could be an effective method of detoxifying Cr(VI polluted effluent. The present studycharacterized Cr(VI reductase activity of cell-free extracts (CFE of thermophilic chromate-reducing bacteria, Bacillusfusiformis NTR9. Results showed that the optimum temperature and pH for Cr(VI reductase activity of CFE was 80°C andpH 7, respectively. The reductase activity remained at 60.34% and 26.44% after 30 minutes of exposure to 70 and 90°C,respectively, suggesting a heat stable enzyme. Moreover, the enzyme was resistant under acidic and neutral condition but itsstability was decreased under alkaline condition. The Cr(VI reductase activity of CFE was enhanced when exposed in Cu2+and Fe3+ by 188.19% and 180.38%, respectively. The Cr(VI reductase activity could be reduced to 72.19% and 8.95% in thepresence of Mn2+ and Ag+, respectively. Mg2+, Zn2+, As3+ and electron acceptors like sulfate and nitrate had no affect on Cr(VIreductase activity. The external electron donors (glucose, glycerol, citrate, malate, succinate, and acetate, but not NADHwere essential to improve the chromate reductase activity of NTR9 strain. The chromate reductase was mainly associatedwith the soluble fraction in the cytoplasm of the bacterial cell. The molecular weight of the enzyme was 20 KDa. The resultsshowed that Cr(VI reductase could be a good candidate for detoxification of Cr(VI in industrial effluents.

  17. The prevalence of chromium allergy in Denmark is currently increasing as a result of leather exposure

    DEFF Research Database (Denmark)

    Thyssen, J P; Jensen, P; Carlsen, B C;

    2009-01-01

    BACKGROUND: Chromium allergy has traditionally been caused by occupational skin contact with cement. In 1983, Danish legislation made the addition of ferrous sulphate compulsory in cement to reduce the water-soluble chromium content to not more than 2 ppm. An effect from this intervention has pre...... leather exposure increased significantly from 24.1% during 1989-1994 to 45.5% during 1995-2007 (P leather exposure....

  18. Chromium in drinking water: sources, metabolism, and cancer risks.

    Science.gov (United States)

    Zhitkovich, Anatoly

    2011-10-17

    Drinking water supplies in many geographic areas contain chromium in the +3 and +6 oxidation states. Public health concerns are centered on the presence of hexavalent Cr that is classified as a known human carcinogen via inhalation. Cr(VI) has high environmental mobility and can originate from anthropogenic and natural sources. Acidic environments with high organic content promote the reduction of Cr(VI) to nontoxic Cr(III). The opposite process of Cr(VI) formation from Cr(III) also occurs, particularly in the presence of common minerals containing Mn(IV) oxides. Limited epidemiological evidence for Cr(VI) ingestion is suggestive of elevated risks for stomach cancers. Exposure of animals to Cr(VI) in drinking water induced tumors in the alimentary tract, with linear and supralinear responses in the mouse small intestine. Chromate, the predominant form of Cr(VI) at neutral pH, is taken up by all cells through sulfate channels and is activated nonenzymatically by ubiquitously present ascorbate and small thiols. The most abundant form of DNA damage induced by Cr(VI) is Cr-DNA adducts, which cause mutations and chromosomal breaks. Emerging evidence points to two-way interactions between DNA damage and epigenetic changes that collectively determine the spectrum of genomic rearrangements and profiles of gene expression in tumors. Extensive formation of DNA adducts, clear positivity in genotoxicity assays with high predictive values for carcinogenicity, the shape of tumor-dose responses in mice, and a biological signature of mutagenic carcinogens (multispecies, multisite, and trans-sex tumorigenic potency) strongly support the importance of the DNA-reactive mutagenic mechanisms in carcinogenic effects of Cr(VI). Bioavailability results and kinetic considerations suggest that 10-20% of ingested low-dose Cr(VI) escapes human gastric inactivation. The directly mutagenic mode of action and the incompleteness of gastric detoxification argue against a threshold in low

  19. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Deng Lin [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Wang Hongli [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China)]. E-mail: nsdengwhu@163.com

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps ({lambda}=365nm, 250W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0mgL{sup -1} and initial algae concentration ranged from ABS{sub algae} (the absorbency of algae)=0.025 to ABS{sub algae}=0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250W metal halide lamps was V{sub 0}=kC{sub 0}{sup 0.1718}A{sub algae}{sup 0.5235} (C{sub 0} was initial concentration of Cr(VI); A{sub algae} was initial concentration of algae) under the condition of pH 4.

  20. Hexavalent chromium induces chromosome instability in human urothelial cells.

    Science.gov (United States)

    Wise, Sandra S; Holmes, Amie L; Liou, Louis; Adam, Rosalyn M; Wise, John Pierce

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. PMID:26908176

  1. Can iron oxides remove Cr(VI) from drinking water at sub-ppb levels?

    Science.gov (United States)

    Kaprara, Efthymia; Simeonidis, Konstantinos; Samaras, Petros; Zouboulis, Anastasios; Mitrakas, Manassis

    2013-04-01

    Hexavalent chromium [Cr(VI)] has long been recognized as a potential carcinogen via inhalation, in contrast to trivalent chromium [Cr(III)] which is 100 times less toxic and also a necessary nutrient, essential to human glucidic metabolism. Nowadays there is an increasing concern that Cr(VI) is also carcinogenic by the oral route of exposure, while an increased number of publications indicate that Cr(VI) is a common natural pollutant. Hexavalent chromium formation is attributed to natural oxidation of Cr(III) in ultramafic derived soils and ophiolithic rocks. To verify this theory, drinking water samples were collected from targeted areas of Greece e.g. areas in which the geological background is predominated by ultramafic minerals and the water supply depends mainly on groundwater resources. Valuable guide for the samples collection was the geological map of Greece and emphasis was given to regions where the natural occurrence of Cr(VI) is thought to be more possible. A wide range of Cr concentrations (2-100 μg/L) were detected in the areas studied, with most of them ranging below the current limit of 50 μg/L, and the Cr(VI) concentration being more than 90% of the total. Since the Cr(VI) affects significant part of population worldwide, a debate was established concerning the enforcement of stringent regulation, which also demands the drinking water treatment processes re-evaluation in view of Cr(VI) removal at sub-ppb level. In this regard, adsorption has evolved as the front line of defense for chromium removal. The motivation of this work was to investigate the efficiency of iron oxides for the adsorption of Cr(VI) from drinking water and its removal at sub-ppb levels. The adsorbents examined included iron oxy-hydroxides and magnetite prepared using common low cost iron salts. Their effectiveness as Cr(VI) adsorbents was evaluated through the decrease of a Cr(VI) concentration of 100μg/L prepared in NSF water at pH 7. Preliminary batch experiments did not

  2. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John F. Stolz

    2011-06-15

    proteins (Gmet_2478 and Gmet_1641) were up-regulated with exposure to Cr(VI). A nine-heme cytochrome C was purified that could reduce nitrite and could be oxidized by Cr(VI). For D. desulfuricans, we found that confirmed that Cr(VI) induced a prolonged lag period when Cr(VI) was reduced. Over three hundred proteins were unequivocally identified by LC/MS-MS and a significant number of down-regulated proteins for which the levels were changed >2 fold compared to control. Sulfite reductase levels were similar, however, nitrate and nitrite reductase were down-regulated. The supernatant of spent cultures was found to contain a filterable, heat stable compound that rapidly reduced Cr(VI). In addition, desulfoviridin was purified from nitrate grown cells and shown to have nitrite reductase activity that was inhibited by Cr(VI). For S. barnesii, periplasmic nitrate reductase (Nap), nitrite reductase (Nrf), and the metalloid reductase (Rar) were purified and characterized. The supernatant of spent cultures was also found to contain a filterable, heat stable compound that rapidly reduced Cr(VI) but that Rar also reduced Cr(VI). Our results from specific aims 1 through 3 indicate that for G. metallireducens, Cr(VI) inhibits nitrate respiration as it oxidizes cytochromes involved in nitrate respiration. Iron reduction is apparently not affected and the inhibitory affects of Cr(VI) may be attenuated by the addition of sufficient Fe(III) to generate Fe(II) that abiotically reduces the chromium. For S. barnesii, although the enzyme assays indicate that the components of the respiratory pathway for nitrate (e.g. Nap and Nrf) are inhibited by chromate, the organism has a mechanism to prevent this from actually occurring. Our current hypothesis is that the non-specific metalloid reductase (Rar) is providing resistance by reducing the Cr(VI). The strategy here would be to enhance its growth and metabolism in the natural setting. Lactate is a suitable electron donor for S. barnesii but other

  3. Characterisation of exposure to total and hexavalent chromium of welders using biological monitoring.

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Heussen, G.A.; Peer, P.G.M.; Verbist, K.; Anzion, R.; Willems, J.

    2008-01-01

    Inhalation exposure to total and hexavalent chromium (TCr and HCr) was assessed by personal air sampling and biological monitoring in 53 welders and 20 references. Median inhalation exposure levels of TCr were 1.3, 6.0, and 5.4 microg/m(3) for welders of mild steel (MS, <5% alloys), high alloy st

  4. Microbial reduction of hexavalent Chromium under vadose zone conditions

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, D S.(unknown); Brockman, Fred J.(BATTELLE (PACIFIC NW LAB)); Bowman, Robert (VISITORS); Kieft, Thomas L.(BATTELLE (PACIFIC NW LAB))

    2003-01-01

    Hexavalent chromium[Cr(VI)] is a common constituent of wastes associated with nuclear reactor operation and fuel processing. Improper disposal at facilities in arid and semi-arid regions has led to contamination of underlying vadose zones and aquifers. The objectives of this study were to assess the potential for immobilizing Cr(VI) contamination using a native microbial community to reduce soluble Cr(VI) to insoluble Cr(III) under conditions similar to those found in the vadose zone, and to evaluate the potential for enhancing biological reduction of Cr(VI) through the addition of nutrients. Batch microcosm and unsaturated flow column experiments were performed. Native microbial communities in subsurface sediments with no prior Cr(VI) exposure were shown to be capable of Cr(VI) reduction. In both the batch and column experiments, Cr(VI) reduction and loss from the aqueous phase were enhanced by adding high levels of both nitrate (NO3-) and organic carbon (molasses). Nutrient amendments resulted in up to 87% Cr(VI) reduction in unsaturated batch experiments. Molasses and nitrate additions to 15-cm length unsaturated flow columns receiving 65 mg L-1 Cr(VI) resulted in microbially mediated reduction and immobilization of 10% of the Cr during a 45-day experiment. All of the immobilized Cr was in the form of Cr (III), as shown by XANES analysis. This suggests that biostimulation of microbial Cr(VI) reduction in vadose zones by nutrient amendment is a promising strategy; and that immobilization of close to 100% of Cr contamination could be achieved in a thick vadose zone with longer flow paths and longer contact times than in this experiment.

  5. DNA damaging bystander signalling from stem cells, cancer cells and fibroblasts after Cr(VI) exposure and its dependence on telomerase

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Nicola [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom); Baird, Duncan M. [Department of Pathology School of Medicine, Cardiff University, Henry Wellcome Building for Biomedical Research in Wales, Heath Park, Cardiff, CF14 4XN (United Kingdom); Phillips, Ryan [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom); Crompton, Lucy A.; Caldwell, Maeve A. [Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, BS1 3NY (United Kingdom); Rubio, Miguel A. [Center of Regenerative Medicine in Barcelona, CMRB Dr. Aiguader, 88, 7th Floor, 08003 Barcelona (Spain); Newson, Roger [Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin 2 (Ireland); Lyng, Fiona [National Heart and Lung Institute, Imperial College London, London, SW7 2AZ (United Kingdom); Case, C. Patrick, E-mail: c.p.case@bristol.ac.uk [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom)

    2010-01-05

    The bystander effect is a feature of low dose radiation exposure and is characterized by a signaling process from irradiated cells to non irradiated cells, which causes DNA and chromosome damage in these 'nearest neighbour' cells. Here we show that a low and short dose of Cr(VI) can induce stem cells, cancer cells and fibroblasts to chronically secrete bystander signals, which cause DNA damage in neighboring cells. The Cr(VI) induced bystander signaling depended on the telomerase status of either cell. Telomerase negative fibroblasts were able to receive DNA damaging signals from telomerase positive or negative fibroblasts or telomerase positive cancer cells. However telomerase positive fibroblasts were resistant to signals from Cr(VI) exposed telomerase positive fibroblasts or cancer cells. Human embryonic stem cells, with positive Oct4 staining as a marker of pluripotency, showed no significant increase of DNA damage from adjacent Cr and mitomycin C exposed fibroblasts whilst those cells that were negatively stained did. This selectivity of DNA damaging bystander signaling could be an important consideration in developing therapies against cancer and in the safety and effectiveness of tissue engineering and transplantation using stem cells.

  6. DNA damaging bystander signalling from stem cells, cancer cells and fibroblasts after Cr(VI) exposure and its dependence on telomerase

    International Nuclear Information System (INIS)

    The bystander effect is a feature of low dose radiation exposure and is characterized by a signaling process from irradiated cells to non irradiated cells, which causes DNA and chromosome damage in these 'nearest neighbour' cells. Here we show that a low and short dose of Cr(VI) can induce stem cells, cancer cells and fibroblasts to chronically secrete bystander signals, which cause DNA damage in neighboring cells. The Cr(VI) induced bystander signaling depended on the telomerase status of either cell. Telomerase negative fibroblasts were able to receive DNA damaging signals from telomerase positive or negative fibroblasts or telomerase positive cancer cells. However telomerase positive fibroblasts were resistant to signals from Cr(VI) exposed telomerase positive fibroblasts or cancer cells. Human embryonic stem cells, with positive Oct4 staining as a marker of pluripotency, showed no significant increase of DNA damage from adjacent Cr and mitomycin C exposed fibroblasts whilst those cells that were negatively stained did. This selectivity of DNA damaging bystander signaling could be an important consideration in developing therapies against cancer and in the safety and effectiveness of tissue engineering and transplantation using stem cells.

  7. Chromium(III) and chromium(VI) surface treated galvanized steel for outdoor constructions: environmental aspects.

    Science.gov (United States)

    Lindström, David; Hedberg, Yolanda; Odnevall Wallinder, Inger

    2010-06-01

    The long-term degradation of chromium(III) (Zn-Cr(III)) and chromium(VI)-based (Zn-Cr(VI)) surface treatments on galvanized steel and their capacities to hinder the release of zinc induced by atmospheric corrosion at nonsheltered urban and marine exposure conditions for 2 years are investigated. Compared to bare zinc sheet, both surface treatments revealed high corrosion protection abilities and capacities to hinder the release of zinc, still evident after 2 years of exposure. The zinc barrier properties of the thinner Zn-Cr(VI) (10 nm) treatment were during the first 100 days of urban exposure slightly improved compared with Zn-Cr(III) (35 nm). However, their long-term protection capacities were inverse. Released concentrations of total chromium correspond to annual release rates less than 0.000032 (Zn-Cr(III)) and 0.00014 g Cr m(-2) yr(-1) (Zn-Cr(VI)) after 1 year of urban exposure. Aging by indoor storage of the surface treatments prior to outdoor exposure reduced the released Cr concentrations from the surface treatments. No Cr(VI) was released from the aged surfaces but from the freshly exposed Zn-Cr(VI). Marine exposure conditions resulted in a faster reduction of chromate to chromium(III)oxide compared with urban conditions, and a significantly lower amount of both chromium(III) and chromium(VI) released from Zn-Cr(VI) at the marine site compared with the urban site. PMID:20462267

  8. Effects of Chromium(VI) and Chromium(III) on Desulfovibrio vulgaris Cells

    Energy Technology Data Exchange (ETDEWEB)

    M.E. Clark; A. Klonowska; S.B. Thieman; B. Giles; J.D. Wall; and M.W. Fields

    2007-04-19

    Desulfovibrio vulgaris ATCC 29579 is a well studied sulfate reducer that has known capabilities of reducing heavy metals and radionuclides, like chromium and uranium. Cultures grown in a defined medium (i.e. LS4D) had a lag period of approximately 40 h when exposed to 50 μMof Cr(VI). Substrate analysis revealed that although chromium is reduced within the first 5 h, growth does not resume for another 35 h. During this time, small amounts of lactate are still utilized but the reduction of sulfate does not occur. Sulfate reduction occurs concurrently with the accumulation of acetate approximately 40 h after inoculation, when growth resumes. Similar amounts of hydrogen are produced during this time compared to hydrogen production by cells not exposed to Cr(VI); therefore an accumulation of hydrogen cannot account for the utilization of lactate. There is a significant decrease in the carbohydrate to protein ratio at approximately 25 h, and this result indicated that lactate is not converted to glycogen. Most probable number analysis indicated that cell viability decreased steadily after inoculation and reached approximately 6 x 104 cells/ml 20 h post-chromium exposure. Regeneration of reducing conditions during chromium exposure does not induce growth and in fact may make the growth conditions even more unfavorable. This result suggested that an increase in Eh was not solely responsible for the decline in viability. Cell pellets collected 10 h after chromium-exposure were unable to resume growth when suspended into fresh medium. Supernatants from these pellets were able to support cell growth upon re- inoculation. D. vulgaris cells treated with a non-dose dependent addition of ascorbate at the same time of Cr(VI) addition did not enter a lag period. Ascorbate added 3 h post-Cr(VI) exposure did not prevent the growth lag. These results indicated that Desulfovibrio utilized lactate to reduce Cr(VI) without the reduction of sulfate, that the decline in cell viability and

  9. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1.

    Science.gov (United States)

    Cárdenas-González, M; Osorio-Yáñez, C; Gaspar-Ramírez, O; Pavković, M; Ochoa-Martínez, A; López-Ventura, D; Medeiros, M; Barbier, O C; Pérez-Maldonado, I N; Sabbisetti, V S; Bonventre, J V; Vaidya, V S

    2016-10-01

    Environmental hazards from natural or anthropological sources are widespread, especially in the north-central region of Mexico. Children represent a susceptible population due to their unique routes of exposure and special vulnerabilities. In this study we evaluated the association of exposure to environmental kidney toxicants with kidney injury biomarkers in children living in San Luis Potosi (SLP), Mexico. A cross-sectional study was conducted with 83 children (5-12 years of age) residents of Villa de Reyes, SLP. Exposure to arsenic, cadmium, chromium, fluoride and lead was assessed in urine, blood and drinking water samples. Almost all tap and well water samples had levels of arsenic (81.5%) and fluoride (100%) above the permissible levels recommended by the World Health Organization. Mean urine arsenic (45.6ppb) and chromium (61.7ppb) were higher than the biological exposure index, a reference value in occupational settings. Using multivariate adjusted models, we found a dose-dependent association between kidney injury molecule-1 (KIM-1) across chromium exposure tertiles [(T1: reference, T2: 467pg/mL; T3: 615pg/mL) (p-trend=0.001)]. Chromium upper tertile was also associated with higher urinary miR-200c (500 copies/μl) and miR-423 (189 copies/μL). Arsenic upper tertile was also associated with higher urinary KIM-1 (372pg/mL). Other kidney injury/functional biomarkers such as serum creatinine, glomerular filtration rate, albuminuria, neutrophil gelatinase-associated lipocalin and miR-21 did not show any association with arsenic, chromium or any of the other toxicants evaluated. We conclude that KIM-1 might serve as a sensitive biomarker to screen children for kidney damage induced by environmental toxic agents. PMID:27431456

  10. Reduction of Hexavalent Chromium by Viable Cells of Chromium Resistant Bacteria Isolated from Chromite Mining Environment

    OpenAIRE

    Satarupa Dey; Baishali Pandit; A. K. Paul

    2014-01-01

    Environmental contamination of hexavalent chromium [Cr(VI)] is of serious concern for its toxicity as well as mutagenic and carcinogenic effects. Bacterial chromate reduction is a cost-effective technology for detoxification as well as removal of Cr(VI) from polluted environment. Chromium resistant and reducing bacteria, belonging to Arthrobacter, Pseudomonas, and Corynebacterium isolated from chromite mine overburden and seepage samples of Orissa, India, were found to tolerate 12–18 mM Cr(VI...

  11. Alveolar macrophages and lung lesions after combined exposure to nickel, cobalt, and trivalent chromium.

    OpenAIRE

    Johansson, A; Curstedt, T.; Jarstrand, C; Camner, P

    1992-01-01

    In earlier inhalation exposures of rabbits, nickel increased the production of surfactant by type II cells, with secondary effects on morphology and function of alveolar macrophages. Cobalt induced mainly a nodular growth pattern of the type II cells. Trivalent chromium seemed to impair the capacity of macrophages to catabolize surfactant but did not affect the type II cells. We exposed rabbits by inhalation to combinations of nickel (0.6 mg/m3 as NiCl2) and trivalent chromium [1.2 mg/m3 as C...

  12. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha)

    Energy Technology Data Exchange (ETDEWEB)

    Farag, Aida M. [United States Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, P.O. Box 1089, Jackson, WY 83001 (United States)]. E-mail: aida_farag@usgs.gov; May, Thomas [United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201 (United States); Marty, Gary D. [Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA 95616-8732 (United States); Easton, Michael [International EcoGen Inc., 2015 McLallen Court, North Vancouver, BC, Canada V7P 3H6 (Canada); Harper, David D. [United States Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, P.O. Box 1089, Jackson, WY 83001 (United States); Little, Edward E. [United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201 (United States); Cleveland, Laverne [United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201 (United States)

    2006-03-10

    This study was designed to determine fish health impairment of Chinook salmon (Oncorhynchus tshawytscha) exposed to chromium. Juvenile Chinook salmon were exposed to aqueous chromium concentrations (0-266 {mu}g l{sup -1}) that have been documented in porewater from bottom sediments and in well waters near salmon spawning areas in the Columbia River in the northwestern United States. After Chinook salmon parr were exposed to 24 and 54 {mu}g Cr l{sup -1} for 105 days, neither growth nor survival of parr was affected. On day 105, concentrations were increased from 24 to 120 {mu}g Cr l{sup -1} and from 54 to 266 {mu}g Cr l{sup -1} until the end of the experiment on day 134. Weight of parr was decreased in the 24/120 {mu}g Cr l{sup -1} treatment, and survival was decreased in the 54/266 {mu}g Cr l{sup -1} treatment. Fish health was significantly impaired in both the 24/120 and 54/266 {mu}g Cr l{sup -1} treatments. The kidney is the target organ during chromium exposures through the water column. The kidneys of fish exposed to the greatest concentrations of chromium had gross and microscopic lesions (e.g. necrosis of cells lining kidney tububules) and products of lipid peroxidation were elevated. These changes were associated with elevated concentrations of chromium in the kidney, and reduced growth and survival. Also, variations in DNA in the blood were associated with pathological changes in the kidney and spleen. These changes suggest that chromium accumulates and enters the lipid peroxidation pathway where fatty acid damage and DNA damage (expressed as chromosome changes) occur to cause cell death and tissue damage. While most of the physiological malfunctions occurred following parr exposures to concentrations {>=}120 {mu}g Cr l{sup -1}, nuclear DNA damage followed exposures to 24 {mu}g Cr l{sup -1}, which was the smallest concentration tested. The abnormalities measured during this study are particularly important because they are associated with impaired growth

  13. The hazard of chromium exposure to neonates in Guiyu of China

    International Nuclear Information System (INIS)

    Guiyu is one of the most heavily chromium-polluted areas in China due to the presence of numerous electronic waste (e-waste) recycling sites in the region. In this study, we investigate the effect of umbilical cord blood chromium levels (UCBCLs) on neonates from Guiyu and discuss chromium-induced DNA damage of cord blood lymphocyte. Umbilical cord blood samples were collected from neonates of Guiyu (in 2006, n = 100; in 2007, n = 100) and the neighboring town of Chaonan (in 2006, n = 52; in 2007, n = 50) that is associated with the fishery. UCBCLs of the neonates were determined by graphite atomizer absorption spectrophotometer. Comet experiment was used to examine lymphocyte DNA damage. Questionnaires to gauge chromium exposure were administered to the mothers of the neonates. The mean UCBCLs of neonates in the Guiyu group in 2006 and 2007 were 303.38 μg/L and 99.90 μg/L with median 93.89 μg/L and 70.60 μg/L, respectively. We observed significant differences between the results in UCBCLs of neonates in Guiyu and the control group (P 0.05). Higher levels of chromium in neonates were found to correlate with their mothers' exposure to e-waste recycling. There were significant differences in terms of DNA damage between the Guiyu group and the control group (P < 0.05). There was a correlation between DNA damage and the UCBCLs of neonates (P < 0.05). There is conclusive evidence that high UCBCLs in neonates exists in e-waste recycling areas in Guiyu and that e-waste recycling activity poses serious environmental problems. Chromium pollution is threatening the health of neonates around the recycling sites

  14. Biosorption system produced from biofilms supported on Faujasite (FAU) zeolite, process for obtaining it and its usage for removal of hexavalent chromium (Cr(VI))

    OpenAIRE

    Tavares, M. T.; Neves, Isabel C.

    2008-01-01

    The present invention refers to a biosorption system composed of a bacterial biofilm supported in synthetic zeolites, for usage in various types of industry for the removal of hexavalent chromium, through the retention of metal ions in the biofilm, in solutions with concentrations between 50 and 250 mgCr/L, process for obtaining it and respective usages. This process consists in obtaining a bacterial biofilm of Arthrobacter viscosus, supported on a faujasite (FAU) zeolite. The biofilm promote...

  15. On the removal of hexavalent chromium from a Class F fly ash.

    Science.gov (United States)

    Huggins, F E; Rezaee, M; Honaker, R Q; Hower, J C

    2016-05-01

    Coarse and fine samples of a Class F fly ash obtained from commercial combustion of Illinois bituminous coal have been exposed to two long-term leaching tests designed to simulate conditions in waste impoundments. ICP-AES analysis indicated that the coarse and fine fly ash samples contained 135 and 171mg/kg Cr, respectively. Measurements by XAFS spectroscopy showed that the ash samples originally contained 5 and 8% of the chromium, respectively, in the hexavalent oxidation state, Cr(VI). After exposure to water for more than four months, the percentage of chromium as Cr(VI) in the fly-ash decreased significantly for the coarse and fine fly-ash in both tests. Combining the XAFS data with ICP-AES data on the concentration of chromium in the leachates indicated that, after the nineteen-week-long, more aggressive, kinetic test on the coarse fly ash, approximately 60% of the Cr(VI) had been leached, 20% had been reduced to Cr(III) and retained in the ash, and 20% remained as Cr(VI) in the ash. In contrast, during the six-month-long baseline test, very little Cr was actually leached from either the coarse or the fine fly-ash (<0.1mg/kg); rather, about 66% and 20%, respectively, of the original Cr(VI) in the coarse and fine fly-ash was retained in the ash in that form, while the remainder, 34% and 80%, respectively, was reduced and retained in the ash as Cr(III). The results are interpreted as indicating that Cr(VI) present in Class F fly-ash can be reduced to Cr(III) when in contact with water and that such chemical reduction can compete with physical removal of Cr(VI) from the ash by aqueous leaching. PMID:26951722

  16. Reductive activation with cysteine represents a chromium(III)-dependent pathway in the induction of genotoxicity by carcinogenic chromium(VI).

    Science.gov (United States)

    Zhitkovich, Anatoly; Quievryn, George; Messer, Joseph; Motylevich, Zhanna

    2002-10-01

    Induction of DNA damage by carcinogenic hexavalent chromium compounds [Cr(VI)] results from its reduction to lower oxidation states. Reductive metabolism of Cr(VI) generates intermediate Cr(V/IV)species, organic radicals, and finally Cr(III), which forms stable complexes with many biological ligands, including DNA. To determine the biological significance of different reaction products, we examined genotoxic responses and the formation of DNA damage during reduction of Cr(VI) by its biological reducer, cysteine. We have found that cysteine-dependent activation of Cr(VI) led to the formation of Cr-DNA and cysteine-Cr-DNA adducts as well as interstrand DNA cross-links. The yield of binary and ternary DNA adducts was relatively constant at different concentrations of Cr(VI) and averaged approximately 54 and 45%, respectively. Interstrand DNA cross-links accounted on average for 1% of adducts, and their yield was even less significant at low Cr(VI) concentrations. Reduction of Cr(VI) in several commonly used buffers did not induce detectable damage to the sugar-phosphate backbone of DNA. Replication of Cr(VI)-modified plasmids in intact human fibroblasts has shown that cysteine-dependent metabolism of Cr(VI) resulted in the formation of mutagenic and replication-blocking DNA lesions. Selective elimination of Cr-DNA adducts from Cr(VI)-treated plasmids abolished all genotoxic responses, indicating that nonoxidative, Cr(III)-dependent reactions were responsible for the induction of both mutagenicity and replication blockage by Cr(VI). The demonstration of the mutagenic potential of Cr-DNA adducts suggests that these lesions can be explored in the development of specific and mechanistically important biomarkers of exposure to toxic forms of Cr.

  17. The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Jianguo Zhang; John L. Provis; Dingwu Feng; Jannie S.J. van Deventer [University of Melbourne, Melbourne, Vic. (Australia). Department of Chemical and Biomolecular Engineering

    2008-05-15

    The use of fly ash-based geopolymer binders to immobilize chromium is investigated in detail, with particular regard to the role of the sulfide ion as a reductant for Cr(VI) treatment. In the absence of sulfide, Cr added as Cr(VI) is highly leachable. However, addition of a small quantity of Na{sub 2}S reduces the Cr to Cr(III), and enables leaching efficiencies in excess of 99.9% to be reached after 90 days' exposure to deionized water, Na{sub 2}CO{sub 3} or MgSO{sub 4} solutions. Leaching in H{sub 2}SO{sub 4} is somewhat greater than this, due most probably to the oxidation of the Cr(III) present. Addition of the Cr(VI) as a highly soluble salt is preferable to its addition as a sparingly soluble salt, because a higher salt solubility means the Cr(VI) is more available for reduction prior to geopolymeric setting. The potential value of geopolymer technology as an immobilization process for problematic heavy metal waste streams is highlighted by these results, and the need for a full understanding of binder chemistry in any immobilization system outlined.

  18. A revised model of ex-vivo reduction of hexavalent chromium in human and rodent gastric juices

    International Nuclear Information System (INIS)

    Chronic oral exposure to hexavalent chromium (Cr-VI) in drinking water has been shown to induce tumors in the mouse gastrointestinal (GI) tract and rat oral cavity. The same is not true for trivalent chromium (Cr-III). Thus reduction of Cr-VI to Cr-III in gastric juices is considered a protective mechanism, and it has been suggested that the difference between the rate of reduction among mice, rats, and humans could explain or predict differences in sensitivity to Cr-VI. We evaluated previously published models of gastric reduction and believe that they do not fully describe the data on reduction as a function of Cr-VI concentration, time, and (in humans) pH. The previous models are parsimonious in assuming only a single reducing agent in rodents and describing pH-dependence using a simple function. We present a revised model that assumes three pools of reducing agents in rats and mice with pH-dependence based on known speciation chemistry. While the revised model uses more fitted parameters than the original model, they are adequately identifiable given the available data, and the fit of the revised model to the full range of data is shown to be significantly improved. Hence the revised model should provide better predictions of Cr-VI reduction when integrated into a corresponding PBPK model. - Highlights: • Hexavalent chromium (Cr-VI) reduction in gastric juices is a key detoxifying step. • pH-dependent Cr-VI reduction rates are explained using known chemical speciation. • Reduction in rodents appears to involve multiple pools of electron donors. • Reduction appears to continue after 60 min, although more slowly than initial rates

  19. A revised model of ex-vivo reduction of hexavalent chromium in human and rodent gastric juices

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, Paul M., E-mail: schlosser.paul@epa.gov; Sasso, Alan F.

    2014-10-15

    Chronic oral exposure to hexavalent chromium (Cr-VI) in drinking water has been shown to induce tumors in the mouse gastrointestinal (GI) tract and rat oral cavity. The same is not true for trivalent chromium (Cr-III). Thus reduction of Cr-VI to Cr-III in gastric juices is considered a protective mechanism, and it has been suggested that the difference between the rate of reduction among mice, rats, and humans could explain or predict differences in sensitivity to Cr-VI. We evaluated previously published models of gastric reduction and believe that they do not fully describe the data on reduction as a function of Cr-VI concentration, time, and (in humans) pH. The previous models are parsimonious in assuming only a single reducing agent in rodents and describing pH-dependence using a simple function. We present a revised model that assumes three pools of reducing agents in rats and mice with pH-dependence based on known speciation chemistry. While the revised model uses more fitted parameters than the original model, they are adequately identifiable given the available data, and the fit of the revised model to the full range of data is shown to be significantly improved. Hence the revised model should provide better predictions of Cr-VI reduction when integrated into a corresponding PBPK model. - Highlights: • Hexavalent chromium (Cr-VI) reduction in gastric juices is a key detoxifying step. • pH-dependent Cr-VI reduction rates are explained using known chemical speciation. • Reduction in rodents appears to involve multiple pools of electron donors. • Reduction appears to continue after 60 min, although more slowly than initial rates.

  20. Toxicity and adaptation of Dictyosphaerium chlorelloides to extreme chromium contamination.

    Science.gov (United States)

    Sánchez-Fortún, Sebastián; López-Rodas, Victoria; Navarro, Macarena; Marvá, Fernando; D'ors, Ana; Rouco, Mónica; Haigh-Florez, David; Costas, Eduardo

    2009-09-01

    Metals are often spilled by industries into inland water environments, with adverse consequences. Numerous papers have reported that heavy metals produce massive destruction of algae. Nevertheless, algal populations seem to become tolerant when they have had previous exposures to heavy metals. Because the mechanisms allowing heavy metal tolerance of algae are not yet known, the present study analyzed the effect of hexavalent chromium on growth and photosynthetic performance of Dictyosphaerium chlorelloides, stressing on the adaptation mechanisms to chromium contamination. Growth and photosynthetic performance of algal cells were inhibited by Cr(VI) at 10 mg/L, and the 72-h median inhibition concentration was established as 1.64 and 1.54 mg/L, respectively. However, after further incubation for a three month period in an environment with 25 mg/L of chromium, some rare, chromium-resistant cells occasionally were found. A Luria-Delbrück fluctuation analysis was performed to distinguish between resistant algae arising from rare, spontaneous mutations and resistant algae arising from physiological adaptation and other adaptive mechanisms. Resistant cells arose only by spontaneous mutations before the addition of chromium, with a rate of 1.77 x 10(-6) mutants per cell division. From a practical point of view, the use of both chromium-sensitive and chromium-resistant genotypes could make possible a specific algal biosensor for chromium. PMID:19323601

  1. Shotgun proteomic analysis unveils survival and detoxification strategies by Caulobacter crescentus during exposure to uranium, chromium, and cadmium.

    Science.gov (United States)

    Yung, Mimi C; Ma, Jincai; Salemi, Michelle R; Phinney, Brett S; Bowman, Grant R; Jiao, Yongqin

    2014-04-01

    The ubiquitous bacterium Caulobacter crescentus holds promise to be used in bioremediation applications due to its ability to mineralize U(VI) under aerobic conditions. Here, cell free extracts of C. crescentus grown in the presence of uranyl nitrate [U(VI)], potassium chromate [Cr(VI)], or cadmium sulfate [Cd(II)] were used for label-free proteomic analysis. Proteins involved in two-component signaling and amino acid metabolism were up-regulated in response to all three metals, and proteins involved in aerobic oxidative phosphorylation and chemotaxis were down-regulated under these conditions. Clustering analysis of proteomic enrichment revealed that the three metals also induce distinct patterns of up- or down-regulated expression among different functional classes of proteins. Under U(VI) exposure, a phytase enzyme and an ABC transporter were up-regulated. Heat shock and outer membrane responses were found associated with Cr(VI), while efflux pumps and oxidative stress proteins were up-regulated with Cd(II). Experimental validations were performed on select proteins. We found that a phytase plays a role in U(VI) and Cr(VI) resistance and detoxification and that a Cd(II)-specific transporter confers Cd(II) resistance. Interestingly, analysis of promoter regions in genes associated with differentially expressed proteins suggests that U(VI) exposure affects cell cycle progression.

  2. Bioremediation of chromium solutions and chromium containing wastewaters.

    Science.gov (United States)

    Malaviya, Piyush; Singh, Asha

    2016-08-01

    Cr(VI) represents a serious threat to human health, living resources and ecological system as it is persistent, carcinogenic and toxic, whereas, Cr(III), another stable oxidation state of Cr, is less toxic and can be readily precipitated out of solution. The conventional methods of Cr(VI) removal from wastewaters comprise of chemical reduction followed by chemical precipitation. However, these methods utilize large amounts of chemicals and generate toxic sludge. This necessitates the need for devising an eco-technological strategy that would use the untapped potential of the biological world for remediation of Cr(VI) containing wastewaters. Among several viable approaches, biotransformation of Cr(VI) to relatively non-toxic Cr(III) by chromium resistant bacteria offers an economical- and environment-friendly option for its detoxification. Various studies on use of Cr(VI) tolerant viable bacterial isolates for treatment of Cr(VI) containing solutions and wastewater have been reported. Therefore, a detailed account of mechanisms and processes involved in bioreduction of Cr(VI) from solutions and wastewaters by bacterial isolates are the focus of this review article in addition to a discussion on toxicity of Cr(VI) on bacterial strains and various factors affecting Cr(VI) bioreduction. PMID:25358056

  3. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  4. SPESIASI Cr(III) DAN Cr(VI) PADA LIMBAH CAIR INDUSTRI ELEKTROPLATING

    OpenAIRE

    Dian Windy Dwiasi; Dwi Kartika

    2008-01-01

    Speciation of Cr(III) and Cr(VI) in wastewater have been widely investigated. The species of Cr(III) and Cr(VI) in wastewater samples were determined by UV – Vis Spectrometry and Atomic Absorption Spectrometry (AAS). The method described is based upon the spectrophotometric determination of the magenta chromagen (λmax = 545 nm) formed when 1,5-diphenylcarbazide reacts with hexavalent chromium in sulphuric acid solution. Hexavalent chromium are determined by a calibration curve technique. The ...

  5. Cytotoxic and genotoxic potential of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA complex in human hepatoma (HepG2) cells.

    Science.gov (United States)

    Novotnik, Breda; Ščančar, Janez; Milačič, Radmila; Filipič, Metka; Žegura, Bojana

    2016-07-01

    Chromium (Cr) and ethylenediaminetetraacetate (EDTA) are common environmental pollutants and can be present in high concentrations in surface waters at the same time. Therefore, chelation of Cr with EDTA can occur and thereby stable Cr(III)-EDTA complex is formed. Since there are no literature data on Cr(III)-EDTA toxicity, the aim of our work was to evaluate and compare Cr(III)-EDTA cytotoxic and genotoxic activity with those of Cr(VI) and Cr(III)-nitrate in human hepatoma (HepG2) cell line. First the effect of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on cell viability was studied in the concentration range from 0.04 μg mL(-1) to 25 μg mL(-1) after 24 h exposure. Further the influence of non-cytotoxic concentrations of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on DNA damage and genomic stability was determined with the comet assay and cytokinesis block micronucleus cytome assay, respectively. Cell viability was decreased only by Cr(VI) at concentrations above 1.0 μg mL(-1). Cr(VI) at ≥0.2 μg mL(-1) and Cr(III) at ≥1.0 μg mL(-1) induced DNA damage, while after Cr(III)-EDTA exposure no formation DNA strand breaks was determined. Statistically significant formation of micronuclei was induced only by Cr(VI) at ≥0.2 μg mL(-1), while no influence on the frequency of nuclear buds nor nucleoplasmic bridges was observed at any exposure. This study provides the first evidence that Cr(III)-EDTA did not induce DNA damage and had no influence on the genomic stability of HepG2 cells. PMID:27043378

  6. FORMATION AND DESTRUCTION OF HEXAVALENT CHROMIUM IN A LABORATORY SWIRL FLAME INCINERATOR

    Science.gov (United States)

    The partitioning of chromium (Cr) in combustion systems was investigated theoretically and experimentally. Theoretical predictions were based on chemical equilibrium and suggested that hexavalent chromium [Cr(VI)] was favored by the presence of chlorine (Cl) and diminished by the...

  7. Biological Monitoring of Hexavalent Chromium and Serum Levels of the Senescence Biomarker Apolipoprotein J/Clusterin in Welders

    OpenAIRE

    Vassilios Makropoulos; Gonos, Efstathios S.; Magda Lourda; Trougakos, Ioannis P.; Xenophon Cominos; Alexopoulos, Evangelos C.

    2008-01-01

    Welding fumes contain metals and other toxic substances known or strongly suspected to be related with oxidative stress and premature cellular senescence. Apolipoprotein J/Clusterin (ApoJ/CLU) is a glycoprotein that is differentially regulated in various physiological and disease states including ageing and age-related diseases. In vitro data showed that exposure of human diploid fibroblasts to hexavalent chromium (Cr(VI)) resulted in premature senescence and significant upregulation of the A...

  8. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Directory of Open Access Journals (Sweden)

    Cody S Sheik

    Full Text Available Extensive use of chromium (Cr and arsenic (As based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI. Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.

  9. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Science.gov (United States)

    Sheik, Cody S; Mitchell, Tyler W; Rizvi, Fariha Z; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J; Krumholz, Lee R

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways. PMID:22768219

  10. Cleaning-induced arsenic mobilization and chromium oxidation from CCA-wood deck: Potential risk to children.

    Science.gov (United States)

    Gress, J; de Oliveira, L M; da Silva, E B; Lessl, J M; Wilson, P C; Townsend, T; Ma, L Q

    2015-09-01

    Concern about children's exposure to arsenic (As) from wood treated with chromated-copper-arsenate (CCA) led to its withdrawal from residential use in 2004. However, due to its effectiveness, millions of American homes still have CCA-wood decks on which children play. This study evaluated the effects of three deck-cleaning methods on formation of dislodgeable As and hexavalent chromium (CrVI) on CCA-wood surfaces and in leachate. Initial wipes from CCA-wood wetted with water showed 3-4 times more dislodgeable As than on dry wood. After cleaning with a bleach solution, 9.8-40.3μg/100cm(2) of CrVI was found on the wood surface, with up to 170μg/L CrVI in the leachate. Depending on the cleaning method, 699-2473mg of As would be released into the environment from cleaning a 18.6-m(2)-deck. Estimated As doses in children aged 1-6 after 1h of playing on a wet CCA-wood deck were 0.25-0.41μg/kg. This is the first study to identify increased dislodgeable As on wet CCA-wood and to evaluate dislodgeable CrVI after bleach application. Our data suggest that As and CrVI in 25-year old CCA-wood still show exposure risks for children and potential for soil contamination. PMID:26004992

  11. Control of exposure to hexavalent chromium and ozone in gas metal arc welding of stainless steels by use of a secondary shield gas.

    Science.gov (United States)

    Dennis, John H; French, Michael J; Hewitt, Peter J; Mortazavi, Seyed B; Redding, Christopher A J

    2002-01-01

    Previous work has demonstrated that the shield gas composition in gas metal arc welding can have a considerable effect on hexavalent chromium [Cr(VI)] concentration in the fume and on ozone concentrations near the arc. Normally a single shield gas is used. This paper describes a double shroud torch that allows used of concentric shield gases of different compositions. A solid stainless steel wire was used for welding. The double shroud torch used secondary shield gases containing small amounts of the reducing agents NO and C2H4. The Cr(VI) concentration in the fume and ozone concentration at a fixed point relative to the arc were measured and compared with results when using a single shield gas. Use of the reducing agents in secondary shielding using the double shroud torch was found to offer advantages for ozone concentration reduction compared with use in a conventional torch, but this was not found to be an advantage for reducing Cr(VI) concentrations.

  12. Chromium(III) -- chromium(VI) interconversions in seawater

    NARCIS (Netherlands)

    Weijden, C.H. van der; Reith, M.

    1982-01-01

    The stable form of dissolved chromium in oxygenated seawater is Cr(VI). But Cr(III)-species are also present at an analytically significant level. It is shown that Cr(III) is oxidized only slowly by dissolved oxygen, and that manganese oxide is a strong catalyst for such oxidation. However, the low

  13. Modeling of kinetics of Cr(VI) sorption onto grape stalk waste in a stirred batch reactor

    International Nuclear Information System (INIS)

    Recently, Cr(VI) removal by grape stalks has been postulated to follow two mechanisms, adsorption and reduction to trivalent chromium. Nevertheless, the rate at which both processes take place and the possible simultaneity of both processes has not been investigated. In this work, kinetics of Cr(VI) sorption onto grape stalk waste has been studied. Experiments were carried out at different temperatures but at a constant pH (3 ± 0.1) in a stirred batch reactor. Results showed that three steps take place in the process of Cr(VI) sorption onto grape stalk waste: Cr(VI) sorption, Cr(VI) reduction to Cr(III) and the adsorption of the formed Cr(III). Taking into account the evidences above mentioned, a model has been developed to predict Cr(VI) sorption on grape stalks on the basis of (i) irreversible reduction of Cr(VI) to Cr(III) reaction, whose reaction rate is assumed to be proportional to the Cr(VI) concentration in solution and (ii) adsorption and desorption of Cr(VI) and formed Cr(III) assuming that all the processes follow Langmuir type kinetics. The proposed model fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The proposed model would be helpful for researchers in the field of Cr(VI) biosorption to design and predict the performance of sorption processes.

  14. Modeling of kinetics of Cr(VI) sorption onto grape stalk waste in a stirred batch reactor.

    Science.gov (United States)

    Escudero, Carlos; Fiol, Nuria; Poch, Jordi; Villaescusa, Isabel

    2009-10-15

    Recently, Cr(VI) removal by grape stalks has been postulated to follow two mechanisms, adsorption and reduction to trivalent chromium. Nevertheless, the rate at which both processes take place and the possible simultaneity of both processes has not been investigated. In this work, kinetics of Cr(VI) sorption onto grape stalk waste has been studied. Experiments were carried out at different temperatures but at a constant pH (3+/-0.1) in a stirred batch reactor. Results showed that three steps take place in the process of Cr(VI) sorption onto grape stalk waste: Cr(VI) sorption, Cr(VI) reduction to Cr(III) and the adsorption of the formed Cr(III). Taking into account the evidences above mentioned, a model has been developed to predict Cr(VI) sorption on grape stalks on the basis of (i) irreversible reduction of Cr(VI) to Cr(III) reaction, whose reaction rate is assumed to be proportional to the Cr(VI) concentration in solution and (ii) adsorption and desorption of Cr(VI) and formed Cr(III) assuming that all the processes follow Langmuir type kinetics. The proposed model fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The proposed model would be helpful for researchers in the field of Cr(VI) biosorption to design and predict the performance of sorption processes.

  15. Biosorption of Hexavalent Chromium from Aqueous Medium with Opuntia Biomass

    OpenAIRE

    José A. Fernández-López; Angosto, José M.; María D. Avilés

    2014-01-01

    The biosorption of hexavalent chromium from aqueous solutions by Opuntia cladodes and ectodermis from cactus fruits was investigated. Both types of biomass are considered low-cost, natural, and ecofriendly biosorbents. Batch experiments were carried out to determine Cr(VI) biosorption capacity and the efficiency of the biosorption process under different pH, initial Cr(VI) concentration, and sorbent dosage. The biosorption of Cr(VI) by Opuntia biomass was highly pH dependent, favoring higher ...

  16. Chromium(VI) stimulates Fyn to initiate innate immune gene induction in human airway epithelial cells

    Science.gov (United States)

    Nemec, Antonia A.; Zubritsky, Lindsey M.; Barchowsky, Aaron

    2009-01-01

    Mechanisms for pathogenic metal signaling in airway injury or disease promotion are poorly understood. It is widely believed that one mechanism for pathogenic and possible carcinogenic effects of inhaled chromium (Cr(VI)) is inhibition of inducible gene transactivation. However, we recently reported that Cr(VI) inhibition of Sp1-dependent transactivation required signal transducer and activator of transcription 1 (STAT1)-dependent expression of an inhibitory protein in airway epithelium. Thus, Cr(VI) exposures can induce genes and we hypothesized this induction resulted from Cr(VI) signaling through an innate immune-like STAT1-dependent pathway initiated by Fyn. Exposure of human airway epithelial (BEAS-2B) cells to Cr(VI) selectively transactivated STAT-responsive interferon-stimulated response element (ISRE) and induced ISRE-driven transactivation of interferon regulatory factor 7 (IRF7), without affecting the gamma interferon-activated site (GAS)-driven IRF1 expression. Cr(VI)-induced IRF7 was absent or greatly reduced in cells that lacked STAT1, were treated with the Src family kinase inhibitor, PP2, or lacked Fyn. Expressing Fyn, but not Src, in mouse embryonic fibroblasts cells null for Src, Yes, and Fyn restored Cr(VI)-stimulated STAT1 tyrosine phosphorylation and IRF7 expression. Finally, shRNA knockdown of Fyn in BEAS-2B cells prevented Cr(VI)-activated STAT1 transactivation of IRF7. These data support a novel mechanism through which Cr(VI) stimulates Fyn to initiate interferon-like signaling for STAT1-dependent gene transactivation. PMID:19994902

  17. Chromium in leather footwear-risk assessment of chromium allergy and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Strandesen, Maria; Poulsen, Pia B;

    2012-01-01

    Background. Chromium-tanned leather footwear, which releases >3 ppm hexavalent Cr(VI), may pose a risk of sensitizing and eliciting allergic dermatitis. Objectives. To determine the content and potential release of chromium in leather footwear and to discuss the prevention of chromium contact...... allergy and dermatitis. Methods. Sixty pairs of leather shoes, sandals and boots (20 children's, 20 men's, and 20 women's) were purchased in Copenhagen and examined with X-ray fluorescence spectroscopy. Chromium was extracted according to the International Standard, ISO 17075. The detection level for Cr......(VI) was 3 ppm. Results. Chromium was identified in 95% of leather footwear products, the median content being 1.7% (range 0-3.3%). No association with store category or footwear category was found. A tendency for there to be a higher chromium content in footwear with high prices was shown (p(trend) = 0...

  18. Evaluation of Serum, Urine, and Hair Chromium Levels as Indices of Chromium Exposure and the Relationship of these Indices to Serum Lipid and Insulin Levels.

    Science.gov (United States)

    Randall, Janis Avril

    Concentrations of chromium (Cr) in hair, serum, and urine, and serum concentrations of insulin and lipids of a selected group of men exposed to trivalent Cr (Cr III) were compared with those of men not exposed to Cr. Seventy -three tannery workers (TW) (mean age 37 +/- 12 years) from four Southern Ontario tanneries and fifty-two control subjects (CS) (mean age 41 +/- 13 years), matched for age, race, and socioeconomic status, from the Guelph and Toronto areas participated. The median hair and serum Cr concentrations for the TW were significantly higher (p leather tanning industry, is absorbed and retained. Absorption of Cr III had no significant effect on serum insulin concentrations or serum lipid profiles. These results also suggest that concentrations of Cr in hair, serum, and urine are valid biological indices of industrial exposure to Cr III.

  19. Genome-wide gene expression effects in B6C3F1 mouse intestinal epithelia following 7 and 90 days of exposure to hexavalent chromium in drinking water

    International Nuclear Information System (INIS)

    Chronic administration of high doses of hexavalent chromium [Cr(VI)] as sodium dichromate dihydrate (SDD) elicits alimentary cancers in mice. To further elucidate key events underlying tumor formation, a 90-day drinking water study was conducted in B6C3F1 mice. Differential gene expression was examined in duodenal and jejunal epithelial samples following 7 or 90 days of exposure to 0, 0.3, 4, 14, 60, 170 or 520 mg/L SDD in drinking water. Genome-wide microarray analyses identified 6562 duodenal and 4448 jejunal unique differentially expressed genes at day 8, and 4630 and 4845 unique changes, respectively, in the duodenum and jejunum at day 91. Comparative analysis identified significant overlap in duodenal and jejunal differential gene expression. Automated dose–response modeling identified > 80% of the differentially expressed genes exhibited sigmoidal dose–response curves with EC50 values ranging from 10 to 100 mg/L SDD. Only 16 genes satisfying the dose-dependent differential expression criteria had EC50 values 50 of 47 mg/L SDD.

  20. Biosorption Potential of Trichoderma gamsii Biomass for Removal of Cr(VI) from Electroplating Industrial Effluent

    OpenAIRE

    Haresh Keharia; Kavita, B.

    2012-01-01

    The potential use of acid-treated biomass of Trichoderma gamsii to remove hexavalent chromium ions from electroplating industrial effluent was evaluated. Electroplating industrial effluent contaminated with 5000 mg/L of Cr(VI) ions, collected from industrial estate of Gujarat, India, was mixed with acid-treated biomass of T. gamsii at biomass dose of 10 mg/mL. Effect of contact time and initial Cr(VI) ions was studied. The biosorption of Cr(VI) ions attained equilibrium at time interval of 24...

  1. Mechanism of Cr(VI) adsorption by coir pith studied by ESR and adsorption kinetic

    Energy Technology Data Exchange (ETDEWEB)

    Suksabye, Parinda [Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 91 Pracha-Utit Road, Bangmod, Thungkru, Bangkok 10140 (Thailand); Nakajima, Akira [Division of Chemistry, Department of Medical Science, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889 1692 (Japan); Thiravetyan, Paitip [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo.8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand)], E-mail: paitip.thi@kmutt.ac.th; Baba, Yoshinari [Department of applied Chemistry, Faculty of Technology, University of Miyazaki, Gakuen-Kibabadai, Miyazaki 889 2192 (Japan); Nakbanpote, Woranan [Pilot Plant Development and Training Institute, King Mongkut' s University of Technology Thonburi, 83 Moo.8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand)

    2009-01-30

    The oxidation state of chromium in coir pith after Cr(VI) adsorption from aqueous solution was investigated using electron spin resonance (ESR). To elucidate the mechanism of chromium adsorption on coir pith, the adsorption studies of Cr(VI) onto lignin, {alpha}-cellulose and holocellulose extracted from coir pith were also studied. ESR signals of Cr(V) and Cr(III) were observed in coir pith adsorbed Cr(VI) at solution pH 2, while ESR spectra of lignin extracted from coir pith revealed only the Cr(III) signal. In addition, ESR signal of Cr(V) was observed in {alpha}-cellulose and holocellulose extracted from coir pith adsorbed Cr(VI). These results confirmed that lignin in coir pith reduced Cr(VI) to Cr(III) while {alpha}-cellulose and holocellulose extracted from coir pith reduced Cr(VI) to Cr(V). The Cr(V) signal exhibited in ESR of {alpha}-cellulose and holocellulose might be bound with glucose in cellulose part of coir pith. In addition, xylose which is main in pentosan part of coir pith, indicated that it is involved in form complex with Cr(V) on coir pith. The adsorption kinetic of Cr(VI) from aqueous solution on coir pith was also investigated and described well with pseudo second order model. ESR and desorption experiments confirmed that Cr(VI), Cr(V) and Cr(III), exist in coir pith after Cr(VI) adsorption. The desorption data indicated that the percentage of Cr(VI), Cr(V) and Cr(III) in coir pith were 15.63%, 12.89% and 71.48%, respectively.

  2. Dispersion modeling of particulate matter containing hexavalent chromium during high winds in southern Iraq.

    Science.gov (United States)

    Zannetti, Paolo; Daly, Aaron D; Freedman, Frank R

    2015-02-01

    The aim of this paper is to describe a scientific methodology (i.e., the combination of different well-established modeling techniques) and its application to a real case scenario of contaminated dust emissions in high winds. This scenario addresses potential air pollution problems at the water treatment plant (WTP) at Qarmat-Ali, Basra, Iraq, during 2003. Workplace practices at the WTP before 2003 resulted in sodium dichromate contamination in the area. Looting at the site in early 2003 also contributed to this contamination. Individuals who were assigned to provide security at the site in 2003 have claimed adverse health effects caused by exposure to dust containing hexavalent chromium [Cr(VI)]. This report presents our modeling study with respect to these claims in relation to (1) amount of Cr(VI) present in the soil, (2) wind erosion episodes, and (3) possible long-term (e.g., annual average) Cr(VI) concentrations inhaled by different people while at the site. Our modeling approach included (1) the analysis of Cr(VI) soil measurements to assess the degree of contamination in different areas of the plant at different times; (2) the use of DUSTRAN model equations to calculate the emission rate of particulate matter (PM) less than 10 µm in diameter (PM10) during high-wind episodes; (3) the use of the U.S. Environmental Protection Agency (EPA) AERMOD modeling system to estimate Cr(VI) concentrations at the site; and (4) the calculation of modeling results in the form of both contour lines of average Cr(VI) concentrations at the site, and specific concentration values for selected individuals, based upon their recollection of their visits to the site. PMID:25947053

  3. Adverse effects and bioconcentration of chromium in two freshwater rotifer species.

    Science.gov (United States)

    Hernández-Ruiz, Esmeralda; Alvarado-Flores, Jesús; Rubio-Franchini, Isidoro; Ventura-Juárez, Javier; Rico-Martínez, Roberto

    2016-09-01

    Bioaccumulation of trivalent (CrIII) and hexavalent chromium (CrVI), and its adverse effects were studied in two rotifer species: Brachionus calyciflorus (two different strains), and Lecane quadridentata. Median Lethal Concentration (LC50) at 24 h of both species showed that CrVI is highly toxic: LC50 ranges from 4.7 × 10(-5) to 4 × 10(-6) mg L(-1)), compared with CrIII: LC50 ranges from 0.64 to 1.279 mg L(-1). Using the LC50 as an exposure concentration, and using atomic absorption, the bioconcentration factor (BCF) was obtained and BCFs of rotifers exposed to CrIII are four orders of magnitude lower than BCFs of rotifers exposed to CrVI. The effect of Cr on the elemental composition of the two species of rotifers in their structures by X-ray microanalysis by energy dispersion showed that Cr is found in intoxicated rotifers, but not in control rotifers. The basal immunoreactivity to metallothioneins is greater in B. calyciflorus than L. quadridentata. The immunoreactivity to metallothioneins decreases in B. calyciflorus when is exposed to CrIII, in contrast in L. quadridentata the immunoreactivity to metallothioneins increase when is exposed to CrIII, and the immunoreactivity to CrVI in L. quadridentata decrease. A mechanism is proposed in which the harder lorica of L. quadridentata acts as a barrier and accumulator of CrVI, and allows for attenuating responses like metallothionein production in L. quadridentata. Instead, in B. calyciflorus the lack of a harder lorica allows for deeper penetration of CrVI, and no time to produce attenuating measures. PMID:27258901

  4. Economic sources and spatial distribution of airborne chromium risks in the U.S.

    Science.gov (United States)

    Rehr, Amanda P; Small, Mitchell J; Matthews, H Scott; Hendrickson, Chris T

    2010-03-15

    We present a model that integrates the economic input-output approach of life cycle assessment with environmental fate, exposure, and risk assessment to estimate the spatial distribution of air toxic health risks due to sector-specific economic activity in the U.S. The model is used to relate the economic activity and exposure potential (population density and meteorology) associated with point source emissions of the heavy metal and carcinogen, hexavalent chromium, or Cr(VI), on a county basis. Total direct annual airborne emissions of Cr(VI) in the U.S. were 44 tonnes in 2002, with 97% from facilities in four major sectors: power generation, wood, plastics, and chemicals, metals, and scientific services. These include 6 tonnes of Cr(VI) emitted in the supply chains of these sectors. A highly variable national distribution of lifetime cancer risk is predicted, with a population-weighted mean of 2.7 x 10(-7), but with hot-spot counties with lifetime risks as high as 6 x 10(-6). Furthermore, high exposures and risks tend to occur in more highly populated counties. In particular, the population of Los Angeles County is exposed to the highest level of risk in the country and almost three-quarters of the total predicted cancer incidence due to inhalation of airborne Cr(VI) emissions. This finding can be attributed largely to the use of Cr(VI) as a corrosion inhibitor by the scientific services sector facilities in the county, the use of shorter facility stacks, and their sitting within a highly populated area. These results indicate that linking economic activity, emission estimates, and fate and transport models for air toxics can inform both life cycle impact and comparative health risk assessments, allowing us to better target emission reductions to minimize hot-spots of risk.

  5. Modelling of the Cr(VI) transport in typical soils of the North of Portugal

    OpenAIRE

    Fonseca, Bruna; Teixeira, Aline S.; Figueiredo, Hugo; Tavares, M. T.

    2009-01-01

    Adsorption of hexavalent chromium [Cr(VI)] onto a loamy sand soil was studied using batch and steady flow tests with contaminant solutions at pH 2, 5 and 7. In all the cases the adsorption of Cr(VI) decreased with increasing pH. The hexavalent chromium speciation and its presence as different oxyanions, according to the solution pH, were the main variables affecting the adsorption process. The influence of the ratio soil/solution concentration was also studied in flow systems at pH 2. Chromiu...

  6. Remediation of Cr(VI) contaminated soil using long-duration sodium thiosulfate supported by micro–nano networks

    Energy Technology Data Exchange (ETDEWEB)

    He, Lulu [School of Life Sciences, Anhui Agricultural University, Hefei 230036 (China); Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Wang, Min; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Qiu, Guannan [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Zhang, Xin, E-mail: xinzhang@ahau.edu.cn [School of Life Sciences, Anhui Agricultural University, Hefei 230036 (China)

    2015-08-30

    Highlights: • This work aims to develop a long-duration remediation agent (LRA). • LRA was obtained using Na{sub 2}S{sub 2}O{sub 3} supported by attapulgite (ATP) micro–nano networks. • ATP micro–nano networks was induced by high-energy electron beam irradiation. • LRA can effectively control the migration of Cr(VI) and reducing Cr(VI) to Cr(III). • LRA displayed high performance on the remediation of heavy metal contaminated soil. - Abstract: In this work, a long-duration remediation agent (LRA) on hexavalent chromium (Cr(VI)) was developed using sodium thiosulfate (ST) supported by attapulgite (ATP) micro–nano networks induced through high-energy electron beam (HEEB) irradiation. The ATP networks could effectively reduce the leaching amount of Cr(VI) in soil. More importantly, the ATP networks could significantly control the leaching behavior of ST, and then prolong the duration and increase the reduction efficiency of ST on Cr(VI). As a result, LRA displayed high performance on controlling the migration of Cr(VI) and reducing Cr(VI) to Cr(III). Additionally, pot experiment indicated that LRA could effectively decrease the absorbed amount of Cr(VI) in corn, and reduce the inhibition effect of Cr(VI) on the growth of corn. Therefore, this work could provide a facile approach to remediate the Cr(VI)-contaminated soil and lower the harmful effect of Cr(VI) on crop.

  7. Phytoremediation of Cr(VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents.

    Science.gov (United States)

    Bala, Rajni; Thukral, Ashwani K

    2011-01-01

    Phytoremediation of Cr(VI) by Spirodela polyrrhiza in binary combinations with low molecular weight organic compounds (LMWOCs) with a reducing or chelating potential, viz., ascorbic acid, citric acid, tartaric acid, oxalic acid, lactic acid, and glycerol was studied in Cr(VI) containing hydroponic media. Significant increase in the relative dry weight of plants with respect to Cr(VI) treated controls was observed with ascorbic acid and glycerol. The uptake of chromium by S. polyrrhiza followed Michaelis-Menten kinetics of active ion uptake. Interaction between Cr and ascorbic acid, oxalic acid, and lactic acid decreased Cr uptake, whereas citric acid, glycerol, and tartaric acid increased it. Supplementation of LMWOCs to Cr(VI) containing media decreased the MDA content of the plants. Multiple regression models revealed that LMWOCs decrease lipid peroxidation independently, as well as that induced by Cr(VI). It was found that superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT) activities were increased significantly in plants growing in media containing Cr(VI). The study established that lactic acid, citric acid, ascorbic acid, and glycerol were most effective in increasing the Cr(VI) phytoremediating potential of S. polyrrhiza and LMWOCs with reducing or chelating properties decrease Cr(VI) stress in S. polyrrhiza. PMID:21598777

  8. Construction of a subtractive library from hexavalent chromium treated winter flounder (Pseudopleuronectes americanus) reveals alterations in non-selenium glutathione peroxidases

    International Nuclear Information System (INIS)

    Chromium is released during several industrial processes and has accumulated in some estuarine areas. Its effects on mammals have been widely studied, but relatively little information is available on its effects on fish. Gene expression changes are useful biomarkers that can provide information about toxicant exposure and effects, as well as the health of an organism and its ability to adapt to its surroundings. Therefore, we investigated the effects of Cr(VI) on gene expression in the sediment dwelling fish, winter flounder (Pseudopleuronectes americanus). Winter flounder ranging from 300 to 360 g were injected i.p. with Cr(VI) as chromium oxide at 25 μg/kg chromium in 0.15N KCl. Twenty-four hours following injections, winter flounder were euthanized with MS-222 and the livers were excised. Half of the livers were used to make cytosol and the other half were used to isolate mRNA for subtractive hybridization. Subtractive clones obtained were spotted onto nylon filters, which revealed several genes with potentially altered expression due to Cr(VI), including an α class GST, 1-Cys peroxiredoxin (a non-selenium glutathione peroxidase), a P-450 2X subfamily member, two elongation factors (EF-1 gamma and EF-2), and complement component C3. Semi-quantitative RT-PCR was performed and confirmed that Cr(VI) down-regulated complement component C3, an EST, and two potential glutathione peroxidases, GSTA3 and 1-Cys peroxiredoxin. In addition, cytosolic GSH peroxidase activity was reduced, and silver stained SDS-PAGE gels from glutathione-affinity purified cytosol demonstrated that a 27.1 kDa GSH-binding protein was down-regulated greater than 50%. Taken together, Cr(VI) significantly altered the expression of several genes including two potential glutathione peroxidases in winter flounder

  9. Genesis of Cr(VI) in Sri Lankan soils and its adsorptive removal by calcined gibbsite

    Science.gov (United States)

    Rajapaksha, A. U.; Wijesundara, D. M.; Vithanage, M. S.; Ok, Y. S.

    2012-12-01

    Hexavalent chromium is highly toxic to biota and considered as a priority pollutant. Industrial sources of Cr(VI) include leather tanning, plating, electroplating, anodizing baths, rinse waters, etc. In addition, weathering of ultramafic rocks rich in chromium, such as serpentine, is known to Cr(VI) sources into natural water. The Cr(III) is the most stable in the environment, however, conversion of Cr(III) into Cr(VI) occurs in soil due to presence of naturally occurring minerals such as manganese dioxides. We investigated the amount of Cr(VI) recorded from the soils from anthropogenically and naturally contaminated soils (serpentine soils) in Sri Lanka and the removal efficacy of Cr(VI) by calcined gibbsite (Al oxides). The effect of pH on Cr(VI) adsorption was determined by adjusting the pH in the range of 4-10. In the experiments, the adsorbent concentration was kept at 1 g/l of solution containing 10 mg/l Cr(VI) at 25 0C. Total chromium recorded were around 11,000 mg kg-1 and 6,000 mg kg-1 for serpentine soil and tannery waste-contaminated soil, respectively. Although total Cr was high in the contaminated soils, Cr(VI) concentration was only about 28 mg kg-1 and 210 mg kg-1 in the serpentine and tannery soils, respectively. The calcined gibbsite has maximum adsorption of 85 % around pH 4 and adsorption generally decreased with increase of pH.

  10. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    Science.gov (United States)

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively. PMID:26971177

  11. 77 FR 61431 - Hexavalent Chromium Standards; Extension of the Office of Management and Budget's (OMB) Approval...

    Science.gov (United States)

    2012-10-09

    ... Occupational Safety and Health Administration Hexavalent Chromium Standards; Extension of the Office of...) approval of the information collection requirements specified in the Hexavalent Chromium Standards for... requirements specified in the Hexavalent Chromium (Cr(VI)) Standards for General Industry (29 CFR...

  12. Heavy metal accumulation and metallothionein concentration in the frog Rana ridibunda after exposure to chromium or a mixture of chromium and cadmium

    International Nuclear Information System (INIS)

    The accumulation of two heavy metals (chromium (Cr) and cadmium (Cd)) in the liver, kidney and gut of Rana ridibunda exposed to Cr or to a mixture of Cr and Cd was investigated. The concentration of metallothioneins (MTs) in the same tissues was also studied. Both metals accumulated mainly in the kidney. Cr accumulation in the liver and gut was not affected by the presence of Cd. Furthermore, Cr concentration in the kidney was doubled when Cd was present. MT concentration did not increase after Cr treatment but it increased two- to six-fold over control values in mixture-exposed frogs, the highest value being observed in the gut. MTs in the gut could act as a barrier preventing ingested heavy metals from entering the blood stream. MT concentration correlated positively with Cd concentrations in both the liver and the gut of mixture-exposed animals. - Exposure to Cr and a mixture of Cd and Cr resulted in increased concentrations of MTs only in mixture-exposed frogs

  13. Hexavalent chromium targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent caspase-3 activation in L-02 hepatocytes.

    Science.gov (United States)

    Xiao, Fang; Li, Yanhong; Dai, Lu; Deng, Yuanyuan; Zou, Yue; Li, Peng; Yang, Yuan; Zhong, Caigao

    2012-09-01

    Hexavalent chromium [Cr(VI)], which is used for various industrial applications, such as leather tanning and chroming, can cause a number of human diseases including inflammation and cancer. Cr(VI) exposure leads to severe damage to the liver, but the mechanisms involved in Cr(VI)-mediated toxicity in the liver are unclear. The present study provides evidence that Cr(VI) enhances reactive oxygen species (ROS) accumulation by inhibiting the mitochondrial respiratory chain complex (MRCC) I. Cr(VI) did not affect the expression levels of antioxidative proteins such as superoxide dismutase (SOD), catalase and thioredoxin (Trx), indicating that the antioxidative system was not involved in Cr(VI)-induced ROS accumulation. We found that ROS mediated caspase-3 activation partially depends on the downregulation of the heat shock protein (HSP) 70 and 90. In order to confirm our hypothesis that ROS plays a key role in Cr(VI)-mediated cytotoxicity, we used N-acetylcysteine (NAC) to inhibit the accumulation of ROS. NAC successfully blocked the inhibition of HSP70 and HSP90 as well as the activation of caspase-3, suggesting that ROS is essential in Cr(VI)-induced caspase-3 activation. By applying different MRCC substrates as electron donors, we also confirmed that Cr(VI) could accept the electrons leaked from MRCC I and the reduction occurs at MRCC I. In conclusion, the present study demonstrates that Cr(VI) induces ROS-dependent caspase-3 activation by inhibiting MRCC I activity, and MRCC I has been identified as a new target and a new mechanism for the apoptosis-inducing activity displayed by Cr(VI). PMID:22710416

  14. Removal of hexavalent chromium in carbonic acid solution by oxidizing slag discharged from steelmaking process in electric arc furnace

    Science.gov (United States)

    Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu

    2014-02-01

    Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.

  15. Chronic exposure to sublethal hexavalent chromium affects organ histopathology and serum cortisol profile of a teleost, Channa punctatus (Bloch).

    Science.gov (United States)

    Mishra, Ashish K; Mohanty, Banalata

    2009-09-01

    Effects of chronic exposures (one and two months) to sublethal doses of hexavalent chromium (2 and 4 mg/L potassium dichromate) on organ histopathology and serum cortisol profile were investigated and their overall impact on growth and behavior of a teleost fish, Channa punctatus was elucidated. Histopathological lesions were distinct in the vital organs gill, kidney and liver. The gill lamellae became lifted, fused, and showed oedema. Hyperplasia and hypertrophy of lamellar epithelial cells were distinct with desquamation. Hypertrophy of epithelial cells of renal tubules and reduction in tubular lumens were observed in the trunk kidney. The atrophy of the head kidney interrenal cells and decreased serum cortisol level indicated exhaustion of interrenal activity. Hepatocyte vacuolization and shrinkage, nuclear pyknosis and increase of sinusoidal spaces were observed in the liver. Abnormal behavioral patterns and reduced growth rate were also noticed in the exposed fish. The chronic hexavalent chromium exposure thus by affecting histopathology of gill, kidney (including interrenal tissue) and liver could impair the vital functions of respiration, excretion, metabolic regulation and maintenance of stress homeostasis which in the long-run may pose serious threat to fish health and affect their population.

  16. Chronic exposure to sublethal hexavalent chromium affects organ histopathology and serum cortisol profile of a teleost, Channa punctatus (Bloch)

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ashish K. [Department of Zoology, University of Allahabad, Allahabad-211002 (India); Mohanty, Banalata, E-mail: drbana_mohanty@rediffmail.com [Department of Zoology, University of Allahabad, Allahabad-211002 (India)

    2009-09-01

    Effects of chronic exposures (one and two months) to sublethal doses of hexavalent chromium (2 and 4 mg/L potassium dichromate) on organ histopathology and serum cortisol profile were investigated and their overall impact on growth and behavior of a teleost fish, Channa punctatus was elucidated. Histopathological lesions were distinct in the vital organs gill, kidney and liver. The gill lamellae became lifted, fused, and showed oedema. Hyperplasia and hypertrophy of lamellar epithelial cells were distinct with desquamation. Hypertrophy of epithelial cells of renal tubules and reduction in tubular lumens were observed in the trunk kidney. The atrophy of the head kidney interrenal cells and decreased serum cortisol level indicated exhaustion of interrenal activity. Hepatocyte vacuolization and shrinkage, nuclear pyknosis and increase of sinusoidal spaces were observed in the liver. Abnormal behavioral patterns and reduced growth rate were also noticed in the exposed fish. The chronic hexavalent chromium exposure thus by affecting histopathology of gill, kidney (including interrenal tissue) and liver could impair the vital functions of respiration, excretion, metabolic regulation and maintenance of stress homeostasis which in the long-run may pose serious threat to fish health and affect their population.

  17. Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Contaminants in the Food Chain (CONTAM

    2014-03-01

    Full Text Available EFSA received a request from the Hellenic Food Authority for a scientific opinion on estimation of the risk to human health from the presence of chromium (Cr in food, particularly in vegetables, and Cr(VI in bottled water. The CONTAM Panel derived a TDI of 0.3 mg/kg b.w. per day for Cr(III from the lowest NOAEL identified in an NTP chronic oral toxicity study in rats. Under the assumption that all chromium in food is Cr(III, the mean and 95th percentile dietary exposure across all age groups were well below the TDI and therefore does not raise concerns for public health. In the case of drinking water, the Panel considered all chromium in water as Cr(VI. For non-neoplastic effects the lowest BMDL10 for diffuse epithelial hyperplasia of duodenum in female mice and the lowest BMDL05 for haematotoxicity in male rats in a 2-year NTP study were selected as reference points. The MOEs indicate that for non-neoplastic effects the current exposure levels to Cr(VI via drinking water are of no concern for public health. For neoplastic effects, the CONTAM Panel selected a lowest BMDL10 for combined adenomas and carcinomas of the mouse small intestine as the reference point. Overall, the calculated MOEs indicate low concern regarding Cr(VI intake via drinking water (water intended for human consumption and natural mineral waters for all age groups when considering the mean chronic exposure values with the exception of infants at the upper bound (UB exposure estimates. MOEs below 10 000 were calculated at the UB 95th percentile exposure estimates, particularly for ‘Infants’, ‘Toddlers’ and ‘Other children’, which were highly influenced by the relatively high occurrence values under the UB assumption. To improve the risk assessment, there is a need for data on the content of Cr(III and Cr(VI in food and drinking water.

  18. Chemodynamics of chromium reduction in soils: Implications to bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Choppala, Girish [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia); Bolan, Nanthi, E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia); Seshadri, Balaji [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia)

    2013-10-15

    Highlights: • Examined the effects of sorption, pH and C sources on Cr(VI) reduction and toxicity. • The rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and pH. • The proton dynamics in Cr(VI) reduction was assessed in relation to remediation. • A novel black carbon showed the highest reduction rate of Cr(VI) in soils. • Black carbon decreased the bioavailability and phytotoxicity of Cr(VI) in soils. -- Abstract: Chromium toxicity in soils can be mitigated by reduction of Cr(VI) to Cr(III) which is influenced by the presence of free Cr(VI) species in soil solution, and the supply of protons and electrons. In this study, the effects of Cr(VI) adsorption (i.e. availability of free Cr(VI) species in soil solution), soil pH (i.e. supply of protons) and three electron donor carbon sources [black carbon (BC), chicken manure biochar (CMB) and cow manure (CM)] on the reduction of Cr(VI) to Cr(III) in soils were investigated. The results indicated that the rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and soil pH, which is attributed to decreased supply of free Cr(VI) ions and protons, respectively. Among the three different amendments tested, BC showed the highest rate of Cr(VI) reduction followed by CM and CMB. Furthermore, addition of BC, CM and CMB decreased the bioavailability of Cr(VI) in contaminated soils. The high efficiency of BC on Cr(VI) reduction was due to the electron donor's functional groups such as phenolic, hydroxyl, carbonyl and amides. The study demonstrated that free form of Cr(VI) ions in soil solution and carbon amendments enriched with acidic functional groups favored the reduction of Cr(VI), thereby mitigating its bioavailability and toxicity in contaminated soils.

  19. GLUTATHIONE DYNAMICS IN THE SECOND GENERATION YOUNG RATS BLOOD AS A CONSEQUENCE OF FEMALE EXPOSURE TO Cr(VI INTOXICATION DURING GESTATION

    Directory of Open Access Journals (Sweden)

    CORINA GRĂVILĂ

    2013-07-01

    Full Text Available Chromium compounds are found in the environment, due to erosion of chromium containing rocks and can be distributed by volcanic eruptions in food, water. Metals being non-biodegradable persist in the environment for a long period and cause serious ecotoxicological problems. Chromium, which exists in nature mostly in the trivalent form (Cr+3, is essential for activating certain enzymes and for stabilizing proteins and nucleic acids. We have studied the influence of the glutathione dynamics in the second generation rats blood, as a consequence of females chromium (VI intoxication during the gestation. This study was carried out on 7 Wistar adult female rats, control group (C, 21 adult Wistar female rats, devided in three experimental groups (E and theire young rats. The rats were feet, durind the gestation, with 25ppm (LOAEL, 50ppm and 75ppm potassium dichromate, ad libitum, in drinking water. The control batch received tap water. Reduced glutathione (GSH was measured quantitatively after the wean using a Perkin-Elmer spectrophotometer, through Beutler et al. method, at 412nm. The study reports also the depletion of young rats blood GSH.

  20. Resveratrol protects the ovary against chromium-toxicity by enhancing endogenous antioxidant enzymes and inhibiting metabolic clearance of estradiol.

    Science.gov (United States)

    Banu, Sakhila K; Stanley, Jone A; Sivakumar, Kirthiram K; Arosh, Joe A; Burghardt, Robert C

    2016-07-15

    Resveratrol (RVT), a polyphenolic component in grapes and red wine, has been known for its cytoprotective actions against several diseases. However, beneficial effects of RVT against early exposure to endocrine disrupting chemicals (EDCs) have not been understood. EDCs are linked to several ovarian diseases such as premature ovarian failure, polycystic ovary syndrome, early menopause and infertility in women. Hexavalent chromium (CrVI) is a heavy metal EDC, and widely used in >50 industries. Environmental contamination with CrVI in the US is rapidly increasing, predisposing the human to several illnesses including cancers and still birth. Our lab has been involved in determining the molecular mechanism of CrVI-induced female infertility and intervention strategies to mitigate CrVI effects. Lactating mother rats were exposed to CrVI (50ppm potassium dichromate) from postpartum days 1-21 through drinking water with or without RVT (10mg/kg body wt., through oral gavage daily). During this time, F1 females received respective treatments through mother's milk. On postnatal day (PND) 25, blood and the ovary, kidney and liver were collected from the F1 females for analyses. CrVI increased atresia of follicles by increasing cytochrome C and cleaved caspase-3; decreasing antiapoptotic proteins; decreasing estradiol (E2) biosynthesis and enhancing metabolic clearance of E2, increasing oxidative stress and decreasing endogenous antioxidants. RVT mitigated the effects of CrVI by upregulating cell survival proteins and AOXs; and restored E2 levels by inhibiting hydroxylation, glucuronidation and sulphation of E2. This is the first study to report the protective effects of RVT against any toxicant in the ovary. PMID:27129868

  1. Impairment of Bony Crypt Development Associated With Hexavalent Chromium Exposure During Tooth Eruption.

    Science.gov (United States)

    Sánchez, Luciana M; Lewicki, Marianela; De Lucca, Romina C; Ubios, Ángela M

    2015-12-01

    Improperly treated hexavalent chromium-containing industrial wastes contaminate drinking water, potentially affecting children taking breast milk or baby bottles prepared with infant formula. Thus, the aim of the present work was to determine the effect of this toxic on bone activity in the developing alveolus during tooth eruption of suckling Wistar rats intoxicated with potassium dichromate. Experimental animals received a daily dose of 12.5mg/kg body weight of potassium dichromate by gavage for 10 days; controls received an equivalent volume of saline solution. Histologic and histomorphometric studies of the mandible were performed. The data were statistically analyzed using Student's t test; statistical significance was set at a value of p hexavalent chromium is the result of a lower rate of bone remodeling in the developing alveolus. The obtained results show the importance of controlling toxic substances in drinking water, since their effects may alter the growth and development of subjects who were exposed during early infancy. PMID:27095619

  2. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction.

    Science.gov (United States)

    Barrera-Díaz, Carlos E; Lugo-Lugo, Violeta; Bilyeu, Bryan

    2012-07-15

    Hexavalent chromium is of particular environmental concern due to its toxicity and mobility and is challenging to remove from industrial wastewater. It is a strong oxidizing agent that is carcinogenic and mutagenic and diffuses quickly through soil and aquatic environments. It does not form insoluble compounds in aqueous solutions, so separation by precipitation is not feasible. While Cr(VI) oxyanions are very mobile and toxic in the environment, Cr(III) cations are not. Like many metal cations, Cr(III) forms insoluble precipitates. Thus, reducing Cr(VI) to Cr(III) simplifies its removal from effluent and also reduces its toxicity and mobility. In this review, we describe the environmental implications of Cr(VI) presence in aqueous solutions, the chemical species that could be present and then we describe the technologies available to efficiently reduce hexavalent chromium. PMID:22608208

  3. Chromium(VI) transport and fate in unsaturated zone and aquifer: 3D Sandbox results.

    Science.gov (United States)

    Zhao, Xingmin; Sobecky, Patricia A; Zhao, Lanpo; Crawford, Patrice; Li, Mingtang

    2016-04-01

    The simulation of Cr(VI) behavior in an unsaturated zone and aquifer, using a 3D experimental set-up were performed to illustrate the distribution, transport and transformation of Cr(VI), and further to reveal the potential harm of Cr(VI) after entering the groundwater. The result indicated that chromium(VI) was transported in the vertical direction, meanwhile, was transported in the horizontal direction under the influence of groundwater flow. The direction and distance away from the pollution source zone had great effect on the chromium(VI) concentration. At the sampling sites near the pollution source zone, there was a sudden increase of chromium(VI) concentration. The concentration of chromium(III) concentration in some random effluent samples was not detected. Chromium had not only transported but also had fraction and specie transformation in the unsaturated zone and aquifer. The relative concentration of residue fraction chromium was decreased with time. The content of Fe-Mn oxide fraction chromium was increased with time. The relative content of exchangeable and carbonate-bound fraction chromium was lower and the content variations were not obvious. Chromium(VI) (91-98%) was first reduced to chromium(III) rapidly. The oxidation reaction occurred later and the relative content of chromium(VI) was increased again. The presence of manganese oxides under favorable soil conditions can promote the reoxidation of Cr(III) to Cr(VI).

  4. Field Investigations of Lactate-Stimulated Bioreduction of Cr(VI) at Hanford 100H

    International Nuclear Information System (INIS)

    The overall objective of this paper is to carry out field investigations to assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford 100H site

  5. Cr(VI) Adsorption on Red Mud Modified by Lanthanum: Performance, Kinetics and Mechanisms

    Science.gov (United States)

    Cui, You-Wei; Li, Jie; Du, Zhao-Fu; Peng, Yong-Zhen

    2016-01-01

    Water pollution caused by the highly toxic metal hexavalent chromium (Cr(VI)) creates significant human health and ecological risks. In this study, a novel adsorbent was used to treat Cr(VI)-containing wastewater; the adsorbent was prepared using red mud (RM) generated from the alumina production industry and the rare earth element lanthanum. This study explored adsorption performance, kinetics, and mechanisms. Results showed that the adsorption kinetics of the RM modified by lanthanum (La-RM), followed the pseudo-second-order model, with a rapid adsorption rate. Cr(VI) adsorption was positively associated with the absorbent dose, pH, temperature, and initial Cr(VI) concentration; coexisting anions had little impact. The maximum Cr(VI) adsorption capacity was 17.35 mg/g. Cr(VI) adsorption on La-RM was a mono-layer adsorption pattern, following the Langmuir isotherm model. Thermodynamic parameters showed the adsorption was spontaneous and endothermic. The adsorption of Cr(VI) on La-RM occurred as a result of LaOCl formation on the RM surface, which in turn further reacted with Cr(VI) in the wastewater. This study highlighted a method for converting industrial waste into a valuable material for wastewater treatment. The novel absorbent could be used as a potential adsorbent for treating Cr(VI)-contaminating wastewater, due to its cost-effectiveness and high adsorption capability. PMID:27658113

  6. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Lu, Anhuai; Ding, Hongrui; Yan, Yunhua; Wang, Changqiu; Zen, Cuiping; Wang, Xin [The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Jin, Song [MWH Americas, 3665 JFK Parkway, Suite 206, Fort Collins, CO 80525 (United States); Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2009-07-15

    Cathodic reduction of hexavalent chromium (Cr(VI)) and simultaneous power generation were successfully achieved in a microbial fuel cell (MFC) containing a novel rutile-coated cathode. The selected rutile was previously characterized to be sensitive to visible light and capable of both non-photo- and photocatalysis. In the MFCs containing rutile-coated cathode, Cr(VI) was rapidly reduced in the cathode chamber in presence and absence of light irradiation; and the rate of Cr(VI) reduction under light irradiation was substantially higher than that in the dark. Under light irradiation, 97% of Cr(VI) (initial concentration 26 mg/L) was reduced within 26 h, which was 1.6 x faster than that in the dark controls in which only background non-photocatalysis occurred. The maximal potential generated under light irradiation was 0.80 vs. 0.55 V in the dark controls. These results indicate that photocatalysis at the rutile-coated cathode in the MFCs might have lowered the cathodic overpotential, and enhanced electron transfer from the cathode to Cr(VI) for its reduction. In addition, photoexcited electrons generated during the cathode photocatalysis might also have contributed to the higher Cr(VI) reduction rates when under light irradiation. This work assessed natural rutile as a novel cathodic catalyst for MFCs in power generation; particularly it extended the practical merits of conventional MFCs to cathodic reduction of environmental contaminants such as Cr(VI). (author)

  7. Quercetin Modulates the Effects of Chromium Exposure on Learning, Memory and Antioxidant Enzyme Activity in F1 Generation Mice.

    Science.gov (United States)

    Halder, Sumita; Kar, Rajarshi; Mehta, Ashish K; Bhattacharya, Swapan K; Mediratta, Pramod K; Banerjee, Basu D

    2016-06-01

    In the present study, we investigated whether chromium (Cr) administered to the dams (F0) during lactation period could affect memory and oxidative stress in F1 generation mice in their adulthood and whether quercetin could modulate these effects. Morris water maze (MWM) was used to test for spatial memory. Passive avoidance task and elevated plus maze were used to test for acquisition and retention memory. Oxidative stress was evaluated by measuring glutathione-S-transferase (GST), catalase activity and malonaldehyde (MDA) levels in the brain tissue. The results of MWM showed that the animals in the Cr-treated group compared to control have better spatial memory that was further enhanced when Cr was administered along with quercetin (50 mg/kg). The elevated plus maze test also showed the Cr-treated group to improve acquisition as well as retention memory compared to control. Co-treatment with quercetin (all doses) also exhibited enhanced acquisition and retention memory compared to control. The passive avoidance task demonstrated no significant improvement in memory in the Cr-treated mice but co-treatment with quercetin (100 mg/kg) showed improved acquisition memory compared to control which was significantly better than the animals treated with chromium alone. GST activity was significantly increased in the Cr-treated animals, and this was further increased in groups treated with Cr and quercetin (all doses). Chromium when administered alone and in combination with quercetin (all doses) significantly reduced MDA levels. However, Cr treatment did not show significant change in catalase activity. Nevertheless, co-treatment with quercetin (25 and 50 mg/kg) resulted in significant decrease in catalase activity. Thus, our study demonstrates that Cr exposure during lactation could be beneficial for pups with respect to augmentation of cognitive function and reduction of oxidative stress. Quercetin could probably enhance this effect to some extent.

  8. Quercetin Modulates the Effects of Chromium Exposure on Learning, Memory and Antioxidant Enzyme Activity in F1 Generation Mice.

    Science.gov (United States)

    Halder, Sumita; Kar, Rajarshi; Mehta, Ashish K; Bhattacharya, Swapan K; Mediratta, Pramod K; Banerjee, Basu D

    2016-06-01

    In the present study, we investigated whether chromium (Cr) administered to the dams (F0) during lactation period could affect memory and oxidative stress in F1 generation mice in their adulthood and whether quercetin could modulate these effects. Morris water maze (MWM) was used to test for spatial memory. Passive avoidance task and elevated plus maze were used to test for acquisition and retention memory. Oxidative stress was evaluated by measuring glutathione-S-transferase (GST), catalase activity and malonaldehyde (MDA) levels in the brain tissue. The results of MWM showed that the animals in the Cr-treated group compared to control have better spatial memory that was further enhanced when Cr was administered along with quercetin (50 mg/kg). The elevated plus maze test also showed the Cr-treated group to improve acquisition as well as retention memory compared to control. Co-treatment with quercetin (all doses) also exhibited enhanced acquisition and retention memory compared to control. The passive avoidance task demonstrated no significant improvement in memory in the Cr-treated mice but co-treatment with quercetin (100 mg/kg) showed improved acquisition memory compared to control which was significantly better than the animals treated with chromium alone. GST activity was significantly increased in the Cr-treated animals, and this was further increased in groups treated with Cr and quercetin (all doses). Chromium when administered alone and in combination with quercetin (all doses) significantly reduced MDA levels. However, Cr treatment did not show significant change in catalase activity. Nevertheless, co-treatment with quercetin (25 and 50 mg/kg) resulted in significant decrease in catalase activity. Thus, our study demonstrates that Cr exposure during lactation could be beneficial for pups with respect to augmentation of cognitive function and reduction of oxidative stress. Quercetin could probably enhance this effect to some extent. PMID:26521059

  9. Assessing uncertainty in published risk estimates using hexavalent chromium and lung cancer mortality as an example

    Science.gov (United States)

    Introduction: The National Research Council recommended quantitative evaluation of uncertainty in effect estimates for risk assessment. This analysis considers uncertainty across model forms and model parameterizations with hexavalent chromium [Cr(VI)] and lung cancer mortality a...

  10. Assessing model uncertainty using hexavalent chromium and lung cancer mortality as an example [Abstract 2015

    Science.gov (United States)

    Introduction: The National Research Council recommended quantitative evaluation of uncertainty in effect estimates for risk assessment. This analysis considers uncertainty across model forms and model parameterizations with hexavalent chromium [Cr(VI)] and lung cancer mortality a...

  11. Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xianghua; Ding, Shimin; Zhang, Lixian [Yangtze Normal Univ., Fuling (China)

    2012-11-15

    Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations results in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly.

  12. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  13. Novel reduction of Cr(VI) from wastewater using a naturally derived microcapsule loaded with rutin-Cr(III) complex.

    Science.gov (United States)

    Qi, Yun; Jiang, Meng; Cui, Yuan-Lu; Zhao, Lin; Liu, Shejiang

    2015-03-21

    The harmfulness of carcinogenic hexavalent chromium (Cr(VI)) is dramatically decreased when Cr(VI) is reduced to trivalent chromium (Cr(III)). Rutin, a natural flavonoid, exhibits excellent antioxidant activity by coordinating metal ions. In this study, a complex containing rutin and Cr(III) (rutin-Cr(III)) was synthesized and characterized. The rutin-Cr(III) complex was much easier to reduce than rutin. The reduction of the rutin-Cr(III) complex was highly pH-dependent, with 90% of the Cr(VI) being reduced to Cr(III) in 2h under optimal conditions. A biodegradable, sustained-release system encapsulating the rutin-Cr(III) complex in a alginate-chitosan microcapsule (rutin-Cr(III) ACMS) was also evaluated, and the reduction of Cr(VI) was assessed. This study also demonstrated that low-pH solutions increased the reduction rate of Cr(VI). The environmentally friendly microcapsules can reduce Cr(VI) for prolonged periods of time and can easily biodegrade after releasing the rutin-Cr(III) complex. Given the excellent performance of rutin-Cr(III) ACMS, the microcapsule system represents an effective system for the remediation of Cr(VI) pollution.

  14. Does the presence of microplastics influence the acute toxicity of chromium(VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations.

    Science.gov (United States)

    Luís, Luís G; Ferreira, Pedro; Fonte, Elsa; Oliveira, Miguel; Guilhermino, Lúcia

    2015-07-01

    Toxicological interactions between microplastics (MP) and other environmental contaminants are of grave concern. Here, the potential influence of MP in the short-term toxicity of chromium to early juveniles of Pomatoschistus microps was investigated. Three null hypotheses were tested: (1) exposure to Cr(VI) concentrations in the low ppm range does not induce toxic effects on juveniles; (2) the presence of microplastics in the water does not influence the acute toxicity of Cr(VI) to juveniles; (3) the environmental conditions of the natural habitat where fish developed do not influence their sensitivity to Cr(VI)-induced acute stress. Fish were collected in the estuaries of Minho (M-est) and Lima (L-est) Rivers (NW Iberian Peninsula) that have several abiotic differences, including in the water and sediment concentrations of various environmental contaminants. After acclimatization to laboratory conditions, two 96h acute bioassays were carried out with juveniles from both estuaries to: (i) investigate the effects of Cr(VI) alone; (ii) investigate the effects of Cr(VI) in the presence of MP (polyethylene spheres 1-5μm ∅). Cr(VI) alone induced mortality (96h-LC50s: 14.4-30.5mg/l) and significantly decreased fish predatory performance (≤74%). Thus, in the range of concentrations tested (5.6-28.4mg/l) Cr(VI) was found to be toxic to P. microps early juveniles, therefore, we rejected hypothesis 1. Under simultaneous exposure to Cr(VI) and MP, a significant decrease of the predatory performance (≤67%) and a significant inhibition of AChE activity (≤31%) were found. AChE inhibition was not observed in the test with Cr(VI) alone and MP alone caused an AChE inhibition ≤21%. Mixture treatments containing Cr(VI) concentration ≥3.9mg/l significantly increased LPO levels in L-est fish, an effect that was not observed under Cr(VI) or MP single exposures. Thus, toxicological interactions between Cr(VI) and MP occurred, therefore, we rejected hypothesis 2. In the

  15. Genotoxicity of Tri- and Hexavalent Chromium Compounds In Vivo and Their Modes of Action on DNA Damage In Vitro

    OpenAIRE

    Zhijia Fang; Min Zhao; Hong Zhen; Lifeng Chen; Ping Shi; Zhiwei Huang

    2014-01-01

    Chromium occurs mostly in tri- and hexavalent states in the environment. Hexavalent chromium [Cr(VI)] compounds are extensively used in diverse industries, and trivalent chromium [Cr(III)] salts are used as micronutrients and dietary supplements. In the present work, we report that they both induce genetic mutations in yeast cells. They both also cause DNA damage in both yeast and Jurkat cells and the effect of Cr(III) is greater than that of Cr(VI). We further show that Cr(III) and Cr(VI) ca...

  16. Polyaniline coating with various substrates for hexavalent chromium removal

    Science.gov (United States)

    Qiu, Bin; Xu, Cuixia; Sun, Dezhi; Wang, Qiang; Gu, Hongbo; Zhang, Xin; Weeks, Brandon L.; Hopper, Jack; Ho, Thomas C.; Guo, Zhanhu; Wei, Suying

    2015-04-01

    Hexavalent chromium (Cr(VI)) contamination is increasingly serious in surface water and groundwater, therefore, its removal attracts increasing attention due to its highly toxic to human health. The cost effective and sustainable adsorbents are urgently needed for the remediation of Cr(VI) pollution. Polyanline (PANI), a conductive polymer, has demonstrated a great performance on Cr(VI) removal. But the recycling is the challenge for its application due to its small size. The PANI coating with various substrates is an effective approach to solve this problem. The synthesis methods and applications of the PANI coated magnetic Fe3O4, carbon fabric and cellulose composites for the Cr(VI) removal were reviewed. Finally, this review analyzed the Cr(VI) removal mechanisms by the PANI composites considering the substrate and the PANI coating.

  17. RICE BRAN CARBON: AN ALTERNATIVE TO COMMERCIAL ACTIVATED CARBON FOR THE REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Syed Hadi Hasan

    2010-06-01

    Full Text Available Rice bran carbon (RBC prepared from rice bran (an agricultural waste was successfully utilized for the removal of hexavalent chromium from aqueous solution. The potentiality of RBC was tested and compared with commercial activated carbon (CAC, and it was found that RBC removed 95% of hexavalent chromium at pH 2, 1000 µM Cr(VI concentration, temperature 30 oC, and adsorbent dose of 2 g/L. The maximum uptake of total chromium obtained by applying the Langmuir isotherm model was 138.88 mg/g for RBC, which was found comparable to that obtained by utilizing CAC (116.28 mg/g at 40 oC. The removal of Cr(VI was found maximum at a proton to chromium ratio of 10 and chromium to carbon ratio of 0.052, and these ratios were found to be applicable over a range of Cr(VI concentrations. The removal of Cr(VI, at low pH (< 2.0, was not only due to sorption of Cr(VI but also because of reduction of Cr(VI into less toxic Cr(III, which was also adsorbed on the surface of the sorbent. The rate of reduction removal of Cr(VI followed pseudo-first order kinetics, whereas the sorption of total chromium followed pseudo-second order kinetics for both the types of activated carbons.

  18. Reduction of Cr(VI) to Cr(III) by green rust - sulphate

    Science.gov (United States)

    Skovbjerg, L.; Stipp, S.

    2003-04-01

    Chromium is widely used in industrial processes such as leather tanning, electro-plating and as colour pigments. Unfortunately, hexavalent chromium is both toxic and very soluble so it can be a problem for groundwater resources. Given the right redox conditions, however, Cr(VI) can be reduced to trivalent chromium, which is much less soluble and is an essential trace nutrient. Fe(II), an element common in soil and sediments under anaerobic conditions, can serve as a reducing agent for Cr(VI). Green Rust (GR) is a layered Fe(II),Fe(III)-hydroxide with various anions compensating charge in the interlayers. It is very effective in reducing Cr(VI) to Cr(III). GR exists in nature and is thought to be precursor for the formation of Fe(III)-oxides and oxyhydroxides at the redox boundary. It may be that the formation of GR is a key process in the effectiveness of reactive barriers for groundwater remediation that are based on Fe(0). The purpose of this work is to investigate the mechanisms controlling Cr(VI) reduction by Green Rust, to examine the effect of Cr adsorption and incorporation on GR morphology and composition, and to define the role of parameters such as interlayer anion, initial Cr(VI) concentration and time. We are using freshly synthesised material that has not been dried to avoid structural changes that may accompany dehydration and rehydration. X-Ray Diffraction (XRD) is used to characterise mineral structural changes and Atomic Force Microscopy (AFM), to examine changes in morphology as reactions take place. By adjusting the concentration of Cr(VI), we can control the rate of surface change and we can observe the nanoscale particles directly.

  19. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor

    International Nuclear Information System (INIS)

    The electrochemical reduction of Cr(VI)-Cr(III) in wastewater by iron and copper-iron bimetallic plates was evaluated and optimized. Iron has been used as a reducing agent, but in this work a copper-iron galvanic system in the form of bimetallic plates is applied to reducing hexavalent chromium. The optimal pH (2) and ratio of copper to iron surface areas (3.5:1) were determined in batch studies, achieving a 100% reduction in about 25 min. The Cr(VI) reduction kinetics for the bimetallic system fit a first order mechanism with a correlation of 0.9935. Thermodynamic analysis shows that the Cr(VI) reduction is possible at any pH value. However, at pH values above 3.0 for iron and 5.5 for chromium insoluble species appear, indicating that the reaction will be hindered. Continuous column studies indicate that the bimetallic copper-iron galvanic system has a reduction capacity of 9.5890 mg Cr(VI) cm-2 iron, whereas iron alone only has a capacity of 0.1269 mg Cr(VI) cm-2. The bimetallic copper-iron galvanic system is much more effective in reducing hexavalent chromium than iron alone. The exhausted plates were analyzed by SEM, EDS, and XRD to determine the mechanism and the surface effects, especially surface fouling.

  20. In vitro development of resistance to arsenite and chromium-VI in Lactobacilli strains as perspective attenuation of gastrointestinal disorder.

    Science.gov (United States)

    Upreti, Raj K; Sinha, Vartika; Mishra, Ritesh; Kannan, Ambrose

    2011-05-01

    Inadvertent intake of inorganic arsenic and chromium through drinking water and food causing their toxic insults is a major health problem. Intestinal bacteria including Lactobacilli play important regulatory roles on intestinal homeostasis, and their loss is known to cause gastrointestinal (GI) disorders. Probiotic Lactobacilli resistance to arsenite and chromium-VI could be an importantfactorfor the perspective attenuation of Gl-disorders caused by these toxic metals/metalloid. In the present study resistance of arsenite (up to 32 ppm), Cr-VI (up to 64 ppm), and arsenite plus Cr-VI (32 ppm each) were developed under in vitro condition following chronological chronic exposures in Lactobacilli strains. Comparative study of biochemical parameters such as membrane transport enzymes and structural constituents; dehydrogenase and esterase activity tests, which are respective indicators for respiratory and energy producing processes, and the general heterotrophic activity of cells, of resistant strains showed similarities with their respective normal parent strains. The resistant strains were also found to be sensitive to antibiotics. Findings indicate that these resistant probiotic Lactobacilli would be useful in the prophylactic interventions of arsenic and chromium GI-toxicity.

  1. Ultra-trace level speciated isotope dilution measurement of Cr(VI) using ion chromatography tandem mass spectrometry in environmental waters.

    Science.gov (United States)

    Mädler, Stefanie; Todd, Aaron; Skip Kingston, H M; Pamuku, Matt; Sun, Fengrong; Tat, Cindy; Tooley, Robert J; Switzer, Teresa A; Furdui, Vasile I

    2016-08-15

    The reliable analysis of highly toxic hexavalent chromium, Cr(VI), at ultra-trace levels remains challenging, given its easy conversion to non-toxic trivalent chromium. This work demonstrates a novel analytical method to quantify Cr(VI) at low ngL(-1) concentration levels in environmental water samples by using speciated isotope dilution (SID) analysis and double-spiking with Cr(III) and Cr(VI) enriched for different isotopes. Ion chromatography tandem mass spectrometry (IC-MS/MS) was used for the analysis of Cr(VI) as HCrO4(-) → CrO3(-). Whereas the classical linear multipoint calibration (MPC) curve approach obtained a method detection limit (MDL) of 7ngL(-1) Cr(VI), the modified SID-MS method adapted from U. S. EPA 6800 allowed for the quantification of Cr(VI) with an MDL of 2ngL(-1) and provided results corrected for Cr(VI) loss occurred after sample collection. The adapted SID-MS approach proved to yield more accurate and precise results than the MPC method, allowed for compensation of Cr(VI) reduction during sample transportation and storage while eliminating the need for frequent external calibration. The developed method is a complementary tool to routinely used inductively-coupled plasma (ICP) MS and circumvents typically experienced interferences.

  2. Ultra-trace level speciated isotope dilution measurement of Cr(VI) using ion chromatography tandem mass spectrometry in environmental waters.

    Science.gov (United States)

    Mädler, Stefanie; Todd, Aaron; Skip Kingston, H M; Pamuku, Matt; Sun, Fengrong; Tat, Cindy; Tooley, Robert J; Switzer, Teresa A; Furdui, Vasile I

    2016-08-15

    The reliable analysis of highly toxic hexavalent chromium, Cr(VI), at ultra-trace levels remains challenging, given its easy conversion to non-toxic trivalent chromium. This work demonstrates a novel analytical method to quantify Cr(VI) at low ngL(-1) concentration levels in environmental water samples by using speciated isotope dilution (SID) analysis and double-spiking with Cr(III) and Cr(VI) enriched for different isotopes. Ion chromatography tandem mass spectrometry (IC-MS/MS) was used for the analysis of Cr(VI) as HCrO4(-) → CrO3(-). Whereas the classical linear multipoint calibration (MPC) curve approach obtained a method detection limit (MDL) of 7ngL(-1) Cr(VI), the modified SID-MS method adapted from U. S. EPA 6800 allowed for the quantification of Cr(VI) with an MDL of 2ngL(-1) and provided results corrected for Cr(VI) loss occurred after sample collection. The adapted SID-MS approach proved to yield more accurate and precise results than the MPC method, allowed for compensation of Cr(VI) reduction during sample transportation and storage while eliminating the need for frequent external calibration. The developed method is a complementary tool to routinely used inductively-coupled plasma (ICP) MS and circumvents typically experienced interferences. PMID:27260441

  3. Biosorption of Cr(VI)_ and Cr(III)_Arthrobacter species

    CERN Document Server

    Gelagutashvili, E; Gurielidze, M

    2011-01-01

    The biosorption of Cr(VI)_ and Cr(III)_ Arthrobacter species (Arthrobacter globiformis and Arthrobacter oxidas) was studied simultaneous application dialysis and atomic absorption analysis. Also biosorption of Cr(VI) in the presence of Zn(II) during growth of Arthrobacter species and Cr(III) in the presence of Mn(II) were discussed. Comparative Cr(VI)_ and Cr(III)_ Arthrobacter species shown, that Cr(III) was more effectively adsorbed by both bacterium than Cr(VI). The adsorption capacity is the same for both the Chromium-Arthrobacter systems. The biosorption constants for Cr(III) is higher than for Cr(VI) 5.7-5.9- fold for both species. Comparative Freundlich biosorption characteristics Cr(VI) Arthrobacter species of living and dry cells shown, that capacity(n) is in both cases the same(1.25,1.35). Dry cells have larger biosorption constant for both species, than living cells. Biosorption characteristics (K) and (n) for A. oxidas are without Mn(II) and in the presence of Mn(II) 2.6 x 10-4 (K), 1.37 (n) and 2...

  4. Speciation of Cr(VI) in environmental samples in the vicinity of the ferrochrome smelter.

    Science.gov (United States)

    Sedumedi, Hilda N; Mandiwana, Khakhathi L; Ngobeni, Prince; Panichev, Nikolay

    2009-12-30

    The impact of ferrochrome smelter on the contamination of its environment with toxic hexavalent chromium, Cr(VI), was assessed by analyzing smelter dusts, soil, grass and tree barks. For the separation of Cr(VI) from Cr(III), solid samples were treated with 0.1M Na(2)CO(3) and filtered through hydrophilic PDVF 0.45 microm filter prior to the determination of Cr(VI) by electrothermal atomic absorption spectrometry (ET-AAS). Ferrochrome smelter dust was found to contain significant levels of Cr(VI), viz. 43.5 microg g(-1) (cyclone dust), 2710 microg g(-1) (fine dust), and 7800 microg g(-1) (slimes dust) which exceeded the maximum acceptable risk concentration (20 microg g(-1)). The concentration of Cr(VI) in environmental samples of grass (3.4+/-0.2), soil (7.7+/-0.2), and tree bark (11.8+/-1.2) collected in the vicinity of the chrome smelter were higher as compared with the same kind of samples collected from uncontaminated area. The results of the investigation show that ferrochrome smelter is a source of environmental pollution with contamination factors of Cr(VI) ranging between 10 and 50.

  5. Speciation of Cr(VI) in environmental samples in the vicinity of the ferrochrome smelter

    Energy Technology Data Exchange (ETDEWEB)

    Sedumedi, Hilda N. [Department of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, Pretoria (South Africa); Mandiwana, Khakhathi L., E-mail: MandiwanaKL@tut.ac.za [Department of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, Pretoria (South Africa); Ngobeni, Prince; Panichev, Nikolay [Department of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, Pretoria (South Africa)

    2009-12-30

    The impact of ferrochrome smelter on the contamination of its environment with toxic hexavalent chromium, Cr(VI), was assessed by analyzing smelter dusts, soil, grass and tree barks. For the separation of Cr(VI) from Cr(III), solid samples were treated with 0.1 M Na{sub 2}CO{sub 3} and filtered through hydrophilic PDVF 0.45 {mu}m filter prior to the determination of Cr(VI) by electrothermal atomic absorption spectrometry (ET-AAS). Ferrochrome smelter dust was found to contain significant levels of Cr(VI), viz. 43.5 {mu}g g{sup -1} (cyclone dust), 2710 {mu}g g{sup -1} (fine dust), and 7800 {mu}g g{sup -1} (slimes dust) which exceeded the maximum acceptable risk concentration (20 {mu}g g{sup -1}). The concentration of Cr(VI) in environmental samples of grass (3.4 {+-} 0.2), soil (7.7 {+-} 0.2), and tree bark (11.8 {+-} 1.2) collected in the vicinity of the chrome smelter were higher as compared with the same kind of samples collected from uncontaminated area. The results of the investigation show that ferrochrome smelter is a source of environmental pollution with contamination factors of Cr(VI) ranging between 10 and 50.

  6. Soil humic acids may favour the persistence of hexavalent chromium in soil

    International Nuclear Information System (INIS)

    The interaction between hexavalent chromium Cr(VI), as K2CrO4, and standard humic acids (HAs) in bulk solution was studied using three complementary analytical methods: UV-Visible spectroscopy, X-ray absorption spectroscopy and differential pulse stripping voltammetry. The observed UV-Vis and X-ray absorption spectra showed that, under our experimental conditions, HAs did not induce reduction of Cr(VI) to its trivalent chemical form. The interaction between Cr(VI) and HAs has rather led to the formation of Cr(VI)-HAs micelles via supramolecular chemical processes. The reported results could contribute towards explaining the relative persistence of ecotoxic hexavalent chromium in soils. - Humic acids (HAs) did not induce reduction of Cr(VI) to its trivalent chemical form, as the interaction between Cr(VI) and HAs rather led to the formation of Cr(VI)-HAs micelles via supramolecular chemical processes.

  7. Reevaluation and Classification of Duodenal Lesions in B6C3F1 Mice and F344 Rats from 4 Studies of Hexavalent Chromium in Drinking Water.

    Science.gov (United States)

    Cullen, John M; Ward, Jerrold M; Thompson, Chad M

    2016-02-01

    Thirteen-week and 2-year drinking water studies conducted by the National Toxicology Program (NTP) reported that hexavalent chromium (Cr(VI)) induced diffuse epithelial hyperplasia in the duodenum of B6C3F1 mice but not F344 rats. In the 2-year study, Cr(VI) exposure was additionally associated with duodenal adenomas and carcinomas in mice only. Subsequent 13-week Cr(VI) studies conducted by another group demonstrated non-neoplastic duodenal lesions in B6C3F1 mice similar to those of the NTP study as well as mild duodenal hyperplasia in F344 rats. Because intestinal lesions in mice are the basis for proposed safety standards for Cr(VI), and the histopathology data are relevant to the mode of action, consistency (an important Hill criterion for causality) was assessed across the aforementioned studies. Two veterinary pathologists applied uniform diagnostic criteria to the duodenal lesions in rats and mice from the 4 repeated-dose studies. Comparable non-neoplastic intestinal lesions were evident in mice and rats from all 4 studies; however, the incidence and severity of intestinal lesions were greater in mice than rats. These findings demonstrate consistency across studies and species and highlight the importance of standardized nomenclature for intestinal pathology. The differences in the severity of non-neoplastic lesions also likely contribute to the differential tumor response.

  8. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    Energy Technology Data Exchange (ETDEWEB)

    Carette, Diane [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Perrard, Marie-Hélène, E-mail: marie-helene.durand@ens-lyon.fr [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Prisant, Nadia [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Gilleron, Jérome; Pointis, Georges [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); Segretain, Dominique [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Kallistem SAS Ecole Normale Supérieure de Lyon, Lyon (France)

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  9. Exposure to sublethal chromium and endosulfan alter the diel vertical migration (DVM) in freshwater zooplankton crustaceans.

    Science.gov (United States)

    Gutierrez, María Florencia; Gagneten, Ana María; Paggi, Juan Cesar

    2012-01-01

    Among zooplankton behaviors, diel migrations constitute one of the most effective predator avoidance strategy and confer metabolic and demographic advantages. We aim to examine whether sublethal concentrations of two widespread pollutants (a pesticide with endosulfan and chromium as potassium dichromate) alter the depth selection, vertical migration and grouping of five freshwater species: Argyrodiaptomus falcifer, Notodiaptomus conifer, Pseudosida variabilis, Ceriodaphnia dubia and Daphnia magna. In a series of experimental assays, performed with 150 cm length transparent tubes, we analyzed the ascents and descents movements through periods of 24 h. Among controls, the copepods showed a tendency to remain closest to the surface, however, N. conifer registered a downward movement of 18.14 cm between 06:00 and 12:00. The cladoceran P. variabilis occupied the deeper position (85 cm), C. dubia showed a tendency to hike to the surface at 06:00 (57.7 cm) descending to lower levels at 18:00. D. magna showed a constant movement of ascent between 00:00 and 18:00, making an average travel of 29.4 cm. When subjected to pollutants, these behaviors were altered. It is hypothesized that a reduction in swimming activity and disorientation would be the main cause of such alterations. The high sensitivity of this endpoint sugests it to be adecuate as a complement in future standard toxicity tests.

  10. Assessing uncertainty in published risk estimates using hexavalent chromium and lung cancer mortality as an example [Presentation 2015

    Science.gov (United States)

    Introduction: The National Research Council recommended quantitative evaluation of uncertainty in effect estimates for risk assessment. This analysis considers uncertainty across model forms and model parameterizations with hexavalent chromium [Cr(VI)] and lung cancer mortality a...

  11. Reduction of Health Risks Due to Chromium(VI)Using Mesquite: A Potential Cr Phytoremediator

    Energy Technology Data Exchange (ETDEWEB)

    Gardea-Torresdey, Jorge L.; Aldrich, Mary V.; Peralta-Videa, Jose R.; Parsons, Jason G.

    2004-03-29

    Chromium is a transition metal extensively used in industry. Cr mining and industrial operations account for chromium wastes at Superfund sites in the United States. A study was performed to investigate the possibility of using mesquite (Prosopis spp.), which is an indigenous desert plant species, to remove Cr from contaminated sites. In this study, mesquite plants were grown in an agar-based medium containing 75 mg L-1 and 125 mg L-1 of Cr(VI). The Cr content of leaf tissue (992 mg kg-1 of dry weight, from 125 mg L-1 of Cr(VI)) indicated that mesquite could be classified as a chromium hyperaccumulator. X-ray absorption spectroscopy (XAS) studies performed to experimental samples showed that mesquite roots absorbed some of the supplied Cr(VI). However, the data analyses of plant tissues demonstrated that the absorbed Cr(VI) was fully reduced to Cr(III) in the leaf tissue.

  12. Comparison of in vivo genotoxic and carcinogenic potency to augment mode of action analysis: Case study with hexavalent chromium.

    Science.gov (United States)

    Thompson, Chad M; Bichteler, Anne; Rager, Julia E; Suh, Mina; Proctor, Deborah M; Haws, Laurie C; Harris, Mark A

    2016-04-01

    Recent analyses-highlighted by the International Workshops on Genotoxicity Testing Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment-have identified a correlation between (log) estimates of a carcinogen's in vivo genotoxic potency and in vivo carcinogenic potency in typical laboratory animal models, even when the underlying data have not been matched for tissue, species, or strain. Such a correlation could have important implications for risk assessment, including informing the mode of action (MOA) of specific carcinogens. When in vivo genotoxic potency is weak relative to carcinogenic potency, MOAs other than genotoxicity (e.g., endocrine disruption or regenerative hyperplasia) may be operational. Herein, we review recent in vivo genotoxicity and carcinogenicity data for hexavalent chromium (Cr(VI)), following oral ingestion, in relevant tissues and species in the context of the aforementioned correlation. Potency estimates were generated using benchmark doses, or no-observable-adverse-effect-levels when data were not amenable to dose-response modeling. While the ratio between log values for carcinogenic and genotoxic potency was ≥1 for many compounds, the ratios for several Cr(VI) datasets (including in target tissue) were less than unity. In fact, the ratios for Cr(VI) clustered closely with ratios for chloroform and diethanolamine, two chemicals posited to have non-genotoxic MOAs. These findings suggest that genotoxicity may not play a major role in the cancers observed in rodents following exposure to high concentrations of Cr(VI) in drinking water-a finding consistent with recent MOA and adverse outcome pathway (AOP) analyses concerning Cr(VI). This semi-quantitative analysis, therefore, may be useful to augment traditional MOA and AOP analyses. More case examples will be needed to further explore the general applicability and validity of this approach for human health risk assessment. PMID:27085472

  13. Bio-reduction of Cr(VI) by exopolysaccharides (EPS) from indigenous bacterial species of Sukinda chromite mine, India.

    Science.gov (United States)

    Harish, R; Samuel, Jastin; Mishra, R; Chandrasekaran, N; Mukherjee, A

    2012-07-01

    Chrome mining activity has contributed intensively towards pollution of hexavalent chromium around Sukinda Valley, Orissa, India. In an attempt to study the specific contribution of exopolysaccharides (EPS) extracted from indigenous isolates towards Cr(VI) reduction, three chromium (VI) tolerant strains were isolated from the effluent mining sludge. Based on the tolerance towards Cr(VI) and EPS production capacity, one of them was selected for further work. The taxonomic identity of the selected strain was confirmed to be Enterobacter cloacae (showing 98% similarity in BLAST search to E. cloacae) through 16S rRNA analysis. The EPS production was observed to increase with increasing Cr(VI) concentration in the growth medium, highest being 0.078 at 100 mg/l Cr(VI). The extracted EPS from Enterobacter cloacae SUKCr1D was able to reduce 31.7% of Cr(VI) at 10 mg/l concentration, which was relevant to the prevailing natural concentrations at Sukinda mine effluent sludge. The FT-IR spectral studies confirmed the surface chemical interactions of hexavalent chromium with EPS.

  14. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.

    Science.gov (United States)

    Sandana Mala, John Geraldine; Unni Nair, Balachandran; Puvanakrishnan, Rengarajulu

    2006-06-01

    Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.

  15. Temporal changes in rat liver gene expression after acute cadmium and chromium exposure.

    Directory of Open Access Journals (Sweden)

    Michael S Madejczyk

    Full Text Available U.S. Service Members and civilians are at risk of exposure to a variety of environmental health hazards throughout their normal duty activities and in industrial occupations. Metals are widely used in large quantities in a number of industrial processes and are a common environmental toxicant, which increases the possibility of being exposed at toxic levels. While metal toxicity has been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify candidate biomarkers, rats were exposed via a single intraperitoneal injection to three concentrations of CdCl2 and Na(2Cr(2O(7, with livers harvested at 1, 3, or 7 days after exposure. Cd and Cr accumulated in the liver at 1 day post exposure. Cd levels remained elevated over the length of the experiment, while Cr levels declined. Metal exposures induced ROS, including hydroxyl radical (•OH, resulting in DNA strand breaks and lipid peroxidation. Interestingly, ROS and cellular damage appeared to increase with time post-exposure in both metals, despite declines in Cr levels. Differentially expressed genes were identified via microarray analysis. Both metals perturbed gene expression in pathways related to oxidative stress, metabolism, DNA damage, cell cycle, and inflammatory response. This work provides insight into the temporal effects and mechanistic pathways involved in acute metal intoxication, leading to the identification of candidate biomarkers.

  16. Temporal Changes in Rat Liver Gene Expression after Acute Cadmium and Chromium Exposure

    Science.gov (United States)

    Madejczyk, Michael S.; Baer, Christine E.; Dennis, William E.; Minarchick, Valerie C.; Leonard, Stephen S.; Jackson, David A.; Stallings, Jonathan D.; Lewis, John A.

    2015-01-01

    U.S. Service Members and civilians are at risk of exposure to a variety of environmental health hazards throughout their normal duty activities and in industrial occupations. Metals are widely used in large quantities in a number of industrial processes and are a common environmental toxicant, which increases the possibility of being exposed at toxic levels. While metal toxicity has been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify candidate biomarkers, rats were exposed via a single intraperitoneal injection to three concentrations of CdCl2 and Na2Cr2O7, with livers harvested at 1, 3, or 7 days after exposure. Cd and Cr accumulated in the liver at 1 day post exposure. Cd levels remained elevated over the length of the experiment, while Cr levels declined. Metal exposures induced ROS, including hydroxyl radical (•OH), resulting in DNA strand breaks and lipid peroxidation. Interestingly, ROS and cellular damage appeared to increase with time post-exposure in both metals, despite declines in Cr levels. Differentially expressed genes were identified via microarray analysis. Both metals perturbed gene expression in pathways related to oxidative stress, metabolism, DNA damage, cell cycle, and inflammatory response. This work provides insight into the temporal effects and mechanistic pathways involved in acute metal intoxication, leading to the identification of candidate biomarkers. PMID:25993096

  17. Method of trivalent chromium concentration determination by atomic spectrometry

    Science.gov (United States)

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  18. Hexavalent Chromium Reduction and Its Distribution in the Cell and Medium by Chromium Resistant Fusarium solani

    Directory of Open Access Journals (Sweden)

    Mousumi Sen

    2013-01-01

    Full Text Available In the present work, batch biosorption of Cr(VI was studied using the fungal strain isolated from soil. The fungal strain was characterized as Fusarium solani. The total Cr distribution in the biomass (fungus and in the media obtained from the experiment conducted at 500 mg l -1 initial Cr(VI concentration and pH 5.0. The results indicated both intracellular and extracellular accumulation and enzymatic reduction of Cr(VI and this was supported by the Transmission Electron Microscopic (TEM observation at the same Cr(VI concentration and pH value. Chromium elution from Fusarium solani containing Cr was then tried out using a number of chromium eluting reagents and a maximum Cr could be eluted using 0.5N sodium hydroxide solution without destructing the biomass structure. The total Cr was recovered by pH adjustment from both biomass and media was found to be 44% of the initial Cr(VI concentration (500 mg l-1.

  19. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel.

    Science.gov (United States)

    Kumar, P Albino; Ray, Manabendra; Chakraborty, Saswati

    2007-05-01

    A resinous polymer, aniline formaldehyde condensate (AFC) coated on silica gel was used as an adsorbent in batch system for removal of hexavalent chromium from aqueous solution by considering the effects of various parameters like reaction pH, dose of AFC coated silica gel, initial Cr(VI) concentration and aniline to formaldehyde ratio in AFC synthesis. The optimum pH for total chromium [Cr(VI) and Cr(III)] adsorption was observed as 3. Total chromium adsorption was second order and equilibrium was achieved within 90-120 min. Aniline to formaldehyde ratio of 1.6:1 during AFC synthesis was ideal for chromium removal. Total chromium adsorption followed Freundlich's isotherm with adsorption capacity of 65 mg/g at initial Cr(VI) 200mg/L. Total chromium removal was explained as combinations of electrostatic attraction of acid chromate ion by protonated AFC, reduction of Cr(VI) to Cr(III) and bond formation of Cr(III) with nitrogen atom of AFC. Almost 40-84% of adsorbed chromium was recovered during desorption by NaOH, EDTA and mineral acids. AFC coated silica gel can be effectively used for treatment of chromium containing wastewaters as an alternative.

  20. Inter-rater agreement for a retrospective exposure assessment of asbestos, chromium, nickel and welding fumes in a study of lung cancer and ionizing radiation.

    Science.gov (United States)

    Seel, E A; Zaebst, D D; Hein, M J; Liu, J; Nowlin, S J; Chen, P

    2007-10-01

    A retrospective exposure assessment of asbestos, welding fumes, chromium and nickel (in welding fumes) was conducted at the Portsmouth Naval Shipyard for a nested case-control study of lung cancer risk from external ionizing radiation. These four contaminants were included because of their potential to confound or modify the effect of a lung cancer-radiation relationship. The exposure assessment included three experienced industrial hygienists from the shipyard who independently assessed exposures for 3519 shop/job/time period combinations. A consensus process was used to resolve estimates with large differences. Final exposure estimates were linked to employment histories of the 4388 study subjects to calculate their cumulative exposures. Inter-rater agreement analyses were performed on the original estimates to better understand the estimation process. Although concordance was good to excellent (78-99%) for intensity estimates and excellent (96-99%) for frequency estimates, overall simple kappa statistics indicated only slight agreement beyond chance (kappa welding fume exposures were fairly stable across time at the shipyard while asbestos exposures were higher in the early years and fell in the mid-1970s. Mean cumulative exposure for all study subjects was 520 fiber-days cc(-1) for asbestos and 1000 mg-days m(-3) for welding fumes. Mean exposure was much lower for nickel (140 microg-days m(-3)) and chromium (45 microg-days m(-3)). Asbestos and welding fume exposure estimates were positively associated with lung cancer in the nested case-control study. The radiation-lung cancer relationship was attenuated by the inclusion of these two confounders. This exposure assessment provided exposure estimates that aided in understanding of the lung cancer-radiation relationship at the shipyard.

  1. Production of Nanocrystalline Magnetite for Adsorption of Cr(VI) Ions

    Science.gov (United States)

    Javadi, N.; Raygan, Sh.; Seyyed Ebrahimi, S. A.

    Higher environmental standards have made the removal of toxic metals such as hexavalent chromium from wastewater; an important problem for environmental protection. Iron oxide is a particularly interesting adsorbent to be considered for this application. In this study, a new method combining adsorption and magnetic separation was developed to remove Cr(VI) from wastewater. The nanocrystalline magnetite as adsorbent was produced via thermo- mechanical reduction of hematite. Various parameters which affect the adsorption of Cr(VI) such as time, pH, temperature and initial concentration were investigated using thermo-gravimeters (TG), X-Ray diffraction (XRD), scanning electron microscopy (SEM) and atomic adsorption spectroscopy (AAS) techniques. The maximum adsorption was occurred at pH 2. The adsorption data were fitted well to Langmuir isotherm model. The adsorption of Cr(VI) increased significantly with increasing of temperature and time.

  2. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng, E-mail: kswu@stu.edu.cn

    2014-02-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed.

  3. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    International Nuclear Information System (INIS)

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed. • Neonatal lead

  4. Integrated Ecogenomics Study for Bioremediation of Cr(VI) at Hanford 100H Area

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Chakraborty, Romy

    2008-08-12

    Hexavalent chromium is a widespread contaminant found in groundwater. In order to stimulate microbially mediated Cr(VI)-reduction, a poly-lactate compound was injected into Cr(VI)-contaminated aquifers at site 100H at Hanford. Investigation of bacterial community composition using high-density DNA microarray analysis of 16S rRNA gene products revealed a stimulation of Pseudomonas, Desulfovibrio and Geobacter species amongst others. Enrichment of these organisms coincided with continued Cr(VI) depletion. Functional gene-array analysis of DNA from monitoring well indicated high abundance of genes involved in nitrate-reduction, sulfate-reduction, iron-reduction, methanogenesis, chromium tolerance/reduction. Clone-library data revealed Psedomonas was the dominant genus in these samples. Based on above results, we conducted lab investigations to study the dominant anaerobic culturable microbial populations present at this site and their role in Cr(VI)-reduction. Enrichments using defined anaerobic media resulted in isolation of an iron-reducing, a sulfate-reducing and a nitrate-reducing isolate among several others. Preliminary 16S rDNA sequence analysis identified the isolates as Geobacter metallireducens, Pseudomonas stutzeri and Desulfovibrio vulgaris species respectively. The Pseudomonas isolate utilized acetate, lactate, glycerol and pyruvate as alternative carbon sources, and reduced Cr(VI). Anaerobic washed cell suspension of strain HLN reduced almost 95?M Cr(VI) within 4 hr. Further, with 100?M Cr(VI) as sole electron-acceptor, cells grew to 4.05 x 107 /ml over 24 h after an initial lag, demonstrating direct enzymatic Cr(VI) reduction coupled to growth. These results demonstrate that Cr(VI)-immobilization at Hanford 100H site could be mediated by direct microbial metabolism in addition to indirect chemical reduction of Cr(VI) by end-products of microbial activity.

  5. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.

    Science.gov (United States)

    Zhang, Xue-Hong; Liu, Jie; Huang, Hai-Tao; Chen, Jun; Zhu, Yi-Nian; Wang, Dun-Qiu

    2007-04-01

    Leersia hexandra Swartz (Gramineae), which occurs in Southern China, has been found to be a new chromium hyperaccumulator by means of field survey and pot-culture experiment. The field survey showed that this species had an extraordinary accumulation capacity for chromium. The maximum Cr concentration in the dry leaf matter was 2978 mg kg(-1) on the side of a pond near an electroplating factory. The average concentration of chromium in the leaves was 18.86 times as that in the pond sediment, and 297.41 times as that in the pond water. Under conditions of the nutrient solution culture, it was found that L. hexandra had a high tolerance and accumulation capacity to Cr(III) and Cr(VI). Under 60 mg l(-1) Cr(III) and 10 mg l(-1) Cr(VI) treatment, there was no significant decrease of biomass in the leaves of L. hexandra (p>0.05). The highest bioaccumulation coefficients of the leaves for Cr(III) and Cr(VI) were 486.8 and 72.1, respectively. However, L. hexandra had a higher accumulation capacity for Cr(III) than for Cr(VI). At the Cr(III) concentration of 10 mg l(-1) in the culture solution, the concentration of chromium in leaves was 4868 mg kg(-1), while at the same Cr(VI) concentration, the concentration of chromium in leaves was only 597 mg kg(-1). These results confirmed that L. hexandra is a chromium hyperaccumulator which grows rapidly with a great tolerance to Cr and broad ecological amplitude. This species could provide a new plant resource that explores the mechanism of Cr hyperaccumulation, and has potential for usage in the phytoremediation of Cr-contaminated soil and water. PMID:17207838

  6. Cadmium, lead, and chromium in large game: a local-scale exposure assessment for hunters consuming meat and liver of wild boar.

    Science.gov (United States)

    Danieli, P P; Serrani, F; Primi, R; Ponzetta, M P; Ronchi, B; Amici, A

    2012-11-01

    Heavy metals are ubiquitous in soil, water, and air. Their entrance into the food chain is an important environmental issue that entails risks to humans. Several reports indicate that game meat can be an important source of heavy metals, particularly because of the increasing consumption of game meat, mainly by hunters. We performed an exposure assessment of hunters and members of their households, both adults and children, who consumed wild boar (WB) meat and offal. We estimated the amount of cadmium, lead, and chromium in the tissues of WB hunted in six areas within Viterbo Province (Italy) and gathered data on WB meat and offal consumption by conducting specific diet surveys in the same areas. The exposure to cadmium, lead, and chromium was simulated with specifically developed Monte Carlo simulation models. Cadmium and lead levels in WB liver and meat harvested in Viterbo Province (Italy) were similar to or lower than the values reported in other studies. However, some samples contained these metals at levels greater then the EU limits set for domestic animals. The chromium content of meat or liver cannot be evaluated against any regulatory limit, but our results suggest that the amounts of this metal found in WB products may reflect a moderate environmental load. Our survey of the hunter population confirmed that their consumption of WB meat and liver was greater than that of the general Italian population. This level of consumption was comparable with other European studies. Consumption of WB products contributes significantly to cadmium and lead exposure of both adults and children. More specifically, consumption of the WB liver contributed significantly to total cadmium and lead exposure of members of the households of WB hunters. As a general rule, liver consumption should be kept to a minimum, especially for children living in these hunter households. The exposure to chromium estimated for this population of hunters may be considered to be safe. However

  7. Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus sylvestris Linn

    International Nuclear Information System (INIS)

    Biosorption equilibrium, kinetics and thermodynamics of chromium(VI) ions onto cone biomass were studied in a batch system with respect to temperature and initial metal ion concentration. The biosorption efficiency of chromium ions to the cone biomass decreased as the initial concentration of metal ions was increased. But cone biomass of Pinus sylvestris Linn. exhibited the highest Cr(VI) uptake capacity at 45 oC. The biosorption efficiency increased from 67% to 84% with an increase in temperature from 25 to 45 deg. C at an initial Cr(VI) concentration of 300 mg/L. The Langmuir isotherm model was applied to experimental equilibrium data of Cr(VI) biosorption depending on temperature. According to Langmuir isotherm, the monolayer saturation capacity (Qmax) is 238.10 mg/g. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data for initial Cr(VI). The pseudo-second-order kinetic model provided the best correlation of the used experimental data compared to the pseudo-first-order kinetic model. The activation energy of biosorption (Ea) was determined as 41.74 kJ/mol using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the thermodynamic constants of biosorption (ΔGo, ΔHo and ΔSo) were also evaluated

  8. The carcinogenicity of chromium

    OpenAIRE

    Norseth, Tor

    1981-01-01

    The carcinogenicity of chromium compounds is reviewed with specific attention to the gaps in knowledge for risk estimation and research needs. The most important problems at present are whether trivalent chromium compounds cause cancer, and whether there is a difference in cancer causing effects between the soluble and the slightly soluble hexavalent compounds in the practical exposure situation. Dose estimates for risk estimation based on epidemiological investigations are also lacking. Pres...

  9. Natural and induced reduction of hexavalent chromium in soil

    Science.gov (United States)

    Leita, Liviana; Margon, Alja; Sinicco, Tania; Mondini, Claudio; Valentini, Massimiliano; Cantone, Pierpaolo

    2013-04-01

    Even though naturally elevated levels of chromium can be found naturally in some soils, distressing amounts of the hexavalent form (CrVI) are largely restricted to sites contaminated by anthropogenic activities. In fact, the widespread use of chromium in various industries and the frequently associated inadequate disposal of its by-products and wastes have created serious environmental pollution problems in many parts of the world. CrVI is toxic to plants, animals and humans and exhibits also mutagenic effects. However, being a strong oxidant, CrVI can be readily reduced to the much less harmful trivalent form (CrIII) when suitable electron donors are present in the environment. CrIII is relatively insoluble, less available for biological uptake, and thus definitely less toxic for web-biota. Various electron donors in soil can be involved in CrVI reduction in soil. The efficiency of CrVI reducing abiotic agents such as ferrous iron and sulphur compounds is well documented. Furthermore, CrVI reduction is also known to be significantly enhanced by a wide variety of cell-produced monosaccharides, including glucose. In this study we evaluated the dynamics of hexavalent chromium (CrVI) reduction in contaminated soil amended or not with iron sulphate or/and glucose and assessed the effects of CrVI on native or glucose-induced soil microbial biomass size and activity. CrVI negatively affected both soil microbial activity and the size of the microbial biomass. During the incubation period, the concentration of CrVI in soil decreased over time whether iron sulphate or/and glucose was added or not, but with different reduction rates. Soil therefore displayed a natural attenuation capacity towards chromate reduction. Addition of iron sulphate or/and glucose, however, increased the reduction rate by both abiotic and biotic mechanisms. Our data suggest that glucose is likely to have exerted an indirect role in the increased rate of CrVI reduction by promoting growth of

  10. Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor

    International Nuclear Information System (INIS)

    Highlights: ► Elemental sulfur can be used as electron acceptor for sulfide production. ► Biogenically produced sulfide reduces Cr(VI) to the much less toxic and immobile form of Cr(III). ► Sulfur packed bioreactor is efficient for Cr(VI) containing wastewater treatment. ► Reduced form of chromium precipitates in the bioreactor. - Abstract: The most commonly used approach for the detoxification of hazardous industrial effluents and wastewaters containing Cr(VI) is its reduction to the much less toxic and immobile form of Cr(III). This study investigates the cleanup of Cr(VI) containing wastewaters using elemental sulfur as electron acceptor, for the production of hydrogen sulfide that induces Cr(VI) reduction. An elemental sulfur reducing packed-bed bioreactor was operated at 28–30 °C for more than 250 days under varying influent Cr(VI) concentrations (5.0–50.0 mg/L) and hydraulic retention times (HRTs, 0.36–1.0 day). Ethanol or acetate (1000 mg/L COD) was used as carbon source and electron donor. The degree of COD oxidation varied between 30% and 85%, depending on the operating conditions and the type of organic carbon source. The oxidation of organic matter was coupled with the production of hydrogen sulfide, which reached a maximum concentration of 750 mg/L. The biologically produced hydrogen sulfide reduced Cr(VI) chemically to Cr(III) that precipitated in the reactor. Reduction of Cr(VI) and removal efficiency of total chromium always exceeded 97% and 85%, respectively, implying that the reduced chromium was retained in the bioreactor. This study showed that sulfur can be used as an electron acceptor to produce hydrogen sulfide that induces efficient reduction and immobilization of Cr(VI), thus enabling decontamination of Cr(VI) polluted wastewaters.

  11. Removal of hexavalent chromium from aqueous solution by granular and powdered Peganum Harmala

    Science.gov (United States)

    Khosravi, Rasoul; Fazlzadehdavil, Mehdi; Barikbin, Behnam; Taghizadeh, Ali Akbar

    2014-02-01

    In this paper, batch removal of hexavalent chromium from aqueous solutions by granular and powdered seeds of Peganum Harmala was investigated. The Peganum Harmala seeds were collected and after beating slowly, separating and cleaning the Harmala seeds done using a sieve. Batch adsorption studies were performed in 100 ml Erlenmeyer flasks inside an incubator container. The main process parameters considered were pH, initial Cr(VI) concentration for PPH and GPH, adsorbent dose, and contact time. Cr(VI) was measured at a wavelength of 540 nm using a UV-vis T80+ spectrophotometer. The adsorption data were fitted well by Freundlich isotherm. The result shows that the maximum removal of Cr(VI) was observed at pH 1.5 for both adsorbents. Also, by increase adsorption dose, adsorption capacity of Cr(VI) decreased but the chromium adsorption rate increased. The mount of adsorbed Cr(VI) onto both adsorbents increased with an increase in the contact time but by increases initial concentration of Cr(VI), the mount of adsorbed Cr(VI) onto both adsorbents decreased. The results indicate that the powdered Peganum Harmala can be effective adsorbent than the granular Peganum Harmala for the removal of Cr(VI) from aqueous solution.

  12. Hexavalent chromium is cytotoxic and genotoxic to American alligator cells.

    Science.gov (United States)

    Wise, Sandra S; Wise, Catherine; Xie, Hong; Guillette, Louis J; Zhu, Cairong; Wise, John Pierce; Wise, John Pierce

    2016-02-01

    Metals are a common pollutant in the aquatic ecosystem. With global climate change, these levels are anticipated to rise as lower pH levels allow sediment bound metals to be released. The American alligator (Alligator mississippiensis) is an apex predator in the aquatic ecosystem and is considered a keystone species; as such it serves as a suitable monitor for localized pollution. One metal of increasing concern is hexavalent chromium (Cr(VI)). It is present in the aquatic environment and is a known human carcinogen and reproductive toxicant. We measured the cytotoxicity and genotoxicity of Cr(VI) in American alligator cells derived from scute tissue. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to alligator cells in a concentration-dependent manner. These data suggest that alligators may be used as a model for assessing the effects of environmental Cr(VI) contamination as well as for other metals of concern. PMID:26730726

  13. Hexavalent chromium is cytotoxic and genotoxic to American alligator cells.

    Science.gov (United States)

    Wise, Sandra S; Wise, Catherine; Xie, Hong; Guillette, Louis J; Zhu, Cairong; Wise, John Pierce; Wise, John Pierce

    2016-02-01

    Metals are a common pollutant in the aquatic ecosystem. With global climate change, these levels are anticipated to rise as lower pH levels allow sediment bound metals to be released. The American alligator (Alligator mississippiensis) is an apex predator in the aquatic ecosystem and is considered a keystone species; as such it serves as a suitable monitor for localized pollution. One metal of increasing concern is hexavalent chromium (Cr(VI)). It is present in the aquatic environment and is a known human carcinogen and reproductive toxicant. We measured the cytotoxicity and genotoxicity of Cr(VI) in American alligator cells derived from scute tissue. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to alligator cells in a concentration-dependent manner. These data suggest that alligators may be used as a model for assessing the effects of environmental Cr(VI) contamination as well as for other metals of concern.

  14. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Pagnanelli, F., E-mail: francesca.pagnanelli@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Cruz Viggi, C., E-mail: carolina.cruzviggi@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Cibati, A., E-mail: alessio.cibati@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Uccelletti, D., E-mail: daniela.uccelletti@uniroma1.it [Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy); Toro, L., E-mail: luigi.toro@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Palleschi, C., E-mail: claudio.palleschi@uniroma1.it [Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Use of ethanol as electron donor for sulphate-reducing bacteria for the treatment of Cr(VI). Black-Right-Pointing-Pointer Isolation of contribution in Cr removal (adsorption vs. bioprecipitation). Black-Right-Pointing-Pointer Bioassessment of the process effectiveness by ecotoxicological in vivo tests using C. elegans. - Abstract: Biological treatment of Cr(VI) contaminated waters was performed in fixed bed reactors inoculated with SRB (sulphate-reducing bacteria) growing on ethanol. Treatment efficiency was evaluated by checking chemical abatement of Cr(VI) and by ecotoxicological tests using the nematode Caenorhabditis elegans. A preliminary comparison between ethanol and lactate was performed, denoting that using ethanol, the same values of final sulphate abatement were obtained. In addition ethanol showed to be a substrate more competitive than lactate in kinetic terms. Fixed bed column reactors were continuously fed with a solution containing sulphates (3 g L{sup -1}), ethanol (1.5 g L{sup -1}) and Cr(VI) (50 mg L{sup -1}). At steady state the column inoculated with SRB removed 65 {+-} 5% of sulphate and 95 {+-} 5% of chromium. Bioactive removal mechanisms predominated over biosorption. Diminution of Cr(VI) toxicity was assessed by using the nematode C. elegans as a test organism showing that the survival of nematodes was 20% in the presence of the untreated influent and raised up to 53% when the nematodes were exposed to the treated effluent.

  15. Improved biosorption for Cr(VI) reduction and removal by Arthrobacter viscosus using zeolite

    OpenAIRE

    Silva, Bruna Andreia Nogueira Airosa; Figueiredo, Hugo; Quintelas, C.; Neves, Isabel C.; Tavares, M.T.

    2012-01-01

    The aim of the present work was to optimize the reduction and removal of chromium from aqueous solutions by a biosorption system consisting of a bacteria supported on a zeolite. The system proposed combines the biosorption properties of Arthrobacter viscosus, with the ion exchange capacity of NaY zeolite. Experiments were also performed without the zeolite for comparison purposes. Experimental parameters such as solution pH, biomass concentration and initial Cr(VI) concentration were investig...

  16. Cr(VI) adsorption and reduction by humic acid coated on magnetite.

    Science.gov (United States)

    Jiang, Wenjun; Cai, Quan; Xu, Wei; Yang, Mingwei; Cai, Yong; Dionysiou, Dionysios D; O'Shea, Kevin E

    2014-07-15

    Easily separable humic acid coated magnetite (HA-Fe3O4) nanoparticles are employed for effective adsorption and reduction of toxic Cr(VI) to nontoxic Cr(III). The adsorption and reduction of Cr(VI) is effective under acidic, neutral, and basic pH conditions. The chromium adsorption nicely fits the Langmuir isotherm model, and the removal of Cr(VI) from aqueous media by HA-Fe3O4 particles follows pseudo-second-order kinetics. Characterization of the Cr-loaded HA-Fe3O4 materials by X-ray absorption near edge structure spectroscopy (XANES) indicates Cr(VI) was reduced to Cr(III) while the valence state of the iron core is unchanged. Fe K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray diffraction measurements also indicate no detectable transformation of the Fe3O4 core occurs during Cr(VI) adsorption and reduction. Thus, suggesting HA on the surface of HA-Fe3O4 is responsible for the reduction of Cr(VI) to Cr(III). The functional groups associated with HA act as ligands leading to the Cr(III) complex via a coupled reduction-complexation mechanism. Cr K-edge EXAFS demonstrates the Cr(III) in the Cr-loaded HA-Fe3O4 materials has six neighboring oxygen atoms likely in an octahedral geometry with average bond lengths of 1.98 Å. These results demonstrate that easily separable HA-Fe3O4 particles have promising potential for removal and detoxification of Cr(VI) in aqueous media.

  17. Removal of Cr(VI from Aqueous Solution Using Modified Pomegranate Peel : Equilibrium and Kinetic Studies

    Directory of Open Access Journals (Sweden)

    Tariq S. Najim

    2009-01-01

    Full Text Available The present investigation deals with the utilization of modified pomegrenate peel (MPGP and formaldehyde modified pomegrenate peel (FMPGP as adsorbents for the removal of chromium Cr(VI from aqueous solution. A series of experiments were conducted in a batch system to evaluate the effect of system variables. The effect of pH, initial Cr(VI concentration, contact time, adsorbent dosage and temperature were considered. The optimal pH values of Cr(VI removal by MPGP and FMPGP were 2.0 and 3.0 respectively. The time required for equilibrium was found to be about 100 minutes. The initial Cr(VI concentration and adsorbent dosage was found to have large effect on the adsorption of Cr(VI. The maximum uptake capacities were 13.01 and 22.28 mg of Cr(VI per gram of MPGP and FMPGP respectively. Adsorption kinetic data were tested using pseudo-first order, pseudo-second order, Elovich and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo second order reaction due to the high correlation coefficient and the agreement between the experimental and calculated values of qe.The adsorption may follow intraparticle diffusion as well, due to the highest values of rate constants for the surface adsorption and intraparticle diffusion kinetic models, the higher values of rate constants are related to an improved bonding between Cr(VI ions and adsorbent particle.The Dubinin-radushkevich, Freundlich and Tempkin models were the closest fit for the equilibrium data of MPGP and FMPGP.

  18. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  19. Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway

    Science.gov (United States)

    Wang, Xin; Mandal, Ardhendu K.; Saito, Hiroshi; Pulliam, Joseph F.; Lee, Eun Y.; Ke, Zun-Ji; Lu, Jian; Ding, Songze; Li, Li; Shelton, Brent J; Tucker, Thomas; Evers, B. Mark; Zhang, Zhuo; Shi, Xianglin

    2015-01-01

    Exposure to carcinogenic metals, such as trivalent arsenic [As(III)] and hexavalent chromium [Cr(VI)], through drinking water is a major global public health problem and is associated with various cancers. However, the mechanism of their carcinogenicity remains unclear. In this study, we used azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse colitis-associated colorectal cancer model to investigate their tumorigenesis. Our results demonstrate that exposure to As(III) or Cr(VI), alone or in combination, together with AOM/DSS pretreatment has a promotion effect, increasing the colorectal tumor incidence, multiplicity, size, and grade, as well as cell inflammatory response. Two-dimensional differential gel electrophoresis coupled with mass spectrometry revealed that As(III) or Cr(VI) treatment alone significantly changed the density of proteins. The expression of β-catenin and phospho-GSK was increased by treatment of carcinogenic metals alone. Concomitantly, the expression of NADPH oxidase1 (NOX1) and the level of 8-OHdG were also increased by treatment of carcinogenic metals alone. Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, were decreased. Similarly, in an in vitro system, exposure of CRL-1807 to carcinogenic metals increased reactive oxygen species (ROS) generation, the expression of β-catenin, phospho-GSK, and NOX1. Inhibition of ROS generation by addition of SOD or catalase inhibited β-catenin expression and activity. Our study provides a new animal model to study the carcinogenicity of As(III) and Cr(VI) and suggest that As(III) and Cr(VI) promote colorectal cancer tumorigenesis, at least partly, through ROS-mediated Wnt/β-catenin signaling pathway. PMID:22552367

  20. Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Mandal, Ardhendu K. [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Saito, Hiroshi [Department of Surgery and Physiology, Lucille P. Markey Cancer Center, University of Kentucky, Lexington, KY 40536 (United States); Pulliam, Joseph F.; Lee, Eun Y. [Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536 (United States); Ke, Zun-Ji; Lu, Jian; Ding, Songze [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Li, Li [Department of Family Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States); Shelton, Brent J.; Tucker, Thomas [Markey Cancer Control Program, University of Kentucky, Lexington, KY 40504 (United States); Evers, B. Mark [Department of Surgery and Physiology, Lucille P. Markey Cancer Center, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States)

    2012-07-01

    Exposure to carcinogenic metals, such as trivalent arsenic [As(III)] and hexavalent chromium [Cr(VI)], through drinking water is a major global public health problem and is associated with various cancers. However, the mechanism of their carcinogenicity remains unclear. In this study, we used azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse colitis-associated colorectal cancer model to investigate their tumorigenesis. Our results demonstrate that exposure to As(III) or Cr(VI), alone or in combination, together with AOM/DSS pretreatment has a promotion effect, increasing the colorectal tumor incidence, multiplicity, size, and grade, as well as cell inflammatory response. Two-dimensional differential gel electrophoresis coupled with mass spectrometry revealed that As(III) or Cr(VI) treatment alone significantly changed the density of proteins. The expression of β-catenin and phospho-GSK was increased by treatment of carcinogenic metals alone. Concomitantly, the expression of NADPH oxidase1 (NOX1) and the level of 8-OHdG were also increased by treatment of carcinogenic metals alone. Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, were decreased. Similarly, in an in vitro system, exposure of CRL-1807 to carcinogenic metals increased reactive oxygen species (ROS) generation, the expression of β-catenin, phospho-GSK, and NOX1. Inhibition of ROS generation by addition of SOD or catalase inhibited β-catenin expression and activity. Our study provides a new animal model to study the carcinogenicity of As(III) and Cr(VI) and suggests that As(III) and Cr(VI) promote colorectal cancer tumorigenesis, at least partly, through ROS-mediated Wnt/β-catenin signaling pathway. -- Highlights: ► Carcinogenic metals in drinking water promote colorectal tumor formation in vivo. ► Carcinogenic metals induce β-catenin activation in vivo and in vitro. ► ROS generation induced by carcinogenic metals mediated β-catenin activation.

  1. Genotoxic effects of chromium oxide nanoparticles and microparticles in Wistar rats after 28 days of repeated oral exposure.

    Science.gov (United States)

    Singh, Shailendra Pratap; Chinde, Srinivas; Kamal, Sarika Srinivas Kalyan; Rahman, M F; Mahboob, M; Grover, Paramjit

    2016-02-01

    The nanotechnology industry has advanced rapidly in the last 10 years giving rise to the growth of the nanoparticles (NPs) with great potential in various arenas. However, the same properties that make NPs interesting raise concerns because their toxicity has not been explored. The in vivo toxicology of chromium oxide (Cr2O3)-NPs is not known till date. Therefore, this study investigated the 28-day repeated toxicity after 30, 300 and 1000 mg/kg body weight (bw)/day oral treatment with Cr2O3-NPs and Cr2O3 microparticles (MPs) in Wistar rats. The mean size of Cr2O3-NPs and Cr2O3-MPs was 34.89 ± 2.65 nm and 3.76 ± 3.41 μm, respectively. Genotoxicity was assessed using comet, micronucleus and chromosomal aberration (CA) assays. The results revealed a significant increase in DNA damage in peripheral blood leucocytes and liver, micronuclei and CA in bone marrow after exposure of 300 and 1000 mg/kg doses of Cr2O3-NPs and Cr2O3-MPs only at 1000 mg/kg bw/day. Cr biodistribution was observed in all the tissues in a dose-dependent manner. The maximum amount of Cr was found in the kidneys and least in the brain of the treated rats. More of the Cr was excreted in the faeces than in the urine. Furthermore, nanotreated rats displayed much higher absorption and tissue accumulation. These findings provide initial data of the probable genotoxicity and biodistribution of NPs and MPs of Cr2O3 generated through repeated oral treatment. PMID:26503004

  2. Optimization and Modeling of Hexavalent Chromium Removal from Aqueous Solution Via Adsorption on Multiwalled Carbon Nanotubes

    OpenAIRE

    Mina Gholipour; Hassan Hashemipour Rafsanjani; Ataollah Soltani Goharrizi

    2011-01-01

    Hexavalent chromium and its derivatives are potential pollutant due to their mortal affects. Therefore, It is essential to remove these components from wastewaters before disposal. Adsorption can be effective and versatile method for removing of hexavalent chromium. In this article, removal of hexavalent chromium via adsorption on multiwalled carbon nanotubes was investigated as a function of adsorbent dosage, initial solution pH, initial Cr(VI) concentrations, contact time and temperature. T...

  3. Diverse anaerobic Cr(VI) tolerant bacteria from Cr(VI)-contaminated 100H site at Hanford

    Science.gov (United States)

    Chakraborty, R.; Phan, R.; Lam, S.; Leung, C.; Brodie, E. L.; Hazen, T. C.

    2007-12-01

    Hexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water. Cr(VI) is more soluble, toxic, carcinogenic, and mutagenic compared to its reduced form Cr(III). In order to stimulate microbially mediated reduction of Cr(VI), a poly-lactate compound HRC was injected into the chromium contaminated aquifers at site 100H at Hanford. Based on the results of the bacterial community composition using high-density DNA microarray analysis of 16S rRNA gene products, we recently investigated the diversity of the dominant anaerobic culturable microbial population present at this site and their role in Cr(VI) reduction. Positive enrichments set up at 30°C using specific defined anaerobic media resulted in the isolation of an iron reducing isolate strain HAF, a sulfate reducing isolate strain HBLS and a nitrate reducing isolate, strain HLN among several others. Preliminary 16S rDNA sequence analysis identifies strain HAF as Geobacter metallireducens, strain HLN as Pseudomonas stutzeri and strain HBLS as a member of Desulfovibrio species. Strain HAF isolated with acetate as the electron donor utilized propionate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Growth was optimal at 37°C, pH of 6.5 and 0% salinity. Strain HLN isolated with lactate as electron donor utilized acetate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Optimal growth was observed at 37°C, at a pH of 7.5 and 0.3% salinity. Anaerobic active washed cell suspension of strain HLN reduced almost 95 micromolar Cr(VI) within 4 hours relative to controls. Further, with 100 micromolar Cr(VI) as the sole electron acceptor, cells of strain HLN grew to cell numbers of 4.05X 107/ml over a period of 24hrs after an initial lag, demonstrating direct enzymatic Cr(VI) reduction by this species. 10mM lactate served as the sole electron donor. These results demonstrate that Cr(VI

  4. Pseudo-emulsion based hollow fibre strip dispersion (PEHFSD) technique for permeation of Cr(VI) using Cyanex-923 as carrier.

    Science.gov (United States)

    Sonawane, Jagannath V; Pabby, Anil K; Sastre, Ana M

    2010-02-15

    Pseudo-emulsion based hollow fibre strip dispersion (PEHFSD) technique is investigated for the permeation-separation of chromium from hydrochloric acid media. The permeation of Cr(VI) is investigated in relation to various experimental variables: hydrodynamic conditions, the concentration of Cr(VI) and HCl in the feed phase, Cyanex-923 concentration, hydrazine sulphate as the stripping agent in the pseudo-emulsion phase. The performance of the PEHFSD was analyzed and optimum conditions are suggested for chromium separation from simulated industrial waste in a hydrochloric acid media.

  5. Evaluation of the bioremoval of Cr(VI) and TOC in biofilters under continuous operation using response surface methodology.

    Science.gov (United States)

    Leles, Daniela M A; Lemos, Diego A; Filho, Ubirajara C; Romanielo, Lucienne L; de Resende, Miriam M; Cardoso, Vicelma L

    2012-06-01

    In the present study, the bioremoval of Cr(VI) and the removal of total organic carbon (TOC) were achieved with a system composed by an anaerobic filter and a submerged biofilter with intermittent aeration using a mixed culture of microorganisms originating from contaminated sludge. In the aforementioned biofilters, the concentrations of chromium, carbon, and nitrogen were optimized according to response surface methodology. The initial concentration of Cr(VI) was 137.35 mg l(-1), and a bioremoval of 85.23% was attained. The optimal conditions for the removal of TOC were 4 to 8 g l(-1) of sodium acetate, >0.8 g l(-1) of ammonium chloride and 60 to 100 mg l(-1) of Cr(VI). The results revealed that ammonium chloride had the strongest effect on the TOC removal, and 120 mg l(-1) of Cr(VI) could be removed after 156 h of operation. Moreover, 100% of the Cr(VI) and the total chromium content of the aerobic reactor output were removed, and TOC removals of 80 and 87% were attained after operating the anaerobic and aerobic reactors for 130 and 142 h, respectively. The concentrations of cells in both reactors remained nearly constant over time. The residence time distribution was obtained to evaluate the flow through the bioreactors.

  6. Chromium recovery from exhausted baths generated in plating processes and its reuse in the tanning industry.

    Science.gov (United States)

    Torras, Josep; Buj, Irene; Rovira, Miquel; de Pablo, Joan

    2012-03-30

    Chromium plating used for functional purposes provides an extremely hard, wear and corrosion resistant layer by means of electrolytic deposition. Typical layer thicknesses range between 2.5 and 500 μm. Chromium electroplating baths contain high concentrations of Cr(VI) with chromium trioxide (CrO(3)) as the chromium source. When because of technical or economic reasons a bath gets exhausted, a waste containing mainly chromium as dichromate as well as other heavy metals is generated. Chromium may then be purified for use in other industrial processes with different requirements. In this work, a sustainable system for using galvanic wastes as reagents in the leather tanning industry, thus reducing quantity of wastes to be treated, is presented. Metal cations present in the chromium exhausted bath were precipitated with NaOH. Then, the solution containing mainly soluble Cr(VI) was separated. By means of sodium sulphite in acidic conditions, Cr(VI) was reduced to Cr(III) as chromium (III) sulphate. From chromium (III) sulphate a basic Cr(III) sulphate may be obtained, which is one of most used compounds in the tanning industry. Cr(III) concentration in the final solution allows its reuse without concentration, but with a slight dilution. PMID:22326242

  7. Characterization of Chromium Waste Form Based on Biocementation by Microbacterium sp. GM-1.

    Science.gov (United States)

    Lun, Limei; Li, Dongwei; Yin, Yajie; Li, Dou; Xu, Guojing; Zhao, Ziqiang; Li, Shan

    2016-09-01

    This paper demonstrated a biocementation technology for chromium slag by strain GM-1, a calcifying ureolytic bacterium identified as Microbacterium, based on microbially induced calcium carbonate. The characterization of Microbacterium sp. GM-1 was assessed to know the growth curve in different concentrations of Cr(VI). Microbacterium sp. GM-1 was tolerant to a concentration of 120 mg/L Cr(VI). Chromium waste forms were prepared using chromium, sand, soil and bacterial culture. There we had three quality ratios (8:2:1; 8:1:1; 8:2:0.5) of material (chromium, sand and soil, respectively). Bacterial and control chromium waste forms were analyzed by thermal gravimetric analyzer. All bacterial forms (8:2:1; 8:1:1; 8:2:0.5 J) showed sharp weight loss near the decomposition temperature of calcium carbonate between 600 and 700 °C. It indicated that the efficient bacterial strain GM-1 had induced calcium carbonate precipitate during bioremediation process. A five step Cr(VI) sequential extraction was performed to evaluate its distribution pattern in chromium waste forms. The percentage of Cr(VI) was found to significantly be decreased in the exchangeable fraction of chromium waste forms and subsequently, that was markedly increased in carbonated fraction after biocementation by GM-1. Further, compressive strength test and leaching test were carried out. The results showed that chromium waste forms after biocementation had higher compressive strength and lower leaching toxicity. Additionally, the samples made of 8:1:1 (m/m/m) chromium + sand + soil were found to develop the highest compressive strength and stand the lowest concentration of Cr(VI) released into the environment. PMID:27407300

  8. Kinetics and Mechanisms of Cr(VI) Formation via the Oxidation of Cr(III) Solid Phases by Chlorine in Drinking Water.

    Science.gov (United States)

    Chebeir, Michelle; Liu, Haizhou

    2016-01-19

    Hexavalent chromium Cr(VI), typically existing as the oxyanion form of CrO4(2-), is being considered for more stringent drinking water standards by regulatory agencies. Cr(VI) can be inadvertently produced via the oxidation of trivalent chromium Cr(III) solids. This study investigated the kinetics and mechanisms of Cr(III) solids oxidation by chlorine in drinking water and associated Cr(VI) formation. Batch experiments were carried out with three Cr(III) solids of environmental relevance, i.e., chromium hydroxide Cr(OH)3(s), chromium oxide Cr2O3(s), and copper chromite Cu2Cr2O5(s). Impacts of water chemical parameters including pH (6.0-8.5) and bromide concentration (0-5 mg/L) were examined. Results showed that the rapid oxidation of Cr(III) solid phases by chlorine was accompanied by Cr(VI) formation and an unexpected production of dissolved oxygen. Analysis of reaction stoichiometry indicated the existence of Cr intermediate species that promoted the autocatalytic decay of chlorine. An increase in pH modestly enhanced Cr(VI) formation due to changes of reactive Cr(III) surface hydroxo species. Bromide, a trace chemical constituent in source waters, exhibited a catalytic effect on Cr(VI) formation due to an electron shuttle mechanism between Cr(III) and chlorine and the bypass of Cr intermediate formation. The kinetics data obtained from this study suggest that the oxidation of Cr(III) solids by chlorine in water distribution systems can contribute to Cr(VI) occurrence in tap water, especially in the presence of a trace level of bromide.

  9. Kinetics and mechanism of hexavalent chromium removal by basic oxygen furnace slag.

    Science.gov (United States)

    Han, Chong; Jiao, Yanan; Wu, Qianqian; Yang, Wangjin; Yang, He; Xue, Xiangxin

    2016-08-01

    Basic oxygen furnace slag (BOFS) has the potential to remove hexavalent chromium (Cr(VI)) from wastewater by a redox process due to the presence of minerals containing Fe(2+). The effects of the solution pH, initial Cr(VI) concentration, BOFS dosage, BOFS particle size, and temperature on the removal of Cr(VI) was investigated in detail through batch tests. The chemical and mineral compositions of fresh and reacted BOFS were characterized using scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system and X-ray diffractometer (XRD). The results show that Cr(VI) in wastewater can be efficiently removed by Fe(2+) released from BOFS under appropriate acidic conditions. The removal of Cr(VI) by BOFS significantly depended on the parameters mentioned above. The reaction of Cr(VI) with BOFS followed the pseudo-second-order kinetic model. Fe(2+) responsible for Cr(VI) removal was primarily derived from the dissolution of FeO and Fe3O4 in BOFS. When H2SO4 was used to adjust the solution acidity, gypsum (CaSO4·2H2O) could be formed and become an armoring precipitate layer on the BOFS surface, hindering the release of Fe(2+) and the removal of Cr(VI). Finally, the main mechanism of Cr(VI) removal by BOFS was described using several consecutive reaction steps. PMID:27521937

  10. Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions.

    Science.gov (United States)

    He, Da; Zheng, Maosheng; Ma, Tao; Li, Can; Ni, Jinren

    2015-06-01

    Inhibition of efficient denitrification in presence of toxic heavy metals is one of the current problems encountered in municipal wastewater treatment plants. This paper presents how to remove hexavalent chromium (Cr(VI)) and nitrate simultaneously by the novel strain Pseudomonas aeruginosa PCN-2 under aerobic conditions. The capability of strain PCN-2 for Cr(VI) and nitrate reduction was confirmed by PCR analysis of gene ChrR, napA, nirS, cnorB, nosZ, while Cr(VI) reduction was proved via an initial single-electron transfer through Cr(V) detection using electron paramagnetic resonance. Experimental results demonstrated that Cr(VI) and nitrate reduction by strain PCN-2 was much faster at pH 8-9 and higher initial cell concentration. However, increasing Cr(VI) concentration would inhibit aerobic denitrification process and result in an significant delay of nitrate reduction or N2O accumulation, which was attributed to competition between three electron acceptors, i.e., Cr(VI), O2 and nitrate in the electron transport chain.

  11. USE OF MICRO X-RAY ABSORPTION SPECTROSCOPY AND DIFFRACTION TO DELINEATE Cr(VI) SPECIATION IN COPR

    Energy Technology Data Exchange (ETDEWEB)

    CHRYSOCHOOU, M.; MOON, D. H.; FAKRA, S.; MARCUS, M.; DERMATAS, D.; CHRISTODOULATOS, C.

    2010-06-22

    The speciation of Cr(VI) in Cromite Ore Processing Residue was investigated by means of bulk XRD, and a combination of micro-XRF, -XAS and -XRD at the Advanced Light Source (ALS), Berkeley, CA, U.S.A.. Bulk XRD yielded one group of phases that contained explicitly Cr(VI) in their structure, Calcium Aluminum Chromium Oxide Hydrates, accounting for 60% of the total Cr(VI). Micro-analyses at ALS yielded complimentary information, confirming that hydrogarnets and hydrotalcites, two mineral groups that can host Cr(VI) in their structure by substitution, were indeed Cr(VI) sinks. Chromatite (CaCrO4) was also identified by micro-XRD, which was not possible with bulk methods due to its low content. The acquisition of micro-XRF elemental maps enabled not only the identification of Cr(VI)-binding phases, but also the understanding of their location within the matrix. This information is invaluable when designing Cr(VI) treatment, to optimize release and availability for reduction.

  12. Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions.

    Science.gov (United States)

    He, Da; Zheng, Maosheng; Ma, Tao; Li, Can; Ni, Jinren

    2015-06-01

    Inhibition of efficient denitrification in presence of toxic heavy metals is one of the current problems encountered in municipal wastewater treatment plants. This paper presents how to remove hexavalent chromium (Cr(VI)) and nitrate simultaneously by the novel strain Pseudomonas aeruginosa PCN-2 under aerobic conditions. The capability of strain PCN-2 for Cr(VI) and nitrate reduction was confirmed by PCR analysis of gene ChrR, napA, nirS, cnorB, nosZ, while Cr(VI) reduction was proved via an initial single-electron transfer through Cr(V) detection using electron paramagnetic resonance. Experimental results demonstrated that Cr(VI) and nitrate reduction by strain PCN-2 was much faster at pH 8-9 and higher initial cell concentration. However, increasing Cr(VI) concentration would inhibit aerobic denitrification process and result in an significant delay of nitrate reduction or N2O accumulation, which was attributed to competition between three electron acceptors, i.e., Cr(VI), O2 and nitrate in the electron transport chain. PMID:25795449

  13. Use of Variamine Blue dye in Spectrophotometric determination of Water Soluble Cr(VI in Portland Cement

    Directory of Open Access Journals (Sweden)

    Devesh K. Sharma

    2015-12-01

    Full Text Available Variamine blue dye as chromogenic reagent was used for Portland cement samples in determination of soluble hexavalent chromium. This method was based on the reaction of Cr(VI with potassium iodide in acidic medium to liberate iodine, which oxidized variamine blue to form a violet colored species having an absorption maximum 556 nm. The extraction of soluble Cr(VI for quantification in cement was done according to European method. The validity of this method was thoroughly examined by comparing with standard DPC method as well as the accuracy of the method was checked using a standard reference material of National Institute of Standards & Technology (NIST, USA.

  14. Reduction of Cr(VI) and survival in Cr-contaminated sites by Caulobacter crescentus

    Science.gov (United States)

    Hu, P.; Chakraborty, R.; Brodie, E. L.; Andersen, G. L.; Hazen, T. C.

    2008-12-01

    The Caulobacter spp. is known to be able to live in low-nutrient environments, a characteristic of most heavy metal-contaminated sites. Recent studies have shown that Caulobacter crescentus can grow in chemically defined medium containing up to 1 mM uranium. Whole-genome transcriptional analysis and electron microscopic imaging of heavy metal stresses in Caulobacter crescentus also provided insight and evidence that the bacterium used an array of defensive mechanisms to deal with heavy metal stresses. In addition to up-regulated enzymes protecting against oxidative stress, DNA repair and down-regulated potential chromium transport, one of the major gene groups respond to chromium stress is "electron transport process and cytochrome oxidases", including cytochrome c oxidases, raising the possibility that the cells can employ the cytochromes to reduce chromium. Analysis of the microbial community at the chromium contaminated DOE site at Hanford, WA revealed the presence of Caulobacter spp. As an oligotroph, Caulobacter can play a significant role in chromium reduction in the environment where the nutrients are limited. This result was confirmed by both 16S rDNA based microarray (Phylochip) as well as by MDA-based clone library data. Based on these results we further investigated the capability of this organism to reduce Cr(VI) using the well known model strain Caulobacter crescentus CB15N. Preliminary cell suspension experiments were set up with glucose as the electron donor and Cr(VI) as the electron acceptor in phosphate based M2 salts buffer. After 22 hours almost 27% of Cr(VI) was reduced in the incubations containing active cells relative to the controls containing heat killed cells. Also, in another set of controls with no electron acceptor added, cells showed no increase in cell density during that time demonstrating that the reduction of Cr(VI) by cells of Caulobacter was due to biological activity. Future experiments will investigate the components

  15. Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance

    OpenAIRE

    Joydeep Das; Min-Hee Kang; Eunsu Kim; Deug-Nam Kwon; Yun-Jung Choi; Jin-Hoi Kim

    2015-01-01

    Hexavalent chromium [Cr(VI)], an environmental toxicant, causes severe male reproductive abnormalities. However, the actual mechanisms of toxicity are not clearly understood and have not been studied in detail. The present in vitro study aimed to investigate the mechanism of reproductive toxicity of Cr(VI) in male somatic cells (mouse TM3 Leydig cells and TM4 Sertoli cells) and spermatogonial stem cells (SSCs) because damage to or dysfunction of these cells can directly affect spermatogenesis...

  16. Application of NAA Method to Study Chromium Uptake by Arthrobacter oxydans

    CERN Document Server

    Tsibakhashvili, N Ya; Kalabegishvili, T L; Kirkesali, E I; Frontasyeva, M V; Pomyakushina, E V; Pavlov, S S

    2002-01-01

    To study chromium uptake by Arthrobacter oxydans (Cr(VI)-reducer bacteria isolated from Columbia basalt rocks, USA) instrumental neutron activation analysis method was applied. It was established that chromate accumulation is dose-dependent and it is more intesive in the interval of concentrations of Cr(VI) (10-50 mg/l). At low concentrations of Cr(VI) (up to 50 mg/l) the most intensive formation of Cr(V) was also found (using ESR method). Besides, it was estimated that reduction from Cr(VI) to Cr(V) is faster process than the uptake of Cr(VI). According to ENAA measurements Cr(III), in constant to Cr(VI), is not accumulated in Arthrobacter oxydans cells up to concentration of 200 mg/l. Using epithermal neutron activation analysis the background levels of 17 major, minor and trace elements were determined in Arthrobacter oxydans.

  17. Removal of hexavalent chromium from aqueous solution by calcined Zn/Al-LDHs.

    Science.gov (United States)

    Yang, Hui-Duo; Zhao, Yun-Peng; Li, Shi-Feng; Fan, Xing; Wei, Xian-Yong; Zong, Zhi-Min

    2016-01-01

    In this study, Zn/Al-layered double hydroxides (Zn/Al-LDHs) were synthesized by a co-precipitation method and characterized with X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Then the hexavalent chromium Cr(VI) adsorption experiments on calcined Zn/Al-LDHs were carried out to analyze the effects of pH, temperature, adsorption time, initial Cr(VI) concentration and adsorbent dosage on the removal of Cr(VI) from aqueous solutions. The maximum adsorption capacity for Cr(VI) on calcined Zn/Al-LDHs under optimal conditions was found to be over 120 mg/g. The kinetic and isotherm of Cr(VI) adsorption on calcined Zn/Al-LDHs can be described with the pseudo-second-order kinetic model and Langmuir isotherm, respectively. PMID:27387001

  18. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds.

    Science.gov (United States)

    Agarwal, G S; Bhuptawat, Hitendra Kumar; Chaudhari, Sanjeev

    2006-05-01

    The effectiveness of low cost agro-based materials namely, Tamarindus indica seed (TS), crushed coconut shell (CS), almond shell (AS), ground nut shell (GS) and walnut shell (WS) were evaluated for Cr(VI) removal. Batch test indicated that hexavalent chromium sorption capacity (q(e)) followed the sequence q(e)(TS) > q(e)(WS) > q(e)(AS) > q(e)(GS) > q(e)(CS). Due to high sorptive capacity, tamarind seed was selected for detailed sorption studies. Sorption kinetic data followed first order reversible kinetic fit model for all the sorbents. The equilibrium conditions were achieved within 150 min under the mixing conditions employed. Sorption equilibria exhibited better fit to Freundlich isotherms (R>0.92) than Langmuir isotherm (R approximately = 0.87). Hexavalent chromium sorption by TS decreased with increase in pH, and slightly reduced with increase in ionic strength. Cr(VI) removal by TS seems to be mainly by chemisorption. Desorption of Cr(VI) from Cr(VI) laden TS was quite less by distilled water and HCl. Whereas with NaOH, maximum desorption achieved was about 15.3%. When TS was used in downflow column mode, Cr(VI) removal was quite good but head loss increased as the run progressed and was stopped after 200 h.

  19. Assessment of the removal mechanism of hexavalent chromium from aqueous solutions by olive stone.

    Science.gov (United States)

    Martín-Lara, María Ángeles; Calero de Hoces, Mónica; Ronda Gálvez, Alicia; Pérez Muñoz, Antonio; Trujillo Miranda, Ma Carmen

    2016-01-01

    The objectives of this study were to study the removal mechanism of Cr(VI) by natural olive stone (OS) and to present a sequential-batch process for the removal of total chromium (original Cr(VI) and Cr(III) derived from reduction of Cr(VI) during biosorption at acidic conditions). First, experiments were conducted varying pH from 1 to 4, and showed that a combined effect of biosorption and reduction is involved in the Cr(VI) removal. Then, X-ray photoelectron spectroscopy and desorption tests were employed to verify the oxidation state of the chromium bound to OS and to elucidate the removal mechanism of Cr(VI) by this material. The goal of these tests was to confirm that Cr(III) is the species mainly absorbed by OS. Finally, the possibility of total chromium removal by biosorption in a sequential-batch process was analyzed. In the first stage, 96.38% of Cr(VI) is removed by OS and reduced to Cr(III). In the second stage, approximately 31% of the total Cr concentration was removed. However, the Cr(III) released in the first stage is not completely removed, and it could suggest that the Cr(III) could be in a hydrated compound or a complex, which could be more difficult to remove under these conditions. PMID:27232404

  20. Inhibition of nitrate reduction by chromium (VI) in anaerobic soil microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Kourtev, P. S.; Nakatsu, C. H.; Konopka, Allan

    2009-10-01

    Chromium (VI) is often found as a co-contaminant at sites polluted with organic compounds. We used microcosms amended with glucose or protein, nitrate and increasing concentrations of chromium to study nitrate reduction in Cr(VI) polluted soils. Organic carbon stimulated bacterial activity, but the addition of Cr(VI) caused a lag and then slower rates 5 of CO2 accumulation. Nitrate reduction only occurred after Cr(VI) had been reduced. Bacterial activity was again inhibited when Cr(VI) was added a second time; thus not all Cr-sensitive bacteria were removed in the first phase. Glucose and protein selected for relatively similar bacterial communities, as assayed by PCR-DGGE of the 16S rRNA gene; this selection was modified by the addition of 10 Cr(VI). Cr-resistant bacteria isolated from microcosms were closely related to members of Bacillus, Enterococcus and Propionibacterium sp. Our results indicate that carbon utilization and nitrate reduction in these soils in the presence of Cr(VI) are contingent upon the reduction of the added heavy metal by a limited subset of the bacterial community. The amount of Cr(VI) required to inhibit nitrate reduction was 10-fold less than for aerobic catabolism of the same 15 substrate. We hypothesize that the resistance level of a microbial process is directly related to the diversity of microbes capable of conducting it.

  1. Selective Chromium(VI) Ligands Identified Using Combinatorial Peptoid Libraries

    Science.gov (United States)

    Knight, Abigail S.; Zhou, Effie Y.; Pelton, Jeffrey G.; Francis, Matthew B.

    2013-01-01

    Hexavalent chromium (Cr(VI)) is a world-wide water contaminant that is currently without cost-effective and efficient remediation strategies. This is in part due to a lack of ligands that can bind it amid an excess of innocuous ions in aqueous solution. We present herein the design and application of a peptoid-based library of ligand candidates for toxic metal ions. A selective screening process was used to identify members of the library that can bind to Cr(VI) species at neutral pH and in the presence of a large excess of spectator ions. Eleven sequences were identified, and their affinities were compared using titrations monitored with UV-Vis spectroscopy. To identify the interactions involved in coordination and specificity, we evaluated the effects of sequence substitutions and backbone variation in the highest affinity structure. Additional characterization of the complex formed between this sequence and Cr(VI) was performed using NMR spectroscopy. To evaluate the ability of the developed sequences to remediate contaminated solutions, the structures were synthesized on a solid-phase resin and incubated with environmental water samples that contained simulated levels of chromium contamination. The synthetic structures demonstrated the ability to reduce the amount of toxic chromium to levels within the range of the EPA contamination guidelines. In addition to providing some of the first selective ligands for Cr(VI), these studies highlight the promise of peptoid sequences as easily-prepared components of environmental remediation materials. PMID:24195610

  2. Optimizing the application of magnetic nanoparticles in Cr(VI) removal

    Science.gov (United States)

    Simeonidis, Konstantinos; Kaprara, Efthymia; Mitrakas, Manassis; Tziomaki, Magdalini; Angelakeris, Mavroidis; Vourlias, Georgios; Andritsos, Nikolaos

    2013-04-01

    The presence of heavy metals in aqueous systems is an intense health and environmental problem as implied by their harmful effects on human and other life forms. Among them, chromium is considered as an acutely hazardous compound contaminating the surface water from industrial wastes or entering the groundwater, the major source of drinking water, by leaching of chromite rocks. Chromium occurs in two stable oxidation states, Cr(III) and Cr(VI), with the hexavalent form being much more soluble and mobile in water having the ability to enter easily into living tissues or cells and thus become more toxic. Despite the established risks from Cr(VI)-containing water consumption and the increasing number of incidents, the E.U. tolerance limit for total chromium in potable water still stands at 50 μg/L. However, in the last years a worldwide debate concerning the establishment of a separate and very strict limit for the hexavalent form takes place. In practice, Cr(VI) is usually removed from water by various methods such as chemical coagulation/filtration, ion exchange, reverse osmosis and adsorption. Adsorption is considered as the simplest method which may become very effective if the process is facilitated by the incorporation of a Cr(VI) to Cr(III) reduction stage. This work studies the potential of using magnetic nanoparticles as adsorbing agents for Cr(VI) removal at the concentration levels met in contaminated drinking water. A variety of nanoparticles consisting of ferrites MFe2O4 (M=Fe, Co, Ni, Cu, Mn, Mg, Zn) were prepared by precipitating the corresponding bivalent or trivalent sulfate salts under controlled acidity and temperature. Electron microscopy and X-ray diffraction techniques were used to verify their crystal structure and determine the morphological characteristics. The mean particle size of the samples was found in the range 10-50 nm. Batch Cr(VI) removal tests were performed in aqueous nanoparticles dispersions showing the efficiency of ferrite

  3. Ultrasensitive photoelectrochemical determination of chromium(VI) in water samples by ion-imprinted/formate anion-incorporated graphitic carbon nitride nanostructured hybrid.

    Science.gov (United States)

    Fang, Tian; Yang, Xiaomin; Zhang, Lizhi; Gong, Jingming

    2016-07-15

    A rapid and highly sensitive photoelectrochemical (PEC) method has been proposed for the determination of trace amounts of chromium in water samples under visible-light irradiation. Here, a unique nanostructured hybrid of formate anion incorporated graphitic carbon nitride (F-g-C3N4) is smartly integrated with a Cr(VI) ion-imprinted polymer (IIP) as a photoactive electrode (denoted as IIP@F-g-C3N4). The nanohybrid of F-g-C3N4 exhibits an enhanced charge separation with substantially improved PEC responses versus g-C3N4. The newly designed IIP@F-g-C3N4 PEC sensor exhibits high sensitivity and selectivity for the determination of Cr(VI) because it offers efficient photogenerated electron reduction toward Cr(VI). The PEC analysis is highly linear over Cr(VI) concentrations ranging from 0.01 to 100.00ppb with a detection limit of 0.006ppb (S/N=3). Our approach can be used to detect Cr(VI), Cr(III) and the total chromium level in aqueous solution through oxidation of Cr(III) to Cr(VI) and the determination of the total chromium as Cr(VI). In practical applications, this low-cost and sensitive assay has been successfully applied for speciation determination of chromium in environmental water samples.

  4. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sisman, S. Lara [Univ. of Virginia, Charlottesville, VA (United States); Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  5. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    International Nuclear Information System (INIS)

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  6. Development of iron-based nanoparticles for Cr(VI removal from drinking water

    Directory of Open Access Journals (Sweden)

    Vourlias G.

    2013-01-01

    Full Text Available A great deal of research over recent decades has been motivated by the requirement to lower the concentration of chromium in drinking water. This study has been conducted to determine the feasibility of iron-based nanoparticles for chromium removal from contaminated water. Single Fe, Fe3O4 and binary Fe/Fe3O4 nanoparticles were grown at the 45-80 nm size range using the solar physical vapor deposition technique and tested as potential hexavalent chromium removing agents from aqueous solutions. Due to their higher electron donation ability compared to the Fe3O4 ones, single Fe nanoparticles exhibited the highest Cr(VI removal capacity of more than 3 µg/mg while maintaining a residual concentration 50 µg/L, equal to the regulation limit for drinking water. In combination to their facile and fast magnetic separation, the applicability of the studied particles in water treatment facilities should be considered.

  7. Development of iron-based nanoparticles for Cr(VI) removal from drinking water

    Science.gov (United States)

    Simeonidis, K.; Tziomaki, M.; Angelakeris, M.; Martinez-Boubeta, C.; Balcells, Ll.; Monty, C.; Mitrakas, M.; Vourlias, G.; Andritsos, N.

    2013-01-01

    A great deal of research over recent decades has been motivated by the requirement to lower the concentration of chromium in drinking water. This study has been conducted to determine the feasibility of iron-based nanoparticles for chromium removal from contaminated water. Single Fe, Fe3O4 and binary Fe/Fe3O4 nanoparticles were grown at the 45-80 nm size range using the solar physical vapor deposition technique and tested as potential hexavalent chromium removing agents from aqueous solutions. Due to their higher electron donation ability compared to the Fe3O4 ones, single Fe nanoparticles exhibited the highest Cr(VI) removal capacity of more than 3 µg/mg while maintaining a residual concentration 50 µg/L, equal to the regulation limit for drinking water. In combination to their facile and fast magnetic separation, the applicability of the studied particles in water treatment facilities should be considered.

  8. Induction of micronuclei and nuclear abnormalities in Oreochromis niloticus following exposure to petroleum refinery and chromium processing plant effluents

    Energy Technology Data Exchange (ETDEWEB)

    Cavas, Tolga [Mersin University, Faculty of Sciences and Letters, Department of Biology, 33342 Mersin (Turkey)]. E-mail: tcavas@mersin.edu.tr; Ergene-Goezuekara, Serap [Mersin University, Faculty of Sciences and Letters, Department of Biology, 33342 Mersin (Turkey)

    2005-09-10

    The genotoxic effects of effluents from a petroleum refinery and a chromium processing plant were evaluated in Oreochromis niloticus (Pisces: Perciformes) using the micronucleus test. Fish were exposed to different concentrations (5, 10 and 20%, v/v) of the effluents for 3, 6 and 9 days. Micronucleus analyses were carried out on gill epithelial cells and peripheral blood erythrocytes. Nuclear abnormalities other than micronuclei, considered as genetic damage indicators, were also evaluated on erythrocytes. Cyclophosphamide at a single dose of 4 mg/L was used as a positive control. The results of this study showed that both effluents had genotoxic potential. On the other hand, the level of genetic damage induced by petroleum refinery effluent was considerably higher than that of chromium processing plant effluent. Our results further indicate that nuclear abnormalities other than micronuclei, such as blebbed and lobed nuclei, may also be used as indicators of genotoxic damage.

  9. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Gonzalez, J. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Peralta-Videa, J.R. [Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States); Rodriguez, E. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Ramirez, S.L. [Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States); Gardea-Torresdey, J.L. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States) and Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States)]. E-mail: jgardea@utep.edu

    2005-04-15

    The temperature dependence of the Cr(VI) bioadsorption and its possible reduction to Cr(III) by Agave lechuguilla biomass were studied. The experimental data obtained in batch experiments at different temperatures were fitted to the Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model. The adsorption equilibrium data fitted well with the Freundlich model. The average model parameters calculated from Freundlich's isotherms (adsorption capacity K{sub F} = 4 . 10{sup -2} mol . g{sup -1} and an average adsorption intensity value n = 13.07) showed that A. lechuguilla can be considered as an effective biomaterial for Cr(VI) removal from aqueous solution. Thermodynamic parameters ({delta}G{sup .}, {delta}H{sup .}, and {delta}S{sup .}) for Cr(VI) adsorption determined in the temperature range from (283 to 313) K suggest that a portion of Cr(VI) may be bound to functional groups on the surface of the adsorbent and then reduced to Cr(III). Additionally, the parameters of the Dubinin-Radushkevick equation indicated that the sorption of chromium species onto lechuguilla biomass mainly proceeds through binding surface functional groups.

  10. An Evaluation of Welding Processes to Reduce Hexavalent Chromium Exposures and Reduce Costs by Using Better Welding Techniques

    OpenAIRE

    Keane, Michael J.

    2014-01-01

    A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) processes. Using a conical chamber, fumes were collected, and fume generation rates and hexavalent chr...

  11. Biosorption potency of Aspergillus niger for removal of chromium (VI).

    Science.gov (United States)

    Srivastava, Shaili; Thakur, Indu Shekhar

    2006-09-01

    Aspergillus niger isolated from soil and effluent of leather tanning mills had higher activity to remove chromium. The potency of Aspergillus niger was evaluated in shake flask culture by absorption of chromium at pH 6 and temperature 30 degrees C. The results of the study indicated removal of more than 75% chromium by Aspergillus niger determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometry after 7 days. Study of microbial Cr(VI) reduction and identification of reduction intermediates has been hindered by the lack of analytical techniques that can identify the oxidation state with subcellular spatial resolution. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), which indicated an accumulation of chromium in the fungal mycelium. PMID:16874547

  12. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens

    Directory of Open Access Journals (Sweden)

    Thompson Vicki S

    2006-01-01

    Full Text Available Abstract Background Chromium is a transition metal most commonly found in the environment in its trivalent [Cr(III] and hexavalent [Cr(VI] forms. The EPA maximum total chromium contaminant level for drinking water is 0.1 mg/l (0.1 ppm. Many water sources, especially underground sources, are at low temperatures (less than or equal to 15 Centigrade year round. It is important to evaluate the possibility of microbial remediation of Cr(VI contamination using microorganisms adapted to these low temperatures (psychrophiles. Results Core samples obtained from a Cr(VI contaminated aquifer at the Hanford facility in Washington were enriched in Vogel Bonner medium at 10 Centigrade with 0, 25, 50, 100, 200, 400 and 1000 mg/l Cr(VI. The extent of Cr(VI reduction was evaluated using the diphenyl carbazide assay. Resistance to Cr(VI up to and including 1000 mg/l Cr(VI was observed in the consortium experiments. Reduction was slow or not observed at and above 100 mg/l Cr(VI using the enrichment consortium. Average time to complete reduction of Cr(VI in the 30 and 60 mg/l Cr(VI cultures of the consortium was 8 and 17 days, respectively at 10 Centigrade. Lyophilized consortium cells did not demonstrate adsorption of Cr(VI over a 24 hour period. Successful isolation of a Cr(VI reducing organism (designated P4 from the consortium was confirmed by 16S rDNA amplification and sequencing. Average time to complete reduction of Cr(VI at 10 Centigrade in the 25 and 50 mg/l Cr(VI cultures of the isolate P4 was 3 and 5 days, respectively. The 16S rDNA sequence from isolate P4 identified this organism as a strain of Arthrobacter aurescens, a species that has not previously been shown to be capable of low temperature Cr(VI reduction. Conclusion A. aurescens, indigenous to the subsurface, has the potential to be a predominant metal reducer in enhanced, in situ subsurface bioremediation efforts involving Cr(VI and possibly other heavy metals and radionuclides.

  13. Effects of a rhizobacterium on the growth of and chromium remediation by Lemna minor.

    Science.gov (United States)

    Tang, Jie; Zhang, Ying; Cui, Yan; Ma, Jiong

    2015-07-01

    Duckweed has shown great potential for both energy and environmental applications, particularly in wastewater treatment and fuel ethanol production. A rhizobacterium, Exiguobacterium sp. MH3, has been reported to associate with the duckweed Lemna minor for symbiotic growth. The aim of this work is to study the effects of rhizobacterium MH3 on L. minor growth and chromium (Cr) remediation. It appeared to have a synergism between the rhizobacterium MH3 and duckweed; the presence of strain MH3 promoted the growth of duckweeds by increasing both the frond number and dry weight of duckweed by more than 30%, while duckweed in turn provided essential carbon source and energy for the growth of rhizobacterium MH3. Under Cr(VI) exposure, particularly at higher Cr(VI) concentrations, Exiguobacterium sp. MH3 significantly alleviated the harmful effects of the stress on the duckweed by promoting duckweed growth and preventing duckweed from excessive uptake of Cr. Potential mechanisms were also discussed in light of the genome sequence of strain MH3, and it was speculated that siderophores and indole-3-acetic acid (IAA) secreted by strain MH3 might contribute to promoting duckweed growth. PMID:25631740

  14. Inhalation cancer risk assessment of hexavalent chromium based on updated mortality for Painesville chromate production workers

    Science.gov (United States)

    Proctor, Deborah M; Suh, Mina; Mittal, Liz; Hirsch, Shawn; Valdes Salgado, Raydel; Bartlett, Chris; Van Landingham, Cynthia; Rohr, Annette; Crump, Kenny

    2016-01-01

    The exposure-response for hexavalent chromium (Cr(VI))-induced lung cancer among workers of the Painesville Ohio chromate production facility has been used internationally for quantitative risk assessment of environmental and occupational exposures to airborne Cr(VI). We updated the mortality of 714 Painesville workers (including 198 short-term workers) through December 2011, reconstructed exposures, and conducted exposure-response modeling using Poisson and Cox regressions to provide quantitative lung cancer risk estimates. The average length of follow-up was 34.4 years with 24,535 person-years at risk. Lung cancer was significantly increased for the cohort (standardized mortality ratio (SMR)=186; 95% confidence interval (CI) 145–228), for those hired before 1959, those with >30-year tenure, and those with cumulative exposure >1.41 mg/m3-years or highest monthly exposures >0.26 mg/m3. Of the models assessed, the linear Cox model with unlagged cumulative exposure provided the best fit and was preferred. Smoking and age at hire were also significant predictors of lung cancer mortality. Adjusting for these variables, the occupational unit risk was 0.00166 (95% CI 0.000713–0.00349), and the environmental unit risk was 0.00832 (95% CI 0.00359–0.0174), which are 20% and 15% lower, respectively, than values developed in a previous study of this cohort. PMID:26669850

  15. A study of low-cost adsorbent materials for removing Cr(VI from aqueous waste effluent

    Directory of Open Access Journals (Sweden)

    Claudia Vargas-Niño

    2011-01-01

    Full Text Available  The present paper shows very high potential for two types of solid (a commercial alumina and material obtained by composting, i.e. matured compost on Cr(VI adsorption/elimination in aqueous solution using a concentration range close to those previously detected in waste-water from Colombian industries. Both had important properties for eliminating Cr(VI, the compost being more important as it represents low-cost material. Optimal conditions for chromium adsorption on alumina and compost were established. Initial Cr(VI alumina concentration was 10 mgL-1, with 100 mL/g volume of solution per adsorbent mass, pH=2.0, 1 hour equilibrium time and 150 rpm stirring. For compost, initial Cr(VI concentration was = 3 mg L-1, 50 mL/g volume of solution per adsorbent mass, pH=2.5, 3 hour equilibrium time and 150 rpm stirring. The experiments showed that compost adsorption properties could be enhanced by adding small quantities of alumina. Compost could thus be chosen as a promising material for use in bioremediation chromium-containing waste water in a management programme for using solid waste in for minimising environmental impact.  

  16. Improvement on Simultaneous Determination of Cr(III) and Cr(VI) by Capillary Electrophoresis and Chemiluminescence Detection

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A sensitive method for the simultaneous determination of Cr(III) and Cr(VI) using in-capillary reaction capillary electrophoresis separation and chemiluminescence detection was developed. The procedures were designed as follows: The sample, hydrochloric acid and sodium hydrogen sulfite solution segments were injected sequentially into the capillary. The reaction of Cr(VI) reduced to Cr(III) by HSO3- occurred inside the capillary after applying the running voltage. According to the migration time difference of both Cr(III) ions moving towards to the cathode (detection end), they could be separated and determined. The limits of detection for chromium(III) and chromium(VI) (S/N = 3) were 6.0(10-13 mol/L (12 zmol) and 1.9(10-11 mol/L (380 zmol), respectively.

  17. Use of immobilized tannin adsorbent for removal of Cr(VI) from water

    International Nuclear Information System (INIS)

    Adsorption of Cr(VI) by two tannin sorbents is evaluated using radiotracers. Evaluation of the sorption process shows that the Cr(VI) - tannin molecule binding is the principal responsible for chromium adsorption. High sorption capacities were registered for both sorbents at pH 2. For Eucaliptus Saligna Sm sorbent (ETS) sorption capacity is 0.92±0.03 mmol/g and for Lysiloma latisiliqua sorbent (LTS) is 3.8±0.3 mmol/g. Influence of different ions present in water is examined. High sorption capacity is reported for LTS in sea and tap water samples. It represents 90-94% of adsorption in distillated water. (author)

  18. Reduction of Cr(VI) to Cr(III) using silicon nanowire arrays under visible light irradiation.

    Science.gov (United States)

    Fellahi, Ouarda; Barras, Alexandre; Pan, Guo-Hui; Coffinier, Yannick; Hadjersi, Toufik; Maamache, Mustapha; Szunerits, Sabine; Boukherroub, Rabah

    2016-03-01

    We report an efficient visible light-induced reduction of hexavalent chromium Cr(VI) to trivalent Cr(III) by direct illumination of an aqueous solution of potassium dichromate (K2Cr2O7) in the presence of hydrogenated silicon nanowires (H-SiNWs) or silicon nanowires decorated with copper nanoparticles (Cu NPs-SiNWs) as photocatalyst. The SiNW arrays investigated in this study were prepared by chemical etching of crystalline silicon in HF/AgNO3 aqueous solution. The Cu NPs were deposited on SiNW arrays via electroless deposition technique. Visible light irradiation of an aqueous solution of K2Cr2O7 (10(-4)M) in presence of H-SiNWs showed that these substrates were not efficient for Cr(VI) reduction. The reduction efficiency achieved was less than 10% after 120 min irradiation at λ>420 nm. Addition of organic acids such as citric or adipic acid in the solution accelerated Cr(VI) reduction in a concentration-dependent manner. Interestingly, Cu NPs-SiNWs was found to be a very efficient interface for the reduction of Cr(VI) to Cr(III) in absence of organic acids. Almost a full reduction of Cr(VI) was achieved by direct visible light irradiation for 140 min using this photocatalyst.

  19. Steel dust in the New York City subway system as a source of manganese, chromium, and iron exposures for transit workers.

    Science.gov (United States)

    Chillrud, Steven N; Grass, David; Ross, James M; Coulibaly, Drissa; Slavkovich, Vesna; Epstein, David; Sax, Sonja N; Pederson, Dee; Johnson, David; Spengler, John D; Kinney, Patrick L; Simpson, H James; Brandt-Rauf, Paul

    2005-03-01

    The United States Clean Air Act Amendments of 1990 reflected increasing concern about potential effects of low-level airborne metal exposure on a wide array of illnesses. Here we summarize results demonstrating that the New York City (NYC) subway system provides an important microenvironment for metal exposures for NYC commuters and subway workers and also describe an ongoing pilot study of NYC transit workers' exposure to steel dust. Results from the TEACH (Toxic Exposure Assessment, a Columbia and Harvard) study in 1999 of 41 high-school students strongly suggest that elevated levels of iron, manganese, and chromium in personal air samples were due to exposure to steel dust in the NYC subway. Airborne concentrations of these three metals associated with fine particulate matter were observed to be more than 100 times greater in the subway environment than in home indoor or outdoor settings in NYC. While there are currently no known health effects at the airborne levels observed in the subway system, the primary aim of the ongoing pilot study is to ascertain whether the levels of these metals in the subway air affect concentrations of these metals or related metabolites in the blood or urine of exposed transit workers, who due to their job activities could plausibly have appreciably higher exposures than typical commuters. The study design involves recruitment of 40 transit workers representing a large range in expected exposures to steel dust, the collection of personal air samples of fine particulate matter, and the collection of blood and urine samples from each monitored transit worker. PMID:15738337

  20. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Hedberg, Yolanda S., E-mail: yolanda@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, SE-10044 Stockholm (Sweden); Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177 Stockholm (Sweden); Lidén, Carola, E-mail: carola.liden@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177 Stockholm (Sweden); Odnevall Wallinder, Inger, E-mail: ingero@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, SE-10044 Stockholm (Sweden)

    2014-09-15

    Graphical abstract: - Highlights: • Released reducing/complexing leather-specific species can reduce released Cr(VI). • No co-released species enable the formation of Cr(VI) in solution. • The major Cr species released from leather in phosphate buffer was Cr(III) (>82%). • No Cr(VI) was released into artificial sweat. - Abstract: About 1–3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH < 6.5) and phosphate buffer (PB, pH 7.5–8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB)

  1. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI)

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Released reducing/complexing leather-specific species can reduce released Cr(VI). • No co-released species enable the formation of Cr(VI) in solution. • The major Cr species released from leather in phosphate buffer was Cr(III) (>82%). • No Cr(VI) was released into artificial sweat. - Abstract: About 1–3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH < 6.5) and phosphate buffer (PB, pH 7.5–8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB)

  2. Hexavalent chromium reduction by chromate-resistant haloalkaliphilic Halomonas sp. M-Cr newly isolated from tannery effluent

    OpenAIRE

    Mabrouk, Mona E.M.; Arayes, Mervat A.; Sabry, Soraya A.

    2014-01-01

    The current study aimed to isolate and characterize a chromate-resistant bacterium from tannery effluent, able to reduce Cr(VI) aerobically at high pH and salinity. Environmental contamination by hexavalent chromium, Cr(VI), presents a serious public health problem. Enrichment led to the isolation of 12 bacteria displaying different degrees of chromate reduction. Phenotypic characterization and phylogenetic analysis based on 16S rDNA sequence comparison indicated that the most potent strain b...

  3. Measurement of Soluble and Total Hexavalent Chromium in the Ambient Airborne Particles in New Jersey

    Science.gov (United States)

    Huang, Lihui; Yu, Chang Ho; Hopke, Philip K.; Lioy, Paul J.; Buckley, Brian T.; Shin, Jin Young; Fan, Zhihua (Tina)

    2015-01-01

    Hexavalent chromium (Cr(VI)) in ambient airborne particulate matter (PM) is a known pulmonary carcinogen and may have both soluble and insoluble forms. The sum of the two forms is defined as total Cr(VI). Currently, there were no methods suitable for large-scale monitoring of total Cr(VI) in ambient PM. This study developed a method to measure total Cr(VI) in ambient PM. This method includes PM collection using a Teflon filter, microwave extraction with 3% Na2CO3-2% NaOH at 95°C for 60 minutes, and Cr(VI) analysis by 1,5-diphenylcarbazide colorimetry at 540 nm. The recoveries of total Cr(VI) were 119.5 ± 10.4% and 106.3 ± 16.7% for the Cr(VI)-certified reference materials, SQC 012 and SRM 2700, respectively. Total Cr(VI) in the reference urban PM (NIST 1648a) was 26.0 ± 3.1 mg/kg (%CV = 11.9%) determined by this method. The method detection limit was 0.33 ng/m3. This method and the one previously developed to measure ambient Cr(VI), which is soluble in pH ~9.0 aqueous solution, were applied to measure Cr(VI) in ambient PM10 collected from three urban areas and one suburban area in New Jersey. The total Cr(VI) concentrations were 1.05–1.41 ng/m3 in the winter and 0.99–1.56 ng/m3 in the summer. The soluble Cr(VI) concentrations were 0.03–0.19 ng/m3 in the winter and 0.12–0.37 ng/m3 in the summer. The summer mean ratios of soluble to total Cr(VI) were 14.3–43.7%, significantly higher than 4.2–14.4% in the winter. The winter concentrations of soluble and total Cr(VI) in the suburban area were significantly lower than in the three urban areas. The results suggested that formation of Cr(VI) via atmospheric chemistry may contribute to the higher soluble Cr(VI) concentrations in the summer. PMID:26120324

  4. Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Almond, P. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stefanko, D. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-03-01

    (III) in solution) performed on depth discrete samples could not be correlated with the amount of chromium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium (i.e., effective Cr oxidation front). Exposure to oxygen (air or oxygen dissolved in water) results in the release of chromium through oxidation of Cr(III) to highly soluble chromate, Cr(VI). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) in the presence of oxygen. Consequently, this method for determining reduction capacity may not be a good indicator of the effective contaminant oxidation rate in a relatively porous solid (40 to 60 volume percent porosity). The chromium extracted in depth discrete samples ranged from a maximum of about 5.8 % at about 5 mm (118 day exposure) to about 4 % at about 10 mm (302 day exposure). The use of reduction capacity as an indicator of long-term performance requires further investigation. The carbonation front was also estimated to have advanced to at least 28 mm in 302 days based on visual observation of gas evolution during acid addition during the reduction capacity measurements. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance and will support conceptual model development.

  5. The applications of populus fiber in removal of Cr(VI) from aqueous solution

    Science.gov (United States)

    Li, Miaomiao; Gong, Yumei; Lyu, Aichao; Liu, Yuanfa; Zhang, Hong

    2016-10-01

    The surface modification of natural materials to be applied in removal of Cr(VI) from aqueous solutions has attracted much attention. A natural sorbent for Cr(VI) based on natural populus fibers (PF) is prepared by transforming the cyano groups (AN) in polyacrylonitriles (PAN) grafted from PF into amidoxime groups (AO), which has strong ability to attract and chelate heavy metal ions. The prepared sorbent is characterized by Fourier Transform Infrared Spectra (FT-IR), thermogravimetric analysis (TGA), solid-state nuclear magnetic resonance (13C NMR) and scanning electron microscope (SEM). As potassium dichromate solution (K2Cr2O7) is used as a target solution for detecting adsorption capacity of the sorbent, the adsorption kinetics of the sorbent for chromiun is consistent with the pseudo-second-order kinetic model by analyzing the adsorption amount as a function of the sorbent dispersed duration in solution at pH = 2. The expected adsorption mechanism is that the Cr(VI) in anionic ions Cr2O72- and HCrO4- are adsorbed through electrostatic attraction but when Cr(VI) is reduced to Cr(III) by AO, the electronegative nitrogen and oxygen in AO chelate it through coordination bond. The as-prepared PF derivant with high adsorption efficiency of chromium 180.5 mg/g (3.47 mmol/g), low cost, reusability and greenly preparation process suggests that the development of natural PF as a sorbent in removal of Cr(VI) from aqueous solutions is a destined significant approach.

  6. Investigations of HRC®-Stimulated Bioreduction of Cr(VI) at Hanford 100H

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Hazen; B. Faybishenko; D. Joyner; S. Borglin; E.Brodie; S. Hubbard; K. Williams; J. Peterson; J. Wan; T. Tokunaga; Long, P.E.; Newcomer, D.; Koenigsberg, S.; Willet, A.

    2005-04-18

    Hypothesis: Lactate (Hydrogen Release Compound-HRC{trademark}) injection into chromium contaminated groundwater through an injection well will cause indirect or direct bioreduction of chromate [Cr(VI)] and precipitation of insoluble species of [Cr(III)] on soil particles, probably catalyzed at oxide surfaces, at the field scale. Objective: Assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford Site's 100-H Area field site. Types of Research: A three-well system (injection well and upgradient and downgradient monitoring wells) was used for conducting the in situ biostimulation and monitoring. To assess the pre- and post-injection test groundwater conditions, we used an integrated monitoring approach, involving hydraulic, geochemical, microbial, and geophysical techniques and analytical methods, as well as conducted five Br-tracer injection tests and four pumping tests (concurrently with the Br-tracer tests). Groundwater biostimulation was conducted by injection of 40 lbs of {sup 13}C-labeled HRC into the injection well (over the depth interval from 44-50 ft) on 8/3/2004, followed by low-flow pumping (1.2 to 2.5 l/min) through the downgradient well (to ensure capture of groundwater flow lines passing through the injection well) for 27 days. Main Results: Although the total microbial population in sediments is relatively low (<10{sup 5} cells g-1) under background conditions, which is likely insufficient for direct enzymatic Cr(VI) reduction, several types of bacteria, e.g., Bacillus/Arthrobacter and Geobacter, are present in the Hanford sediments, which are known to reduce or sorb hexavalent chromium. The HRC injection stimulated microbial cell counts to reach the maximum of 2 x 10{sup 7} cells g{sup -1} 13-17 days after the injection, and generated highly reducing conditions. Geochemical and isotopic observations confirmed microbial metabolism of HRC. The

  7. Investigations of HRC®-Stimulated Bioreduction of Cr(VI) at Hanford 100H

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Faybishenko, B.; Joyner, D.; Borglin, S.; Brodie, E.; Hubbard, S.; Williams, K.; Peterson, J.; Wan, J.; Tokunaga, T.; Firestone, M.; Long, P.E.; Resch, C.T.; Cantrell, K.; Newcomer, D.; Koenigsberg, S.; Willet, A.

    2006-04-05

    Hypothesis: Lactate (Hydrogen Release Compound-HRC{trademark}) injection into chromium contaminated groundwater through an injection well will cause indirect or direct bioreduction of chromate [Cr(VI)] and precipitation of insoluble species of [Cr(III)] on soil particles, probably catalyzed at oxide surfaces, at the field scale. Objective: Assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford Site's 100-H Area field site. Types of Research: A three-well system (injection well and upgradient and downgradient monitoring wells) was used for conducting the in situ biostimulation and monitoring. To assess the pre- and post-injection test groundwater conditions, we used an integrated monitoring approach, involving hydraulic, geochemical, microbial, and geophysical techniques and analytical methods, as well as conducted five Br-tracer injection tests and four pumping tests (concurrently with the Br-tracer tests). Groundwater biostimulation was conducted by injection of 40 lbs of {sup 13}C-labeled HRC into the injection well (over the depth interval from 44-50 ft) on 8/3/2004, followed by low-flow pumping (1.2 to 2.5 l/min) through the downgradient well (to ensure capture of groundwater flow lines passing through the injection well) for 27 days. Main Results: Although the total microbial population in sediments is relatively low (<10{sup 5} cells g{sup -1}) under background conditions, which is likely insufficient for direct enzymatic Cr(VI) reduction, several types of bacteria, e.g., Bacillus/Arthrobacter and Geobacter, are present in the Hanford sediments, which are known to reduce or sorb hexavalent chromium. The HRC injection stimulated microbial cell counts to reach the maximum of 2 x 10{sup 7} cells g{sup -1} 13-17 days after the injection, and generated highly reducing conditions. Geochemical and isotopic observations confirmed microbial metabolism of HRC

  8. Chromium(VI) but not chromium(III) species decrease mitoxantrone affinity to DNA.

    Science.gov (United States)

    Nowicka, Anna M; Stojek, Zbigniew; Hepel, Maria

    2013-01-31

    Binding of mitoxantrone (MXT) to double-stranded DNA has been investigated as a model drug-DNA binding system to evaluate the effects of various forms of chromium on the binding properties. We have found that Cr(III), which binds strongly to DNA, does not affect the MXT affinity to DNA. In contrast, Cr(VI), in the form of chromate ions CrO(4)(2-), decreases the MXT affinity to DNA despite electrostatic repulsions with phosphate-deoxyribose chains of DNA. The MXT-DNA binding constant was found to decrease from (1.96 ± 0.005) × 10(5) to (0.77 ± 0.018) × 10(5) M(-1) for Cr(VI) concentration changing from 0 to 30 μM. The influence of Cr(VI) on MXT-DNA binding has been attributed to the oxidation of guanine residue, thus interrupting the intercalation of MXT into the DNA double helix at the preferential CpG intercalation site. This supposition is corroborated by the observed increase in the MXT binding site size from 2 bp (base pairs) to 4-6 bp in the presence of Cr(VI). The measurements of the MXT-DNA binding constant and the MXT binding site size on a DNA molecule have been carried out using spectroscopic, voltammetric, and nanogravimetric techniques, providing useful information on the mechanism of the interactions.

  9. Adsorption of Chromium(VI from Aqueous Solutions by Coffee Polyphenol-Formaldehyde/Acetaldehyde Resins

    Directory of Open Access Journals (Sweden)

    Khudbudin Mulani

    2013-01-01

    Full Text Available Removal of chromium(VI from wastewater is essential as it is toxic. Thus, removal of chromium(VI was performed using coffee polyphenol-formaldehyde/acetaldehyde resins as adsorbents. Adsorbent resins were prepared by condensation of decaffeinated coffee powder with formaldehyde/acetaldehyde and used for the removal of Cr(VI ions from aqueous solutions. A simple and sensitive solid phase extraction procedure was applied for the determination of chromium at trace levels by spectroscopic method using 1,5-diphenylcarbazide reagent. The adsorption of Cr(VI on the coffee polyphenol-formaldehyde/acetaldehyde resins was monitored by FTIR and EDX analysis. The metal adsorption parameters such as contact time, pH, Cr(VI ion concentration, and adsorbent dose were investigated. For Cr(VI, the maximum adsorption capacity of coffee polyphenol-formaldehyde resins was 98% at pH 2. The experimental results showed that Cr(VI bound strongly with coffee polyphenol-formaldehyde/acetaldehyde resins and utilization of resins could be improved greatly by reuse.

  10. Hydrophobic Poly(ionic liquid) for Highly Effective Separation of Methyl Blue and Chromium Ions from Water

    OpenAIRE

    Jie Kong; Hao Mi; Zhiguo Jiang

    2013-01-01

    The hydrophobic poly(ionic liquid) of poly(3-ethyl-1-vinylimidazolium bis(trifluoromethanesulfonyl)imide) (PVI-TFSI) containing imidazolium cations and bis(trifluoromethanesulfonyl)imide anions was synthesized for the separation of methyl blue and chromium ions [Cr(VI)] from water. The adsorption of methyl blue and Cr(VI) in PVI-TSFI/water system reached equilibrium stage within 60 min and 12 h, and the maximum adsorbed percentage for methyl blue and Cr(VI) was 97.6% and 98.0%, respectively. ...

  11. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters.

    Science.gov (United States)

    Henryk, Kołoczek; Jarosław, Chwastowski; Witold, Żukowski

    2016-01-01

    Batch adsorption experiments were performed for the removal of chromium (III) and chromium (VI) ions from aqueous solutions using Canadian peat and coconut fiber. The Langmuir model was used to describe the adsorption isotherm. The maximum adsorption for peat reached 18.75 mg/g for Cr(III) and 8.02 mg/g for Cr(VI), whereas the value for fiber was slightly higher and reached 19.21 mg/g for Cr(III) and 9.54 mg/g for Cr(VI). Both chromium forms could be easily eluted from the materials. The adsorption of chromium forms to organic matter could be explained in terms of formation of donor-acceptor chemical covalent bound with hydroxyl groups as ligands and chromium as the central atom in the formed complex. The chromate-reducing activities were monitored with the use of electron paramagnetic resonance spectroscopy. The results showed that both adsorption and reduction occurred simultaneously and the maximum adsorption capacity of hexavalent chromium being equal to 95% for fiber and 92% for peat was obtained at pH 1.5. The reduction of Cr(VI) in wastewaters began immediately and disappeared after 20 h. Both materials contained yeast and fungi species which can be responsible for reduction of chromium compounds, due to their enzymatic activity (Chwastowski and Koloczek (Acta Biochim Pol 60: 829-834, 2013)). The reduction of Cr(VI) is a two-phase process, the first phase being rapid and based on chemical reaction and the second phase having biological features. After the recovery step, both types of organic materials can be used again for chromium adsorption without any loss in the metal uptake. Both of the materials could be used as biofilters in the wastewater treatment plants.

  12. Electrodeposition of black chromium from CR(III) ionic liquid solution

    OpenAIRE

    Eugénio, S.; Rangel, C. M.; Vilar, Rui

    2009-01-01

    Black chromium is an important coating material used in solar thermal systems as a spectrally selective surface. This coating is usually obtained by electrodeposition from sulphate free chromium (VI) aqueous solutions which represent a health and environmental hazard due to the presence of Cr(VI), a known toxic and carcinogenic agent. Recent developments in green chemistry have shown that ionic liquids can be used as electrolytes, allowing the deposition of a wide range of materials with negl...

  13. Efficacy of Agricultural Wastes in the Removal of Hexavalent Chromium- A Review.

    OpenAIRE

    N Muthulakshmi Andal; S. Charulatha

    2013-01-01

    Hexavalent Chromium is a major pollutant released during several industrial operations. It is also reported as one of the metals known to be carcinogenic and has an adverse potential to modify the DNA transcription process. The removal of hexavalent chromium has been studied by various authors employing adsorbents developed from waste agro by-products to assess their adsorption characteristics. This paper focuses on the comparison of some agro based products in the removal of Cr(VI) ions. An ...

  14. Chromium-Induced Ultrastructural Changes and Oxidative Stress in Roots of Arabidopsis thaliana

    OpenAIRE

    Eleftheriou, Eleftherios P.; Adamakis, Ioannis-Dimosthenis S.; Emmanuel Panteris; Maria Fatsiou

    2015-01-01

    Chromium (Cr) is an abundant heavy metal in nature, toxic to living organisms. As it is widely used in industry and leather tanning, it may accumulate locally at high concentrations, raising concerns for human health hazards. Though Cr effects have extensively been investigated in animals and mammals, in plants they are poorly understood. The present study was then undertaken to determine the ultrastructural malformations induced by hexavalent chromium [Cr(VI)], the most toxic form provided a...

  15. Terrestrial and aquatic ecotoxicity assessment of Cr(VI) by the ReCiPe method calculation (LCIA): application on an old industrial contaminated site.

    Science.gov (United States)

    Adam, Véronique; Quaranta, Gaétana; Loyaux-Lawniczak, Stéphanie

    2013-05-01

    The most stable forms of chromium in the environment are chromium (III) and chromium (VI), the former being relatively immobile and necessary for organisms, and the latter being highly soluble and toxic. It is thus important to characterise ecotoxicological impacts of Cr(VI). However, there are still some important uncertainties in the calculation of ecotoxicological impacts of heavy metals in the LCIA global approach. The aim of this paper is to understand how the spatial and dynamic characterization of life cycle inventory (LCI) data can be exploited in life cycle impact assessment and particularly for the evaluation of the aquatic and terrestrial ecotoxicity of Cr(VI). To quantify these impacts, we studied an industrial waste landfill in the North of France that was contaminated with chromium. On the polluted area, the aquatic contamination is due to the slag heap as well as to chromium spots in soil. The soil contamination is mainly due to infiltration of chromium from the infill. The concentration of Cr(VI) in soil and water varies according to seasonal climatic variations and groundwater level. These variations have an effect on the Cr(VI) fate factor, in particular on transfer and residence time of the substance. This study underlines the spatial distribution of aquatic ecotoxicity and the temporal variation of freshwater ecotoxicity. We analysed the correlation between precipitation, temperature, concentration and ecotoxicity impact. With regards to the terrestrial ecotoxicity, the study focused on the vertical variation of the ecotoxicity and the major role of the soil layer composition into terrestrial pollution.

  16. Adsorption of Waste Metal Cr(VI) with Composite Membranes (Chitosan-Silica Rice Husks)

    OpenAIRE

    Fifia Zulti

    2012-01-01

    Chromium compounds are widely used in modern industry. Many of these compounds are dumped into the surrounding environment. Membrane technology is more efficient and effective than conventional methods for waste treatment. The research objective is to make a membrane separation process that can be applied to Cr(VI). Membranes are made from chitosan and silica rice husks. Variations of chitosan and silica rice husk used (g) are 2:1 (A1), 2:2 (A2), 3:1 (B1), and 3:2 (B2). The membrane is made b...

  17. Cr(VI) Sorption/Desorption on Pine Sawdust and Oak Wood Ash

    OpenAIRE

    Avelino Núñez-Delgado; María José Fernández-Sanjurjo; Esperanza Álvarez-Rodríguez; Laura Cutillas-Barreiro; JuanCarlos Nóvoa-Muñoz; Manuel Arias-Estévez

    2015-01-01

    The objective of this work was to study Cr(VI) sorption/desorption on two by-products from the wood industry: pine sawdust and oak wood ash. The retention/release experiments were carried out using standard batch-type trials. In the sorption-phase experiments, pine sawdust showed 23% sorption when a concentration of 100 mg Cr(VI)L−1 was added, whereas sorption on oak wood ash was 17%. In the desorption-phase, chromium release was clearly higher from pine sawdust than from oak wood ash (98% a...

  18. Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: Effect of scrap iron shape and size.

    Science.gov (United States)

    Gheju, M; Balcu, I

    2010-10-15

    Hexavalent chromium reduction with scrap iron has the advantage that two wastes are treated simultaneously. The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using as reducing agent the following scrap iron shapes and sizes: (1) spiral fibers, (2) shavings, and (3) powder. The shape and size of scrap iron were found to have a significant influence on chromium and iron species concentration in column effluent, on column effluent pH and on Cr(VI) reduction mechanism. While for large scrap iron particles (spiral fibers) homogeneous reduction is the dominant Cr(VI) reduction process, for small scrap iron particles (powder) heterogeneous reduction appears to be the dominant reaction contributing to Cr(VI) reduction. All three shapes and sizes investigated in this work have both advantages and disadvantages. If found in sufficient quantities, scrap iron powder seem to be the optimum shape and size for the continuous reduction of Cr(VI), due to the following advantages: (1) the greatest reduction capacity, (2) the most important pH increase in column effluent (up to 6.3), (3) no chromium was detected in the column effluent during the first 60 h of the experiment, and (4) the lowest steady-state Cr(VI) concentration observed in column effluent (3.7 mg/L). But, despite of a lower reduction capacity in comparison with powder particles, spiral fibers and shavings have the advantage to result in large quantities from the mechanic processing of steel.

  19. Developed Fungal-Bacterial Biofilms as A Novel Tool for Bioremoval of Hexavelant Chromium from Wastewater

    DEFF Research Database (Denmark)

    Herath, Lasantha; Rajapaksha, R. M. A. U.; Vithanage, M.;

    2014-01-01

    Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal-bacterial ......Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal......-bacterial biofilms (FBBs). They have not been tested for bioremediation so far. Hence, this study was conducted to develop FBBs and glass wool attached bacterial biofilms (BBs), and to evaluate Cr(VI) tolerability and removal of bacterial mono cultures, BBs and FBBs. FBBs showed a significantly high level of Cr...

  20. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).

    Science.gov (United States)

    Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger

    2014-09-15

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pHleather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB).

  1. Study of the adsorption of Cr(VI) by tannic acid immobilised powdered activated carbon from micro-polluted water in the presence of dissolved humic acid.

    Science.gov (United States)

    Gong, Xujin; Li, Weiguang; Wang, Ke; Hu, Jinhua

    2013-08-01

    The adsorption of Cr(VI) (0.500 mg/L) onto food-grade tannic-acid immobilised powdered activated carbon (TA-PAC) in the presence of dissolved humic acid (DHA) was investigated at 280 K as a function of pH, along with the adsorption capacities and the adsorption isotherms for chromium ions. The results showed that the presence of DHA improved the adsorption capacities of Cr(VI) and its reduction product (Cr(III)) over a wide pH range (4.0-8.0). The main mechanism for metal-DHA complexation in the Cr(VI) system was the reduction of Cr(VI) followed by complexation between Cr(III) and DHA. The Freundlich isotherms yielded the best fits to all data (R(2)=0.9951, qm=5.639 mg/g) in the presence of DHA. The adsorption mechanisms of Cr(VI) onto TA-PAC in the presence of DHA were summarized into three categories: (i) binding by anion adsorption, (ii) Cr(VI) reduction followed by Cr(III) adsorption, and (iii) adsorption of Cr(III)-DHA complexes. PMID:23453800

  2. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).

    Science.gov (United States)

    Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger

    2014-09-15

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pHleather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB). PMID:25222930

  3. Influence of rhamnolipids, produced by Pseudomonas aeruginosa NCAIM(P), B001380 on Cr(VI) removal capacity in liquid medium

    OpenAIRE

    Avramović Nataša S.; Nikolić-Mandić Snežana D.; Karadžić Ivanka M.

    2013-01-01

    Pseudomonas aeruginosa NCAIM(P), B001380, a propitious bacterial strain isolated from mineral cutting oil was identified to be chromium tolerant and a producer of biosurfactant rhamnolipid (RL) with potential application in heavy metal bioremediation. Culture growth, RL production and Cr(VI) removal capacity of the strain in the presence of 50 mg L-1 (I) and 100 mg L-1 of Cr(VI) (II) were studied. Maximum of RL production were found in the late-stationary phase at 72 h for both Cr(VI)-a...

  4. Speciation of chromium using chronoamperometric biosensors based on screen-printed electrodes

    International Nuclear Information System (INIS)

    Highlights: • Chronoamperometric determination of Cr(III) on tyrosinase based biosensors using SPCEs. • Chronoamperometric determination of Cr(VI) on GOx based biosensors using SPCEs. • High degree of sensitivity and selectivity in the analysis of both chromium species. • Bipotentiostatic chronoamperometric determination of both chromium species in the same sample. - Abstract: Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPCTTFE response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0 ± 0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPCPtEs) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5 ± 7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPCTTFE and a GOx/SPCPtE connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples

  5. Speciation of chromium using chronoamperometric biosensors based on screen-printed electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Calvo-Pérez, Ana, E-mail: anacp@ubu.es; Domínguez-Renedo, Olga, E-mail: olgado@ubu.es; Alonso-Lomillo, MAsunción, E-mail: malomillo@ubu.es; Arcos-Martínez, MJulia, E-mail: jarcos@ubu.es

    2014-06-23

    Highlights: • Chronoamperometric determination of Cr(III) on tyrosinase based biosensors using SPCEs. • Chronoamperometric determination of Cr(VI) on GOx based biosensors using SPCEs. • High degree of sensitivity and selectivity in the analysis of both chromium species. • Bipotentiostatic chronoamperometric determination of both chromium species in the same sample. - Abstract: Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPC{sub TTF}E response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0 ± 0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPC{sub Pt}Es) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5 ± 7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPC{sub TTF}E and a GOx/SPC{sub Pt}E connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples.

  6. Site-specific functionalization for chemical speciation of Cr(III) and Cr(VI) using polyaniline impregnated nanocellulose composite: equilibrium, kinetic, and thermodynamic modeling

    Science.gov (United States)

    Jain, Priyanka; Varshney, Shilpa; Srivastava, Shalini

    2015-10-01

    Site-specific functionalizations are the emergent attention for the enhancement of sorption latent of heavy metals. Limited chemistry has been applied for the fabrication of diafunctionalized materials having potential to tether both environmentally stable oxidation states of chromium (Cr(III) and Cr(VI). Polyaniline impregnated nanocellulose composite (PANI-NCC) has been fabricated using click chemistry and explored for the removal of Cr(III) and Cr(VI) from hydrological environment. The structure, stability, morphology, particle size, surface area, hydrophilicity, and porosity of fabricated PANI-NCC were characterized comprehensively using analytical techniques and mathematical tools. The maximum sorption performance of PANI-NCC was procured for (Cr(III): 47.06 mg g-1; 94.12 %) and (Cr(VI): 48.92 mg g-1; 97.84 %) by equilibrating 0.5 g sorbent dose with 1000 mL of 25 mg L-1 chromium conc. at pH 6.5 and 2.5 for Cr(III) and Cr(VI), respectively. The sorption data showed a best fit to the Langmuir isotherm and pseudo-second-order kinetic model. The negative value of ∆ G° (-8.59 and -11.16 kJ mol-1) and ∆ H° (66.46 × 10-1 and 17.84 × 10-1 kJ mol-1), and positive value of ∆ S° (26.66 and 31.46 J mol-1K-1) for Cr(III) and Cr(VI), respectively, reflect the spontaneous, feasibility, and exothermic nature of the sorption process. The application of fabricated PANI-NCC for removing both the forms of chromium in the presence of other heavy metals was also tested at laboratory and industrial waste water regime. These findings open up new avenues in the row of high performance, scalable, and economic nanobiomaterial for the remediation of both forms of chromium from water streams.

  7. Core and Valence Structures in K beta X-ray Emission Spectra of Chromium Materials

    NARCIS (Netherlands)

    Torres Deluigi, Maria; de Groot, Frank M. F.; Lopez-Diaz, Gaston; Tirao, German; Stutz, Guillermo; Riveros de la Vega, Jose

    2014-01-01

    We analyze the core and valence transitions in chromium in a series of materials with a number of different ligands and including the oxidation states: Cr-II, Cr-III, Cr-IV, and Cr-VI. To study the core-to-core transitions we employ the CTM4XAS program and investigate the shapes, widths, intensities

  8. An assessment of the environmental toxicity of hexavalent chromium in fish

    NARCIS (Netherlands)

    Putte, van der I.

    1981-01-01

    At present chromium is a common contaminant in surface waters in many countries. In water the metal may be present in the trivalent form (CrIII) or in the hexavalent form (CrVI), the latter of which is more toxic to aquatic organisms.The investigations presented in this thesis were aimed at a thorou

  9. MODELING HEXAVALENT CHROMIUM REDUCTION IN GROUND- WATER IN FIELD-SCALE TRANSPORT AND LABORATORY BATCH EXPERIMENTS

    Science.gov (United States)

    A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical cond...

  10. Investigation of Hexavalent Chromium Flux to Groundwater at the 100-C-7:1 Excavation Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vincent R.; Fritz, Brad G.; Mackley, Rob D.; Horner, Jacob A.; Johnson, Christian D.; Newcomer, Darrell R.

    2012-11-16

    Deep excavation of soil has been conducted at the 100-C-7 and 100-C-7:1 waste sites within the 100-BC Operable Unit at the Department of Energy (DOE) Hanford Site to remove hexavalent chromium (Cr(VI)) contamination with the excavations reaching to near the water table. Soil sampling showed that Cr(VI) contamination was still present at the bottom of the 100-C-7:1 excavation. In addition, Cr(VI) concentrations in a downgradient monitoring well have shown a transient spike of increased Cr(VI) concentration following initiation of excavation. Potentially, the increased Cr(VI) concentrations in the downgradient monitoring well are due to Cr(VI) from the excavation site. However, data were needed to evaluate this possibility and to quantify the overall impact of the 100-C-7:1 excavation site on groundwater. Data collected from a network of aquifer tubes installed across the floor of the 100-C-7:1 excavation and from temporary wells installed at the bottom of the entrance ramp to the excavation were used to evaluate Cr(VI) releases into the aquifer and to estimate local-scale hydraulic properties and groundwater flow velocity.

  11. Preparation of Silk Sericin/Lignin Blend Beads for the Removal of Hexavalent Chromium Ions.

    Science.gov (United States)

    Kwak, Hyo Won; Shin, Munju; Yun, Haesung; Lee, Ki Hoon

    2016-01-01

    In the present study, novel adsorbents having high adsorption capability and reusability were prepared using agricultural by-products: silk sericin and lignin. Silk sericin and lignin blend beads were successfully prepared using simple coagulation methods for the removal of hexavalent chromium (Cr(VI)) from aqueous solution. A 1 M lithium chloride (LiCl)/dimethyl sulfoxide (DMSO) solvent system successfully dissolved both sericin and lignin and had sufficient viscosity for bead preparation. Compared to the conventional sericin bead adsorbent, sericin/lignin blend beads showed higher Cr(VI) adsorption capacity. The amount of lignin added to the adsorbent greatly affected the adsorption capacity of the beads, and a 50:50 sericin/lignin blend ratio was optimal. Adsorption behavior followed the Freundlich isotherm, which means the adsorption of Cr(VI) occurred on the heterogeneous surface. Cr(VI) adsorption capability increased with temperature because of thermodynamic-kinetic effects. In addition, over 90% of Cr(VI) ions were recovered from the Cr(VI) adsorbed sericin/lignin beads in a 1 M NaOH solution. The adsorption-desorption recycling process was stable for more than seven cycles, and the recycling efficiency was 82%. It is expected that the sericin/lignin beads could be successfully applied in wastewater remediation especially for hazardous Cr(VI) ions in industrial wastewater. PMID:27598142

  12. Response of soil catalase activity to chromium contamination

    Institute of Scientific and Technical Information of China (English)

    Zofia St(e)pniewska; Agnieszka Woli(n)ska; Joanna Ziomek

    2009-01-01

    The impact of chromium (III) and (VI) forms on soil catalase activity is presented.The Orthic Podzol, Haplic Phaeozem and Mollic Gleysol from different depths were used in the experiment.The soil samples were amended with solution of Cr(III) using CrCl3, and with Cr(VI) using K2Cr2O7 in the concentration range from 0 to 20 mg/kg, whereas the samples without the addition of chromium served as control.Catalase activity was assayed by one of the commonly used spectrophotometric methods.As it is demonstrated in the experiment, both Cr(III) and Cr(VI) forms have ability to reduce soil catalase activity.A chromium dose of 20 mg/kg caused the inhibition of catalase activity and the corresponding contamination levels ranged from 75% to 92% for Cr(III) and 68% to 76% for Cr(VI), with relation to the control.Catalase activity reached maximum in the soil material from surface layers (0-25 cm), typically characterized by the highest content of organic matter creating favorable conditions for microorganisms.

  13. Synthesis and characterization of polyaniline/zeolite nanocomposite for the removal of chromium(VI from aqueous solution

    Directory of Open Access Journals (Sweden)

    Abdulsalam A. Shyaa

    2015-01-01

    Batch adsorption experiments were used to investigate the effect of various experimental parameters on the equilibrium adsorption of chromium(VI on PANI/zeolite nanocomposite. The adsorption characteristics of the composite toward Cr(VI in dilute aqueous solution were followed spectrophotometrically. The effect of contact time, size of the sorbent and the concentration of Cr(VI in solution on the metal uptake behavior of the composite were studied. It has been observed that the capacity of chromium adsorption on PANI/zeolite increases with initial metal concentration, the metal ion adsorption on surfactant is well represented by the Freundlich isotherm.

  14. Hexavalent chromium removal and bioelectricity generation by Ochrobactrum sp. YC211 under different oxygen conditions.

    Science.gov (United States)

    Chen, Chih-Yu; Cheng, Chiu-Yu; Chen, Ching-Kuo; Hsieh, Min-Chi; Lin, Ssu-Ting; Ho, Kuo-Ying; Li, Jo-Wei; Lin, Chia-Pei; Chung, Ying-Chien

    2016-01-01

    Bioremediation is an environmentally friendly method of reducing heavy metal concentration and toxicity. A chromium-reducing bacterial strain, isolated from the vicinity of an electroplate factory, was identified as Ochrobactrum sp. YC211. The efficiency and capacity per time of Ochrobactrum sp. YC211 for hexavalent chromium (Cr(VI)) removal under anaerobic conditions were superior to those under aerobic conditions. An acceptable removal efficiency (96.5 ± 0.6%) corresponding to 30.2 ± 0.8 mg-Cr (g-dry cell weight-h)(-1) was achieved by Ochrobactrum sp. YC211 at 300 mg L(-1) Cr(VI). A temperature of 30°C and pH 7 were the optimal parameters for Cr(VI) removal. By examining reactivated cells, permeabilized cells, and cell-free extract, we determined that Cr(VI) removal by Ochrobactrum sp. YC211 under anaerobic conditions mainly occurred in the soluble fraction of the cell and can be regarded as an enzymatic reaction. The results also indicated that an Ochrobactrum sp. YC211 microbial fuel cell (MFC) with an anaerobic anode was considerably superior to that with an aerobic anode in bioelectricity generation and Cr(VI) removal. The maximum power density and Cr(VI) removal efficiency of the MFC were 445 ± 3.2 mW m(-2) and 97.2 ± 0.3%, respectively. Additionally, the effects of coexisting ions (Cu(2+), Zn(2+), Ni(2+), SO4(2-), and Cl(-)) in the anolyte on the MFC performance and Cr(VI) removal were nonsignificant (P > 0.05). To our knowledge, this is the first report to compare Cr(VI) removal by different cells and MFC types under aerobic and anaerobic conditions. PMID:26889692

  15. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination

    Directory of Open Access Journals (Sweden)

    Guey-Horng Wang

    2016-08-01

    Full Text Available Fast hexavalent chromium (Cr(VI determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI concentration and voltage output for various Cr(VI concentration ranges (0.0125–0.3 mg/L and 0.3–5 mg/L. The MFC biosensor is a simple device that can accurately measure Cr(VI concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%. The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI determination even if O. anthropi YC152 is a possible opportunistic pathogen.

  16. Simultaneous determination of Cr(III) and Cr(VI) in tannery wastewater using low pressure ion chromatography combined with flow injection spectrophotometry

    Science.gov (United States)

    Chen, Shujuan; Zhang, Xinshen; Yu, Lingyun; Wang, Li; Li, Hui

    2012-03-01

    Trivalent and hexavalent chromium have been successfully separated and determined using low pressure ion chromatography combined with flow injection spectrophotometric analysis (LPIC-FIA). A column packed with crosslinking starch microspheres was used for on-line separation of Cr(III) from Cr(VI) in a flow-injection system because of its absorptive effect on Cr(III). To determine the concentration of Cr(III) and Cr(VI) in samples, we used 3.0 mmol/L nitric acid to elute adsorbed Cr(III) from the column and then used ceric sulfate-sulfuric acid as oxidant to convert all Cr(III) into Cr(VI). Then, Cr(VI) directly came from the samples and Cr(VI) came from Cr(III) successively formed a amaranthine complex with diphenycarbazide and the complex shows a maximum absorption at 530 nm. Analytical parameters including the concentration of eluent and oxidant solution, oxidizing temperature, length of oxidizing reaction coil, reaction coil and injection coil, interfering effects, etc., were optimized. The limit of detection was 1.25 μg/L for Cr(VI) and 3.76 μg/L for Cr(III). The linear relationship between absorption with the concentration of Cr(VI) and Cr(III) was 0.001-1.000 mg/L and 0.030-1.000 mg/L with correlation coefficients of 0.9995 and 0.9994, respectively. The relative standard deviation of Cr(VI) and Cr(III) was 1.21% and 1.66%, respectively (n = 10). Major cations and anions did not show any interference. We validated this method through certified reference materials and through measuring the recovery in tannery wastewater.

  17. Determination of hexavalent chromium in cosmetic products by ion chromatography and postcolumn derivatization.

    Science.gov (United States)

    Kang, Eun Kyung; Lee, Somi; Park, Jin-Hee; Joo, Kyung-Mi; Jeong, Hye-Jin; Chang, Ih Seop

    2006-05-01

    Chromium hydroxide green [Cr(2)O(OH)(4)] and chromium oxide green (Cr(2)O(3)) are colouring agents for use in cosmetic products. These colourants may contain chromium (VI), which cause skin allergies through percutaneous adsorption on the skin. Eye shadow is a representative cosmetic product in which significant colourants are used. We analysed the chromium (VI) in the eye shadows by ion chromatography and post column derivatization. We optimize conditions of chromium (VI) analysis in eye shadows. During the pretreatment procedure, there are no exchange of chromium (III) to chromium (VI). This method has a limit of quantification for chromium (VI) of 1.0 microg l(-1), recovery rate of 100 +/- 3% and analysis time less than 10 min. This result is 300 times more sensitive than the high-performance liquid chromatography method. We applied the optimized method to analyse 22 eye shadows and 6 colouring agents. 2 out of 22 of the products contained more than 5 mg l(-1). In our previous work, 5 mg l(-1) of Cr represented a threshold level. There was much more Cr(VI) in the colouring agents. The Cr(VI) in one of the colouring agents was 97.6 mg l(-1). PMID:16689807

  18. Oxidative Stress Markers and Histological Analysis in Diverse Organs from Rats Treated with a Hepatotoxic Dose of Cr(VI): Effect of Curcumin.

    Science.gov (United States)

    García-Niño, Wylly Ramsés; Zatarain-Barrón, Zyanya Lucía; Hernández-Pando, Rogelio; Vega-García, Claudia Cecilia; Tapia, Edilia; Pedraza-Chaverri, José

    2015-09-01

    Hexavalent chromium [Cr(VI)] compounds are extremely toxic and carcinogenic. Despite the vast quantity of reports about Cr(VI) toxicity, the information regarding its effects when it is intraperitoneally (i.p.) administered is still limited. In contrast, it has been shown that curcumin prevents hepatotoxicity induced by a single intraperitoneal injection of 15 mg/kg body weight (b.w.) of potassium dichromate (K2Cr2O7). This study aims to evaluate oxidative stress markers, the activity of antioxidant enzymes, and the potential histological injury in brain, heart, lung, kidney, spleen, pancreas, stomach, and intestine from rats treated with a hepatotoxic dose of K2Cr2O7 (15 mg/kg b.w.), and the effect of curcumin pretreatment. Rats were divided into four groups: control, curcumin, K2Cr2O7, and curcumin+K2Cr2O7. At the end of the treatment, plasma and ascites fluid were collected and target organs were dissected out for biochemical and histological analysis. K2Cr2O7 induced hepatotoxicity but failed to induce in all the other studied organs either oxidative or histological injury, since levels of malondialdehyde (MDA), glutathione (GSH), and the activity of superoxide dismutase (SOD), catalase (CAT), and related GSH enzymes were unchanged. As expected, curcumin was safe. Lack of K2Cr2O7-induced toxicity in those target organs could be due to the following: (1) route of administration, (2) absorption through the portal circulation, (3) lower dose than needed, (4) short time of exposure, or (5) repeated doses are required to produce damage. Thus, the intraperitoneal injection of 15 mg/kg of K2Cr2O7, that is able to induce hepatotoxicity, was unable to induce histological and oxidative damage in other target organs.

  19. Conversion of Chromium(III) Propionate to Chromate/dichromate(VI) by the Advanced Oxidation Process. Pretreatment of a Biomimetic Complex for Metal Analysis

    OpenAIRE

    Lynn Rodman, D.; Carrington, Nathan A.; Xue, Zi-Ling

    2006-01-01

    The use of H2O2 and UV irradiation to remove organic ligands in a chromium(III) complex for the subsequent chromium analysis is reported. The Advanced Oxidation Process (AOP) using a 5.5-W UV lamp, H2O2 and Fe2+/Fe3+ as catalyst (photo Fenton process) was found to give complete and quantitative Cr(III) → Cr(VI) conversion and removal of ligands in chromium(III) propionate [Cr3O(O2CCH2CH3)6(H2O)3]NO3, a biomimetic chromium species, as subsequent chromium analyses by the 1,5-diphenylcarbazide m...

  20. Removal of Cr(VI from Water Using a New Reactive Material: Magnesium Oxide Supported Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Alessio Siciliano

    2016-08-01

    Full Text Available The chromium pollution of water is an important environmental and health issue. Cr(VI removal by means of metallic iron is an attractive method. Specifically, nanoscopic zero valent iron (NZVI shows great reactivity, however, its applicability needs to be further investigated. In the present paper, NZVI was supported on MgO grains to facilitate the treatments for remediation of chromium-contaminated waters. The performances and mechanisms of the developed composite, in the removal of hexavalent chromium, were investigated by means of batch and continuous tests. Kinetic studies, under different operating conditions, showed that reduction of Cr(VI could be expressed by a pseudo second-order reaction kinetic. The reaction rate increased with the square of Fe(0 amount, while it was inversely proportional to the initial chromium concentration. The process performance was satisfactory also under uncontrolled pH, and a limited influence of temperature was observed. The reactive material was efficiently reusable for many cycles without any regeneration treatment. The performances in continuous tests were close to 97% for about 80 pore volume of reactive material.

  1. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.

    Science.gov (United States)

    Dhal, B; Thatoi, H N; Das, N N; Pandey, B D

    2013-04-15

    Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed. PMID:23467183

  2. Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Simeonidis, K., E-mail: ksime@physics.auth.gr [Department of Mechanical Engineering, School of Engineering, University of Thessaly, Volos 38334 (Greece); Kaprara, E. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Samaras, T.; Angelakeris, M.; Pliatsikas, N.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Mitrakas, M. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Andritsos, N. [Department of Mechanical Engineering, School of Engineering, University of Thessaly, Volos 38334 (Greece)

    2015-12-01

    The potential of magnetite nanoparticles to be applied in drinking water treatment for the removal of hexavalent chromium is discussed. In this study, a method for their preparation which combines the use of low-cost iron sources (FeSO{sub 4} and Fe{sub 2}(SO{sub 4}){sub 3}) and a continuous flow mode, was developed. The produced magnetite nanoparticles with a size of around 20 nm, appeared relatively stable to passivation providing a removal capacity of 1.8 μg Cr(VI)/mg for a residual concentration of 50 μg/L when tested in natural water at pH 7. Such efficiency is explained by the reducing ability of magnetite which turns Cr(VI) to an insoluble Cr(OH){sub 3} form. The successful operation of a small-scale system consisting of a contact reactor and a magnetic separator demonstrates a way for the practical introduction and recovery of magnetite nanoparticles in water treatment technology. - Highlights: • Iron sulfates were used for the kilogram scale production of Fe{sub 3}O{sub 4} nanoparticles. • Studied particles showed a Cr(VI) removal capacity of 2 μg/mg in natural water. • Cr(VI) uptake is mostly based on its reduction and precipitation as Cr(OH){sub 3}. • A continuous flow reactor–magnetic separator operated with nanoparticles.

  3. Cu-Zn powders as potential Cr(VI) adsorbents for drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Kaprara, E.; Seridou, P.; Tsiamili, V.; Mitrakas, M. [Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Vourlias, G.; Tsiaoussis, I.; Kaimakamis, G.; Pavlidou, E. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Andritsos, N. [Department of Mechanical Engineering, University of Thessaly, 38334 Volos (Greece); Simeonidis, K., E-mail: ksime@physics.auth.gr [Department of Mechanical Engineering, University of Thessaly, 38334 Volos (Greece)

    2013-11-15

    Highlights: • Preparation of CuZn powders by ball-milling and mild annealing. • Cr(VI) removal efficiency is maximized near the equiatomic alloy composition. • RSSCT on commercial CuZn granules indicates the potential for application. • Side-effects include Cu and Zn leaching during the process. -- Abstract: This work examines the possibility of applying CuZn alloys as a reducing medium for the efficient removal of hexavalent chromium from drinking water. In an effort to develop a route for producing powders of CuZn alloys under mild conditions and investigate the optimum composition for such application, a series of alloys in the form of powders were prepared, by a sequence of Cu and Zn ball-milling and low temperature annealing. Batch Cr(VI) removal tests, performed to evaluate and compare the efficiency of the products under typical natural water parameters (pH 7 and natural-like water), indicated that the best performing material have a composition around 50 wt% Cu. The dominant reduction mechanisms are both the corrosion of the alloy surface and the electron transfer to the solution. The behavior of granulated CuZn media was tested in rapid-scale column tests using the commercial KDF which verified the high potential of CuZn alloys in Cr(VI) removal. Nevertheless, Cu and Zn leaching problems should be also considered.

  4. Dispersion-free solvent extraction of Cr(VI) from acidic solutions using hollow fiber contactor.

    Science.gov (United States)

    Alguacil, Francisco J; Alonso, Manuel; Lopez, Félix A; Lopez-Delgado, Aurora; Padilla, Isabel

    2009-10-15

    The use of dispersión-free solvent extraction, through microporous hydrophobic membrane has been investigated. The hollow fiber contactor, with surface area of 1.4 m2 was used to extract Cr(VI) (0.005-0.12 g/L from aqueous sulphuric acidic media (pH 2.5-4.2 +/- 0.05). Several parameters such as extractant concentration, feed acidity and metal concentration in the initial aqueous solution were investigated. Results revealed that 15% v/v Cyanex 923 in Exxsol D-100 as organic phase and feed in the 2.5 pH range, gave optimum extraction (exceeding 95%) of Cr(VI) and it was possible to strip using 10 g/L hydrazine sulfate (also with recoveries exceeding 95%). In this step, Cr(VI) is immediately reduced to the less hazardous Cr(III) state. Results also showed that under the various experimental conditions, chromium(VI) extraction was rate-controlled by the interfacial reaction on the membrane surface. Typical overall mass transfer coefficients values are 4.2 x 10(-5) and 3.6 x 10(-6) cm/s for extraction and stripping operations, respectively.

  5. Hybrid materials: Magnetite-Polyethylenimine-Montmorillonite, as magnetic adsorbents for Cr(VI) water treatment.

    Science.gov (United States)

    Larraza, Iñigo; López-Gónzalez, Mar; Corrales, Teresa; Marcelo, Gema

    2012-11-01

    Hybrid materials formed by the combination of a sodium rich Montmorillonite (MMT), with magnetite nanoparticles (40 nm, Fe(3)O(4) NPs) coated with Polyethylenimine polymer (PEI 800 g/mol or PEI 25000 g/mol) were prepared. The intercalation of the magnetite nanoparticles coated with PEI among MMT platelets was achieved by cationic exchange. The resulting materials presented a high degree of exfoliation of the MMT sheets and a good dispersion of Fe(3)O(4) NPs on both the surface and among the layers of MMT. The presence of amine groups in the PEI structure not only aids the exfoliation of the MMT layers, but also gives to the hybrid material the necessary functionality to interact with heavy metals. These hybrid materials were used as magnetic sorbent for the removal of hexavalent chromium from water. The effect that pH, Cr(VI) concentration, and adsorbent material composition have on the Cr(VI) removal efficiency was studied. A complete characterization of the materials was performed. The hybrid materials showed a slight dependence of the removal efficiency with the pH in a wide range (1-9). A maximum amount of adsorption capacity of 8.8 mg/g was determined by the Langmuir isotherm. Results show that these hybrid materials can be considered as potential magnetic adsorbent for the Cr(VI) removal from water in a wide range of pH.

  6. Removal of Cr(VI) from aqueous solution by fungal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, Sarabjeet Singh [Department of Biotechnology, General Shivdev Singh Diwan Gurbachan Singh Khalsa College, Patiala, Punjab (India); Goyal, Dinesh [Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, Punjab (India)

    2010-10-15

    Chromium compounds are released by industrial processes including leather production, mining, petroleum refining, in textile industry and dyeing. They are a significant threat to the environment and public health because of their toxicity. Removal of hexavalent chromium by living biomass of different fungi was effective in the order of Aspergillus terricola>Aspergillus niger>Acremonium strictum>Aureobasidium pullulans>Paecilomyces variotii>Aspergillus foetidus>Cladosporium resinae>Phanerochaete chrysosporium. Non-living dried fungal biomass showed higher potential for metal removal than living cells. Among all fungi dead biomass of P. chrysosporium, C. resinae and P. variotii had the maximum specific chromium uptake capacity, which was 11.02, 10.69 and 10.35 mg/g of dry biomass respectively at pH 4.0-5.0 in batch sorption. Removal of Cr(VI) by P. chrysosporium from multi-metallic synthetic solution as well as chrome effluent was significant by bringing down the residual concentration to 0.1 mg/L in the effluent, which falls within the permissible range and its removal was not affected by the presence of other metal ions such as Fe, Zn and Ni. Fourier transform infrared spectral analysis revealed the presence of carboxylate (C=O) and amine (-NH{sup +}{sub 3}-NH{sup +}{sub 2}) functional groups commonly present on the cell surface of all fungi, with possible involvement in chromium binding. The result indicates that non-living fungal biomass either obtained as a by-product of fermentation industry or mass produced using inexpensive culture media can be used for bioremediation of Cr(VI) from chrome effluent on large scale. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Surface Reactions Limiting Chromium(VI) Generation from Naturally Derived Chromium(III) Minerals

    Science.gov (United States)

    Hausladen, D.; Fendorf, S. E.

    2015-12-01

    Chromium(III)-bearing minerals, commonly found in serpentinite and ultramaphic rocks, are ubiquitous in California soils and along convergent plate boundaries worldwide. Elevated concentrations of carcinogenic Cr(VI) have been measured in groundwater throughout the state, even in aquifers untouched by anthropogenic contamination. In most natural systems, manganese oxides are the only known, kinetically viable, oxidant of Cr(III). Numerous laboratory studies have demonstrated a finite capacity of Mn-oxides to generate Cr(VI) before surface alterations inhibit further Cr-oxidation. The extent to which these processes dictate the inhibition, and subsequent regeneration, of Mn-oxidation capacity within structured soils and sediments is not well understood. Here we use artificial soil aggregates made of Fe(III),Cr(III)-hydroxide-coated quartz sand and surrounded by aerated solute flow (pH 8, 30mM HEPES, 10mM HCO3-) to investigate C(VI) generation within ultramafic rock derived sediment and processes inhibiting manganese reactivity. We found that while Cr(VI)-production scaled with Cr-mineral solubility; Cr(VI) effluent concentrations from aggregates of both lower and higher solubility Cr(III)-minerals peaked very soon after reaction with birnessite (within 2 days and 4 days, respectively). Once Cr(VI) production plateaued (t=22 days) aggregate influent was acidified (pH 5, 30mM C2H3O2-). Despite increasing Cr(III) solubility at lower pH, aqueous Cr(VI) production further decreased. A secondary pulse of Cr(VI) generation was seen only after the surrounding solute returned to initial conditions (pH 8). As with the initial pulse, Cr(VI) concentration scaled with mineral solubility. Collectively, our results demonstrate the extent that natural fluctuations in groundwater composition, both as a result of irrigation or precipitation events, have the potential to both regenerate and inhibit Mn-oxide surfaces. These synthetic soil aggregates provide insight into how fluctuating

  8. Hexavalent chromium-resistant bacteria isolated from river sediments.

    Science.gov (United States)

    Luli, G W; Talnagi, J W; Strohl, W R; Pfister, R M

    1983-01-01

    Hexavalent chromium [Cr(VI)] is a known carcinogen and mutagen; however, the actual mechanisms of Cr toxicity are unknown. Two approaches were used to isolate Cr(VI)-resistant bacteria from metal-contaminated river sediments. Diluted sediments were plated directly onto a peptone-yeast extract (PYE) medium containing 0 to 100 micrograms of Cr(VI) ml-1. Approximately 8.4 x 10(5) CFU g-1 were recovered on 0 microgram of Cr(VI) ml-1, whereas 4.0 x 10(2) CFU g-1 were recovered on PYE plus 100 micrograms of Cr(VI) ml-1. Alternatively, continuous culture enrichment techniques were employed using PYE and 100 micrograms Cr(VI) ml-1 input at dilution rates of 0.02 and 0.10 h-1. After six residence periods, 10(9) CFU were recovered on PYE agar containing 0 microgram of Cr(VI) ml-1 and 10(7) CFU on PYE agar plus 100 micrograms of Cr(VI) ml-1. Of 89 isolates obtained by direct plating onto PYE, 47% were resistant to 100 micrograms of Cr(VI) ml-1, and 29% were resistant to 250 micrograms of Cr(VI) ml-1. When the same isolates were plated onto PYE containing Cr(III), 88% were resistant to 100 micrograms ml-1 but only 2% were resistant to 250 micrograms ml-1. Cr, Co, Sb, and Zn were found in significantly higher concentrations at an industry-related contaminated site than at a site 11 km downstream. Total Cr in the sediments at the contaminated site averaged 586 micrograms (dry weight) g-1, and the downstream site averaged 71 micrograms (dry weight) g-1. The Cr recovered from acid-digested Ottawa River sediment samples was predominantly hexavalent. Five acid digestion procedures followed by atomic absorption spectroscopy were compared and found to be 30 to 70% efficient for recovery of Cr relative to neutron activation analysis. A population of aerobic, heterotrophic bacteria was recovered from sediments containing elevated levels of Cr.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6639032

  9. Reduction of Hexavalent Chromium Using L-Cysteine Capped Nickel Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Razium Ali Soomro

    2013-06-01

    Full Text Available The aim of this study was to reduce the highly toxic hexavalent chromium Cr(VI into less toxic chromium Cr(III species by using nickel nanoparticles (Ni NPs as catalysts in order to provide safety to the aqueous environment. In the first phase Ni NPs were synthesized in ethylene glycol and capped with l-cysteine by a modified microwave irradiation method using NaOH as the accelerator. The formed Ni NPs were characterized by various techniques such as UV-Visible spectroscopy, Fourier Transform Infra-red (FTIR spectroscopy and Scanning Electron Microscopy (SEM. In the second phase the formed Ni NPs were immobilized on glass surfaces and employed as catalyst for the reduction of Cr(VI ions. According to observations, 99% reduction of Cr(VI ions was achieved in the presence of 0.5 mg of Ni NPs catalyst in just five minutes as compared to nickel powder that showed only 16% reduction in 15 minutes. The study has a great impact on the aqueous pollution control of Cr(VI especially caused by the discharge of waste water from several industries utilizing Cr(VI containing salt as one of the essential gradients.

  10. Chromium speciation in rainwater: temporal variability and atmospheric deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kieber, R.J.; Willey, J.D.; Zvalaren, S.D. [University of North Carolina at Wilmington, Wilmington, NC (United States). Dept. of Chemistry

    2002-12-15

    Chromium is released into the atmosphere by a variety of anthropogenic activities which include steel manufacturing, leather tanning, wood presentation and fossil fuel combustion. The concentrations of the various chromium species were determined in 89 rainwater samples collected in Wilmington, NC from October 1, 1999 to December 31, 2001. Volume weighted annual average concentrations of Cr{sub total}, particulate Cr, Cr(III)(aq), and Cr(VI)(aq) were 4.6, 2.2, 0.8 and 1.2 nM, respectively. There was distinct seasonal and diurnal variability in the concentrations of the various chromium species. Chromium emissions to the global atmosphere by both natural and anthropogenic sources are estimated to be 2.2 x 10{sup 9} mol/yr. Using rainwater concentration data along with other published rainwater Cr concentrations and an estimate for total global annual rain, the total global flux of chromium removed from the atmosphere via wet deposition is 2.1 x 10{sup 9} mol/yr. This represents complete removal of Cr and indicates that essentially all chromium released into the global atmosphere is removed via rain. About half this chromium is dissolved with roughly equal concentrations of toxic Cr(VI) and relatively harmless Cr(III) species. 48 refs., 4 figs., 3 tabs.

  11. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.

    Science.gov (United States)

    Jin, Zhisheng; Liu, Taoze; Yang, Yuangen; Jackson, Daniel

    2014-06-01

    Over the past few decades, zinc smelting activities in Guizhou, China have produced numerous slag dumps, which are often dispersed on roadsides and hill slopes throughout the region. During periods of acid rain, these exposed slags release heavy metals into surface water bodies. A column leaching study was designed to test the potential release of the heavy metals cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) under simulated acid rain events. Two slags with varying environmental exposure periods were packed in columns and subjected to leaching solutions of pH 3.5, 5.5, or DI H2O at intervals of 1, 7, 14, 28, 56d. Pulse concentrations of Cd in leachate were found above 5μg/L, Cr, Pb, and Zn >10μg/L, whereas, Cu reached 10μg/L. After five leaching events, the leachability (percentage of cumulative heavy metal leached after five leaching events as in its respective total concentration in slags) of Cd was 0.05 percent and 0.035 percent from the old and young slag, respectively. Cr (0.035 percent and 0.05 percent) was greater than Cu (0.002 percent and 0.005 percent) and Zn (0.006 percent and 0.003 percent), while the lowest leachability was observed for Pb (0.0005 percent and 0.0002 percent) from the old and young slags, respectively. Reaction rates (release amount of heavy metals in certain period of leaching) of heavy metals in the leachates demonstrated the sequence of Zn>Cr>Cd, Cu>Pb. Leaching release of heavy metals was jointly affected by the pH of leaching solution and mineral composition of slags (including chemical forms of Cd, Cr, Cu, Pb, and Zn). Environmental exposure period of slags, resulting in the alteration of minerals, could affect the release process of heavy metals in leaching as well. PMID:24632122

  12. DANGER OF HEXAVALENT CHROMIUM AND STRATEGY FOR THE REMEDITATION

    Directory of Open Access Journals (Sweden)

    Aniruddha Roy

    2013-02-01

    Full Text Available Some metals as micronutrients have a major role in the life and growth process of plants and animals. However, certain forms of some metals may also act as toxic material even in relatively small quantities. Chromium is such a metal, whose concentration above a certain limit may cause a serious problem to the health of living organisms. Chromium (Cr may occur in several chemical forms in organic and inorganic systems. In biological systems only Cr (III and Cr (VI are significant. Among these two states, trivalent chromium (Cr-III is considered as an essential component, while hexavalent Chromium (Cr-VI in biological system has been detected as responsible for so many diseases, even some specific forms of cancer. This paper intends to present the adverse effect of Cr(VI on environment as well as on human beings and also try to find a way out to dissolve the problem by a newly developed efficient and cost effective technique.

  13. THE CONSEQUENCES ON BLOOD GSH DYNAMICS ON WISTAR FEMALE RATS AT AD LIBITUM CHROMIUM (VI ADMINISTRATION DURING THE GESTATION AFTER THE WEAN

    Directory of Open Access Journals (Sweden)

    CORINA GRĂVILĂ

    2013-07-01

    Full Text Available Chromium (VI is a widely used industrial chemical, extensively used in paints, metal finishes, steel including stainless steel manufacturing, alloy cast irons, chrome, and wood treatment. In nature chromium occurs in divalent, trivalent and hexavalent forms. Hexavalent chromium predominates over the trivalent form in natural waters. We have studied the influence of potassium dichromate (K2Cr2O7 on blood GSH values in rats. This study was carried out on 28 Wistar adult female rats, divided in 3 experimental groups (E and one control group (C. The rats were feed with 25ppm (LOAEL, 50ppm and 75ppm potassium dichromate, ad libitum, in drinking water, during the gestation. The control batch received tap water. Reduced glutathione (GSH was measured quantitatively after the wean using a Perkin-Elmer spectrophotometer, through Beutler et al. method, at 412nm. This study reports that potassium dichromate exposure induced the depletion of blood GSH because Cr(VI can generate reactive oxygen species (ROS. It can induce oxidative stress and toxicity.

  14. Bioremediation of Chromium (VI from Textile Industry’s Effluent and Contaminated Soil Using Pseudomonas putida

    Directory of Open Access Journals (Sweden)

    Deepali

    2011-01-01

    Full Text Available Nine bacterial colonies were screened for the Cr(VI removal efficiency and out of these three bacterial strains Pseudomonas putida, Pseudomonas aeruginosa and Bacillus sp. were isolated from soil and used to remove Cr(VI from aqueous solution. The effect of time and concentrations on the removal rate of hexavalent chromium were studied using batch experiment. Maximum Cr (VI removal was noted 75.0% by Bacillus sp. at 10mg/l, 69.70% by Pseudomonas aeruginosa at 40mg/l and 90.88% by Pseudomonas putida at 10mg/l of synthetic solution, during 96 hours. Among these three bacteria, the maximum Cr(VI removal was reported by Pseudomonas putida on lower concentration. On the basis of highest removal rate, Pseudomonas putida was selected and used for further chromium removal from samples. It was found to be removed the highest Cr(VI by 82.92%, from effluent and 74.41% from soil during 96 hours. The present study depicts that bacteria removes chromium efficiently and this could be used for industrial waste management and other environmental contaminants.

  15. Assessing human exposure to aluminium, chromium and vanadium through outdoor dust ingestion in the Bassin Minier de Provence, France.

    Science.gov (United States)

    Reis, A P; Patinha, C; Noack, Y; Robert, S; Dias, A C

    2014-04-01

    The Western part of the "Bassin Minier de Provence", a former coal mining area, is still occupied by old polluting industries such as a coal-fired power plant and an alumina factory. The identified pollution sources that raise more concern in the population are the emission of gases and dusts, as well as the storage of raw and transformed materials. In 2011, a preliminary survey was carried out in the area as the first step to an exposure and health risk-assessment study. This first survey intends to assess human exposure through ingestion and health risk associated with potentially harmful elements (PHEs) in ground-level dusts collected in recreational areas used by children. Dust samples were taken at 19 sites distributed across the study area, depending on the location of public parks, public gardens, playgrounds and schools. Pseudo-total concentrations of 53 elements were determined by ICP-MS. Bioaccessible concentrations were estimated using the unified bioaccessibility method. This study presents the results obtained for Al, V and Cr, which seem to be related with industry and show similar distribution patterns. PHEs presumably related to traffic or other urban pollution sources are not discussed in this study. The highest total concentrations occur in dusts near the alumina plant that have significant amounts of Al mineral phases (gibbsite and alumina). However, in these dusts only small fractions of the elements under study are in bioaccessible forms. The highest bioaccessible fractions occur in dusts collected near the coal-fired power plant. Further investigation is required to assess potential pathways of exposure and health risk in this area. PMID:23990126

  16. Biosorption Potential of Bacillus salmalaya Strain 139SI for Removal of Cr(VI from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Arezoo Dadrasnia

    2015-12-01

    Full Text Available The present study investigated the biosorption capacity of live and dead cells of a novel Bacillus strain for chromium. The optimum biosorption condition was evaluated in various analytical parameters, including initial concentration of chromium, pH, and contact time. The Langmuir isotherm model showed an enhanced fit to the equilibrium data. Live and dead biomasses followed the monolayer biosorption of the active surface sites. The maximum biosorption capacity was 20.35 mg/g at 25 °C, with pH 3 and contact time of 50 min. Strain 139SI was an excellent host to the hexavalent chromium. The biosorption kinetics of chromium in the dead and live cells of Bacillus salmalaya (B. salmalaya 139SI followed the pseudo second-order mechanism. Scanning electron microscopy and fourier transform infrared indicated significant influence of the dead cells on the biosorption of chromium based on cell morphological changes. Approximately 92% and 70% desorption efficiencies were achieved using dead and live cells, respectively. These findings demonstrated the high sorption capacity of dead biomasses of B. salmalaya 139SI in the biosorption process. Thermodynamic evaluation (ΔG0, ΔH0, and ΔS0 indicated that the mechanism of Cr(VI adsorption is endothermic; that is, chemisorption. Results indicated that chromium accumulation occurred in the cell wall of B. salmalaya 139SI rather than intracellular accumulation.

  17. Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites.

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jinga, Sorin Ion; Mihalache, Nicoleta; Botez, Adriana; Matei, Cristian; Berger, Daniela; Damian, Celina Maria; Ionita, Valentin

    2016-10-01

    In this study bacterial cellulose-magnetite composites were synthesised for the removal of chromium(VI) from aqueous solutions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and X-ray Photoelectron Spectroscopy (XPS) were used to characterize the bacterial cellulose-magnetite composites and to reveal the uniform dispersion of nanomagnetite in the BC matrix. Magnetic properties were also measured to confirm the magnetite immobilization on bacterial cellulose membrane. The effects of initial Cr(VI) concentration, solution pH and solid/liquid ratio upon chromium removal were examined using the statistical Box-Behnken Design. Because of the possibility of magnetite dissolution during chromium(VI) adsorption, the degree of iron leaching was also analysed in the same conditions as Cr(VI) adsorption. From the factors affecting chromium(VI) adsorption the most important was solution pH. The highest Cr(VI) removal efficiency was observed at pH 4, accompanied by the lowest iron leaching in the solution. The adsorption experiments also indicated that the adsorption process of chromium(VI) is well described by Freundlich adsorption model. Our results proved that the BC-magnetite composites could be used for an efficient removal of chromium(VI) from diluted solutions with a minimum magnetite dissolution during operation. PMID:27343705

  18. Speciation of chromium using chronoamperometric biosensors based on screen-printed electrodes.

    Science.gov (United States)

    Calvo-Pérez, Ana; Domínguez-Renedo, Olga; Alonso-Lomillo, M Asunción; Arcos-Martínez, M Julia

    2014-06-23

    Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPC(TTF)E response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0±0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPCPtEs) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5±7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPC(TTF)E and a GOx/SPC(Pt)E connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples. PMID:24909769

  19. The Growth of Gypsum in the Presence of Hexavalent Chromium: A Multiscale Study

    Directory of Open Access Journals (Sweden)

    Juan Morales

    2016-03-01

    Full Text Available The sorption of dissolved inorganic pollutants into the structure of minerals is an important process that controls the mobility and fate of these pollutants in the Earth’s crust. It also modifies the surface structure and composition of the host mineral, affecting its crystallization kinetics. Here, we investigate the effect of hexavalent chromium, Cr(VI, on the nucleation and growth of gypsum by conducting two types of experiments: (i in situ atomic force microscopy (AFM observations of the growth of gypsum {010} surfaces in the presence of Cr(VI and (ii gypsum precipitation experiments by mixing aqueous solutions containing variable amounts of Cr(VI. Gypsum precipitation is progressively delayed when occurring from solutions bearing increasing Cr(VI concentrations. Chemical analyses of gypsum precipitates show that gypsum incorporates small Cr(VI amounts that correlate with the content of this ion in the aqueous solution. Gypsum cell parameters variation reflects this incorporation. At the molecular scale, Cr(VI induces a slowdown of step advance rates on gypsum {010} surfaces accompanied by the roughening of nanostep edges and the so-called “template effect”. This effect involves the reproduction of the original nanotopography after the completion of individual advancing monolayers and appears as a general nanoscale phenomenon occurring during growth of solid solutions from aqueous solutions even in the case of compositionally-restricted solid solutions.

  20. Rapid speciation analysis of Cr(VI) and Cr(III) by reversed-phase high-performance liquid chromatography with UV detection.

    Science.gov (United States)

    Hossain, Mohammad Abul; Kumita, Mikio; Michigami, Yoshimasa; Islam, Tajmeri S A; Mori, Shigeru

    2005-02-01

    A simple and rapid method is developed for the simultaneous determination of Cr(VI) and Cr(III) based on the formation of their different complexes with ammonium pyrrolidine-dithiocarbamate (APDC). Separation is performed using reversed-phase high-performance liquid chromatography coupled with UV detection. The conditions for complex formation and speciation are determined, such as solution pH, amount of APDC, temperature, and type of mobile phase. In order to substantially reduce the analysis time, the separation is carried out without extraction of chromium-APDC complexes from the mother liquor. Under the optimum analysis conditions, the chromatograms obtained show good peak separation, and the absolute detection limits (3s) are 2.2 microg/L for Cr(VI) and 4.5 microg/L for Cr(III). The calibration curves are linear from 3 to 5000 microg/L for Cr(VI) and 5 to 3000 microg/L for Cr(III). The relative standard deviations of peak areas in five measurements using a sample solution of 200 microg/L are less than 2% for Cr(VI) and 4% for Cr(III), indicating good reproducibility for this analytical method. Furthermore, simultaneous determination of Cr(VI) and Cr(III) is successful with the application of the proposed procedure in the synthetic wastewaters containing common heavy metal ions: Fe(III), Pb(II), Cd(II), Cu(II), and Zn(II). PMID:15826369

  1. Cr stable isotopes as indicators of Cr(VI) reduction in groundwater: a detailed time-series study of a point-source plume.

    Science.gov (United States)

    Berna, Emily C; Johnson, Thomas M; Makdisi, Richard S; Basu, Anirban

    2010-02-01

    Chromium stable isotope ratios show promise as indicators of Cr(VI) reduction in groundwater, but no published study has yet demonstrated that expected relationships between (53)Cr/(52)Cr and Cr(VI) concentration, position, and time occur in an actual groundwater plume. We present an extensive data set from a point-source plume in Berkeley, CA; data extend over 5 years and 14 locations covering the entire plume. We interpret the data using a Rayleigh distillation model with an effective fractionation factor that incorporates an intrinsic fractionation factor determined from incubations of site sediments and accounts for reservoir effects in the restricted subsurface zones where Cr(VI) reduction is thought to occur. The groundwater (53)Cr/(52)Cr and Cr(VI) concentration data are consistent with a scenario where the system has reached a steady state: Cr(VI) reduction continues, the extent of reduction at any point is constant over time, reduction proceeds to completion at the downgradient edge of the plume, and the plume is no longer advancing. The overall consistency of the results with a reasonable model for the site supports the use of Cr isotope-based estimates of reduction, but we discuss current uncertainties and limitations of the approach as well. PMID:20039722

  2. Determination of Equilibrium and Kinetic Parameters of the Adsorption of Cr(III) and Cr(VI) from Aqueous Solutions to Agave Lechuguilla Biomass

    OpenAIRE

    Jaime Romero-González; Gardea-Torresdey, Jorge L.; José R. Peralta-Videa; Elena Rodríguez

    2005-01-01

    This investigation reveals the capability of Agave lechuguilla for trivalent and hexavalent chromium removal from aqueous solutions. Experimentation included pH profile, time dependence, adsorption capacity (KF and QL), adsorption intensity (n and RL) and saturation capacity (q s) studies. Batch experiments were conducted at 22∘C to characterize and model the adsorption equilibrium as well as biomass adsorption rates. pH 4 was the optimum for Cr(III) binding, while Cr(VI) optimum binding was ...

  3. Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

    Directory of Open Access Journals (Sweden)

    Sayel Hanane

    2014-07-01

    Full Text Available Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

  4. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron.

    Science.gov (United States)

    Di Palma, L; Gueye, M T; Petrucci, E

    2015-01-01

    Iron sulphate (FeSO4) and colloidal nano zero-valent iron (nZVI) as reducing agents were compared, with the aim of assessing their effectiveness in hexavalent chromium [Cr(VI)] removal from a contaminated industrial soil. Experiments were performed on soil samples collected from an industrial site where a nickel contamination, caused by a long-term productive activity, was also verified. The influence of reducing agents amount with respect to chromium content and the effectiveness of deoxygenation of the slurry were discussed. The soil was fully characterized before and after each test, and sequential extractions were performed to assess chemico-physical modifications and evaluate metals mobility induced by washing. Results show that both the reducing agents successfully lowered the amount of Cr(VI) in the soil below the threshold allowed by Italian Environmental Regulation for industrial reuse. Cr(VI) reduction by colloidal nZVI proved to be faster and more effective: the civil reuse of soil [Cr(VI)<2mg/kg] was only achieved using colloidal nZVI within 60min adopting a nZVI/Cr(VI) molar ratio of 30. The reducing treatment resulted in an increase in the amount of chromium in the oxide-hydroxide fraction, thus confirming a mechanism of chromium-iron hydroxides precipitation. In addition, a decrease of nickel (Ni) and lead (Pb) content in soil was also observed when acidic conditions were established. PMID:25139286

  5. Determination of hexavalent chromium in sludge incinerator emissions using ion chromatography and inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Arar, E.J.; Long, S.E. (Technology Applications, Inc., Cincinnati, OH (United States)); Martin, T.D.; Gold, S. (Environmental Monitoring Systems Lab., Cincinnati, OH (United States))

    1992-10-01

    A unique approach is described using ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) for the determination of hexavalent chromium [Cr(VI)] in wastewater sludge incinerator emissions. Quartz fiber filters, spiked with an isotopically enriched ([sup 50]Cr or [sup 53]Cr) chromate salt, were used to collect emission particulates. The enriched Cr(VI) isotope was used to monitor the reduction of Cr(IV) during sample collection using a pseudo-first-order reaction model and to calculate the rate of deposition of native Cr(VI) on the filters. At the end of the sampling period, the Cr(VI) was extracted from the filters with 0.1 N sodium hydroxide and determined by IC using postcolumn derivatization with 1,5-diphenylcarbohydrazide. To determine the ratio of enriched Cr(VI) to the native Cr(VI) emitted from the incinerator, an additional aliquot of the sample extract was preconcentrated by IC and the isotopic composition of the Cr(VI) fraction determined by ICP-MS. 21 refs., 4 figs., 3 figs.

  6. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination.

    Science.gov (United States)

    Wang, Guey-Horng; Cheng, Chiu-Yu; Liu, Man-Hai; Chen, Tzu-Yu; Hsieh, Min-Chi; Chung, Ying-Chien

    2016-01-01

    Fast hexavalent chromium (Cr(VI)) determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI) concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC)-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI) concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI) concentration and voltage output for various Cr(VI) concentration ranges (0.0125-0.3 mg/L and 0.3-5 mg/L). The MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI) determination even if O. anthropi YC152 is a possible opportunistic pathogen. PMID:27537887

  7. Study of corrosion behavior of a 22% Cr duplex stainless steel : influence of nano-sized chromium nitrides and exposure temperature

    OpenAIRE

    Bettini, Eleonora; Kivisäkk, Ulf; Leygraf, Christofer; Pan, Jinshan

    2013-01-01

    Chromium nitrides may precipitate in duplex stainless steels during processing and their influence on the corrosion behavior is of great importance for the steel performance. In this study, the influence of nano-sized quenched-in chromium nitrides on the corrosion behavior of a heat treated 2205 duplex stainless steel was investigated at room temperature and 50 °C (just above critical pitting temperature). The microstructure was characterized by SEM/EDS and AFM analyses, and quenched-in nitri...

  8. Effects of chromium(III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds.

    Science.gov (United States)

    Wyszkowski, Mirosław; Radziemska, Maja

    2010-01-01

    The aim of this study was to (1) determine the effects of trivalent Cr(III) or hexavalent chromium Cr(VI) soil contamination on biomass yield and nitrogenous compound content of spring barley (Hordeum vulgare L.) as the main crop and subsequently maize (Zea mays L.) grown successively, and (2) examine whether the neutralizing additives applied (compost, zeolite, and calcium oxide) may be effective in reducing adverse impact of chromium (Cr) on crops. Spring barley yield was markedly decreased by Cr compounds, particularly Cr(VI). In contrast, maize yield was significantly increased by Cr(VI). Hexavalent Cr exerted a greater effect than the Cr(III) form on nitrogen levels in spring barley. Chromium significantly increased ammonia nitrogen content in maize. The accumulation of NO(3)(-)-N in plants treated with Cr(VI) was lower than in controls. The application of compost, zeolite, and calcium oxide onto the soil increased yield of maize only in pots containing Cr(III). Neutralizing additives exerted a positive, increased effect on the N-total content of maize but not spring barley, which was apparent with calcium oxide. Accumulation of NH(4)(+)-N in maize in pots with Cr(VI) was increased by all additives applied. The content of nitrate nitrogen in spring barley was predominantly affected by addition of compost and calcium oxide into the soil, producing a significant rise in NO(3)(-)-N content. Chromium, especially Cr(VI), used at doses of 100 and 150 mg/kg soil exerted adverse effects in treated plants, particularly spring barley.

  9. Hexavalent Chromium Reduction under Fermentative Conditions with Lactate Stimulated Native Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Somenahally, Anil C [ORNL; Mosher, Jennifer J [ORNL; Yuan, Tong [University of Oklahoma; Phelps, Tommy Joe [ORNL; Brown, Steven D [ORNL; Yang, Zamin Koo [ORNL; Hazen, Terry C [ORNL; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Palumbo, Anthony Vito [ORNL; Van Nostrand, Dr. Joy D. [Oklahoma University; Zhou, Jizhong [University of Oklahoma; Elias, Dwayne A [ORNL

    2013-01-01

    Microbial reduction of toxic hexavalent chromium (Cr(VI)) in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI)] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI) concentrations on community structure and on the Cr(VI)-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to grow native communities enriched with lactate (30 mM) and continuously amended with Cr(VI) at 0.0 (No-Cr), 0.1 (Low-Cr) and 3.0 (High-Cr) mg/L. Microbial growth, metabolites, Cr(VI), 16S rRNA gene sequences and GeoChip based functional gene composition were monitored for 15 weeks. Temporal trends and differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) levels were below detection from week 1 until week 15. With lactate enrichment, native bacterial diversity substantially decreased as Pelosinus spp., and Sporotalea spp., became the dominant groups, but did not significantly differ between Cr concentrations. The Archaea diversity also substantially decreased after lactate enrichment from Methanosaeta (35%), Methanosarcina (17%) and others, to mostly Methanosarcina spp. (95%). Methane production was lower in High-Cr reactors suggesting some inhibition of methanogens. Several key functional genes were distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant microbes, Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result 3.0 mg/L Cr(VI) did not impact the overall bacterial community structure.

  10. Hexavalent chromium reduction under fermentative conditions with lactate stimulated native microbial communities.

    Directory of Open Access Journals (Sweden)

    Anil C Somenahally

    Full Text Available Microbial reduction of toxic hexavalent chromium (Cr(VI in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI concentrations on community structure and on the Cr(VI-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to grow native communities enriched with lactate (30 mM and continuously amended with Cr(VI at 0.0 (No-Cr, 0.1 (Low-Cr and 3.0 (High-Cr mg/L. Microbial growth, metabolites, Cr(VI, 16S rRNA gene sequences and GeoChip based functional gene composition were monitored for 15 weeks. Temporal trends and differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI levels were below detection from week 1 until week 15. With lactate enrichment, native bacterial diversity substantially decreased as Pelosinus spp., and Sporotalea spp., became the dominant groups, but did not significantly differ between Cr concentrations. The Archaea diversity also substantially decreased after lactate enrichment from Methanosaeta (35%, Methanosarcina (17% and others, to mostly Methanosarcina spp. (95%. Methane production was lower in High-Cr reactors suggesting some inhibition of methanogens. Several key functional genes were distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant microbes, Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI reduction, and as a result 3.0 mg/L Cr(VI did not impact the overall bacterial community structure.

  11. The oxygen isotope composition of dissolved chromate: a new tool for determining sources of chromium contamination in groundwater

    Science.gov (United States)

    Bullen, T.; Widory, D.

    2009-05-01

    Hexavalent chromium (Cr(VI)) is a widespread carcinogen in groundwater, derived from both anthropogenic and natural sources. A large range of chromium isotope composition has been demonstrated for dissolved Cr(VI) in groundwater, resulting from the large isotope fractionation accompanying reduction of Cr(VI) to trivalent chromium (Cr(III)). As a result, the isotopic composition of chromium in dissolved chromate is beginning to prove useful for determining the sources of chromium in contaminated groundwater, but considered alone can likewise be non-diagnostic due to overlapping compositional ranges of potential anthropogenic and natural sources. Based on the strong Cr-O bond in the chromate molecule implied by the large chromium isotope fractionation accompanying Cr(VI) reduction, we have proposed that oxygen will remain closely linked to chromium in the chromate molecule and thus can be used to better constrain chromate sources through a Cr-O "multi-tracer" approach. In a series of laboratory experiments using isotopically "enriched" water and "normal" chromate, we have demonstrated that there is insignificant isotopic exchange between oxygen in chromate and water for residence times as long as one year, and thus chromate will retain the oxygen isotope composition of its source during extended transport in groundwater. We have likewise demonstrated that sufficient chromate for oxygen isotope analysis can be successfully isolated from a chemically complex groundwater sample through a series of precipitation, ion exchange and heating procedures. Although our current approach of measuring 100 micromolar samples of chromate using TCEA- gas mass spectrometry is straightforward and robust, we are also developing a negative-ion thermal ionization mass spectrometry technique in order to greatly reduce the sample size requirement. We are currently applying this novel technique at an electric power facility in California and a metal plating facility in France in order to

  12. Kinetics and equilibrium studies for sorption of Cu(II) and Cr(Vi) Ions onto polymeric composite resins

    International Nuclear Information System (INIS)

    The sorption behavior of Cu(II) and Cr(Vi) ions from aqueous solutions was studied using polymeric composite resins. Batch sorption experiments were performed as a function of hydrogen ion concentration, presence of complexing agent, effect of sorbent dosage and ionic strength. Kinetic parameters as a function of initial ion concentration were determined to predict the sorption behavior of Cu(Il) and Cr(Vi) onto polymeric composite resins. The equilibrium data could be fitted by the Freundlich adsorption isotherm equation. Industrial and mining waste water are important sources of heavy metals pollution (Quek et al, 1998). Chromium compounds are widely used by modern industries, resulting in large quantities of this element being discharged into the environment. Some of the main uses of chromium compounds are: plastic coating of surfaces, electroplating of metal, leather tanning and finishing, and in pigments and wood preservative (Korngold et al., 2003 and (Demirbas et al., 2004). Chromium occurs in waste water resulting from these operations is in both trivalent Cr(III) and hexavalent Cr(Vi) forms. The presence of Cu(II) in wastewater is also a problem. Copper is used extensively by electrical industries, in fungicides and in anti-fouling paints. When Cu is ingested at high concentrations, it become toxic to humans, causing cancer and promoting oxidation. The present method for removal of Cu(II) is to be precipitated as copper hydroxide by liming. However, with this process, residual Cu remains a problem (Findon et al, 1993). Owing to their wide uses, the efficient removal of toxic metal ions from waste water is an important and widely studied research area where a number of technologies have been developed over the years (Deans et al., 1992). The most important of these methods are filtration, chemical precipitation, ion exchange, sorption, electrodeposition and membrane systems. All these approaches have their inherent advantages and limitations

  13. Aqueous solubility speciation of Cr(VI) in ferrochrome bag filter dust / Willem Petrus Johannes van Dalen

    OpenAIRE

    Van Dalen, Willem Petrus Johannes

    2015-01-01

    The production of ferrochrome (FeCr) from chromite ore is a reducing process, whereby the Cr(III) and Fe(II) in the ore are reduced to metallic chromium (Cr) and iron (Fe) in the final product. FeCr is mostly used for the production of stainless steel, which is a vital alloy in modern society. It is, however, impossible to exclude oxygen completely from all the high temperature steps during the production process and very small amounts of Cr(VI) are therefore formed, although not intended. Th...

  14. Redução de cromo hexavalente por bactérias isoladas de solos contaminados com cromo Reduction of hexavlent chromium by isolated bacteria of contaminated soils with chromium

    Directory of Open Access Journals (Sweden)

    Daniele Conceição

    2007-12-01

    Full Text Available A redução do Cr(VI para Cr(III diminui a toxidade deste metal no ambiente, uma vez que o Cr(III é insolúvel às membranas biológicas. Assim, a redução microbiana do Cr(VI é uma alternativa para reduzir os impactos ambientais causados por este metal, utilizado em diversos processos industriais. O objetivo deste trabalho foi selecionar microrganismos a partir de solo contaminado com cromo e caracterizar sua capacidade de redução do Cr(VI durante o crescimento celular. A atividade de redução do Cr(VI pelos isolados foi quantificada com o reagente de s-difenilcarbazida. No isolamento, foram obtidas 20 bactérias resistentes a cromo(VI; seis destas foram capazes de reduzir acima de 100mg L-1 Cr(VI em 24 horas. As bactérias selecionadas foram eficientes na redução do Cr(VI e apresentam potencial para outros estudos, visando à aplicação em processos de biorremediação.The reduction of Cr(VI to Cr(III decrease the toxic effect of this metal in the environment, because Cr(III is insoluble to the biological membranes. The microbial reduction of Cr(VI it is an alternative to reduce the environmental impacts caused by this metal used in several industrial processes. The objective of this research was to select microorganisms from chromium contaminated soil and to characterize their ability to reduce Cr(VI. The activity of reduction of Cr(VI for the isolated was quantified with s-diphenylcarbazide. A group of 20 chromium resistant bacteria were isolated; six of these were able to reduce 100mg L-1 Cr(VI in 24 hours. The isolated bacteria, from contaminated soil can remediate chromate and presented potential for other studies seeking their application in bioremediation processes.

  15. Electrothermal atomic absorption spectrometric determination of total and hexavalent chromium in atmospheric aerosols

    International Nuclear Information System (INIS)

    A method was developed which allow separate determination of Cr(VI) and total Cr from the same minute sample of atmospheric aerosols. Cr(VI) was leached was with 0.1 M Na2CO3 and the total Cr concentrations were determined after acid digestion. The method was validated by the analysis of certified reference materials, CRM 545, Mess-3 and Pacs-2 with good agreement between certified and found values. Cr concentrations in air samples taken around the chromium smelter show concentrations that exceed the maximum allowed levels in 8 h with higher values closer to the smelter. The limit of detection (LOD) of the method for Cr(VI) determination in air samples was found to be 0.2 ng m-3, i.e. lower than offered by the commonly preferred spectrophotometric and colorimetric techniques

  16. RICE BRAN CARBON: AN ALTERNATIVE TO COMMERCIAL ACTIVATED CARBON FOR THE REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTION

    OpenAIRE

    Syed Hadi Hasan; Deeksha Ranjan

    2010-01-01

    Rice bran carbon (RBC) prepared from rice bran (an agricultural waste) was successfully utilized for the removal of hexavalent chromium from aqueous solution. The potentiality of RBC was tested and compared with commercial activated carbon (CAC), and it was found that RBC removed 95% of hexavalent chromium at pH 2, 1000 µM Cr(VI) concentration, temperature 30 oC, and adsorbent dose of 2 g/L. The maximum uptake of total chromium obtained by applying the Langmuir isotherm model was 138.88 mg/g ...

  17. Radiometric and spectrophotometric studies of the behavior of chromium(VI) oxide in concentrated perchloric acid

    Energy Technology Data Exchange (ETDEWEB)

    Pezzin, S.H.; Collins, C.H.; Collins, K.E. [Universidade Estadual de Campinas (Brazil). Inst. de Quimica; Archundia, C. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares

    1997-11-01

    A study of the behavior of {sup 51}CrO{sub 3} in 70% HClO{sub 4} over the temperature range from 20 to 194 C by means of Cr-51 labelling, UV-VIS spectrophotometry and ion exchange chromatography, shows that the solubility of {sup 51}CrO{sub 3} depends on a competition between the dissolution process and the acid reduction of solution phase Cr(VI). These processes occur simultaneously and are dependent on both the temperature and the concentration of Cr(VI), as shown by comparison between radiometric measurements (where total chromium can be accurately determined) and spectrophotometric measurements (where only the Cr(VI) is detectable at the wavelengths studied). These conclusions are confirmed by PbCrO{sub 4} precipitation of {sup 51}Cr(VI), where at 194 C, 97% of the total chromium appears as Pb{sup 51}CrO{sub 4} while at 86 C only 5% does. Cation exchange chromatography of the solution after brief contact of {sup 51}CrO{sub 3} with concentrated HClO{sub 4} at 20 C shows only traces of {sup 51}Cr(VI), most of the radioactivity eluting as {sup 51}Cr(H{sub 2}O){sup 3+}{sub 6}, with smaller amounts of species with +2 and +1 charges. These results imply serious limitations to the spectrophotometric determination of low concentrations of total chromium in alloys or in biological material which use dissolution in 70% HClO{sub 4} as a primary analytical step. (orig.)

  18. Evaluating the risk of chromium reoxidation in aquifer sediments following a reductive bioremediation treatment

    Science.gov (United States)

    Varadharajan, C.; Nico, P. S.; Yang, L.; Han, R.; Bill, M.; Larsen, J.; Van Hise, A.; Molins, S.; Steefel, C.; Conrad, M. E.; Lim, H.; Brodie, E. L.; Beller, H. R.

    2011-12-01

    Remediation of chromium contamination typically involves reducing the toxic and soluble hexavalent form, Cr(VI), to the relatively harmless and mostly immobile trivalent state, Cr(III). The objective of this study is to investigate the potential for reduced chromium precipitates to be remobilized under oxidizing conditions that are expected to be prevalent some time after the bioremediation treatment is completed. In an initial phase of the experiment, reduction under anaerobic conditions was observed for over 12 months by subjecting flow-through columns containing homogenized sediments from the Hanford 100H aquifer to different dominant electron acceptors, i.e. NO3-, Fe(III), or SO42-, in the presence of 5 μM Cr(VI) and 5 mM lactate. Cr(VI) was depleted in the effluent solutions of the nitrate-treated columns, all of which exhibited denitrification, as well as in sulfate-amended columns in which fermentative conditions became dominant (with a minor amount of sulfate reduction). In the second phase of the study, oxygenated water with 2 mM nitrate was flowed through the denitrifying and fermentative columns for several months, without addition of Cr(VI) or lactate. The results show that the chromium that precipitated in the denitrifying columns was steadily mobilized under the oxidizing conditions, although the concentration of Cr(VI) in the effluent remained low (effluent from the fermentative sulfate-amended column. Reducing conditions were sustained in the fermentative column despite the continuous influx of O2, as indicated by the decrease of nitrate and accumulation of nitrite, potentially due to the presence of sulfides precipitated during the initial reducing phase of the experiment. The results from this study suggest that the biogeochemical conditions present during the reductive treatment phase can substantially impact the long-term sustainability of the remediation effort.

  19. Transformed yeast (Schizosaccharomyces pombe) overexpressing rice Tau class glutathione S-transferase (OsGSTU30 and OsGSTU41) shows enhanced resistance to hexavalent chromium.

    Science.gov (United States)

    Tripathi, Ankita; Indoliya, Yuvraj; Tiwari, Madhu; Tiwari, Poonam; Srivastava, Dipali; Verma, Pankaj kumar; Verma, Shikha; Gautam, Neelam; Chakrabarty, Debasis

    2014-08-01

    Extensive use of hexavalent chromium [Cr(VI)] in leather tanning, stainless-steel production, wood preservatives and electroplating industries has resulted in widespread environmental pollution and poses a serious threat to human health. A plant's response to Cr(VI) stress results in growth inhibition and toxicity leading to changes in components of antioxidant systems. In a previous study, we observed that a large number of glutathione S-transferase (GST) genes were up-regulated under Cr(VI) stress in rice. In this study, two rice root-specific Tau class GST genes (OsGSTU30 and OsGSTU41) were introduced into yeast (Schizosaccharomyces pombe). Transformed yeast cells overexpressing OsGSTU30 and OsGSTU41 had normal growth, but had much higher levels of GST activities and showed enhanced resistance to Cr(VI) as compared to control cells (transformed with empty vector). Also, a higher accumulation of chromium was found in the transformed yeast cells as compared to the control cells. Manipulation of glutathione biosynthesis by exogenous application of buthionine sulfoximine abolishes the protective effect of OsGSTs against Cr(VI) stress. These results suggest that Tau class OsGSTs play a significant role in detoxification of Cr(VI), probably by chelating and sequestrating glutathione-Cr(VI) complexes into vacuoles. PMID:24968244

  20. Reproductive toxicological aspects of chromium in males

    International Nuclear Information System (INIS)

    To expand our present understanding of the effects of chromium on male fertility a number of studies were designed to achieve this through the use of chromium intoxicated experimental animals and through investigation of sexual hormones and sperm quality in welders. Also in view of the lack of an experimental model for effects of noxious substance on the epididymal spermatozoa the main objectives of the series of studies reviewed here were: A. To establish a model for evaluation of epididymal sperm count and motility in the rat. B. To investigate and compare the effects of tri- and hexavalent chromium on epididymal spermatozoa. Further to describe the effects of low-dose long-time exposure of rats to the most toxicological interesting chromium oxidative state - hexavalent chromium. C. By the use of autoradiography and γ-countinuing to expand the present knowledge on the distribution of chromium in the body with special reference to the male reproductive organs. D. To describe the effects of exposure to hexavalent chromium in welding fume on levels of sexual hormones and semen parameters in welders. (EG)

  1. Chromium Isotopes Record Fluctuations in Precambrian Biospheric Oxygenation

    Science.gov (United States)

    Frei, R.; Gaucher, C.; Poulton, S. W.; Canfield, D. E.

    2009-12-01

    There is a direct relationship between life, oxygen, and the surface chemistry of the Earth. Geochemical data suggest that oxygenation of the Earth's atmosphere occurred in two broad steps, near the beginning and the end of the Proterozoic Eon (2500 to 542 million years ago), but the details of this history are unclear. The geochemical behaviour of chromium (Cr) is highly sensitive to the redox state of the surface environment as oxidative weathering processes produce the oxidised hexavalent [Cr(VI)] form. Oxidation of reduced trivaltent [Cr(III)] chromium on land is accompanied by an isotopic fractionation, leading to enrichment of the mobile hexavalent form in the heavier isotope. The fractionated Cr isotope signature is then tranfered by riverine transport to the sea. Here, we use Cr stable isotopes from banded iron formations (BIFs) to track the presence of Cr(VI) in Precambrian oceans, providing a time-resolved picture of the oxygenation history of Earth’s atmosphere-hydrosphere system. Fractionated Cr isotopes indicate the accumulation of Cr(VI) in ocean surface waters ~2.8 to 2.6 billion years (Gyr) ago and a likely transient elevation in atmospheric and surface ocean oxygen prior to the first great rise of oxygen 2.45-2.2 Gyr ago (the Great Oxidation Event; GOE). In contrast, Cr isotopes in ~1.88 Gyr old BIFs are not fractionated, indicating a major decline in atmospheric oxygen and demonstrating that the GOE did not lead to a unidirectional stepwise increase in atmospheric oxygen. In the late Neoproterozoic, ~800 to 542 million years (Myr) ago, we observe strong positive fractionations in Cr isotopes (δ53Cr up to +4.9 ‰) providing independent support for increased surface oxygenation at this time. This may have stimulated rapid evolution of macroscopic multicellular life. Our chromium isotope data thus provide new insights into the oxygenation history of the Earth, and highlight its use as a powerful redox tracer in aquatic systems.

  2. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions.

  3. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions. PMID:26361854

  4. Levels of chromium contamination in the estuary of the Iraja river (Guanabara Bay) and experimental incorporation of 51Cr in barnacles (Balanus sp)

    International Nuclear Information System (INIS)

    Levels were determined of chromium contamination in the estuary of Iraja River, produced by an electroplating industry located 3 km upstream the study area. Uptake-and release kinetics of Cr(VI) and Cr(III) in barnacles (Balanus sp.) were studied. Samples of barnacles and suspended particles from Guanabara Bay were analysed. Chromium concentrations (dry weight) ranged from not detectable (ND) to 154,66 μg/g for soft tissues and from ND to 423,76 μg/g for suspended particles. Mean of maximum concentrations of chromium in samples from Guanabara Bay are 3 and 4 times above those of identical samples from control area (Coroa Grande). Soft tissues presented a concentration factor (CF) of 103 related to chromium available in suspended particles. 51Cr(VI) is preferentiably incorparated by soft tissues (biological half life being 100 days). Chromium uptake by Balanus sp from solution is as significant as it is from particulate matter available in sea water from experimental sets. CF for Cr(VI) in soft tissues in laboratory conditions was 102 related to 51Cr present in sea water. Environmental chromium contamination was found to be of the same order of magnitude or above levels reported for other areas subjected to industrial impacts. Barnacles appear to be able to accumulate chromium in soft tissues from the available metal in the environment. Cr(VI) is the critical form, being greatly accumulated in soft tissues of barnacles, that act as a long-term integrator of this metal. For Cr(III), this organism can only be regarded as an instantaneous indicator of environmental contamination of chromium attached to suspended particles. (M.A.)

  5. The fate of chromium during tropical weathering

    DEFF Research Database (Denmark)

    Berger, Alfons; Frei, Robert

    2014-01-01

    We performed a mineral, geochemical and Cr–Sr–Pb isotope study on a laterite profile developed on ca. 540 Ma old tonalitic bedrock in Madagascar with special emphasis on the behavior of chromium during tropical weathering. The observed strong depletions of Ca, Si, and P, and enrichment of Fe and Al...... of the soil profile relative to stage one altered saprolite. This gain in Cr is accompanied by decreasing δ53Cr values and can be explained by partial immobilization (possibly by adsorption/coprecipitation on/with Fe-oxy-hydroxides) of mobile Cr(III) during upward transport in the weathering profile....... The negatively fractionated δ53Cr values measured in the weathering profile relative to the unaltered tonalitic bedrock characterized by a high temperature magmatic inventory Cr isotope signature are consistent with loss of a positively fractionated Cr(VI) pool formed during weathering. The predicted existence...

  6. Adsorption and desorption characteristics of imidazole-modified silica for chromium(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhike, E-mail: wzk@htu.cn; Ye, Cunling; Wang, Xueyuan; Li, Juan

    2013-12-15

    Imidazole-modified silica adsorbent with chloride as counter ion (SilprIm-Cl) was synthesized and characterized by scanning electron microscope, infrared spectra, thermogravimetric analysis, elemental analysis and BET analysis. The adsorption of chromium(VI) from aqueous solutions onto the SilprIm-Cl was investigated at varying pH, contact time, initial Cr(VI) concentration, adsorbent amount and temperature. The experimental results showed that the modification of silica with imidazole enhanced significantly the adsorption capacity for Cr(VI). The SilprIm-Cl was of primary anion-exchange adsorption nature, pH and excess Cl{sup −} ions in solutions affected significantly the adsorption of chromium(VI). The adsorption isotherms would be well defined with Langmuir model instead of Freundlich model. The adsorption process follows the pseudo-second-order kinetics. The maximum adsorption capacity of Cr(VI) of 47.79 mg g{sup −1} with an initial Cr(VI) concentration of 150 mg L{sup −1} was achieved at pH of 2.0. The adsorption–desorption experiments of the SilprIm-Cl exhibited that the adsorbent could be regenerated and reused eight times at least by simple washings with NaCl and water in turn.

  7. Role of Iron Anode Oxidation on Transformation of Chromium by Electrolysis

    Science.gov (United States)

    Sarahney, Hussam; Mao, Xuhui; Alshawabkeh, Akram N.

    2012-01-01

    The potential for chemical reduction of hexavalent chromium Cr(VI) in contaminated water and formation of a stable precipitate by Zero Valent Iron (ZVI) anode electrolysis is evaluated in separated electrodes system. Oxidation of iron electrodes produces ferrous ions causing the development of a reducing environment in the anolyte, chemical reduction of Cr(VI) to Cr(III) and formation of stable iron-chromium precipitates. Cr(VI) transformation rates are dependent on the applied electric current density. Increasing the electric current increases the transformation rates; however, the process is more efficient under lower volumetric current density (for example 1.5 mA L−1 in this study). The transformation follows a zero order rate that is dependent on the electric current density. Cr(VI) transformation occurs in the anolyte when the electrodes are separated as well as when the electrolytes (anolyte/catholyte) are mixed, as used in electrocoagulation. The study shows that the transformation occurs in the anolyte as a result of ferrous ion formation and the product is a stable Fe15Cr5(OH)60 precipitate. PMID:23284182

  8. Role of Iron Anode Oxidation on Transformation of Chromium by Electrolysis.

    Science.gov (United States)

    Sarahney, Hussam; Mao, Xuhui; Alshawabkeh, Akram N

    2012-12-30

    The potential for chemical reduction of hexavalent chromium Cr(VI) in contaminated water and formation of a stable precipitate by Zero Valent Iron (ZVI) anode electrolysis is evaluated in separated electrodes system. Oxidation of iron electrodes produces ferrous ions causing the development of a reducing environment in the anolyte, chemical reduction of Cr(VI) to Cr(III) and formation of stable iron-chromium precipitates. Cr(VI) transformation rates are dependent on the applied electric current density. Increasing the electric current increases the transformation rates; however, the process is more efficient under lower volumetric current density (for example 1.5 mA L(-1) in this study). The transformation follows a zero order rate that is dependent on the electric current density. Cr(VI) transformation occurs in the anolyte when the electrodes are separated as well as when the electrolytes (anolyte/catholyte) are mixed, as used in electrocoagulation. The study shows that the transformation occurs in the anolyte as a result of ferrous ion formation and the product is a stable Fe(15)Cr(5)(OH)(60) precipitate.

  9. An automatic micro-sequential injection bead injection lab-on-valve (muSI-BI-LOV) assembly for speciation analysis of ultra trace levels of Cr(III) and Cr(VI) incorporating on-line chemical reduction and employing detection by electrothermal atomic absorption spectrometry (ETAAS)

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    2005-01-01

    and determination of trace levels of Cr(III) and Cr(VI) in environmental samples. The method was validated by determination of chromium species in CRM and NIST standard reference materials, and by spike recoveries of surface waters. Statistical comparison of means between experimental results and the total chromium...... certified values for the CRM and NIST materials revealed the non-existence of significant differences at a 95% confidence level....

  10. Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis.

    Science.gov (United States)

    Demir, Aynur; Arisoy, Münevver

    2007-08-17

    The objective of the present study is cost and benefit analysis of biological and chemical removal of hexavalent chromium [Cr(VI)] ions. Cost and benefit analysis were done with refer to two separate studies on removal of Cr(VI), one of heavy metals with a crucial role concerning increase in environmental pollution and disturbance of ecological balance, through biological adsorption and chemical ion-exchange. Methods of biological and chemical removal were compared with regard to their cost and percentage in chrome removal. According to the result of the comparison, cost per unit in chemical removal was calculated 0.24 euros and the ratio of chrome removal was 99.68%, whereas those of biological removal were 0.14 and 59.3% euros. Therefore, it was seen that cost per unit in chemical removal and chrome removal ratio were higher than those of biological removal method. In the current study where chrome removal is seen as immeasurable benefit in terms of human health and the environment, percentages of chrome removal were taken as measurable benefit and cost per unit of the chemicals as measurable cost.

  11. Spectral and Mechanistic Investigation of Oxidative Decarboxylation of Phenylsulfinylacetic Acid by Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Subramaniam, Perumal; Selvi, Natesan Thamil [Aditanar College of Arts and Science, Tiruchendur (India); Devi, Soundarapandian Sugirtha [Kamaraj College, Thoothukudi (India)

    2014-02-15

    The oxidative decarboxylation of phenylsulfinylacetic acid (PSAA) by Cr(VI) in 20% acetonitrile . 80% water (v/v) medium follows overall second order kinetics, first order each with respect to [PSAA] and [Cr(VI)] at constant [H{sup +}] and ionic strength. The reaction is acid catalysed, the order with respect to [H{sup +}] is unity and the active oxidizing species is found to be HCrO{sub 3}{sup +}. The reaction mechanism involves the rate determining nucleophilic attack of sulfur atom of PSAA on chromium of HCrO{sub 3}{sup +} forming a sulfonium ion intermediate. The intermediate then undergoes α,β-cleavage leading to the liberation of CO{sub 2}. The product of the reaction is found to be methyl phenyl sulfone. The operation of substituent effect shows that PSAA containing electron-releasing groups in the meta- and para-positions accelerate the reaction rate while electron withdrawing groups retard the rate. An excellent correlation is found to exist between log k{sub 2} and Hammett σ constants with a negative value of reaction constant. The ρ value decreases with increase in temperature evidencing the high reactivity and low selectivity in the case of substituted PSAAs.

  12. Cr(VI Sorption/Desorption on Pine Sawdust and Oak Wood Ash

    Directory of Open Access Journals (Sweden)

    Avelino Núñez-Delgado

    2015-07-01

    Full Text Available The objective of this work was to study Cr(VI sorption/desorption on two by-products from the wood industry: pine sawdust and oak wood ash. The retention/release experiments were carried out using standard batch-type trials. In the sorption-phase experiments, pine sawdust showed 23% sorption when a concentration of 100 mg Cr(VIŸL−1 was added, whereas sorption on oak wood ash was 17%. In the desorption-phase, chromium release was clearly higher from pine sawdust than from oak wood ash (98% and 66%, respectively. Sorption curves were well fitted to the Freundlich and Lineal models. In view of the results, both materials can be considered of very limited value to remove Cr from polluted soil and water, which can be of relevance regarding its appropriate use as biosorbents and recycled by-products.

  13. Cr(VI) Sorption/Desorption on Pine Sawdust and Oak Wood Ash.

    Science.gov (United States)

    Núñez-Delgado, Avelino; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Cutillas-Barreiro, Laura; Nóvoa-Muñoz, JuanCarlos; Arias-Estévez, Manuel

    2015-08-01

    The objective of this work was to study Cr(VI) sorption/desorption on two by-products from the wood industry: pine sawdust and oak wood ash. The retention/release experiments were carried out using standard batch-type trials. In the sorption-phase experiments, pine sawdust showed 23% sorption when a concentration of 100 mg Cr(VI)ŸL-1 was added, whereas sorption on oak wood ash was 17%. In the desorption-phase, chromium release was clearly higher from pine sawdust than from oak wood ash (98% and 66%, respectively). Sorption curves were well fitted to the Freundlich and Lineal models. In view of the results, both materials can be considered of very limited value to remove Cr from polluted soil and water, which can be of relevance regarding its appropriate use as biosorbents and recycled by-products. PMID:26230705

  14. High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption.

    Science.gov (United States)

    Lu, Yi; Jiang, Bin; Fang, Liang; Ling, Faling; Gao, Jiemei; Wu, Fang; Zhang, Xihua

    2016-06-01

    The NiFe layered double hydroxides (LDHs) with different mole ratio of Ni/Fe (4:1, 3:1, 7:3 and 1:1) were prepared by a simple coprecipitation method. The adsorption performance were evaluated by the removal of methyl orange (MO) dye and hexavalent chromium(VI) heavy metal ion. It is found that Ni4Fe1-LDH can remove more than 92% of MO in 10 min at the 10 mg/L MO initial concentration, and 97% of Cr(VI) in 1 h at 4 mg/L Cr2O7(2-) initial concentration. The saturated adsorption capacity of Ni4Fe1-LDH is found to be as large as 205.76 mg/g for MO and 26.78 mg/g for Cr(VI). The adsorption behavior of this new adsorbent is fitted well with Langmuir isotherm and the pseudo-second-order kinetic model, indicative of a monolayer and chemical adsorption that synergistically originates from exchangeable anions mechanism and layer charge density. Due to the excellent removal capacity of MO and Cr(VI), the NiFe-LDHs could be a promising adsorbent for wastewater treatment. PMID:26999751

  15. Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA

    Energy Technology Data Exchange (ETDEWEB)

    Izbicki, John A. [U.S. Geological Survey, 4165 Spruance Road, Suite O, San Diego, CA 92123 (United States)], E-mail: jaizbick@usgs.gov; Ball, James W. [U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado, CO 80303 (United States); Bullen, Thomas D. [U.S. Geological Survey, 345 Middlefield Road, Building 15, McKelvey Building, MS-420, Menlo Park, CA 94025 (United States); Sutley, Stephen J. [Denver Federal Center, P.O. Box 25046, MS-964, Denver, CO 80225-0046 (United States)

    2008-05-15

    Chromium(VI) concentrations in excess of the California Maximum Contaminant Level (MCL) of 50 {mu}g/L occur naturally in alkaline, oxic ground-water in alluvial aquifers in the western Mojave Desert, southern California. The highest concentrations were measured in aquifers eroded from mafic rock, but Cr(VI) as high as 27 {mu}g/L was measured in aquifers eroded from granitic rock. Chromium(VI) concentrations did not exceed 5 {mu}g/L at pH < 7.5 regardless of geology. {delta}{sup 53}Cr values in native ground-water ranged from 0.7 to 5.1 per mille and values were fractionated relative to the average {delta}{sup 53}Cr composition of 0 per mille in the earth's crust. Positive {delta}{sup 53}Cr values of 1.2 and 2.3 per mille were measured in ground-water recharge areas having low Cr concentrations, consistent with the addition of Cr(VI) that was fractionated on mineral surfaces prior to entering solution. {delta}{sup 53}Cr values, although variable, did not consistently increase or decrease with increasing Cr concentrations as ground-water flowed down gradient through more oxic portions of the aquifer. However, increasing {delta}{sup 53}Cr values were observed as dissolved O{sub 2} concentrations decreased, and Cr(VI) was reduced to Cr(III), and subsequently removed from solution. As a result, the highest {delta}{sup 53}Cr values were measured in water from deep wells, and wells in discharge areas near dry lakes at the downgradient end of long flow paths through alluvial aquifers. {delta}{sup 53}Cr values at an industrial site overlying mafic alluvium having high natural background Cr(VI) concentrations ranged from -0.1 to 3.2 per mille . Near zero {delta}{sup 53}Cr values at the site were the result of anthropogenic Cr. However, mixing with native ground-water and fractionation of Cr within the plume increased {delta}{sup 53}Cr values at the site. Although {delta}{sup 53}Cr was not necessarily diagnostic of anthropogenic Cr, it was possible to identify the extent

  16. Evaluation of multi-walled carbon nanotubes performance in adsorption and desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    Gholipour Mina

    2012-01-01

    Full Text Available In this study, the removal of hexavalent chromium from aqueous solutions using multi-walled carbon nanotubes (MWCNTs has been investigated as a function of adsorbent dosage, initial Cr(VI concentration, initial pH, contact time and temperature. Low pH, low initial concentrations of Cr(VI, increasing contact time and high temperature were found as optimal conditions. A comparison of kinetics models applied to the adsorption of Cr(VI ions on the MWCNTs was evaluated for the pseudo first-order, the pseudo second-order, and Elovich kinetics models, respectively. Pseudo second-order kinetics model was found to correlate the experimental data well. Equilibrium isotherms were measured experimentally and results show that data were fitted well by the BET model. Thermodynamic parameters were estimated and results suggest that the adsorption process is spontaneous, physical and endothermic. The reversibility of Cr(VI adsorption onto MWCNTs by desorption process and the effect of operating factors such as regeneration solution characteristics, contact time and temperature on this process was investigated. Results show that MWCNTs are effective Cr(VI adsorbents and can be reused through many cycles of regeneration without any high decreasing in their performance.

  17. Effect of Hexavalent Chromium on Electron Leakage of Respiratory Chain in Mitochondria Isolated from Rat Liver

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2013-03-01

    Full Text Available Background/Aims: In the present study, we explored reactive axygen species (ROS production in mitochondria, the mechanism of hexavalent chromium (Cr(VI hepatotoxicity, and the role of protection by GSH. Methods: Intact mitochondria were isolated from rat liver tissues and mitochondrial basal respiratory rates of NADH and FADH2 respiratory chains were determined. Mitochondria were treated with Cr(VI, GSH and several complex inhibitors. Mitochondria energized by glutamate/malate were separately or jointly treated with Rotenone (Rot, diphenyleneiodonium (DPI and antimycinA (Ant, while mitochondria energized by succinate were separately or jointly treated with Rot, DPI ‚ thenoyltrifluoroacetone (TTFA and Ant. Results: Cr(VI concentration-dependently induced ROS production in the NADH and FADH2 respiratory chain in liver mitochondria. Basal respiratory rate of the mitochondrial FADH2 respiratory chain was significantly higher than that of NADH respiratory chain. Hepatic mitochondrial electron leakage induced by Cr(VI from NADH respiratory chain were mainly from ubiquinone binding sites of complex I and complex III. Conclusion: Treatment with 50µM Cr(VI enhances forward movement of electrons through FADH2 respiratory chain and leaking through the ubiquinone binding site of complex III. Moreover, the protective effect of GSH on liver mitochondria electron leakage is through removing excess H2O2 and reducing total ROS.

  18. Hydrophobic Poly(ionic liquid for Highly Effective Separation of Methyl Blue and Chromium Ions from Water

    Directory of Open Access Journals (Sweden)

    Jie Kong

    2013-10-01

    Full Text Available The hydrophobic poly(ionic liquid of poly(3-ethyl-1-vinylimidazolium bis(trifluoromethanesulfonylimide (PVI-TFSI containing imidazolium cations and bis(trifluoromethanesulfonylimide anions was synthesized for the separation of methyl blue and chromium ions [Cr(VI] from water. The adsorption of methyl blue and Cr(VI in PVI-TSFI/water system reached equilibrium stage within 60 min and 12 h, and the maximum adsorbed percentage for methyl blue and Cr(VI was 97.6% and 98.0%, respectively. The adsorption regi me of either methyl blue or Cr(VI for PVI-TFSI was in correspondence with the Langmuir adsorption model. The maximum adsorption capacity of PVI-TFSI for methyl blue and Cr(VI was determined as 476.2 and 17.9 mg/g, respectively. The hydrophobic poly(ionic liquid with a remarkable adsorbent capacity of methyl blue and Cr(VI can be conveniently synthesized and shows potential in water treatment for the effective separation of organic dyes or heavy metal ions.

  19. Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium

    Directory of Open Access Journals (Sweden)

    Yang Yuan

    2012-06-01

    Full Text Available This study explored the reduction of adenosine triphosphate (ATP levels in L-02 hepatocytes by hexavalent chromium (Cr(VI using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%. The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI group (P < 0.05. The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.

  20. Iron(II) modified natural zeolites for hexavalent chromium removal from contaminated water

    OpenAIRE

    Lofù Antonio; Mastrorilli Piero; Dell’Anna Maria Michela; Mali Matilda; Sisto Raffaello; Vignola Rodolfo

    2016-01-01

    Three different types of Fe(II)-modified natural zeolites were tested as supports in continuous-flow columns for the treatment of Cr(VI) contaminated water. The natural zeolites chosen as support were commercially available Zeosand (80% clinoptilolite), ATZ (79% phillipsite/chabazite), and ZS-55RW (90% Chabazite). All the examined modified zeolites turned out active for hexavalent chromium abatement, lowering its concentration below the European regulation level, even at relatively high flow ...

  1. The Growth of Gypsum in the Presence of Hexavalent Chromium: A Multiscale Study

    OpenAIRE

    Juan Morales; José Manuel Astilleros; Emilio Matesanz; Lurdes Fernández-Díaz

    2016-01-01

    The sorption of dissolved inorganic pollutants into the structure of minerals is an important process that controls the mobility and fate of these pollutants in the Earth’s crust. It also modifies the surface structure and composition of the host mineral, affecting its crystallization kinetics. Here, we investigate the effect of hexavalent chromium, Cr(VI), on the nucleation and growth of gypsum by conducting two types of experiments: (i) in situ atomic force microscopy (AFM) observations of ...

  2. Solid phase distribution of chromium in industrially contaminated urban soil, Glasgow

    OpenAIRE

    Broadway, A.; Farmer, J G; Ngwenya, B. T.; Cave, M.R.; Fordyce, F.M.; Bewley, R.J.F.

    2007-01-01

    Like many cities throughout the UK, Glasgow has a long history of both urbanisation and industrialisation, resulting in elevated concentrations of potentially harmful elements. Between 1830 and 1968 Glasgow was home to one of the world’s largest producers of chromium-based chemicals. Chromite ore processing residue (COPR) arising from the factory was used as infill material across large areas of SE Glasgow, resulting in widespread land contamination with Cr(VI), a known carcino...

  3. Prevention of chromium(VI) formation by improving the tannery processes

    OpenAIRE

    Font Vallès, Joaquim; Rius Carrasco, Antoni; Marsal Monge, Agustín; Hauber, Christiane; Tommaselli, Michelle

    2006-01-01

    This work has been funded by the European Commission through the Chrom6less Project (CRAFT -1999-71638). The objectives of the project were: - Establishment of the analytical methodology which provided reproducible results that may be free of interferences. - Identification of the factors that facilitated or impeded the transformation of Cr(III) to Cr(VI). - Establishment of the best conditions that allowed the production of chromium(VI) free leather, even during the l...

  4. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    International Nuclear Information System (INIS)

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm2 lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm2 lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health

  5. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S., E-mail: sandra.wise@maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Xie, Hong, E-mail: hongxie@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Fukuda, Tomokazu, E-mail: tomofukuda009@gmail.com [Graduate School of Agricultural Sciences, Tohoku University, Laboratory of Animal Breeding and Genetics, Second Research Building, Rm 112, 1-1 Amamiyamachi, Aoba-ku, Sendai 981-8555 (Japan); Douglas Thompson, W., E-mail: dougt@usm.maine.edu [Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); and others

    2014-09-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health.

  6. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUND WATER: VOLUME 1 DESIGN AND INSTALLATION

    Science.gov (United States)

    A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...

  7. AN IN SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER:VOLUME 2 PERFORMANCE MONITORING

    Science.gov (United States)

    A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...

  8. Chromium in diet

    Science.gov (United States)

    The best source of chromium is brewer's yeast. However, many people do not use brewer's yeast because it causes bloating ( abdominal distention ) and nausea . Other good sources of chromium include ...

  9. Specification of the Operational Parameters Contribution in the Efficiency of TiO2-P25 Nanoparticles in the Photocatalytic Removal of Cr(VI by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Maryam SabonianSchoolari

    2014-12-01

    Full Text Available Chromium exists in environment both as trivalent [Cr(III] and hexavalent [Cr(VI] forms. However, hexavalent form is five hundred times more toxic than the trivalent form. Heterogeneous photocatalysis processes, using aqueous suspensions of semiconductors, have received considerable attention in the removal of toxic metals from aqueous media. In this work the nanoparticles of TiO2-P25 in the form of slurry were used for photoreduction of Cr(VI to the less harmful Cr(III. The process has been conducted in different operational conditions such as different initial concentrations of Cr(VI, dosage of photocatalyst, irradiation times, irradiation intensities of light and pH. For the optimization of the process Taguchi experimental design was used. The results of optimization using the Taguchi method, indicated that the pH with 28%, initial concentration of Cr(VI with 26.99% and dosage of TiO2 nanocatalyst with 20.53% have the most effects among the selected factors. The intensity of UV light irradiation has the least effect on the efficiency of the process.

  10. Determination of equilibrium and kinetic parameters of the adsorption of Cr(III) and Cr(VI) from aqueous solutions to Agave Lechuguilla biomass.

    Science.gov (United States)

    Romero-González, Jaime; Gardea-Torresdey, Jorge L; Peralta-Videa, José R; Rodríguez, Elena

    2005-01-01

    This investigation reveals the capability of Agave lechuguilla for trivalent and hexavalent chromium removal from aqueous solutions. Experimentation included pH profile, time dependence, adsorption capacity (K(F) and Q(L)), adsorption intensity (n and R(L)) and saturation capacity (q(s)) studies. Batch experiments were conducted at 22( composite function)C to characterize and model the adsorption equilibrium as well as biomass adsorption rates. pH 4 was the optimum for Cr(III) binding, while Cr(VI) optimum binding was at pH 2. Time profile experiments indicated that the adsorption of Cr(VI) by lechuguilla biomass was time-dependent and that of Cr(III) was not. Kinetic models demonstrated that a pseudo-second order reaction model best described the kinetic data for Cr(VI). The adsorption isotherms showed that the binding pattern for Cr(VI) followed the Freundlich isotherm model, while that for Cr(III) followed the Langmuir isotherm. PMID:18365089

  11. Influence of rhamnolipids, produced by Pseudomonas aeruginosa NCAIM(P, B001380 on Cr(VI removal capacity in liquid medium

    Directory of Open Access Journals (Sweden)

    Avramović Nataša S.

    2013-01-01

    Full Text Available Pseudomonas aeruginosa NCAIM(P, B001380, a propitious bacterial strain isolated from mineral cutting oil was identified to be chromium tolerant and a producer of biosurfactant rhamnolipid (RL with potential application in heavy metal bioremediation. Culture growth, RL production and Cr(VI removal capacity of the strain in the presence of 50 mg L-1 (I and 100 mg L-1 of Cr(VI (II were studied. Maximum of RL production were found in the late-stationary phase at 72 h for both Cr(VI-amended cultures: I (236 mg L-1 and II (160 mg L-1, as well as the maximum of Cr(VI removal capacity: 70 % (I and 57 % (II. The amount of Cr in RL preparation II was 22 mg mg-1 determined by flame atomic absorption spectroscopy (FAAS. Appearance of a new band at 914 cm-1 in infrared (IR spectrum of RL (II indicated a significant proof for possible coordination of CrO42-ion with RL. The effect of Cr(VI on monorhamnolipids (RL1 and dirhamnolipids (RL2 distribution and its ratio were studied by electrospray ionization mass spectrometry (ESI-MS. An increase was observed in a RL2/RL1 ratio for II compared to control.

  12. Cr(VI) transport via a supported ionic liquid membrane containing CYPHOS IL101 as carrier: system analysis and optimization through experimental design strategies.

    Science.gov (United States)

    Rodríguez de San Miguel, Eduardo; Vital, Xóchitl; de Gyves, Josefina

    2014-05-30

    Chromium(VI) transport through a supported liquid membrane (SLM) system containing the commercial ionic liquid CYPHOS IL101 as carrier was studied. A reducing stripping phase was used as a mean to increase recovery and to simultaneously transform Cr(VI) into a less toxic residue for disposal or reuse. General functions which describe the time-depending evolution of the metal fractions in the cell compartments were defined and used in data evaluation. An experimental design strategy, using factorial and central-composite design matrices, was applied to assess the influence of the extractant, NaOH and citrate concentrations in the different phases, while a desirability function scheme allowed the synchronized optimization of depletion and recovery of the analyte. The mechanism for chromium permeation was analyzed and discussed to contribute to the understanding of the transfer process. The influence of metal concentration was evaluated as well. The presence of different interfering ions (Ca(2+), Al(3+), NO3(-), SO4(2-), and Cl(-)) at several Cr(VI): interfering ion ratios was studied through the use of a Plackett and Burman experimental design matrix. Under optimized conditions 90% of recovery was obtained from a feed solution containing 7mgL(-1) of Cr(VI) in 0.01moldm(-3) HCl medium after 5h of pertraction. PMID:24751491

  13. [Experimental study on the remediation of chromium contaminated groundwater with PRB media].

    Science.gov (United States)

    Zhu, Wen-Hui; Dong, Liang-Fei; Wang, Xing-Run; Zhai, Ya-Li

    2013-07-01

    Due to the surface reaction between zero-valent iron and Cr(VI), iron cannot be fully utilized in the Fe(0)-Permeable Reactive Barrier(PRB), and the PRB is prone to compaction and blockage. In order to resolve these problems, iron powder coated with different polymer was tested in the treatment of chromium-polluted groundwater. Experimental results demonstrated that sodium alginate (SA) was the best package materials. According to analysis with FEI and EDX, pore structures were created by cross-linking of SA with Ca2+, in which a lot of attaching points exist, and through which Cr(VI) could react with interior iron powder. SA coating cast iron (SAC) and reduced iron (SAR) were tested in the treatment of chromium-polluted groundwater individually; the results showed that the removal efficiency of Cr( VI) by SAC was double that by SAR. After optimization of technology parameters of SAC, the Cr(VI) removal process follows the pseudo first-order kinetics. Based on dynamic experiments with SAC, Cr(VI)/Fe(0) was up to 32.25 mg x g(-1) and the PRB maintained high permeability coefficient (2.38 cm x s(-1)) after complete reaction. Compared with cast iron media is feasible in the remediation of chromium contaminated groundwater. PMID:24028003

  14. Chromium and Genomic Stability

    OpenAIRE

    Wise, Sandra S.; Wise, John Pierce

    2011-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as high...

  15. Antioxidant Activity of Lawsonia inermis Extracts Inhibits Chromium(VI-Induced Cellular and DNA Toxicity

    Directory of Open Access Journals (Sweden)

    Gunjan Guha

    2011-01-01

    Full Text Available Hexavalent chromium Cr(VI is a very strong oxidant which consequently causes high cytotoxicity through oxidative stress. Prevention of Cr(VI-induced cellular damage has been sought in this study in aqueous and methanolic extracts of Lawsonia inermis Linn. (Lythraceae, commonly known as Henna. The extracts showed significant (P < .05 potential in scavenging free radicals (DPPH• and ABTS•+ and Fe3+, and in inhibiting lipid peroxidation. DNA damage caused by exposure of pBR322 to Cr(VI-UV is markedly inhibited by both extracts in varying degrees. A distinct decline in Cr(VI-induced cytotoxicity was noticed in MDA-MB-435S (human breast carcinoma cells with an increase in dosage of both extracts individually. Furthermore, both extracts proved to contain a high content of phenolic compounds which were found to have a strong and significant (P < .05 positive correlation to the radical scavenging potential, lipid peroxidation inhibition capacity and cyto-protective efficiency against Cr(VI-induced oxidative cellular damage. HPLC analysis identified some of the major phenolic compounds in both extracts, which might be responsible for the antioxidant potential and the properties of DNA and cyto-protection. This study contributes to the search for natural resources that might yield potent therapeutic drugs against Cr(VI-induced oxidative cell damage.

  16. Characterization of concentration, particle size distribution, and contributing factors to ambient hexavalent chromium in an area with multiple emission sources

    Science.gov (United States)

    Yu, Chang Ho; Huang, Lihui; Shin, Jin Young; Artigas, Francisco; Fan, Zhi-hua (Tina)

    2014-09-01

    Airborne hexavalent chromium (Cr(VI)) is a known pulmonary carcinogen and can be emitted from both natural and anthropogenic sources, including diesel emissions. However, there is limited knowledge about ambient Cr(VI) concentration levels and its particle size distribution. This pilot study characterized ambient Cr(VI) concentrations in the New Jersey Meadowlands (NJ ML) district, which is close to the heavily trafficked New Jersey Turnpike (NJTPK) as well as Chromium Ore Processing Residue (COPR) waste sites. Monitoring was simultaneously conducted at two sites, William site (∼50 m from NJTPK) and MERI site (∼700 m from NJTPK). The distance between the two sites is approximately 6.2 km. Ambient Cr(VI) concentrations and PM2.5 mass concentrations were concurrently measured at both sites during summer and winter. The summer concentrations (mean ± S.D. [median]), 0.13 ± 0.06 [0.12] ng/m3 at the MERI site and 0.08 ± 0.05 [0.07] ng/m3 at the William site, were all significantly higher than the winter concentrations, 0.02 ± 0.01 [0.02] ng/m3 and 0.03 ± 0.01 [0.03] ng/m3 at the MERI and William sites, respectively. The site difference (i.e., MERI > William) was observed for summer Cr(VI) concentrations; however, no differences for winter and pooled datasets. These results suggest higher Cr(VI) concentrations may be attributed from stronger atmospheric reactions such as photo-oxidation of Cr(III) to Cr(VI) in the summer. The Cr(VI) distribution as a function of particle size, ranging from 0.18 to 18 μm, was determined at the William site. It was found that Cr(VI) was enriched in the particles less than 2.5 μm in diameter (PM2.5). This finding suggested potential health concerns, because PM2.5 are easily inhaled and deposited in the alveoli. A multiple linear regression analysis confirmed ambient Cr(VI) concentrations were significantly affected by meteorological factors (i.e., temperature and humidity) and reactive gases/particles (i.e., O3, Fe and Mn).

  17. Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria

    Science.gov (United States)

    He, Zhiguo; Hu, Yuting; Yin, Zhen; Hu, Yuehua; Zhong, Hui

    2016-06-01

    Three soil samples obtained from different sites adjacent to a chromium slag heap in a steel alloy factory were taken to examine the effect of chromium contamination on soil bacterial diversity as determined by construction of 16S rDNA clone libraries and sequencing of selected clones based on restriction fragment length polymorphism (RFLP) analysis. Results revealed that Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Alphaproteobacteria occurred in all three soil samples, although the three samples differed in their total diversity. Sample 1 had the highest microbial diversity covering 12 different classes, while Sample 3 had the lowest microbial diversity. Strains of six different species were successfully isolated, one of which was identified as Zobellella denitrificans. To our knowledge, this is the first report of a strain belonging to the genus Zobellella able to resist and reduce chromium. Among all isolates studied, Bacillus odysseyi YH2 exhibited the highest Cr(VI)-reducing capability, with a total removal of 23.5 % of an initial Cr(VI) concentration of 350 mg L-1.

  18. Reduction of hexavalent chromium by fasted and fed human gastric fluid. II. Ex vivo gastric reduction modeling.

    Science.gov (United States)

    Kirman, Christopher R; Suh, Mina; Hays, Sean M; Gürleyük, Hakan; Gerads, Russ; De Flora, Silvio; Parker, William; Lin, Shu; Haws, Laurie C; Harris, Mark A; Proctor, Deborah M

    2016-09-01

    To extend previous models of hexavalent chromium [Cr(VI)] reduction by gastric fluid (GF), ex vivo experiments were conducted to address data gaps and limitations identified with respect to (1) GF dilution in the model; (2) reduction of Cr(VI) in fed human GF samples; (3) the number of Cr(VI) reduction pools present in human GF under fed, fasted, and proton pump inhibitor (PPI)-use conditions; and (4) an appropriate form for the pH-dependence of Cr(VI) reduction rate constants. Rates and capacities of Cr(VI) reduction were characterized in gastric contents from fed and fasted volunteers, and from fasted pre-operative patients treated with PPIs. Reduction capacities were first estimated over a 4-h reduction period. Once reduction capacity was established, a dual-spike approach was used in speciated isotope dilution mass spectrometry analyses to characterize the concentration-dependence of the 2nd order reduction rate constants. These data, when combined with previously collected data, were well described by a three-pool model (pool 1 = fast reaction with low capacity; pool 2 = slow reaction with higher capacity; pool 3 = very slow reaction with higher capacity) using pH-dependent rate constants characterized by a piecewise, log-linear relationship. These data indicate that human gastric samples, like those collected from rats and mice, contain multiple pools of reducing agents, and low concentrations of Cr(VI) (<0.7 mg/L) are reduced more rapidly than high concentrations. The data and revised modeling results herein provide improved characterization of Cr(VI) gastric reduction kinetics, critical for Cr(VI) pharmacokinetic modeling and human health risk assessment. PMID:27396814

  19. Effects of Cr(III) and Cr(VI) on nitrification inhibition as determined by SOUR, function-specific gene expression and 16S rRNA sequence analysis of wastewater nitrifying enrichments.

    Science.gov (United States)

    Kapoor, Vikram; Elk, Michael; Li, Xuan; Impellitteri, Christopher A; Santo Domingo, Jorge W

    2016-03-01

    The effect of Cr(III) and Cr(VI) on nitrification was examined with samples from nitrifying enrichment cultures using three different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification, and by analysis of 16S rRNA sequences to determine changes in structure and activity of the microbial communities. The nitrifying bioreactor was operated as a continuous reactor with a 24 h hydraulic retention time. The samples were exposed in batch vessels to Cr(III) (10-300 mg/L) and Cr(VI) (1-30 mg/L) for a period of 12 h. There was considerable decrease in SOUR with increasing dosages for both Cr(III) and Cr(VI), however Cr(VI) was more inhibitory than Cr(III). Based on the RT-qPCR data, there was reduction in the transcript levels of amoA and hao for increasing Cr(III) dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. For Cr(VI) exposure, there was comparatively little reduction in amoA expression while hao expression decreased for 1-3 mg/L Cr(VI) and increased at 30 mg/L Cr(VI). While Nitrosomonas spp. were the dominant bacteria in the bioreactor, based on 16S rRNA sequencing, there was a considerable reduction in Nitrosomonas activity upon exposure to 300 mg/L Cr(III). In contrast, a relatively small reduction in activity was observed at 30 mg/L Cr(VI) loading. Our data that suggest that both Cr(III) and Cr(VI) were inhibitory to nitrification at concentrations near the high end of industrial effluent concentrations. PMID:26774300

  20. Quantification of total and hexavalent chromium in lager beers: variability between styles and estimation of daily intake of chromium from beer.

    Science.gov (United States)

    Vieira, Elsa; Soares, M Elisa; Kozior, Marta; Krejpcio, Zbigniew; Ferreira, Isabel M P L V O; Bastos, M Lourdes

    2014-09-17

    A survey of the presence of total and hexavalent chromium in lager beers was conducted to understand the variability between different styles of lager beer packaged in glass or cans and to estimate daily intake of total Cr and hexavalent chromium from beer. Graphite-furnace atomic absorption spectroscopy using validated methodologies was applied. Selective extraction of hexavalent chromium was performed using a Chromabond NH2/500 mg column and elution with nitric acid. The detection limits were 0.26 and 0.68 μg L(-1) for total Cr and Cr(VI), respectively. The mean content of total Cr ranged between 1.13 μg L(-1) in canned pale lager and 4.32 μg L(-1) in low-alcohol beers, whereas the mean content of Cr(VI) was beer, beer consumption can contribute approximately 2.28-8.64 and 1.6-6.17% of the recommended daily intake of chromium for women and men, respectively.

  1. Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant.

    Science.gov (United States)

    Adki, Vinayak S; Jadhav, Jyoti P; Bapat, Vishwas A

    2013-02-01

    Hexavalant chromium [Cr(VI)] tolerance and accumulation in in vitro grown Nopalea cochenillifera Salm. Dyck. plants was investigated. A micropropagation protocol was establish for a rapid multiplication of N. cochenillifera and [Cr(VI)] tolerance and accumulation was studied in in vitro grown cultures. Cr concentration was estimated by atomic absorption spectroscopy in roots and shoots to confirm plant's hyperaccumulation capacity. Plants showed tolerance up to 100 μM K(2)Cr(2)O(7) without any significant changes in root growth after 16 days treatment; whereas, chlorophyll content in plants treated with 1 and 10 μM K(2)Cr(2)O(7) were not so different than the control plant. The levels of lipid peroxidation and protein oxidation increased significantly (p 100 μM) inhibited the activities of CAT and SOD. Roots accumulated a maximum of 25,263.396 ± 1,722.672 mg Cr Kg(-1) dry weight (DW); while the highest concentration of Cr in N. cochenillifera shoots was 705.714 ± 32.324 mg Cr Kg(-1) DW. N. cochenillifera could be a prospective hyperaccumulator plant of Cr(VI) and a promising candidate for phytoremediation purposes. PMID:22914913

  2. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.

    Science.gov (United States)

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi

    2015-11-01

    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.

  3. [Physiological responses of tubificidae to heavy metal chromium stress].

    Science.gov (United States)

    Lou, Ju-Qing; Yang, Dong-Ye; Cao, Yong-Qing; Sun, Pei-De; Zheng, Ping

    2014-11-01

    Tubificidae is now used in the wastewater treatment systems to successfully minimize the sludge production, which has been proved an effective, economical and sustainable technology. But the excess sludge inevitably contains a variety of heavy metals, especially the sludge from industrial wastewater treatment plant. In order to apply tubificidae to these systems, Chromium was selected as pollutant object and the physiological responses of tubificidae to Chromium were studied in this paper. Acute toxicity was analyzed and Median lethal concentrations (LC50) were determined over 96 h periods for Cr. Results indicated that 24 h LC50 and 96 h LC50 were 7.94 mg x L(-1) and 0.49 mg x L(-1), respectively. The duration f tubificidae in Cr solution decreased with increasing Cr concentration. Under the Cr stress, a highest respiration rate was obtained when the concentration of Cr(VI), temperature, pH and DO was 2.50 mg x L(-1), 26 degrees C, 6.0 and 6.0 mg x L(-1), respectively. The order of these factors was the concerntration of Cr(VI), temperature, DO and pH. The respiration experiments demonstrated that low concentration (< 2.50 mg x L(-1)) of Cr could promote the respiration rate of tubificidaes. On the other hand, when the concentration of Cr was 8.00 mg x L(-1), it could remarkably inhibit the respiratory rates of tubificidae. PMID:25639096

  4. Nitrification inhibition by hexavalent chromium Cr(VI)--Microbial ecology, gene expression and off-gas emissions.

    Science.gov (United States)

    Kim, Young Mo; Park, Hongkeun; Chandran, Kartik

    2016-04-01

    The goal of this study was to investigate the responses in the physiology, microbial ecology and gene expression of nitrifying bacteria to imposition of and recovery from Cr(VI) loading in a lab-scale nitrification bioreactor. Exposure to Cr(VI) in the reactor strongly inhibited nitrification performance resulting in a parallel decrease in nitrate production and ammonia consumption. Cr(VI) exposure also led to an overall decrease in total bacterial concentrations in the reactor. However, the fraction of ammonia oxidizing bacteria (AOB) decreased to a greater extent than the fraction of nitrite oxidizing bacteria (NOB). In terms of functional gene expression, a rapid decrease in the transcript concentrations of amoA gene coding for ammonia oxidation in AOB was observed in response to the Cr(VI) shock. In contrast, transcript concentrations of the nxrA gene coding for nitrite oxidation in NOB were relatively unchanged compared to Cr(VI) pre-exposure levels. Therefore, Cr(VI) exposure selectively and directly inhibited activity of AOB, which indirectly resulted in substrate (nitrite) limitation to NOB. Significantly, trends in amoA expression preceded performance trends both during imposition of and recovery from inhibition. During recovery from the Cr(VI) shock, the high ammonia concentrations in the bioreactor resulted in an irreversible shift towards AOB populations, which are expected to be more competitive in high ammonia environments. An inadvertent impact during recovery was increased emission of nitrous oxide (N2O) and nitric oxide (NO), consistent with recent findings linking AOB activity and the production of these gases. Therefore, Cr(VI) exposure elicited multiple responses on the microbial ecology, gene expression and both aqueous and gaseous nitrogenous conversion in a nitrification process. A complementary interrogation of these multiple responses facilitated an understanding of both direct and indirect inhibitory impacts on nitrification. PMID:26874778

  5. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes

    Science.gov (United States)

    Frei, Robert; Gaucher, Claudio; Poulton, Simon W.; Canfield, Don E.

    2009-09-01

    Geochemical data suggest that oxygenation of the Earth's atmosphere occurred in two broad steps. The first rise in atmospheric oxygen is thought to have occurred between ~2.45 and 2.2Gyr ago, leading to a significant increase in atmospheric oxygen concentrations and concomitant oxygenation of the shallow surface ocean. The second increase in atmospheric oxygen appears to have taken place in distinct stages during the late Neoproterozoic era (~800-542Myr ago), ultimately leading to oxygenation of the deep ocean ~580Myr ago, but details of the evolution of atmospheric oxygenation remain uncertain. Here we use chromium (Cr) stable isotopes from banded iron formations (BIFs) to track the presence of Cr(VI) in Precambrian oceans, providing a time-resolved picture of the oxygenation history of the Earth's atmosphere-hydrosphere system. The geochemical behaviour of Cr is highly sensitive to the redox state of the surface environment because oxidative weathering processes produce the oxidized hexavalent [Cr(VI)] form. Oxidation of reduced trivalent [Cr(III)] chromium on land is accompanied by an isotopic fractionation, leading to enrichment of the mobile hexavalent form in the heavier isotope. Our fractionated Cr isotope data indicate the accumulation of Cr(VI) in ocean surface waters ~2.8 to 2.6Gyr ago and a likely transient elevation in atmospheric and surface ocean oxygenation before the first great rise of oxygen 2.45-2.2Gyr ago (the Great Oxidation Event). In ~1.88-Gyr-old BIFs we find that Cr isotopes are not fractionated, indicating a decline in atmospheric oxygen. Our findings suggest that the Great Oxidation Event did not lead to a unidirectional stepwise increase in atmospheric oxygen. In the late Neoproterozoic, we observe strong positive fractionations in Cr isotopes (δ53Cr up to +4.9‰), providing independent support for increased surface oxygenation at that time, which may have stimulated rapid evolution of macroscopic multicellular life.

  6. Long-term effect of low concentration Cr(VI) on P removal in granule-based enhanced biological phosphorus removal (EBPR) system.

    Science.gov (United States)

    Fang, Jing; Su, Bin; Sun, Peide; Lou, Juqing; Han, Jingyi

    2015-02-01

    In light of the fact that most wastewater in China contained both industrial and domestic wastewater, a 52-d systematical investigation was conducted on the long-term effect of low concentration Cr(VI) (0.3-0.8 mg L(-1)) on P removal performance of granule-based EBPR system in this study. The mechanisms were likewise discussed. Results showed that high Cr(VI) concentration (⩾0.5 mg L(-1)) could significantly inhibit P removal, while this phenomenon was not found when Cr(VI) concentration was less than (or equal to) 0.4 mg L(-1). Most of the granules was disintegrated and filamentous bacteria overgrew inducing sludge bulking occurred at 0.7 mg L(-1) Cr(VI). During the exposure test, the abundance of poly-phosphate-accumulating organisms (PAOs) significantly decreased while the populations of glycogen accumulating organisms (GAOs) and other bacteria increased. Both production and degradation of poly-β-hydroxyakanoates (PHAs) were apparently inhibited. An improved polysaccharide/protein (PS/PN) ratio was observed with the increasing Cr(VI) concentration, implying excessive polysaccharide was secreted by microorganisms to support its resistance to the toxicity of Cr(VI). Besides, good linear regression between PS/PN ratio and the granule size (R(2)=-0.86, p<0.01) was obtained, indicating that high PS/PN was adverse to granule stability. Correlation analysis indicated that the accumulation of granules intracellular Cr was directly responsible for the observed inhibitory effect on P removal process. The long-term Cr(VI) treatment had irreversible effects on granule-based EBPR system as it could not revive after a 16-d recovery process. PMID:25479809

  7. Experimental skin deposition of chromium on the hands following handling of samples of leather and metal

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P.; Jellesen, Morten Stendahl;

    2016-01-01

    Background: Chromium is an important skin sensitizer. Exposure to it has been regulated in cement, and recently in leather. Studies on the deposition of chromium ions on the skin as a result of handling different chromium-containing materials are sparse, but could improve the risk assessment...... of contact sensitization and allergic contact dermatitis caused by chromium. Objectives: To determine whether the handling of chromium-containing samples of leather and metal results in the deposition of chromium onto the skin. Methods: Five healthy volunteers participated. For 30 min, they handled samples...... of leather and metal known to contain and release chromium. Skin deposition of chromium was assessed with the acid wipe sampling technique. Results: Acid wipe sampling of the participants' fingers showed chromium deposition on the skin in all participants who had been exposed to leather (range 0.01–0.20 µg...

  8. Iron monosulfide as a scavenger for dissolved hexavalent chromium and cadmium.

    Science.gov (United States)

    Jo, S; Lee, J Y; Kong, S H; Choi, J; Park, J W

    2008-09-01

    Iron sulfide minerals are common components of soil/sedimentary environments. Reactions near the surfaces of iron sulfides play important roles in metal retention, mobility, and bioavailability. A series of batch experiments was conducted to study the removal of aqueous chromium and cadmium by iron monosulfide. Hexavalent chromium was reduced to Cr(III) by iron monosulfide with simultaneous precipitation of chromium and iron oxyhydroxide. In contrast to chromium, the primary retention mechanism of cadmium by iron monosulfide was lattice exchange. Surface adsorption to iron monosulfide and precipitation with sulfide on the iron monosulfide surface also contributed to the removal of aqueous cadmium. New phases of both chromium and cadmium were confirmed with transmission electron microscopy. The solution pH was an important factor in this research; it can change particle surface charge and metal species, hence affecting the removal of chromium, but not cadmium. Ferrous ions without FeS exhibited less Cr(VI) removal than with FeS, which might be owing to sulfides from FeS and the existence of the solid phase. Iron monosulfide exhibited higher removal efficiency for chromium and cadmium than zero valent iron and other iron oxide minerals, and the synergistic effect of ferrous iron and sulfide appeared to cause this result.

  9. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass

    International Nuclear Information System (INIS)

    In the present study adsorption of Cr(VI) from aqueous solutions onto different agricultural wastes, viz., sugarcane bagasse, maize corn cob and Jatropha oil cake under various experimental conditions has been studied. Effects of adsorbent dosage, Cr(VI) concentration, pH and contact time on the adsorption of hexavalent chromium were investigated. The concentration of chromium in the test solution was determined spectrophotometrically. FT-IR spectra of the adsorbents (before use and after exhaustion) were recorded to explore number and position of the functional groups available for the binding of chromium ions on to studied adsorbents. SEMs of the adsorbents were recorded to explore the morphology of the studied adsorbents. Maximum adsorption was observed in the acidic medium at pH 2 with a contact time of 60 min at 250 rpm stirring speed. Jatropha oil cake had better adsorption capacity than sugarcane bagasse and maize corn cob under identical experimental conditions. The applicability of the Langmuir and Freundlich adsorption isotherms was tested. The results showed that studied adsorbents can be an attractive low cost alternative for the treatment of wastewaters in batched or stirred mode reactors containing lower concentrations of chromium

  10. Linear sweep anodic stripping voltammetry: Determination of Chromium (VI) using synthesized gold nanoparticles modified screen-printed electrode

    Indian Academy of Sciences (India)

    Salamatu Aliyu Tukur; Nor Azah Yusof; Reza Hajian

    2015-06-01

    A highly sensitive electrochemical sensor has been constructed for determination of Cr(VI) with the lowest limit of detection (LOD) reported to date using gold nanoparticles (AuNPs) modified screen-printed electrode (SPE). The modification of SPE by casting pure AuNPs increases the sensitivity for detection of Cr(VI) ion using anodic stripping voltammetry. Cr(VI) ions are reduced to chromium metal on SPE-AuNPs by applying deposition potential of –1.1 V for 180 s. Afterwards, the oxidation peak current of chromium is obtained by linear sweep voltammetry in the range of −1.0 V to 0.2 V. Under the optimized conditions (HClO4, 0.06 mol L−1; deposition potential, –1.1 V; deposition time, 180s; scan rate, 0.1 V s−1), the limit of detection (LOD) was 1.6 pg mL−1. The fabricated electrode was successfully used for detection of Cr(VI) in tap and seawater.

  11. Remoción de Cromo (VI por una Cepa de Paecilomyces sp Resistente a Cromato Removal of Chromium (VI in a Chromate-Resistant Strain of Paecilomyces sp

    Directory of Open Access Journals (Sweden)

    Juan F Cárdenas-González

    2011-01-01

    Full Text Available Se analizó la capacidad de remoción de Cr(VI de una cepa de Paecilomyces sp. Cuando el hongo se incubó en medio mínimo con glucosa y otras fuentes de carbono comerciales y de bajo costo, como azúcar moscabada y piloncillo ó glicerol, en presencia de 50 mg/L de Cr(VI, removió totalmente el Cr(VI. La reducción a Cr(III ocurre en el medio de cultivo después de 7 días de incubación a 28°C, pH 4.0, y un inoculo de 38 mg. El hongo también redujo eficientemente la concentración de Cr(VI a partir de tierra contaminada. Los resultados indican que la cepa de Paecilomyces sp tiene la capacidad de reducir Cr(VI a Cr(III, y por lo tanto puede utilizarse para eliminar la contaminación por Cr(VI.The ability to reduce chromium (VI by a fungal strain of Paecilomyces sp was studied. When it was incubated in minimal medium with glucose and other inexpensive commercial carbon sources such as unrefined and brown sugar or glycerol, in the presence of 50 mg/L of Cr(VI, the strain caused complete removal of Cr(VI. The reduction to Cr (III occurs in the growth medium after 7 days of incubation, at 28°C, pH 4.0, and inoculum of 38 mg. Also, the fungi efficiently reduced the concentration of Cr(VI from contaminated soil wastes. The results indicate that the fungal strain of Paecilomyces sp has the capacity of reducing Cr(VI to Cr(III, and therefore it could be useful for the removal of Cr(VI pollution.

  12. Preconcentration and speciation of chromium in a sequential injection system incorporating dual mini-columns coupled with electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zou Aimei; Tang Xiaoyan; Chen Mingli [Research Center for Analytical Sciences, Northeastern University, Box 332, Shenyang 110004 (China); Wang Jianhua [Research Center for Analytical Sciences, Northeastern University, Box 332, Shenyang 110004 (China)], E-mail: jianhuajrz@mail.neu.edu.cn

    2008-05-15

    A procedure for chromium preconcentration and speciation with a dual mini-column sequential injection system coupled with electrothermal atomic absorption spectrometry (ETAAS) was developed. At pH 6, the sample solution was firstly aspirated to flow through a Chlorella vulgaris cell mini-column on which the Cr(III) was retained. The effluent was afterwards directed to flow through a 717 anion exchange resin mini-column accompanied by the retention of Cr(VI). Thereafter, Cr(III) and Cr(VI) were eluted by 0.04 mol L{sup -1} and 1.0 mol L{sup -1} nitric acid, respectively, and the eluates were quantified with ETAAS. Chemical and flow variables governing the performance of the system were investigated. By using a sampling volume of 600 {mu}L, sorption efficiencies of 99.7% for Cr(III) and 99% for Cr(VI) were achieved along with enrichment factors of 10.5 for Cr(III) and 11.6 for Cr(VI), within linear ranges of 0.1-2.5 {mu}g L{sup -1} for Cr(III) and 0.12-2.0 {mu}g L{sup -1} for Cr(VI). Detection limits of 0.02 {mu}g L{sup -1} for Cr(III) and 0.03 {mu}g L{sup -1} for Cr(VI) along with RSD values of 1.9% for Cr(III) and 2.5% for Cr(VI) (1.0 {mu}g L{sup -1}, n = 11) were obtained. The procedure was validated by analyzing a certified reference material of GBW08608 and further demonstrated by chromium speciation in river and tap water samples.

  13. Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium.

    Directory of Open Access Journals (Sweden)

    Katherine J Robins

    Full Text Available Hexavalent chromium is a serious and widespread environmental pollutant. Although many bacteria have been identified that can transform highly water-soluble and toxic Cr(VI to insoluble and relatively non-toxic Cr(III, bacterial bioremediation of Cr(VI pollution is limited by a number of issues, in particular chromium toxicity to the remediating cells. To address this we sought to develop an immobilized enzymatic system for Cr(VI remediation. To identify novel Cr(VI reductase enzymes we first screened cell extracts from an Escherichia coli library of soluble oxidoreductases derived from a range of bacteria, but found that a number of these enzymes can reduce Cr(VI indirectly, via redox intermediates present in the crude extracts. Instead, activity assays for 15 candidate enzymes purified as His6-tagged proteins identified E. coli NemA as a highly efficient Cr(VI reductase (k(cat/K(M= 1.1×10(5 M(-1 s(-1 with NADH as cofactor. Fusion of nemA to the polyhydroxyalkanoate synthase gene phaC from Ralstonia eutropha enabled high-level biosynthesis of functionalized polyhydroxyalkanoate granules displaying stable and active NemA on their surface. When these granules were combined with either Bacillus subtilis glucose dehydrogenase or Candida boidinii formate dehydrogenase as a cofactor regenerating partner, high levels of chromate transformation were observed with only low initial concentrations of expensive NADH cofactor being required, the overall reaction being powered by consumption of the cheap sacrificial substrates glucose or formic acid, respectively. This system therefore offers promise as an economic solution for ex situ Cr(VI remediation.

  14. An organic-reagent-free method for determination of chromium(VI) in steel alloys, sewage sludge and wastewater.

    Science.gov (United States)

    Fan, Jing; Sun, Yuping; Wang, Jianji; Fan, Maohong

    2009-04-27

    One of the active areas of green chemistry research and development is in the development of new analytical methods and techniques that reduce and eliminate the use and generation of hazardous substances. In this work, a rapid and organic-reagent-free method was developed for the determination of chromium(VI) by sequential injection analysis (SIA). The method was based on the detection of a blue unstable intermediate compound resulting from the reaction of Cr(VI) with hydrogen peroxide (H(2)O(2)) in acidic medium. H(2)O(2) and its reaction products were environmentally friendly, and chromogenic reagents and organic solvents were not used in the proposed method. Different SIA parameters have been optimized and used to obtain the analytical figures of merit. Under the optimum experimental conditions, the linear range for Cr(VI) was 0.5-100.0 microg mL(-1), and the detection limit was 0.16 microg mL(-1). The sample throughput was 80 h(-1), and the total volume of only 145 microL was consumed in each determination of Cr(VI). The method was applied for the determination of Cr(VI) in seven real samples, including alloy steel, sewage sludge and wastewater samples, and the results were compared with those obtained by atomic absorption spectrometry as well as with the certified value of Cr(VI) in standard reference material. Statistical analysis revealed that there was no significant difference at 95% confidence level. PMID:19362620

  15. Determination of hexavalent chromium in plastic certified reference materials by X-ray absorption fine structure analysis

    Science.gov (United States)

    Ohata, Masaki; Matsubayashi, Nobuyuki

    X-ray absorption fine structure (XAFS) analysis with transmission mode was used to determine the percentages of hexavalent chromium {Cr(VI)} in total Cr in plastic certified reference materials (CRMs). Cr-K edge X-ray absorption near-edge structure (XANES) spectra were observed and the normalized pre-edge peaks of the spectrum where absorption data was summed was acquired for the determination of Cr(VI). Examination of different number of data point and range of photon energy for summed absorption of the pre-edge peak resulted in reproducible absorption data, though the measurements were carried out at different beam time and beam line. The concentrations of Cr(VI) in the plastic CRMs were also estimated from both the certified value of total Cr and the determined percentage of Cr(VI). The analytical procedure and the estimated concentrations can be useful for the determination of Cr(VI) in plastics with respect to RoHS (restriction of the use of hazardous substances in electrical and electronics equipment) directive.

  16. Determination of hexavalent chromium in plastic certified reference materials by X-ray absorption fine structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ohata, Masaki, E-mail: m-oohata@aist.go.jp [Inorganic Standard Section, Inorganic Analytical Chemistry Division, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) (Japan); Matsubayashi, Nobuyuki [Super-Spectroscopy System Research Group, Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST) (Japan)

    2014-03-01

    X-ray absorption fine structure (XAFS) analysis with transmission mode was used to determine the percentages of hexavalent chromium {Cr(VI)} in total Cr in plastic certified reference materials (CRMs). Cr-K edge X-ray absorption near-edge structure (XANES) spectra were observed and the normalized pre-edge peaks of the spectrum where absorption data was summed was acquired for the determination of Cr(VI). Examination of different number of data point and range of photon energy for summed absorption of the pre-edge peak resulted in reproducible absorption data, though the measurements were carried out at different beam time and beam line. The concentrations of Cr(VI) in the plastic CRMs were also estimated from both the certified value of total Cr and the determined percentage of Cr(VI). The analytical procedure and the estimated concentrations can be useful for the determination of Cr(VI) in plastics with respect to RoHS (restriction of the use of hazardous substances in electrical and electronics equipment) directive.

  17. Effect of Cr-Vi on skeletal muscles of albino mice

    International Nuclear Information System (INIS)

    Chromium plays an important role in normal carbohydrate and lipid metabolism, as it's an essential trace element in human nutrition. It was found that patients receiving long-term total parenteral nutrition (TPN) without chromium developed glucose intolerance, weight loss and peripheral neuropathy Chromium is present in a normal diet at trace (but essential) levels. Occupational exposure is related to the industrial uses of chrome compounds in production and use of steels, pigments, leather tanning and wood preservation solutions, plating chemicals, and cement. Toxicity is predominantly associated with industrial exposures. Its trivalent form is the most stable form and can't cross the cell membrane. Hexavalent chromium crosses the cell membrane and is reduced to Cr- V, Cr-IV and Cr-111. Once in trivalent form it can combine with nuclear proteins and nucleic acids causing adverse effects and derangements. Hexavalent chromium compounds appear to have severe toxicity and almost all tissues of body are affected. To evaluate the effects on skeletal muscles, present study was carried out. The mice of experimental group (2wks, 4wks, 6wks and 8wks) were injected Potassium dichromate (K/sub 2/ Cr/sub 2/0/sub 7/) intraperitoneally according to experimental design. The drug caused slight to marked inflammation of skeletal muscle fibers and vaculations of nuclei was also observed indicating degenerative changes. (author)

  18. Thermal stabilization of chromium(VI) in kaolin.

    Science.gov (United States)

    Wei, Yu-Ling; Chiu, Shu-Yuan; Tsai, Hsien-Neng; Yang, Yaw-Wen; Lee, Jyh-Fu

    2002-11-01

    Reduction of Cr(VI) by heating may be a useful detoxification mechanism for thermal immobilization. Using X-ray absorption spectroscopy, the change of speciation of chromium in 105 degrees C dried 3.7% Cr(VI)-sorbed kaolin further heated at 500, 900, or 1100 degrees C was studied. The 105 degrees C dried 3.7% Cr(VI)-sorbed kaolin sample was prepared by mixing 1.5 L of 0.257 M CrO3 solution (pH 0.71) with 0.5 kg of kaolin powder for 48 h, and then the slurry was heated (dried) at 105 degrees C until a constant weight was reached. The toxicity characteristic leaching procedure method was used to determine the percentage of leached chromium from all heated samples. In all 500-900 degrees C heated Cr(VI)-sorbed kaolin samples, Cr2O3 transformed from the hydrated Cr(VI) by a 4-h heat application was identified by the X-ray absorption near edge structure and extended X-ray absorption fine structure (EXAFS) spectroscopy as the key species that is leaching-resistant due to its low solubility. For the 1100 degrees C heated Cr(VI)-sorbed kaolin sample, the Fourier transform of its EXAFS spectrum indicates that the intensity of the peaks at 2.45 (Cr-Cr shell of Cr2O3) and 5.00 A (Cr-Cr and Cr-O shells of Cr2O3) without phase shift correction is either relatively smaller or disappearing, compared with that of the 500-900 degrees C heated Cr(VI)-sorbed kaolin samples. It is suggested that chromium octahedra were bridged to silica tetrahedra and incorporated in minerals formed at 1100 degrees C, such as mullite or sillimanite, since these phases were detected by XRD. Cr of this form is not easily leached. PMID:12433175

  19. Removal of Cr(VI from Aqueous Solutions Using Powder of Potato Peelings as a Low Cost Sorbent

    Directory of Open Access Journals (Sweden)

    Farai Mutongo

    2014-01-01

    Full Text Available Potato peels which are a low cost, renewable agroindustry by-product were used for the removal of hexavalent chromium from aqueous effluents. Batch experiments were carried out with an artificial effluent comprising of potassium dichromate in deionised water. The effects of the initial hexavalent chromium concentration, dose of biosorbent, and removal kinetics were explored. An adsorbent dosage of 4 g/L was effective in complete removal of the metal ion, at pH 2.5, in 48 minutes. The kinetic process of Cr(VI adsorption onto potato peel powder was tested by applying pseudo-first-order and pseudo-second-order models as well as the Elovich kinetic equation to correlate the experimental data and to determine the kinetic parameters. The adsorption data were correlated by the Langmuir and Freundlich isotherms. A maximum monolayer adsorption capacity of 3.28 mg/g was calculated using the Langmuir adsorption isotherm, suggesting a functional group limited adsorption process. The results confirmed that potato peels are an effective biosorbent for the removal of hexavalent chromium from effluent.

  20. Removal of Cr(VI) from Aqueous Solutions Using Powder of Potato Peelings as a Low Cost Sorbent.

    Science.gov (United States)

    Mutongo, Farai; Kuipa, Olga; Kuipa, Pardon K

    2014-01-01

    Potato peels which are a low cost, renewable agroindustry by-product were used for the removal of hexavalent chromium from aqueous effluents. Batch experiments were carried out with an artificial effluent comprising of potassium dichromate in deionised water. The effects of the initial hexavalent chromium concentration, dose of biosorbent, and removal kinetics were explored. An adsorbent dosage of 4 g/L was effective in complete removal of the metal ion, at pH 2.5, in 48 minutes. The kinetic process of Cr(VI) adsorption onto potato peel powder was tested by applying pseudo-first-order and pseudo-second-order models as well as the Elovich kinetic equation to correlate the experimental data and to determine the kinetic parameters. The adsorption data were correlated by the Langmuir and Freundlich isotherms. A maximum monolayer adsorption capacity of 3.28 mg/g was calculated using the Langmuir adsorption isotherm, suggesting a functional group limited adsorption process. The results confirmed that potato peels are an effective biosorbent for the removal of hexavalent chromium from effluent. PMID:25136289

  1. A study of nanostructured gold modified glassy carbon electrode for the determination of trace Cr(VI)

    Indian Academy of Sciences (India)

    Benzhi Liu; Liyuan Lu; Min Wang; Yanqin Zi

    2008-09-01

    A nanostructured gold modified glassy carbon electrode (Aunano/GCE) was employed for the determination of trace chromium(VI). To prepare Aunano/GCE, the GCE was immersed into KAuCl4 solution and electrodeposition was conducted at the potential of -0.4 V (vs Ag/AgCl) for 600 s. Scanning electron microscopy measurements show that the electrochemically synthesized gold nanoparticles were deposited in aggregated form. Any undue effects caused by the presence of foreign ions in the solution were also analysed to ensure that common interference in the determination of chromium(VI) by square wave voltammetry, do not influence the electrochemical response of the latter element. The results show that this method allows for Cr(VI) determinations with a much lower detection limit (0.01 g L-1) in the presence of excess of Cr(III) than the commonly used diethylenetriammine pentaacetic acid (DTPA) method. The method was applied to determine levels of chromium(VI) in tap water and sewage water.

  2. Morphological and transcriptional responses of Lycopersicon esculentum to hexavalent chromium in agricultural soil.

    Science.gov (United States)

    Li, Shi-Guo; Hou, Jing; Liu, Xin-Hui; Cui, Bao-Shan; Bai, Jun-Hong

    2016-07-01

    The carcinogenic, teratogenic, and mutagenic effects of hexavalent chromium (Cr[VI]) on living organisms through the food chain raise the immediate need to assess the potential toxicological impacts of Cr(VI) on human health. Therefore, the concentration-dependent responses of 12 Cr(VI)-responsive genes selected from a high-throughput Lycopersicon esculentum complementary DNA microarray were examined at different Cr concentrations. The results indicated that most of the genes were differentially expressed from 0.1 mg Cr/kg soil, whereas the lowest-observable-adverse-effect concentrations of Cr(VI) were 1.6 mg Cr/kg soil, 6.4 mg Cr/kg soil, 3.2 mg Cr/kg soil, and 0.4 mg Cr/kg soil for seed germination, root elongation, root biomass, and root morphology, respectively, implying that the transcriptional method was more sensitive than the traditional method in detecting Cr(VI) toxicity. Dose-dependent responses were observed for the relative expression of expansin (p = 0.778), probable chalcone-flavonone isomerase 3 (p = -0.496), and 12S seed storage protein CRD (p = -0.614); therefore, the authors propose the 3 genes as putative biomarkers in Cr(VI)-contaminated soil. Environ Toxicol Chem 2016;35:1751-1758. © 2015 SETAC. PMID:26627465

  3. A spectrophotometric study of cerium IV and chromium VI species in nuclear fuel reprocessing process streams

    Science.gov (United States)

    Nickson, I. D.; Boxall, C.; Jackson, A.; Whillock, G. O. H.

    2010-03-01

    Nuclear fuel reprocessing schemes such as PUREX and UREX utilise HNO3 media. An understanding of the corrosion of process engineering materials such as stainless steel in such media is a major concern for the nuclear industry. Two key species are cerium and chromium which, as Ce(IV), Cr(VI), may act as corrosion accelerants. An on-line analytical technique for these quantities would be useful for determining the relationship between corrosion rate and [Ce(IV)] and [Cr(VI)]. Consequently, a strategy for simultaneous quantification of Ce(IV), Cr(VI) and Cr(III) in the presence of other ions found in average burn-up Magnox / PWR fuel reprocessing stream (Fe, Mg, Nd, Al) is being developed. This involves simultaneous UV-vis absorbance measurement at 620, 540, 450 nm, wavelengths where Ce and Cr absorb but other ions do not. Mixed solutions of Cr(VI) and Ce(IV) are found to present higher absorbance values at 540 nm than those predicted from absorbances recorded from single component solutions of those ions. This is attributed to the formation of a 3:1 Cr(VI)-Ce(IV) complex and we report on the complexation and UV-visible spectrophotometric characteristics of this species. To the best of our knowledge this is the first experimental study of this complex in aqueous nitric acid solution systems.

  4. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.

    Science.gov (United States)

    Sarkar, Binoy; Naidu, Ravi; Krishnamurti, Gummuluru S R; Megharaj, Mallavarapu

    2013-01-01

    Unlike lower valent iron (Fe), the potential role of lower valent manganese (Mn) in the reduction of hexavalent chromium (Cr(VI)) in soil is poorly documented. In this study, we report that citrate along with Mn(II) and clay minerals (montmorillonite and kaolinite) reduce Cr(VI) both in aqueous phase and in the presence of dissolved organic carbon (SDOC) extracted from a forest soil. The reduction was favorable at acidic pH (up to pH 5) and followed the pseudo-first-order kinetic model. The citrate (10 mM) + Mn(II) (182.02 μM) + clay minerals (3% w/v) system in SDOC accounted for complete reduction of Cr(VI) (192.32 μM) in about 72 h at pH 4.9. In this system, citrate was the reductant, Mn(II) was a catalyst, and the clay minerals acted as an accelerator for both the reductant and catalyst. The clay minerals also serve as a sink for Cr(III). This study reveals the underlying mechanism of the Mn(II)-induced reduction of Cr(VI) by organic ligand in the presence of clay minerals under certain environmental conditions.

  5. Hexavalent chromium removal performance of anionic functionalized monolithic polymers: column adsorption, regeneration and modelling.

    Science.gov (United States)

    Barlik, Necla; Keskinler, Bülent; Kocakerim, M Muhtar

    2016-01-01

    Anionic functionalized monolithic macro-porous polymers were used for the removal of hexavalent chromium(VI) anions from aqueous solution in column experiments. At a flux of 1.0 cm min and 30 mg Cr(VI) L(-1) feed concentration, breakthrough capacity and apparent capacity were 0.066 g Cr(VI) g(-1) anionic monolith and 0.144 g Cr(VI) g(-1) anionic monolith, respectively. The degree of column utilization was found to lie in the range 41-46%. Two kinetic models, theoretical and Thomas models, were applied to experimental data to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The simulation of the whole breakthrough curve was effective with the models. At a flux of 1.0 cm min and 30 mg Cr(VI) L(-1) feed concentration, the dispersion coefficient and adsorption equilibrium constant (K) were 3.14 × 10(-7) m s(-1) and 3,840, respectively. Also, Thomas model parameters k1 (rate constant of adsorption) and qm (equilibrium solid-phase concentration of sorbed solute) were 1.08 × 10(-3) L mg(-1) min(-1) and 0.124 g g(-1), respectively. After reaching equilibrium adsorption capacity, the monoliths were regenerated using 1 N HCl and were subsequently re-tested. It was found that the regeneration efficiency reduced from 98% after second usage to 97% after the third usage. PMID:27003067

  6. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron.

    Science.gov (United States)

    Di Palma, L; Gueye, M T; Petrucci, E

    2015-01-01

    Iron sulphate (FeSO4) and colloidal nano zero-valent iron (nZVI) as reducing agents were compared, with the aim of assessing their effectiveness in hexavalent chromium [Cr(VI)] removal from a contaminated industrial soil. Experiments were performed on soil samples collected from an industrial site where a nickel contamination, caused by a long-term productive activity, was also verified. The influence of reducing agents amount with respect to chromium content and the effectiveness of deoxygenation of the slurry were discussed. The soil was fully characterized before and after each test, and sequential extractions were performed to assess chemico-physical modifications and evaluate metals mobility induced by washing. Results show that both the reducing agents successfully lowered the amount of Cr(VI) in the soil below the threshold allowed by Italian Environmental Regulation for industrial reuse. Cr(VI) reduction by colloidal nZVI proved to be faster and more effective: the civil reuse of soil [Cr(VI)hydroxide fraction, thus confirming a mechanism of chromium-iron hydroxides precipitation. In addition, a decrease of nickel (Ni) and lead (Pb) content in soil was also observed when acidic conditions were established.

  7. Evaluation of the Effectiveness of Cr(VI) Biostimulation in Groundwater at Hanford 100H Site

    Science.gov (United States)

    Faybishenko, B.; Hazen, T. C.; Brodie, E.; Joyner, D.; Borglin, S.; Hanlon, J.; Conrad, M.; Tokunaga, T.; Wan, J.; Hubbard, S.; Williams, K. H.; Peterson, J. E.; Firestone, M.; Andersen, G.; Desantis, T.; Long, P. E.; Newcomer, D. R.; Resch, C. T.; Willett, A.; Koenigsberg, S.

    2006-05-01

    To demonstrate the feasibility of a cost-effective field-scale bioimmobilization of Cr(VI) in contaminated groundwater, using a slow release polylactate, Hydrogen Release Compound (HRCTM), we have conducted a pilot study at the Hanford 100H field site. To assess the pre- and post-injection test groundwater conditions, we used an integrated monitoring approach, involving hydraulic, geochemical, microbial, and geophysical techniques and analytical methods, as well as conducted five Br-tracer injection tests and four pumping tests (concurrently with the Br-tracer tests). Although the total microbial population in sediments is bacteria, e.g., Bacillus/Arthrobacter and Geobacter, are present in the Hanford sediments, which are known to reduce or sorb hexavalent chromium. Groundwater biostimulation was conducted by injection of 18.2 kg of 13C-labeled HRC into the injection well (over the depth interval from 13.4-15.2 m) on 8/3/2004. Pumping from the downgradient monitoring well (located 5 m from the injection well) started immediately after the injection, and continued for 27 days. We determined that the HRC injection stimulated microbial cell counts to reach the maximum of 2×107cells g-1 13-17 days after the injection, and generated highly reducing conditions: DO dropped from 8.2 mg/l to non-detect, redox potential - from 240 to -130 mV, and pH - from 8.9 to 6.5. Monitoring of δ13C ratios in dissolved inorganic carbon confirmed microbial metabolism of HRC. The total Cr concentration in the monitoring well decreased by a factor of 4 compared to that under background conditions. The Cr(VI) concentration in the monitoring and pumping wells decreased below the drinking water maximum contaminant limit and remained below background concentrations even after 1.5 years, when redox conditions and microbial densities had returned to background levels. The presence of Fe(II) in groundwater may also account for the continued reduction of Cr(VI). The results of geophysical (radar

  8. Abatement of toxicity of effluents containing Cr(VI) by heterogeneous photocatalysis. Toxicity assessment by AMPHITOX assay.

    Science.gov (United States)

    Hojman, Jonatan Y; Meichtry, J Martín; Litter, Marta I; Pérez Coll, Cristina S

    2015-12-01

    Toxicity of a Cr(VI) solution before and after treatment by TiO2 heterogeneous photocatalysis (HP) was performed with AMPHITOX bioassay. Changes in toxicity on Rhinella arenarum larvae for 10-d were monitored after exposure to an untreated Cr(VI) solution and to the same solution after HP treatment. The HP treatment of a 41.60 mg L(-1) Cr(VI) solution reduced to 37.5% the concentration of the metal ion. A 10-fold reduction in toxicity at acute exposure (72 h) and 150-fold reduction in toxicity after 240 h was found. Further, the LOEC value increased from 0.001% for the untreated solution to 0.153% after HP treatment. Moreover, the safe concentration in untreated solution corresponded to 0.0001% sample, and it was 0.01% after the treatment, i.e., 100 times higher. A saving of water of about 100,000 L per L of effluent would be possible through dilution to allow safer concentrations for discharge; the saving would reach the highest value (1,000,000 L per L) at 240 h. Sub-lethal effects were completely absent in larvae exposed to the treated solution. The AMPHITOX test allowed to detect chronic effects at low Cr concentrations, i.e. at environmentally relevant levels. PMID:26432027

  9. Abatement of toxicity of effluents containing Cr(VI) by heterogeneous photocatalysis. Toxicity assessment by AMPHITOX assay.

    Science.gov (United States)

    Hojman, Jonatan Y; Meichtry, J Martín; Litter, Marta I; Pérez Coll, Cristina S

    2015-12-01

    Toxicity of a Cr(VI) solution before and after treatment by TiO2 heterogeneous photocatalysis (HP) was performed with AMPHITOX bioassay. Changes in toxicity on Rhinella arenarum larvae for 10-d were monitored after exposure to an untreated Cr(VI) solution and to the same solution after HP treatment. The HP treatment of a 41.60 mg L(-1) Cr(VI) solution reduced to 37.5% the concentration of the metal ion. A 10-fold reduction in toxicity at acute exposure (72 h) and 150-fold reduction in toxicity after 240 h was found. Further, the LOEC value increased from 0.001% for the untreated solution to 0.153% after HP treatment. Moreover, the safe concentration in untreated solution corresponded to 0.0001% sample, and it was 0.01% after the treatment, i.e., 100 times higher. A saving of water of about 100,000 L per L of effluent would be possible through dilution to allow safer concentrations for discharge; the saving would reach the highest value (1,000,000 L per L) at 240 h. Sub-lethal effects were completely absent in larvae exposed to the treated solution. The AMPHITOX test allowed to detect chronic effects at low Cr concentrations, i.e. at environmentally relevant levels.

  10. Adsorption characteristics of hexavalent chromium on HCB/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li; Zhang, Yonggang, E-mail: 13502182420@163.com

    2014-10-15

    Graphical abstract: - Highlights: • Sol–gel method was adopted to prepare HCB/TiO{sub 2}. • Its adsorption performance of Cr(VI) was investigated. • The maximum adsorption capacity for Cr(VI) was at 27.33 mg g{sup −1} in an acidic medium. • The value is worth comparable with other low-cost adsorbents. - Abstract: Sol–gel method was adopted to prepare HCB/TiO{sub 2} and its adsorption ability of hexavalent chromium, Cr(VI), and removal from aqueous solution were investigated. The samples were characterized by Power X-ray diffraction (XRD) and a transmission electron microscope (TEM) which showed that the TiO{sub 2} was deposited on the surface of HCB. FTIR was used to identify the changes of the surface functional groups before and after adsorption. Potentiometric titration method was used to characterize the zero charge (pH{sub pzc}) characteristics of the surface of HCB/TiO{sub 2} which showed more acidic functional groups containing. Batch experiments showed that initial pH, absorbent dosage, contact time and initial concentration of Cr(VI) were important parameters for the Cr(VI) adsorption studies. The Freundlich isotherm model better reflected the experimental data better. Cr(VI) adsorption process followed the pseudo-second order kinetic model, which illustrated chemical adsorption. The thermodynamic parameters, such as Gibbs free energy (ΔG), changes in enthalpy change (ΔH) and changes in entropy change (ΔS) were also evaluated. Negative value of free energy occurred at temperature range of 25–45 °C, so Cr(VI) adsorption by HCB/TiO{sub 2} is spontaneous. Desorption results showed that the adsorption capacity could maintain 80% after five cycles. The maximum adsorption capacity for Cr(VI) was at 27.33 mg g{sup −1} in an acidic medium, of which the value is worth comparable with other low-cost adsorbents.

  11. Speciation of chromium in water samples with cloud point extraction separation and preconcentration and determination by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Liang Pei [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)], E-mail: liangpei@mail.ccnu.edu.cn; Sang Hongbo [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)

    2008-06-15

    A novel method has been developed for the speciation of chromium in natural water samples based on cloud point extraction (CPE) separation and preconcentration, and determination by graphite furnace atomic absorption spectrometry (GFAAS). In this method, Cr(III) reacts with 1-phenyl-3-methyl-4-benzoylpyrazol-5-one (PMBP) yielding a hydrophobic complex, which then is entrapped in the surfactant-rich phase, whereas Cr(VI) remained in aqueous phase. Thus, separation of Cr(III) and Cr(VI) could be realized. Total chromium was determined after the reduction of Cr(VI) to Cr(III) by using ascorbic acid as reducing reagent. PMBP was used not only as chelating reagent in CPE procedure, but also as chemical modifier in GFAAS determination of chromium. The detection limit for Cr(III) was 21 ng L{sup -1} with an enrichment factor of 42, and the relative standard deviation was 3.5% (n = 7, c = 10 ng mL{sup -1}). The proposed method has been applied to the speciation of chromium in natural water samples with satisfactory results.

  12. Preparation of Polyacrylonitrile/Ferrous Chloride Composite Nanofibers by Electrospinning for Efficient Reduction of Cr(VI).

    Science.gov (United States)

    Zhou, Shilin; Liu, Fang; Zhang, Qian; Chen, Bor-Yann; Lin, Chin-Jung; Chang, Chang-Tang

    2015-08-01

    In this study, A novel adsorbent material of polyacrylonitrile (PAN)/ferrous chloride (FeCl2) composite nanofibers is prepared by electrospinning, a simple and effective method. The obtained composite nanofibers have a non-uniform morphology and structure and a large specific surface area of 13.8 m2 g-1. Fourier transform infrared spectroscopy (FTIR) revealed that Fe2+ was successful introduced into the composite nanofibers. Furthermore, the PAN/FeC12 composite nanofibers exhibited excellent performance in Cr removal, especially when reacted with reduction from a Cr(VI) standard containing solution, which has much faster removal efficiency than the previous report of Lin et al. (2011). The results of the adsorption isotherm show that the data fitted well to the Langmuir isotherm model. The maximum adsorption of chromium ions composite nanofibers is 108 mgCr/gFeCl2. An attempted model prediction of the transient dynamics of adsorption-desorption elucidated the feasible kinetic analysis of Cr6+ from the PAN/FeCl2 composite nanofibers. This kinetic modeling can be used both for adsorption of heavy metals wastewater and for organic-adsorption and biosorption of diverse wastewaters. The PAN/FeCl2 composite nanofibers producted in this study exhibit high efficiency in Cr(VI) removal from wastewater, and may be used as a reference for future investigation. PMID:26369157

  13. Preparation of Polyacrylonitrile/Ferrous Chloride Composite Nanofibers by Electrospinning for Efficient Reduction of Cr(VI).

    Science.gov (United States)

    Zhou, Shilin; Liu, Fang; Zhang, Qian; Chen, Bor-Yann; Lin, Chin-Jung; Chang, Chang-Tang

    2015-08-01

    In this study, A novel adsorbent material of polyacrylonitrile (PAN)/ferrous chloride (FeCl2) composite nanofibers is prepared by electrospinning, a simple and effective method. The obtained composite nanofibers have a non-uniform morphology and structure and a large specific surface area of 13.8 m2 g-1. Fourier transform infrared spectroscopy (FTIR) revealed that Fe2+ was successful introduced into the composite nanofibers. Furthermore, the PAN/FeC12 composite nanofibers exhibited excellent performance in Cr removal, especially when reacted with reduction from a Cr(VI) standard containing solution, which has much faster removal efficiency than the previous report of Lin et al. (2011). The results of the adsorption isotherm show that the data fitted well to the Langmuir isotherm model. The maximum adsorption of chromium ions composite nanofibers is 108 mgCr/gFeCl2. An attempted model prediction of the transient dynamics of adsorption-desorption elucidated the feasible kinetic analysis of Cr6+ from the PAN/FeCl2 composite nanofibers. This kinetic modeling can be used both for adsorption of heavy metals wastewater and for organic-adsorption and biosorption of diverse wastewaters. The PAN/FeCl2 composite nanofibers producted in this study exhibit high efficiency in Cr(VI) removal from wastewater, and may be used as a reference for future investigation.

  14. Removal of Cr(VI) from low-temperature micro-polluted surface water by tannic acid immobilized powdered activated carbon.

    Science.gov (United States)

    Li, Weiguang; Gong, Xujin; Li, Xin; Zhang, Duoying; Gong, Hainan

    2012-06-01

    In this study, food-grade tannic acid-immobilized powdered activated carbon (TA-PAC) was prepared, and adsorption of Cr(VI) (0.500 mg/L) onto TA-PAC as a function of pH, contact time, adsorption capacities and adsorption isotherms at 280 K was investigated. The results indicated that the immobilization process introduced abundant acid functional groups. The adsorption capacity of TA-PAC was found to be pH-dependent, and the optimal pH value was found to be 4.0. The equilibrium time was 240 min for TA-PAC. Adsorption data for total chromium were modeled using both two-parameter and three-parameter isotherm models. Freundlich and linear forms of three-parameter models yielded the best results for all of the data. Desorption studies of immobilized material suggested that the immobilization of food-grade tannic acid is steady. The adsorption mechanism of Cr(VI) on TA-PAC was assumed to be a comprehensive process consisting of surface reduction of Cr(VI), esterification between catechol and chromate, and ion exchange. PMID:22243926

  15. Ultratrace Determination of Cr(VI and Pb(II by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    Directory of Open Access Journals (Sweden)

    Jameel Ahmed Baig

    2013-01-01

    Full Text Available Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI and lead (Pb(II by dispersive liquid-liquid microextraction (DLLME using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS. For the current study, ammonium pyrrolidine dithiocarbamate (APDC, carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI and Pb(II were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, were 96%. The proposed method was successfully applied to the determination of Cr(VI and Pb(II at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method.

  16. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral

  17. Investigations on photoelectrocatalytic reduction of Cr(VI) over titanium dioxide anode and metal cathode

    International Nuclear Information System (INIS)

    Photocatalytic and photoelectrocatalytic (PEC) reductions of Cr(VI) based on TiO2 thin films were investigated under various conditions. Photogenerated electrons transferred from TiO2 thin film to cathode can contribute to PEC reduction of Cr(VI) only when the Fermi level of cathode lies above the chemical potential of Cr(VI), almost independent on the applied voltage of the direct current. In addition, the TiO2-coated anode is the major site that accommodates the PEC reduction of Cr(VI) with hole scavenger citric acid, regardless of the Fermi level of the cathode. Although electron transfer from TiO2 to Cr(VI) is an exothermic process, the photogenerated holes in TiO2 can markedly hamper Cr(VI) reduction over the TiO2 thin film by oxidizing the lower-valence Cr back to Cr(VI), which may be counteracted by the citric acid. This research provides some in-depth insights on developing photocatalysts which enable highly efficient PEC reduction of Cr(VI) in the future. - Highlights: • Cr(VI) reduction on TiO2 photoanode is dominant with the addition of citric acid. • Cr(VI) is reduced on photocathode with Fermi level above Cr(VI) chemical potential. • Photogenerated holes can hamper Cr(VI) photoreduction over TiO2

  18. Chromium stable isotope systematic – implications for the redox evolution of the earth

    DEFF Research Database (Denmark)

    Døssing, Lasse Nørbye

    isotopes as modern soil profiles and indicate that oxidative weathering in the terrestrial environment started well before and after the Great Oxidation Event ~2.3 billion years ago. The signals of oxidative weathering on land are traceable in contemporaneous marine sediments such as Banded Iron Formations......The isotopic composition of chromium (Cr) holds great promise as a paleo-redox proxy.Whereas the reduction of oxidized Cr(VI) to Cr(III) yields a well-defined kineticfractionation, the fractionation imparted during oxidative weathering is only described theoretically. This thesis demonstrates...... that Cr isotopes fractionate during oxidative weathering of modern soil systems. The result is the retention of light Cr(III) and the release of heavy Cr(VI) to runoff. Deviations in Cr isotope compositions from mantle inventory values are ultimately attributed to oxidative weathering in modern systems...

  19. Assessment of Hexavalent Chromium Natural Attenuation for the Hanford Site 100 Area

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sahajpal, Rahul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    Hexavalent chromium (Cr(VI)) plumes are present in the 100 Area at the Hanford Site. Remediation efforts are under way with objectives of restoring the groundwater to meet the drinking-water standard (48 µg/L) and protecting the Columbia River by ensuring that discharge of groundwater to the river is below the surface-water quality standard (10 µg/L). Current remedies include application of Pump-and-Treat (P&T) at the 100-D, 100-H, and 100-K Areas and Monitored Natural Attenuation (MNA) at the 100-F/IU Area. Remedy selection is still under way at the other 100 Areas. Additional information about the natural attenuation processes for Cr(VI) is important in all of these cases. In this study, laboratory experiments were conducted to demonstrate and quantify natural attenuation mechanisms using 100 Area sediments and groundwater conditions.

  20. Photocatalytic reduction of hexavalent chromium at gold nanoparticles modified titania nanotubes

    International Nuclear Information System (INIS)

    N-[3-(Trimethoxysilyl)propyl]ethylenediamine (EDAS) silicate supported titanium dioxide nanotubes-gold ((TiO2 NTs-Au)NCM) nanocomposite material (EDAS/(TiO2 NTs-Au)NCM) was prepared by deposition–precipitation method and characterized by diffuse reflectance spectra, X-ray diffraction pattern, Brunauer–Emmett–Teller surface area analysis, transmission electron micrographs, scanning electron micrographs and energy-dispersive X-ray spectra analysis. The photocatalytic activity of the EDAS/(TiO2 NTs-Au)NCM in the film form was investigated towards the reduction of toxic hexavalent chromium (Cr(VI)) into trivalent chromium (Cr(III)) in the presence of oxalic acid as an electron donor. The EDAS/(TiO2 NTs-Au)NCM film exhibited higher photocatalytic activity when compared to the photocatalytic activities of pristine TiO2 nanoparticles and TiO2 nanotubes (TiO2 NTs) which can be attributed to the effective photoinduced interfacial charge transfer from the (TiO2 NTs-Au)NCM to Cr(VI) through Au nanoparticles (Aunps). The Aunps present in the TiO2 NTs act as an electron sink for the photogenerated electrons that minimizes the charge recombination process at the TiO2 NTs. The Aunps on the TiO2 NTs surface facilitates the transfer of photogenerated electrons to the Cr(VI) leading to the formation of Cr(III) ions. - Highlights: • Gold modified titania nanotubes are used to design solid-phase photocatalyst. • Gold nanoparticles deposition increases the surface area of titania nanotubes. • Gold on titania nanotubes improves the photocatalytic reduction of Cr(VI). • The holes produced at the titania nanotubes are scavenged by oxalic acid. • Gold modified titania nanotubes is a potential candidate for treatment of heavy metals

  1. Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA

    Science.gov (United States)

    Izbicki, John A.; Bullen, Thomas D.; Martin, Peter; Schroth, Brian

    2012-01-01

    Chromium(VI) concentrations in groundwater sampled from three contaminant plumes in aquifers in the Mojave Desert near Hinkley, Topock and El Mirage, California, USA, were as high as 2600, 5800 and 330 μg/L, respectively. δ53/52Cr compositions from more than 50 samples collected within these plumes ranged from near 0‰ to almost 4‰ near the plume margins. Assuming only reductive fractionation of Cr(VI) to Cr(III) within the plume, apparent fractionation factors for δ53/52Cr isotopes ranged from εapp = 0.3 to 0.4 within the Hinkley and Topock plumes, respectively, and only the El Mirage plume had a fractionation factor similar to the laboratory derived value of ε = 3.5. One possible explanation for the difference between field and laboratory fractionation factors at the Hinkley and Topock sites is localized reductive fractionation of Cr(VI) to Cr(III), with subsequent advective mixing of native and contaminated water near the plume margin. Chromium(VI) concentrations and δ53/52Cr isotopic compositions did not uniquely define the source of Cr near the plume margin, or the extent of reductive fractionation within the plume. However, Cr(VI) and δ53/52Cr data contribute to understanding of the interaction between reductive and mixing processes that occur within and near the margins of Cr contamination plumes. Reductive fractionation of Cr(VI) predominates in plumes having higher εapp, these plumes may be suitable for monitored natural attenuation. In contrast, advective mixing predominates in plumes having lower εapp, the highly dispersed margins of these plumes may be difficult to define and manage.

  2. Fabrication of chitosan-magnetite nanocomposite strip for chromium removal

    Science.gov (United States)

    Sureshkumar, Vaishnavi; Kiruba Daniel, S. C. G.; Ruckmani, K.; Sivakumar, M.

    2016-02-01

    Environmental pollution caused by heavy metals is a serious threat. In the present work, removal of chromium was carried out using chitosan-magnetite nanocomposite strip. Magnetite nanoparticles (Fe3O4) were synthesized using chemical co-precipitation method at 80 °C. The nanoparticles were characterized using UV-visible spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction spectrometer, atomic force microscope, dynamic light scattering and vibrating sample magnetometer, which confirm the size, shape, crystalline nature and magnetic behaviour of nanoparticles. Atomic force microscope revealed that the particle size was 15-30 nm and spherical in shape. The magnetite nanoparticles were mixed with chitosan solution to form hybrid nanocomposite. Chitosan strip was casted with and without nanoparticle. The affinity of hybrid nanocomposite for chromium was studied using K2Cr2O7 (potassium dichromate) solution as the heavy metal solution containing Cr(VI) ions. Adsorption tests were carried out using chitosan strip and hybrid nanocomposite strip at different time intervals. Amount of chromium adsorbed by chitosan strip and chitosan-magnetite nanocomposite strip from aqueous solution was evaluated using UV-visible spectroscopy. The results confirm that the heavy metal removal efficiency of chitosan-magnetite nanocomposite strip is 92.33 %, which is higher when compared to chitosan strip, which is 29.39 %.

  3. Assessment of chromium biostabilization in contaminated soils using standard leaching and sequential extraction techniques

    International Nuclear Information System (INIS)

    The iron reducing microorganism Desulfuromonas palmitatis was evaluated as potential biostabilization agent for the remediation of chromate contaminated soils. D. palmitatis were used for the treatment of soil samples artificially contaminated with Cr(VI) at two levels, i.e. 200 and 500 mg kg-1. The efficiency of the treatment was evaluated by applying several standard extraction techniques on the soil samples before and after treatment, such as the EN12457 standard leaching test, the US EPA 3060A alkaline digestion method and the BCR sequential extraction procedure. The water soluble chromium as evaluated with the EN leaching test, was found to decrease after the biostabilization treatment from 13 to less than 0.5 mg kg-1 and from 120 to 5.6 mg kg-1 for the soil samples contaminated with 200 and 500 mg Cr(VI) per kg soil respectively. The BCR sequential extraction scheme, although not providing accurate estimates about the initial chromium speciation in contaminated soils, proved to be a useful tool for monitoring the relative changes in element partitioning, as a consequence of the stabilization treatment. After bioreduction, the percentage of chromium retained in the two least soluble BCR fractions, i.e. the 'oxidizable' and 'residual' fractions, increased from 54 and 73% to more than 96% in both soils

  4. Toxic hexavalent chromium reduction by Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium

    Science.gov (United States)

    Rehman, Fatima; Faisal, Muhammad

    2015-05-01

    Three bacterial strains Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium were investigated when grown in Luria-Bertani (LB) medium at 500 μg/mL Cr(VI). The hexavalent chromium reduction was measured by growing the strains in DeLeo and Ehrlich (1994) medium at 200 and 400 μg/mL K2CrO4. The optimal Cr (VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 51%, 39%, and 41%, respectively, at an initial K2CrO4 concentration of 200 μg/mL at pH 3 and temperature 37°C. At an initial chromate concentration of 400 μg/mL, the Cr(VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 24%, 19%, and 18%, respectively at pH 3 at 37°C after 24 h. These strains have ability to reduce toxic hexavalent chromium to the less mobile trivalent chromium at a wide range of different environmental conditions and can be useful for the treatment of contaminated wastewater and soils.

  5. Optimization and Modeling of Hexavalent Chromium Removal from Aqueous Solution Via Adsorption on Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mina Gholipour

    2011-09-01

    Full Text Available Hexavalent chromium and its derivatives are potential pollutant due to their mortal affects. Therefore, It is essential to remove these components from wastewaters before disposal. Adsorption can be effective and versatile method for removing of hexavalent chromium. In this article, removal of hexavalent chromium via adsorption on multiwalled carbon nanotubes was investigated as a function of adsorbent dosage, initial solution pH, initial Cr(VI concentrations, contact time and temperature. The batch experiments were conducted at 3 different temperatures (17, 27 and 37ºC and shows that Cr (VI removal obeys pseudo-second order rate equation. Rate constant (K values in 3 temperatures, pre-exponential factor and adsorption activation energy (E was also obtained. The sorption data fitted well with Freundlich isotherm adsorption model. Thermodynamic parameters such as Gibbs free energy (ΔGº, enthalpy (ΔHº and entropy (ΔSº for Cr(VI adsorption were estimated and Results suggest that the adsorption process is a spontaneous and endothermic.

  6. Biomolecular and Isotopic Signatures Related to Cr(VI) Reduction by a Sulfate-Reducing Bacterium Isolated from the Hanford 100H Aquifer

    Science.gov (United States)

    Han, R.; Qin, L.; Geller, J. T.; Chakraborty, R.; Christensen, J. N.; Beller, H. R.

    2011-12-01

    Chromium contamination of groundwater is widespread within the Dept. of Energy (DOE) complex. At DOE's Hanford 100H area, we have conducted Cr bioremediation (in situ reductive immobilization) studies involving injection of a lactate-containing polymer, and have observed sequential use of the dissolved electron acceptors present in groundwater (namely, oxygen, nitrate, and sulfate). Sulfate-reducing bacteria are of particular interest for chromate reduction because they can reduce Cr(VI) enzymatically (e.g., using cytochrome c3 or thioredoxin reductase) and abiotically with hydrogen sulfide, the end product of their respiration. In this poster, we use studies of a sulfate-reducing bacterium isolated from the Hanford 100H aquifer, Desulfovibrio vulgaris strain RCH1, to explore (a) isotopic signatures that might allow us to distinguish between enzymatic and sulfide-mediated Cr(VI) reduction and (b) biomolecular signatures (gene or transcript copy number of diagnostic genes) that might be used as proxies of in situ metabolic rates. In order to differentiate between the mechanisms of Cr reduction by sulfate reducers, we analyzed the isotopic fractionation during Cr(VI) reduction by strain RCH1. Cell suspension studies of strain RCH1 demonstrated that Cr(VI) reduction could occur in the presence of lactate (electron donor) alone or with both lactate and sulfate. Cr(VI) reduction in the presence of lactate and sulfate was 25-30% more rapid than enzymatic Cr reduction when only lactate was added, suggesting that biogenic hydrogen sulfide increases the specific rate of Cr(VI) reduction beyond purely enzymatic activity. Cr isotopic measurements showed different fractionation behavior for the lactate-only and lactate+sulfate systems, with fractionation (epsilon) values of 2.3 and 1.66 per mil, respectively. In order to determine whether gene or transcript copy number for diagnostic sulfate and chromate reduction genes could serve as proxies to estimate in situ metabolic

  7. Substoichiometric extraction of chromium

    International Nuclear Information System (INIS)

    Substoichiometric extraction of chromium with tetraphenylarsonium chloride (TPACl), tri-n-octylamine (TNOA), diethylammonium diethyldithiocarbamate (DDDC) and ammonium pyrrolidinedithiocarbamate (APDC) was examined in detail. Chromium can be extracted substoichiometrically in a pH range, which is 1.1-2.6 for the TPACl compound, 0.6-2.3 for the TNOA compound, 5.1-6.4 for the DDDC chelate and 3.9-4.9 for the APDC chelate. Chromium in high-purity calcium carbonate, Orchard Leaves (NBS SRM-1571) and Brewers Yeast (NBS SRM-1569) was determined by neutron activation analysis combined with substoichiometric extraction by DDDC and APDC. The values of 2.0+-0.02 ppm and 2.6+-0.2 ppm were obtained for Brewers Yeast and Orchard Leaves, respectively. These values were in good agreement with those reported by NBS. The reaction mechanism and the reaction ratio between hexavalent chromium and dithiocarbamate are also discussed. (author)

  8. Evaluation of extraction methods for hexavalent chromium determination in dusts, ashes, and soils

    Science.gov (United States)

    Wolf, Ruth E.; Wilson, Stephen A.

    2010-01-01

    One of the difficulties in performing speciation analyses on solid samples is finding a suitable extraction method. Traditional methods for extraction of hexavalent chromium, Cr(VI), in soils, such as SW846 Method 3060A, can be tedious and are not always compatible with some determination methods. For example, the phosphate and high levels of carbonate and magnesium present in the U.S. Environmental Protection Agency (USEPA) Method 3060A digestion for Cr(VI) were found to be incompatible with the High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS) detection method used by our laboratory. Modification of Method 3060A by eliminating the use of the phosphate buffer provided improved performance with the detection method, however dilutions are still necessary to achieve good chromatographic separation and detection of Cr(VI). An ultrasonic extraction method using a 1 mM Na2CO3 - 9 mM NaHCO3 buffer solution, adapted from Occupational Safety and Health Administration (OSHA) Method ID215, has been used with good results for the determination of Cr(VI) in air filters. The average recovery obtained for BCR-545 - Welding Dust Loaded on Filter (IRMM, Belgium) using this method was 99 percent (1.2 percent relative standard deviation) with no conversion of Cr(VI) to Cr(III) during the extraction process. This ultrasonic method has the potential for use with other sample matrices, such as ashes and soils. Preliminary investigations using NIST 2701 (Hexavalent Chromium in Contaminated Soil) loaded onto quartz filters showed promising results with approximately 90 percent recovery of the certified Cr(VI) value. Additional testing has been done using NIST 2701 and NIST 2700 using different presentation methods. Extraction efficiency of bulk presentation, where small portions of the sample are added to the bottom of the extraction vessel, will be compared with supported presentation, where small portions of the sample are loaded onto a

  9. Phosphinic acid functionalized carbon nanotubes for sensitive and selective sensing of chromium(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Akash, E-mail: dr.akashdeep@csio.res.in; Sharma, Amit L.; Tuteja, Satish K.; Paul, A.K.

    2014-08-15

    Highlights: • SWCNTs have been conjugated with bis(2,4,4-trimethylpentyl) phosphinic acid (PA/d). • SWCNT-PA/d adduct is demonstrated for electrochemical sensing of Cr(VI). • Linear response is obtained for 0.01–10 ppb Cr(VI). • Sensitivity and the limit of detection are 35 ± 4 nA/ppb and 0.01 ppb, respectively. • Proposed sensing of Cr(VI) is selective with respect to many other metals. - Abstract: Single-walled carbon nanotubes (SWCNTs) have been functionalized with a phosphinic acid derivative ‘bis(2,4,4-trimethylpentyl) phosphinic acid’ (PA/d). It has been achieved by treating the chlorinated SWCNTs with PA/d at 80 °C. Successful functionalization and different nanomaterial properties have been investigated by UV–vis–NIR, FTIR, Raman spectroscopy, AFM and FE-SEM. PA/d conjugated SWCNTs (CNT–PA) are dispersible in some common organic solvents, e.g. CH{sub 2}Cl{sub 2}, DMF, CHCl{sub 3}, and THF. The ‘CNT–PA’ complex was spin-casted on boron doped silicon wafer. Thus fabricated sensing electrode is demonstrated for sensitive and selective electrochemical sensing of chromium(VI) ions. A linear response is obtained over a wide range of Cr(VI) concentration (0.01–10 ppb). The sensor's sensitivity and the limit of detection are observed to be 35 ± 4 nA/ppb and 0.01 ppb, respectively. The practical utility of the proposed sensor is demonstrated by determining the Cr(VI) concentration in an industrial effluent sample and an underground water sample.

  10. The role of intracellular zinc in chromium(VI)-induced oxidative stress, DNA damage and apoptosis.

    Science.gov (United States)

    Rudolf, Emil; Cervinka, Miroslav

    2006-09-25

    Several studies have demonstrated that zinc is required for the optimal functioning of the skin. Changes in intracellular zinc concentrations have been associated with both improved protection of skin cells against various noxious factors as well as with increased susceptibility to external stress. Still, little is known about the role of intracellular zinc in hexavalent chromium (Cr(VI))-induced skin injury. To address this question, the effects of zinc deficiency or supplementation on Cr(VI)-induced cytotoxicity, oxidative stress, DNA injury and cell death were investigated in human diploid dermal fibroblasts during 48 h. Zinc levels in fibroblasts were manipulated by pretreatment of cells with 100 microM ZnSO4 and 4 or 25 microM zinc chelator TPEN. Cr(VI) (50, 10 and 1 microM) was found to produce time- and dose-dependent cytotoxicity resulting in oxidative stress, suppression of antioxidant systems and activation of p53-dependent apoptosis which is reported for the first time in this model in relation to environmental Cr(VI). Increased intracellular zinc partially attenuated Cr(VI)-induced cytotoxicity, oxidative stress and apoptosis by enhancing cellular antioxidant systems while inhibiting Cr(VI)-dependent apoptosis by preventing the activation of caspase-3. Decreased intracellular zinc enhanced cytotoxic effects of all the tested Cr(VI) concentrations, leading to rapid loss of cell membrane integrity and nuclear dispersion--hallmarks of necrosis. These new findings suggest that Cr(VI) as a model environmental toxin may damage in deeper regions residing skin fibroblasts whose susceptibility to such toxin depends among others on their intracellular Zn levels. Further investigation of the impact of Zn status on skin cells as well as any other cell populations exposed to Cr(VI) or other heavy metals is warranted.

  11. Cr(VI) removal from aqueous solution by dried activated sludge biomass

    International Nuclear Information System (INIS)

    Batch experiments were conducted to remove Cr(VI) from aqueous solution using activated sludge biomass. The effects of acid pretreatment of the biomass, initial pH, biomass and Cr(VI) concentrations on Cr(VI) removal efficiency were investigated. Proton consumption during the removal process and the reducing capacity of sludge biomass were studied. The results show that acid pretreatment could significantly improve Cr(VI) removal efficiency and increase Cr(VI) reducing capacity by 20.4%. Cr(VI) removal was remarkably pH-dependent; lower pH (pH = 1, 2) facilitated Cr(VI) reduction while higher pH (pH = 3, 4) favored sorption of the converted Cr(III). Lower Cr(VI) concentration as well as higher biomass concentration could accelerate Cr(VI) removal. Cr(VI) reduction was not the only reason for proton consumption in the removal process. Pseudo-second-order adsorption kinetic model could successfully simulate Cr(VI) removal except under higher pH conditions (pH = 3, 4).

  12. IRIS Toxicological Review of Hexavalent Chromium Part 2: Human, Toxicokinetic, and Mechanistic Studies (Preliminary Assessment Materials)

    Science.gov (United States)

    In August 2014, EPA released the second part of draft literature searches and associated search strategies, evidence tables, and exposure response arrays for Cr(VI) to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA w...

  13. IRIS Toxicological Review of Hexavalent Chromium Part 1: Experimental Animal Studies (Preliminary Assessment Materials)

    Science.gov (United States)

    In April 2014, EPA released the draft literature searches and associated search strategies, evidence tables, and exposure response arrays for Cr(VI) to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA was interested in...

  14. Physiological mechanisms to cope with Cr(VI) toxicity in lettuce: can lettuce be used in Cr phytoremediation?

    Science.gov (United States)

    Dias, Maria Celeste; Moutinho-Pereira, José; Correia, Carlos; Monteiro, Cristina; Araújo, Márcia; Brüggemann, Wolfgang; Santos, Conceição

    2016-08-01

    This research aims at identifying the main deleterious effects of Cr(VI) on the photosynthetic apparatus and at selecting the most sensitive endpoints related to photosynthesis. To achieve this goal, we used lettuce (Lactuca sativa), a sensible ecotoxicological crop model. Three-week-old plants were exposed to 0, 50, 150 and 200 mg L(-1) of Cr(VI). These concentrations ranged from levels admitted in irrigation waters to values found in several Cr industry effluents and heavily contaminated environments. After 30 days of exposure, plants accumulated Cr preferably in roots and showed nutritional impairment, with decreases of K, Mg, Fe and Zn in both roots and leaves. Cr(VI)-exposed plants showed decreased levels of chlorophyll (Chl) a and anthocyanins, as well as decreased effective quantum yield of photostystem II (ΦPSII) and photochemical Chl fluorescence quenching (qp), but increases in the non-photochemical Chl fluorescence quenching (NPQ) and in the de-epoxidation state (DEP) of the xanthophyll cycle. Net CO2 assimilation rate (P N ) and RuBisCO activity were mostly impaired in the highest Cr(VI) concentration tested. Concerning the final products of photosynthesis, starch content was not affected, while soluble sugar contents increased. These alterations were accompanied by a reduction in protein content and in plant growth. Our results support that endpoints related to the photosynthesis photochemical processes (ΦPSII and the qp) and the content of anthocyanins are sensitive predictors of Cr(VI) toxicity. The advantages of using these parameters as biomarkers for Cr toxicity in plants are discussed. Finally, we report that, despite showing physiological disorders, L. sativa plants survived and accumulated high doses of Cr, and their use in environmental/decontamination studies is open to debate. PMID:27130342

  15. Chromium-induced membrane damage: protective role of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100gbody weight). It has been observed that the intoxication with chromium ( i. p. ) at the dose of 0.8 mg/100g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospbolipid of both liver and kidney. The alkaline pbosphatase, total ATPase and Na + -K + -ATPase activities were significantly decreased in both liver and kidney after chromium treatment,except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid ( i.p. at the dose of 0.5 mg,/100g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  16. The Adsorption of Cr(VI Using Chitosan-Alumina Adsorbent

    Directory of Open Access Journals (Sweden)

    Darjito Darjito

    2013-12-01

    Full Text Available Chitosan as adsorbent has been used widely, however it was not effective yet for metal ions adsorption in industrial scale. In acidic condition, chitosan’s active site tends to decrease. This drawback can was solved by coating of chitosan active site on alumina. This paper discloses to overcome that limitation. The charateristic of the active side was analysed by FTIR spectrometry toward vibration N-H group at 1679.15 cm-1, C=O group of oxalate at 1703.30 cm-1, and Al-O group of alumina at 924.07 cm-1. The adsorption capacity of the developed adsorbent was tester to adsorb Cr(VI ions under various of pH value such as 1, 2, 3, 4, 5, 6, and 7. The contact time affect toward the adsorption was also reported in 20, 30, 40 50, 60, 70, and 80 minute. In addition, the concentration effects (100, 200, 300, 400, 500, and 600 ppm was also studied. Chromium (VI was measured using spectronic-20. Adsorption capacity was obtained at 66.90 mg/g under optimum conditions pH 2, and contact time 60 minute, respectively.

  17. The Adsorption of Cr(VI Ions Using Chitosan-Alumina Adsorbent

    Directory of Open Access Journals (Sweden)

    Darjito Darjito

    2014-06-01

    Full Text Available Chitosan as adsorbent has been used widely, however it was not effective yet for metal ions adsorption in industrial scale. In acidic condition, chitosan’s active site tends to decrease. This drawback can was solved by coating of chitosan active site on alumina. This paper discloses to overcome that limitation. The charateristic of the active side was analysed by FTIR spectrometry toward vibration N-H group at 1679.15 cm-1, C=O group of oxalate at 1703.30 cm-1, and Al-O group of alumina at 924.07 cm-1. The adsorption capacity of the developed adsorbent was tester to adsorb Cr(VI ions under various of pH value such as 1, 2, 3, 4, 5, 6, and 7. The contact time affect toward the adsorption was also reported in 20, 30, 40 50, 60, 70, and 80 minute. In addition, the concentration effects (100, 200, 300, 400, 500, and 600 ppm was also studied. Chromium (VI was measured using spectronic-20. Adsorption capacity was obtained at 66.90 mg/g under optimum conditions pH 2, and contact time 60 minute, respectively.

  18. Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells

    Science.gov (United States)

    Park, Soyoung; Li, Cen; Zhao, Hong; Darzynkiewicz, Zbigniew; Xu, Dazhong

    2016-01-01

    Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI). PMID:26760771

  19. Polyacrylonitrile/manganese acetate composite nanofibers and their catalysis performance on chromium (VI) reduction by oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chengcheng [Jilin University Alan G MacDiarmid Institute, Changchun 130012 (China); Li, Xiang, E-mail: xiangli@jlu.edu.cn [Jilin University Alan G MacDiarmid Institute, Changchun 130012 (China); Bian, Xiujie; Zheng, Tian [Jilin University Alan G MacDiarmid Institute, Changchun 130012 (China); Wang, Ce, E-mail: cwang@jlu.edu.cn [Jilin University Alan G MacDiarmid Institute, Changchun 130012 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer We have successfully prepared PAN/Mn(CH{sub 3}COO){sub 2} composite nanofibers. Black-Right-Pointing-Pointer The nanofibers exhibit excellent catalysis performance for Cr(VI) reduction. Black-Right-Pointing-Pointer The nanofibers are effective and environment-friendly materials to remove Cr(VI). - Abstract: Polyacrylonitrile(PAN)/manganese acetate(Mn(CH{sub 3}COO){sub 2}) composite nanofibers have been fabricated by electrospinning, a simple and effective technology. The obtained composite nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The composite nanofibers are amorphous in structure, continuous, even and smooth. At the same time, the reduction performance of Cr(VI) by oxalic acid in the presence of the composite nanofibers is also investigated. The results indicate that the composite nanofibers have exhibited excellent catalysis performance for Cr(VI) reduction from a Cr{sub 2}O{sub 7}{sup 2-}-containing solution by oxalic acid. And the critical parameters, such as the catalyst dosage, oxalic acid content, chromium concentration, the pH value of the reaction solution and light have important impact on the reduction process. Under the simulated solar light irradiation, after only 60 min, 1.2 mM initial Cr(VI) solution was reduced absolutely in the presence of PAN/Mn(CH{sub 3}COO){sub 2} composite nanofibers containing 17.5 wt.% Mn(CH{sub 3}COO){sub 2} by 0.3 mL 0.5 M oxalic acid. In light, the reduction of Cr(VI) by oxalic acid is markedly accelerated.

  20. Selective extraction of chromium (VI) from multicomponent acidic solutions by emulsion liquid membranes using tributhylphosphate as carrier

    International Nuclear Information System (INIS)

    The facilitated extraction of Cr(VI) through an emulsion liquid membrane (ELM) was investigated, using tributyl phosphate (TBP) as mobile carrier. The emulsion liquid membrane phase consists of kerosene as diluent, TBP as carrier, SPAN 80 as surfactant and (NH4)2CO3 solution as stripping phase. The extraction of chromium (VI) has been studied under various experimental conditions and have been determined the influences of surfactant concentration, extractant concentration, stripping solution base concentration, mixing speed, phase ratio, treatment ratio, chromium (VI) and HCl concentrations of the feed solution. It was observed that the extraction rate of Cr(VI) was affected by changes of surfactant concentration, extractant concentration, stripping solution base concentration, and mixing speed. The results obtained showed that by appropriate selection of the extraction and stability conditions, nearly all of chromium (VI) ions present in the feed solution were extracted within 2-4 min. The separation factors of chromium (VI) with respect to cobalt, nickel, copper, cadmium and zinc ions, based on initial feed concentration, have experimentally determined.

  1. Adsorption of hexavalent chromium by graphite–chitosan binary composite

    Indian Academy of Sciences (India)

    RAJENDRA S DONGRE

    2016-06-01

    Graphite chitosan binary (GCB) composite was prepared for hexavalent chromium adsorption from studied water. GCB was characterized by TGA, FTIR, SEM and X-ray diffraction techniques.Wide porous sorptive surface of 3.89 m$^2$ g$^{−1}$ and absorptive functionalities of GCB was due to 20% (w/w) graphite support on chitosan evidenced from FTIR and SEM that impart maximum adsorption at pH 4, agitation with 200 rpm for 180 min. Adsorption studies revealed intraparticle diffusion models and best-fitted kinetics was pseudo 2nd order one. A wellfitted Langmuir isotherm model suggested monolayer adsorption with an adsorption capacity ($q_m$) of 105.6 mg g$^{−1}$ and $R^2 = 0.945$. Sorption mechanisms based on metal ionic interactions, intrusion/diffusion and chemisorptions onto composite. This graphite chitosan binary composite improve sorbent capacity for Cr(VI).

  2. Skin permeation and cutaneous hypersensitivity as a basis for making risk assessments of chromium as a soil contaminant.

    OpenAIRE

    Bagdon, R E; Hazen, R E

    1991-01-01

    A literature review of experimental and human exposure studies of skin permeation and cutaneous hypersensitivity reactions evoked by chromium was carried out to provide a basis for making a risk assessment of chromium as a soil contaminant. In vitro and in vivo studies demonstrated that 1 to 4% of the applied dose of hexavalent and trivalent chromium to guinea pig skin penetrated skin within 5 to 24 hr after application. Ultrastructural investigations showed that hexavalent chromium localized...

  3. Accumulation of copper, chromium, and arsenic in blue mussels (Mytilus edulis) from laboratory and field exposures to wood treated with chromated copper arsenate type C

    Energy Technology Data Exchange (ETDEWEB)

    Adler-Ivanbrook, L.; Breslin, V.T. [State Univ. of New York, Stony Brook, NY (United States)

    1999-02-01

    Laboratory and field experiments were conducted to examine the uptake of Cu, Cr, and As leached from southern yellow pine (SYP) treated with chromated copper arsenate type C (CCA-C), as well as effects on mortality and growth, in blue mussels (Mytilus edulis). Mussels were exposed to CCA-C-treated wood at a preservative retention of 40 kg/m{sup 3} and control (nontreated) SYP in laboratory flow-through sea table and field exposure experiments for 9 months in 1994 and 3 months in 1995. Mussels were sampled at regular intervals to evaluate possible short- and long-term exposure effects., Individual mussels were measured to determine the length, dry weight, and condition index. Mussel tissues were than analyzed for Cu, Cr, and As. Results showed few significant differences in condition index, dry weight, and length between CCA-C-exposed and control mussels. In addition, no statistically significant differences in mortality were found between the mussels exposed to CCA-C-treated and nontreated SYP in the laboratory flow-through sea table and field exposure experiments. Significant differences in Cu, As, and Cr contents in mussel tissues between treatments were few, and generally cannot be attributed to exposure to CCA-C-treated SYP. The lack of Cu, Cr, and As uptake from CCA-C-treated SYP was attributed to the low, although continuous, rate of release of these elements from CCA-C-treated wood and to the experimental design, which allowed continuous flushing, prohibiting the accumulation of these elements in the water surrounding the mussels.

  4. 铬酸盐生产场所铬与铁联合暴露对红细胞代谢的影响%Effect of occupational combined exposure of chromium and iron on erythrocyte metabolism

    Institute of Scientific and Technical Information of China (English)

    钱琴; 周敬文; 刘岚铮; 闫蕾; 贾光; 王天成; 宋艳双; 王丽; 李钰慧; 余善法; 张济; 马衍辉; 张宁

    2012-01-01

    目的 探讨铬酸盐生产场所铬、铁联合暴露对工人外周血红细胞代谢的影响及其可能机制.方法 2008年12月于济南某化工厂选择115名铬酸盐生产工人作为暴露组,选取远离工厂某小区的60名健康居民作为对照组.通过空气滤膜采样,调查各工段铬、铁的环境浓度.采集研究对象的外周血,进行全血铬、铁、铜含量(以下简称血铬、血铁、血铜)、血清中叶酸、维生素B12含量和平均红细胞血红蛋白含量(MCH)、平均红细胞体积(MCV)检测及相关性分析.结果 铬酸盐生产场所各工段空气铬浓度中位数(四分位数间距)为9.0( 10.5)μg/m3,空气铁浓度中位数(四分位数间距)为11.2(10.1)μg/m3,均高于对照组所在的居民小区[分别为0.1(0.1)、7.2(2.5) μg/m3](P值均<0.01);暴露组血铬含量中位数(四分位数间距)为15.5(14.1)μg/L,血铁含量为(895.1±90.2)mg/L,与对照组[分别为3 6(2.0)μg/L、(563.7 ±49.3) mg/L]相比,差异有统计学意义(P值均<0.01);暴露组血清叶酸、维生素B12、血铜含量分别为(6.9±2.5)、(396.4±177.0)、(777.6±103.5) μg/L,均低于对照组[分别为(558.0±330.8)、(8.1±3 8)、(812.1 ±94.6) μg/L](P值均< 0.05).血铬含量与血清叶酸、维生素B12含量相关(r值分别为- 0.319和- 0.293,P值均<0.01),血铁含量与血铜含量相关(r=0.247,P<0.01),血清维生素B12含量、血铜含量均与MCII、MCV相关(r值分别为-0.223、-0.242、-0.261、-0.292,P值均<0.01).结论 铬酸盐生产各工段存在铬、铁的联合暴露,铬可能通过影响叶酸和维生素B12代谢、铁可能通过影响铜代谢,对机体红细胞代谢产生抑制作用.%Objective To investigate the effect of combined occupational exposure of chromium and iron on etythrocyte metabolism,and the possible mechanism.Methods A total of 115 chromate production workers were selected in a chemical factory of Jinan as exposure group,Dec.2008,and 60 healthy

  5. Interconversion of chromium species during air sampling: effects of O3, NO2, SO2, particle matrices, temperature, and humidity.

    Science.gov (United States)

    Huang, Lihui; Fan, Zhihua Tina; Yu, Chang Ho; Hopke, Philip K; Lioy, Paul J; Buckley, Brian T; Lin, Lin; Ma, Yingjun

    2013-05-01

    The interconversion between Cr(VI), a pulmonary carcinogen, and Cr(III), an essential human nutrient, poses challenges to the measurement of Cr(VI) in airborne particles. Chamber and field tests were conducted to identify the factors affecting Cr(VI)-Cr(III) interconversion in the basic filter medium under typical sampling conditions. In the chamber tests, isotopically enriched (53)Cr(VI) and (50)Cr(III) were spiked on diesel particulate matter (DPM) and secondary organic aerosol (SOA) that were precollected on a basic MCE filter. The filter samples were then exposed to clean air or the air containing SO2 (50 and 160 ppb), 100 ppb O3, or 150 ppb NO2 for 24 h at 16.7 LPM flow rate at designated temperature (20 and 31 °C) and RH (40% and 70%) conditions. Exposure to 160 ppb SO2 had the greatest effect on (53)Cr(VI) reduction, with (53)Cr(VI) recovery of 31.7 ± 15.8% (DPM) and 42.0 ± 7.9% (SOA). DPM and SOA matrix induced (53)Cr(VI) reduction when exposed to clean air while reactive oxygen species in SOA could promote (50)Cr(III) oxidation. Deliquescence when RH increased from 40% to 70% led to conversion of Cr(III) in SOA, whereas oxidized organics in DPM and SOA enhanced hygroscopicity and thus facilitated Cr(VI) reduction. Field tests showed seasonal variation of Cr(VI)-Cr(III) interconversion during sampling. Correction of the interconversion using USEPA method 6800 is recommended to improve accuracy of ambient Cr(VI) measurements. PMID:23550818

  6. Biochemical study on the protective role of folic acid in rabbits treated with chromium (VI).

    Science.gov (United States)

    El-Demerdash, Fatma M; Yousef, Mokhtar I; Elaswad, Fathia A M

    2006-01-01

    Deleterious effects of chromium (VI) compounds are diversified affecting almost all the organ systems in a wide variety of animals. Therefore, the present study was carried out to determine the effectiveness of folic acid (FA) in alleviating the toxicity of chromium (VI) on certain biochemical parameters, lipid peroxidation, and enzyme activities of male New Zealand white rabbits. Six rabbits per group were assigned to one of four treatment groups: 0 mg FA and 0 mg Cr(VI)/kg BW (control); 8.3 microg FA/kg BW; 5 mg Cr(VI)/kg BW; 5 mg Cr(VI) plus 8.3 microg FA/kg BW, respectively. Rabbits were orally administered their respective doses every day for 10 weeks. Results obtained showed that Cr(VI) significantly (P content of sulfhydryl groups (SH groups) in liver, testes, brain, kidney, and lung. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AlP), acid phosphatase (AcP), and lactate dehydrogenase (LDH) were significantly decreased in liver and testes due to Cr(VI) administration. Also, AlP and AcP activities were significantly decreased in kidney and lung. The activity of acetylcholinesterase (AChE) was significantly decreased in brain and plasma. Contrariwise, the activities of AST and ALT were significantly increased in plasma, while AlP and AcP decreased. Chromium (VI) treatment caused a significant decrease in plasma total protein (TP) and globulin, and increased total lipids (TL), cholesterol, glucose, urea, creatinine, and bilirubin concentrations. Folic acid alone significantly decreased the levels of free radicals in liver, brain, and kidney, and increased the content of SH-group. The activities of AST, ALT, and LDH in liver; AST, ALT, AlP, AcP, and LDH in testes; AcP in kidney; AlP and AcP in lung, and LDH in brain were significantly increased. Plasma TP and albumin were increased, while urea and creatinine were decreased. The presence of FA with Cr(VI) restored the changes in enzyme activities and

  7. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.

    Science.gov (United States)

    Gheju, M; Iovi, A; Balcu, I

    2008-05-01

    The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using long-term column experiments, for aqueous Cr(VI) solutions having low buffering capacities, over the pH range of 2.00-7.30. The results showed that the initial pH of Cr(VI) solution significantly affects the reduction capacity of scrap iron. The highest reduction capacity was determined to be 19.2 mg Cr(VI)/g scrap iron, at pH 2.50, and decreased with increasing the initial pH of Cr(VI) solution. A considerable decrease in scrap iron reduction capacity (25%) was also observed at pH 2.00, as compared to pH 2.50, due to the increased contribution of H(+) ions to the corrosion of scrap iron, which leads to a rapid decrease in time of the scrap iron volume. Over the pH range of 2.50-7.30, hexavalent chromium concentration increases slowly in time after its breakthrough in column effluent, until a steady-state concentration was observed; similarly, over the same pH range, the amount of solubilized Cr(III) in treated column effluent decreases in time, until a steady-state concentration was observed. The steady-state concentration in column effluent decreased for Cr(VI) and increased for Cr(III) with decreasing the initial pH of Cr(VI) solution. No steady-state Cr(VI) or Cr(III) concentrations in column effluent were observed at pH 2.00. Over the entire studied pH range, the amount of Fe(total) in treated solution increases as the initial pH of column influent is decreased; the results show also a continuously decrease in time of Fe(total) concentration, for a constant initial pH, due to a decrease in time of iron corrosion rate. Cr(III) concentration in column effluent also continuously decreased in time, for a constant initial pH, over the pH range of 2.50-7.30. This represents an advantage, because the amount of precipitant agent used to remove Fe(total) and Cr(III) from the column effluent will also decrease in time. The optimum pH for Cr(VI) reduction with scrap iron in

  8. Differential physiological responses of two Salvinia species to hexavalent chromium at a glance.

    Science.gov (United States)

    Prado, Carolina; Chocobar Ponce, Silvana; Pagano, Eduardo; Prado, Fernando E; Rosa, Mariana

    2016-06-01

    In plants of Salvinia rotundifolia and Salvinia minima the effect of two Cr(VI) concentrations (5 and 20mgL(-1)) applied for 7days was assessed by measuring changes in biomass, photosynthetic pigments, Cr accumulation, malondialdehyde (MDA), membrane stability index (MSI), thiols (TT, NPT and PBT), and phenolics (SP and IP). Biomass in S. minima was decreased at highest Cr(VI) concentration, but there were no changes in S. rotundifolia. Metal accumulation was different in both species. S. minima accumulates more metal in fronds, but S. rotundifolia accumulates more metal in lacinias. Results also showed that S. minima translocates more Cr to fronds than S. rotundifolia, but at the whole plant level higher accumulation occurred in this last. Tolerance index (Ti) was higher in S. rotundifolia. Chl b and carotenoids were decreased only upon exposure to high Cr(VI) concentration in both species. Cr(VI) treatment did not enhance MDA accumulation. Cr exposure had no impact on MSI values when comparing with Cr-untreated values. Thiols in fronds and lacinias showed different distribution patterns between species. IP and NPT were higher in S. rotundifolia lacinias that accumulate more Cr than S. minima lacinias. Whilst SP and NPT were higher in S. minima fronds compared with S. rotundifolia ones. This may indicate that these species can cope with Cr(VI) toxicity, either through metal complexation and/or metal reduction or by the scavenging of ROS derived from Cr-induced oxidative stress. Based on Cr accumulation and biomass production, S. rotundifolia seems more suitable to remove Cr(VI) from polluted waters. PMID:27061358

  9. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent.

    Science.gov (United States)

    Li, Kun; Li, Pei; Cai, Jun; Xiao, Shoujun; Yang, Hu; Li, Aimin

    2016-07-01

    A quaternary ammonium salt modified chitosan magnetic composite adsorbent (CS-CTA-MCM) was prepared by combination of Fe3O4 nanoparticles. Various techniques were used to characterize the molecular structure, surface morphology, and magnetic feature of this composite adsorbent. CS-CTA-MCM was employed for the removal of Cr(VI) and methyl orange (MO), an anionic dye, from water in respective single and binary systems. Compared with chitosan magnetic adsorbent (CS-MCM) without modification, CS-CTA-MCM shows evidently improved adsorption capacities for both pollutants ascribed to the additional quaternary ammonium salt groups. Based on the adsorption equilibrium study, MO bears more affinity to CS-CTA-MCM than Cr(VI) causing a considerable extent of preferential adsorption of dye over metal ions in their aqueous mixture. However, at weak acidic solutions, Cr(VI) adsorption is evidently improved due to more efficient Cr(VI) forms, i.e. dichromate and monovalent chromate, binding to this chitosan-based adsorbent. Thus chromium could be efficient removal together with MO at suitable pH conditions. The adsorption isotherms and kinetics indicate that adsorptions of Cr(VI) and MO by CS-CTA-MCM both follow a homogeneous monolayer chemisorption process. This magnetic adsorbent after saturated adsorption could be rapidly separated from water and easily regenerated using dilute NaOH aqueous solutions then virtually reused with little adsorption capacity loss. PMID:27060639

  10. Large scale groundwater flow and hexavalent chromium transport modeling under current and future climatic conditions: the case of Asopos River Basin.

    Science.gov (United States)

    Dokou, Zoi; Karagiorgi, Vasiliki; Karatzas, George P; Nikolaidis, Nikolaos P; Kalogerakis, Nicolas

    2016-03-01

    In recent years, high concentrations of hexavalent chromium, Cr(VI), have been observed in the groundwater system of the Asopos River Basin, raising public concern regarding the quality of drinking and irrigation water. The work described herein focuses on the development of a groundwater flow and Cr(VI) transport model using hydrologic, geologic, and water quality data collected from various sources. An important dataset for this goal comprised an extensive time series of Cr(VI) concentrations at various locations that provided an indication of areas of high concentration and also served as model calibration locations. Two main sources of Cr(VI) contamination were considered in the area: anthropogenic contamination originating from Cr-rich industrial wastes buried or injected into the aquifer and geogenic contamination from the leaching process of ophiolitic rocks. The aquifer's response under climatic change scenario A2 was also investigated for the next two decades. Under this scenario, it is expected that rainfall, and thus infiltration, will decrease by 7.7 % during the winter and 15 % during the summer periods. The results for two sub-scenarios (linear and variable precipitation reduction) that were implemented based on A2 show that the impact on the study aquifer is moderate, resulting in a mean level decrease less than 1 m in both cases. The drier climatic conditions resulted in higher Cr(VI) concentrations, especially around the industrial areas. PMID:26564185

  11. Obtaining decorative chromium plating from trivalent chromium solutions

    OpenAIRE

    Óscar Javier Suárez García

    2010-01-01

    The present work was aimed at a qualitative evaluation, in the laboratory, of different alternatives for assembling and operating a trivalent chromium bath for decorative chromium plating. Different chromium concentration solutions and different complexing agents were used. The initial result of this analysis was that chloride, formate and acetate solutions produced the best results. Solution preparation conditions were evaluated: temperature, chromium III complex formation time and also ...

  12. Chromium isotope inventory of Cr(VI)-polluted groundwaters at four industrial sites in Central Europe

    Science.gov (United States)

    Novak, Martin; Martinkova, Eva; Chrastny, Vladislav; Stepanova, Marketa; Curik, Jan; Szurmanova, Zdenka; Cron, Marcel; Tylcer, Jiri; Sebek, Ondrej

    2016-04-01

    Chromium is one of the most toxic elements, especially in its dissolved Cr(VI) form. In the Czech Republic (Central Europe), massive contamination of groundwater has been reported at more than 200 industrial operations. Under suitable conditions, i.e., low Eh, and high availability of reductive agents, Cr(VI) in groundwater may be spontaneously reduced to solid, largely non-toxic Cr(III). This process is associated with a Cr isotope fractionation, with the residual liquid Cr(VI) becoming enriched in the heavier isotope 53Cr. At industrial operations that have been closed and/or where no further leakage of Cr(VI) occurs, the contaminated groundwater plume may be viewed as a closed system. At such sites, an increasing degree of Cr(VI) reduction should result in an increasing del53/52Cr value of the residual liquid. Here we present del53/52Cr systematics at four contaminated Czech sites, focusing on groundwaters. At two of the four sites (Zlate Hory, Loucna) we were also able to analyze the source of contamination. Chromium in the electroplating solutes was isotopically relatively light, with del53/52Cr values 4.0 per mil (mean of +1.7 per mil); at Letnany, del53/52Cr ranged between +2.0 and +4.5 per mil (mean of +3.2 per mil); and at Velesin, del53/52Cr ranged between +0.5 and +4.5 per mil (mean of +2.7 per mil). Cr(VI) reduction may proceed at Zlate Hory and Loucna, where del53/52Cr(VI) values in groundwater were on average higher than those of the contamination source. At these two sites, our Cr isotope data are not consistent with the existing estimates of the amount of dissolved and precipitated Cr: The pool size of solid Cr(III) in the soil was estimated at 6600 and 500 kg at Zlate Hory and Loucna, respectively. At the same time, the pool size of dissolved Cr(VI) was estimated at 50 and 1.2 kg at Zlate Hory and Loucna, respectively. It follows that, at both sites, less than 1 % of the entire Cr that had leaked into the aquifer an a liquid form remained in the

  13. Pyridine appended L-methionine: A novel chelating resin for pH dependent Cr speciation with scanning electron microscopic evidence and monitoring of yeast mediated green bio-reduction of Cr(VI) to Cr(III) in environmental samples

    International Nuclear Information System (INIS)

    Chemical speciation and pH dependent separation of Cr(III) and Cr(VI) species in environmental samples have been achieved by solid phase extraction using a new chelating resin containing pyridine appended L-methionine. Cr(III) is completely sorbed on the resin at pH 8.0 and Cr(VI) at pH 2.0. Hence a pH dependent separation of Cr(III) and Cr(VI) is possible with a limit of detection of 1.6 μg mL-1 and 0.6 μg mL-1 respectively. The sorption capacity of the resin for Cr(III) and Cr(VI) is 2.8 mmol g-1 and 1.3 mmol g-1 respectively. The sorption of chromium on the resin is supported by scanning electron microscopy (SEM). Complete desorption of Cr(III) and Cr(VI) from 1 g of Cr loaded resin was achieved using 10 mL of 2 mol L-1 HNO3 and 6 mL of 3 mol L-1 HNO3 respectively. Quantitative recoveries of Cr(III) (pH 8.0) and Cr(VI) (pH 2.0) were found to be 96.0% and 98.0% respectively. Reduction efficiency of Rhodotornula mucilaginosa yeast from Cr(VI) to Cr(III) was monitored with this new resin. Concentrations of metal ions were measured by flame atomic absorption spectroscopy (FAAS).

  14. Anaerobic bio-removal of uranium (VI) and chromium (VI): Comparison of microbial community structure

    International Nuclear Information System (INIS)

    Several microbial communities, obtained from uranium contaminated and non-contaminated samples, were investigated for their ability to remove uranium (VI) and the cultures capable for this removal were further assessed on their efficiency for chromium (VI) removal. The highest efficiency for removal of both metals was observed on a consortium from a non-contaminated soil collected in Monchique thermal place, which was capable to remove 91% of 22 mg L-1 U(VI) and 99% of 13 mg L-1 Cr(VI). This study revealed that uranium (VI) removing communities have also ability to remove chromium (VI), but when uranium (VI) was replaced by chromium (VI) several differences in the structure of all bacterial communities were observed. TGGE and phylogenetic analysis of 16S rRNA gene showed that the uranium (VI) removing bacterial consortia are mainly composed by members of Rhodocyclaceae family and Clostridium genus. On the other hand, bacteria from Enterobacteriaceae family were detected in the community with ability for chromium (VI) removal. The existence of members of Enterobacteriaceae and Rhodocyclaceae families never reported as chromium or uranium removing bacteria, respectively, is also a relevant finding, encouraging the exploitation of microorganisms with new abilities that can be useful for bioremediation.

  15. Anaerobic bio-removal of uranium (VI) and chromium (VI): Comparison of microbial community structure

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande 1749-016 Lisboa (Portugal); Santos, Erika [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-04-15

    Several microbial communities, obtained from uranium contaminated and non-contaminated samples, were investigated for their ability to remove uranium (VI) and the cultures capable for this removal were further assessed on their efficiency for chromium (VI) removal. The highest efficiency for removal of both metals was observed on a consortium from a non-contaminated soil collected in Monchique thermal place, which was capable to remove 91% of 22 mg L{sup -1} U(VI) and 99% of 13 mg L{sup -1} Cr(VI). This study revealed that uranium (VI) removing communities have also ability to remove chromium (VI), but when uranium (VI) was replaced by chromium (VI) several differences in the structure of all bacterial communities were observed. TGGE and phylogenetic analysis of 16S rRNA gene showed that the uranium (VI) removing bacterial consortia are mainly composed by members of Rhodocyclaceae family and Clostridium genus. On the other hand, bacteria from Enterobacteriaceae family were detected in the community with ability for chromium (VI) removal. The existence of members of Enterobacteriaceae and Rhodocyclaceae families never reported as chromium or uranium removing bacteria, respectively, is also a relevant finding, encouraging the exploitation of microorganisms with new abilities that can be useful for bioremediation.

  16. The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions.

    Science.gov (United States)

    Alguacil, Francisco José; López-Delgado, Aurora; Alonso, Manuel; Sastre, Ana Maria

    2004-11-01

    The behaviour of the phosphine oxides Cyanex 921 and Cyanex 923 in the facilitated transport of chromium (VI) from chloride solutions is described. Transport is studied as a function of several variables such as stirring speeds of the aqueous phases, membrane phase diluent, hydrochloric acid concentration in the source phase and chromium and carrier concentrations. The separation of chromium (VI) from other metals presented in the source phase as well as the behaviour of phosphine oxides with respect to other neutral organophosphorous derivatives (tri-n-butylphosphate (TBP) and dibutyl butylphosphonate (DBBP)) are also investigated. Moreover, by using hydrazine sulphate in the receiving phase, Cr(VI) is immediately reduced to the less toxic Cr(III).

  17. Adsorption of hexavalent chromium from synthetic and electroplating effluent on chemically modified Swietenia mahagoni shell in a packed bed column.

    Science.gov (United States)

    Rangabhashiyam, S; Nandagopal, M S Giri; Nakkeeran, E; Selvaraju, N

    2016-07-01

    Packed bed column studies were carried out to evaluate the performance of chemically modified adsorbents for the sequestration of hexavalent chromium from synthetic and electroplating industrial effluent. The effects of parameters such as bed height (3-9 cm), inlet flow rate (5-15 mL/min), and influent Cr(VI) concentration (50-200 mg/L) on the percentage removal of Cr(VI) and the adsorption capacity of the adsorbents in a packed bed column were investigated. The breakthrough time increased with increasing bed height and decreased with the increase of inlet flow rate and influent Cr(VI) concentration. The adsorption column models such as Thomas, Adams-Bohart, Yoon-Nelson, and bed depth service time (BDST) were successfully correlated with the experimental data. The Yoon-Nelson and BDST model showed good agreement with the experimental data for all the studied parameter conditions. Results of the present study indicated that the chemically modified Swietenia mahagoni shell can be used as an adsorbent for the removal of Cr(VI) from industrial wastewater in a packed bed column. PMID:27312254

  18. Membrane Made of Cellulose Acetate with Polyacrylic Acid Reinforced with Carbon Nanotubes and Its Applicability for Chromium Removal

    Directory of Open Access Journals (Sweden)

    J. A. Sánchez-Márquez

    2015-01-01

    Full Text Available Membranes made of carbon nanotubes and cellulose acetate with polyacrylic acid were designed in order to study their properties and their applicability for chromium removal. The membranes were prepared by phase inversion method using cellulose acetate and polyacrylic acid. Carbon nanotubes were added to the membrane during their process of synthesis in proportions of 1% by weight. The pores in the material are formed in layers, giving the effect of depth and forming a network. Both the carbon nanotubes and membranes were characterized by IR, Raman, and SEM spectroscopy. In addition, the concentration of acidic and basic sites and the surface charge in the materials were determined. The concentration of acid sites for oxidized nanotubes was 4.0 meq/g. The removal of Cr(VI was studied as a function of contact time and of initial concentration of Cr(VI. The removal of Cr(VI (~90% mainly occurs in a contact time from 32 to 64 h when the initial concentration of Cr(VI is 1 mg/L.

  19. Polyacrylonitrile/manganese acetate composite nanofibers and their catalysis performance on chromium (VI) reduction by oxalic acid.

    Science.gov (United States)

    Zhang, Chengcheng; Li, Xiang; Bian, Xiujie; Zheng, Tian; Wang, Ce

    2012-08-30

    Polyacrylonitrile(PAN)/manganese acetate(Mn(CH(3)COO)(2)) composite nanofibers have been fabricated by electrospinning, a simple and effective technology. The obtained composite nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The composite nanofibers are amorphous in structure, continuous, even and smooth. At the same time, the reduction performance of Cr(VI) by oxalic acid in the presence of the composite nanofibers is also investigated. The results indicate that the composite nanofibers have exhibited excellent catalysis performance for Cr(VI) reduction from a Cr(2)O(7)(2-)-containing solution by oxalic acid. And the critical parameters, such as the catalyst dosage, oxalic acid content, chromium concentration, the pH value of the reaction solution and light have important impact on the reduction process. Under the simulated solar light irradiation, after only 60 min, 1.2mM initial Cr(VI) solution was reduced absolutely in the presence of PAN/Mn(CH(3)COO)(2) composite nanofibers containing 17.5 wt.% Mn(CH(3)COO)(2) by 0.3 mL 0.5M oxalic acid. In light, the reduction of Cr(VI) by oxalic acid is markedly accelerated. PMID:22709851

  20. Simultaneous Reduction of Vanadium (V) and Chromium (VI) in Wastewater by Nanosized ZnWO4 Photocatalysis.

    Science.gov (United States)

    Zhao, Zengying; Zhang, Baogang; Chen, Daimei; Guo, Zhanhu; Peng, Zhijian

    2016-03-01

    Vanadium (V, V) and chromium (Cr, VI) are simultaneously photocatalytically reduced to less-toxic V(VI) and Cr(III) by mimetic solar light with ZnWO4 nanoparticles prepared by hydrothermal synthesis. The reduction efficiencies can reach 68.8% for V(V) and 97.3% for Cr(VI) in 3 h, respectively, which are comparable to those by microbial fuel cell technology carried out in over 10 days. The prepared ZnWO4 nanoparticles are characterized by XRD, SEM, EDS, TEM, and Uv-vis-DRS tests. Electrochemical calculation shows high acidity benefits the rapid reduction of V(V) and Cr(VI). In addition, the applied ZnWO4 nanoparticles can be recycled and reused for 5 repeated photocatalytic reduction runs. And after 5 runs, the recycled ZnWO4 nanoparticles can also present good photocatalytic activity with a reduction efficiency of about 60% for V(V) and 90% for Cr(VI). The new procedure on the simultaneous reduction of V(V) and Cr(VI) by photocatalysis may be promisingly applied in contaminated wastewaters, combining the remediation and possible V and Cr recovery.

  1. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions

    International Nuclear Information System (INIS)

    The hexavalent chromium, Cr(VI), biosorption by raw and acid-treated Oedogonium hatei were studied from aqueous solutions. Batch experiments were conducted to determine the biosorption properties of the biomass. The optimum conditions of biosorption were found to be: a biomass dose of 0.8 g/L, contact time of 110 min, pH and temperature 2.0 and 318 K respectively. Both Langmuir and Freundlich isotherm equations could fit the equilibrium data. Under the optimal conditions, the biosorption capacities of the raw and acid-treated algae were 31 and 35.2 mg Cr(VI) per g of dry adsorbent, respectively. Thermodynamic parameters showed that the adsorption of Cr(VI) onto algal biomass was feasible, spontaneous and endothermic under studied conditions. The pseudo-first-order kinetic model adequately describe the kinetic data in comparison to second-order model and the process involving rate-controlling step is much complex involving both boundary layer and intra-particle diffusion processes. The physical and chemical properties of the biosorbent were determined and the nature of biomass-metal ions interactions were evaluated by FTIR analysis, which showed the participation of -COOH, -OH and -NH2 groups in the biosorption process. Biosorbents could be regenerated using 0.1 M NaOH solution, with up to 75% recovery. Thus, the biomass used in this work proved to be effective materials for the treatment of chromium bearing aqueous solutions

  2. Cathodic stripping voltammetric determination of chromium in coastal waters on cubic Nano-titanium carbide loaded gold nanoparticles modified electrode

    Directory of Open Access Journals (Sweden)

    Haitao eHan

    2015-09-01

    Full Text Available The novel cubical nano-titanium carbide loaded gold nanoparticles modified electrode for selective and sensitive detection of trace chromium (Cr in coastal water was established based on a simple approach. Nano-titanium carbide is used as the typical cubical nanomaterial with wonderful catalytic activity towards the reduction of Cr(VI. Gold nanoparticles with excellent physical and chemical properties can facilitate electron transfer and enhance the catalytic activity of the modified electrode. Taking advantage of the synergistic effects of nano-titanium carbide and gold nanoparticles, the excellent cathodic signal responses for the stripping determination of Cr(VI can be obtained. The detection limit of this method is calculated as 2.08 μg L-1 with the linear calibration curve ranged from 5.2 to 1040 μg L-1. This analytical method can be used to detect Cr(VI effectively without using any complexing agent. The fabricated electrode was successfully applied for the detection of chromium in coastal waters collected from the estuary giving Cr concentrations between 12.48 and 22.88 μg L-1 with the recovery between 96% and 105%.

  3. Scientific Opinion on chromium(III lactate tri-hydrate as a source of chromium added for nutritional purposes to foodstuff

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2012-10-01

    Full Text Available

    The Panel on Food Additives and Nutrient Sources added to Food provides a scientific opinion on the safety and bioavailability of chromium(III lactate tri-hydrate as a source of chromium(III added for nutritional purposes to foodstuffs. The safety of chromium itself, in terms of the amounts that may be consumed, is outside the remit of this Panel. No new data have been provided as regards the safety and bioavailability of chromium from chromium(III lactate tri-hydrate. The Panel concurs with its earlier views stating that no evidence was provided supporting the bioavailability of chromium from chromium(III lactate tri-hydrate. Chromium(III lactate tri-hydrate is claimed to be freely soluble in water, however, chromium(III lactate tri-hydrate exists as a weak complex that may influence the bioavailability of chromium(III in the gastrointestinal tract. The Panel re-iterates that because of the complex chemistry of chromium(III lactate tri-hydrate in aqueous solutions and its limited solubility at pH >5, the bioavailability of chromium(III from chromium(III lactate tri-hydrate is low. Based on a conservative exposure estimate, the Panel calculated the combined intake of chromium(III from supplements and from foods fortified with chromium(III lactate tri-hydrate, for both adults and children, to be approximately 240 μg chromium(III/day, which is below the value of 250 µg/day established by the WHO for supplemental intake of chromium that should not be exceeded. The Panel noted that the use of chromium(III lactate tri-hydrate in the form of a premix with lactose, added to foods, would result in an exposure at the mean for adults of approximately 7-37 mg lactose/day (0.12-0.62 μg lactose/kg bw/day and to 36-192 μg lactate/day (0.60-3.20 μg/kg bw/day. Given that subjects with lactose maldigestion will tolerate up to 12 g of lactose with no or minor symptoms, these levels are not of safety concern.

  4. Simultaneous determination of Cr(iii) and Cr(vi) using reversed-phased ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Wolf, R.E.; Morrison, J.M.; Goldhaber, M.B.

    2007-01-01

    A method for the simultaneous determination of Cr(iii) and Cr(vi) species in waters, soil leachates and synthetic bio-fluids is described. The method uses reversed-phase ion-pairing liquid chromatography to separate the chromium species and a dynamic reaction cell (DRC??) equipped ICP-MS for detection of chromium. Separation of the chromium species is carried out in less than 2 min. Cr(iii) is complexed with ethylenediaminetetraacetic acid (EDTA) prior to separation by mixing samples with the mobile phase containing 2.0 mM tetrabutylammonium hydroxide (TBAOH), 0.5 mM EDTA (dipotassium salt), and 5% (vol/vol) methanol, adjusted to pH 7.6. The interfering 40Ar 12C+ background peak at mass 52 was reduced by over four orders of magnitude to less than 200 cps by using 0.65 mL min-1 ammonia as a reaction gas and an RPq setting on the DRC of 0.75. Method detection limits (MDLs) of 0.09 ??g L-1 for Cr(iii) and 0.06 ??g L-1 for Cr(vi) were obtained based on peak areas at mass 52 for 50 ??L injections of low level spikes. Reproducibility at 2 ??g L-1 was 3% RSD for 5 replicate injections. The tolerance of the method to various levels of common cations and anions found in natural waters and to matrix constituents found in soil leachates and simulated gastric and lung fluids was tested by performing spike recovery calculations for a variety of samples. ?? The Royal Society of Chemistry.

  5. A study of low-cost adsorbent materials for removing Cr(VI from aqueous waste effluent Estudio de materiales adsorbentes de bajo costo para remover Cr(VI de efluentes acuosos

    Directory of Open Access Journals (Sweden)

    Castillo Serna Elianna

    2011-05-01

    Full Text Available  

    The present paper shows very high potential for two types of solid (a commercial alumina and material obtained by composting, i.e. matured compost on Cr(VI adsorption/elimination in aqueous solution using a concentration range close to those previously detected in waste-water from Colombian industries. Both had important properties for eliminating Cr(VI, the compost being more important as it represents low-cost material. Optimal conditions for chromium adsorption on alumina and compost were established. Initial Cr(VI alumina concentration was 10 mgL-1, with 100 mL/g volume of solution per adsorbent mass, pH=2.0, 1 hour equilibrium time and 150 rpm stirring. For compost, initial Cr(VI concentration was = 3 mg L-1, 50 mL/g volume of solution per adsorbent mass, pH=2.5, 3 hour equilibrium time and 150 rpm stirring. The experiments showed that compost adsorption properties could be enhanced by adding small quantities of alumina. Compost could thus be chosen as a promising material for use in bioremediation chromium-containing waste water in a management programme for using solid waste in for minimising environmental impact.

     

     

    Ultrasound-assisted cloud point extraction for speciation and indirect spectrophotometric determination of chromium(III) and (VI) in water samples

    Science.gov (United States)

    Hashemi, Mahdi; Daryanavard, Seyed Mosayeb

    Ultrasound-assisted cloud point extraction (UACPE) procedure was developed for speciation and indirect spectrophotometric determination of chromium(III) and (VI) in environmental water samples. The method is based on the reduction of Cr(VI) by iodide in acidic media and subsequently formation of I3- anion. The I3- formed can further react with cetyltrimethylammonium bromide (CTAB) and induce its clouding due to formation of an ion-association complex. The formed complex was separated from solution and dissolved in ethanol for spectrophotometric measurement. Cerium(IV) ammonium sulphate was chosen as an oxidizing reagent for pre-oxidation step of Cr(III) to Cr(VI) species before the addition of iodide to the system, up to chromium in trivalent can be determined by the procedure. Experimental parameters for both spectrophotometric reaction and extraction procedure have been optimized. Under optimized conditions Cr(VI) can be determined in the range 20-400 ng mL-1 (R2 = 0.999). Detection limit, preconcentration factor and relative standard deviation were 12 ng mL-1, 20.0 and 2.2% (n = 5), respectively with 10 mL sample volumes. The proposed method has been successfully applied for determination of chromium(V) in spiked water, synthetic seawater and electroplating wastewater samples with average recoveries of 100.1, 99.4 and 99.1%, respectively.

  6. The analytical biochemistry of chromium.

    OpenAIRE

    Katz, S A

    1991-01-01

    The essentiality and carcinogenicity of chromium depend on its chemical form. Oxidation state and solubility are particularly important in determining the biological effects of chromium compounds. For this reason, total chromium measurements are of little value in assessing its nutritional benefits or its toxicological hazards. Aqueous sodium carbonate-sodium hydroxide solutions have been successfully used for extracting hexavalent chromium from a variety of environmental and biological matri...

  7. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes.

    Science.gov (United States)

    Frei, Robert; Gaucher, Claudio; Poulton, Simon W; Canfield, Don E

    2009-09-10

    Geochemical data suggest that oxygenation of the Earth's atmosphere occurred in two broad steps. The first rise in atmospheric oxygen is thought to have occurred between approximately 2.45 and 2.2 Gyr ago, leading to a significant increase in atmospheric oxygen concentrations and concomitant oxygenation of the shallow surface ocean. The second increase in atmospheric oxygen appears to have taken place in distinct stages during the late Neoproterozoic era ( approximately 800-542 Myr ago), ultimately leading to oxygenation of the deep ocean approximately 580 Myr ago, but details of the evolution of atmospheric oxygenation remain uncertain. Here we use chromium (Cr) stable isotopes from banded iron formations (BIFs) to track the presence of Cr(VI) in Precambrian oceans, providing a time-resolved picture of the oxygenation history of the Earth's atmosphere-hydrosphere system. The geochemical behaviour of Cr is highly sensitive to the redox state of the surface environment because oxidative weathering processes produce the oxidized hexavalent [Cr(VI)] form. Oxidation of reduced trivalent [Cr(III)] chromium on land is accompanied by an isotopic fractionation, leading to enrichment of the mobile hexavalent form in the heavier isotope. Our fractionated Cr isotope data indicate the accumulation of Cr(VI) in ocean surface waters approximately 2.8 to 2.6 Gyr ago and a likely transient elevation in atmospheric and surface ocean oxygenation before the first great rise of oxygen 2.45-2.2 Gyr ago (the Great Oxidation Event). In approximately 1.88-Gyr-old BIFs we find that Cr isotopes are not fractionated, indicating a decline in atmospheric oxygen. Our findings suggest that the Great Oxidation Event did not lead to a unidirectional stepwise increase in atmospheric oxygen. In the late Neoproterozoic, we observe strong positive fractionations in Cr isotopes (delta(53)Cr up to +4.9 per thousand), providing independent support for increased surface oxygenation at that time, which may

  8. Chromium in potatoes

    International Nuclear Information System (INIS)

    Chromium concentration in potatoes was determined, and tubes were labeled either intrinsically or extrinsically with radioactive chromate (51Cr). A labeled chromium complex was isolated from preparations of raw, baked, or fried potatoes and chromatographed on gel permeation media. Potato pulp and peel contained 1.63 and 2.70 μg of Cr/g tissue, respectively. There was no correlation between the two, nor did they respond similarly to changes of variety or locations. No significant differences were apparent in relative migration of the isolated complexes except between raw and cooked extrinsically labeled preparations

  9. Reduction of hexavalent chromium by fasted and fed human gastric fluid. I. Chemical reduction and mitigation of mutagenicity.

    Science.gov (United States)

    De Flora, Silvio; Camoirano, Anna; Micale, Rosanna T; La Maestra, Sebastiano; Savarino, Vincenzo; Zentilin, Patrizia; Marabotto, Elisa; Suh, Mina; Proctor, Deborah M

    2016-09-01

    Evaluation of the reducing capacity of human gastric fluid from healthy individuals, under fasted and fed conditions, is critical for assessing the cancer hazard posed by ingested hexavalent chromium [Cr(VI)] and for developing quantitative physiologically-based pharmacokinetic models used in risk assessment. In the present study, the patterns of Cr(VI) reduction were evaluated in 16 paired pre- and post-meal gastric fluid samples collected from 8 healthy volunteers. Human gastric fluid was effective both in reducing Cr(VI), as measured by using the s-diphenylcarbazide colorimetric method, and in attenuating mutagenicity in the Ames test. The mean (±SE) Cr(VI)-reducing ability of post-meal samples (20.4±2.6μgCr(VI)/mL gastric fluid) was significantly higher than that of pre-meal samples (10.2±2.3μgCr(VI)/mL gastric fluid). When using the mutagenicity assay, the decrease of mutagenicity produced by pre-meal and post-meal samples corresponded to reduction of 13.3±1.9 and 25.6±2.8μgCr(VI)/mL gastric fluid, respectively. These data are comparable to parallel results conducted by using speciated isotope dilution mass spectrometry. Cr(VI) reduction was rapid, with >70% of total reduction occurring within 1min and 98% of reduction is achieved within 30min with post-meal gastric fluid at pH2.0. pH dependence was observed with decreasing Cr(VI) reducing capacity at higher pH. Attenuation of the mutagenic response is consistent with the lack of DNA damage observed in the gastrointestinal tract of rodents following administration of ≤180ppm Cr(VI) for up to 90days in drinking water. Quantifying Cr(VI) reduction kinetics in the human gastrointestinal tract is necessary for assessing the potential hazards posed by Cr(VI) in drinking water. PMID:27404458

  10. Biosorption of hexavalent chromium from aqueous solutions by Macadamia nutshell powder

    Science.gov (United States)

    Pakade, Vusumzi Emmanuel; Ntuli, Themba Dominic; Ofomaja, Augustine Enakpodia

    2016-04-01

    Macadamia nutshell biosorbents treated in three different activating agents [raw Macadamia nutshell powder (RMN), acid-treated Macadamia nutshell (ATMN) and base-treated Macadamia nutshell (BTMN)] were investigated for the adsorption of hexavalent chromium [Cr(VI)] from aqueous solutions. Fourier transform infrared spectroscopy spectra of free and Cr(VI)-loaded sorbents as well as thermogravimetric analysis revealed that the acid and base treatments modified the surface properties of the sorbent. Surface characteristics were also evaluated by the scanning electron microscopy and surface area analyzer. The optimum conditions for the adsorption of Cr(VI) by sorbents were pH 2, contact time 10 h, adsorbent mass 0.2 g and concentration 100 mg L-1. The equilibrium data were fitted into the Langmuir, Freundlich, Redlich-Peterson and Sips isotherms, and no single model could clearly explain the sorption mechanism. Maximum binding capacities of 45.23, 44.83 and 42.44 mg g-1 for RMN, ATMN and BTMN, respectively, were obtained. The kinetic data were analyzed using the pseudo-first, pseudo-second and Elovich kinetic models, and it was observed that the pseudo-second-order model produced the best fit for the experimental data. Macadamia nutshell sorbents showed potential as low-cost adsorbent for the removal of Cr(VI) from aqueous solution.

  11. [The determination of chromium in feeds by flame atomic absorption spectrophotometry].

    Science.gov (United States)

    Wang, Jian; Jia, Bin; Guo, Li-ping; Lin, Qiu-ping

    2005-07-01

    Chromium in feeds is regulated by China Standard GB 13078-2001. A method of flame atomic absorption spectrophotometry for the determination of Cr in feeds has been developed in allusion to shortage of China standard method. Several acetylene flow-rate, burner-high and the additive of interference suppressor NH4Cl were studied respectively on the effect of sensitivities of Cr(III) and Cr(VI). The two sets analytical average results of Cr in feed sample determined by calibration curves of Cr(III) and Cr(VI) were tested by t test, no marked discrepancy was found. Optimum instrumental conditions of Cr(III) and Cr(VI) with same sensitivity were confirmed. Sensitivity was 0.014 microg x mL(-1) with detection limit 0.70 mg x kg(-1). The recoveries were 94.4%-104.9%. Relative standard deviation of sample determination (5-6 times) was 1.90%-4.08%. This method is simply, fast and exact, the detection limit was answered for Cr limit in feeds regulated by GB 13078-2001, it can be applied to the analysis of Cr in feeds.

  12. Biosorption of Cr(VI)_ and Cr(III)_Arthrobacter species

    OpenAIRE

    Gelagutashvili, E.; Pataraia, E. Ginturi D.; Gurielidze, M.

    2011-01-01

    The biosorption of Cr(VI)_ and Cr(III)_ Arthrobacter species (Arthrobacter globiformis and Arthrobacter oxidas) was studied simultaneous application dialysis and atomic absorption analysis. Also biosorption of Cr(VI) in the presence of Zn(II) during growth of Arthrobacter species and Cr(III) in the presence of Mn(II) were discussed. Comparative Cr(VI)_ and Cr(III)_ Arthrobacter species shown, that Cr(III) was more effectively adsorbed by both bacterium than Cr(VI). The adsorption capacity is ...

  13. New generation ion-imprinted nanocarrier for removal of Cr(VI) from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Uygun, Murat, E-mail: muygun@adu.edu.tr [Adnan Menderes University, Kocarl Latin-Small-Letter-Dotless-I Vocational and Training School (Turkey); Feyzioglu, Esra; Oezcal Latin-Small-Letter-Dotless-I skan, Emir; Caka, Mueserref; Ergen, Aygen; Akgoel, Sinan [Ege University, Department of Biochemistry, Faculty of Science (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry, Faculty of Science (Turkey)

    2013-08-15

    The purpose of this study was to prepare a novel ion-imprinted nanoparticle to remove Cr(VI) ions from waste water. For this, Cr(VI) ions were complexed with 2-methacryloylamido histidine (MAH) and then Cr(VI)-imprinted poly(HEMAH) nanoparticles were synthesized by surfactant-free emulsion polymerization technique. The templates, Cr(VI) ions, were removed from the nanoparticles using 0.1 M of HNO{sub 3} solution. The specific surface area of the Cr(VI)-imprinted poly(HEMAH) nanoparticles was found to be 1,397.85 m{sup 2}/g, and the particle size was calculated as 155.3 nm. These Cr(VI)-imprinted nanoparticles were used for the adsorption/desorption of Cr(VI) ions from its aqueous solutions. The effects of initial Cr(VI) concentration and medium pH on the Cr(VI) adsorption capacity were also studied. The maximum adsorbed amount of Cr(VI) on the imprinted nanoparticles was found to be 3,830.58 mg/g nanoparticle in pH 4.0. In order to investigate the selectivity of the imprinted nanoparticle, adsorption studies were repeated using Cr(III) ions. The selectivity results demonstrated that Cr(VI)-imprinted poly(HEMAH) nanoparticles showed high affinity for the Cr(VI) ions than Cr(III). The Cr(VI)-imprinted nanoparticles were used several times without decreasing their Cr(VI) adsorption capacities.

  14. Synthesis of novel aminated cellulose microsphere adsorbent for efficient Cr(VI) removal

    Science.gov (United States)

    Yu, Tianlin; Liu, Siqi; Xu, Min; Peng, Jing; Li, Jiuqiang; Zhai, Maolin

    2016-08-01

    A novel aminated cellulose microsphere adsorbent (CVN) was successfully prepared by radiation-induced graft polymerization of vinylbenzyl chloride (VBC) onto cellulose microsphere (CMS), followed by amination. Micro-FTIR, XPS and SEM confirmed the structure of CVN. The adsorption behavior of Cr(VI) onto CVN from solution was well fitted by the pseudo-second order kinetic model. The isothermal adsorption of Cr(VI) was observed at pH 4.68 with adsorption capacity of 129 mg/g in accordance with Langmuir thermal model, and the removal of Cr(VI) from solution could be 91% at a low amount (20 mg) of adsorbent. The best pH for adsorption of Cr(VI) was nearly 3.08, and with the increasing of temperature, the adsorption capacity of Cr(VI) increased. XPS analysis confirmed the adsorption mechanism of Cr(VI) was ion-exchange mechanism, while common co-ions such as Na+, Mg2+, Cu2+, Ca2+, Zn2+, Ni2+, Cl-, NO3- has no significant effect on the adsorption capacity of Cr(VI), and the Cr(VI) removal of 80% still could be obtained compared with that of fresh CVN adsorbent. Finally, spent CVN could be regenerated under 2 mol/L NaCl. The work indicated that aminated cellulose adsorbent could be prepared successfully by radiation-induced grafting and amination and CVN is a promising bio-adsorbent in the removing Cr(VI) from waste water.

  15. Efficacy of Agricultural Wastes in the Removal of Hexavalent Chromium- A Review.

    Directory of Open Access Journals (Sweden)

    N Muthulakshmi Andal

    2013-08-01

    Full Text Available Hexavalent Chromium is a major pollutant released during several industrial operations. It is also reported as one of the metals known to be carcinogenic and has an adverse potential to modify the DNA transcription process. The removal of hexavalent chromium has been studied by various authors employing adsorbents developed from waste agro by-products to assess their adsorption characteristics. This paper focuses on the comparison of some agro based products in the removal of Cr(VI ions. An extensive list of agricultural based products such as Coconut Coir, Prunus amygdalus, Cissus quadrangularis, Soapnut Acacia, Justicia adhatoda, Bhringraj, Aerva lanata, Trianthema portulacastrum, Tephrosia purpurea, Solanum nigrum, Datura metel, Cleome viscose, Asparagus racemosus for the removal of Cr(VI from aqueous solutions and the discharged effluents from industries are reviewed in this work. As chemically modified adsorbents exhibit higher adsorption capacity, a number of chemicals have been utilized for the required modifications of the adsorbent materials in the research articles. The results declared by the authors have been compared and summarized for further probe into the extensive utilization of the employed materials.

  16. Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents.

    Science.gov (United States)

    Kahu, S S; Shekhawat, A; Saravanan, D; Jugade, R M

    2016-08-01

    Ionic solid (Ethylhexadecyldimethylammoniumbromide) impregnated phosphated chitosan (ISPC) was synthesized and applied for enhanced adsorption of hexavalent chromium from industrial effluent. The compound obtained was extensively characterized using instrumental techniques like FT-IR, TGA-DTA, XRD, SEM, BET and EDX. ISPC showed high adsorption capacity of 266.67mg/g in accordance with Langmuir isotherm model at pH 3.0 due to the presence of multiple sites which contribute for ion pair and electrostatic interactions with Cr(VI) species. The sorption kinetics and thermodynamic studies revealed that adsorption of Cr(VI) followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. Applicability of ISPC for higher sample volumes was discerned through column studies. The real chrome plating industry effluent was effectively treated with total chromium recovery of 94%. The used ISPC was regenerated simply by dilute ammonium hydroxide treatment and tested for ten adsorption-desorption cycles with marginal decrease in adsorption efficiency. PMID:27112874

  17. WATER HYACINTH BIOMASS (WHB FOR THE BIOSORPTION OF HEXAVALENT CHROMIUM: OPTIMIZATION OF PROCESS PARAMETERS

    Directory of Open Access Journals (Sweden)

    Syed Hadi Hasan

    2010-05-01

    Full Text Available Water hyacinth (Eichhornia crassipes biomass has been used for many years for the remediation of heavy metals. The present study successfully utilizes the dried powdered biomass of the aerial part (stem and leaves of water hyacinth for biosorption of hexavalent chromium. The effect of various parameters (viz. pH, initial metal ion concentration and temperature on the removal of Cr(VI was studied by conducting only 15 sets of sorption runs using Box-Behnken Design (BBD. The pH had a negative and temperature and concentration had positive effects on uptake of chromium. The predicted results (obtained using an empirical linear polynomial model were found to be in good agreement (R2 = 99.8% with the experimental results. The predicted maximum removal of Cr(VI (91.5181 mg/g can be achieved at pH 2.0, initial metal ion concentration 300 mg/L, and temperature 40 °C. The sorption capacity of sorbent was also calculated using a Langmuir sorption isotherm model and was found to be 101 mg/g at 40 C and pH 2.0.

  18. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.

    Science.gov (United States)

    Sun, Yuanyuan; Yue, Qinyan; Mao, Yanpeng; Gao, Baoyu; Gao, Yuan; Huang, Lihui

    2014-01-30

    FeCl3, AlCl3 and MnCl2 were used as the assisted activation agent in activated carbon preparation by H3PO4 activation using microwave heating method. The physico-chemical properties of activated carbons were investigated by scanning electron microscope (SEM), N2 adsorption/desorption, Boehm's titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). To investigate the adsorption performances of chromium onto these newly developed activated carbons, a batch of experiments were performed under different adsorption conditions: solution pH, initial Cr(VI) ion concentration, contact time and co-existing ions. The results suggested that carbon with MnCl2 as assisted activation agent displayed the highest BET surface area (1332m(2)/g) and the highest pore volume (1.060cm(3)/g). FeCl3, AlCl3 and MnCl2 had successfully improved Cr(VI) adsorption and activated carbon with FeCl3 as assisted activation agent exhibited the best uptake capacity. To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na2SO4 and NaNO3) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with adsorption data.

  19. Microwave-assisted Fenton-like decolorization of methyl orange solution using chromium compounds

    Institute of Scientific and Technical Information of China (English)

    LIU Zuo-hua; TAO Chang-yuan; DU Jun; SUN Da-gui; LI Bai-zhan

    2008-01-01

    Azo dyes discharged in the environment are persistent organic pollutants (POPs), which are very difficult to remove. We developed a microwave-assisted Fenton-like process to degrade methyl orange (MO), an azo dye, with hydrogen peroxide (H2O2) catalyzed by chromium compounds coexisting with MO in the solution. Comparison between the Cr(III)-H2O2 and Cr(VI)-H2O2 systems shows that Cr(VI) has a stronger and more stable catalytical activity than Cr(III), and Cr(III) is more susceptible to a change in the acidity or alkalinity of the reaction system. With a Cr(VI) concentration of 10 mmol L-1 or a Cr(III) concentration of 12 mmol L-1 in the solution under the microwave irradiation of a power larger than 300 W for 3 min, 10 mmol L-1 H2O2 can degrade more than 95% of 1 000 mg L-1 methyl orange; when the microwave power is increased to 700 W, the same amount of H2O2 can degrade all methyl orange in the solution with the same amount of Cr(VI) catalyst. Ultraviolet-visible spectrography indicates the cleavage of the azo bond in methyl orange after treatment, suggesting the potential of this Fenton-like process to degrade azo dye POPs. Reusing waste chromium compounds coexisting with dyestuff in wastewater to catalyze the degradation of azo dyes could be a cost-effective technique for azo dyes and chromate manufacturers and/or users to treat their wastewater and prevent POPs from endangering the environment. This is of particular importance to controlling the water quality of the Three Gorges Reservoir.

  1. Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Xuan Liu

    2015-05-01

    Full Text Available Hexavalent chromium (Cr(VI is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI detoxification in mammalian cells.

  2. Determination of trace amounts of hexavalent chromium in drinking waters by dispersive microsolid-phase extraction using modified multiwalled carbon nanotubes combined with total reflection X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bahadir, Z. [Department of Chemistry, Giresun University, Giresun (Turkey); Bulut, V.N. [Macka Vocational School, Karadeniz Technical University, Macka, Trabzon (Turkey); Hidalgo, M. [Department of Chemistry, Faculty of Sciences, University of Girona, Girona (Spain); Soylak, M. [Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri (Turkey); Marguí, E., E-mail: eva.margui@udg.edu [Department of Chemistry, Faculty of Sciences, University of Girona, Girona (Spain)

    2015-05-01

    A methodology based on the combination of dispersive microsolid-phase extraction (DMSPE) with total reflection X-ray fluorescence (TXRF) spectrometry is proposed for the determination of hexavalent chromium in drinking waters. Multiwalled carbon nanotubes (MWCNTs) modified with the anionic exchanger tricaprylmethylammonium chloride (Aliquat 336) were used as solid sorbents. After the sorption process of Cr(VI) on the modified MWCNTs, the aqueous sample was separated by centrifugation and the loaded MWCNTs were suspended using a small volume of an internal standard solution and analyzed directly by a benchtop TXRF spectrometer, without any elution step. Parameters affecting the extraction process (pH and volume of the aqueous sample, amount of MWCNTs, extraction time) and TXRF analysis (volume of internal standard, volume of deposited suspension on the reflector, drying mode, and instrumental parameters) have been carefully evaluated to test the real capability of the developed methodology for the determination of Cr(VI) at trace levels. Using the best analytical conditions, it was found that the minimum Cr(VI) content that can be detected in an aqueous solution was 3 μg L{sup −1}. This value is almost 20 times lower than the maximum hexavalent chromium content permissible in drinking waters, according to the World Health Organization (WHO). Recoveries for spiked tap and mineral water samples were, in most cases, in the range of 101–108% which demonstrates the suitability of the TXRF methodology for monitoring Cr(VI) at trace levels in drinking water samples. - Highlights: • A method using DMSPE and TXRF is proposed for Cr(VI) determination in water. • CNTs modified with a commercial anionic exchanger are used for the DMSPE. • The detection limit for hexavalent chromium is 3 μg L{sup −1}. • Accuracy and precision are suitable for the analysis of tap and mineral waters.

  3. Effect of fulvic acid on adsorptive removal of Cr(VI) and As(V) from groundwater by iron oxide-based adsorbents

    KAUST Repository

    Uwamariya, V.

    2015-05-15

    Abstract Natural contamination has become a challenging problem in drinking water production due to metal contamination of groundwater throughout the world, and arsenic and chromium are well-known toxic elements. In this study, iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were used to study the effects of fulvic acid (FA) on the adsorptive removal of Cr(VI) and As(V) from synthetic groundwater. IOCS and GFH were characterized by SEM/EDS, and experiments were performed at different pH levels (6, 7, and 8). The surface of IOCS and GFH showed a high content of Fe and O (75 and 60 % of the atomic composition, respectively), suggesting that they can highly effectively adsorb Cr(VI) and As(V). Adsorption tests with the simultaneous presence of As(V) and FA, on the one hand, and Cr(VI) with FA, on the other hand, revealed that the role of FA on chromate and arsenate adsorption was insignificant at almost all pH values investigated with both adsorbents. A small influence as a result of FA was only observed for the removal of As(V) by IOCS at pH 6 with a decrease of 13 and 23 % when 2 and 5 mg/l were added to the synthetic water, respectively. It was also found that organic matter (OM) was leached from the IOCS during batch adsorption experiments. The use of FEEM revealed that humic-like, fulvic-like, and protein-like organic matter fractions are present on the IOCS surface. © 2015 Springer International Publishing Switzerland.

  4. Genesis and transport of hexavalent chromium in the system ophiolitic rocks - groundwater

    Science.gov (United States)

    Shchegolikhina, Anastasia; Guadagnini, Laura; Guadagnini, Alberto

    2015-04-01

    ., Brozzo, G., Canepa, M., Cipolli, F., Marini, L., Ottonello, G., Zuccolini, M., 2002. Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environmental Geology 42, 871-882. Lelli, M., Grassi, S., Amadori, M., Franceschini, F., 2013. Natural Cr(VI) contamination of groundwater in the Cecina coastal area and its inner sectors (Tuscany, Italy). Environmental Earth Sciences 71, 3907-3919. Oze, C., Fendorf, S., Bird, D.K., Coleman, R.G., 2004. Chromium geochemistry of serpentine soils. International Geology Review 46, 97-126. Stephen, M.T., James, A.J., 2004. Overview of chromium (VI) in the environment. Chromium (VI) Handbook. CRC Press, pp. 21.

  5. Methylation levels of P16 and TP53 that are involved in DNA strand breakage of 16HBE cells treated by hexavalent chromium.

    Science.gov (United States)

    Hu, Guiping; Li, Ping; Li, Yang; Wang, Tiancheng; Gao, Xin; Zhang, Wenxiao; Jia, Guang

    2016-05-13

    The correlations between methylation levels of p16 and TP53 with DNA strand breakage treated by hexavalent chromium [Cr(VI)] remain unknown. In this research, Human bronchial epithelial cells (16HBE cells) in vitro and bioinformatics analysis were used to analyze the epigenetic role in DNA damage and potential biomarkers. CCK-8 and single cell gel electrophoresis assay were chosen to detect the cellular biological damage. MALDI-TOF-MS was used to detect the methylation levels of p16 and TP53. qRT-PCR was used to measure their expression levels in different Cr(VI) treatment groups. The transcription factors with target sequences of p16 and TP53 were predicted using various bioinformatics software. The findings showed that the cellular toxicity and DNA strand damage were Cr(VI) concentration dependent. The hypermethylation of CpG1, CpG31 and CpG32 of p16 was observed in Cr(VI) treated groups. There was significant positive correlation between the CpG1 methylation level of p16 and cell damage. In Cr(VI) treated groups, the expression level of p16 was lower than that in control group. The expression level of TP53 increased when the Cr(VI)concentration above 5μM. About p16, there was significant negative correlation between the CpG1 methylation levels with its expression level. A lot of binding sites for transcription factors existed in our focused CpG islands of p16. All the results suggested that the CpG1 methylation level of p16 could be used as a biomarker of epigenetic effect caused by Cr(VI) treatment, which can enhance cell damage by regulating its expression or affecting some transcription factors to combine with their DNA strand sites. PMID:27005777

  6. Signal Transducer and Activator of Transcription 1 (STAT1) is Essential for Chromium Silencing of Gene Induction in Human Airway Epithelial Cells

    Science.gov (United States)

    Nemec, Antonia A.; Barchowsky, Aaron

    2009-01-01

    Hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms that may involve the silencing of inducible protective genes. The current study investigated the hypothesis that Cr(VI) actively signals through a signal transducer and activator of transcription 1 (STAT1)–dependent pathway to silence nickel (Ni)–induced expression of vascular endothelial cell growth factor A (VEGFA), an important mediator of lung injury and repair. In human bronchial airway epithelial (BEAS-2B) cells, Ni-induced VEGFA transcription by stimulating an extracellular regulated kinase (ERK) signaling cascade that involved Src kinase–activated Sp1 transactivation, as well as increased hypoxia-inducible factor-1α (HIF-1α) stabilization and DNA binding. Ni-stimulated ERK, Src, and HIF-1α activities, as well as Ni-induced VEGFA transcript levels were inhibited in Cr(VI)-exposed cells. We previously demonstrated that Cr(VI) stimulates STAT1 to suppress VEGFA expression. In BEAS-2B cells stably expressing STAT1 short hairpin RNA, Cr(VI) increased VEGFA transcript levels and Sp1 transactivation. Moreover, in the absence of STAT1, Cr(VI), and Ni coexposures positively interacted to further increase VEGFA transcripts. This study demonstrates that metal-stimulated signaling cascades interact to regulate transcription and induction of adaptive or repair responses in airway cells. In addition, the data implicate STAT1 as a rate limiting mediator of Cr(VI)-stimulated gene regulation and suggest that cells lacking STAT1, such as many tumor cell lines, have opposite responses to Cr(VI) relative to normal cells. PMID:19403854

  7. Determination of trace amounts of hexavalent chromium in drinking waters by dispersive microsolid-phase extraction using modified multiwalled carbon nanotubes combined with total reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Bahadir, Z.; Bulut, V. N.; Hidalgo, M.; Soylak, M.; Marguí, E.

    2015-05-01

    A methodology based on the combination of dispersive microsolid-phase extraction (DMSPE) with total reflection X-ray fluorescence (TXRF) spectrometry is proposed for the determination of hexavalent chromium in drinking waters. Multiwalled carbon nanotubes (MWCNTs) modified with the anionic exchanger tricaprylmethylammonium chloride (Aliquat 336) were used as solid sorbents. After the sorption process of Cr(VI) on the modified MWCNTs, the aqueous sample was separated by centrifugation and the loaded MWCNTs were suspended using a small volume of an internal standard solution and analyzed directly by a benchtop TXRF spectrometer, without any elution step. Parameters affecting the extraction process (pH and volume of the aqueous sample, amount of MWCNTs, extraction time) and TXRF analysis (volume of internal standard, volume of deposited suspension on the reflector, drying mode, and instrumental parameters) have been carefully evaluated to test the real capability of the developed methodology for the determination of Cr(VI) at trace levels. Using the best analytical conditions, it was found that the minimum Cr(VI) content that can be detected in an aqueous solution was 3 μg L- 1. This value is almost 20 times lower than the maximum hexavalent chromium content permissible in drinking waters, according to the World Health Organization (WHO). Recoveries for spiked tap and mineral water samples were, in most cases, in the range of 101-108% which demonstrates the suitability of the TXRF methodology for monitoring Cr(VI) at trace levels in drinking water samples.

  8. Chromium isotope composition of reducing and anoxic sediments from the Peru Margin and Cariaco Basin

    Science.gov (United States)

    Gueguen, B.; Planavsky, N.; Wang, X.; Algeo, T. J.; Peterson, L. C.; Reinhard, C. T.

    2014-12-01

    Chromium isotope systematics in marine sediments are now being used as a new redox proxy of the modern and ancient Earth's surface. Chromium is primarily delivered to the oceans by riverine inputs through weathering of Cr(III)-rich minerals present in the continental crust and oxidation of insoluble Cr(III) to soluble Cr(VI) species. Since oxidation-reduction reactions fractionate Cr isotopes whereby oxidized Cr(VI) species are preferentially enriched in heavy Cr isotopes, the Cr isotope composition of marine sediments may be useful tracers of redox conditions at the Earth's surface through geological time. Chromium is quantitatively removed in organic-rich sediments where reducing conditions prevail and promote reduction of Cr(VI) to Cr(III), and thus, these sediments should capture the ambient seawater Cr isotope composition. However, the isotopic composition of modern organic-rich sediments is poorly documented so far, and this step is essential for further modeling the global oceanic Cr isotope mass balance and assessing the effects of sedimentation and post-depositional processes on the marine Cr isotopes archive. In this study, we have characterized modern marine organic-rich sediments for their Cr isotope composition (δ53/52Cr) from two different settings, the Peru margin upwelling zone and the anoxic Cariaco Basin (Venezuela). Chromium isotopes were measured on a MC-ICP-MS (Nu Plasma) using a double-spike correction method. The authigenic fraction of shallow samples from the Peru margin sedimentary sequence with a high Total Organic Carbon (TOC) content (>10 wt%) yield an average δ53/52Crauthigenic value of +0.67 ±0.05 ‰ (2sd). However, although this value is close to the seawater value (Atlantic Ocean) and to Cariaco basin sediments (~ +0.6 ‰), reducing sediments from the Peru margin are on average isotopically slightly heavier, especially in samples having a low authigenic fraction and a low TOC content (δ53/52Crauthigenic values up to +1.30

  9. Chromium Isotopes in Marine Carbonates - an Indicator for Climatic Change?

    Science.gov (United States)

    Frei, R.; Gaucher, C.

    2010-12-01

    Chromium (Cr) stable isotopes experience an increased interest as a tracer of Cr (VI) reduction in groundwater and thus showed their potential as a monitor of remediation of anthropogenic and natural contamination in water (Berna et al., 2009; Izbicki et al., 2008). Chromium stable isotopes in Fe-rich chemical sediments (BIFs and Fe-cherts) have recently also been used as a tracer for Earth's atmospheric oxygenation through time (Frei et al., 2009). We have applied the Cr isotope system to organic-rich carbonates from a late Ediacaran succession in Uruguay (Polanco Formation), from which we have previously analyzed BIFs with extremely fractionated (δ53Cr up to 5.0 ‰) Cr isotope signatures that are part of an underlying deep water clastic sediment (shale-dominated) sequence (Yerbal Formation) deposited in a glacio-marine environment (Gaucher et al.,2004). δ53Cr values of organic rich carbonates correlate with positive and negative carbon isotope excursions (δ13C PDB between -3 and +3 ‰) and with systematic changes in strontium isotope compositions, commonly interpreted as to reflect fluctuations in organic (photosynthetic algae) production related to fluctuations in atmospheric oxygen and weathering intensities, respectively. Slightly positively fractioned δ53Cr values (up to +0.25‰), paralleling positive (δ13C PDB and 87Sr/86Sr ratio excursions would thereby trace elevated atmospheric oxygen levels/pulses possibly related to glacier retreat/melting stages that caused bioproductivity to increase. While the causal link between these multiple isotopic tracers and the mechanisms of Cr stripping into carbonates has to be further investigated in detail, the first indications from this study point to a potentially promising use of stable Cr isotopes in organic-rich carbonates to monitor fluctuations of atmospheric oxygen, particularly over the Neoproterozoic and Phanerozoic ice age periods. E.C. Berna et al. (2010) Cr stable isotopes as indicators of Cr(VI

  10. Microstructural analyses of Cr(VI) speciation in chromite ore processing Residue (COPR)

    Energy Technology Data Exchange (ETDEWEB)

    CHRYSOCHOOU, MARIA; FAKRA, SIRINE C .; Marcus, Matthew A.; Moon, Deok Hyun; Dermatas, Dimitris

    2010-03-01

    The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses. GB COPR contained 30percent of its total Cr(VI) (6000 mg/kg) as large crystals(>20 ?m diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50percent of the Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmilleritewasalso likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment ofHBCOPRis challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to ~;;50percent of Cr(VI) in GB COPR.

  11. Kinetics of Cr(III) and Cr(VI) removal from water by two floating macrophytes.

    Science.gov (United States)

    Maine, M A; Hadad, H R; Sánchez, G; Caffaratti, S; Pedro, M C

    2016-01-01

    The aim of this work was to compare Cr(III) and Cr(VI) removal kinetics from water by Pistia stratiotes and Salvinia herzogii. The accumulation in plant tissues and the effects of both Cr forms on plant growth were also evaluated. Plants were exposed to 2 and 6 mg L(-1) of Cr(III) or Cr(VI) during 30 days. At the end of the experiment, Cr(VI) removal percentages were significantly lower than those obtained for Cr(III) for both macrophytes. Cr(III) removal kinetics involved a fast and a slow component. The fast component was primarily responsible for Cr(III) removal while Cr(VI) removal kinetics involved only a slow process. Cr accumulated principally in the roots. In the Cr(VI) treatments a higher translocation from roots to aerial parts than in Cr(III) treatments was observed. Both macrophytes demonstrated a high ability to remove Cr(III) but not Cr(VI). Cr(III) inhibited the growth at the highest studied concentration of both macrophytes while Cr(VI) caused senescence. These results have important implications in the use of constructed wetlands for secondary industrial wastewater treatment. Common primary treatments of effluents containing Cr(VI) consists in its reduction to Cr(III). Cr(III) concentrations in these effluents are normally below the highest studied concentrations in this work. PMID:26366503

  12. The effects of water rock interaction and the human activities on the occurrence of hexavalent chromium in waters. The case study of the Psachna basin, Central Euboea, Greece.

    Science.gov (United States)

    Vasileiou, Eleni; Perraki, Maria; Stamatis, George; Gartzos, Efthimios

    2014-05-01

    High concentrations of heavy metals, particularly of the toxic hexavalent chromium, are recorded in surface and ground waters in many areas, and constitute one of the most severe environmental problems nowadays. The natural genesis of chromium is associated with the geological environment (peridotites and serpentintites). Chromium is structured in many minerals, mainly in spinel (e.g. chromite), in silicate minerals such as phyllosilicate serpentine minerals, chlorite, talc and chain-silicate minerals of pyroxene and amphibole group. Chromium is found in two forms in soils, waters and rocks, the hexavalent and the trivalent one. The relation between Cr(III) and Cr(VI) strongly depends on pH and oxidative properties of the area; however, in most cases, Cr(III) is the dominating variant. The natural oxidation of trivalent to hexavalent chromium can be achieved by manganese oxides, H2O2, O2 gas and oxy-hydroxides of trivalent iron. Anthropogenic factors may also cause the process of chromium's oxidation. In the Psachna basin, Central Euboea, Greece, high concentrations of hexavalent chromium were recently measured in spring- and drill- waters. In this work, we study the effect of the geological environment and of the anthropogenic activities on the water quality with emphasis on chromium. A detailed geochemical, petrological and mineralogical study of rocks and soils was carried out by means of optical microscopy, XRF, XRD and SEM/EDS. Ground and surface water samples were physically characterized and hydrochemically studied by means of ICP and AAF. Combined result evaluation indicates a natural source for the trivalent chromium in waters, attributed to the alteration of Cr-bearing minerals of the ultramafic rocks. However the oxidation of trivalent to hexavalent chromium results from anthropogenic activities, mainly from intensive agricultural activities and the extensive use of fertilizers and pesticides causing nitrate pollution in groundwater. It has been shown

  13. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed

    OpenAIRE

    Fei Xu; Xu Liu; Yijiao Chen; Ke Zhang; Heng Xu

    2016-01-01

    A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 5...

  14. Single-step synthesis of magnetic chitosan composites and application for chromate (Cr(VI)) removal

    Institute of Scientific and Technical Information of China (English)

    杨卫春; 唐琼芝; 董舒宇; 柴立元; 王海鹰

    2016-01-01

    Magnetic chitosan composites (Fe3O4@chitosan) were synthesized in one single-step, characterized and applied in Cr(VI) removal from water. With the increase of loading proportion of chitosan, Cr(VI) adsorption capacity of Fe3O4@chitosan composites increased from 10.771 to 21.040 mg/g. The optimum adsorption capacities of Cr(VI) on Fe3O4@chitosan-3 were found in a pH range of 3.0−5.0. Kinetic study results show that the adsorption process follows pseudo-second-order model, indicating that the rate-limiting step in the adsorption of Cr(VI) involves chemisorptions. Moreover, FT-IR spectra analysis confirms that the amine and hydroxyl groups of chitosan are predominantly responsible for binding. Results from this work demonstrate that the prepared Fe3O4@chitosan composites possess great potential in Cr(VI) removal from contaminated water.

  15. Removal of Cr(VI from aqueous solution using Bacillus subtilis, Pseudomonas aeruginosa and Enterobacter cloacae

    Directory of Open Access Journals (Sweden)

    P. Sethuraman,

    2010-06-01

    Full Text Available The objective of this study is to investigate the removal efficiency of Cr(VI by Bacillus subtilis, Pseudomonas aeruginosa and Enterobacter cloacae from aqueous solution under different process conditions. Batch mode experiments were carried out as a function of solution pH, biosorbent dosage, Cr(VI concentration and contact time.The FT-IR spectra and SEM analysis of the biosorbent were recorded to analyse the number and position of the functional groups available for the binding of Cr(VI ions and to study the morphology of biosorbent. The batch isothermal equilibrium data were analyzed with Freundlich and Langmuir isotherm models. The kinetic models were examined with pseudo first order and pseudo second order kinetics. The results revealed that the Cr(VI is considerably adsorbed on bacterial biomass and it could be an economical method for the removal of Cr(VI from aqueous solution.

  16. Recovery and reuse of hexavalent chromium from aqueous solutions by a hybrid technique of electrodialysis and ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, R. [Sengunthar Engineering College, Tiruchengode (India). Dept. of Civil Engineering], e-mail: gay3civil@gmail.com; Senthil Kumar, P. [SSN College of Engineering, Chennai (India). Dept. of Chemical Engineering], E-mail: senthilkumarp@ssn.edu.in

    2010-01-15

    The chrome plating industry is one of the highly polluting industries whose effluent mainly consists of chromium(VI). This compound is highly toxic to aquatic life and human health. The rinse water constituents reflect the chrome plating bath characteristics; generally dead tank wash water contains about 1% of the plating bath concentration. Other metals and metal compounds usually considered as toxic can be precipitated out by suitably adjusting the pH of the wastewaters. However, Cr(VI) is soluble in almost all pH ranges and therefore an efficient treatment is required for the removal and recovery of chromium, and also for the reuse of wastewaters. The present study aims to recover the chromium by a hybrid technique of electrodialysis and ion exchange for the removal and concentration of chromate ions from the effluent. The different modes of operation like batch recirculation process, batch recirculation process with continuous dipping and continuous process were carried out to remove and recover the chromium from the effluent and the percentage reductions of chromium were found to be 98.69%, 99.18% and 100%, respectively. (author)

  17. Titanium dioxide-gold nanocomposite materials embedded in silicate sol-gel film catalyst for simultaneous photodegradation of hexavalent chromium and methylene blue.

    Science.gov (United States)

    Pandikumar, Alagarsamy; Ramaraj, Ramasamy

    2012-02-15

    Aminosilicate sol-gel supported titanium dioxide-gold (EDAS/(TiO(2)-Au)(nps)) nanocomposite materials were synthesized by simple deposition-precipitation method and characterized. The photocatalytic oxidation and reduction activity of the EDAS/(TiO(2)-Au)(nps) film was evaluated using hexavalent chromium (Cr(VI)) and methylene blue (MB) dye under irradiation. The photocatalytic reduction of Cr(VI) to Cr(III) was studied in the presence of hole scavengers such as oxalic acid (OA) and methylene blue (MB). The photocatalytic degradation of MB was investigated in the presence and absence of Cr(VI). Presence of Au(nps) on the (TiO(2))(nps) surface and its dispersion in the silicate sol-gel film (EDAS/(TiO(2)-Au)(nps)) improved the photocatalytic reduction of Cr(VI) and oxidation of MB due to the effective interfacial electron transfer from the conduction band of the TiO(2) to Au(nps) by minimizing the charge recombination process when compared to the TiO(2) and (TiO(2)-Au)(nps) in the absence of EDAS. The EDAS/(TiO(2)-Au)(nps) nanocomposite materials provided beneficial role in the environmental remediation and purification process through synergistic photocatalytic activity by an advanced oxidation-reduction processes. PMID:22206972

  18. Biofilm Shows Spatially Stratified Metabolic Responses to Contaminant Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Bin; Majors, Paul D.; Ahmed, B.; Renslow, Ryan S.; Sylvia, Crystal P.; Shi, Liang; Kjelleberg, Staffan; Fredrickson, Jim K.; Beyenal, Haluk

    2012-11-01

    The objective of this study was to elucidate the spatiotemporal responses of live S. oneidensis MR-1 biofilms to U(VI) (uranyl, UO22+) and Cr(VI) (chromate, CrO42-), important environmental contaminants at DOE contaminated sites. Toward this goal, we applied noninvasive nuclear magnetic resonance (NMR) imaging, diffusion, relaxation and spectroscopy techniques to monitor in situ spatiotemporal responses of S. oneidensis biofilms to U(VI) and Cr(VI) exposure in terms of changes in biofilm structures, diffusion properties, and cellular metabolism. Exposure to U(VI) or Cr(VI) did not appear to change the overall biomass distribution but caused changes in the physicochemical microenvironments inside the biofilm as indicated by diffusion measurements. Changes in the diffusion properties of the biofilms in response to U(VI) and Cr(VI) exposure imply a novel function of the extracellular polymeric substances (EPS) affecting the biotransformation and transport of contaminants in the environment. In the presence of U(VI) or Cr(VI), the anaerobic metabolism of lactate was inhibited significantly, although the biofilms were still capable of reducing U(VI) and Cr(VI). Local concentrations of Cr(III)aq in the biofilm suggested relatively high Cr(VI) reduction activities at the top of the biofilm, near the medium-biofilm interface. The depth-resolved metabolic activities of the biofilm suggested higher diversion effects of gluconeogenesis and C1 metabolism pathways at the bottom of the biofilm and in the presence of U(VI). This study provides a noninvasive means to investigate spatiotemporal responses of biofilms, including surface-associated microbial communities in engineering, natural and medical settings, to various environmental perturbations including exposure to environmental contaminants and antimicrobials.

  19. A new method for separation and determination of Cr(III) and Cr(VI) in water samples by high-performance liquid chromatography based on anion exchange stationary phase of ionic liquid modified silica.

    Science.gov (United States)

    Sadeghi, Susan; Moghaddam, Ali Zeraatkar

    2015-12-01

    In this work, N-methylimidazolium-chloride ionic liquid functionalized silica was prepared and used as an anion-exchange stationary phase for separation of chromium species by high-performance liquid chromatography (HPLC) with UV detection at 200 nm. The Cr(VI) as HCr2O7(-) and chelated Cr(III) with potassium hydrogen phthalate (PHP) as Cr(PHP)2 (-) was retained on the prepared column and separated using a mobile phase composed of 5% methanol in 25 mM phosphate buffer at pH 6.5. Several variables affecting the chelation/separation steps were modeled by response surface methodology (RSM) using Box-Behnken (BBD) design. The significance of the independent variables and their interactions were tested by the analysis of variances (ANOVA) with 95% confidence limit. Under the optimized conditions, the Cr(III) and Cr(VI) anionic species were well separated with a single peak for each Cr species at retention times of 2.3 and 4.3 min, respectively. The relationship between the peak area and concentration was linear in the range of 0.025-30 for Cr(III) and 0.5-20 mg L(-1) for Cr(VI) with detection limits of 0.010 and 0.210 mg L(-1) for Cr(III) and Cr(VI), respectively. The proposed method was validated by simultaneous separation and determination of the Cr species in tap and underground water samples without impose to any pretreatment. PMID:26526699

  20. Groundwater contaminant by hexavalent chromium

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, C. [Univ. of Texas, Austin, TX (United States)

    1995-11-01

    Oxidation of trivalent chromium to hexavalent chromium has been investigated as a function of total manganese in soils as well as various incubation conditions. Chromium and manganese contents were analyzed by atomic absorption (graphite furnace and flame emission respectively) following acid digestion. Total hexavalent chromium generation capacity was determined by addition of 0.001 M CrCL3, incubation, and analysis by s-diphenyl carbazide. Samples were then leached with CaSO{sub 4} and MgSO{sub 4} and incubated in various environments (oven, freeze-drier, field moist, ultrafreeze) to test for geogenic generation of Cr(IV). The degree of geogenic generation of hexavalent chromium was compared with total Mn and Cr content as well as hexavalent generational capacity.

  1. Geochemical Processes Controlling Chromium Transport in the Vadose Zone and Regional Aquifer, Los Alamos, New Mexico

    Science.gov (United States)

    Longmire, P.; Ding, M.; Rearick, M.; Vaniman, D.; Katzman, D.

    2008-12-01

    The environmental aqueous geochemistry of Cr is of considerable interest to physical scientists and toxicologists in quantifying the fate and transport of this metal in surface and subsurface environments. Chromium(VI) solutions were released from cooling towers to a stream channel within Sandia Canyon at Los Alamos National Laboratory, NM from 1956 to 1971. These solutions have migrated 293 m depth through the vadose zone, containing several saturated zones, to the regional water table. Concentrations of total dissolved Cr, mainly as Cr(VI), in the regional aquifer range between 0.17 to 8.46 mM. The regional aquifer is characterized by calcium-sodium-bicarbonate solution, contains dissolved oxygen (0.09 to 0.22 mM), and has a circumneutral pH (6.8 to 8.3). Geochemical processes controlling the fate and transport of Cr in groundwater at Los Alamos include a combination of adsorption and precipitation reactions within aquifer systems. Vadose zone material containing hydrous ferric oxide, smectite, silica glass, and calcite widely range in their ability to adsorb Cr(VI) under basic pH conditions. Overall, the vadose zone at Los Alamos is relatively oxidizing, however, basalt flows are locally reducing with respect to Fe. Ferrous iron concentrated within the Cerros del Rio basalt has been shown through batch experiments to reduce Cr(VI) to Cr(III) resulting in precipitation of chromium(III) hydroxide. Regional aquifer material, consisting of silicates, oxides, and calcite, vary in the amount of Fe(II) available in reactive minerals to effectively reduce Cr(VI) to Cr(III). The results of our studies (1) directly assess the relationship between mineralogical characterization and transport behavior of Cr using site-specific hydrogeologic material and (2) provide site-specific adsorption and precipitation parameters obtained through the experiments to refine the fate and transport modeling of Cr within the vadose zone and regional aquifer. Natural attenuation of Cr at Los

  2. Photocatalytic reduction of hexavalent chromium at gold nanoparticles modified titania nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Pandikumar, Alagarsamy; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com

    2013-09-16

    N-[3-(Trimethoxysilyl)propyl]ethylenediamine (EDAS) silicate supported titanium dioxide nanotubes-gold ((TiO{sub 2} NTs-Au){sub NCM}) nanocomposite material (EDAS/(TiO{sub 2} NTs-Au){sub NCM}) was prepared by deposition–precipitation method and characterized by diffuse reflectance spectra, X-ray diffraction pattern, Brunauer–Emmett–Teller surface area analysis, transmission electron micrographs, scanning electron micrographs and energy-dispersive X-ray spectra analysis. The photocatalytic activity of the EDAS/(TiO{sub 2} NTs-Au){sub NCM} in the film form was investigated towards the reduction of toxic hexavalent chromium (Cr(VI)) into trivalent chromium (Cr(III)) in the presence of oxalic acid as an electron donor. The EDAS/(TiO{sub 2} NTs-Au){sub NCM} film exhibited higher photocatalytic activity when compared to the photocatalytic activities of pristine TiO{sub 2} nanoparticles and TiO{sub 2} nanotubes (TiO{sub 2} NTs) which can be attributed to the effective photoinduced interfacial charge transfer from the (TiO{sub 2} NTs-Au){sub NCM} to Cr(VI) through Au nanoparticles (Au{sub nps}). The Au{sub nps} present in the TiO{sub 2} NTs act as an electron sink for the photogenerated electrons that minimizes the charge recombination process at the TiO{sub 2} NTs. The Au{sub nps} on the TiO{sub 2} NTs surface facilitates the transfer of photogenerated electrons to the Cr(VI) leading to the formation of Cr(III) ions. - Highlights: • Gold modified titania nanotubes are used to design solid-phase photocatalyst. • Gold nanoparticles deposition increases the surface area of titania nanotubes. • Gold on titania nanotubes improves the photocatalytic reduction of Cr(VI). • The holes produced at the titania nanotubes are scavenged by oxalic acid. • Gold modified titania nanotubes is a potential candidate for treatment of heavy metals.

  3. Cr(VI) and azo dye removal using a hollow-fibre membrane system functionalized with a biogenic Pd-magnetite catalyst.

    Science.gov (United States)

    Coker, V S; Garrity, A; Wennekes, W B; Roesink, H D W; Cutting, R S; Lloyd, J R

    2014-01-01

    This study investigates the application of a hybrid system combining hollow-fibre membrane technology with the reductive abilities of magnetic nanoparticles for the remediation of toxic Cr(VI) and the azo dye, Remazol Black B. Nano-scale biogenic magnetite (Fe3O4), formed by microbial reduction of the mineral ferrihydrite, has a high reductive capacity due to the presence of Fe(II) in the mineral structure. The magnetic nanoparticles (approximately 20 nm) can be arrayed with Pd0 nanoparticles (approximately 5 nm) making a catalytically active nanomaterial. Membrane units, with and without nanoparticles, were challenged with either Cr(VI) or azo dye and some were supplemented with sodium formate, as an electron donor for contaminant reduction promoted by the Pd. The combination of Pd-magnetite with formate resulted in the most effective remediation strategy for both contaminants and the lifetime of the membrane unit was also increased, with 55% (19 days) and 70% (23 days) removal of the azo dye and Cr(VI), respectively. Low flow rates of 0.1 ml/min resulted in improved efficiencies due to increased contact time with the membrane/nanoparticle unit, with 70-75% removal of each contaminant. Chemical analyses of the nanoparticles post-exposure to Cr(VI) in the membrane modules indicated Pd to be more oxidized when Cr removal was maximized, and that the Cr was partially reduced to Cr(III) at the surface of the magnetite. These results have demonstrated that hollow-fibre membrane units can be enhanced for the removal of soluble, redox sensitive contaminants by incorporation of a layer of palladized biogenic nanoparticulate magnetite.

  4. Reduction and removal of Cr(VI) from aqueous solutions using modified byproducts of beer production.

    Science.gov (United States)

    Cui, Haojie; Fu, Minglai; Yu, Shen; Wang, Ming Kuang

    2011-02-28

    Biosorption, as an effective and low-cost technology treating industrial wastewaters containing Cr(VI), has become a significant concern worldwide. In this work, acid-modified byproducts of beer production (BBP) were used to remove Cr(VI) from aqueous solutions. Removal of Cr(VI) increases as the pH is decreased from 4.0 to 1.5, but the maximum of total Cr removal is obtained in a pH range from 2.0 to 2.5. Nearly 60% of the initial Cr(VI) (100 mg L(-1)) was adsorbed or reduced to Cr(III) within the first 10 min at pH 2.0. The Cr(VI) removal capability of acid-modified BBP materials was almost completely retained after regenerating with acid. FT-IR and XPS spectra revealed that carboxylate and carboxyl groups on the surface of modified BBP materials play a major role in Cr(VI) binding and reduction, whereas amide and other groups play a minor role in the Cr(VI) removal process.

  5. Analysis of hexavalent chromium in Colla corii asini with on-line sample pretreatment valve-switching ion chromatography.

    Science.gov (United States)

    Yang, Yuling; He, Jie; Huang, Zhongping; Zhong, Naifei; Zhu, Zuoyi; Jiang, Renyu; You, Jinghua; Lu, Xiuyang; Zhu, Yan; He, Shiwei

    2013-08-30

    An ion chromatography (IC) system with on-line sample pretreatment using valve-switching technique was developed for the determination of hexavalent chromium (Cr(VI)) in Colla corii asini. Colla corii asini is a complicated sample with organics as main matrix. In this work, a polymer-based reversed-phase column was used as a pretreatment column. Via valve-switching technique, sample solution with target ions were eluted from a collection loop to analytical columns, with matrix eliminated on-line. Under the optimized separation conditions, the method showed good linearity (r=0.9998) in the range of 0.004-1.0mg/L and satisfactory repeatability (RSD<3%, n=6). The limit of detection (LOD) was 1.4μg/L (S/N=3). The average spiked recoveries of Cr(VI) were 93.4-102.0%. The result showed that the on-line sample pretreatment IC system was convenient and practical for the determination of trace Cr(VI) in Colla corii asini samples.

  6. Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups

    Science.gov (United States)

    Anirudhan, T. S.; Nima, J.; Divya, P. L.

    2013-08-01

    This study successfully synthesized a new adsorbent by ethylation of glycidylmethacrylate grafted aminated titanium dioxide densified cellulose (Et-AMPGDC), to remove chromium(VI) from aqueous solutions. The adsorbent was characterized by the FTIR, XRD, SEM and TG-DTG measurements. Batch adsorption technique using Et-AMPGDC was applied for the removal of Cr(VI) from aqueous solution and waste water. The contact time necessary to attain equilibrium and the optimum pH were found to be 1 h and 4.5, respectively. The kinetics of sorption of Cr(VI) ions was described by a pseudo-second-order kinetic model. The equilibrium isotherm data were analyzed using the Langmuir and Freundlich isotherm equations and the adsorption process was reflected by Langmuir isotherm. The maximum adsorption capacity was evaluated to be 123.60 mg/g. The electroplating industrial wastewater samples were treated with Et-AMPGDC to demonstrate its efficiency in removing Cr(VI) from wastewater. Almost complete removal was possible with 100 mg of the adsorbent from 50 mL of wastewater sample. Desorption efficiency was achieved by treatment with 0.1 M NaOH and five adsorption-desorption cycles were performed without significant decrease in adsorption capacity.

  7. Aerosol-Assisted Self-Assembly of Reticulated N-Doped Carbonaceous Submicron Spheres for Effective Removal of Hexavalent Chromium.

    Science.gov (United States)

    He, Jiawei; Long, Yuan; Wang, Yiyan; Wei, Chaoliang; Zhan, Jingjing

    2016-07-01

    This Research Article described a facile one-step method to prepare reticulated N-doped carbonaceous submicron spheres. Through a simple aerosol-assisted technology, glucosamine sulfate used as a carbon source was aerosolized and carbonized to functionalized carbonaceous submicron spheres. The electrostatic attraction between protonated amino groups and sulfate in the aerosol droplets induced a self-assembly and led to the formation of reticular structure, avoiding the use of templates. Compared to bare carbonaceous materials produced from glucose, reticulated N-doped carbonaceous spheres exhibit higher efficiency in the removal of Cr(VI), where the doping of element nitrogen led to electrostatic attraction between protonated nitrogen and chromium ions, and reticulated structure created relatively higher surface area and pore volume, facilitating materials to contact with Cr(VI) ions. XPS characterization proved these novel N-doped carbonaceous materials could effectively transform Cr(VI) to less toxic Cr(III) because of the surface reducing groups. For the practical application, several factors including the initial pH, materials dosage and recycle numbers on the removal performance were studied.

  8. Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells.

    Science.gov (United States)

    Wu, Xiayuan; Tong, Fei; Yong, Xiaoyu; Zhou, Jun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2016-05-01

    Two kinds of NaX zeolite-modified graphite felts were used as biocathode electrodes in hexavalent chromium (Cr(VI))-reducing microbial fuel cells (MFCs). The one was fabricated through direct modification, and the other one processed by HNO3 pretreatment of graphite felt before modification. The results showed that two NaX zeolite-modified graphite felts are excellent bio-electrode materials for MFCs, and that a large NaX loading mass, obtained by HNO3 pretreatment (the HNO3-NaX electrode), leads to a superior performance. The HNO3-NaX electrode significantly improved the electricity generation and Cr(VI) removal of the MFC. The maximum Cr(VI) removal rate increased to 10.39±0.28 mg/L h, which was 8.2 times higher than that of the unmodified control. The improvement was ascribed to the strong affinity that NaX zeolite particles, present in large number on the graphite felt, have for microorganisms and Cr(VI) ions. PMID:26852205

  9. Aerosol-Assisted Self-Assembly of Reticulated N-Doped Carbonaceous Submicron Spheres for Effective Removal of Hexavalent Chromium.

    Science.gov (United States)

    He, Jiawei; Long, Yuan; Wang, Yiyan; Wei, Chaoliang; Zhan, Jingjing

    2016-07-01

    This Research Article described a facile one-step method to prepare reticulated N-doped carbonaceous submicron spheres. Through a simple aerosol-assisted technology, glucosamine sulfate used as a carbon source was aerosolized and carbonized to functionalized carbonaceous submicron spheres. The electrostatic attraction between protonated amino groups and sulfate in the aerosol droplets induced a self-assembly and led to the formation of reticular structure, avoiding the use of templates. Compared to bare carbonaceous materials produced from glucose, reticulated N-doped carbonaceous spheres exhibit higher efficiency in the removal of Cr(VI), where the doping of element nitrogen led to electrostatic attraction between protonated nitrogen and chromium ions, and reticulated structure created relatively higher surface area and pore volume, facilitating materials to contact with Cr(VI) ions. XPS characterization proved these novel N-doped carbonaceous materials could effectively transform Cr(VI) to less toxic Cr(III) because of the surface reducing groups. For the practical application, several factors including the initial pH, materials dosage and recycle numbers on the removal performance were studied. PMID:27299376

  10. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricata) skin cells.

    Science.gov (United States)

    Young, Jamie L; Wise, Sandra S; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-12-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered concentration, particulate and soluble Cr(VI) were more cytotoxic and clastogenic to human cells than sea turtle cells. When the analysis was based on the intracellular concentration of Cr, the data showed that the response of both species was similar. The one exception was the cytotoxicity of intracellular Cr ions from soluble Cr(VI), which caused more cytotoxicity in sea turtle cells (LC50=271μM) than that of human cells (LC50=471μM), but its clastogenicity was similar between the two species. Thus, adjusting for differences in uptake indicated that the explanation for the difference in potency was mostly due to uptake rather than differently affected mechanisms. Overall these data indicate that sea turtles may be a useful sentinel for human health responses to marine pollution. PMID:26440299

  11. Removal of hexavalent chromium from aqueous solutions using micro zero-valent iron supported by bentonite layer.

    Science.gov (United States)

    Daoud, Waseem; Ebadi, Taghi; Fahimifar, Ahmad

    2015-01-01

    Hexavalent chromium Cr(VI) is of particular environmental concern due to its toxicity, mobility, and challenging removal from industrial wastewater. It is a strong oxidizing agent that is carcinogenic and mutagenic and diffuses quickly through soil and aquatic environments. Moreover, it does not form insoluble compounds in aqueous solutions; therefore, separation by precipitation is not feasible. While Cr(VI) oxyanions are very mobile and toxic in the environment, trivalent Cr(III) cations are the opposite and, like many metal cations, Cr(III) forms insoluble precipitates. Thus, reducing Cr(VI)-Cr(III) simplifies its removal from effluent and also reduces its toxicity and mobility. Permeable reactive barriers (PRBs) with zero-valent iron (ZVI) have been used to remediate contaminated groundwater with metals, but using ZVI in remediation of contaminated groundwater or wastewater is limited due to its lack of stability, easy aggregation, and difficulty in separation of iron from the treated solution. Thus, the technology used in the present study is developed to address these problems by placing a layer of bentonite after the PRB layer to remove iron from the treated water. The removal rates of Cr(VI) under different values of pH were investigated, and the results indicated the highest adsorption capacity at low pH. PMID:25768212

  12. Behaviour of chromium(VI) in stormwater soil infiltration systems

    DEFF Research Database (Denmark)

    Cederkvist, Karin; Ingvertsen, Simon T.; Jensen, Marina B.;

    2013-01-01

    mm in 2 h) and extreme (100 mm in 3 h) rain events. The objectives were to understand the behaviour of the anionic and toxic Cr(VI) in soil at neutral pH and to asses treatment efficiency towards Cr(VI). During normal rain events Cr(VI) was largely retained (more than 50, even though pH was neutral...

  13. Molasses as an efficient low-cost carbon source for biological Cr(VI) removal

    Energy Technology Data Exchange (ETDEWEB)

    Michailides, Michail K. [Department of Environmental and Natural Resources Management, University of Patras, 2 G. Seferi Str., GR-30100 Agrinio (Greece); Tekerlekopoulou, Athanasia G., E-mail: atekerle@upatras.gr [Department of Environmental and Natural Resources Management, University of Patras, 2 G. Seferi Str., GR-30100 Agrinio (Greece); Akratos, Christos S.; Coles, Sandra [Department of Environmental and Natural Resources Management, University of Patras, 2 G. Seferi Str., GR-30100 Agrinio (Greece); Pavlou, Stavros [Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., Platani, P.O. Box 1414, GR-26504 Patras (Greece); Department of Chemical Engineering, University of Patras, GR-26504 Patras (Greece); Vayenas, Dimitrios V. [Department of Environmental and Natural Resources Management, University of Patras, 2 G. Seferi Str., GR-30100 Agrinio (Greece); Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., Platani, P.O. Box 1414, GR-26504 Patras (Greece)

    2015-01-08

    Highlights: • Suspended and attached growth reactors were examined for Cr(VI) bio-reduction. • Molasses was proved an efficient and very low cost carbon source. • Molasses was more efficient than sugar in enhancing Cr(VI) reduction. • SBR with recirculation was the most proper operating mode. - Abstract: In the present study, indigenous microorganisms from industrial sludge were used to reduce the activity of Cr(VI). Molasses, a by-product of sugar processing, was selected as the carbon source (instead of sugar used in a previous work) as it is a low-cost energy source for bioprocesses. Initially, experiments were carried out in suspended growth batch reactors for Cr(VI) concentrations of 1.5–110 mg/L. The time required for complete Cr(VI) reduction increased with initial Cr(VI) concentration. Initial molasses concentration was also found to influence the Cr(VI) reduction rate. The optimal concentration for all initial Cr(VI) concentrations tested was 0.8 gC/L. Experiments were also carried out in packed-bed reactors. Three different operating modes were used to investigate the optimal performance and efficiency of the filter, i.e. batch, continuous and SBR with recirculation. The latter mode with a recirculation rate of 0.5 L/min lead to significantly high Cr(VI) reduction rates (up to 135 g/m{sup 2} d). The results of this work were compared with those of a similar work using sugar as the carbon source and indicate that molasses could prove a feasible technological solution to a serious environmental problem.

  14. Molasses as an efficient low-cost carbon source for biological Cr(VI) removal

    International Nuclear Information System (INIS)

    Highlights: • Suspended and attached growth reactors were examined for Cr(VI) bio-reduction. • Molasses was proved an efficient and very low cost carbon source. • Molasses was more efficient than sugar in enhancing Cr(VI) reduction. • SBR with recirculation was the most proper operating mode. - Abstract: In the present study, indigenous microorganisms from industrial sludge were used to reduce the activity of Cr(VI). Molasses, a by-product of sugar processing, was selected as the carbon source (instead of sugar used in a previous work) as it is a low-cost energy source for bioprocesses. Initially, experiments were carried out in suspended growth batch reactors for Cr(VI) concentrations of 1.5–110 mg/L. The time required for complete Cr(VI) reduction increased with initial Cr(VI) concentration. Initial molasses concentration was also found to influence the Cr(VI) reduction rate. The optimal concentration for all initial Cr(VI) concentrations tested was 0.8 gC/L. Experiments were also carried out in packed-bed reactors. Three different operating modes were used to investigate the optimal performance and efficiency of the filter, i.e. batch, continuous and SBR with recirculation. The latter mode with a recirculation rate of 0.5 L/min lead to significantly high Cr(VI) reduction rates (up to 135 g/m2 d). The results of this work were compared with those of a similar work using sugar as the carbon source and indicate that molasses could prove a feasible technological solution to a serious environmental problem

  15. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been e...... established that codeposition of Cr2O3 nanoparticles is a general feature of DC chromium electrodeposition....

  16. Biosorption of Cr(VI) from AqueousSolution Using New Adsorbent: Equilibrium and Thermodynamic Study

    OpenAIRE

    Zainal, Israa G.

    2010-01-01

    Biosorption is one such emerging technology which utilized naturally occurring waste materials to sequester heavy metals from polluted water. In the present study cinnamon was utilized for Cr(VI) removal from aqueous solutions.It was found that a time of two hours was sufficient for sorption to attain equilibrium. The optimum pH was 2 for Cr(VI) removal. Temprature has little influence on the biosorption process. The Cr(VI) removal decreased with increase in temperature. The biosorption data ...

  17. Chromium propionate enhances adipogenic differentiation of bovine intramuscular adipocytes

    Directory of Open Access Journals (Sweden)

    Rebecca eTokach

    2015-09-01

    Full Text Available In vitro experiments were performed to determine the effects of increasing concentrations of chromium propionate on mRNA and protein abundance of different enzymes and receptors. Intramuscular and subcutaneous preadipocytes and bovine satellite cells were isolated from the longissimus muscle to determine the effect of treatment on glucose transporter type 4 (GLUT4 and peroxisome proliferator-activated receptor γ mRNA and GLUT4 protein abundance. Preadipocyte cultures were treated with differentiation media plus either sodium propionate or different concentrations of chromium propionate (CrPro for 96, 120, and 144 h before harvest. This study indicated adipogenesis of the bovine intramuscular adipocytes were more sensitive to the treatment of chromium propionate as compared to subcutaneous adipocytes. Enhancement of adenosine monophosphate-activated protein kinase and GLUT4 mRNA by CrPro treatment may enhance glucose uptake in intramuscular adipocytes. Chromium propionate decreased GLUT4 protein levels in muscle cell cultures suggesting those cells have increased efficiency of glucose uptake due to exposure to increased levels of CrPro. In contrast, each of the two adipogenic lines had opposing responses to the CrPro. It appeared that CrPro had the most stimulative effect of GLUT4 response in the intramuscular adipocytes as compared to subcutaneous adipocytes. These findings indicated opportunities to potentially augment marbling in beef cattle fed chromium propionate during the finishing phase.

  18. RESULTS FROM RECENT SCIENCE AND TECHNOLOGY INVESTIGATIONS TARGETING CHROMIUM IN THE 100D AREA HANFORD SITE WASHINGTON USA

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW; THOMPSON KM; TONKIN MJ

    2009-12-03

    Sodium dichromate was used in Hanford's 100D Area during the reactor operations period of 1950 to 1964 to retard corrosion in the reactor cooling systems. Some of the sodium dichromate was released to the environment by spills and/or leaks from pipelines used to deliver the chemical to water treatment plants in the area. As a result, hexavalent chromium [Cr(VI)] has migrated through the vadose zone to the groundwater and contaminated nearly 1 km{sup 2} of groundwater to above the drinking water standard of 48 {micro}g/L. Three technology tests have recently been completed in this area to characterize the source area of the plumes and evaluate alternative methods to remove Cr(VI) from groundwater. These are (1) refine the source area of the southern plume; (2) test electrocoagulation as an alternative groundwater treatment technology; and (3) test the ability to repair a permeable reactive barrier by injecting micron or nanometer-size zero-valent iron (ZVI). The projects were funded by the US Department of Energy as part of a program to interject new technologies and accelerate active cleanup. Groundwater monitoring over the past 10 years has shown that Cr(VI) concentrations in the southern plume have not significantly diminished, strongly indicating a continuing source. Eleven groundwater wells were installed in 2007 and 2008 near a suspected source area and monitored for Cr(VI) and groundwater levels. Interpretation of these data has led to refinement of the source area location to an area of less than 1 hectare (ha, 2.5 acres). Vadose zone soil samples collected during drilling did not discover significant concentrations of Cr(VI), indicating the source is localized, with a narrow wetted path from the surface to the water table. Electrocoagulation was evaluated through a pilot-scale treatability test. Over 8 million liters of groundwater were treated to Cr(VI) concentrations of {le}20 {micro}g/L. The test determined that this technology has the potential to

  19. Hexavalent chromium removal from aqueous solutions by a novel powder prepared from Colocasia esculenta leaves.

    Science.gov (United States)

    Nakkeeran, E; Saranya, N; Giri Nandagopal, M S; Santhiagu, A; Selvaraju, N

    2016-08-01

    In this study, batch removal of hexavalent chromium from aqueous solutions by powdered Colocasia esculenta leaves was investigated. Batch experiments were conducted to study the effects of adsorption of Cr(VI) at different pH values, initial concentrations, agitation speeds, temperatures, and contact times. The biosorbent was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectrometer analysis. The biosorptive capacity of the adsorbent was dependent on the pH of the chromium solution in which maximum removal was observed at pH 2. The adsorption equilibrium data were evaluated for various adsorption isotherm models, kinetic models, and thermodynamics. The equilibrium data fitted well with Freundlich and Halsey models. The adsorption capacity calculated was 47.62 mg/g at pH 2. The adsorption kinetic data were best described by pseudo-second-order kinetic model. Thus, Colocasia esculenta leaves can be considered as one of the efficient and cheap biosorbents for hexavalent chromium removal from aqueous solutions.

  20. Hexavalent chromium removal from aqueous solutions by a novel powder prepared from Colocasia esculenta leaves.

    Science.gov (United States)

    Nakkeeran, E; Saranya, N; Giri Nandagopal, M S; Santhiagu, A; Selvaraju, N

    2016-08-01

    In this study, batch removal of hexavalent chromium from aqueous solutions by powdered Colocasia esculenta leaves was investigated. Batch experiments were conducted to study the effects of adsorption of Cr(VI) at different pH values, initial concentrations, agitation speeds, temperatures, and contact times. The biosorbent was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectrometer analysis. The biosorptive capacity of the adsorbent was dependent on the pH of the chromium solution in which maximum removal was observed at pH 2. The adsorption equilibrium data were evaluated for various adsorption isotherm models, kinetic models, and thermodynamics. The equilibrium data fitted well with Freundlich and Halsey models. The adsorption capacity calculated was 47.62 mg/g at pH 2. The adsorption kinetic data were best described by pseudo-second-order kinetic model. Thus, Colocasia esculenta leaves can be considered as one of the efficient and cheap biosorbents for hexavalent chromium removal from aqueous solutions. PMID:26853060

  1. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils. PMID:23784058

  2. Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes.

    Science.gov (United States)

    Hsu, Hung-Te; Chen, Shiao-Shing; Tang, Yi-Fang; Hsi, Hsing-Cheng

    2013-03-15

    A novel technology of photoelectrocatalysis (PEC) combining with cationic exchange membrane (CEM) was proposed for simultaneous reduction of chromium(VI) and oxidization of EDTA. The application of CEM was used to enhance the efficiency for prevention of the re-oxidation of reduced chromium with the electron-hole pairs. In this study, effects of current density, pH, TiO2 dosage, hydraulic retention time (HRT), light intensity and EDTA/Cr(VI) molar ratio were all investigated. The results showed that the optimum conversion efficiency occurred at 4mA/cm(2) with the presence of CEM. Higher conversion efficiencies were observed at lower pH due to the electrostatic attractions between positive charged TiOH2(+), and negatively charged Cr(VI) and EDTA. The optimum TiO2 loading of 1g/L was depended mainly on the acidic pH range, especially at higher HRT and irradiation intensity. In addition, higher EDTA/Cr(VI) molar ratio enhanced the reduction efficiency of Cr(VI), indicating EDTA plays the role of hole scavenger in this system. Moreover, incomplete EDTA decomposition contributes to the occurrence of intermediates, including nitrilotriacetic acid, iminodiacetic acid, glycine, oxamic acid, lyoxylic acid, oxalic acid, acetic acid and formic acid, as identified by GC/MS. Consequently, transformation pathway was determined from these analyzed byproducts and molecular orbital package analysis. PMID:23380448

  3. Simultaneous speciation of arsenic, selenium, and chromium: species, stability, sample preservation, and analysis of ash and soil leachates

    Science.gov (United States)

    Wolf, Ruth E.; Morman, Suzette A.; Hageman, Philip L.; Hoefen, Todd M.; Plumlee, Geoffrey S.

    2011-01-01

    An analytical method using high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry (ICP-MS) detection previously developed for the determination of Cr(III) and Cr(VI) has been adapted to allow the determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) under the same chromatographic conditions. Using this method, all six inorganic species can be determined in less than 3 min. A dynamic reaction cell (DRC)-ICP-MS system was used to detect the species eluted from the chromatographic column in order to reduce interferences. A variety of reaction cell gases and conditions may be utilized with the DRC-ICP-MS, and final selection of conditions is determined by data quality objectives. Results indicated all starting standards, reagents, and sample vials should be thoroughly tested for contamination. Tests on species stability indicated that refrigeration at 10° C was preferential to freezing for most species, particularly when all species were present, and that sample solutions and extracts should be analyzed as soon as possible to eliminate species instability and interconversion effects. A variety of environmental and geological samples, including waters and deionized water [leachates] and simulated biological leachates from soils and wildfire ashes have been analyzed using this method. Analytical spikes performed on each sample were used to evaluate data quality. Speciation analyses were conducted on deionized water leachates and simulated lung fluid leachates of ash and soils impacted by wildfires. These results show that, for leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent Cr(VI) form. In general, total and hexavalent chromium levels for samples taken from burned residential areas were higher than those obtained from non-residential forested areas. Arsenic, when found, was generally in the more oxidized As(V) form. Selenium (IV) and (VI) were present

  4. Simultaneous speciation of arsenic, selenium, and chromium: Species stability, sample preservation, and analysis of ash and soil leachates

    Science.gov (United States)

    Wolf, R.E.; Morman, S.A.; Hageman, P.L.; Hoefen, T.M.; Plumlee, G.S.

    2011-01-01

    An analytical method using high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry (ICP-MS) detection previously developed for the determination of Cr(III) and Cr(VI) has been adapted to allow the determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) under the same chromatographic conditions. Using this method, all six inorganic species can be determined in less than 3 min. A dynamic reaction cell (DRC)-ICP-MS system was used to detect the species eluted from the chromatographic column in order to reduce interferences. A variety of reaction cell gases and conditions may be utilized with the DRC-ICP-MS, and final selection of conditions is determined by data quality objectives. Results indicated all starting standards, reagents, and sample vials should be thoroughly tested for contamination. Tests on species stability indicated that refrigeration at 10 ??C was preferential to freezing for most species, particularly when all species were present, and that sample solutions and extracts should be analyzed as soon as possible to eliminate species instability and interconversion effects. A variety of environmental and geological samples, including waters and deionized water [leachates] and simulated biological leachates from soils and wildfire ashes have been analyzed using this method. Analytical spikes performed on each sample were used to evaluate data quality. Speciation analyses were conducted on deionized water leachates and simulated lung fluid leachates of ash and soils impacted by wildfires. These results show that, for leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent Cr(VI) form. In general, total and hexavalent chromium levels for samples taken from burned residential areas were higher than those obtained from non-residential forested areas. Arsenic, when found, was generally in the more oxidized As(V) form. Selenium (IV) and (VI) were present

  5. Simultaneous speciation of arsenic, selenium, and chromium: species stability, sample preservation, and analysis of ash and soil leachates

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Ruth E.; Morman, Suzette A.; Hageman, Philip L.; Hoefen, Todd M.; Plumlee, Geoffrey S. [Denver Federal Center, US Geological Survey, Denver, CO (United States)

    2011-11-15

    An analytical method using high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry (ICP-MS) detection previously developed for the determination of Cr(III) and Cr(VI) has been adapted to allow the determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) under the same chromatographic conditions. Using this method, all six inorganic species can be determined in less than 3 min. A dynamic reaction cell (DRC)-ICP-MS system was used to detect the species eluted from the chromatographic column in order to reduce interferences. A variety of reaction cell gases and conditions may be utilized with the DRC-ICP-MS, and final selection of conditions is determined by data quality objectives. Results indicated all starting standards, reagents, and sample vials should be thoroughly tested for contamination. Tests on species stability indicated that refrigeration at 10 C was preferential to freezing for most species, particularly when all species were present, and that sample solutions and extracts should be analyzed as soon as possible to eliminate species instability and interconversion effects. A variety of environmental and geological samples, includi