WorldWideScience

Sample records for chromium crvi exposure

  1. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI by an indigenously isolated bacterial strain

    Directory of Open Access Journals (Sweden)

    Das Alok

    2010-01-01

    Full Text Available Background : Hexavalent chromium [Cr(VI], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter. Materials and Methods: Our investigation involved microbial remediation of Cr(VI without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30oC. At about 50 mg/L initial Cr(VI concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI.

  2. Transcriptomic Analysis of Cultured Whale Skin Cells Exposed to Hexavalent Chromium [Cr(VI)

    OpenAIRE

    Pabuwal, Vagmita; Boswell, Mikki; Pasquali, Amanda; Wise, Sandra S.; Kumar, Suresh; Shen, Yingjia; Garcia, Tzintzuni; LaCerte, Carolyne; Wise, John Pierce; Warren, Wesley; Walter, Ronald B.

    2013-01-01

    Hexavalent chromium Cr(VI) is known to produce cytotoxic effects in humans and is a highly toxic environmental contaminant. Interestingly, it has been shown that free ranging sperm whales (Phyester macrocephalus) may have exceedingly high levels of Cr in their skin. Also, it has been demonstrated that skin cells from whales appear more resistant to both cytotoxicity and clastogenicity upon Cr exposure compared to human cells. However, the molecular genetic mechanisms employed in whale skin ce...

  3. Occupational exposure to chromium(VI compounds

    Directory of Open Access Journals (Sweden)

    Jolanta Skowroń

    2015-07-01

    Full Text Available This article discusses the effect of chromium(VI (Cr(VI on human health under conditions of acute and chronic exposure in the workplace. Chromium(VI compounds as carcinogens and/or mutagens pose a direct danger to people exposed to them. If carcinogens cannot be eliminated from the work and living environments, their exposure should be reduced to a minimum. In the European Union the proposed binding occupational exposure limit value (BOELV for chromium(VI of 0.025 mg/m³ is still associated with high cancer risk. Based on the Scientific Commitee of Occupational Exposure Limits (SCOEL document chromium(VI concentrations at 0.025 mg/m³ increases the risk of lung cancer in 2–14 cases per 1000 exposed workers. Exposure to chromium(VI compounds expressed in Cr(VI of 0.01 mg Cr(VI/m3 is responsible for the increased number of lung cancer cases in 1–6 per 1000 people employed in this condition for the whole period of professional activity. Med Pr 2015;66(3:407–427

  4. [Occupational exposure to chromium(VI) compounds].

    Science.gov (United States)

    Skowroń, Jolanta; Konieczko, Katarzyna

    2015-01-01

    This article discusses the effect of chromium(VI) (Cr(VI)) on human health under conditions of acute and chronic exposure in the workplace. Chromium(VI) compounds as carcinogens and/or mutagens pose a direct danger to people exposed to them. If carcinogens cannot be eliminated from the work and living environments, their exposure should be reduced to a minimum. In the European Union the proposed binding occupational exposure limit value (BOELV) for chromium(VI) of 0.025 mg/m³ is still associated with high cancer risk. Based on the Scientific Commitee of Occupational Exposure Limits (SCOEL) document chromium(VI) concentrations at 0.025 mg/m³ increases the risk of lung cancer in 2-14 cases per 1000 exposed workers. Exposure to chromium(VI) compounds expressed in Cr(VI) of 0.01 mg Cr(VI)/m3; is responsible for the increased number of lung cancer cases in 1-6 per 1000 people employed in this condition for the whole period of professional activity. PMID:26325053

  5. Phytoremediation potential and nutrient status of Barringtonia acutangula Gaerth. Tree seedlings grown under different chromium (CrVI) treatments.

    Science.gov (United States)

    Kumar, Dharmendra; Tripathi, Durgesh Kumar; Chauhan, Devendra Kumar

    2014-02-01

    To investigate the effect of different chromium (CrVI) treatments on seedlings of semi-aquatic plant Barringtonia acutangula, hydroponic experiments were conducted. Results revealed that B. acutangula could tolerate much higher CrVI concentration accumulated about 751-2,703 mg kg(-1) dry weight in roots and 50-1,101 mg kg(-1) dry weight in shoots, respectively, under 1.0, 2.0, 3.0, 4.0, and 5.0 mM chromium treatments. CrVI exposure at 1.0-4.0 mM does not exhibit toxicity signs; however, up to 4.0 mM CrVI exposure causes significant decline in growth parameters. Content of macronutrients such as Ca and K decreased under different Cr treatments in roots and shoots, while Mg content of roots and shoots did not influence at the range of 1.0-4.0 mM Cr; however, significant decrease at 5.0 mM Cr, besides P content, significantly shows increasing trends, respectively. Interestingly, sulfur content of roots and shoots show increasing trends at 1.0-2.0 mM Cr; however, severe decrease of up to 3.0-5.0 mM is shown in CrVI treatments. Furthermore, micronutrients content were enhanced under CrVI treatments excluding Cu and Fe since they show significant reduction in shoots as well as in roots. Bioaccumulation factor were also calculated on the basis of results obtained which shows the value of >1 without viewing chromium toxicity symptoms. This study demonstrated that B. acutangula could tolerate CrVI concentrations up to 1.0-4.0 mM Cr which may be useful in chromium phytoremediation programs. PMID:24399023

  6. Evaluation of chromium in red blood cells as an indicator of exposure to hexavalent chromium: An in vitro study.

    Science.gov (United States)

    Devoy, Jérôme; Géhin, Antoine; Müller, Samuel; Melczer, Mathieu; Remy, Aurélie; Antoine, Guillaume; Sponne, Isabelle

    2016-07-25

    Chromium(VI) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and whole blood (i.e., including plasma) are indicative of recent exposure, chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure. Before recommending Cr in RBC as a biological indicator of Cr(VI) exposure, in-vitro studies must be undertaken to assess its reliability. The present study examines the relationship between the chromium added to a blood sample and that subsequently found in the RBC. After incubation of total blood with chromium, RBC were isolated, counted and their viability assessed. Direct analysis of chromium in RBC was conducted using Atomic Absorption Spectrometry. Hexavalent, but not trivalent Cr, was seen to accumulate in the RBC and we found a strong correlation between the Cr(VI) concentration added to a blood sample and the amount of Cr in RBC. This relationship appears to be independent of the chemical properties of the human blood samples (e.g., different blood donors or different reducing capacities). Even though in-vivo studies are still needed to integrate our understanding of Cr(VI) toxicokinetics, our findings reinforce the idea that a single determination of the chromium concentration in RBC would enable biomonitoring of critical cases of Cr(VI) exposure. PMID:27178267

  7. Occupational Exposure to Chromium of Assembly Workers in Aviation Industries.

    Science.gov (United States)

    Genovese, G; Castiglia, L; Pieri, M; Novi, C; d'Angelo, R; Sannolo, N; Lamberti, M; Miraglia, N

    2015-01-01

    Aircraft are constructed by modules that are covered by a "primer" layer, which can often contain hexavalent chromium [Cr(VI)], known carcinogen to humans. While the occupational exposure to Cr(VI) during aircraft painting is ascertained, the exposure assessment of assembly workers (assemblers) requires investigations. Three biological monitoring campaigns (BM-I,II,III) were performed in an aviation industry, on homogeneous groups of assemblers (N = 43) and controls (N = 23), by measuring chromium concentrations in end-shift urine collected at the end of the working week and the chromium concentration difference between end- and before-shift urines. BM-I was conducted on full-time workers, BM-II was performed on workers after a 3-4 day absence from work, BM-III on workers using ecoprimers with lower Cr(VI) content. Samples were analyzed by atomic absorption spectroscopy and mean values were compared by T-test. Even if Cr concentrations measured during BM-I were lower than Biological Exposure Indices by ACGIH, statistically significant differences were found between urinary Cr concentrations of workers and controls. Despite 3-4 days of absence from work, urinary chromium concentrations measured during BM-II were still higher than references from nonoccupationally exposed populations. In the BM-III campaign, the obtained preliminary results suggested the efficacy of using ecoprimers. The healthcare of workers exposed to carcinogenic agents follows the principle of limiting the exposure to "the minimum technically possible". The obtained results evidence that assemblers of aviation industries, whose task does not involve the direct use of primers containing Cr(VI), show an albeit slight occupational exposure to Cr(VI), that must be carefully taken into consideration in planning suitable prevention measures during risk assessment and management processes. PMID:25793365

  8. Transcriptomic analysis of cultured whale skin cells exposed to hexavalent chromium [Cr(VI)].

    Science.gov (United States)

    Pabuwal, Vagmita; Boswell, Mikki; Pasquali, Amanda; Wise, Sandra S; Kumar, Suresh; Shen, Yingjia; Garcia, Tzintzuni; Lacerte, Carolyne; Wise, John Pierce; Wise, John Pierce; Warren, Wesley; Walter, Ronald B

    2013-06-15

    Hexavalent chromium Cr(VI) is known to produce cytotoxic effects in humans and is a highly toxic environmental contaminant. Interestingly, it has been shown that free ranging sperm whales (Phyester macrocephalus) may have exceedingly high levels of Cr in their skin. Also, it has been demonstrated that skin cells from whales appear more resistant to both cytotoxicity and clastogenicity upon Cr exposure compared to human cells. However, the molecular genetic mechanisms employed in whale skin cells that might lead to Cr tolerance are unknown. In an effort to understand the underlying mechanisms of Cr(VI) tolerance and to illuminate global gene expression patterns modulated by Cr, we exposed whale skin cells in culture to varying levels of Cr(VI) (i.e., 0.0, 0.5, 1.0 and 5.0 μg/cm²) followed by short read (100 bp) next generation RNA sequencing (RNA-seq). RNA-seq reads from all exposures (≈280 million reads) were pooled to generate a de novo reference transcriptome assembly. The resulting whale reference assembly had 11K contigs and an N50 of 2954 bp. Using the reads from each dose (0.0, 0.5, 1.0 and 5.0 μg/cm²) we performed RNA-seq based gene expression analysis that identified 35 up-regulated genes and 19 down-regulated genes. The experimental results suggest that low dose exposure to Cr (1.0 μg/cm²) serves to induce up-regulation of oxidative stress response genes, DNA repair genes and cell cycle regulator genes. However, at higher doses (5.0 μg/cm²) the DNA repair genes appeared down-regulated while other genes that were induced suggest the initiation of cytotoxicity. The set of genes identified that show regulatory modulation at different Cr doses provide specific candidates for further studies aimed at determination of how whales exhibit resistance to Cr toxicity and what role(s) reactive oxygen species (ROS) may play in this process. PMID:23584427

  9. Persistent hexavalent chromium exposure impaired the pubertal development and ovarian histoarchitecture in wistar rat offspring.

    Science.gov (United States)

    Samuel, Jawahar B; Stanley, Jone A; Sekar, Pasupathi; Princess, Rajendran A; Sebastian, Maria S; Aruldhas, Michael M

    2014-05-01

    Hexavalent chromium (CrVI) is a highly toxic metal and a major environmental pollutant. Several studies indicate that CrVI exposure adversely affects reproductive function. We reported that maternal Cr exposure resulted in Cr accumulation in the reproductive organs of female offsprings. CrVI can cross the placental barrier and also can be passed through breastfeeding. The present investigation aimed to determine the persistent (in utero through puberal period) CrVI exposure-induced toxic effects on the reproductive functions of mother and the offspring. Induction of oxidative stress is one of the plausible mechanisms behind Cr-induced cellular deteriorations. Mother rats exposed to CrVI showed reduced reproductive outcome, while the offsprings showed higher accumulation of Cr in ovary, altered steroid, and peptide hormones. Specific activities of antioxidant enzymes were decreased and associated with increased levels of H2 O2 , and lipid peroxidation. CrVI exposure also damaged the ovarian histoarchitecture in various age groups studied. CrVI exposure also delayed the sexual maturation. Results from the present investigation suggest that CrVI exposure from in utero through puberal period significantly damaged the pubertal development through altered antioxidants, anemia, and altered hormone levels. These changes were associated with damaged ovarian histoarchitecture and extended estrous cycle in developing Wistar rats. PMID:22936640

  10. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies

    OpenAIRE

    Alma Rosa Netzahuatl-Muñoz; María del Carmen Cristiani-Urbina; Eliseo Cristiani-Urbina

    2015-01-01

    The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model describ...

  11. Determination of Cr(III, Cr(VI and total chromium in atmospheric aerosol samples

    Directory of Open Access Journals (Sweden)

    Catrambone M.

    2013-04-01

    Full Text Available This study addresses the optimization and validation of an analytical method based on the ultrasound-assisted extraction of soluble Cr from atmospheric particulate matter (PM and subsequent determination of Cr(III and Cr(VI by catalytic adsorptive stripping voltammetry (CAdSV by using diethylenetriammino pentaacetic acid (DTPA as complexing agent in the presence of nitrate. We evaluated the influence of various filter materials and of extracting conditions and validated the method on both reference material and real PM10 samples. The accuracy of total extractable Cr determination was checked by parallel ICP-OES measurements. The determination of total chromium was performed by ED-XRF. Results of field campaigns carried out in two industrial areas (North Italy and Tunis and at a peri-urban site near Rome are reported. At the peri-urban site, the total Cr concentration in PM10 ranged from 2 to 5 ng/m3, with a soluble fraction of 5-13%, and Cr(VI concentration was always below the detection limits (50 pg/m3. In the industrial area of Northern Italy, total Cr concentration ranged between 6 and 11 ng/m3, the soluble fraction was about 11-28% and detectable amounts of Cr(VI were found, with a Cr(VI/Cr(III ratio ranging from 0.5 to 2.5. A further increase of Cr(VI concentration was evidenced at the industrial site of Tunis, where the total Cr concentration ranged from 6 to 26 ng/m3, with a soluble fraction accounting for about 8-44% and a Cr(VI/Cr(III ranging from 1.6 to 3.6. The results of size-segregated samples, collected in Northen Italy by a 10-stage cascade impactor, indicate a relevant fine fraction of Cr(VI, with Cr(VI/Cr(III ratios increasing with the decrease of particle size.

  12. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater

    Science.gov (United States)

    Mills, Christopher T.; Morrison, Jean M.; Goldhaber, Martin B.; Ellefsen, Karl J.

    2011-01-01

    Concentrations of geogenic Cr(VI) in groundwater that exceed the World Health Organization’s maximum contaminant level for drinking water (50 μg L−1) occur in several locations globally. The major mechanism for mobilization of this Cr(VI) at these sites is the weathering of Cr(III) from ultramafic rocks and its subsequent oxidation on Mn oxides. This process may be occurring in the southern Sacramento Valley of California where Cr(VI) concentrations in groundwater can approach or exceed 50 μg L−1. To characterize Cr geochemistry in the area, samples from several soil auger cores (approximately 4 m deep) and drill cores (approximately 25 m deep) were analyzed for total concentrations of 44 major, minor and trace elements, Cr associated with labile Mn and Fe oxides, and Cr(VI). Total concentrations of Cr in these samples ranged from 140 to 2220 mg per kg soil. Between 9 and 70 mg per kg soil was released by selective extractions that target Fe oxides, but essentially no Cr was associated with the abundant reactive Mn oxides (up to ~1000 mg hydroxylamine-reducible Mn per kg soil was present). Both borehole magnetic susceptibility surveys performed at some of the drill core sites and relative differences between Cr released in a 4-acid digestion versus total Cr (lithium metaborate fusion digestion) suggest that the majority of total Cr in the samples is present in refractory chromite minerals transported from ultramafic exposures in the Coast Range Mountains. Chromium(VI) in the samples studied ranged from 0 to 42 μg kg−1, representing a minute fraction of total Cr. Chromium(VI) content was typically below detection in surface soils (top 10 cm) where soil organic matter was high, and increased with increasing depth in the soil auger cores as organic matter decreased. Maximum concentrations of Cr(VI) were up to 3 times greater in the deeper drill core samples than the shallow auger cores. Although Cr(VI) in these vadose zone soils and sediments was only a

  13. Chromium isotope variation along a contaminated groundwater plume: a coupled Cr(VI)- reduction, advective mixing perspective

    Science.gov (United States)

    Bullen, T.; Izbicki, J.

    2007-12-01

    Chromium (Cr) is a common contaminant in groundwater, used in electroplating, leather tanning, wood preservation, and as an anti-corrosion agent. Cr occurs in two oxidation states in groundwater: Cr(VI) is highly soluble and mobile, and is a carcinogen; Cr(III) is generally insoluble, immobile and less toxic than Cr(VI). Reduction of Cr(VI) to Cr(III) is thus a central issue in approaches to Cr(VI) contaminant remediation in aquifers. Aqueous Cr(VI) occurs mainly as the chromate (CrO22-) and bichromate (HCrO2-) oxyanions, while Cr(III) is mainly "hexaquo" Cr(H2O)63+. Cr has four naturally-occurring stable isotopes: 50Cr, 52Cr, 53Cr and 54Cr. When Cr(VI) is reduced to Cr(III), the strong Cr-O bond must be broken, resulting in isotopic selection. Ellis et al. (2002) demonstrated that for reduction of Cr(VI) on magnetite and in natural sediment slurries, the change of isotopic composition of the remnant Cr(VI) pool was described by a Rayleigh fractionation model having fractionation factor ɛCr(VI)-Cr(III) = 3.4‰. We attempted to use Cr isotopes as a monitor of Cr(VI) reduction at a field site in Hinkley, California (USA) where groundwater contaminated with Cr(VI) has been under assessment for remediation. Groundwater containing up to 5 ppm Cr(VI) has migrated down-gradient from the contamination source through the fluvial to alluvial sediments to form a well-defined plume. Uncontaminated groundwater in the aquifer immediately adjacent to the plume has naturally-occurring Cr(VI) of 4 ppb or less (CH2M-Hill). In early 2006, colleagues from CH2M-Hill collected 17 samples of groundwater from within and adjacent to the plume. On a plot of δ53Cr vs. log Cr(VI), the data array is strikingly linear and differs markedly from the trend predicted for reduction of Cr(VI) in the contaminated water. There appear to be two groups of data: four samples with δ53Cr >+2‰ and Cr(VI) 15 ppb. Simple mixing lines between the groundwater samples having <4 ppb Cr(VI), taken to be

  14. Hexavalent Chromium (Cr(VI)) Down-Regulates Acetylation of Histone H4 at Lysine 16 through Induction of Stressor Protein Nupr1

    Science.gov (United States)

    Chen, Danqi; Kluz, Thomas; Fang, Lei; Zhang, Xiaoru; Sun, Hong; Jin, Chunyuan; Costa, Max

    2016-01-01

    The environmental and occupational carcinogen Hexavalent Chromium (Cr(VI)) has been shown to cause lung cancer in humans when inhaled. In spite of a considerable research effort, the mechanisms of Cr(VI)-induced carcinogenesis remain largely unknown. Nupr1 (nuclear protein 1) is a small, highly basic, and unfolded protein with molecular weight of 8,800 daltons and is induced by a variety of stressors. Studies in animal models have suggested that Nupr1 is a key factor in the development of lung and pancreatic cancers, with little known about the underlying molecular mechanisms. Here we report that the level of Nupr1 is significantly increased in human bronchial epithelial BEAS2B cells following exposure to Cr(VI) through epigenetic mechanisms. Interestingly, Cr(VI) exposure also results in the loss of acetylation at histone H4K16, which is considered a ‘hallmark’ of human cancer. Cr(VI)-induced reduction of H4K16 acetylation appears to be caused by the induction of Nupr1, since (a) overexpression of Nupr1 decreased the levels of both H4K16 acetylation and the histone acetyltransferase MOF (male absent on the first; also known as Kat8, Myst 1), which specifically acetylates H4K16; (b) the loss of acetylation of H4K16 upon Cr(VI) exposure is greatly compromised by knockdown of Nupr1. Moreover, Nupr1-induced reduction of H4K16 acetylation correlates with the transcriptional down-regulation at several genomic loci. Notably, overexpression of Nupr1 induces anchorage-independent cell growth and knockdown of Nupr1 expression prevents Cr(VI)-induced cell transformation. We propose that Cr(VI) induces Nupr1 and rapidly perturbs gene expression by downregulating H4K16 acetylation, thereby contributing to Cr(VI)-induced carcinogenesis. PMID:27285315

  15. Hexavalent Chromium (Cr(VI)) Down-Regulates Acetylation of Histone H4 at Lysine 16 through Induction of Stressor Protein Nupr1.

    Science.gov (United States)

    Chen, Danqi; Kluz, Thomas; Fang, Lei; Zhang, Xiaoru; Sun, Hong; Jin, Chunyuan; Costa, Max

    2016-01-01

    The environmental and occupational carcinogen Hexavalent Chromium (Cr(VI)) has been shown to cause lung cancer in humans when inhaled. In spite of a considerable research effort, the mechanisms of Cr(VI)-induced carcinogenesis remain largely unknown. Nupr1 (nuclear protein 1) is a small, highly basic, and unfolded protein with molecular weight of 8,800 daltons and is induced by a variety of stressors. Studies in animal models have suggested that Nupr1 is a key factor in the development of lung and pancreatic cancers, with little known about the underlying molecular mechanisms. Here we report that the level of Nupr1 is significantly increased in human bronchial epithelial BEAS2B cells following exposure to Cr(VI) through epigenetic mechanisms. Interestingly, Cr(VI) exposure also results in the loss of acetylation at histone H4K16, which is considered a 'hallmark' of human cancer. Cr(VI)-induced reduction of H4K16 acetylation appears to be caused by the induction of Nupr1, since (a) overexpression of Nupr1 decreased the levels of both H4K16 acetylation and the histone acetyltransferase MOF (male absent on the first; also known as Kat8, Myst 1), which specifically acetylates H4K16; (b) the loss of acetylation of H4K16 upon Cr(VI) exposure is greatly compromised by knockdown of Nupr1. Moreover, Nupr1-induced reduction of H4K16 acetylation correlates with the transcriptional down-regulation at several genomic loci. Notably, overexpression of Nupr1 induces anchorage-independent cell growth and knockdown of Nupr1 expression prevents Cr(VI)-induced cell transformation. We propose that Cr(VI) induces Nupr1 and rapidly perturbs gene expression by downregulating H4K16 acetylation, thereby contributing to Cr(VI)-induced carcinogenesis. PMID:27285315

  16. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells.

    Science.gov (United States)

    Browning, Cynthia L; Qin, Qin; Kelly, Deborah F; Prakash, Rohit; Vanoli, Fabio; Jasin, Maria; Wise, John Pierce

    2016-09-01

    Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis. PMID:27449664

  17. Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process.

    Science.gov (United States)

    Dharnaik, Amit Shivputra; Ghosh, Pranab Kumar

    2014-01-01

    In the present investigation, the performance of a laboratory-scale plate and frame-type electrochemical ion-exchange (EIX) cell on removal ofhexavalent chromium from synthetic wastewater containing 5 mg/l of Cr(VI) was evaluated under varying applied voltages. Ruthenium dioxide-coated titanium plate (RuO2/Ti) was used as anode and stainless steel plates as cathode. The EIX cell was run at different hydraulic retention time (HRT). Before using in the electrochemical cell, the capacity of ion-exchange resin was evaluated through kinetic and isotherm equilibrium tests in batch mode. The batch kinetic study result showed that the equilibrium time for effective ion exchange with resin is 2 h. The isotherm equilibrium data fit well to both Freundlich and Langmuir isotherms. Maximum capacity (qm) of resin calculated from Langmuir isotherm was 71.42 mg/g. Up to 99% of chromium removal was noticed in the EIX cell containing fresh resin at applied voltages of 10 V and higher. Migration of chromium ion to anode chamber was not noticed while performing the experiment with fresh resin. As high as 50% removal of chromium was observed from the middle chamber containing exhausted resin at an applied voltage of 25 V when the influent flow rate was maintained at 45 min of HRT. The performance of the reactor was increased to 72% when the influent flow rate was decreased to maintain at 90 min of HRT. Build-up of chromium in the anode chamber took place when exhausted resin was used in the process. PMID:25145180

  18. Effect of chromium (VI) exposure on antioxidant defense status and trace element homeostasis in acute experiment in rat.

    Science.gov (United States)

    Kotyzová, Dana; Hodková, Anna; Bludovská, Monika; Eybl, Vladislav

    2015-11-01

    Occupational exposure to hexavalent chromium (Cr(VI)) compounds is of concern in many Cr-related industries and their surrounding environment. Cr(VI) is a proven toxin and carcinogen. The Cr(VI) compounds are easily absorbed, can diffuse across cell membranes, and have strong oxidative potential. Despite intensive studies of Cr(VI) pro-oxidative effects, limited data exist on the influence of Cr(VI) on selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx)-important components of antioxidant defense system. This study investigates the effect of Cr(VI) exposure on antioxidant defense status, with focus on these selenoenzymes, and on trace element homeostasis in an acute experiment in rat. Male Wistar rats (130-140g) were assigned to two groups of 8 animals: I. control; and II. Cr(VI) treated. The animals in Cr(VI) group were administered a single dose of K2Cr2O7 (20 mg /kg, intraperitoneally (ip)). The control group received saline solution. After 24 h, the animals were sacrificed and the liver and kidneys were examined for lipid peroxidation (LP; thiobarbituric acid reactive substances (TBARS) concentration), the level of reduced glutathione (GSH) and the activities of GPx-1, TrxR-1, and glutathione reductase (GR). Samples of tissues were also used to estimate Cr accumulation and alterations in zinc, copper, and iron levels. The acute Cr(VI) exposure caused an increase in both hepatic and renal LP (by 70%, p effect of Cr(VI) was found on TrxR-1 activity in both the liver and the kidneys. The ability of Cr(VI) to cause TrxR inhibition could contribute to its cytotoxic effects. Further investigation of oxidative responses in different in vivo models may enable the development of strategies to protect against Cr(VI) oxidative damage. PMID:23625905

  19. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions

    International Nuclear Information System (INIS)

    Montmorillonite-supported magnetite nanoparticles were prepared by co-precipitation and hydrosol method. The obtained materials were characterized by X-ray diffraction, nitrogen adsorption, elemental analysis, differential scanning calorimetry, transmission electron microscopy and X-ray photoelectron spectroscopy. The average sizes of the magnetite nanoparticles without and with montmorillonite support are around 25 and 15 nm, respectively. The montmorillonite-supported magnetite nanoparticles exist on the surface or inside the interparticle pores of clays, with better dispersing and less coaggregation than the ones without montmorillonite support. Batch tests were carried out to investigate the removal mechanism of hexavalent chromium [Cr(VI)] by these synthesized magnetite nanoparticles. The Cr(VI) uptake was mainly governed by a physico-chemical process, which included an electrostatic attraction followed by a redox process in which Cr(VI) was reduced into trivalent chromium. The adsorption of Cr(VI) was highly pH-dependent and the kinetics of the adsorption followed the Pseudo-second-order model. The adsorption data of unsupported and clay-supported magnetite nanoparticles fit well with the Langmuir and Freundlich isotherm equations. The montmorillonite-supported magnetite nanoparticles showed a much better adsorption capacity per unit mass of magnetite (15.3 mg/g) than unsupported magnetite (10.6 mg/g), and were more thermally stable than their unsupported counterparts. These fundamental results demonstrate that the montmorillonite-supported magnetite nanoparticles are readily prepared, enabling promising applications for the removal of Cr(VI) from aqueous solution.

  20. The influence of Chromium supplied by tanning and wet finishing processes on the formation of cr(vi in leather

    Directory of Open Access Journals (Sweden)

    W. F. Fuck

    2011-06-01

    Full Text Available Chromium used in leather manufacturing can be oxidized from the trivalent to the hexavalent state, causing environmental concerns. In this study, the influence of Cr(III from tanning, deacidification pH, fatliquors, chrome retanning and vegetable retanning on the formation of Cr(VI in leather was analyzed by comparing natural and aged samples. In wet-blue leather, even after aging and in fatliquored leathers that did not suffer the aging process, the presence of Cr(VI was always below the detection limit of 3 mg/kg. Considering the presence of Cr(VI, the supply of chromium during the retanning step had a more significant effect than during the tanning. In the fatliquoring process with sulfites, fish and synthetic fatliquor leather samples contained Cr(VI when aged, and the highest concentration detected was 26.7 mg/kg. The evaluation of Cr(VI formation led to recommendations for regulation in the leather industry.

  1. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations.

    Science.gov (United States)

    Gheju, M; Balcu, I

    2011-11-30

    This work presents investigations on the total removal of chromium from Cr(VI) aqueous solutions by reduction with scrap iron and subsequent precipitation of the resulted cations with NaOH. The process was detrimentally affected by a compactly passivation film occurred at scrap iron surface, mainly composed of Cr(III) and Fe(III). Maximum removal efficiency of the Cr(total) and Fe(total) achieved in the clarifier under circumneutral and alkaline (pH 9.1) conditions was 98.5% and 100%, respectively. The optimum precipitation pH range which resulted from this study is 7.6-8.0. Fe(total) and Cr(total) were almost entirely removed in the clarifier as Fe(III) and Cr(III) species; however, after Cr(VI) breakthrough in column effluent, chromium was partially removed in the clarifier also as Cr(VI), by coprecipitation with cationic species. As long the column effluent was free of Cr(VI), the average Cr(total) removal efficiency of the packed column and clarifier was 10.8% and 78.8%, respectively. Our results clearly indicated that Cr(VI) contaminated wastewater can be successfully treated by combining reduction with scrap iron and chemical precipitation with NaOH. PMID:21955659

  2. Chromium isotopic fractionation during Cr(VI) reduction by Bacillus sp. under aerobic conditions.

    Science.gov (United States)

    Xu, Fen; Ma, Teng; Zhou, Lian; Hu, Zhifang; Shi, Liu

    2015-07-01

    This study investigated the fractionation of chromium isotopes during chromium reduction by Bacillus sp. under aerobic condition, variable carbon source (glucose) concentration (0, 0.1, 1, 2.5 and 10mM), and incubation temperatures (4, 15, 25 and 37°C). The results revealed that the δ(53)Cr values in the residual Cr(VI) increased with the degree of Cr reduction, and followed a Rayleigh fractionation model. The addition of glucose only slightly affected cell-specific Cr(VI) reduction rates (cSRR). However, the value of ε (2.00±0.21‰) in the experiments with different concentrations of glucose (0.1, 1, 2.5 and 10mM) was smaller than that from the experiment without glucose (3.74±0.16‰). The results indicated that the cell-specific reduction rate is not the sole control on the degree of isotopic fractionation, and different metabolic pathways would result in differing degrees of Cr isotopic fractionation. The cSRR decreased with decreasing temperature, showing that the values of ε were 7.62±0.36‰, 4.59±0.28‰, 3.09±0.16‰ and 1.99±0.23‰ at temperatures of 4, 15, 25 and 37°C, respectively. It shown that increasing cSRR linked to decreasing fractionations has been associated with increasing temperatures. Overall, our results revealed that temperature is a primary factor affecting Cr isotopic fractionation under microbial actions. PMID:25777078

  3. The influence of Chromium supplied by tanning and wet finishing processes on the formation of cr(vi) in leather

    OpenAIRE

    W. F. Fuck; M Gutterres; N. R. Marcílio; S. Bordingnon

    2011-01-01

    Chromium used in leather manufacturing can be oxidized from the trivalent to the hexavalent state, causing environmental concerns. In this study, the influence of Cr(III) from tanning, deacidification pH, fatliquors, chrome retanning and vegetable retanning on the formation of Cr(VI) in leather was analyzed by comparing natural and aged samples. In wet-blue leather, even after aging and in fatliquored leathers that did not suffer the aging process, the presence of Cr(VI) was always below the ...

  4. Simultaneously photocatalytic treatment of hexavalent chromium (Cr(VI)) and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation

    International Nuclear Information System (INIS)

    Highlights: • Self-rotating reactor including TiO2 NTs is applied under solar irradiation. • Simultaneously photocatalysis of Cr(VI) and EDCs is observed to be up to 95%. • Photocatalytic reactions of Cr(VI) and EDCs are favorable under acidic pH. • Charge interaction and hole scavenge between TiO2 and pollutants are synergy factors. - Abstract: In this study, simultaneous treatments, reduction of hexavalent chromium (Cr(VI)) and oxidation of endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and 17β-estradiol (E2), were investigated with a rotating photocatalytic reactor including TiO2 nanotubes formed on titanium mesh substrates under solar UV irradiation. In the laboratory tests with a rotating type I reactor, synergy effects of the simultaneous photocatalytic reduction and oxidation of inorganic (Cr(VI)) and organic (BPA) pollutants were achieved. Particularly, the concurrent photocatalytic reduction of Cr(VI) and oxidation of BPA was higher under acidic conditions. The enhanced reaction efficiency of both pollutants was attributed to a stronger charge interaction between TiO2 nanotubes (positive charge) and the anionic form of Cr(VI) (negative charge), which are prevented recombination (electron–hole pair) by the hole scavenging effect of BPA. In the extended outdoor tests with a rotating type II reactor under solar irradiation, the experiment was extended to examine the simultaneous reduction of Cr(VI) in the presence of additional EDCs, such as EE2 and E2 as well as BPA. The findings showed that synergic effect of both photocatalytic reduction and oxidation was confirmed with single-component (Cr(VI) only), two-components (Cr(VI)/BPA, Cr(VI)/EE2, and Cr(VI)/E2), and four-components (Cr(VI)/BPA/EE2/E2) under various solar irradiation conditions

  5. Simultaneously photocatalytic treatment of hexavalent chromium (Cr(VI)) and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngji [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Yonsei University, Department of Chemical and Biomolecular Engineering, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Joo, Hyunku [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Her, Namguk [Korea Army Academy at Young-Cheon, Department of Chemistry and Environmental Science, 135-1 Changhari, Kokyungmeon, Young-cheon, Gyeongbuk 770-849 (Korea, Republic of); Yoon, Yeomin [University of South Carolina, Department of Civil and Environmental Engineering, Columbia, SC 29208 (United States); Sohn, Jinsik [Kookmin University, School of Civil and Environmental Engineering, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Kim, Sungpyo [Korea University, Department of Environmental Engineering, Sejong 339-700 (Korea, Republic of); Yoon, Jaekyung, E-mail: jyoon@kier.re.kr [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2015-05-15

    Highlights: • Self-rotating reactor including TiO{sub 2} NTs is applied under solar irradiation. • Simultaneously photocatalysis of Cr(VI) and EDCs is observed to be up to 95%. • Photocatalytic reactions of Cr(VI) and EDCs are favorable under acidic pH. • Charge interaction and hole scavenge between TiO{sub 2} and pollutants are synergy factors. - Abstract: In this study, simultaneous treatments, reduction of hexavalent chromium (Cr(VI)) and oxidation of endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and 17β-estradiol (E2), were investigated with a rotating photocatalytic reactor including TiO{sub 2} nanotubes formed on titanium mesh substrates under solar UV irradiation. In the laboratory tests with a rotating type I reactor, synergy effects of the simultaneous photocatalytic reduction and oxidation of inorganic (Cr(VI)) and organic (BPA) pollutants were achieved. Particularly, the concurrent photocatalytic reduction of Cr(VI) and oxidation of BPA was higher under acidic conditions. The enhanced reaction efficiency of both pollutants was attributed to a stronger charge interaction between TiO{sub 2} nanotubes (positive charge) and the anionic form of Cr(VI) (negative charge), which are prevented recombination (electron–hole pair) by the hole scavenging effect of BPA. In the extended outdoor tests with a rotating type II reactor under solar irradiation, the experiment was extended to examine the simultaneous reduction of Cr(VI) in the presence of additional EDCs, such as EE2 and E2 as well as BPA. The findings showed that synergic effect of both photocatalytic reduction and oxidation was confirmed with single-component (Cr(VI) only), two-components (Cr(VI)/BPA, Cr(VI)/EE2, and Cr(VI)/E2), and four-components (Cr(VI)/BPA/EE2/E2) under various solar irradiation conditions.

  6. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles.

    Science.gov (United States)

    Yuan, Peng; Liu, Dong; Fan, Mingde; Yang, Dan; Zhu, Runliang; Ge, Fei; Zhu, JianXi; He, Hongping

    2010-01-15

    Diatomite-supported/unsupported magnetite nanoparticles were prepared by co-precipitation and hydrosol methods, and characterized by X-ray diffraction, nitrogen adsorption, elemental analysis, differential scanning calorimetry, transmission electron microscopy and X-ray photoelectron spectroscopy. The average sizes of the unsupported and supported magnetite nanoparticles are around 25 and 15 nm, respectively. The supported magnetite nanoparticles exist on the surface or inside the pores of diatom shells, with better dispersing and less coaggregation than the unsupported ones. The uptake of hexavalent chromium [Cr(VI)] on the synthesized magnetite nanoparticles was mainly governed by a physico-chemical process, which included an electrostatic attraction followed by a redox process in which Cr(VI) was reduced into trivalent chromium [Cr(III)]. The adsorption of Cr(VI) was highly pH-dependent and the kinetics of the adsorption followed a pseudo-second-order model. The adsorption data of diatomite-supported/unsupported magnetite fit well with the Langmuir isotherm equation. The supported magnetite showed a better adsorption capacity per unit mass of magnetite than unsupported magnetite, and was more thermally stable than their unsupported counterparts. These results indicate that the diatomite-supported/unsupported magnetite nanoparticles are readily prepared, enabling promising applications for the removal of Cr(VI) from aqueous solution. PMID:19748178

  7. Evaluation of the Exposure–Response Relationship of Lung Cancer Mortality and Occupational Exposure to Hexavalent Chromium Based on Published Epidemiological Data

    OpenAIRE

    van Wijngaarden, Edwin; Mundt, Kenneth A; Luippold, Rose S

    2004-01-01

    Some have suggested a threshold mechanism for the carcinogenicity of exposure to hexavalent chromium, Cr(VI). We evaluated the nature of the exposure–response relationship between occupational exposure to Cr(VI) and respiratory cancer based on results of two recently published epidemiological cohort studies. The combined cohort comprised a total of 2,849 workers employed at two U.S. chromate production plants between 1940 and 1974. Standardized mortality ratios (SMRs) for lung cancer in relat...

  8. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers

    Directory of Open Access Journals (Sweden)

    Ren Xiao-Bin

    2011-04-01

    Full Text Available Abstract Background Occupational exposure to chromium compounds may result in adverse health effects. This study aims to investigate whether low-level hexavalent chromium (Cr(VI exposure can cause DNA damage in electroplating workers. Methods 157 electroplating workers and 93 control subjects with no history of occupational exposure to chromium were recruited in Hangzhou, China. Chromium levels in erythrocytes were determined by graphite furnace atomic absorption spectrophotometer. DNA damage in peripheral lymphocytes was evaluated with the alkaline comet assay by three parameters: Olive tail moment, tail length and percent of DNA in the comet tail (tail DNA%. Urinary 8-OHdG levels were measured by ELISA. Results Chromium concentration in erythrocytes was about two times higher in electroplating workers (median: 4.41 μg/L than that in control subjects (1.54 μg/L, P P P P Conclusion The findings in this study indicated that there was detectable chromium exposure in electroplating workers. Low-level occupational chromium exposure induced DNA damage.

  9. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures

    International Nuclear Information System (INIS)

    Highlights: • No published or well recognized MOA for Cr(VI)-induced lung tumors exists. • MOA analysis for Cr(VI)-induced lung cancer was conducted to inform risk assessment. • Cr(VI) epidemiologic, toxicokinetic, toxicological, mechanistic data were evaluated. • Weight of evidence does not support a mutagenic MOA for Cr(VI)-induced lung cancer. • Non-linear approaches should be considered for evaluating Cr(VI) lung cancer risk. - Abstract: Inhalation of hexavalent chromium [Cr(VI)] is associated with increased lung cancer risk among workers in several industries, most notably chromate production workers exposed to high concentrations of Cr(VI) (≥100 μg/m3), for which clear exposure–response relationships and respiratory irritation and tissue damage have been reported. Data from this industry are used to assess lung cancer risk associated with environmental and current occupational exposures, occurring at concentrations that are significantly lower. There is considerable uncertainty in the low dose extrapolation of historical occupational epidemiology data to assess risk at current exposures because no published or well recognized mode of action (MOA) for Cr(VI)-induced lung tumors exists. We conducted a MOA analysis for Cr(VI)-induced lung cancer evaluating toxicokinetic and toxicological data in humans and rodents and mechanistic data to assess plausibility, dose–response, and temporal concordance for potential MOAs. Toxicokinetic data support that extracellular reduction of Cr(VI), which limits intracellular absorption of Cr(VI) and Cr(VI)-induced toxicity, can be overwhelmed at high exposure levels. In vivo genotoxicity and mutagenicity data are mostly negative and do not support a mutagenic MOA. Further, both chronic bioassays and the epidemiologic literature support that lung cancer occurs at exposures that cause tissue damage. Based on this MOA analysis, the overall weight of evidence supports a MOA involving deposition and accumulation of

  10. Airborne exposure to inhalable hexavalent chromium in welders and other occupations: Estimates from the German MEGA database.

    Science.gov (United States)

    Pesch, Beate; Kendzia, Benjamin; Hauptmann, Kristin; Van Gelder, Rainer; Stamm, Roger; Hahn, Jens-Uwe; Zschiesche, Wolfgang; Behrens, Thomas; Weiss, Tobias; Siemiatycki, Jack; Lavoué, Jerome; Jöckel, Karl-Heinz; Brüning, Thomas

    2015-07-01

    This study aimed to estimate occupational exposure to inhalable hexavalent chromium (Cr(VI)) using the exposure database MEGA. The database has been compiling Cr(VI) concentrations and ancillary data about measurements at German workplaces. We analysed 3659 personal measurements of inhalable Cr(VI) collected between 1994 and 2009. Cr(VI) was determined spectrophotometrically at 540 nm after reaction with diphenylcarbazide. We assigned the measurements to pre-defined at-risk occupations using the information provided about the workplaces. Two-thirds of the measurements were below the limit of quantification (LOQ) and multiply imputed according to the distribution above LOQ. The 75th percentile value was 5.2 μg/m(3) and the 95th percentile was 57.2 μg/m(3). We predicted the geometric mean for 2h sampling in the year 2000, and the time trend of Cr(VI) exposure in these settings with and without adjustment for the duration of measurements. The largest dataset was available for welding (N = 1898), which could be further detailed according to technique. The geometric means were above 5 μg/m(3) in the following situations: spray painting, shielded metal arc welding, and flux-cored arc welding if applied to stainless steel. The geometric means were between 1 μg/m(3) and 5 μg/m(3) for gas metal arc welding of stainless steel, cutting, hard-chromium plating, metal spraying and in the chemical chromium industry. The exposure profiles described here are useful for epidemiologic and industrial health purposes. Exposure to Cr(VI) varies not only between occupations, but also within occupations as shown for welders. In epidemiologic studies, it would be desirable to collect exposure-specific information in addition to the job title. PMID:25979374

  11. Comparative toxicogenomic analysis of oral Cr(VI) exposure effects in rat and mouse small intestinal epithelia

    International Nuclear Information System (INIS)

    Continuous exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal tumors in mice but not rats. Concentration-dependent gene expression effects were evaluated in female F344 rat duodenal and jejunal epithelia following 7 and 90 days of exposure to 0.3–520 mg/L (as sodium dichromate dihydrate, SDD) in drinking water. Whole-genome microarrays identified 3269 and 1815 duodenal, and 4557 and 1534 jejunal differentially expressed genes at 8 and 91 days, respectively, with significant overlaps between the intestinal segments. Functional annotation identified gene expression changes associated with oxidative stress, cell cycle, cell death, and immune response that were consistent with reported changes in redox status and histopathology. Comparative analysis with B6C3F1 mouse data from a similarly designed study identified 2790 differentially expressed rat orthologs in the duodenum compared to 5013 mouse orthologs at day 8, and only 1504 rat and 3484 mouse orthologs at day 91. Automated dose–response modeling resulted in similar median EC50s in the rodent duodenal and jejunal mucosae. Comparative examination of differentially expressed genes also identified divergently regulated orthologs. Comparable numbers of differentially expressed genes were observed at equivalent Cr concentrations (μg Cr/g duodenum). However, mice accumulated higher Cr levels than rats at ≥ 170 mg/L SDD, resulting in a ∼ 2-fold increase in the number of differentially expressed genes. These qualitative and quantitative differences in differential gene expression, which correlate with differences in tissue dose, likely contribute to the disparate intestinal tumor outcomes. -- Highlights: ► Cr(VI) elicits dose-dependent changes in gene expression in rat intestine. ► Cr(VI) elicits less differential gene expression in rats compared to mice. ► Cr(VI) gene expression can be phenotypically anchored to intestinal changes. ► Species

  12. Lethal and sub-lethal effects on the Asian common toad Duttaphrynus melanostictus from exposure to hexavalent chromium.

    Science.gov (United States)

    Fernando, Vindhya A K; Weerasena, Jagathpriya; Lakraj, G Pemantha; Perera, Inoka C; Dangalle, Chandima D; Handunnetti, Shiroma; Premawansa, Sunil; Wijesinghe, Mayuri R

    2016-08-01

    Chromium discharged in industrial effluents frequently occurs as an environmental pollutant, but the lethal and sub-lethal effects the heavy metal might cause in animals exposed to it have been insufficiently investigated. Selecting the amphibian Duttaphrynus melanostictus, we carried out laboratory tests to investigate the effects of short and long term exposure to hexavalent chromium (Cr(VI)) in both tadpoles and adult toads. The concentrations used were 0.002, 0.02, 0.2, 1.0 and 2.0mg/L, the first three corresponding to field levels. In vitro exposures were also carried out using toad erythrocytes and Cr(VI) concentrations of 0.0015, 0.003, 0.015, 0.03, 0.15mg/L. Mortality, growth retardation, developmental delays and structural aberrations were noted in the metal-treated tadpoles, with increasing incidence corresponding to increase in Cr(VI) level and duration of exposure. Many of the sub-lethal effects were evident with long term exposure to environmentally relevant levels of the toxicant. Changes in selected blood parameters and erythrocyte morphometry were also detected in Cr(VI) exposed toads, indicating anaemic and leucopenic conditions. In the genotoxicity study, DNA damage indicated by comet assay and increased micronuclei frequency, occurred at the low Cr(VI) concentrations tested. The multiple deleterious effects of exposure to chromium signal the need for monitoring and controlling the discharge of chromium to the environment. The dose-dependency and genotoxic effects observed in this widely distributed Asian toad indicates its suitability for monitoring heavy metal pollution in aquatic systems. PMID:27262939

  13. A plan for study of hexavalent chromium, CR(VI) in groundwater near a mapped plume, Hinkley, California, 2016

    Science.gov (United States)

    Izbicki, John A.; Groover, Krishangi

    2016-01-01

    The Pacific Gas and Electric Company (PG&E) Hinkley compressor station, in the Mojave Desert 80 miles northeast of Los Angeles, is used to compress natural gas as it is transported through a pipeline from Texas to California. Between 1952 and 1964, cooling water used at the compressor station was treated with a compound containing chromium to prevent corrosion. After cooling, the wastewater was discharged to unlined ponds, resulting in contamination of soil and groundwater in the underlying alluvial aquifer (Lahontan Regional Water Quality Control Board, 2013). Since 1964, cooling-water management practices have been used that do not contribute chromium to groundwater.In 2007, a PG&E study of the natural background concentrations of hexavalent chromium, Cr(VI), in groundwater estimated average concentrations in the Hinkley area to be 1.2 micrograms per liter (μg/L), with a 95-percent upper-confidence limit of 3.1 μg/L (CH2M-Hill, 2007). The 3.1 μg/L upper-confidence limit was adopted by the Lahontan Regional Water Quality Control Board (RWQCB) as the maximum background concentration used to map the plume extent. In response to criticism of the study’s methodology, and an increase in the mapped extent of the plume between 2008 and 2011, the Lahontan RWQCB (Lahontan Regional Water Quality Control Board, 2012) agreed that the 2007 PG&E background-concentration study be updated.The purpose of the updated background study is to evaluate the presence of natural and man-made Cr(VI) near Hinkley, Calif. The study also is to estimate natural background Cr(VI) concentrations in the aquifer upgradient and downgradient from the mapped Cr(VI) contamination plume, as well as in the plume and near its margins. The study was developed by the U.S. Geological Survey (USGS) in collaboration with a technical working group (TWG) composed of community members, the Independent Review Panel (IRP) Manager (Project Navigator, Ltd.), the Lahontan RWQCB, PG&E, and consultants for PG&E.&E.

  14. Macromolecule oxidation and DNA repair in mussel (Mytilus edulis L.) gill following exposure to Cd and Cr(VI)

    International Nuclear Information System (INIS)

    The oxidation of DNA and lipid was analysed in the marine mussel (Mytilus edulis) in response to exposure (10 μg/l and 200 μg/l) to cadmium (Cd) and chromium [Cr(VI)]. Concentration dependent uptake of both metals into mussel tissues was established and levels of gill ATP were not depleted at these exposure levels. DNA strand breakage in gill cells (analysed by the comet assay) was elevated by both metals, however, DNA oxidation [measured by DNA strand breakage induced by the DNA repair enzyme formamidopyrimidine glycosylase (FPG)] was not elevated. This was despite a statistically significant increase in both malondialdehyde and 4-hydroxynonenal - indicative of lipid peroxidation - following treatment with Cd. In contrast, both frank DNA stand breaks and FPG-induced DNA strand breaks (indicative of DNA oxidation) were increased following injection of mussels with sodium dichromate (10.4 μg Cr(VI)/mussel). The metals also showed differential inhibitory potential towards DNA repair enzyme activity with Cd exhibiting inhibition of DNA cutting activity towards an oligonucleotide containing 8-oxo-7,8-dihydro-2'-deoxyguanosine and Cr(VI) showing inhibition of such activity towards an oligonucleotide containing ethenoadenosine, both at 200 μg/l. The metals thus show DNA damage activity in mussel gill with distinct mechanisms involving both direct and indirect (oxidative) DNA damage, as well as impairing different DNA repair capacities. A combination of these activities can contribute to adverse effects in these organisms

  15. Macromolecule oxidation and DNA repair in mussel (Mytilus edulis L.) gill following exposure to Cd and Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Emmanouil, C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sheehan, T.M.T. [Regional Toxicology Laboratory, City Hospital, Dudley Road, Birmingham B18 7QH (United Kingdom); Chipman, J.K. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)]. E-mail: J.K.Chipman@bham.ac.uk

    2007-04-20

    The oxidation of DNA and lipid was analysed in the marine mussel (Mytilus edulis) in response to exposure (10 {mu}g/l and 200 {mu}g/l) to cadmium (Cd) and chromium [Cr(VI)]. Concentration dependent uptake of both metals into mussel tissues was established and levels of gill ATP were not depleted at these exposure levels. DNA strand breakage in gill cells (analysed by the comet assay) was elevated by both metals, however, DNA oxidation [measured by DNA strand breakage induced by the DNA repair enzyme formamidopyrimidine glycosylase (FPG)] was not elevated. This was despite a statistically significant increase in both malondialdehyde and 4-hydroxynonenal - indicative of lipid peroxidation - following treatment with Cd. In contrast, both frank DNA stand breaks and FPG-induced DNA strand breaks (indicative of DNA oxidation) were increased following injection of mussels with sodium dichromate (10.4 {mu}g Cr(VI)/mussel). The metals also showed differential inhibitory potential towards DNA repair enzyme activity with Cd exhibiting inhibition of DNA cutting activity towards an oligonucleotide containing 8-oxo-7,8-dihydro-2'-deoxyguanosine and Cr(VI) showing inhibition of such activity towards an oligonucleotide containing ethenoadenosine, both at 200 {mu}g/l. The metals thus show DNA damage activity in mussel gill with distinct mechanisms involving both direct and indirect (oxidative) DNA damage, as well as impairing different DNA repair capacities. A combination of these activities can contribute to adverse effects in these organisms.

  16. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Brent C. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); Constant, Stephanie L. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Patierno, Steven R. [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); GW Cancer Institute, The George Washington University, Washington, DC 20037 (United States); Jurjus, Rosalyn A. [Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037 (United States); Ceryak, Susan M., E-mail: phmsmc@gwumc.edu [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States)

    2012-02-15

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr(VI

  17. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    International Nuclear Information System (INIS)

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr(VI

  18. Accumulation and effects of Cr(VI) in Japanese medaka (Oryzias latipes) during chronic dissolved and dietary exposures.

    Science.gov (United States)

    Chen, Hongxing; Mu, Lei; Cao, Jinling; Mu, Jingli; Klerks, Paul L; Luo, Yongju; Guo, Zhongbao; Xie, Lingtian

    2016-07-01

    Chromium (Cr) is an essential metal and a nutritional supplement for both human and agricultural uses. It is also a pollutant from a variety of industrial uses. These uses can lead to elevated Cr levels in aquatic environments, where it can enter and affect aquatic organisms. Its accumulation and subsequent effects in fish have received relatively little attention, especially for chronic exposure. In the present study, Japanese medaka were chronically exposed to dissolved or dietary Cr(VI) for 3 months. Cr accumulation in liver, gills, intestine, and brain was evaluated. Effects on the antioxidant system, nervous system (acetylcholinesterase, AChE), digestive system (α-glucosidase, α-Glu), and tissue histology (liver and gills) were also assessed. Cr accumulation was observed in the intestine and liver of fish exposed to Cr-contaminated brine shrimp. However, chronic dissolved Cr exposure led to significant Cr accumulation in all organs tested. Analysis of the subcellular distribution of Cr in medaka livers revealed that 37% of the Cr was present in the heat stable protein fraction. The dissolved Cr exposure had pronounced effects on the antioxidant system in the liver, with an elevated ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and decreases in GSH and glutathione S-transferase (GST). The α-Glu activity in the intestine was significantly inhibited. In addition, Cr exposure caused histopathological alterations in the gills and liver. In general, the effects of dietary Cr were relatively minor, possible due to the much lower accumulation in the fish. Our results imply that Japanese medaka accumulate Cr mainly via uptake of dissolved Cr(VI). PMID:27162070

  19. Estimating historical occupational exposure to airborne hexavalent chromium in a chromate production plant: 1940--1972.

    Science.gov (United States)

    Proctor, D M; Panko, J P; Liebig, E W; Paustenbach, D J

    2004-11-01

    This article presents a retrospective exposure assessment for 493 workers who were occupationally exposed to airborne hexavalent chromium, Cr(VI), at a Painesville, Ohio, chromate production plant from 1940-1972. Exposure estimates were reconstructed using a job-exposure matrix approach that related job titles with area monitoring data from 21 industrial hygiene surveys conducted from 1943 to 1971. No personal monitoring data were collected. Specifically, airborne Cr(VI) concentration profiles for 22 areas of the plant, termed job-exposure group (JEG) areas, were constructed for three distinct time periods (1940-1949, 1950-1964, and 1965-1972), with cut points based on known major plant and process changes. Average airborne Cr(VI) concentrations were the highest for the bridge crane operators (5.5 mg/m3) prior to 1965, although only four cohort members held this job title. Airborne concentrations for the rest of the production areas of the plant ranged from 1.9 mg/m3 for packers in the 1940s to 0.012 mg/m3 for ore mill operators after 1964. For nearly all JEG areas, exposures decreased over time, particularly after 1964. For example, average airborne concentrations in production areas of the plant decreased from 0.72 mg/m3 in the 1940s to 0.27 mg/m3 from 1950 to 1964, and the average was 0.039 mg/m3 after 1964. Former workers were interviewed to determine activity patterns in the plant by job title. This information was combined with Cr(VI) monitoring data to calculate cumulative occupational exposure for each worker. Cumulative exposures ranged from 0.003 to 23 (mg/m3) x years. The highest monthly 8-hour average exposure concentration for each worker ranged from 0.003 to 4.1 mg/m3. These exposure estimates have been combined with mortality data for this cohort to assess the lung cancer risk associated with inhaled Cr(VI), and a positive dose-response relationship was observed for increases in lung cancer mortality with measures of cumulative exposure and highest

  20. Determination of Hexavalent Chromium (Cr(VI)) Concentrations via Ion Chromatography and UV-Vis Spectrophotometry in Samples Collected from Nacogdoches Wastewater Treatment Plant, East Texas (USA)

    OpenAIRE

    Onchoke, Kefa K.; Sasu, Salomey A.

    2016-01-01

    The concentration of hexavalent chromium (Cr(VI)), a toxic environmental pollutant and carcinogen, was determined in samples collected from Nacogdoches Wastewater Treatment Plant (NWWTP) using ion chromatography and UV-visible spectrophotometry (IC, UV-Vis). On reaction with 1,5-diphenylcarbazide (DPC) Cr+6 forms a 1,5-diphenylcarbazide-Cr(VI) complex, which is then analyzed at 530 nm and 540 nm, respectively. Via ion chromatography Cr(VI) concentrations were in the range of 0.00190±0.0020 an...

  1. Accurate quantification of total chromium and its speciation form Cr(VI) in water by ICP-DRC-IDMS and HPLC/ICP-DRC-IDMS.

    Science.gov (United States)

    Markiewicz, Barbara; Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-05-15

    Two analytical procedures have been developed for the determination of total chromium (TCr) and its highly toxic species, i.e. Cr(VI) in water samples using the following methods: inductively coupled plasma dynamic reaction cell isotope dilution mass spectrometry (ICP-DRC-IDMS) and high performance liquid chromatography inductively coupled plasma dynamic reaction cell isotope dilution mass spectrometry (HPLC/ICP-DRC-IDMS). Spectral interferences, predominantly occurring in chromium determination, were removed using a dynamic reaction cell (DRC). The presented procedures facilitate the quantification of trace amounts - below 1 µg L(-1) of TCr and individual Cr species - in various water matrices including drinking water and still bottled water with different mineral composition. Special attention has been paid to the adequate preparation of isotopically enriched (53)Cr(VI) standard solution in order to avoid artifacts in chromium speciation. Both procedures were fully validated as well as establishing the traceability and estimation of the uncertainty of measurement were carried out. Application of all of the above mentioned elements and of the isotope dilution technique, which provides the highest quality of metrological traceability, allowed to obtain reliable and high quality results of chromium determination in water samples. Additionally, the comparison of two methods: HPLC/ICP-DRC-MS and HPLC/ICP-DRC-IDMS for Cr(VI) determination, was submitted basing on the validation parameters. As a result, the lower values for these parameters were obtained using the second method. PMID:26992546

  2. Study of the effects of chromium exposure on sulfur metabolic pathways in the model plant Medicago truncatula

    Science.gov (United States)

    Chromium is a common contaminant that is more toxic as hexavalent species [Cr(VI)] than trivalent species [Cr(III)]. Some plants absorb chromium and reduce Cr(VI) to Cr(III), yet the uptake and reduction mechanisms are still unknown. Sulfur is a constituent of two essential amino acids and plays an ...

  3. Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons.

    Science.gov (United States)

    Ghosh, Pranab Kumar

    2009-11-15

    Fresh activated carbon (AC) and waste activated carbon (WAC) were pretreated by heating with mineral acids (sulfuric acid and nitric acid) at high temperature to prepare several grades of adsorbents to evaluate their performance on Cr(VI) removal from aqueous phase. Effects of temperature, agitation speed and pH were tested, and optimum conditions were evaluated. Kinetic study was performed under optimum conditions with several grades of modified adsorbents to know the rates of adsorption. Batch adsorption equilibrium data followed both, Freuindlich and Langmuir isotherms. Maximum adsorption capacity (q(max)) of the selected adsorbents treated with sulfuric acid (MWAC 1) and nitric acid (MWAC 2), calculated from Langmuir isotherm are 7.485 and 10.929 mg/g, respectively. Nitric acid treated adsorbent (MWAC 2) was used for column study to determine the constants of bed depth service time (BDST) model for adsorption column design. PMID:19553008

  4. Application of chromium stable isotopes to the evaluation of Cr(VI) contamination in groundwater and rock leachates from central Euboea and the Assopos basin (Greece)

    DEFF Research Database (Denmark)

    Economou-Eliopoulos, Maria; Frei, Robert; Atsarou, Cathy

    2014-01-01

    Major and trace elements (a) in groundwater, ultramafic rocks from natural outcrops and soil samples from cultivated sites of Central Euboea and Assopos basin, and (b) in experimentally produced laboratory water leachates of rocks and soils were investigated by SEM/EDS, XRD and ICP/MS. In addition......, stable chromium isotopes (expressed as δ53Cr values) were measured in groundwater and leachates in order to identify potential sources for Cr-contamination. The higher Cr(VI) concentrations in soil leachates compared to those in the rock pulp leachates potentially can be explained by the presence...... signatures. The variation in δ53Cr values (0.84 to 1.98‰ in groundwater from Euboea, and from 0.98 to 1.03‰ in samples from the Assopos basin) imply initial oxidative mobilization of Cr(VI) from the ultramafic host rocks, followed by reductive processes that lead to immobilization of portions of Cr...

  5. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington.

    Science.gov (United States)

    VanEngelen, Michael R; Peyton, Brent M; Mormile, Melanie R; Pinkart, Holly C

    2008-11-01

    Hexavalent chromium is one of the most widely distributed environmental contaminants. Given the carcinogenic and mutagenic consequences of Cr(VI) exposure, the release of Cr(VI) into the environment has long been a major concern. While many reports of microbial Cr(VI) reduction are in circulation, very few have demonstrated Cr(VI) reduction under alkaline conditions. Since Cr(VI) exhibits higher mobility in alkaline soils relative to pH neutral soils, and since Cr contamination of alkaline soils is associated with a number of industrial activities, microbial Cr(VI) reduction under alkaline conditions requires attention.Soda lakes are the most stable alkaline environments on earth, and contain a wide diversity of alkaliphilic organisms. In this study, a bacterial isolate belonging to the Halomonas genus was obtained from Soap Lake, a chemically stratified alkaline lake located in central Washington State. The ability of this isolate to reduce Cr(VI) and Fe(III) was assessed under alkaline (pH = 9), anoxic, non-growth conditions with acetate as an electron donor. Metal reduction rates were quantified using Monod kinetics. In addition, Cr(VI) reduction experiments were carried out in the presence of Fe(III) to evaluate the possible enhancement of Cr(VI) reduction rates through electron shuttling mechanisms. While Fe(III) reduction rates were slow compared to previously reported rates, Cr(VI) reduction rates fell within range of previously reported rates. PMID:18401687

  6. Chromium

    Science.gov (United States)

    ... health risks of too much chromium? Chromium and medication interactions Supplemental sources of chromium Chromium and Healthful Diets References Disclaimer What foods provide chromium? Chromium is widely distributed in the ...

  7. Chromium Exposure and Hygienic Behaviors in Printing Workers in Southern Thailand

    OpenAIRE

    Somsiri Decharat

    2015-01-01

    Objectives. The main objective of this study was to assess the chromium exposure levels in printing workers. The study evaluated the airborne, serum, and urinary chromium levels and determines any correlation between level of chromium in specimen and airborne chromium levels. Material and Methods. A cross-sectional study was conducted with 75 exposed and 75 matched nonexposed subjects. Air breathing zone was measured by furnace atomic absorption spectrophotometer. Serum and urine samples were...

  8. Chromium oxidation state mapping in human cells

    Science.gov (United States)

    Ortega, R.; Fayard, B.; Salomé, M.; Devès, G.; Susini, J.

    2003-03-01

    The widespread use of chromium in industrial applications such as chemical production of pigments, refractory brick production, tanning, metallurgy, electroplating, and combustion of fuels has lead to human occupational exposure and to its increased introduction into the environment. Hexavalent chromium compounds are established carcinogens but their mechanism of cell transformation is not known. Up to now, no microanalytical technique was sensitive enough to allow the observation of chromium distribution, and oxidation state identification, within isolated cells at carcinogenic concentrations. In this experiment, we used successfully the ID-21 X-ray microscope to map Cr(VI) and total Cr distributions in cells exposed in vitro to soluble, and insoluble, Cr(VI) compounds. Exposure to soluble compounds, weak carcinogens, resulted in a homogeneous intracellular distribution of Cr, confirming by in situ measurement that Cr is present in the cell nucleus. Cr(VI) was never detected in cells which suggests a mechanism of rapid intracellular reducticn. On the other hand, exposure to insoluble compounds, strong carcinogens, also resulted in a homogeneous distribution of reduced forms of Cr in cells, and their nucleus. However, in this case, Cr(VI)-rich structures were observed into the cells suggesting that carcinogenicity is enhanced when oxidation reactions due to Cr(VI) chronic exposure are associated to Cr-DNA alterations.

  9. Cr(VI) Generation and Stability in Drinking Water

    OpenAIRE

    Chittaladakorn, Kathita

    2014-01-01

    The current US Environmental Protection Agency (USEPA) maximum contaminant level (MCL) for total chromium of 100 ppb is under revision to consider a specific level for Cr(VI), which has a proposed MCL of 10 ppb in California. Cr(VI) is a suspected carcinogen, and interconverts with the other most commonly found chromium species, Cr(III). To regulate and further understand the behavior of Cr(VI) in water systems, appropriate sample preservation methods are essential for accurate measurements. ...

  10. Selective Reduction of Cr(VI in Chromium, Copper and Arsenic (CCA Mixed Waste Streams Using UV/TiO2 Photocatalysis

    Directory of Open Access Journals (Sweden)

    Shan Zheng

    2015-02-01

    Full Text Available The highly toxic Cr(VI is a critical component in the Chromated Copper Arsenate (CCA formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI to less toxic Cr(III in the presence of arsenate, As(V, and copper, Cu(II. The rapid conversion of Cr(VI to Cr(III during UV/TiO2 photocatalysis occurs over a range of concentrations, solution pH and at different Cr:As:Cu ratios. The reduction follows pseudo-first order kinetics and increases with decreasing solution pH. Saturation of the reaction solution with argon during UV/TiO2 photocatalysis had no significant effect on the Cr(VI reduction demonstrating the reduction of Cr(VI is independent of dissolved oxygen. Reduction of Cu(II and As(V does not occur under the photocatalytic conditions employed herein and the presence of these two in the tertiary mixtures had a minimal effect on Cr(VI reduction. The Cr(VI reduction was however, significantly enhanced by the addition of formic acid, which can act as a hole scavenger and enhance the reduction processes initiated by the conduction band electron. Our results demonstrate UV/TiO2 photocatalysis effectively reduces Cr(VI in mixed waste streams under a variety of conditions.

  11. Selective reduction of Cr(VI) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis.

    Science.gov (United States)

    Zheng, Shan; Jiang, Wenjun; Rashid, Mamun; Cai, Yong; Dionysiou, Dionysios D; O'Shea, Kevin E

    2015-01-01

    The highly toxic Cr(VI) is a critical component in the Chromated Copper Arsenate (CCA) formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI) to less toxic Cr(III) in the presence of arsenate, As(V), and copper, Cu(II). The rapid conversion of Cr(VI) to Cr(III) during UV/TiO2 photocatalysis occurs over a range of concentrations, solution pH and at different Cr:As:Cu ratios. The reduction follows pseudo-first order kinetics and increases with decreasing solution pH. Saturation of the reaction solution with argon during UV/TiO2 photocatalysis had no significant effect on the Cr(VI) reduction demonstrating the reduction of Cr(VI) is independent of dissolved oxygen. Reduction of Cu(II) and As(V) does not occur under the photocatalytic conditions employed herein and the presence of these two in the tertiary mixtures had a minimal effect on Cr(VI) reduction. The Cr(VI) reduction was however, significantly enhanced by the addition of formic acid, which can act as a hole scavenger and enhance the reduction processes initiated by the conduction band electron. Our results demonstrate UV/TiO2 photocatalysis effectively reduces Cr(VI) in mixed waste streams under a variety of conditions. PMID:25654531

  12. Cr(VI) sorption/desorption on untreated and mussel-shell-treated soil materials: fractionation and effects of pH and chromium concentration

    Science.gov (United States)

    Otero, M.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J. C.; Arias-Estévez, M.; Fernández-Sanjurjo, M. J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.

    2015-04-01

    We used batch-type experiments to study Cr(VI) sorption/desorption on granitic material, forest soil, pyritic material, mussel shell, and on forest soil and granitic material amended with 12 t ha-1 (1.2 kg m -2) shell, considering the effects of varying Cr(VI) concentration and pH. Sequential extractions were carried out to fractionate adsorbed Cr(VI) and to determine the stability of Cr(VI) retention. The pyritic material had the highest Cr(VI) retention capacity, whereas the granitic material showed the lowest retention potential. When high Cr concentrations were added, some saturation of the adsorbent surfaces became apparent, but Cr release remained low. The highest Cr retention was achieved at a very acid pH value, with release progressively increasing as a function of increasing pH. The amendment with 12 t ha-1 mussel shell did not cause marked changes in Cr(VI) retention. Sorption data were satisfactory adjusted to the Freundlich model. Regarding Cr(VI) fractionation, the soluble fraction (weakly bound) was dominant in mussel shell and in the unamended and amended granitic material, whereas more stable fractions dominated in the pyritic material (residual fraction) and in the forest soil (oxidizable fraction). In conclusion, the pyritic material presented the highest Cr(VI) retention capacity, while the retention was low and weak on the granitic material; mussel shell was not characterized by a marked Cr(VI) retention potential, and it did not cause remarkable increase in Cr(VI) retention when used to amend the granitic material or the forest soil.

  13. Lactational exposure to hexavalent chromium delays puberty by impairing ovarian development, steroidogenesis and pituitary hormone synthesis in developing Wistar rats

    International Nuclear Information System (INIS)

    Hexavalent chromium (Cr-VI) is used in a wide range of industries. Cr-VI from chromate industries and atmospheric emissions contribute to the Cr contamination in the environment. Cr is a reproductive metal toxicant that can traverse the placental barrier and cause a wide range of fetal effects including ovotoxicity. Therefore, the goal of this study was to investigate the basic mechanisms involved in Cr(VI)-induced ovotoxicity, and the protective role of vitamin C on ovarian follicular development and function in Cr(VI)-induced reproductive toxicity using both in vivo and in vitro approaches. Lactating rats received potassium dichromate (200 mg/L) with or without vitamin C (500 mg/L), through drinking water from postpartum days 1-21. During postnatal days (PND) 1-21 the pups received Cr(VI) via the mother's milk. Pups from both control and treatment groups were continued on regular diet and water from PND-21 onwards, and euthanized on PND-21, -45 and -65. Cr(VI) decreased steroidogenesis, GH and PRL, increased FSH and did not alter LH. Cr(VI) delayed puberty, decreased follicle number, and extended estrous cycle. Spontaneously immortalized rat granulosa cells were treated with 12.5 μM (IC50) potassium dichromate for 12 and 24 h, with or without vitamin C pre-treatment. Cr(VI) decreased the mRNA expressions of StAR, SF-1, 17β-HSD-1, 17β-HSD-2, FSHR, LHR, ERα and ERβ. Vitamin C pre-treatment protected ovary and granulosa cells from the deleterious effects of Cr(VI) toxicity, both in vivo and in vitro. Therefore, Cr(VI) toxicity could be a potential risk to the reproductive system in developing females, and vitamin C plays a protective role against Cr(VI)-induced ovotoxicity

  14. Cr(VI reduction by cell-free extract of thermophillic Bacillus fusiformis NTR9

    Directory of Open Access Journals (Sweden)

    Pranee Pattanapipitpaisal

    2013-08-01

    Full Text Available Residual chromium compounds in discharged effluents is a serious problem, due to hexavalent chromium or chromate[Cr(VI] being extremely toxic and showing mutagenic and carcinogenic effects on biological systems. The bacterial enzymaticCr(VI reduction can occur and this could be an effective method of detoxifying Cr(VI polluted effluent. The present studycharacterized Cr(VI reductase activity of cell-free extracts (CFE of thermophilic chromate-reducing bacteria, Bacillusfusiformis NTR9. Results showed that the optimum temperature and pH for Cr(VI reductase activity of CFE was 80°C andpH 7, respectively. The reductase activity remained at 60.34% and 26.44% after 30 minutes of exposure to 70 and 90°C,respectively, suggesting a heat stable enzyme. Moreover, the enzyme was resistant under acidic and neutral condition but itsstability was decreased under alkaline condition. The Cr(VI reductase activity of CFE was enhanced when exposed in Cu2+and Fe3+ by 188.19% and 180.38%, respectively. The Cr(VI reductase activity could be reduced to 72.19% and 8.95% in thepresence of Mn2+ and Ag+, respectively. Mg2+, Zn2+, As3+ and electron acceptors like sulfate and nitrate had no affect on Cr(VIreductase activity. The external electron donors (glucose, glycerol, citrate, malate, succinate, and acetate, but not NADHwere essential to improve the chromate reductase activity of NTR9 strain. The chromate reductase was mainly associatedwith the soluble fraction in the cytoplasm of the bacterial cell. The molecular weight of the enzyme was 20 KDa. The resultsshowed that Cr(VI reductase could be a good candidate for detoxification of Cr(VI in industrial effluents.

  15. Application of immobilized nanotubular TiO2 electrode for photocatalytic hydrogen evolution: Reduction of hexavalent chromium (Cr(VI)) in water

    International Nuclear Information System (INIS)

    In this study, immobilized TiO2 electrode is applied to reduce toxic Cr(VI) to non-toxic Cr(III) in aqueous solution under UV irradiation. To overcome the limitation of powder TiO2, a novel technique of immobilization based on anodization was applied and investigated under various experimental conditions. The anodization was performed at 20 V-5 deg. C for 45 min with 0.5% hydrofluoric acid, and then the anodized samples were annealed under oxygen stream in the range 450-850 deg. C. Based on the results of the experiments, the photocatalytic Cr(VI) reduction was favorable in acidic conditions, with ∼98% of the Cr(VI) being reduced within 2 h at pH 3. Among the samples tested under same anodizing condition, the nanotubular TiO2 annealed at 450 and 550 deg. C showed highest reduction efficiencies of Cr(VI). In addition, the surface characterizations (zeta potential, XRD, and SEM) of these samples proved that the Cr(VI) reduction efficiency was higher under acidic conditions and at a lower annealing temperature. From this research, it was concluded that the anodized TiO2 has the potential to be a useful technology for environmental remediation as well as photocatalytic hydrogen production from water

  16. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Deng Lin [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Wang Hongli [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China)]. E-mail: nsdengwhu@163.com

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps ({lambda}=365nm, 250W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0mgL{sup -1} and initial algae concentration ranged from ABS{sub algae} (the absorbency of algae)=0.025 to ABS{sub algae}=0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250W metal halide lamps was V{sub 0}=kC{sub 0}{sup 0.1718}A{sub algae}{sup 0.5235} (C{sub 0} was initial concentration of Cr(VI); A{sub algae} was initial concentration of algae) under the condition of pH 4.

  17. Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway

    OpenAIRE

    Wang, Xin; Mandal, Ardhendu K.; Saito, Hiroshi; Pulliam, Joseph F.; Lee, Eun Y.; Ke, Zun-Ji; Lu, Jian; Ding, Songze; Li, Li; Shelton, Brent J.; Tucker, Thomas; Evers, B. Mark; Zhang, Zhuo; Shi, Xianglin

    2012-01-01

    Exposure to carcinogenic metals, such as trivalent arsenic [As(III)] and hexavalent chromium [Cr(VI)], through drinking water is a major global public health problem and is associated with various cancers. However, the mechanism of their carcinogenicity remains unclear. In this study, we used azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse colitis-associated colorectal cancer model to investigate their tumorigenesis. Our results demonstrate that exposure to As(III) or Cr(VI), alon...

  18. Hexavalent chromium induces chromosome instability in human urothelial cells.

    Science.gov (United States)

    Wise, Sandra S; Holmes, Amie L; Liou, Louis; Adam, Rosalyn M; Wise, John Pierce

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. PMID:26908176

  19. Can iron oxides remove Cr(VI) from drinking water at sub-ppb levels?

    Science.gov (United States)

    Kaprara, Efthymia; Simeonidis, Konstantinos; Samaras, Petros; Zouboulis, Anastasios; Mitrakas, Manassis

    2013-04-01

    Hexavalent chromium [Cr(VI)] has long been recognized as a potential carcinogen via inhalation, in contrast to trivalent chromium [Cr(III)] which is 100 times less toxic and also a necessary nutrient, essential to human glucidic metabolism. Nowadays there is an increasing concern that Cr(VI) is also carcinogenic by the oral route of exposure, while an increased number of publications indicate that Cr(VI) is a common natural pollutant. Hexavalent chromium formation is attributed to natural oxidation of Cr(III) in ultramafic derived soils and ophiolithic rocks. To verify this theory, drinking water samples were collected from targeted areas of Greece e.g. areas in which the geological background is predominated by ultramafic minerals and the water supply depends mainly on groundwater resources. Valuable guide for the samples collection was the geological map of Greece and emphasis was given to regions where the natural occurrence of Cr(VI) is thought to be more possible. A wide range of Cr concentrations (2-100 μg/L) were detected in the areas studied, with most of them ranging below the current limit of 50 μg/L, and the Cr(VI) concentration being more than 90% of the total. Since the Cr(VI) affects significant part of population worldwide, a debate was established concerning the enforcement of stringent regulation, which also demands the drinking water treatment processes re-evaluation in view of Cr(VI) removal at sub-ppb level. In this regard, adsorption has evolved as the front line of defense for chromium removal. The motivation of this work was to investigate the efficiency of iron oxides for the adsorption of Cr(VI) from drinking water and its removal at sub-ppb levels. The adsorbents examined included iron oxy-hydroxides and magnetite prepared using common low cost iron salts. Their effectiveness as Cr(VI) adsorbents was evaluated through the decrease of a Cr(VI) concentration of 100μg/L prepared in NSF water at pH 7. Preliminary batch experiments did not

  20. Chromium in Drinking Water: Association with Biomarkers of Exposure and Effect

    OpenAIRE

    Eleni Sazakli; Villanueva, Cristina M.; Manolis Kogevinas; Kyriakos Maltezis; Athanasia Mouzaki; Michalis Leotsinidis

    2014-01-01

    An epidemiological cross-sectional study was conducted in Greece to investigate health outcomes associated with long-term exposure to chromium via drinking water. The study population consisted of 304 participants. Socio-demographics, lifestyle, drinking water intake, dietary habits, occupational and medical history data were recorded through a personal interview. Physical examination and a motor test were carried out on the individuals. Total chromium concentrations were measured in blood a...

  1. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John F. Stolz

    2011-06-15

    proteins (Gmet_2478 and Gmet_1641) were up-regulated with exposure to Cr(VI). A nine-heme cytochrome C was purified that could reduce nitrite and could be oxidized by Cr(VI). For D. desulfuricans, we found that confirmed that Cr(VI) induced a prolonged lag period when Cr(VI) was reduced. Over three hundred proteins were unequivocally identified by LC/MS-MS and a significant number of down-regulated proteins for which the levels were changed >2 fold compared to control. Sulfite reductase levels were similar, however, nitrate and nitrite reductase were down-regulated. The supernatant of spent cultures was found to contain a filterable, heat stable compound that rapidly reduced Cr(VI). In addition, desulfoviridin was purified from nitrate grown cells and shown to have nitrite reductase activity that was inhibited by Cr(VI). For S. barnesii, periplasmic nitrate reductase (Nap), nitrite reductase (Nrf), and the metalloid reductase (Rar) were purified and characterized. The supernatant of spent cultures was also found to contain a filterable, heat stable compound that rapidly reduced Cr(VI) but that Rar also reduced Cr(VI). Our results from specific aims 1 through 3 indicate that for G. metallireducens, Cr(VI) inhibits nitrate respiration as it oxidizes cytochromes involved in nitrate respiration. Iron reduction is apparently not affected and the inhibitory affects of Cr(VI) may be attenuated by the addition of sufficient Fe(III) to generate Fe(II) that abiotically reduces the chromium. For S. barnesii, although the enzyme assays indicate that the components of the respiratory pathway for nitrate (e.g. Nap and Nrf) are inhibited by chromate, the organism has a mechanism to prevent this from actually occurring. Our current hypothesis is that the non-specific metalloid reductase (Rar) is providing resistance by reducing the Cr(VI). The strategy here would be to enhance its growth and metabolism in the natural setting. Lactate is a suitable electron donor for S. barnesii but other

  2. Characterisation of exposure to total and hexavalent chromium of welders using biological monitoring.

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Heussen, G.A.; Peer, P.G.M.; Verbist, K.; Anzion, R.; Willems, J.

    2008-01-01

    Inhalation exposure to total and hexavalent chromium (TCr and HCr) was assessed by personal air sampling and biological monitoring in 53 welders and 20 references. Median inhalation exposure levels of TCr were 1.3, 6.0, and 5.4 microg/m(3) for welders of mild steel (MS, <5% alloys), high alloy st

  3. DNA damaging bystander signalling from stem cells, cancer cells and fibroblasts after Cr(VI) exposure and its dependence on telomerase

    International Nuclear Information System (INIS)

    The bystander effect is a feature of low dose radiation exposure and is characterized by a signaling process from irradiated cells to non irradiated cells, which causes DNA and chromosome damage in these 'nearest neighbour' cells. Here we show that a low and short dose of Cr(VI) can induce stem cells, cancer cells and fibroblasts to chronically secrete bystander signals, which cause DNA damage in neighboring cells. The Cr(VI) induced bystander signaling depended on the telomerase status of either cell. Telomerase negative fibroblasts were able to receive DNA damaging signals from telomerase positive or negative fibroblasts or telomerase positive cancer cells. However telomerase positive fibroblasts were resistant to signals from Cr(VI) exposed telomerase positive fibroblasts or cancer cells. Human embryonic stem cells, with positive Oct4 staining as a marker of pluripotency, showed no significant increase of DNA damage from adjacent Cr and mitomycin C exposed fibroblasts whilst those cells that were negatively stained did. This selectivity of DNA damaging bystander signaling could be an important consideration in developing therapies against cancer and in the safety and effectiveness of tissue engineering and transplantation using stem cells.

  4. DNA damaging bystander signalling from stem cells, cancer cells and fibroblasts after Cr(VI) exposure and its dependence on telomerase

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Nicola [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom); Baird, Duncan M. [Department of Pathology School of Medicine, Cardiff University, Henry Wellcome Building for Biomedical Research in Wales, Heath Park, Cardiff, CF14 4XN (United Kingdom); Phillips, Ryan [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom); Crompton, Lucy A.; Caldwell, Maeve A. [Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, BS1 3NY (United Kingdom); Rubio, Miguel A. [Center of Regenerative Medicine in Barcelona, CMRB Dr. Aiguader, 88, 7th Floor, 08003 Barcelona (Spain); Newson, Roger [Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin 2 (Ireland); Lyng, Fiona [National Heart and Lung Institute, Imperial College London, London, SW7 2AZ (United Kingdom); Case, C. Patrick, E-mail: c.p.case@bristol.ac.uk [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom)

    2010-01-05

    The bystander effect is a feature of low dose radiation exposure and is characterized by a signaling process from irradiated cells to non irradiated cells, which causes DNA and chromosome damage in these 'nearest neighbour' cells. Here we show that a low and short dose of Cr(VI) can induce stem cells, cancer cells and fibroblasts to chronically secrete bystander signals, which cause DNA damage in neighboring cells. The Cr(VI) induced bystander signaling depended on the telomerase status of either cell. Telomerase negative fibroblasts were able to receive DNA damaging signals from telomerase positive or negative fibroblasts or telomerase positive cancer cells. However telomerase positive fibroblasts were resistant to signals from Cr(VI) exposed telomerase positive fibroblasts or cancer cells. Human embryonic stem cells, with positive Oct4 staining as a marker of pluripotency, showed no significant increase of DNA damage from adjacent Cr and mitomycin C exposed fibroblasts whilst those cells that were negatively stained did. This selectivity of DNA damaging bystander signaling could be an important consideration in developing therapies against cancer and in the safety and effectiveness of tissue engineering and transplantation using stem cells.

  5. Microbial reduction of hexavalent Chromium under vadose zone conditions

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, D S.(unknown); Brockman, Fred J.(BATTELLE (PACIFIC NW LAB)); Bowman, Robert (VISITORS); Kieft, Thomas L.(BATTELLE (PACIFIC NW LAB))

    2003-01-01

    Hexavalent chromium[Cr(VI)] is a common constituent of wastes associated with nuclear reactor operation and fuel processing. Improper disposal at facilities in arid and semi-arid regions has led to contamination of underlying vadose zones and aquifers. The objectives of this study were to assess the potential for immobilizing Cr(VI) contamination using a native microbial community to reduce soluble Cr(VI) to insoluble Cr(III) under conditions similar to those found in the vadose zone, and to evaluate the potential for enhancing biological reduction of Cr(VI) through the addition of nutrients. Batch microcosm and unsaturated flow column experiments were performed. Native microbial communities in subsurface sediments with no prior Cr(VI) exposure were shown to be capable of Cr(VI) reduction. In both the batch and column experiments, Cr(VI) reduction and loss from the aqueous phase were enhanced by adding high levels of both nitrate (NO3-) and organic carbon (molasses). Nutrient amendments resulted in up to 87% Cr(VI) reduction in unsaturated batch experiments. Molasses and nitrate additions to 15-cm length unsaturated flow columns receiving 65 mg L-1 Cr(VI) resulted in microbially mediated reduction and immobilization of 10% of the Cr during a 45-day experiment. All of the immobilized Cr was in the form of Cr (III), as shown by XANES analysis. This suggests that biostimulation of microbial Cr(VI) reduction in vadose zones by nutrient amendment is a promising strategy; and that immobilization of close to 100% of Cr contamination could be achieved in a thick vadose zone with longer flow paths and longer contact times than in this experiment.

  6. Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers

    International Nuclear Information System (INIS)

    Chromium speciation has attracted attention because of the different toxicity of Cr(III), which is considered relatively non-toxic, and Cr(VI), which can cross cell membranes mainly as a chromate anion and has been classified as a class I human carcinogen. The aims of the present study were to measure soluble Cr(VI) levels in environmental samples, to develop a simple method of quantifying Cr(VI) in exhaled breath condensate (EBC), and to follow the kinetics of EBC Cr(VI) in chrome plating workers. Personal air samples were collected from 10 chrome platers; EBC was collected from the same workers immediately after the work shift on Tuesday and before the work shift on the following Wednesday. Environmental and EBC Cr(VI) levels were determined by means of colorimetry and electrothermal absorption atomic spectrometry, respectively. The method of detecting Cr(VI) in environmental air was based on the extraction of the Cr(VI)-diphenylcarbazide (Cr(VI)-DPC) complex in 1-butanol, whereas EBC Cr(VI) was determined using a solvent extraction of Cr(VI) as an ion pair with tetrabutylammonium ion, and subsequent direct determination of the complex (Cr(VI)-DPC) in EBC. Kinetic data showed that airborne Cr(VI) was reduced by 50% in airway lining fluid sampled at the end of exposure and that there was a further 50% reduction after about 15 h. The persistence of Cr(VI) in EBC supports the use of EBC in assessing target tissue levels of Cr(VI)

  7. Chromium(III) and chromium(VI) surface treated galvanized steel for outdoor constructions: environmental aspects.

    Science.gov (United States)

    Lindström, David; Hedberg, Yolanda; Odnevall Wallinder, Inger

    2010-06-01

    The long-term degradation of chromium(III) (Zn-Cr(III)) and chromium(VI)-based (Zn-Cr(VI)) surface treatments on galvanized steel and their capacities to hinder the release of zinc induced by atmospheric corrosion at nonsheltered urban and marine exposure conditions for 2 years are investigated. Compared to bare zinc sheet, both surface treatments revealed high corrosion protection abilities and capacities to hinder the release of zinc, still evident after 2 years of exposure. The zinc barrier properties of the thinner Zn-Cr(VI) (10 nm) treatment were during the first 100 days of urban exposure slightly improved compared with Zn-Cr(III) (35 nm). However, their long-term protection capacities were inverse. Released concentrations of total chromium correspond to annual release rates less than 0.000032 (Zn-Cr(III)) and 0.00014 g Cr m(-2) yr(-1) (Zn-Cr(VI)) after 1 year of urban exposure. Aging by indoor storage of the surface treatments prior to outdoor exposure reduced the released Cr concentrations from the surface treatments. No Cr(VI) was released from the aged surfaces but from the freshly exposed Zn-Cr(VI). Marine exposure conditions resulted in a faster reduction of chromate to chromium(III)oxide compared with urban conditions, and a significantly lower amount of both chromium(III) and chromium(VI) released from Zn-Cr(VI) at the marine site compared with the urban site. PMID:20462267

  8. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1.

    Science.gov (United States)

    Cárdenas-González, M; Osorio-Yáñez, C; Gaspar-Ramírez, O; Pavković, M; Ochoa-Martínez, A; López-Ventura, D; Medeiros, M; Barbier, O C; Pérez-Maldonado, I N; Sabbisetti, V S; Bonventre, J V; Vaidya, V S

    2016-10-01

    Environmental hazards from natural or anthropological sources are widespread, especially in the north-central region of Mexico. Children represent a susceptible population due to their unique routes of exposure and special vulnerabilities. In this study we evaluated the association of exposure to environmental kidney toxicants with kidney injury biomarkers in children living in San Luis Potosi (SLP), Mexico. A cross-sectional study was conducted with 83 children (5-12 years of age) residents of Villa de Reyes, SLP. Exposure to arsenic, cadmium, chromium, fluoride and lead was assessed in urine, blood and drinking water samples. Almost all tap and well water samples had levels of arsenic (81.5%) and fluoride (100%) above the permissible levels recommended by the World Health Organization. Mean urine arsenic (45.6ppb) and chromium (61.7ppb) were higher than the biological exposure index, a reference value in occupational settings. Using multivariate adjusted models, we found a dose-dependent association between kidney injury molecule-1 (KIM-1) across chromium exposure tertiles [(T1: reference, T2: 467pg/mL; T3: 615pg/mL) (p-trend=0.001)]. Chromium upper tertile was also associated with higher urinary miR-200c (500 copies/μl) and miR-423 (189 copies/μL). Arsenic upper tertile was also associated with higher urinary KIM-1 (372pg/mL). Other kidney injury/functional biomarkers such as serum creatinine, glomerular filtration rate, albuminuria, neutrophil gelatinase-associated lipocalin and miR-21 did not show any association with arsenic, chromium or any of the other toxicants evaluated. We conclude that KIM-1 might serve as a sensitive biomarker to screen children for kidney damage induced by environmental toxic agents. PMID:27431456

  9. Exposure to cobalt chromium dust and lung disorders in dental technicians.

    OpenAIRE

    Seldén, A. I.; Persson, B; Bornberger-Dankvardt, S. I.; Winström, L. E.; Bodin, L S

    1995-01-01

    BACKGROUND--Dental technician's pneumoconiosis is a dust-induced fibrotic lung disease of fairly recent origin. This study was carried out to estimate its occurrence in Sweden. METHODS--Thirty seven dental technicians in central and south eastern Sweden with at least five years of exposure to dust from cobalt chromium molybdenum (CoCrMo) alloys, identified by postal survey, agreed to undergo chest radiography and assessment of lung function and exposure to inorganic dust. RESULTS--Six subject...

  10. Alveolar macrophages and lung lesions after combined exposure to nickel, cobalt, and trivalent chromium.

    OpenAIRE

    Johansson, A; Curstedt, T.; Jarstrand, C; Camner, P

    1992-01-01

    In earlier inhalation exposures of rabbits, nickel increased the production of surfactant by type II cells, with secondary effects on morphology and function of alveolar macrophages. Cobalt induced mainly a nodular growth pattern of the type II cells. Trivalent chromium seemed to impair the capacity of macrophages to catabolize surfactant but did not affect the type II cells. We exposed rabbits by inhalation to combinations of nickel (0.6 mg/m3 as NiCl2) and trivalent chromium [1.2 mg/m3 as C...

  11. Reduction of Hexavalent Chromium by Viable Cells of Chromium Resistant Bacteria Isolated from Chromite Mining Environment

    OpenAIRE

    Satarupa Dey; Baishali Pandit; A. K. Paul

    2014-01-01

    Environmental contamination of hexavalent chromium [Cr(VI)] is of serious concern for its toxicity as well as mutagenic and carcinogenic effects. Bacterial chromate reduction is a cost-effective technology for detoxification as well as removal of Cr(VI) from polluted environment. Chromium resistant and reducing bacteria, belonging to Arthrobacter, Pseudomonas, and Corynebacterium isolated from chromite mine overburden and seepage samples of Orissa, India, were found to tolerate 12–18 mM Cr(VI...

  12. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Zainul Akmar [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Zakaria, Zainoha [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Surif, Salmijah [Department of Environmental Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Ahmad, Wan Azlina [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)]. E-mail: azlina@kimia.fs.utm.my

    2007-07-19

    Possible application of a locally isolated environmental isolate, Acinetobacter haemolyticus to remediate Cr(VI) contamination in water system was demonstrated. Cr(VI) reduction by A. haemolyticus seems to favour the lower concentrations (10-30 mg/L). However, incomplete Cr(VI) reduction occurred at 70-100 mg/L Cr(VI). Initial specific reduction rate increased with Cr(VI) concentrations. Cr(VI) reduction was not affected by 1 or 10 mM sodium azide (metabolic inhibitor), 10 mM of PO{sub 4} {sup 3-}, SO{sub 4} {sup 2-}, SO{sub 3} {sup 2-}, NO{sub 3} {sup -} or 30 mg/L of Pb(II), Zn(II), Cd(II) ions. However, heat treatment caused significant dropped in Cr(VI) reduction to less than 20% only. A. haemolyticus cells loses its shape and size after exposure to 10 and 50 mg Cr(VI)/L as revealed from TEM examination. The presence of electron-dense particles in the cytoplasmic region of the bacteria suggested deposition of chromium in the cells.

  13. The prevalence of chromium allergy in Denmark is currently increasing as a result of leather exposure

    DEFF Research Database (Denmark)

    Thyssen, J P; Jensen, P; Carlsen, B C;

    2009-01-01

    BACKGROUND: Chromium allergy has traditionally been caused by occupational skin contact with cement. In 1983, Danish legislation made the addition of ferrous sulphate compulsory in cement to reduce the water-soluble chromium content to not more than 2 ppm. An effect from this intervention has...... 3.6% in 1985 to 1% in 1995 (P(trend) < 0.001) but increased to 3.3% in 2007 (P(trend) < 0.001). The frequency of clinically relevant cement exposure decreased significantly among patients with chromium allergy from 12.7% in 1989-1994 to 3.0% (P < 0.01) in 1995-2007, whereas the frequency of relevant...

  14. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha)

    Energy Technology Data Exchange (ETDEWEB)

    Farag, Aida M. [United States Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, P.O. Box 1089, Jackson, WY 83001 (United States)]. E-mail: aida_farag@usgs.gov; May, Thomas [United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201 (United States); Marty, Gary D. [Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA 95616-8732 (United States); Easton, Michael [International EcoGen Inc., 2015 McLallen Court, North Vancouver, BC, Canada V7P 3H6 (Canada); Harper, David D. [United States Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, P.O. Box 1089, Jackson, WY 83001 (United States); Little, Edward E. [United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201 (United States); Cleveland, Laverne [United States Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201 (United States)

    2006-03-10

    This study was designed to determine fish health impairment of Chinook salmon (Oncorhynchus tshawytscha) exposed to chromium. Juvenile Chinook salmon were exposed to aqueous chromium concentrations (0-266 {mu}g l{sup -1}) that have been documented in porewater from bottom sediments and in well waters near salmon spawning areas in the Columbia River in the northwestern United States. After Chinook salmon parr were exposed to 24 and 54 {mu}g Cr l{sup -1} for 105 days, neither growth nor survival of parr was affected. On day 105, concentrations were increased from 24 to 120 {mu}g Cr l{sup -1} and from 54 to 266 {mu}g Cr l{sup -1} until the end of the experiment on day 134. Weight of parr was decreased in the 24/120 {mu}g Cr l{sup -1} treatment, and survival was decreased in the 54/266 {mu}g Cr l{sup -1} treatment. Fish health was significantly impaired in both the 24/120 and 54/266 {mu}g Cr l{sup -1} treatments. The kidney is the target organ during chromium exposures through the water column. The kidneys of fish exposed to the greatest concentrations of chromium had gross and microscopic lesions (e.g. necrosis of cells lining kidney tububules) and products of lipid peroxidation were elevated. These changes were associated with elevated concentrations of chromium in the kidney, and reduced growth and survival. Also, variations in DNA in the blood were associated with pathological changes in the kidney and spleen. These changes suggest that chromium accumulates and enters the lipid peroxidation pathway where fatty acid damage and DNA damage (expressed as chromosome changes) occur to cause cell death and tissue damage. While most of the physiological malfunctions occurred following parr exposures to concentrations {>=}120 {mu}g Cr l{sup -1}, nuclear DNA damage followed exposures to 24 {mu}g Cr l{sup -1}, which was the smallest concentration tested. The abnormalities measured during this study are particularly important because they are associated with impaired growth

  15. The hazard of chromium exposure to neonates in Guiyu of China

    International Nuclear Information System (INIS)

    Guiyu is one of the most heavily chromium-polluted areas in China due to the presence of numerous electronic waste (e-waste) recycling sites in the region. In this study, we investigate the effect of umbilical cord blood chromium levels (UCBCLs) on neonates from Guiyu and discuss chromium-induced DNA damage of cord blood lymphocyte. Umbilical cord blood samples were collected from neonates of Guiyu (in 2006, n = 100; in 2007, n = 100) and the neighboring town of Chaonan (in 2006, n = 52; in 2007, n = 50) that is associated with the fishery. UCBCLs of the neonates were determined by graphite atomizer absorption spectrophotometer. Comet experiment was used to examine lymphocyte DNA damage. Questionnaires to gauge chromium exposure were administered to the mothers of the neonates. The mean UCBCLs of neonates in the Guiyu group in 2006 and 2007 were 303.38 μg/L and 99.90 μg/L with median 93.89 μg/L and 70.60 μg/L, respectively. We observed significant differences between the results in UCBCLs of neonates in Guiyu and the control group (P 0.05). Higher levels of chromium in neonates were found to correlate with their mothers' exposure to e-waste recycling. There were significant differences in terms of DNA damage between the Guiyu group and the control group (P < 0.05). There was a correlation between DNA damage and the UCBCLs of neonates (P < 0.05). There is conclusive evidence that high UCBCLs in neonates exists in e-waste recycling areas in Guiyu and that e-waste recycling activity poses serious environmental problems. Chromium pollution is threatening the health of neonates around the recycling sites

  16. On the removal of hexavalent chromium from a Class F fly ash.

    Science.gov (United States)

    Huggins, F E; Rezaee, M; Honaker, R Q; Hower, J C

    2016-05-01

    Coarse and fine samples of a Class F fly ash obtained from commercial combustion of Illinois bituminous coal have been exposed to two long-term leaching tests designed to simulate conditions in waste impoundments. ICP-AES analysis indicated that the coarse and fine fly ash samples contained 135 and 171mg/kg Cr, respectively. Measurements by XAFS spectroscopy showed that the ash samples originally contained 5 and 8% of the chromium, respectively, in the hexavalent oxidation state, Cr(VI). After exposure to water for more than four months, the percentage of chromium as Cr(VI) in the fly-ash decreased significantly for the coarse and fine fly-ash in both tests. Combining the XAFS data with ICP-AES data on the concentration of chromium in the leachates indicated that, after the nineteen-week-long, more aggressive, kinetic test on the coarse fly ash, approximately 60% of the Cr(VI) had been leached, 20% had been reduced to Cr(III) and retained in the ash, and 20% remained as Cr(VI) in the ash. In contrast, during the six-month-long baseline test, very little Cr was actually leached from either the coarse or the fine fly-ash (<0.1mg/kg); rather, about 66% and 20%, respectively, of the original Cr(VI) in the coarse and fine fly-ash was retained in the ash in that form, while the remainder, 34% and 80%, respectively, was reduced and retained in the ash as Cr(III). The results are interpreted as indicating that Cr(VI) present in Class F fly-ash can be reduced to Cr(III) when in contact with water and that such chemical reduction can compete with physical removal of Cr(VI) from the ash by aqueous leaching. PMID:26951722

  17. Biosorption system produced from biofilms supported on Faujasite (FAU) zeolite, process for obtaining it and its usage for removal of hexavalent chromium (Cr(VI))

    OpenAIRE

    Tavares, M. T.; Neves, Isabel C.

    2008-01-01

    The present invention refers to a biosorption system composed of a bacterial biofilm supported in synthetic zeolites, for usage in various types of industry for the removal of hexavalent chromium, through the retention of metal ions in the biofilm, in solutions with concentrations between 50 and 250 mgCr/L, process for obtaining it and respective usages. This process consists in obtaining a bacterial biofilm of Arthrobacter viscosus, supported on a faujasite (FAU) zeolite. The biofilm promote...

  18. Chronic Exposure to Zinc Chromate Induces Centrosome Amplification and Spindle Assembly Checkpoint Bypass in Human Lung Fibroblasts

    OpenAIRE

    Holmes, Amie L.; Wise, Sandra S.; Pelsue, Stephen C.; Aboueissa, AbouEl-Makarim; Lingle, Wilma; Salisbury, Jeffery; Gallagher, Jamie; Wise, John Pierce

    2010-01-01

    Hexavalent chromium (Cr(VI)) compounds are known human lung carcinogens. Solubility plays an important role in its carcinogenicity with the particulate or insoluble form being the most potent. Of the particulate Cr(VI) compounds, zinc chromate appears to be the most potent carcinogen, however, very few studies have investigated its carcinogenic mechanism. In this study, we investigated the ability of chronic exposure to zinc chromate to induce numerical chromosome instability. We found no inc...

  19. Hexavalent chromium and isocyanate exposures during military aircraft painting under crossflow ventilation.

    Science.gov (United States)

    Bennett, James S; Marlow, David A; Nourian, Fariba; Breay, James; Hammond, Duane

    2016-05-01

    Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers ("hosemen"). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 µg/m(3), 11 out of 12 exceeded the permissible exposure limit of 5 µg/m(3), and 7 out of 12 exceeded the threshold limit value of 10 µg/m(3), with means 38 µg/m(3) for sprayers and 8.3 µg/m(3) for hosemen. Hexamethylene diisocyanate means were 5.95 µg/m3 for sprayers and 0.645 µg/m(3) for hosemen. Total reactive isocyanate group-the total of monomer and oligomer as NCO group mass-showed 6 of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 µg/m(3), with means 50.9 µg/m(3) for sprayers and 7.29 µg/m(3) for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m(3)/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m(3)/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate

  20. A revised model of ex-vivo reduction of hexavalent chromium in human and rodent gastric juices

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, Paul M., E-mail: schlosser.paul@epa.gov; Sasso, Alan F.

    2014-10-15

    Chronic oral exposure to hexavalent chromium (Cr-VI) in drinking water has been shown to induce tumors in the mouse gastrointestinal (GI) tract and rat oral cavity. The same is not true for trivalent chromium (Cr-III). Thus reduction of Cr-VI to Cr-III in gastric juices is considered a protective mechanism, and it has been suggested that the difference between the rate of reduction among mice, rats, and humans could explain or predict differences in sensitivity to Cr-VI. We evaluated previously published models of gastric reduction and believe that they do not fully describe the data on reduction as a function of Cr-VI concentration, time, and (in humans) pH. The previous models are parsimonious in assuming only a single reducing agent in rodents and describing pH-dependence using a simple function. We present a revised model that assumes three pools of reducing agents in rats and mice with pH-dependence based on known speciation chemistry. While the revised model uses more fitted parameters than the original model, they are adequately identifiable given the available data, and the fit of the revised model to the full range of data is shown to be significantly improved. Hence the revised model should provide better predictions of Cr-VI reduction when integrated into a corresponding PBPK model. - Highlights: • Hexavalent chromium (Cr-VI) reduction in gastric juices is a key detoxifying step. • pH-dependent Cr-VI reduction rates are explained using known chemical speciation. • Reduction in rodents appears to involve multiple pools of electron donors. • Reduction appears to continue after 60 min, although more slowly than initial rates.

  1. A revised model of ex-vivo reduction of hexavalent chromium in human and rodent gastric juices

    International Nuclear Information System (INIS)

    Chronic oral exposure to hexavalent chromium (Cr-VI) in drinking water has been shown to induce tumors in the mouse gastrointestinal (GI) tract and rat oral cavity. The same is not true for trivalent chromium (Cr-III). Thus reduction of Cr-VI to Cr-III in gastric juices is considered a protective mechanism, and it has been suggested that the difference between the rate of reduction among mice, rats, and humans could explain or predict differences in sensitivity to Cr-VI. We evaluated previously published models of gastric reduction and believe that they do not fully describe the data on reduction as a function of Cr-VI concentration, time, and (in humans) pH. The previous models are parsimonious in assuming only a single reducing agent in rodents and describing pH-dependence using a simple function. We present a revised model that assumes three pools of reducing agents in rats and mice with pH-dependence based on known speciation chemistry. While the revised model uses more fitted parameters than the original model, they are adequately identifiable given the available data, and the fit of the revised model to the full range of data is shown to be significantly improved. Hence the revised model should provide better predictions of Cr-VI reduction when integrated into a corresponding PBPK model. - Highlights: • Hexavalent chromium (Cr-VI) reduction in gastric juices is a key detoxifying step. • pH-dependent Cr-VI reduction rates are explained using known chemical speciation. • Reduction in rodents appears to involve multiple pools of electron donors. • Reduction appears to continue after 60 min, although more slowly than initial rates

  2. Toxicity and adaptation of Dictyosphaerium chlorelloides to extreme chromium contamination.

    Science.gov (United States)

    Sánchez-Fortún, Sebastián; López-Rodas, Victoria; Navarro, Macarena; Marvá, Fernando; D'ors, Ana; Rouco, Mónica; Haigh-Florez, David; Costas, Eduardo

    2009-09-01

    Metals are often spilled by industries into inland water environments, with adverse consequences. Numerous papers have reported that heavy metals produce massive destruction of algae. Nevertheless, algal populations seem to become tolerant when they have had previous exposures to heavy metals. Because the mechanisms allowing heavy metal tolerance of algae are not yet known, the present study analyzed the effect of hexavalent chromium on growth and photosynthetic performance of Dictyosphaerium chlorelloides, stressing on the adaptation mechanisms to chromium contamination. Growth and photosynthetic performance of algal cells were inhibited by Cr(VI) at 10 mg/L, and the 72-h median inhibition concentration was established as 1.64 and 1.54 mg/L, respectively. However, after further incubation for a three month period in an environment with 25 mg/L of chromium, some rare, chromium-resistant cells occasionally were found. A Luria-Delbrück fluctuation analysis was performed to distinguish between resistant algae arising from rare, spontaneous mutations and resistant algae arising from physiological adaptation and other adaptive mechanisms. Resistant cells arose only by spontaneous mutations before the addition of chromium, with a rate of 1.77 x 10(-6) mutants per cell division. From a practical point of view, the use of both chromium-sensitive and chromium-resistant genotypes could make possible a specific algal biosensor for chromium. PMID:19323601

  3. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    International Nuclear Information System (INIS)

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  4. Bioremediation of chromium solutions and chromium containing wastewaters.

    Science.gov (United States)

    Malaviya, Piyush; Singh, Asha

    2016-08-01

    Cr(VI) represents a serious threat to human health, living resources and ecological system as it is persistent, carcinogenic and toxic, whereas, Cr(III), another stable oxidation state of Cr, is less toxic and can be readily precipitated out of solution. The conventional methods of Cr(VI) removal from wastewaters comprise of chemical reduction followed by chemical precipitation. However, these methods utilize large amounts of chemicals and generate toxic sludge. This necessitates the need for devising an eco-technological strategy that would use the untapped potential of the biological world for remediation of Cr(VI) containing wastewaters. Among several viable approaches, biotransformation of Cr(VI) to relatively non-toxic Cr(III) by chromium resistant bacteria offers an economical- and environment-friendly option for its detoxification. Various studies on use of Cr(VI) tolerant viable bacterial isolates for treatment of Cr(VI) containing solutions and wastewater have been reported. Therefore, a detailed account of mechanisms and processes involved in bioreduction of Cr(VI) from solutions and wastewaters by bacterial isolates are the focus of this review article in addition to a discussion on toxicity of Cr(VI) on bacterial strains and various factors affecting Cr(VI) bioreduction. PMID:25358056

  5. SPESIASI Cr(III) DAN Cr(VI) PADA LIMBAH CAIR INDUSTRI ELEKTROPLATING

    OpenAIRE

    Dian Windy Dwiasi; Dwi Kartika

    2008-01-01

    Speciation of Cr(III) and Cr(VI) in wastewater have been widely investigated. The species of Cr(III) and Cr(VI) in wastewater samples were determined by UV – Vis Spectrometry and Atomic Absorption Spectrometry (AAS). The method described is based upon the spectrophotometric determination of the magenta chromagen (λmax = 545 nm) formed when 1,5-diphenylcarbazide reacts with hexavalent chromium in sulphuric acid solution. Hexavalent chromium are determined by a calibration curve technique. The ...

  6. Cytotoxic and genotoxic potential of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA complex in human hepatoma (HepG2) cells.

    Science.gov (United States)

    Novotnik, Breda; Ščančar, Janez; Milačič, Radmila; Filipič, Metka; Žegura, Bojana

    2016-07-01

    Chromium (Cr) and ethylenediaminetetraacetate (EDTA) are common environmental pollutants and can be present in high concentrations in surface waters at the same time. Therefore, chelation of Cr with EDTA can occur and thereby stable Cr(III)-EDTA complex is formed. Since there are no literature data on Cr(III)-EDTA toxicity, the aim of our work was to evaluate and compare Cr(III)-EDTA cytotoxic and genotoxic activity with those of Cr(VI) and Cr(III)-nitrate in human hepatoma (HepG2) cell line. First the effect of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on cell viability was studied in the concentration range from 0.04 μg mL(-1) to 25 μg mL(-1) after 24 h exposure. Further the influence of non-cytotoxic concentrations of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on DNA damage and genomic stability was determined with the comet assay and cytokinesis block micronucleus cytome assay, respectively. Cell viability was decreased only by Cr(VI) at concentrations above 1.0 μg mL(-1). Cr(VI) at ≥0.2 μg mL(-1) and Cr(III) at ≥1.0 μg mL(-1) induced DNA damage, while after Cr(III)-EDTA exposure no formation DNA strand breaks was determined. Statistically significant formation of micronuclei was induced only by Cr(VI) at ≥0.2 μg mL(-1), while no influence on the frequency of nuclear buds nor nucleoplasmic bridges was observed at any exposure. This study provides the first evidence that Cr(III)-EDTA did not induce DNA damage and had no influence on the genomic stability of HepG2 cells. PMID:27043378

  7. Cr(VI) reduction in aqueous solutions by siderite.

    Science.gov (United States)

    Erdem, Mehmet; Gür, Faruk; Tümen, Fikret

    2004-09-10

    Hexavalent chromium is a common and toxic pollutant in soils and wastewaters. Reduction of the mobile Cr(VI) to less mobile and less toxic Cr(III) is a solution for decontamination of industrial effluents. In this study, the reduction of hexavalent chromium in aqueous solutions by siderite was investigated. The influences of amount of acid, contact time, siderite dosage, initial Cr(VI) concentration, temperature and particle size of siderite have been tested in batch runs. The process was found to be acid, temperature and concentration dependent. The amount of acid is the most effective parameter affecting the Cr(VI) reduction since carbonaceous gangue minerals consume acid by side reactions. The highest Cr(VI) reduction efficiency (100%) occurred in the 50 mg/l Cr(VI) solution containing two times acid with respect to stoichiometric amount of Cr(VI) and at the conditions of siderite dosage 20 g/l, contact time 120 min and temperature 25 degrees C. Reduction efficiency increased with increase in temperature and decrease in particle size. The reduction capacity of siderite was found to be 17 mg-Cr(VI)/g. PMID:15363534

  8. Chemodynamics of chromium reduction in soils: Implications to bioavailability

    International Nuclear Information System (INIS)

    Highlights: • Examined the effects of sorption, pH and C sources on Cr(VI) reduction and toxicity. • The rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and pH. • The proton dynamics in Cr(VI) reduction was assessed in relation to remediation. • A novel black carbon showed the highest reduction rate of Cr(VI) in soils. • Black carbon decreased the bioavailability and phytotoxicity of Cr(VI) in soils. -- Abstract: Chromium toxicity in soils can be mitigated by reduction of Cr(VI) to Cr(III) which is influenced by the presence of free Cr(VI) species in soil solution, and the supply of protons and electrons. In this study, the effects of Cr(VI) adsorption (i.e. availability of free Cr(VI) species in soil solution), soil pH (i.e. supply of protons) and three electron donor carbon sources [black carbon (BC), chicken manure biochar (CMB) and cow manure (CM)] on the reduction of Cr(VI) to Cr(III) in soils were investigated. The results indicated that the rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and soil pH, which is attributed to decreased supply of free Cr(VI) ions and protons, respectively. Among the three different amendments tested, BC showed the highest rate of Cr(VI) reduction followed by CM and CMB. Furthermore, addition of BC, CM and CMB decreased the bioavailability of Cr(VI) in contaminated soils. The high efficiency of BC on Cr(VI) reduction was due to the electron donor's functional groups such as phenolic, hydroxyl, carbonyl and amides. The study demonstrated that free form of Cr(VI) ions in soil solution and carbon amendments enriched with acidic functional groups favored the reduction of Cr(VI), thereby mitigating its bioavailability and toxicity in contaminated soils

  9. FORMATION AND DESTRUCTION OF HEXAVALENT CHROMIUM IN A LABORATORY SWIRL FLAME INCINERATOR

    Science.gov (United States)

    The partitioning of chromium (Cr) in combustion systems was investigated theoretically and experimentally. Theoretical predictions were based on chemical equilibrium and suggested that hexavalent chromium [Cr(VI)] was favored by the presence of chlorine (Cl) and diminished by the...

  10. Biological Monitoring of Hexavalent Chromium and Serum Levels of the Senescence Biomarker Apolipoprotein J/Clusterin in Welders

    OpenAIRE

    Vassilios Makropoulos; Gonos, Efstathios S.; Magda Lourda; Trougakos, Ioannis P.; Xenophon Cominos; Alexopoulos, Evangelos C.

    2008-01-01

    Welding fumes contain metals and other toxic substances known or strongly suspected to be related with oxidative stress and premature cellular senescence. Apolipoprotein J/Clusterin (ApoJ/CLU) is a glycoprotein that is differentially regulated in various physiological and disease states including ageing and age-related diseases. In vitro data showed that exposure of human diploid fibroblasts to hexavalent chromium (Cr(VI)) resulted in premature senescence and significant upregulation of the A...

  11. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Directory of Open Access Journals (Sweden)

    Cody S Sheik

    Full Text Available Extensive use of chromium (Cr and arsenic (As based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI. Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.

  12. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Science.gov (United States)

    Sheik, Cody S; Mitchell, Tyler W; Rizvi, Fariha Z; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J; Krumholz, Lee R

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways. PMID:22768219

  13. Phosphate relieves chromium toxicity in Arabidopsis thaliana plants by interfering with chromate uptake.

    Science.gov (United States)

    López-Bucio, José; Hernández-Madrigal, Fátima; Cervantes, Carlos; Ortiz-Castro, Randy; Carreón-Abud, Yazmín; Martínez-Trujillo, Miguel

    2014-04-01

    Soil contamination by hexavalent chromium [Cr(VI) or chromate] due to anthropogenic activities has become an increasingly important environmental problem. Mineral nutrients such as phosphate (Pi), sulfate and nitrate have been reported to attenuate Cr(VI) toxicity, but the underlying mechanisms remain to be clarified. Here, we show that chromate activates the expression of low-Pi inducible reporter genes AtPT1 and AtPT2 in Arabidopsis thaliana transgenic seedlings. Primary-root growth was inhibited by 60 % in AtPT2::uidA-expressing seedlings upon exposure to 140-μM Cr(VI). However, increasing the Pi and sulfate supply to the seedlings that were experiencing Cr(VI) toxicity completely and partially restored the root growth, respectively. This effect correlated with the Cr(VI)-induced AtPT2::uidA expression being completely reversed by addition of Pi. To evaluate whether the nutrient supply may affect the endogenous level of Cr in plants grown under toxic Cr(VI) levels, the contents of Cr were measured (by ICP-MS analyses) in seedlings treated with Cr and with or without Pi, sulfate or nitrate. It was found that Cr accumulation increases tenfold in plants treated with 140-μM Cr(VI) without modifying the phosphorus concentration in the plant. In contrast, the supply of Pi specifically decreased the Cr content to levels similar to those found in seedlings grown in medium without chromate. Taken together, these results show that in A. thaliana seedlings the uptake of Cr(VI) is reduced by Pi. Moreover, our data indicate that Pi and sulfate supplements may be useful in strategies for handling Cr-contaminated soils. PMID:24549595

  14. Cleaning-induced arsenic mobilization and chromium oxidation from CCA-wood deck: Potential risk to children.

    Science.gov (United States)

    Gress, J; de Oliveira, L M; da Silva, E B; Lessl, J M; Wilson, P C; Townsend, T; Ma, L Q

    2015-09-01

    Concern about children's exposure to arsenic (As) from wood treated with chromated-copper-arsenate (CCA) led to its withdrawal from residential use in 2004. However, due to its effectiveness, millions of American homes still have CCA-wood decks on which children play. This study evaluated the effects of three deck-cleaning methods on formation of dislodgeable As and hexavalent chromium (CrVI) on CCA-wood surfaces and in leachate. Initial wipes from CCA-wood wetted with water showed 3-4 times more dislodgeable As than on dry wood. After cleaning with a bleach solution, 9.8-40.3μg/100cm(2) of CrVI was found on the wood surface, with up to 170μg/L CrVI in the leachate. Depending on the cleaning method, 699-2473mg of As would be released into the environment from cleaning a 18.6-m(2)-deck. Estimated As doses in children aged 1-6 after 1h of playing on a wet CCA-wood deck were 0.25-0.41μg/kg. This is the first study to identify increased dislodgeable As on wet CCA-wood and to evaluate dislodgeable CrVI after bleach application. Our data suggest that As and CrVI in 25-year old CCA-wood still show exposure risks for children and potential for soil contamination. PMID:26004992

  15. Role of Iron Anode Oxidation on Transformation of Chromium by Electrolysis

    OpenAIRE

    Sarahney, Hussam; Mao, Xuhui; Alshawabkeh, Akram N.

    2012-01-01

    The potential for chemical reduction of hexavalent chromium Cr(VI) in contaminated water and formation of a stable precipitate by Zero Valent Iron (ZVI) anode electrolysis is evaluated in separated electrodes system. Oxidation of iron electrodes produces ferrous ions causing the development of a reducing environment in the anolyte, chemical reduction of Cr(VI) to Cr(III) and formation of stable iron-chromium precipitates. Cr(VI) transformation rates are dependent on the applied electric curre...

  16. Hexavalent Chromium Workshop

    Science.gov (United States)

    EPA is developing an updated IRIS assessment of hexavalent chromium. This assessment will evaluate the potential health effects of hexavalent chromium from oral and inhalation exposures. An important component of determining the cancer causing potential of ingested hexavalent chr...

  17. Modeling of kinetics of Cr(VI) sorption onto grape stalk waste in a stirred batch reactor

    International Nuclear Information System (INIS)

    Recently, Cr(VI) removal by grape stalks has been postulated to follow two mechanisms, adsorption and reduction to trivalent chromium. Nevertheless, the rate at which both processes take place and the possible simultaneity of both processes has not been investigated. In this work, kinetics of Cr(VI) sorption onto grape stalk waste has been studied. Experiments were carried out at different temperatures but at a constant pH (3 ± 0.1) in a stirred batch reactor. Results showed that three steps take place in the process of Cr(VI) sorption onto grape stalk waste: Cr(VI) sorption, Cr(VI) reduction to Cr(III) and the adsorption of the formed Cr(III). Taking into account the evidences above mentioned, a model has been developed to predict Cr(VI) sorption on grape stalks on the basis of (i) irreversible reduction of Cr(VI) to Cr(III) reaction, whose reaction rate is assumed to be proportional to the Cr(VI) concentration in solution and (ii) adsorption and desorption of Cr(VI) and formed Cr(III) assuming that all the processes follow Langmuir type kinetics. The proposed model fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The proposed model would be helpful for researchers in the field of Cr(VI) biosorption to design and predict the performance of sorption processes.

  18. Biosorption of Hexavalent Chromium from Aqueous Medium with Opuntia Biomass

    OpenAIRE

    José A. Fernández-López; Angosto, José M.; María D. Avilés

    2014-01-01

    The biosorption of hexavalent chromium from aqueous solutions by Opuntia cladodes and ectodermis from cactus fruits was investigated. Both types of biomass are considered low-cost, natural, and ecofriendly biosorbents. Batch experiments were carried out to determine Cr(VI) biosorption capacity and the efficiency of the biosorption process under different pH, initial Cr(VI) concentration, and sorbent dosage. The biosorption of Cr(VI) by Opuntia biomass was highly pH dependent, favoring higher ...

  19. Chromium(VI) stimulates Fyn to initiate innate immune gene induction in human airway epithelial cells

    Science.gov (United States)

    Nemec, Antonia A.; Zubritsky, Lindsey M.; Barchowsky, Aaron

    2009-01-01

    Mechanisms for pathogenic metal signaling in airway injury or disease promotion are poorly understood. It is widely believed that one mechanism for pathogenic and possible carcinogenic effects of inhaled chromium (Cr(VI)) is inhibition of inducible gene transactivation. However, we recently reported that Cr(VI) inhibition of Sp1-dependent transactivation required signal transducer and activator of transcription 1 (STAT1)-dependent expression of an inhibitory protein in airway epithelium. Thus, Cr(VI) exposures can induce genes and we hypothesized this induction resulted from Cr(VI) signaling through an innate immune-like STAT1-dependent pathway initiated by Fyn. Exposure of human airway epithelial (BEAS-2B) cells to Cr(VI) selectively transactivated STAT-responsive interferon-stimulated response element (ISRE) and induced ISRE-driven transactivation of interferon regulatory factor 7 (IRF7), without affecting the gamma interferon-activated site (GAS)-driven IRF1 expression. Cr(VI)-induced IRF7 was absent or greatly reduced in cells that lacked STAT1, were treated with the Src family kinase inhibitor, PP2, or lacked Fyn. Expressing Fyn, but not Src, in mouse embryonic fibroblasts cells null for Src, Yes, and Fyn restored Cr(VI)-stimulated STAT1 tyrosine phosphorylation and IRF7 expression. Finally, shRNA knockdown of Fyn in BEAS-2B cells prevented Cr(VI)-activated STAT1 transactivation of IRF7. These data support a novel mechanism through which Cr(VI) stimulates Fyn to initiate interferon-like signaling for STAT1-dependent gene transactivation. PMID:19994902

  20. Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium

    OpenAIRE

    Sun, Hong; Zhou, Xue; Chen, Haobin; Li, Qin; Costa, Max

    2009-01-01

    Hexavalent chromium [Cr(VI)] is a mutagen and carcinogen, and occupational exposure can lead to lung cancers and other adverse health effects. Genetic changes resulting from DNA damage has been proposed as an important mechanism that mediates chromate's carcinogenicity. Here we show that chromate exposure of human lung A549 cells increased global levels of di- and tri-methylated histone H3 lysine 9 (H3K9) and lysine 4 (H3K4) but decreased the levels of tri-methylated histone H3 lysine 27 (H3K...

  1. Genome-wide gene expression effects in B6C3F1 mouse intestinal epithelia following 7 and 90 days of exposure to hexavalent chromium in drinking water

    International Nuclear Information System (INIS)

    Chronic administration of high doses of hexavalent chromium [Cr(VI)] as sodium dichromate dihydrate (SDD) elicits alimentary cancers in mice. To further elucidate key events underlying tumor formation, a 90-day drinking water study was conducted in B6C3F1 mice. Differential gene expression was examined in duodenal and jejunal epithelial samples following 7 or 90 days of exposure to 0, 0.3, 4, 14, 60, 170 or 520 mg/L SDD in drinking water. Genome-wide microarray analyses identified 6562 duodenal and 4448 jejunal unique differentially expressed genes at day 8, and 4630 and 4845 unique changes, respectively, in the duodenum and jejunum at day 91. Comparative analysis identified significant overlap in duodenal and jejunal differential gene expression. Automated dose–response modeling identified > 80% of the differentially expressed genes exhibited sigmoidal dose–response curves with EC50 values ranging from 10 to 100 mg/L SDD. Only 16 genes satisfying the dose-dependent differential expression criteria had EC50 values 50 of 47 mg/L SDD.

  2. Evaluation of Serum, Urine, and Hair Chromium Levels as Indices of Chromium Exposure and the Relationship of these Indices to Serum Lipid and Insulin Levels.

    Science.gov (United States)

    Randall, Janis Avril

    Concentrations of chromium (Cr) in hair, serum, and urine, and serum concentrations of insulin and lipids of a selected group of men exposed to trivalent Cr (Cr III) were compared with those of men not exposed to Cr. Seventy -three tannery workers (TW) (mean age 37 +/- 12 years) from four Southern Ontario tanneries and fifty-two control subjects (CS) (mean age 41 +/- 13 years), matched for age, race, and socioeconomic status, from the Guelph and Toronto areas participated. The median hair and serum Cr concentrations for the TW were significantly higher (p leather tanning industry, is absorbed and retained. Absorption of Cr III had no significant effect on serum insulin concentrations or serum lipid profiles. These results also suggest that concentrations of Cr in hair, serum, and urine are valid biological indices of industrial exposure to Cr III.

  3. Chromium in leather footwear-risk assessment of chromium allergy and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Strandesen, Maria; Poulsen, Pia B;

    2012-01-01

    Background. Chromium-tanned leather footwear, which releases >3 ppm hexavalent Cr(VI), may pose a risk of sensitizing and eliciting allergic dermatitis. Objectives. To determine the content and potential release of chromium in leather footwear and to discuss the prevention of chromium contact...... allergy and dermatitis. Methods. Sixty pairs of leather shoes, sandals and boots (20 children's, 20 men's, and 20 women's) were purchased in Copenhagen and examined with X-ray fluorescence spectroscopy. Chromium was extracted according to the International Standard, ISO 17075. The detection level for Cr......(VI) was 3 ppm. Results. Chromium was identified in 95% of leather footwear products, the median content being 1.7% (range 0-3.3%). No association with store category or footwear category was found. A tendency for there to be a higher chromium content in footwear with high prices was shown (p(trend) = 0...

  4. Biosorption Potential of Trichoderma gamsii Biomass for Removal of Cr(VI) from Electroplating Industrial Effluent

    OpenAIRE

    Haresh Keharia; Kavita, B.

    2012-01-01

    The potential use of acid-treated biomass of Trichoderma gamsii to remove hexavalent chromium ions from electroplating industrial effluent was evaluated. Electroplating industrial effluent contaminated with 5000 mg/L of Cr(VI) ions, collected from industrial estate of Gujarat, India, was mixed with acid-treated biomass of T. gamsii at biomass dose of 10 mg/mL. Effect of contact time and initial Cr(VI) ions was studied. The biosorption of Cr(VI) ions attained equilibrium at time interval of 24...

  5. Histopathological and biochemical changes in rat thyroid following acute exposure to hexavalent chromium

    OpenAIRE

    Mahmood, Tariq; Zia Quresh, Irfan; Javed Iqbal, Muhammad

    2010-01-01

    Chromium in hexavalent form is highly toxic and a known carcinogen, although its effects on thyroid structure and function are relatively unexplored. Workers in an industrial environment can be, at times, exposed to this form of chromium. The present study was, therefore, designed using laboratory rats as a model system to investigate the effect on thyroid structure and function following two acute intraperitoneal doses of 30 mg/kg b.w. potassium dichromate administere...

  6. Adverse effects and bioconcentration of chromium in two freshwater rotifer species.

    Science.gov (United States)

    Hernández-Ruiz, Esmeralda; Alvarado-Flores, Jesús; Rubio-Franchini, Isidoro; Ventura-Juárez, Javier; Rico-Martínez, Roberto

    2016-09-01

    Bioaccumulation of trivalent (CrIII) and hexavalent chromium (CrVI), and its adverse effects were studied in two rotifer species: Brachionus calyciflorus (two different strains), and Lecane quadridentata. Median Lethal Concentration (LC50) at 24 h of both species showed that CrVI is highly toxic: LC50 ranges from 4.7 × 10(-5) to 4 × 10(-6) mg L(-1)), compared with CrIII: LC50 ranges from 0.64 to 1.279 mg L(-1). Using the LC50 as an exposure concentration, and using atomic absorption, the bioconcentration factor (BCF) was obtained and BCFs of rotifers exposed to CrIII are four orders of magnitude lower than BCFs of rotifers exposed to CrVI. The effect of Cr on the elemental composition of the two species of rotifers in their structures by X-ray microanalysis by energy dispersion showed that Cr is found in intoxicated rotifers, but not in control rotifers. The basal immunoreactivity to metallothioneins is greater in B. calyciflorus than L. quadridentata. The immunoreactivity to metallothioneins decreases in B. calyciflorus when is exposed to CrIII, in contrast in L. quadridentata the immunoreactivity to metallothioneins increase when is exposed to CrIII, and the immunoreactivity to CrVI in L. quadridentata decrease. A mechanism is proposed in which the harder lorica of L. quadridentata acts as a barrier and accumulator of CrVI, and allows for attenuating responses like metallothionein production in L. quadridentata. Instead, in B. calyciflorus the lack of a harder lorica allows for deeper penetration of CrVI, and no time to produce attenuating measures. PMID:27258901

  7. Introduction of Hydrogen Peroxide as an Oxidant in Flow Injection Analysis: Speciation of Cr(III) and Cr(VI)

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    1998-01-01

    (III) and Cr(VI) the analysis of both species was performed by treating them as mutual interference’s. Thus, the total amount of chromium species was measured by FIA and the total amount of chromium was measured by Graphite Atomic Absorption Spectrometry (G-AAS). The speciation was then performed at...

  8. Remediation of Cr(VI) contaminated soil using long-duration sodium thiosulfate supported by micro–nano networks

    Energy Technology Data Exchange (ETDEWEB)

    He, Lulu [School of Life Sciences, Anhui Agricultural University, Hefei 230036 (China); Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Wang, Min; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Qiu, Guannan [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Zhang, Xin, E-mail: xinzhang@ahau.edu.cn [School of Life Sciences, Anhui Agricultural University, Hefei 230036 (China)

    2015-08-30

    Highlights: • This work aims to develop a long-duration remediation agent (LRA). • LRA was obtained using Na{sub 2}S{sub 2}O{sub 3} supported by attapulgite (ATP) micro–nano networks. • ATP micro–nano networks was induced by high-energy electron beam irradiation. • LRA can effectively control the migration of Cr(VI) and reducing Cr(VI) to Cr(III). • LRA displayed high performance on the remediation of heavy metal contaminated soil. - Abstract: In this work, a long-duration remediation agent (LRA) on hexavalent chromium (Cr(VI)) was developed using sodium thiosulfate (ST) supported by attapulgite (ATP) micro–nano networks induced through high-energy electron beam (HEEB) irradiation. The ATP networks could effectively reduce the leaching amount of Cr(VI) in soil. More importantly, the ATP networks could significantly control the leaching behavior of ST, and then prolong the duration and increase the reduction efficiency of ST on Cr(VI). As a result, LRA displayed high performance on controlling the migration of Cr(VI) and reducing Cr(VI) to Cr(III). Additionally, pot experiment indicated that LRA could effectively decrease the absorbed amount of Cr(VI) in corn, and reduce the inhibition effect of Cr(VI) on the growth of corn. Therefore, this work could provide a facile approach to remediate the Cr(VI)-contaminated soil and lower the harmful effect of Cr(VI) on crop.

  9. Remediation of Cr(VI) contaminated soil using long-duration sodium thiosulfate supported by micro–nano networks

    International Nuclear Information System (INIS)

    Highlights: • This work aims to develop a long-duration remediation agent (LRA). • LRA was obtained using Na2S2O3 supported by attapulgite (ATP) micro–nano networks. • ATP micro–nano networks was induced by high-energy electron beam irradiation. • LRA can effectively control the migration of Cr(VI) and reducing Cr(VI) to Cr(III). • LRA displayed high performance on the remediation of heavy metal contaminated soil. - Abstract: In this work, a long-duration remediation agent (LRA) on hexavalent chromium (Cr(VI)) was developed using sodium thiosulfate (ST) supported by attapulgite (ATP) micro–nano networks induced through high-energy electron beam (HEEB) irradiation. The ATP networks could effectively reduce the leaching amount of Cr(VI) in soil. More importantly, the ATP networks could significantly control the leaching behavior of ST, and then prolong the duration and increase the reduction efficiency of ST on Cr(VI). As a result, LRA displayed high performance on controlling the migration of Cr(VI) and reducing Cr(VI) to Cr(III). Additionally, pot experiment indicated that LRA could effectively decrease the absorbed amount of Cr(VI) in corn, and reduce the inhibition effect of Cr(VI) on the growth of corn. Therefore, this work could provide a facile approach to remediate the Cr(VI)-contaminated soil and lower the harmful effect of Cr(VI) on crop

  10. Modelling of the Cr(VI) transport in typical soils of the North of Portugal

    OpenAIRE

    Fonseca, Bruna; Teixeira, Aline S.; Figueiredo, Hugo; Tavares, M. T.

    2009-01-01

    Adsorption of hexavalent chromium [Cr(VI)] onto a loamy sand soil was studied using batch and steady flow tests with contaminant solutions at pH 2, 5 and 7. In all the cases the adsorption of Cr(VI) decreased with increasing pH. The hexavalent chromium speciation and its presence as different oxyanions, according to the solution pH, were the main variables affecting the adsorption process. The influence of the ratio soil/solution concentration was also studied in flow systems at pH 2. Chromiu...

  11. Modelling Cr(VI) removal by a combined carbon-activated sludge system

    International Nuclear Information System (INIS)

    The combined carbon-activated sludge process has been proposed as an alternative to protect the biomass against toxic substances in wastewaters; however, the information about the effect of powdered-activated carbon (PAC) addition in activated sludge reactors for the treatment of wastewaters containing Cr(VI) is limited. The objectives of the present study were: (a) to evaluate the removal of hexavalent chromium by (i) activated sludge microorganisms in aerobic batch reactors, (ii) powdered-activated carbon, and (iii) the combined action of powdered-activated carbon and biomass; (b) to propose mathematical models that interpret the experimental results. Different Cr(VI) removal systems were tested: (S1) biomass (activated sludge), (S2) PAC, and (S3) the combined activated carbon-biomass system. A Monod-based mathematical model was used to describe the kinetics of Cr(VI) removal in the system S1. A first-order kinetics with respect to Cr(VI) and PAC respectively, was proposed to model the removal of Cr(VI) in the system S2. Cr(VI) removal in the combined carbon-biomass system (S3) was faster than both Cr(VI) removal using PAC or activated sludge individually. Results showed that the removal of Cr(VI) using the activated carbon-biomass system (S3) was adequately described by combining the kinetic equations proposed for the systems S1 and S2

  12. Phytoremediation of Cr(VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents.

    Science.gov (United States)

    Bala, Rajni; Thukral, Ashwani K

    2011-01-01

    Phytoremediation of Cr(VI) by Spirodela polyrrhiza in binary combinations with low molecular weight organic compounds (LMWOCs) with a reducing or chelating potential, viz., ascorbic acid, citric acid, tartaric acid, oxalic acid, lactic acid, and glycerol was studied in Cr(VI) containing hydroponic media. Significant increase in the relative dry weight of plants with respect to Cr(VI) treated controls was observed with ascorbic acid and glycerol. The uptake of chromium by S. polyrrhiza followed Michaelis-Menten kinetics of active ion uptake. Interaction between Cr and ascorbic acid, oxalic acid, and lactic acid decreased Cr uptake, whereas citric acid, glycerol, and tartaric acid increased it. Supplementation of LMWOCs to Cr(VI) containing media decreased the MDA content of the plants. Multiple regression models revealed that LMWOCs decrease lipid peroxidation independently, as well as that induced by Cr(VI). It was found that superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT) activities were increased significantly in plants growing in media containing Cr(VI). The study established that lactic acid, citric acid, ascorbic acid, and glycerol were most effective in increasing the Cr(VI) phytoremediating potential of S. polyrrhiza and LMWOCs with reducing or chelating properties decrease Cr(VI) stress in S. polyrrhiza. PMID:21598777

  13. Construction of a subtractive library from hexavalent chromium treated winter flounder (Pseudopleuronectes americanus) reveals alterations in non-selenium glutathione peroxidases

    International Nuclear Information System (INIS)

    Chromium is released during several industrial processes and has accumulated in some estuarine areas. Its effects on mammals have been widely studied, but relatively little information is available on its effects on fish. Gene expression changes are useful biomarkers that can provide information about toxicant exposure and effects, as well as the health of an organism and its ability to adapt to its surroundings. Therefore, we investigated the effects of Cr(VI) on gene expression in the sediment dwelling fish, winter flounder (Pseudopleuronectes americanus). Winter flounder ranging from 300 to 360 g were injected i.p. with Cr(VI) as chromium oxide at 25 μg/kg chromium in 0.15N KCl. Twenty-four hours following injections, winter flounder were euthanized with MS-222 and the livers were excised. Half of the livers were used to make cytosol and the other half were used to isolate mRNA for subtractive hybridization. Subtractive clones obtained were spotted onto nylon filters, which revealed several genes with potentially altered expression due to Cr(VI), including an α class GST, 1-Cys peroxiredoxin (a non-selenium glutathione peroxidase), a P-450 2X subfamily member, two elongation factors (EF-1 gamma and EF-2), and complement component C3. Semi-quantitative RT-PCR was performed and confirmed that Cr(VI) down-regulated complement component C3, an EST, and two potential glutathione peroxidases, GSTA3 and 1-Cys peroxiredoxin. In addition, cytosolic GSH peroxidase activity was reduced, and silver stained SDS-PAGE gels from glutathione-affinity purified cytosol demonstrated that a 27.1 kDa GSH-binding protein was down-regulated greater than 50%. Taken together, Cr(VI) significantly altered the expression of several genes including two potential glutathione peroxidases in winter flounder

  14. Genesis of Cr(VI) in Sri Lankan soils and its adsorptive removal by calcined gibbsite

    Science.gov (United States)

    Rajapaksha, A. U.; Wijesundara, D. M.; Vithanage, M. S.; Ok, Y. S.

    2012-12-01

    Hexavalent chromium is highly toxic to biota and considered as a priority pollutant. Industrial sources of Cr(VI) include leather tanning, plating, electroplating, anodizing baths, rinse waters, etc. In addition, weathering of ultramafic rocks rich in chromium, such as serpentine, is known to Cr(VI) sources into natural water. The Cr(III) is the most stable in the environment, however, conversion of Cr(III) into Cr(VI) occurs in soil due to presence of naturally occurring minerals such as manganese dioxides. We investigated the amount of Cr(VI) recorded from the soils from anthropogenically and naturally contaminated soils (serpentine soils) in Sri Lanka and the removal efficacy of Cr(VI) by calcined gibbsite (Al oxides). The effect of pH on Cr(VI) adsorption was determined by adjusting the pH in the range of 4-10. In the experiments, the adsorbent concentration was kept at 1 g/l of solution containing 10 mg/l Cr(VI) at 25 0C. Total chromium recorded were around 11,000 mg kg-1 and 6,000 mg kg-1 for serpentine soil and tannery waste-contaminated soil, respectively. Although total Cr was high in the contaminated soils, Cr(VI) concentration was only about 28 mg kg-1 and 210 mg kg-1 in the serpentine and tannery soils, respectively. The calcined gibbsite has maximum adsorption of 85 % around pH 4 and adsorption generally decreased with increase of pH.

  15. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    Science.gov (United States)

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively. PMID:26971177

  16. Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication

    Energy Technology Data Exchange (ETDEWEB)

    Ferro Orozco, A.M., E-mail: mferro@cidca.org.ar [Centro de Investigacion y Desarrollo en Criotecnologia de Alimentos (CIDCA) CCT La Plata CONICET - Fac. de Cs. Exactas, UNLP. 47 y 116 (B1900AJJ) La Plata (Argentina); Contreras, E.M.; Zaritzky, N.E. [Centro de Investigacion y Desarrollo en Criotecnologia de Alimentos (CIDCA) CCT La Plata CONICET - Fac. de Cs. Exactas, UNLP. 47 y 116 (B1900AJJ) La Plata (Argentina); Fac. de Ingenieria, UNLP. 47 y 1 (B1900AJJ) - La Plata (Argentina)

    2010-04-15

    The objectives of the present work were: (i) to analyze the capacity of activated sludge to reduce hexavalent chromium using different carbon sources as electron donors in batch reactors, (ii) to determine the relationship between biomass growth and the amount of Cr(VI) reduced considering the effect of the nitrogen to carbon source ratio, and (iii) to determine the effect of the Cr(VI) acclimation stage on the performance of the biological chromium reduction assessing the stability of the Cr(VI) reduction capacity of the activated sludge. The highest specific Cr(VI) removal rate (q{sub Cr}) was attained with cheese whey or lactose as electron donors decreasing in the following order: cheese whey {approx} lactose > glucose > citrate > acetate. Batch assays with different nitrogen to carbon source ratio demonstrated that biological Cr(VI) reduction is associated to the cell multiplication phase; as a result, maximum Cr(VI) removal rates occur when there is no substrate limitation. The biomass can be acclimated to the presence of Cr(VI) and generate new cells that maintain the ability to reduce chromate. Therefore, the activated sludge process could be applied to a continuous Cr(VI) removal process.

  17. Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication

    International Nuclear Information System (INIS)

    The objectives of the present work were: (i) to analyze the capacity of activated sludge to reduce hexavalent chromium using different carbon sources as electron donors in batch reactors, (ii) to determine the relationship between biomass growth and the amount of Cr(VI) reduced considering the effect of the nitrogen to carbon source ratio, and (iii) to determine the effect of the Cr(VI) acclimation stage on the performance of the biological chromium reduction assessing the stability of the Cr(VI) reduction capacity of the activated sludge. The highest specific Cr(VI) removal rate (qCr) was attained with cheese whey or lactose as electron donors decreasing in the following order: cheese whey ∼ lactose > glucose > citrate > acetate. Batch assays with different nitrogen to carbon source ratio demonstrated that biological Cr(VI) reduction is associated to the cell multiplication phase; as a result, maximum Cr(VI) removal rates occur when there is no substrate limitation. The biomass can be acclimated to the presence of Cr(VI) and generate new cells that maintain the ability to reduce chromate. Therefore, the activated sludge process could be applied to a continuous Cr(VI) removal process.

  18. Chromium (VI) adsorption on boehmite

    Energy Technology Data Exchange (ETDEWEB)

    Granados-Correa, F. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)], E-mail: fgc@nuclear.inin.mx; Jimenez-Becerril, J. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)

    2009-03-15

    Boehmite was synthesized and characterized in order to study the adsorption behavior and the removal of Cr(VI) ions from aqueous solutions as a function of contact time, initial pH solution, amount of adsorbent and initial metal ion concentration, using batch technique. Adsorption data of Cr(VI) on the boehmite were analyzed according to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption models. Thermodynamic parameters for the adsorption system were determinated at 293, 303, 313 and 323 K temperatures. The kinetic values and thermodynamic parameters from the adsorption process show that the Cr(VI) ions adsorption on boehmite is an endothermic and spontaneous process. These results show that the boehmite could be considered as a potential adsorbent for chromium ions in aqueous solutions.

  19. Heavy metal accumulation and metallothionein concentration in the frog Rana ridibunda after exposure to chromium or a mixture of chromium and cadmium

    International Nuclear Information System (INIS)

    The accumulation of two heavy metals (chromium (Cr) and cadmium (Cd)) in the liver, kidney and gut of Rana ridibunda exposed to Cr or to a mixture of Cr and Cd was investigated. The concentration of metallothioneins (MTs) in the same tissues was also studied. Both metals accumulated mainly in the kidney. Cr accumulation in the liver and gut was not affected by the presence of Cd. Furthermore, Cr concentration in the kidney was doubled when Cd was present. MT concentration did not increase after Cr treatment but it increased two- to six-fold over control values in mixture-exposed frogs, the highest value being observed in the gut. MTs in the gut could act as a barrier preventing ingested heavy metals from entering the blood stream. MT concentration correlated positively with Cd concentrations in both the liver and the gut of mixture-exposed animals. - Exposure to Cr and a mixture of Cd and Cr resulted in increased concentrations of MTs only in mixture-exposed frogs

  20. 77 FR 61431 - Hexavalent Chromium Standards; Extension of the Office of Management and Budget's (OMB) Approval...

    Science.gov (United States)

    2012-10-09

    ... Occupational Safety and Health Administration Hexavalent Chromium Standards; Extension of the Office of...) approval of the information collection requirements specified in the Hexavalent Chromium Standards for... requirements specified in the Hexavalent Chromium (Cr(VI)) Standards for General Industry (29 CFR...

  1. Hexavalent chromium targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent caspase-3 activation in L-02 hepatocytes.

    Science.gov (United States)

    Xiao, Fang; Li, Yanhong; Dai, Lu; Deng, Yuanyuan; Zou, Yue; Li, Peng; Yang, Yuan; Zhong, Caigao

    2012-09-01

    Hexavalent chromium [Cr(VI)], which is used for various industrial applications, such as leather tanning and chroming, can cause a number of human diseases including inflammation and cancer. Cr(VI) exposure leads to severe damage to the liver, but the mechanisms involved in Cr(VI)-mediated toxicity in the liver are unclear. The present study provides evidence that Cr(VI) enhances reactive oxygen species (ROS) accumulation by inhibiting the mitochondrial respiratory chain complex (MRCC) I. Cr(VI) did not affect the expression levels of antioxidative proteins such as superoxide dismutase (SOD), catalase and thioredoxin (Trx), indicating that the antioxidative system was not involved in Cr(VI)-induced ROS accumulation. We found that ROS mediated caspase-3 activation partially depends on the downregulation of the heat shock protein (HSP) 70 and 90. In order to confirm our hypothesis that ROS plays a key role in Cr(VI)-mediated cytotoxicity, we used N-acetylcysteine (NAC) to inhibit the accumulation of ROS. NAC successfully blocked the inhibition of HSP70 and HSP90 as well as the activation of caspase-3, suggesting that ROS is essential in Cr(VI)-induced caspase-3 activation. By applying different MRCC substrates as electron donors, we also confirmed that Cr(VI) could accept the electrons leaked from MRCC I and the reduction occurs at MRCC I. In conclusion, the present study demonstrates that Cr(VI) induces ROS-dependent caspase-3 activation by inhibiting MRCC I activity, and MRCC I has been identified as a new target and a new mechanism for the apoptosis-inducing activity displayed by Cr(VI). PMID:22710416

  2. Removal of hexavalent chromium in carbonic acid solution by oxidizing slag discharged from steelmaking process in electric arc furnace

    Science.gov (United States)

    Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu

    2014-02-01

    Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.

  3. Chronic exposure to sublethal hexavalent chromium affects organ histopathology and serum cortisol profile of a teleost, Channa punctatus (Bloch)

    International Nuclear Information System (INIS)

    Effects of chronic exposures (one and two months) to sublethal doses of hexavalent chromium (2 and 4 mg/L potassium dichromate) on organ histopathology and serum cortisol profile were investigated and their overall impact on growth and behavior of a teleost fish, Channa punctatus was elucidated. Histopathological lesions were distinct in the vital organs gill, kidney and liver. The gill lamellae became lifted, fused, and showed oedema. Hyperplasia and hypertrophy of lamellar epithelial cells were distinct with desquamation. Hypertrophy of epithelial cells of renal tubules and reduction in tubular lumens were observed in the trunk kidney. The atrophy of the head kidney interrenal cells and decreased serum cortisol level indicated exhaustion of interrenal activity. Hepatocyte vacuolization and shrinkage, nuclear pyknosis and increase of sinusoidal spaces were observed in the liver. Abnormal behavioral patterns and reduced growth rate were also noticed in the exposed fish. The chronic hexavalent chromium exposure thus by affecting histopathology of gill, kidney (including interrenal tissue) and liver could impair the vital functions of respiration, excretion, metabolic regulation and maintenance of stress homeostasis which in the long-run may pose serious threat to fish health and affect their population.

  4. Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Contaminants in the Food Chain (CONTAM

    2014-03-01

    Full Text Available EFSA received a request from the Hellenic Food Authority for a scientific opinion on estimation of the risk to human health from the presence of chromium (Cr in food, particularly in vegetables, and Cr(VI in bottled water. The CONTAM Panel derived a TDI of 0.3 mg/kg b.w. per day for Cr(III from the lowest NOAEL identified in an NTP chronic oral toxicity study in rats. Under the assumption that all chromium in food is Cr(III, the mean and 95th percentile dietary exposure across all age groups were well below the TDI and therefore does not raise concerns for public health. In the case of drinking water, the Panel considered all chromium in water as Cr(VI. For non-neoplastic effects the lowest BMDL10 for diffuse epithelial hyperplasia of duodenum in female mice and the lowest BMDL05 for haematotoxicity in male rats in a 2-year NTP study were selected as reference points. The MOEs indicate that for non-neoplastic effects the current exposure levels to Cr(VI via drinking water are of no concern for public health. For neoplastic effects, the CONTAM Panel selected a lowest BMDL10 for combined adenomas and carcinomas of the mouse small intestine as the reference point. Overall, the calculated MOEs indicate low concern regarding Cr(VI intake via drinking water (water intended for human consumption and natural mineral waters for all age groups when considering the mean chronic exposure values with the exception of infants at the upper bound (UB exposure estimates. MOEs below 10 000 were calculated at the UB 95th percentile exposure estimates, particularly for ‘Infants’, ‘Toddlers’ and ‘Other children’, which were highly influenced by the relatively high occurrence values under the UB assumption. To improve the risk assessment, there is a need for data on the content of Cr(III and Cr(VI in food and drinking water.

  5. GLUTATHIONE DYNAMICS IN THE SECOND GENERATION YOUNG RATS BLOOD AS A CONSEQUENCE OF FEMALE EXPOSURE TO Cr(VI INTOXICATION DURING GESTATION

    Directory of Open Access Journals (Sweden)

    CORINA GRĂVILĂ

    2013-07-01

    Full Text Available Chromium compounds are found in the environment, due to erosion of chromium containing rocks and can be distributed by volcanic eruptions in food, water. Metals being non-biodegradable persist in the environment for a long period and cause serious ecotoxicological problems. Chromium, which exists in nature mostly in the trivalent form (Cr+3, is essential for activating certain enzymes and for stabilizing proteins and nucleic acids. We have studied the influence of the glutathione dynamics in the second generation rats blood, as a consequence of females chromium (VI intoxication during the gestation. This study was carried out on 7 Wistar adult female rats, control group (C, 21 adult Wistar female rats, devided in three experimental groups (E and theire young rats. The rats were feet, durind the gestation, with 25ppm (LOAEL, 50ppm and 75ppm potassium dichromate, ad libitum, in drinking water. The control batch received tap water. Reduced glutathione (GSH was measured quantitatively after the wean using a Perkin-Elmer spectrophotometer, through Beutler et al. method, at 412nm. The study reports also the depletion of young rats blood GSH.

  6. Resveratrol protects the ovary against chromium-toxicity by enhancing endogenous antioxidant enzymes and inhibiting metabolic clearance of estradiol.

    Science.gov (United States)

    Banu, Sakhila K; Stanley, Jone A; Sivakumar, Kirthiram K; Arosh, Joe A; Burghardt, Robert C

    2016-07-15

    Resveratrol (RVT), a polyphenolic component in grapes and red wine, has been known for its cytoprotective actions against several diseases. However, beneficial effects of RVT against early exposure to endocrine disrupting chemicals (EDCs) have not been understood. EDCs are linked to several ovarian diseases such as premature ovarian failure, polycystic ovary syndrome, early menopause and infertility in women. Hexavalent chromium (CrVI) is a heavy metal EDC, and widely used in >50 industries. Environmental contamination with CrVI in the US is rapidly increasing, predisposing the human to several illnesses including cancers and still birth. Our lab has been involved in determining the molecular mechanism of CrVI-induced female infertility and intervention strategies to mitigate CrVI effects. Lactating mother rats were exposed to CrVI (50ppm potassium dichromate) from postpartum days 1-21 through drinking water with or without RVT (10mg/kg body wt., through oral gavage daily). During this time, F1 females received respective treatments through mother's milk. On postnatal day (PND) 25, blood and the ovary, kidney and liver were collected from the F1 females for analyses. CrVI increased atresia of follicles by increasing cytochrome C and cleaved caspase-3; decreasing antiapoptotic proteins; decreasing estradiol (E2) biosynthesis and enhancing metabolic clearance of E2, increasing oxidative stress and decreasing endogenous antioxidants. RVT mitigated the effects of CrVI by upregulating cell survival proteins and AOXs; and restored E2 levels by inhibiting hydroxylation, glucuronidation and sulphation of E2. This is the first study to report the protective effects of RVT against any toxicant in the ovary. PMID:27129868

  7. Chemodynamics of chromium reduction in soils: Implications to bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Choppala, Girish [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia); Bolan, Nanthi, E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia); Seshadri, Balaji [Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106 (Australia)

    2013-10-15

    Highlights: • Examined the effects of sorption, pH and C sources on Cr(VI) reduction and toxicity. • The rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and pH. • The proton dynamics in Cr(VI) reduction was assessed in relation to remediation. • A novel black carbon showed the highest reduction rate of Cr(VI) in soils. • Black carbon decreased the bioavailability and phytotoxicity of Cr(VI) in soils. -- Abstract: Chromium toxicity in soils can be mitigated by reduction of Cr(VI) to Cr(III) which is influenced by the presence of free Cr(VI) species in soil solution, and the supply of protons and electrons. In this study, the effects of Cr(VI) adsorption (i.e. availability of free Cr(VI) species in soil solution), soil pH (i.e. supply of protons) and three electron donor carbon sources [black carbon (BC), chicken manure biochar (CMB) and cow manure (CM)] on the reduction of Cr(VI) to Cr(III) in soils were investigated. The results indicated that the rate of Cr(VI) reduction decreased with an increase in Cr(VI) adsorption and soil pH, which is attributed to decreased supply of free Cr(VI) ions and protons, respectively. Among the three different amendments tested, BC showed the highest rate of Cr(VI) reduction followed by CM and CMB. Furthermore, addition of BC, CM and CMB decreased the bioavailability of Cr(VI) in contaminated soils. The high efficiency of BC on Cr(VI) reduction was due to the electron donor's functional groups such as phenolic, hydroxyl, carbonyl and amides. The study demonstrated that free form of Cr(VI) ions in soil solution and carbon amendments enriched with acidic functional groups favored the reduction of Cr(VI), thereby mitigating its bioavailability and toxicity in contaminated soils.

  8. Impairment of Bony Crypt Development Associated With Hexavalent Chromium Exposure During Tooth Eruption.

    Science.gov (United States)

    Sánchez, Luciana M; Lewicki, Marianela; De Lucca, Romina C; Ubios, Ángela M

    2015-12-01

    Improperly treated hexavalent chromium-containing industrial wastes contaminate drinking water, potentially affecting children taking breast milk or baby bottles prepared with infant formula. Thus, the aim of the present work was to determine the effect of this toxic on bone activity in the developing alveolus during tooth eruption of suckling Wistar rats intoxicated with potassium dichromate. Experimental animals received a daily dose of 12.5mg/kg body weight of potassium dichromate by gavage for 10 days; controls received an equivalent volume of saline solution. Histologic and histomorphometric studies of the mandible were performed. The data were statistically analyzed using Student's t test; statistical significance was set at a value of p hexavalent chromium is the result of a lower rate of bone remodeling in the developing alveolus. The obtained results show the importance of controlling toxic substances in drinking water, since their effects may alter the growth and development of subjects who were exposed during early infancy. PMID:27095619

  9. Hydration study of limestone blended cement in the presence of hazardous wastes containing Cr(VI)

    International Nuclear Information System (INIS)

    Considering the increasing use of limestone cement manufacture, the present paper tends to characterize limestone behavior in the presence of Cr(VI). The research reported herein provides information regarding the effect of Cr(VI) from industrial wastes in the limestone cement hydration. The cementitious materials were ordinary Portland cement, as reference, and limestone blended cement. The hydration and physicomechanical properties of cementitious materials and the influence of chromium at an early age were studied with X-ray diffraction (XRD), infrared spectroscopy (FTIR), conductimetric and mechanical tests. Portland cement pastes with the addition of Cr(VI) were examined and leaching behavior with respect to water and acid solution were investigated. This study indicates that Cr(VI) modifies the rate and the components obtained during the cement hydration

  10. Long-term effect of nitrate on Cr(VI) removal by Fe(0): column studies.

    Science.gov (United States)

    Wei, Minghai; Yuan, Fang; Huang, Guoxin; Chen, Honghan; Liu, Fei

    2016-05-01

    Lab-scale parallel continuous-flow column experiments were performed to assess the long-term effect of nitrate (NO3 (-)) on hexavalent chromium (Cr(VI)) removal by scrap iron (Fe(0)). The first column (L1) was fed with the Cr(VI) solution and the second column (L2) was loaded with the Cr(VI) + NO3 (-) solution. Raman spectroscopy and scanning electron microscopy energy-dispersive X-ray analyses (SEM-EDS) were conducted to investigate the changes of the iron oxides on Fe(0). The results showed that the process of Cr(VI) removal by Fe(0) was divided into three different stages in the presence of NO3 (-): inhibition period (film on the Fe(0) surface as well as an electron mediator that facilitated electron transport from Fe(0) to adsorbed Cr(VI). PMID:26797949

  11. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction.

    Science.gov (United States)

    Barrera-Díaz, Carlos E; Lugo-Lugo, Violeta; Bilyeu, Bryan

    2012-07-15

    Hexavalent chromium is of particular environmental concern due to its toxicity and mobility and is challenging to remove from industrial wastewater. It is a strong oxidizing agent that is carcinogenic and mutagenic and diffuses quickly through soil and aquatic environments. It does not form insoluble compounds in aqueous solutions, so separation by precipitation is not feasible. While Cr(VI) oxyanions are very mobile and toxic in the environment, Cr(III) cations are not. Like many metal cations, Cr(III) forms insoluble precipitates. Thus, reducing Cr(VI) to Cr(III) simplifies its removal from effluent and also reduces its toxicity and mobility. In this review, we describe the environmental implications of Cr(VI) presence in aqueous solutions, the chemical species that could be present and then we describe the technologies available to efficiently reduce hexavalent chromium. PMID:22608208

  12. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Lu, Anhuai; Ding, Hongrui; Yan, Yunhua; Wang, Changqiu; Zen, Cuiping; Wang, Xin [The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Jin, Song [MWH Americas, 3665 JFK Parkway, Suite 206, Fort Collins, CO 80525 (United States); Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2009-07-15

    Cathodic reduction of hexavalent chromium (Cr(VI)) and simultaneous power generation were successfully achieved in a microbial fuel cell (MFC) containing a novel rutile-coated cathode. The selected rutile was previously characterized to be sensitive to visible light and capable of both non-photo- and photocatalysis. In the MFCs containing rutile-coated cathode, Cr(VI) was rapidly reduced in the cathode chamber in presence and absence of light irradiation; and the rate of Cr(VI) reduction under light irradiation was substantially higher than that in the dark. Under light irradiation, 97% of Cr(VI) (initial concentration 26 mg/L) was reduced within 26 h, which was 1.6 x faster than that in the dark controls in which only background non-photocatalysis occurred. The maximal potential generated under light irradiation was 0.80 vs. 0.55 V in the dark controls. These results indicate that photocatalysis at the rutile-coated cathode in the MFCs might have lowered the cathodic overpotential, and enhanced electron transfer from the cathode to Cr(VI) for its reduction. In addition, photoexcited electrons generated during the cathode photocatalysis might also have contributed to the higher Cr(VI) reduction rates when under light irradiation. This work assessed natural rutile as a novel cathodic catalyst for MFCs in power generation; particularly it extended the practical merits of conventional MFCs to cathodic reduction of environmental contaminants such as Cr(VI). (author)

  13. Quercetin Modulates the Effects of Chromium Exposure on Learning, Memory and Antioxidant Enzyme Activity in F1 Generation Mice.

    Science.gov (United States)

    Halder, Sumita; Kar, Rajarshi; Mehta, Ashish K; Bhattacharya, Swapan K; Mediratta, Pramod K; Banerjee, Basu D

    2016-06-01

    In the present study, we investigated whether chromium (Cr) administered to the dams (F0) during lactation period could affect memory and oxidative stress in F1 generation mice in their adulthood and whether quercetin could modulate these effects. Morris water maze (MWM) was used to test for spatial memory. Passive avoidance task and elevated plus maze were used to test for acquisition and retention memory. Oxidative stress was evaluated by measuring glutathione-S-transferase (GST), catalase activity and malonaldehyde (MDA) levels in the brain tissue. The results of MWM showed that the animals in the Cr-treated group compared to control have better spatial memory that was further enhanced when Cr was administered along with quercetin (50 mg/kg). The elevated plus maze test also showed the Cr-treated group to improve acquisition as well as retention memory compared to control. Co-treatment with quercetin (all doses) also exhibited enhanced acquisition and retention memory compared to control. The passive avoidance task demonstrated no significant improvement in memory in the Cr-treated mice but co-treatment with quercetin (100 mg/kg) showed improved acquisition memory compared to control which was significantly better than the animals treated with chromium alone. GST activity was significantly increased in the Cr-treated animals, and this was further increased in groups treated with Cr and quercetin (all doses). Chromium when administered alone and in combination with quercetin (all doses) significantly reduced MDA levels. However, Cr treatment did not show significant change in catalase activity. Nevertheless, co-treatment with quercetin (25 and 50 mg/kg) resulted in significant decrease in catalase activity. Thus, our study demonstrates that Cr exposure during lactation could be beneficial for pups with respect to augmentation of cognitive function and reduction of oxidative stress. Quercetin could probably enhance this effect to some extent. PMID:26521059

  14. Field Investigations of Lactate-Stimulated Bioreduction of Cr(VI) at Hanford 100H

    International Nuclear Information System (INIS)

    The overall objective of this paper is to carry out field investigations to assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford 100H site

  15. Field Investigations of Lactate-Stimulated Bioreduction of Cr(VI) at Hanford 100H

    Energy Technology Data Exchange (ETDEWEB)

    T. C. Hazen; B. Faybishenko; D. Joyner; S. Borglin; E. Brodie; S.; K. Williams; J. Peterson; J. Wan; T. Tokunaga; M.; P. E. Long; Resch, C.T.; Newcomer, D.; Koenigsberg, S.; Willet, A.

    2005-04-20

    The overall objective of this paper is to carry out field investigations to assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford 100H site.

  16. Experimental Monitoring of Cr(VI) Bio-reduction Using Electrochemical Geophysics

    International Nuclear Information System (INIS)

    Many Department of Energy (DOE) sites are contaminated with highly carcinogenic hexavalent chromium (Cr(VI)). In this research, we explore the feasibility of applying complex resistivity to the detection and monitoring of microbially-induced reduction of hexavalent chromium (Cr(VI)) to a less toxic form (Cr(III)). We hope to measure the change in ionic concentration that occurs during this reduction reaction. This form of reduction promises to be an attractive alternative to more expensive remedial treatment methods. The specific goal of this research is to define the minimum and maximum concentration of the chemical and biological compounds in contaminated samples for which the Cr(VI) - Cr(III) reduction processes could be detected via complex resistivity. There are three sets of experiments, each comprised of three sample columns. The first experiment compares three concentrations of Cr(VI) at the same bacterial cell concentration. The second experiment establishes background samples with, and without, Cr(VI) and bacterial cells. The third experiment examines the influence of three different bacterial cell counts on the same concentration of Cr(VI). A polarization relaxation mechanism was observed between 10 and 50 Hz. The polarization mechanism, unfortunately, was not unique to bio-chemically active samples. Spectral analysis of complex resistivity data, however, showed that the frequency where the phase minimum occurred was not constant for bio-chemically active samples throughout the experiment. A significant shifts in phase minima occurred between 10 to 20 Hz from the initiation to completion of Cr(VI) reduction. This phenomena was quantified using the Cole-Cole model and the Marquardt-Levenberg nonlinear least square minimization method. The data suggests that the relaxation time and the time constant of this relaxation are the Cole-Cole parameters most sensitive to changes in biologically-induced reduction of Cr(VI)

  17. Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xianghua; Ding, Shimin; Zhang, Lixian [Yangtze Normal Univ., Fuling (China)

    2012-11-15

    Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations results in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly.

  18. Assessing uncertainty in published risk estimates using hexavalent chromium and lung cancer mortality as an example

    Science.gov (United States)

    Introduction: The National Research Council recommended quantitative evaluation of uncertainty in effect estimates for risk assessment. This analysis considers uncertainty across model forms and model parameterizations with hexavalent chromium [Cr(VI)] and lung cancer mortality a...

  19. Assessing model uncertainty using hexavalent chromium and lung cancer mortality as an example [Abstract 2015

    Science.gov (United States)

    Introduction: The National Research Council recommended quantitative evaluation of uncertainty in effect estimates for risk assessment. This analysis considers uncertainty across model forms and model parameterizations with hexavalent chromium [Cr(VI)] and lung cancer mortality a...

  20. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  1. Genotoxicity of Tri- and Hexavalent Chromium Compounds In Vivo and Their Modes of Action on DNA Damage In Vitro

    OpenAIRE

    Zhijia Fang; Min Zhao; Hong Zhen; Lifeng Chen; Ping Shi; Zhiwei Huang

    2014-01-01

    Chromium occurs mostly in tri- and hexavalent states in the environment. Hexavalent chromium [Cr(VI)] compounds are extensively used in diverse industries, and trivalent chromium [Cr(III)] salts are used as micronutrients and dietary supplements. In the present work, we report that they both induce genetic mutations in yeast cells. They both also cause DNA damage in both yeast and Jurkat cells and the effect of Cr(III) is greater than that of Cr(VI). We further show that Cr(III) and Cr(VI) ca...

  2. RICE BRAN CARBON: AN ALTERNATIVE TO COMMERCIAL ACTIVATED CARBON FOR THE REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Syed Hadi Hasan

    2010-06-01

    Full Text Available Rice bran carbon (RBC prepared from rice bran (an agricultural waste was successfully utilized for the removal of hexavalent chromium from aqueous solution. The potentiality of RBC was tested and compared with commercial activated carbon (CAC, and it was found that RBC removed 95% of hexavalent chromium at pH 2, 1000 µM Cr(VI concentration, temperature 30 oC, and adsorbent dose of 2 g/L. The maximum uptake of total chromium obtained by applying the Langmuir isotherm model was 138.88 mg/g for RBC, which was found comparable to that obtained by utilizing CAC (116.28 mg/g at 40 oC. The removal of Cr(VI was found maximum at a proton to chromium ratio of 10 and chromium to carbon ratio of 0.052, and these ratios were found to be applicable over a range of Cr(VI concentrations. The removal of Cr(VI, at low pH (< 2.0, was not only due to sorption of Cr(VI but also because of reduction of Cr(VI into less toxic Cr(III, which was also adsorbed on the surface of the sorbent. The rate of reduction removal of Cr(VI followed pseudo-first order kinetics, whereas the sorption of total chromium followed pseudo-second order kinetics for both the types of activated carbons.

  3. Biliary excretion of chromium in the rat

    International Nuclear Information System (INIS)

    The relative amount of chromium excreted in rat bile after injection of Cr-III is much less than after injection of Cr-VI, about 0.1% and from 6-8% during 5 hours respectively, for corresponding dose levels. The liver to bile ratio was 50-100 for Cr-III injection for Cr-VI the ratio was 2-3. With doses up to 18 μmol Cr/kg, only Cr-III was found in bile even after injection of CR-VI.Glutathione depletion of the liver with cyclohexene oxide decreased chromium excretion in bile. Such treatment also decresed the reduction of Cr-VI to Cr-III in the liver cell as only Cr-VI was found in bile. A different distribution of Cr-III in the liver dependent on whether derived from Cr-VI or taken up by the liver as such must be assumed. Taking into account the usual low penetration of biological membranes by Cr-III, a possible active transport mechanism or a specific diffusable Cr-III compound must be postulated. (author)

  4. ANTIBIOTIC RESISTANCE AND CHROMIUM REDUCTION PATTERN AMONG ACTINOMYCETES

    Directory of Open Access Journals (Sweden)

    Preeti Jain

    2012-01-01

    Full Text Available Actinomycetes, one of the most important groups of microbes, exhibit many interesting activities such as degradation and transformation of organic and metal substrates together with production of antibiotics. With these bioactivities, actinomycetes would play an important role in the webs of the marine environment. The present study was designed to evaluate the antibiotic resistance pattern, antibiotic producing potential and chromium resistance as well as chromium reduction potential of a range of actinomycetes isolated from marine environments. Actinomycetes were isolated from marine sediment samples obtained from St. Martin’s Island in Bangladesh. Antibiotic resistance among the selected isolates was studied against 10 different antibiotics by disc diffusion method and antibiotic producing potential was assessed by the perpendicular streak method. The isolates were screened for resistance towards heavy metal Cr(VI on culture plates supplemented with Cr(VI at concentrations ranging from 1-5 mM of Cr(VI. Highly resistant isolates were subjected to screening for Cr(VI reduction activity, which was estimated using the Cr(VI specific colorimetric reagent 1, 5-diphenylcarbazide. Out of the total 30 different selected isolates, 25 (83.33% showed resistance against more than three antibiotics and 6 (20% showed resistance to more than six antibiotics. Ninety three percent of the isolates showed MAR index greater than 0.2 and tolerance to Cr(VI at 1mM of initial Cr(VI. None of the isolates displayed antimicrobial activity against the organisms tested. Among the isolates tested for chromate reduction, two were most efficient showing complete reduction of 1mM Cr(VI within 24 h. These two isolates (SM-11, SM-20 were capable of reducing chromate even at high initial Cr(VI concentrations. Remarkably, the isolate SM-11 was found to reduce 82.67%, 44.34% of Cr(VI at 2.5mM, 5mM of initial Cr(VI concentrations respectively, within 72h of incubation. The

  5. Reduction of Cr(VI) to Cr(III) by green rust - sulphate

    Science.gov (United States)

    Skovbjerg, L.; Stipp, S.

    2003-04-01

    Chromium is widely used in industrial processes such as leather tanning, electro-plating and as colour pigments. Unfortunately, hexavalent chromium is both toxic and very soluble so it can be a problem for groundwater resources. Given the right redox conditions, however, Cr(VI) can be reduced to trivalent chromium, which is much less soluble and is an essential trace nutrient. Fe(II), an element common in soil and sediments under anaerobic conditions, can serve as a reducing agent for Cr(VI). Green Rust (GR) is a layered Fe(II),Fe(III)-hydroxide with various anions compensating charge in the interlayers. It is very effective in reducing Cr(VI) to Cr(III). GR exists in nature and is thought to be precursor for the formation of Fe(III)-oxides and oxyhydroxides at the redox boundary. It may be that the formation of GR is a key process in the effectiveness of reactive barriers for groundwater remediation that are based on Fe(0). The purpose of this work is to investigate the mechanisms controlling Cr(VI) reduction by Green Rust, to examine the effect of Cr adsorption and incorporation on GR morphology and composition, and to define the role of parameters such as interlayer anion, initial Cr(VI) concentration and time. We are using freshly synthesised material that has not been dried to avoid structural changes that may accompany dehydration and rehydration. X-Ray Diffraction (XRD) is used to characterise mineral structural changes and Atomic Force Microscopy (AFM), to examine changes in morphology as reactions take place. By adjusting the concentration of Cr(VI), we can control the rate of surface change and we can observe the nanoscale particles directly.

  6. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Lugo, Violeta [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Universidad Autonoma del Estado de Mexico, Facultad de Quimica. Paseo Colon interseccion Paseo Tollocan S/N. C.P. 50120, Toluca (Mexico); Barrera-Diaz, Carlos, E-mail: cbarrera@uaemex.mx [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Universidad Autonoma del Estado de Mexico, Facultad de Quimica. Paseo Colon interseccion Paseo Tollocan S/N. C.P. 50120, Toluca (Mexico); Bilyeu, Bryan [Xavier University of Louisiana, Department of Chemistry, 1 Drexel Drive, New Orleans, LA 70125 (United States); Balderas-Hernandez, Patricia [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Universidad Autonoma del Estado de Mexico, Facultad de Quimica. Paseo Colon interseccion Paseo Tollocan S/N. C.P. 50120, Toluca (Mexico); Urena-Nunez, Fernando [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801, Mexico, D.F. (Mexico); Sanchez-Mendieta, Victor [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Universidad Autonoma del Estado de Mexico, Facultad de Quimica. Paseo Colon interseccion Paseo Tollocan S/N. C.P. 50120, Toluca (Mexico)

    2010-04-15

    The electrochemical reduction of Cr(VI)-Cr(III) in wastewater by iron and copper-iron bimetallic plates was evaluated and optimized. Iron has been used as a reducing agent, but in this work a copper-iron galvanic system in the form of bimetallic plates is applied to reducing hexavalent chromium. The optimal pH (2) and ratio of copper to iron surface areas (3.5:1) were determined in batch studies, achieving a 100% reduction in about 25 min. The Cr(VI) reduction kinetics for the bimetallic system fit a first order mechanism with a correlation of 0.9935. Thermodynamic analysis shows that the Cr(VI) reduction is possible at any pH value. However, at pH values above 3.0 for iron and 5.5 for chromium insoluble species appear, indicating that the reaction will be hindered. Continuous column studies indicate that the bimetallic copper-iron galvanic system has a reduction capacity of 9.5890 mg Cr(VI) cm{sup -2} iron, whereas iron alone only has a capacity of 0.1269 mg Cr(VI) cm{sup -2}. The bimetallic copper-iron galvanic system is much more effective in reducing hexavalent chromium than iron alone. The exhausted plates were analyzed by SEM, EDS, and XRD to determine the mechanism and the surface effects, especially surface fouling.

  7. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor

    International Nuclear Information System (INIS)

    The electrochemical reduction of Cr(VI)-Cr(III) in wastewater by iron and copper-iron bimetallic plates was evaluated and optimized. Iron has been used as a reducing agent, but in this work a copper-iron galvanic system in the form of bimetallic plates is applied to reducing hexavalent chromium. The optimal pH (2) and ratio of copper to iron surface areas (3.5:1) were determined in batch studies, achieving a 100% reduction in about 25 min. The Cr(VI) reduction kinetics for the bimetallic system fit a first order mechanism with a correlation of 0.9935. Thermodynamic analysis shows that the Cr(VI) reduction is possible at any pH value. However, at pH values above 3.0 for iron and 5.5 for chromium insoluble species appear, indicating that the reaction will be hindered. Continuous column studies indicate that the bimetallic copper-iron galvanic system has a reduction capacity of 9.5890 mg Cr(VI) cm-2 iron, whereas iron alone only has a capacity of 0.1269 mg Cr(VI) cm-2. The bimetallic copper-iron galvanic system is much more effective in reducing hexavalent chromium than iron alone. The exhausted plates were analyzed by SEM, EDS, and XRD to determine the mechanism and the surface effects, especially surface fouling.

  8. Ultra-trace level speciated isotope dilution measurement of Cr(VI) using ion chromatography tandem mass spectrometry in environmental waters.

    Science.gov (United States)

    Mädler, Stefanie; Todd, Aaron; Skip Kingston, H M; Pamuku, Matt; Sun, Fengrong; Tat, Cindy; Tooley, Robert J; Switzer, Teresa A; Furdui, Vasile I

    2016-08-15

    The reliable analysis of highly toxic hexavalent chromium, Cr(VI), at ultra-trace levels remains challenging, given its easy conversion to non-toxic trivalent chromium. This work demonstrates a novel analytical method to quantify Cr(VI) at low ngL(-1) concentration levels in environmental water samples by using speciated isotope dilution (SID) analysis and double-spiking with Cr(III) and Cr(VI) enriched for different isotopes. Ion chromatography tandem mass spectrometry (IC-MS/MS) was used for the analysis of Cr(VI) as HCrO4(-) → CrO3(-). Whereas the classical linear multipoint calibration (MPC) curve approach obtained a method detection limit (MDL) of 7ngL(-1) Cr(VI), the modified SID-MS method adapted from U. S. EPA 6800 allowed for the quantification of Cr(VI) with an MDL of 2ngL(-1) and provided results corrected for Cr(VI) loss occurred after sample collection. The adapted SID-MS approach proved to yield more accurate and precise results than the MPC method, allowed for compensation of Cr(VI) reduction during sample transportation and storage while eliminating the need for frequent external calibration. The developed method is a complementary tool to routinely used inductively-coupled plasma (ICP) MS and circumvents typically experienced interferences. PMID:27260441

  9. Leaching mechanisms of Cr(VI) from chromite ore processing residue.

    Science.gov (United States)

    Wazne, Mahmoud; Jagupilla, Santhi Chandra; Moon, Deok Hyun; Christodoulatos, Christos; Koutsospyros, Agamemnon

    2008-01-01

    Batch leaching tests, qualitative and quantitative x-ray powder diffraction (XRPD) analyses, and geochemical modeling were used to investigate the leaching mechanisms of Cr(VI) from chromite ore processing residue (COPR) samples obtained from an urban area in Hudson County, New Jersey. The pH of the leaching solutions was adjusted to cover a wide range between 1 and 12.5. The concentration levels for total chromium (Cr) and Cr(VI) in the leaching solutions were virtually identical for pH values >5. For pH values ettringite at pH >10.5 and by adsorption at pH 10.5 and by hydrotalcites at pH >8 in addition to adsorption of anionic chromate species onto inherently present metal oxides and hydroxides at pH <8. As pH decreased to <10, most of the Cr(VI) bearing minerals become unstable and their dissolution contributes to the increase in Cr(VI) concentration in the leachate solution. At low pH ( <1.5), Cr(III) solid phases and the oxides responsible for Cr(VI) adsorption dissolve and release Cr(III) and Cr(VI) into solution. PMID:18948466

  10. Floatable, macroporous structured alginate sphere supporting iron nanoparticles used for emergent Cr(VI) spill treatment.

    Science.gov (United States)

    Huang, Jian-Fei; Li, Yong-Tao; Wu, Jin-Hua; Cao, Piao-Yang; Liu, Yong-Lin; Jiang, Gang-Biao

    2016-08-01

    Treatment of hexavalent chromium (Cr(VI)) spill accident is a great challenge due to its high toxicity, sudden and extensiveness. In this study, we designed and fabricated a hierarchical, ordered and macroporous structured alginate sphere to support in-situ synthesized zero-valent iron nanoparticle (the alginate-nZVI sphere). Field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS) images showed well dispersion of nZVI on the composite. This alginate-nZVI sphere exhibited good separability in effective removal of Cr(VI). The result from Cr(VI) removal experiment demonstrated a Cr(VI) removal efficiency of 98.2% at equilibrium time, which can be ascribed to the well dispersion of the nZVI. In addition, the alginate-nZVI sphere was effective in Cr(VI) removal in a wide range of pH from 3.0 to 11.0, by the merit of alginate substrate. Hence, the alginate-nZVI sphere might be a promising agent for an emergent Cr(VI) spill treatment by enhancing the dispersion, stabilization and separation properties of nZVI. PMID:27112857

  11. Biosorption of Cr(VI)_ and Cr(III)_Arthrobacter species

    CERN Document Server

    Gelagutashvili, E; Gurielidze, M

    2011-01-01

    The biosorption of Cr(VI)_ and Cr(III)_ Arthrobacter species (Arthrobacter globiformis and Arthrobacter oxidas) was studied simultaneous application dialysis and atomic absorption analysis. Also biosorption of Cr(VI) in the presence of Zn(II) during growth of Arthrobacter species and Cr(III) in the presence of Mn(II) were discussed. Comparative Cr(VI)_ and Cr(III)_ Arthrobacter species shown, that Cr(III) was more effectively adsorbed by both bacterium than Cr(VI). The adsorption capacity is the same for both the Chromium-Arthrobacter systems. The biosorption constants for Cr(III) is higher than for Cr(VI) 5.7-5.9- fold for both species. Comparative Freundlich biosorption characteristics Cr(VI) Arthrobacter species of living and dry cells shown, that capacity(n) is in both cases the same(1.25,1.35). Dry cells have larger biosorption constant for both species, than living cells. Biosorption characteristics (K) and (n) for A. oxidas are without Mn(II) and in the presence of Mn(II) 2.6 x 10-4 (K), 1.37 (n) and 2...

  12. Study of Cr(VI) Detoxification By basalt Inhabiting Bacteria Using NAA And ESR Methods

    International Nuclear Information System (INIS)

    Mixtures of heavy metals have polluted many industrial regions in the world. The environmental contamination with heavy metals has become a serious health concern. Since metal ions cannot be destroyed in environments, factors which influence the detoxification of metals can dictate the metal toxicity to ecological receptors. Indigenous bacteria have been considered as a potential candidate for detoxifying heavy metal ions. Molecular insight into the fate of heavy metal species in bacteria is important in the development of new bio technologies to clean-up contaminated sites. In our study chromium(VI), a widespread environmental pollution. was selected as a model heavy metal.Today there are only few studies that examine how microorganisms respond to chromium stress at higher doses. Instrumental neutron activation analysis (NAA) and electron spin resonance (ESR) methods were applied to evaluate the potential of indigenous bacteria to detoxify Cr(VI) from heavily contaminated environment. The microbial reduction of toxic Cr(VI) to less toxic Cr(III) was studied in batch systems in the presence of high concentrations of Cr(VI) (50-1000 mg/L). Gram-positive Arthrobacter oxydans isolated from Columbia basalts (USA) that have been polluted with mixtures of heavy metals, radionuclides and organic compounds and also two Gram-positive bacteria isolated from polluted basalts from the Republic of Georgia were tested under aerobic conditions. All the bacterial samples were exposed to Cr(VI) action at a given concentration for five days. NAA revealed that A. oxydans is able to accumulate Cr(VI) efficiently in the concentration range 50-500 mg/L. Dose-dependent ESR measurements of the formation of Cr(Ill) complexes (g=2.02, line width=650 gauss) in bacterial cells confirmed this character of Cr(VI) detoxification. The similar results are obtained for one of the bacterial isolate. For the other bacterium, the content of chromium inside the cells is increased continuously by

  13. Removal of Cr(VI) onto functionalized pyridine copolymer with amide groups

    Energy Technology Data Exchange (ETDEWEB)

    Neagu, Violeta, E-mail: vneagu@icmpp.ro [' Petru Poni' Institute of Macromolecular Chemistry, Gr. Ghica Voda 41A, 700487 Iasi (Romania)

    2009-11-15

    New pyridine strong base anion exchange resin has been prepared by the nucleophilic substitution reaction of 4-vinylpyridine:divinylbenzene copolymer of gel structure with 2-chloroacetamide as halogenated compound. The resulting resin was used to remove Cr(VI) from the aqueous solution. Batch adsorption studies have been carried out to determine the effect of the initial concentration of Cr(VI), adsorbent dose, pH, temperature and the presence of sulfate anions as counter ions. The process was found to be pH, solid/liquid ratio and concentration dependent. The adsorption capacities increase with the increase of the initial concentration of Cr(VI) and therefore, the resin exhibited the degree of usage of the strong base exchange capacities higher than 90% and the good efficiency in the chromium removal. At acidic pH and low concentration of the hexavalent chromium the synthesized pyridine resin offer much greater chromate removal capacities compared to alkaline pH. Equilibrium modeling of the process of Cr(VI) removal was carried out by using the Langmuir and Freundlich isotherms. The experimental data obeyed these isotherm models. Thermodynamic studies were performed and the parameters namely, {Delta}G{sup o}, {Delta}H{sup o} and {Delta}S{sup o} showed the spontaneous and endothermic process of the adsorption of Cr(VI) on the pyridine resin. In the competitive adsorption studies, chromate/sulfate revealed the selectivity of the pyridine adsorbents towards chromium ions. This selectivity is explained by the adsorption of the transition metal anion on the {pi} bonds of the pyridine ring and the formation a sandwich arrangement with chromium anion and amide functional groups attached to the quaternary nitrogen atoms.

  14. Removal of Cr(VI) onto functionalized pyridine copolymer with amide groups

    International Nuclear Information System (INIS)

    New pyridine strong base anion exchange resin has been prepared by the nucleophilic substitution reaction of 4-vinylpyridine:divinylbenzene copolymer of gel structure with 2-chloroacetamide as halogenated compound. The resulting resin was used to remove Cr(VI) from the aqueous solution. Batch adsorption studies have been carried out to determine the effect of the initial concentration of Cr(VI), adsorbent dose, pH, temperature and the presence of sulfate anions as counter ions. The process was found to be pH, solid/liquid ratio and concentration dependent. The adsorption capacities increase with the increase of the initial concentration of Cr(VI) and therefore, the resin exhibited the degree of usage of the strong base exchange capacities higher than 90% and the good efficiency in the chromium removal. At acidic pH and low concentration of the hexavalent chromium the synthesized pyridine resin offer much greater chromate removal capacities compared to alkaline pH. Equilibrium modeling of the process of Cr(VI) removal was carried out by using the Langmuir and Freundlich isotherms. The experimental data obeyed these isotherm models. Thermodynamic studies were performed and the parameters namely, ΔGo, ΔHo and ΔSo showed the spontaneous and endothermic process of the adsorption of Cr(VI) on the pyridine resin. In the competitive adsorption studies, chromate/sulfate revealed the selectivity of the pyridine adsorbents towards chromium ions. This selectivity is explained by the adsorption of the transition metal anion on the π bonds of the pyridine ring and the formation a sandwich arrangement with chromium anion and amide functional groups attached to the quaternary nitrogen atoms.

  15. Removal of Cr(VI) onto functionalized pyridine copolymer with amide groups.

    Science.gov (United States)

    Neagu, Violeta

    2009-11-15

    New pyridine strong base anion exchange resin has been prepared by the nucleophilic substitution reaction of 4-vinylpyridine:divinylbenzene copolymer of gel structure with 2-chloroacetamide as halogenated compound. The resulting resin was used to remove Cr(VI) from the aqueous solution. Batch adsorption studies have been carried out to determine the effect of the initial concentration of Cr(VI), adsorbent dose, pH, temperature and the presence of sulfate anions as counter ions. The process was found to be pH, solid/liquid ratio and concentration dependent. The adsorption capacities increase with the increase of the initial concentration of Cr(VI) and therefore, the resin exhibited the degree of usage of the strong base exchange capacities higher than 90% and the good efficiency in the chromium removal. At acidic pH and low concentration of the hexavalent chromium the synthesized pyridine resin offer much greater chromate removal capacities compared to alkaline pH. Equilibrium modeling of the process of Cr(VI) removal was carried out by using the Langmuir and Freundlich isotherms. The experimental data obeyed these isotherm models. Thermodynamic studies were performed and the parameters namely, DeltaG degrees , DeltaH degrees and DeltaS degrees showed the spontaneous and endothermic process of the adsorption of Cr(VI) on the pyridine resin. In the competitive adsorption studies, chromate/sulfate revealed the selectivity of the pyridine adsorbents towards chromium ions. This selectivity is explained by the adsorption of the transition metal anion on the pi bonds of the pyridine ring and the formation a sandwich arrangement with chromium anion and amide functional groups attached to the quaternary nitrogen atoms. PMID:19647364

  16. Soil humic acids may favour the persistence of hexavalent chromium in soil

    International Nuclear Information System (INIS)

    The interaction between hexavalent chromium Cr(VI), as K2CrO4, and standard humic acids (HAs) in bulk solution was studied using three complementary analytical methods: UV-Visible spectroscopy, X-ray absorption spectroscopy and differential pulse stripping voltammetry. The observed UV-Vis and X-ray absorption spectra showed that, under our experimental conditions, HAs did not induce reduction of Cr(VI) to its trivalent chemical form. The interaction between Cr(VI) and HAs has rather led to the formation of Cr(VI)-HAs micelles via supramolecular chemical processes. The reported results could contribute towards explaining the relative persistence of ecotoxic hexavalent chromium in soils. - Humic acids (HAs) did not induce reduction of Cr(VI) to its trivalent chemical form, as the interaction between Cr(VI) and HAs rather led to the formation of Cr(VI)-HAs micelles via supramolecular chemical processes.

  17. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    Energy Technology Data Exchange (ETDEWEB)

    Carette, Diane [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Perrard, Marie-Hélène, E-mail: marie-helene.durand@ens-lyon.fr [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Prisant, Nadia [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Gilleron, Jérome; Pointis, Georges [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); Segretain, Dominique [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Kallistem SAS Ecole Normale Supérieure de Lyon, Lyon (France)

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  18. Studies on atomic absorption spectrophotometric analysis of hexavalent chromium in waste water by solvent extraction

    International Nuclear Information System (INIS)

    Atomic absorption spectrophotometric(AAS) determination of hexavalent chromium [Cr(VI)] in a waste water was studied. Cr(VI) was extracted with p-xylene from the wastewater, in the way of ion pair formation with anion exchanger aliquat-336(tri-caprylmethyl ammonium chloride). 100ml waste water, after organic materials were extracted out with toluene, was acidified with conc. HCl adjusting the medium to pH 0.5 and 20ml of p-xylene containing 0.01M aliguat-336 was used to extract Cr(VI) from the acidified solution. The absorbance of chromium was measured with air-acetylene flame at 357.9nm. Standard addition method was used in the determining concentration of Cr(VI) extracted. No interference has been found in the extraction of Cr(VI) by the Al(III), Fe(III) and Cr(III) ion presented. However, Fe(II) decreased the absorbance of Cr(VI), due to the fact Fe(II) reduces Cr(VI) to Cr(III). The contained organic material was removed prior to extracting process, since it may reduced the absorbance of Cr(VI). The recovery of added Cr(VI) was over 96%, which seems to be promising and the relative standard deviation was 3.95%. (Author)

  19. Comparison of in vivo genotoxic and carcinogenic potency to augment mode of action analysis: Case study with hexavalent chromium.

    Science.gov (United States)

    Thompson, Chad M; Bichteler, Anne; Rager, Julia E; Suh, Mina; Proctor, Deborah M; Haws, Laurie C; Harris, Mark A

    2016-04-01

    Recent analyses-highlighted by the International Workshops on Genotoxicity Testing Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment-have identified a correlation between (log) estimates of a carcinogen's in vivo genotoxic potency and in vivo carcinogenic potency in typical laboratory animal models, even when the underlying data have not been matched for tissue, species, or strain. Such a correlation could have important implications for risk assessment, including informing the mode of action (MOA) of specific carcinogens. When in vivo genotoxic potency is weak relative to carcinogenic potency, MOAs other than genotoxicity (e.g., endocrine disruption or regenerative hyperplasia) may be operational. Herein, we review recent in vivo genotoxicity and carcinogenicity data for hexavalent chromium (Cr(VI)), following oral ingestion, in relevant tissues and species in the context of the aforementioned correlation. Potency estimates were generated using benchmark doses, or no-observable-adverse-effect-levels when data were not amenable to dose-response modeling. While the ratio between log values for carcinogenic and genotoxic potency was ≥1 for many compounds, the ratios for several Cr(VI) datasets (including in target tissue) were less than unity. In fact, the ratios for Cr(VI) clustered closely with ratios for chloroform and diethanolamine, two chemicals posited to have non-genotoxic MOAs. These findings suggest that genotoxicity may not play a major role in the cancers observed in rodents following exposure to high concentrations of Cr(VI) in drinking water-a finding consistent with recent MOA and adverse outcome pathway (AOP) analyses concerning Cr(VI). This semi-quantitative analysis, therefore, may be useful to augment traditional MOA and AOP analyses. More case examples will be needed to further explore the general applicability and validity of this approach for human health risk assessment. PMID:27085472

  20. Assessing uncertainty in published risk estimates using hexavalent chromium and lung cancer mortality as an example [Presentation 2015

    Science.gov (United States)

    Introduction: The National Research Council recommended quantitative evaluation of uncertainty in effect estimates for risk assessment. This analysis considers uncertainty across model forms and model parameterizations with hexavalent chromium [Cr(VI)] and lung cancer mortality a...

  1. Method of trivalent chromium concentration determination by atomic spectrometry

    Science.gov (United States)

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  2. The identification of biomarkers to assist in the hydrological characterisation of a chromium polluted mine / Maaike Josette McIntyre

    OpenAIRE

    McIntyre, Maaike Josette

    2013-01-01

    Chromium is used in many processing applications, which has led to the formation of chromium(VI) waste. Cr(VI) is an unstable, mobile carcinogen, which is interchangeable with Cr(III) under certain environmental conditions. Management of this waste, however, is often not considered. Mine under investigation is an example of such historic mismanagement. During the second World War, Cr(VI) waste was transferred to the study site from areas where leather products were made for the...

  3. Spectrophotometric determination of trace Cr(III), Cr(VI) and ΣCr in industrial waste water separated by CL-TBP levextrel resin

    International Nuclear Information System (INIS)

    A method for spectrophotometric determination of trace Cr(III), Cr(VI) and ΣCr in industrial waste water has been developed. In 0.1 mol/L HCI medium, the Cr(III) and Cr(VI) are separated by CL-TBP levextrel resin. The Cr(VI) absorbed on the resin is eluted by water. The trace Cr(VI) is determined with DPC spectrophotometry in 0.5 mol/L H2SO4 and H3PO4 mediums. In the buffer medium of pH5.5, the Cr(III) and 5-Br-PADAP-Zeph form ternary complex, which is determined with spectrophotometry. At heated condition, the trivalent chromium is oxidized by potassium permanganate and total chromium is determined by direct photometric method. The precision is better than +-5%, and the recovery of Cr is 98%-104%

  4. Hexavalent Chromium Reduction and Its Distribution in the Cell and Medium by Chromium Resistant Fusarium solani

    Directory of Open Access Journals (Sweden)

    Mousumi Sen

    2013-01-01

    Full Text Available In the present work, batch biosorption of Cr(VI was studied using the fungal strain isolated from soil. The fungal strain was characterized as Fusarium solani. The total Cr distribution in the biomass (fungus and in the media obtained from the experiment conducted at 500 mg l -1 initial Cr(VI concentration and pH 5.0. The results indicated both intracellular and extracellular accumulation and enzymatic reduction of Cr(VI and this was supported by the Transmission Electron Microscopic (TEM observation at the same Cr(VI concentration and pH value. Chromium elution from Fusarium solani containing Cr was then tried out using a number of chromium eluting reagents and a maximum Cr could be eluted using 0.5N sodium hydroxide solution without destructing the biomass structure. The total Cr was recovered by pH adjustment from both biomass and media was found to be 44% of the initial Cr(VI concentration (500 mg l-1.

  5. Chromium III histidinate exposure modulates antioxidant gene expression in HaCaT human keratinocytes exposed to oxidative stress

    Science.gov (United States)

    While the toxicity of hexavalent chromium is well established, trivalent Cr (Cr(III)) is an essential nutrient involved in insulin and glucose homeostasis. Recently, antioxidant effects of chromium (III) histidinate (Cr(III)His) were reported in HaCaT human keratinocytes exposed to oxidative stress...

  6. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    Chromium (Cr) is a redox sensitive element potentially capable of tracing fine-scale fluctuations of the oxygenation of Earth’s early surface environments and seawater. The Cr isotope composition of carbonates could perhaps be used as paleo-redox proxy to elucidate changes in the geological past....... Processes that potentially fractionate Cr isotopes, perhaps during deposition, burial and alteration need to be constrained.Previous studies have shown that Cr isotopes are fractionated during oxidative weathering on land, where heavy Cr isotopes are preferentially removed with Cr(VI) while residual soils...... retain an isotopically light Cr signature. Cr(VI) enriched in heavy Cr isotopes is then transported via river waters to the oceans and sequestered into marine sediments. Marine chemical sediments such asbanded iron formations and modern marine carbonates have proven useful in recording the Cr isotope...

  7. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    International Nuclear Information System (INIS)

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed. • Neonatal lead

  8. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng, E-mail: kswu@stu.edu.cn

    2014-02-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed.

  9. Removal of Cr(VI) from aqueous solution by flocculant with the capacity of reduction and chelation

    International Nuclear Information System (INIS)

    Highlights: ► We report a novel flocculant with the properties of reduction and chelation for Cr. ► The removal of Cr(VI) by the flocculant depends highly on pH value. ► Some coexisting ions inhibit Cr (VI) removal, but promote total Cr removal. ► Cr and turbidity can be removed simultaneously in the treated wastewater. ► The interaction mechanism is investigated by FTIR and SEM. -- Abstract: A novel agent polyethyleneimine-sodium xanthogenate (PEX) with the multifunction of reduction, chelation, flocculation and precipitation was synthesized by using polyethyleneimine (PEI), carbon disulfide (CS2), and sodium hydroxide (NaOH). The effects of different important parameters, such as pH value, initial Cr(VI) concentration, coexisting ions and turbidity etc., on the removal of chromium from aqueous solution by PEX were investigated in flocculation experiments. The experiments results demonstrated that PEX could efficiently remove Cr(VI) and total Cr (Cr(VI) + Cr(III)) in strongly acidic media. It was proved that the presence of coexisting ions (Na+, Ca2+, F−, Cl−, and SO42−) in the solution had a little influence on the removal of chromium. Furthermore, it was conformed that Cr(VI) ions and turbidity could be simultaneously removed when water samples contained both Cr(VI) ions and turbidity. Finally, the mechanism of interaction between chromium and PEX was further confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results reveal that dithiocarboxylic acid groups on PEX macromolecule play a major role in Cr(VI) reduction and Cr(III) chelation, and the flocs formation is attributed to the interparticle bridging mechanism of PEX

  10. Removal of Cr(VI) from aqueous solution by flocculant with the capacity of reduction and chelation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang, E-mail: gangw99@163.com [School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070 (China); Chang, Qing; Han, Xiaoting; Zhang, Mingyue [School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070 (China)

    2013-03-15

    Highlights: ► We report a novel flocculant with the properties of reduction and chelation for Cr. ► The removal of Cr(VI) by the flocculant depends highly on pH value. ► Some coexisting ions inhibit Cr (VI) removal, but promote total Cr removal. ► Cr and turbidity can be removed simultaneously in the treated wastewater. ► The interaction mechanism is investigated by FTIR and SEM. -- Abstract: A novel agent polyethyleneimine-sodium xanthogenate (PEX) with the multifunction of reduction, chelation, flocculation and precipitation was synthesized by using polyethyleneimine (PEI), carbon disulfide (CS{sub 2}), and sodium hydroxide (NaOH). The effects of different important parameters, such as pH value, initial Cr(VI) concentration, coexisting ions and turbidity etc., on the removal of chromium from aqueous solution by PEX were investigated in flocculation experiments. The experiments results demonstrated that PEX could efficiently remove Cr(VI) and total Cr (Cr(VI) + Cr(III)) in strongly acidic media. It was proved that the presence of coexisting ions (Na{sup +}, Ca{sup 2+}, F{sup −}, Cl{sup −}, and SO{sub 4}{sup 2−}) in the solution had a little influence on the removal of chromium. Furthermore, it was conformed that Cr(VI) ions and turbidity could be simultaneously removed when water samples contained both Cr(VI) ions and turbidity. Finally, the mechanism of interaction between chromium and PEX was further confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results reveal that dithiocarboxylic acid groups on PEX macromolecule play a major role in Cr(VI) reduction and Cr(III) chelation, and the flocs formation is attributed to the interparticle bridging mechanism of PEX.

  11. Production of Nanocrystalline Magnetite for Adsorption of Cr(VI) Ions

    Science.gov (United States)

    Javadi, N.; Raygan, Sh.; Seyyed Ebrahimi, S. A.

    Higher environmental standards have made the removal of toxic metals such as hexavalent chromium from wastewater; an important problem for environmental protection. Iron oxide is a particularly interesting adsorbent to be considered for this application. In this study, a new method combining adsorption and magnetic separation was developed to remove Cr(VI) from wastewater. The nanocrystalline magnetite as adsorbent was produced via thermo- mechanical reduction of hematite. Various parameters which affect the adsorption of Cr(VI) such as time, pH, temperature and initial concentration were investigated using thermo-gravimeters (TG), X-Ray diffraction (XRD), scanning electron microscopy (SEM) and atomic adsorption spectroscopy (AAS) techniques. The maximum adsorption was occurred at pH 2. The adsorption data were fitted well to Langmuir isotherm model. The adsorption of Cr(VI) increased significantly with increasing of temperature and time.

  12. Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions.

    Science.gov (United States)

    Tytłak, Aleksandra; Oleszczuk, Patryk; Dobrowolski, Ryszard

    2015-04-01

    In the present research, the potential of two biochars produced by the thermal decomposition of wheat straw (BCS) and wicker (BCW) for Cr(VI) ions removing from wastewater was investigated. The pH and the presence of chlorides and nitrates were also investigated. The Freundlich and Langmuir models were applied for the characterization of adsorption isotherms. The Langmuir model has better fitting of adsorption isotherms than the Freundlich model. The sorption process can be described by the pseudo second-order equation. The optimal adsorption capacities were obtained at pH 2 and were 24.6 and 23.6 mg/g for BCS and BCW, respectively. X-ray photoelectron spectroscopy (XPS) studies confirmed that Cr(III) ions were the most abundant chromium species on the biochars' surface. The results indicated that the sorption mechanism of Cr(VI) on biochar involves anionic and cationic adsorption combined with Cr(VI) species reduction. PMID:25378029

  13. Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation.

    Science.gov (United States)

    Weerasinghe, Aruni; Ariyawnasa, Sanduni; Weerasooriya, Rohan

    2008-01-01

    Phyto-remedial efficiency of Ipomoea aquatica was examined at different experimental conditions for a period of 3 months. This plant was selected due to its easy establishment, tolerance and growing easiness. In all trials, the I. aquatica was grown in coir dust to ensure an inert medium. Essential growth nutrients were supplied externally using Albert solution. Once plant growth conditions were fixed, the model system was spiked with Cr(VI) solution in the range of 7-90 ppm. Up to 28 ppm Cr(VI), I. aquatica exhibits uniform absorption characteristics showing over 75% removal of added Cr(VI). At this stage I. aquatica was not affected and it showed no toxicity symptoms. Therefore, it is suited as a potential phyto-remediant. Further I. aquatica is a vegetable particularly in Asian region; therefore caution has to be taken when selecting it for human consumption due to its high chromium accumulation capacity. PMID:17720213

  14. Exposure to chromium (VI) in the drinking water increases susceptibility to UV-induced skin tumors in hairless mice

    International Nuclear Information System (INIS)

    Hexavalent chromium (Cr (VI)) is a well known-human carcinogen with exposures occurring in both occupational and environmental settings. Although lung carcinogenicity has been well documented for occupational exposure via inhalation, the carcinogenic hazard of drinking water exposure to Cr (VI) has yet to be established. We used a hairless mouse model to study the effects of K2CrO4 in the drinking water on ultraviolet radiation (UVR)-induced skin tumors. Hairless mice were unexposed or exposed to UVR alone (1.2 kJ/m2), K2CrO4 alone at 2.5 and 5.0 ppm, or the combination of UVR and K2CrO4 at 0.5, 2.5, and 5.0 ppm. Mice were observed on a weekly basis for the appearance of skin tumors larger than 2 mm. All the mice were euthanized on day 182. The skin tumors were excised and subsequently analyzed microscopically for malignancy by histopathology. There was a total absence of observable skin tumors in untreated mice and in mice exposed to chromate alone. However, there was a dose-dependent increase in the number of skin tumors greater than 2 mm in mice exposed to K2CrO4 and UV compared with mice exposed to UV alone. The increase in tumors larger than 2 mm was statistically significant (P 2CrO4 at the two highest K2CrO4 doses (2.5 and 5.0 ppm), and there was a statistically significant increase in the numbers of malignant tumors per mouse in the UVR plus K2CrO4 (5 ppm) group compared with UV alone. The data presented here indicate that K2CrO4 increases the number of UV-induced skin tumors in a dose-dependent manner, and these results support the concern that regulatory agencies have relative to the carcinogenic health hazards of widespread human exposure to Cr (VI) in drinking water

  15. Integrated Ecogenomics Study for Bioremediation of Cr(VI) at Hanford 100H Area

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Chakraborty, Romy

    2008-08-12

    Hexavalent chromium is a widespread contaminant found in groundwater. In order to stimulate microbially mediated Cr(VI)-reduction, a poly-lactate compound was injected into Cr(VI)-contaminated aquifers at site 100H at Hanford. Investigation of bacterial community composition using high-density DNA microarray analysis of 16S rRNA gene products revealed a stimulation of Pseudomonas, Desulfovibrio and Geobacter species amongst others. Enrichment of these organisms coincided with continued Cr(VI) depletion. Functional gene-array analysis of DNA from monitoring well indicated high abundance of genes involved in nitrate-reduction, sulfate-reduction, iron-reduction, methanogenesis, chromium tolerance/reduction. Clone-library data revealed Psedomonas was the dominant genus in these samples. Based on above results, we conducted lab investigations to study the dominant anaerobic culturable microbial populations present at this site and their role in Cr(VI)-reduction. Enrichments using defined anaerobic media resulted in isolation of an iron-reducing, a sulfate-reducing and a nitrate-reducing isolate among several others. Preliminary 16S rDNA sequence analysis identified the isolates as Geobacter metallireducens, Pseudomonas stutzeri and Desulfovibrio vulgaris species respectively. The Pseudomonas isolate utilized acetate, lactate, glycerol and pyruvate as alternative carbon sources, and reduced Cr(VI). Anaerobic washed cell suspension of strain HLN reduced almost 95?M Cr(VI) within 4 hr. Further, with 100?M Cr(VI) as sole electron-acceptor, cells grew to 4.05 x 107 /ml over 24 h after an initial lag, demonstrating direct enzymatic Cr(VI) reduction coupled to growth. These results demonstrate that Cr(VI)-immobilization at Hanford 100H site could be mediated by direct microbial metabolism in addition to indirect chemical reduction of Cr(VI) by end-products of microbial activity.

  16. Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium

    International Nuclear Information System (INIS)

    Hexavalent chromium [Cr(VI)] is a mutagen and carcinogen, and occupational exposure can lead to lung cancers and other adverse health effects. Genetic changes resulting from DNA damage have been proposed as an important mechanism that mediates chromate's carcinogenicity. Here we show that chromate exposure of human lung A549 cells increased global levels of di- and tri-methylated histone H3 lysine 9 (H3K9) and lysine 4 (H3K4) but decreased the levels of tri-methylated histone H3 lysine 27 (H3K27) and di-methylated histone H3 arginine 2 (H3R2). Most interestingly, H3K9 dimethylation was enriched in the human MLH1 gene promoter following chromate exposure and this was correlated with decreased MLH1 mRNA expression. Chromate exposure increased the protein as well as mRNA levels of G9a a histone methyltransferase that specifically methylates H3K9. This Cr(VI)-induced increase in G9a may account for the global elevation of H3K9 dimethylation. Furthermore, supplementation with ascorbate, the primary reductant of Cr(VI) and also an essential cofactor for the histone demethylase activity, partially reversed the H3K9 dimethylation induced by chromate. Thus our studies suggest that Cr(VI) may target histone methyltransferases and demethylases, which in turn affect both global and gene promoter specific histone methylation, leading to the silencing of specific tumor suppressor genes such as MLH1.

  17. O impacto do crômio nos sistemas biológicos The impact of chromium on biological systems

    OpenAIRE

    Alba Denise de Queiroz Ferreira

    2002-01-01

    The impact of biological chromium's activity may be beneficial or not. This review presents the most relevant chemical aspects of these "two faces" of chromium by covering first, the efforts toward a clearer understanding of the carcinogenic properties of chromium compounds. The biomimetic chemistry of Cr(V) complexes illustrates the interactions of the intermediates formed by Cr(VI) reduction with DNA or oligonucleotides. The importance of trivalent chromium as an essential element is also e...

  18. Cadmium, lead, and chromium in large game: a local-scale exposure assessment for hunters consuming meat and liver of wild boar.

    Science.gov (United States)

    Danieli, P P; Serrani, F; Primi, R; Ponzetta, M P; Ronchi, B; Amici, A

    2012-11-01

    Heavy metals are ubiquitous in soil, water, and air. Their entrance into the food chain is an important environmental issue that entails risks to humans. Several reports indicate that game meat can be an important source of heavy metals, particularly because of the increasing consumption of game meat, mainly by hunters. We performed an exposure assessment of hunters and members of their households, both adults and children, who consumed wild boar (WB) meat and offal. We estimated the amount of cadmium, lead, and chromium in the tissues of WB hunted in six areas within Viterbo Province (Italy) and gathered data on WB meat and offal consumption by conducting specific diet surveys in the same areas. The exposure to cadmium, lead, and chromium was simulated with specifically developed Monte Carlo simulation models. Cadmium and lead levels in WB liver and meat harvested in Viterbo Province (Italy) were similar to or lower than the values reported in other studies. However, some samples contained these metals at levels greater then the EU limits set for domestic animals. The chromium content of meat or liver cannot be evaluated against any regulatory limit, but our results suggest that the amounts of this metal found in WB products may reflect a moderate environmental load. Our survey of the hunter population confirmed that their consumption of WB meat and liver was greater than that of the general Italian population. This level of consumption was comparable with other European studies. Consumption of WB products contributes significantly to cadmium and lead exposure of both adults and children. More specifically, consumption of the WB liver contributed significantly to total cadmium and lead exposure of members of the households of WB hunters. As a general rule, liver consumption should be kept to a minimum, especially for children living in these hunter households. The exposure to chromium estimated for this population of hunters may be considered to be safe. However

  19. Simultaneous measurement of Cr(III) and Cr(VI) in freshwaters with a single Diffusive Gradients in Thin Films device.

    Science.gov (United States)

    Devillers, Delphine; Buzier, Rémy; Simon, Stéphane; Charriau, Adeline; Guibaud, Gilles

    2016-07-01

    Few attempts have been made to sample labile chromium with the DGT passive sampler (Diffusive Gradients in Thin Films) and, currently, no single device allows the simultaneous determination of both Cr(III) and Cr(VI). In this work, a procedure based on only one device combined with innovative selective elution is evaluated to assess chromium speciation. A zirconium binding gel is used to accumulate both Cr(III) and Cr(VI). Cr(VI) is quantitatively and selectively eluted by NaOH, allowing the subsequent determination of Cr(III). Accurate quantification of both species is demonstrated in synthetic solutions for pH ranging from 4 to 6 and ionic strength ranging from 10(-3) to 5×10(-2)M. Cr(VI) quantification is altered only for [SO4(2-)]≥5×10(-3)M. The method allows successful quantification of labile Cr(III) and Cr(VI) in spiked natural water. The limit of quantification of the procedure is suitable for trace level monitoring (0.03µgL(-1) for Cr(VI) and 1µgL(-1) for Cr(III), for a one-week deployment at 20°C) and the effective capacity of the sampler (∼25µg for each Cr oxidation state) should allow long term deployments. These results highlight the potential of this new procedure for a simple and effective chromium speciation analysis in natural waters. PMID:27154711

  20. Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus sylvestris Linn

    International Nuclear Information System (INIS)

    Biosorption equilibrium, kinetics and thermodynamics of chromium(VI) ions onto cone biomass were studied in a batch system with respect to temperature and initial metal ion concentration. The biosorption efficiency of chromium ions to the cone biomass decreased as the initial concentration of metal ions was increased. But cone biomass of Pinus sylvestris Linn. exhibited the highest Cr(VI) uptake capacity at 45 oC. The biosorption efficiency increased from 67% to 84% with an increase in temperature from 25 to 45 deg. C at an initial Cr(VI) concentration of 300 mg/L. The Langmuir isotherm model was applied to experimental equilibrium data of Cr(VI) biosorption depending on temperature. According to Langmuir isotherm, the monolayer saturation capacity (Qmax) is 238.10 mg/g. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data for initial Cr(VI). The pseudo-second-order kinetic model provided the best correlation of the used experimental data compared to the pseudo-first-order kinetic model. The activation energy of biosorption (Ea) was determined as 41.74 kJ/mol using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the thermodynamic constants of biosorption (ΔGo, ΔHo and ΔSo) were also evaluated

  1. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.

    Science.gov (United States)

    Zhang, Xue-Hong; Liu, Jie; Huang, Hai-Tao; Chen, Jun; Zhu, Yi-Nian; Wang, Dun-Qiu

    2007-04-01

    Leersia hexandra Swartz (Gramineae), which occurs in Southern China, has been found to be a new chromium hyperaccumulator by means of field survey and pot-culture experiment. The field survey showed that this species had an extraordinary accumulation capacity for chromium. The maximum Cr concentration in the dry leaf matter was 2978 mg kg(-1) on the side of a pond near an electroplating factory. The average concentration of chromium in the leaves was 18.86 times as that in the pond sediment, and 297.41 times as that in the pond water. Under conditions of the nutrient solution culture, it was found that L. hexandra had a high tolerance and accumulation capacity to Cr(III) and Cr(VI). Under 60 mg l(-1) Cr(III) and 10 mg l(-1) Cr(VI) treatment, there was no significant decrease of biomass in the leaves of L. hexandra (p>0.05). The highest bioaccumulation coefficients of the leaves for Cr(III) and Cr(VI) were 486.8 and 72.1, respectively. However, L. hexandra had a higher accumulation capacity for Cr(III) than for Cr(VI). At the Cr(III) concentration of 10 mg l(-1) in the culture solution, the concentration of chromium in leaves was 4868 mg kg(-1), while at the same Cr(VI) concentration, the concentration of chromium in leaves was only 597 mg kg(-1). These results confirmed that L. hexandra is a chromium hyperaccumulator which grows rapidly with a great tolerance to Cr and broad ecological amplitude. This species could provide a new plant resource that explores the mechanism of Cr hyperaccumulation, and has potential for usage in the phytoremediation of Cr-contaminated soil and water. PMID:17207838

  2. Natural and induced reduction of hexavalent chromium in soil

    Science.gov (United States)

    Leita, Liviana; Margon, Alja; Sinicco, Tania; Mondini, Claudio; Valentini, Massimiliano; Cantone, Pierpaolo

    2013-04-01

    Even though naturally elevated levels of chromium can be found naturally in some soils, distressing amounts of the hexavalent form (CrVI) are largely restricted to sites contaminated by anthropogenic activities. In fact, the widespread use of chromium in various industries and the frequently associated inadequate disposal of its by-products and wastes have created serious environmental pollution problems in many parts of the world. CrVI is toxic to plants, animals and humans and exhibits also mutagenic effects. However, being a strong oxidant, CrVI can be readily reduced to the much less harmful trivalent form (CrIII) when suitable electron donors are present in the environment. CrIII is relatively insoluble, less available for biological uptake, and thus definitely less toxic for web-biota. Various electron donors in soil can be involved in CrVI reduction in soil. The efficiency of CrVI reducing abiotic agents such as ferrous iron and sulphur compounds is well documented. Furthermore, CrVI reduction is also known to be significantly enhanced by a wide variety of cell-produced monosaccharides, including glucose. In this study we evaluated the dynamics of hexavalent chromium (CrVI) reduction in contaminated soil amended or not with iron sulphate or/and glucose and assessed the effects of CrVI on native or glucose-induced soil microbial biomass size and activity. CrVI negatively affected both soil microbial activity and the size of the microbial biomass. During the incubation period, the concentration of CrVI in soil decreased over time whether iron sulphate or/and glucose was added or not, but with different reduction rates. Soil therefore displayed a natural attenuation capacity towards chromate reduction. Addition of iron sulphate or/and glucose, however, increased the reduction rate by both abiotic and biotic mechanisms. Our data suggest that glucose is likely to have exerted an indirect role in the increased rate of CrVI reduction by promoting growth of

  3. Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor

    International Nuclear Information System (INIS)

    Highlights: ► Elemental sulfur can be used as electron acceptor for sulfide production. ► Biogenically produced sulfide reduces Cr(VI) to the much less toxic and immobile form of Cr(III). ► Sulfur packed bioreactor is efficient for Cr(VI) containing wastewater treatment. ► Reduced form of chromium precipitates in the bioreactor. - Abstract: The most commonly used approach for the detoxification of hazardous industrial effluents and wastewaters containing Cr(VI) is its reduction to the much less toxic and immobile form of Cr(III). This study investigates the cleanup of Cr(VI) containing wastewaters using elemental sulfur as electron acceptor, for the production of hydrogen sulfide that induces Cr(VI) reduction. An elemental sulfur reducing packed-bed bioreactor was operated at 28–30 °C for more than 250 days under varying influent Cr(VI) concentrations (5.0–50.0 mg/L) and hydraulic retention times (HRTs, 0.36–1.0 day). Ethanol or acetate (1000 mg/L COD) was used as carbon source and electron donor. The degree of COD oxidation varied between 30% and 85%, depending on the operating conditions and the type of organic carbon source. The oxidation of organic matter was coupled with the production of hydrogen sulfide, which reached a maximum concentration of 750 mg/L. The biologically produced hydrogen sulfide reduced Cr(VI) chemically to Cr(III) that precipitated in the reactor. Reduction of Cr(VI) and removal efficiency of total chromium always exceeded 97% and 85%, respectively, implying that the reduced chromium was retained in the bioreactor. This study showed that sulfur can be used as an electron acceptor to produce hydrogen sulfide that induces efficient reduction and immobilization of Cr(VI), thus enabling decontamination of Cr(VI) polluted wastewaters.

  4. The carcinogenicity of chromium

    OpenAIRE

    Norseth, Tor

    1981-01-01

    The carcinogenicity of chromium compounds is reviewed with specific attention to the gaps in knowledge for risk estimation and research needs. The most important problems at present are whether trivalent chromium compounds cause cancer, and whether there is a difference in cancer causing effects between the soluble and the slightly soluble hexavalent compounds in the practical exposure situation. Dose estimates for risk estimation based on epidemiological investigations are also lacking. Pres...

  5. Removal of hexavalent chromium from aqueous solution by granular and powdered Peganum Harmala

    Science.gov (United States)

    Khosravi, Rasoul; Fazlzadehdavil, Mehdi; Barikbin, Behnam; Taghizadeh, Ali Akbar

    2014-02-01

    In this paper, batch removal of hexavalent chromium from aqueous solutions by granular and powdered seeds of Peganum Harmala was investigated. The Peganum Harmala seeds were collected and after beating slowly, separating and cleaning the Harmala seeds done using a sieve. Batch adsorption studies were performed in 100 ml Erlenmeyer flasks inside an incubator container. The main process parameters considered were pH, initial Cr(VI) concentration for PPH and GPH, adsorbent dose, and contact time. Cr(VI) was measured at a wavelength of 540 nm using a UV-vis T80+ spectrophotometer. The adsorption data were fitted well by Freundlich isotherm. The result shows that the maximum removal of Cr(VI) was observed at pH 1.5 for both adsorbents. Also, by increase adsorption dose, adsorption capacity of Cr(VI) decreased but the chromium adsorption rate increased. The mount of adsorbed Cr(VI) onto both adsorbents increased with an increase in the contact time but by increases initial concentration of Cr(VI), the mount of adsorbed Cr(VI) onto both adsorbents decreased. The results indicate that the powdered Peganum Harmala can be effective adsorbent than the granular Peganum Harmala for the removal of Cr(VI) from aqueous solution.

  6. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Pagnanelli, F., E-mail: francesca.pagnanelli@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Cruz Viggi, C., E-mail: carolina.cruzviggi@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Cibati, A., E-mail: alessio.cibati@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Uccelletti, D., E-mail: daniela.uccelletti@uniroma1.it [Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy); Toro, L., E-mail: luigi.toro@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Palleschi, C., E-mail: claudio.palleschi@uniroma1.it [Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Use of ethanol as electron donor for sulphate-reducing bacteria for the treatment of Cr(VI). Black-Right-Pointing-Pointer Isolation of contribution in Cr removal (adsorption vs. bioprecipitation). Black-Right-Pointing-Pointer Bioassessment of the process effectiveness by ecotoxicological in vivo tests using C. elegans. - Abstract: Biological treatment of Cr(VI) contaminated waters was performed in fixed bed reactors inoculated with SRB (sulphate-reducing bacteria) growing on ethanol. Treatment efficiency was evaluated by checking chemical abatement of Cr(VI) and by ecotoxicological tests using the nematode Caenorhabditis elegans. A preliminary comparison between ethanol and lactate was performed, denoting that using ethanol, the same values of final sulphate abatement were obtained. In addition ethanol showed to be a substrate more competitive than lactate in kinetic terms. Fixed bed column reactors were continuously fed with a solution containing sulphates (3 g L{sup -1}), ethanol (1.5 g L{sup -1}) and Cr(VI) (50 mg L{sup -1}). At steady state the column inoculated with SRB removed 65 {+-} 5% of sulphate and 95 {+-} 5% of chromium. Bioactive removal mechanisms predominated over biosorption. Diminution of Cr(VI) toxicity was assessed by using the nematode C. elegans as a test organism showing that the survival of nematodes was 20% in the presence of the untreated influent and raised up to 53% when the nematodes were exposed to the treated effluent.

  7. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol

    International Nuclear Information System (INIS)

    Highlights: ► Use of ethanol as electron donor for sulphate-reducing bacteria for the treatment of Cr(VI). ► Isolation of contribution in Cr removal (adsorption vs. bioprecipitation). ► Bioassessment of the process effectiveness by ecotoxicological in vivo tests using C. elegans. - Abstract: Biological treatment of Cr(VI) contaminated waters was performed in fixed bed reactors inoculated with SRB (sulphate-reducing bacteria) growing on ethanol. Treatment efficiency was evaluated by checking chemical abatement of Cr(VI) and by ecotoxicological tests using the nematode Caenorhabditis elegans. A preliminary comparison between ethanol and lactate was performed, denoting that using ethanol, the same values of final sulphate abatement were obtained. In addition ethanol showed to be a substrate more competitive than lactate in kinetic terms. Fixed bed column reactors were continuously fed with a solution containing sulphates (3 g L−1), ethanol (1.5 g L−1) and Cr(VI) (50 mg L−1). At steady state the column inoculated with SRB removed 65 ± 5% of sulphate and 95 ± 5% of chromium. Bioactive removal mechanisms predominated over biosorption. Diminution of Cr(VI) toxicity was assessed by using the nematode C. elegans as a test organism showing that the survival of nematodes was 20% in the presence of the untreated influent and raised up to 53% when the nematodes were exposed to the treated effluent.

  8. Hexavalent chromium is cytotoxic and genotoxic to American alligator cells.

    Science.gov (United States)

    Wise, Sandra S; Wise, Catherine; Xie, Hong; Guillette, Louis J; Zhu, Cairong; Wise, John Pierce; Wise, John Pierce

    2016-02-01

    Metals are a common pollutant in the aquatic ecosystem. With global climate change, these levels are anticipated to rise as lower pH levels allow sediment bound metals to be released. The American alligator (Alligator mississippiensis) is an apex predator in the aquatic ecosystem and is considered a keystone species; as such it serves as a suitable monitor for localized pollution. One metal of increasing concern is hexavalent chromium (Cr(VI)). It is present in the aquatic environment and is a known human carcinogen and reproductive toxicant. We measured the cytotoxicity and genotoxicity of Cr(VI) in American alligator cells derived from scute tissue. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to alligator cells in a concentration-dependent manner. These data suggest that alligators may be used as a model for assessing the effects of environmental Cr(VI) contamination as well as for other metals of concern. PMID:26730726

  9. Improved biosorption for Cr(VI) reduction and removal by Arthrobacter viscosus using zeolite

    OpenAIRE

    Silva, Bruna Andreia Nogueira Airosa; Figueiredo, Hugo; Quintelas, C.; Neves, Isabel C.; Tavares, M.T.

    2012-01-01

    The aim of the present work was to optimize the reduction and removal of chromium from aqueous solutions by a biosorption system consisting of a bacteria supported on a zeolite. The system proposed combines the biosorption properties of Arthrobacter viscosus, with the ion exchange capacity of NaY zeolite. Experiments were also performed without the zeolite for comparison purposes. Experimental parameters such as solution pH, biomass concentration and initial Cr(VI) concentration were investig...

  10. Genotoxic effects of chromium oxide nanoparticles and microparticles in Wistar rats after 28 days of repeated oral exposure.

    Science.gov (United States)

    Singh, Shailendra Pratap; Chinde, Srinivas; Kamal, Sarika Srinivas Kalyan; Rahman, M F; Mahboob, M; Grover, Paramjit

    2016-02-01

    The nanotechnology industry has advanced rapidly in the last 10 years giving rise to the growth of the nanoparticles (NPs) with great potential in various arenas. However, the same properties that make NPs interesting raise concerns because their toxicity has not been explored. The in vivo toxicology of chromium oxide (Cr2O3)-NPs is not known till date. Therefore, this study investigated the 28-day repeated toxicity after 30, 300 and 1000 mg/kg body weight (bw)/day oral treatment with Cr2O3-NPs and Cr2O3 microparticles (MPs) in Wistar rats. The mean size of Cr2O3-NPs and Cr2O3-MPs was 34.89 ± 2.65 nm and 3.76 ± 3.41 μm, respectively. Genotoxicity was assessed using comet, micronucleus and chromosomal aberration (CA) assays. The results revealed a significant increase in DNA damage in peripheral blood leucocytes and liver, micronuclei and CA in bone marrow after exposure of 300 and 1000 mg/kg doses of Cr2O3-NPs and Cr2O3-MPs only at 1000 mg/kg bw/day. Cr biodistribution was observed in all the tissues in a dose-dependent manner. The maximum amount of Cr was found in the kidneys and least in the brain of the treated rats. More of the Cr was excreted in the faeces than in the urine. Furthermore, nanotreated rats displayed much higher absorption and tissue accumulation. These findings provide initial data of the probable genotoxicity and biodistribution of NPs and MPs of Cr2O3 generated through repeated oral treatment. PMID:26503004

  11. Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway

    International Nuclear Information System (INIS)

    Exposure to carcinogenic metals, such as trivalent arsenic [As(III)] and hexavalent chromium [Cr(VI)], through drinking water is a major global public health problem and is associated with various cancers. However, the mechanism of their carcinogenicity remains unclear. In this study, we used azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse colitis-associated colorectal cancer model to investigate their tumorigenesis. Our results demonstrate that exposure to As(III) or Cr(VI), alone or in combination, together with AOM/DSS pretreatment has a promotion effect, increasing the colorectal tumor incidence, multiplicity, size, and grade, as well as cell inflammatory response. Two-dimensional differential gel electrophoresis coupled with mass spectrometry revealed that As(III) or Cr(VI) treatment alone significantly changed the density of proteins. The expression of β-catenin and phospho-GSK was increased by treatment of carcinogenic metals alone. Concomitantly, the expression of NADPH oxidase1 (NOX1) and the level of 8-OHdG were also increased by treatment of carcinogenic metals alone. Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, were decreased. Similarly, in an in vitro system, exposure of CRL-1807 to carcinogenic metals increased reactive oxygen species (ROS) generation, the expression of β-catenin, phospho-GSK, and NOX1. Inhibition of ROS generation by addition of SOD or catalase inhibited β-catenin expression and activity. Our study provides a new animal model to study the carcinogenicity of As(III) and Cr(VI) and suggests that As(III) and Cr(VI) promote colorectal cancer tumorigenesis, at least partly, through ROS-mediated Wnt/β-catenin signaling pathway. -- Highlights: ► Carcinogenic metals in drinking water promote colorectal tumor formation in vivo. ► Carcinogenic metals induce β-catenin activation in vivo and in vitro. ► ROS generation induced by carcinogenic metals mediated β-catenin activation.

  12. Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Mandal, Ardhendu K. [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Saito, Hiroshi [Department of Surgery and Physiology, Lucille P. Markey Cancer Center, University of Kentucky, Lexington, KY 40536 (United States); Pulliam, Joseph F.; Lee, Eun Y. [Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536 (United States); Ke, Zun-Ji; Lu, Jian; Ding, Songze [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Li, Li [Department of Family Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States); Shelton, Brent J.; Tucker, Thomas [Markey Cancer Control Program, University of Kentucky, Lexington, KY 40504 (United States); Evers, B. Mark [Department of Surgery and Physiology, Lucille P. Markey Cancer Center, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States)

    2012-07-01

    Exposure to carcinogenic metals, such as trivalent arsenic [As(III)] and hexavalent chromium [Cr(VI)], through drinking water is a major global public health problem and is associated with various cancers. However, the mechanism of their carcinogenicity remains unclear. In this study, we used azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse colitis-associated colorectal cancer model to investigate their tumorigenesis. Our results demonstrate that exposure to As(III) or Cr(VI), alone or in combination, together with AOM/DSS pretreatment has a promotion effect, increasing the colorectal tumor incidence, multiplicity, size, and grade, as well as cell inflammatory response. Two-dimensional differential gel electrophoresis coupled with mass spectrometry revealed that As(III) or Cr(VI) treatment alone significantly changed the density of proteins. The expression of β-catenin and phospho-GSK was increased by treatment of carcinogenic metals alone. Concomitantly, the expression of NADPH oxidase1 (NOX1) and the level of 8-OHdG were also increased by treatment of carcinogenic metals alone. Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, were decreased. Similarly, in an in vitro system, exposure of CRL-1807 to carcinogenic metals increased reactive oxygen species (ROS) generation, the expression of β-catenin, phospho-GSK, and NOX1. Inhibition of ROS generation by addition of SOD or catalase inhibited β-catenin expression and activity. Our study provides a new animal model to study the carcinogenicity of As(III) and Cr(VI) and suggests that As(III) and Cr(VI) promote colorectal cancer tumorigenesis, at least partly, through ROS-mediated Wnt/β-catenin signaling pathway. -- Highlights: ► Carcinogenic metals in drinking water promote colorectal tumor formation in vivo. ► Carcinogenic metals induce β-catenin activation in vivo and in vitro. ► ROS generation induced by carcinogenic metals mediated β-catenin activation.

  13. About the performance of Sphaerotilus natans to reduce hexavalent chromium in batch and continuous reactors

    International Nuclear Information System (INIS)

    The hexavalent chromium biological reduction constitutes a safe and economical detoxification procedure of wastewaters containing Cr(VI). However, little research has been done to evaluate Cr(VI) tolerance and reduction capacity of microbial cultures under different growth conditions. The aims of this work were (a) to evaluate the capacity of Sphaerotilus natans to reduce Cr(VI) to Cr(III) in a continuous system limited in carbon and energy source or in nitrogen source, (b) to evaluate the toxic effect of Cr(VI) on this microorganism, (c) to carry out a complete analysis of Cr(VI) reduction by S. natans not only in continuous regime but also in batch system, and (d) to model the obtained results mathematically. S. natans exhibited great resistance to Cr(VI) (19-78 mg l-1) and optimal growth in continuous and batch systems using a mineral medium supplemented only with citric acid as organic substrate. In carbon- and energy-limited continuous systems, a maximum percentual decrease in Cr(VI) by 13% was reached for low influent Cr(VI) concentration (4.3-5.32 mgCr(VI) l-1); the efficiency of the process did not notoriously increase as the length of cellular residence time was increased from 4.16 to 50 h. A nitrogen-limited continuous operation with a cellular residence time of 28.5 h resulted in a Cr(VI) decrease of approximately 26-32%. In batch system, a mathematical model allowed to predict the Cr(VI) concentration as a function of time and the ratio between the initial Cr(VI) concentration and that of the biomass. High concentrations of initial Cr(VI) and biomass produced the highest performance of the process of Cr(VI) reduction reached in batch system, aspects which should be considered in detoxification strategies of wastewaters.

  14. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  15. Determination of Cr(VI) and Cr(III) in urine and dextrose by inductively coupled plasma emission spectroscopy

    Science.gov (United States)

    Mianzhi, Zhuang; Barnes, Ramon M.

    The determination of Cr(VI) and Cr(III) in human urine and in commercial dextrose solution is performed by induclively coupled plasma-atomic emission spectroscopy after selective preconcentration of the chromium species at different pH values by poly(dithiocarbamate) and poly(acrylamidoxime) chelating resins. The chelating properties of these resins with chromium, including the kinetics of uptake and removal of Cr(III), and the influence of matrix concentrations were evaluated. Chromium in human urine was found to exist exclusively as Cr(III).

  16. Diverse anaerobic Cr(VI) tolerant bacteria from Cr(VI)-contaminated 100H site at Hanford

    Science.gov (United States)

    Chakraborty, R.; Phan, R.; Lam, S.; Leung, C.; Brodie, E. L.; Hazen, T. C.

    2007-12-01

    Hexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water. Cr(VI) is more soluble, toxic, carcinogenic, and mutagenic compared to its reduced form Cr(III). In order to stimulate microbially mediated reduction of Cr(VI), a poly-lactate compound HRC was injected into the chromium contaminated aquifers at site 100H at Hanford. Based on the results of the bacterial community composition using high-density DNA microarray analysis of 16S rRNA gene products, we recently investigated the diversity of the dominant anaerobic culturable microbial population present at this site and their role in Cr(VI) reduction. Positive enrichments set up at 30°C using specific defined anaerobic media resulted in the isolation of an iron reducing isolate strain HAF, a sulfate reducing isolate strain HBLS and a nitrate reducing isolate, strain HLN among several others. Preliminary 16S rDNA sequence analysis identifies strain HAF as Geobacter metallireducens, strain HLN as Pseudomonas stutzeri and strain HBLS as a member of Desulfovibrio species. Strain HAF isolated with acetate as the electron donor utilized propionate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Growth was optimal at 37°C, pH of 6.5 and 0% salinity. Strain HLN isolated with lactate as electron donor utilized acetate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Optimal growth was observed at 37°C, at a pH of 7.5 and 0.3% salinity. Anaerobic active washed cell suspension of strain HLN reduced almost 95 micromolar Cr(VI) within 4 hours relative to controls. Further, with 100 micromolar Cr(VI) as the sole electron acceptor, cells of strain HLN grew to cell numbers of 4.05X 107/ml over a period of 24hrs after an initial lag, demonstrating direct enzymatic Cr(VI) reduction by this species. 10mM lactate served as the sole electron donor. These results demonstrate that Cr(VI

  17. Optimization and Modeling of Hexavalent Chromium Removal from Aqueous Solution Via Adsorption on Multiwalled Carbon Nanotubes

    OpenAIRE

    Mina Gholipour; Hassan Hashemipour Rafsanjani; Ataollah Soltani Goharrizi

    2011-01-01

    Hexavalent chromium and its derivatives are potential pollutant due to their mortal affects. Therefore, It is essential to remove these components from wastewaters before disposal. Adsorption can be effective and versatile method for removing of hexavalent chromium. In this article, removal of hexavalent chromium via adsorption on multiwalled carbon nanotubes was investigated as a function of adsorbent dosage, initial solution pH, initial Cr(VI) concentrations, contact time and temperature. T...

  18. Microcalorimetric investigation of the toxic action of Cr(VI) on the metabolism of Tetrahymena thermophila BF(5) during growth.

    Science.gov (United States)

    Zheng, Dan; Liu, Yi; Zhang, Yue; Chen, Xiao-Juan; Shen, Yun-Fen

    2006-09-01

    Tetrahymena thermophila BF(5) produce heat by metabolism and movement. Using a TAM air isothermal microcalorimeter, the power-time curves of the metabolism of T. thermophila BF(5) during growth were obtained and the action on them by the addition of Cr(VI) were studied. The morphological change with Cr(VI) coexisted and biomass change during the process of T. thermophila BF(5) growth were studied by light microscope. Chromium has been regarded as an essential trace element for life. However, hexavalent chromium is a known carcinogen, mutagen, cytotoxicant and strong oxidizing agent. Cr(VI) of different concentration have different effects on T. thermophila BF(5) growth with the phenomenon of low dose stimulation (0-3×10(-5)molL(-1)) and high dose inhibition (3×10(-5) to 2.4×10(-4)molL(-1)). The relationship between the growth rate constant (k) and c is a typical U-shaped curve, which is a characteristic of hormesis. T. thermophila BF(5) cannot grow at all when the concentration of Cr(VI) is up to 2.4×10(-4)molL(-1). The microscopic observations agree well with the results obtained by means of microcalorimetry. And T. thermophila BF(5) had obviously morphological changes by the addition of Cr(VI). PMID:21783697

  19. Chromium recovery from exhausted baths generated in plating processes and its reuse in the tanning industry.

    Science.gov (United States)

    Torras, Josep; Buj, Irene; Rovira, Miquel; de Pablo, Joan

    2012-03-30

    Chromium plating used for functional purposes provides an extremely hard, wear and corrosion resistant layer by means of electrolytic deposition. Typical layer thicknesses range between 2.5 and 500 μm. Chromium electroplating baths contain high concentrations of Cr(VI) with chromium trioxide (CrO(3)) as the chromium source. When because of technical or economic reasons a bath gets exhausted, a waste containing mainly chromium as dichromate as well as other heavy metals is generated. Chromium may then be purified for use in other industrial processes with different requirements. In this work, a sustainable system for using galvanic wastes as reagents in the leather tanning industry, thus reducing quantity of wastes to be treated, is presented. Metal cations present in the chromium exhausted bath were precipitated with NaOH. Then, the solution containing mainly soluble Cr(VI) was separated. By means of sodium sulphite in acidic conditions, Cr(VI) was reduced to Cr(III) as chromium (III) sulphate. From chromium (III) sulphate a basic Cr(III) sulphate may be obtained, which is one of most used compounds in the tanning industry. Cr(III) concentration in the final solution allows its reuse without concentration, but with a slight dilution. PMID:22326242

  20. Characterization of Chromium Waste Form Based on Biocementation by Microbacterium sp. GM-1.

    Science.gov (United States)

    Lun, Limei; Li, Dongwei; Yin, Yajie; Li, Dou; Xu, Guojing; Zhao, Ziqiang; Li, Shan

    2016-09-01

    This paper demonstrated a biocementation technology for chromium slag by strain GM-1, a calcifying ureolytic bacterium identified as Microbacterium, based on microbially induced calcium carbonate. The characterization of Microbacterium sp. GM-1 was assessed to know the growth curve in different concentrations of Cr(VI). Microbacterium sp. GM-1 was tolerant to a concentration of 120 mg/L Cr(VI). Chromium waste forms were prepared using chromium, sand, soil and bacterial culture. There we had three quality ratios (8:2:1; 8:1:1; 8:2:0.5) of material (chromium, sand and soil, respectively). Bacterial and control chromium waste forms were analyzed by thermal gravimetric analyzer. All bacterial forms (8:2:1; 8:1:1; 8:2:0.5 J) showed sharp weight loss near the decomposition temperature of calcium carbonate between 600 and 700 °C. It indicated that the efficient bacterial strain GM-1 had induced calcium carbonate precipitate during bioremediation process. A five step Cr(VI) sequential extraction was performed to evaluate its distribution pattern in chromium waste forms. The percentage of Cr(VI) was found to significantly be decreased in the exchangeable fraction of chromium waste forms and subsequently, that was markedly increased in carbonated fraction after biocementation by GM-1. Further, compressive strength test and leaching test were carried out. The results showed that chromium waste forms after biocementation had higher compressive strength and lower leaching toxicity. Additionally, the samples made of 8:1:1 (m/m/m) chromium + sand + soil were found to develop the highest compressive strength and stand the lowest concentration of Cr(VI) released into the environment. PMID:27407300

  1. The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: Column test

    International Nuclear Information System (INIS)

    This paper presents the results of a column reactor test, aiming at evaluating the performance of a biological permeable barrier made of low-cost waste materials, for Cr(VI) removal from contaminated groundwater. A 1:1 by volume mixture of green compost and siliceous gravel was tested as reactive medium in the experimental activity. A 10 mg/l Cr(VI) contaminated solution was used and the residual Cr(VI) concentration along the column height and in the outlet was determined in the water samples collected daily. Also pH, redox potential and COD were analyzed. At the end of the test, the reactive medium was characterized in terms of Cr(VI) and total chromium. The Cr(VI) removal efficiency was higher than 99% during the entire experimental activity. The influence of the biological activity on Cr(VI) removal efficiency was evaluated by varying the organic carbon and nitrogen dosages in the contaminated solution fed to the system; a removal decrease was observed when the organic carbon was not enough to sustain the microbial metabolism. The Cr(VI) removal was strictly linked to the biological activity of the native biomass of compost. No Cr(III) was detected in the outlet: the Cr(III) produced was entrapped in the solid matrix. Two main processes involved were: adsorption on the organic-based matrix and reduction into Cr(III) mediated by the anaerobic microbial metabolism of the bacteria residing in green compost. Siliceous gravel was used as the structure matrix, since its contribution to the removal was almost negligible. Thanks to the proven efficiency and to the low-cost, the reactive medium used can represent a valid alternative to conventional approaches to chromium remediation.

  2. Kinetics and mechanism of hexavalent chromium removal by basic oxygen furnace slag.

    Science.gov (United States)

    Han, Chong; Jiao, Yanan; Wu, Qianqian; Yang, Wangjin; Yang, He; Xue, Xiangxin

    2016-08-01

    Basic oxygen furnace slag (BOFS) has the potential to remove hexavalent chromium (Cr(VI)) from wastewater by a redox process due to the presence of minerals containing Fe(2+). The effects of the solution pH, initial Cr(VI) concentration, BOFS dosage, BOFS particle size, and temperature on the removal of Cr(VI) was investigated in detail through batch tests. The chemical and mineral compositions of fresh and reacted BOFS were characterized using scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system and X-ray diffractometer (XRD). The results show that Cr(VI) in wastewater can be efficiently removed by Fe(2+) released from BOFS under appropriate acidic conditions. The removal of Cr(VI) by BOFS significantly depended on the parameters mentioned above. The reaction of Cr(VI) with BOFS followed the pseudo-second-order kinetic model. Fe(2+) responsible for Cr(VI) removal was primarily derived from the dissolution of FeO and Fe3O4 in BOFS. When H2SO4 was used to adjust the solution acidity, gypsum (CaSO4·2H2O) could be formed and become an armoring precipitate layer on the BOFS surface, hindering the release of Fe(2+) and the removal of Cr(VI). Finally, the main mechanism of Cr(VI) removal by BOFS was described using several consecutive reaction steps. PMID:27521937

  3. Determination of Cr(VI) in ambient airborne particulate matter by a species-preserving scrubber-sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Metze, Detlef; Herzog, Helmut; Gosciniak, Bernhard; Jakubowski, Norbert [Institute for Spectrochemistry and Applied Spectroscopy (ISAS), PO Box 10 13 52, 44013, Dortmund (Germany); Gladtke, Dieter [Landesumweltamt Nordrhein-Westfalen, PO Box 10 23 63, 45023 Essen (Germany)

    2004-01-01

    Airborne particulate matter has been sampled at a location close to a metallurgical plant in North-Rhine-Westphalia, Germany, and first results on the chromium(VI) content in the collected dust are presented. A special procedure using a scrubber as sampling device was used to preserve Cr(VI) during the sampling procedure. The scrubber solution which consisted of 0.1 mol L{sup -1} TRIS-buffer solution was adjusted to a slightly alkaline pH of 8.6 to reduce the oxidation potential of Cr(VI) and to avoid possible oxidation of Cr(III) to Cr(VI), for example by oxygen (or ozone at ambient concentrations). After sampling Cr(VI) was pre-concentrated on an anion-exchange material and eluted with aqueous 0.6 mol L{sup -1} sodium perchlorate solution. After elution, a species-selective complex of Cr(VI) with diphenylcarbazide (DPC) was prepared; this was extracted into n-hexanol and quantified by UV-visible spectrophotometry. A detection limit of 0.9 ng m{sup -3} for Cr(VI) in ambient aerosols can be achieved with this method. (orig.)

  4. Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions.

    Science.gov (United States)

    He, Da; Zheng, Maosheng; Ma, Tao; Li, Can; Ni, Jinren

    2015-06-01

    Inhibition of efficient denitrification in presence of toxic heavy metals is one of the current problems encountered in municipal wastewater treatment plants. This paper presents how to remove hexavalent chromium (Cr(VI)) and nitrate simultaneously by the novel strain Pseudomonas aeruginosa PCN-2 under aerobic conditions. The capability of strain PCN-2 for Cr(VI) and nitrate reduction was confirmed by PCR analysis of gene ChrR, napA, nirS, cnorB, nosZ, while Cr(VI) reduction was proved via an initial single-electron transfer through Cr(V) detection using electron paramagnetic resonance. Experimental results demonstrated that Cr(VI) and nitrate reduction by strain PCN-2 was much faster at pH 8-9 and higher initial cell concentration. However, increasing Cr(VI) concentration would inhibit aerobic denitrification process and result in an significant delay of nitrate reduction or N2O accumulation, which was attributed to competition between three electron acceptors, i.e., Cr(VI), O2 and nitrate in the electron transport chain. PMID:25795449

  5. USE OF MICRO X-RAY ABSORPTION SPECTROSCOPY AND DIFFRACTION TO DELINEATE Cr(VI) SPECIATION IN COPR

    Energy Technology Data Exchange (ETDEWEB)

    CHRYSOCHOOU, M.; MOON, D. H.; FAKRA, S.; MARCUS, M.; DERMATAS, D.; CHRISTODOULATOS, C.

    2010-06-22

    The speciation of Cr(VI) in Cromite Ore Processing Residue was investigated by means of bulk XRD, and a combination of micro-XRF, -XAS and -XRD at the Advanced Light Source (ALS), Berkeley, CA, U.S.A.. Bulk XRD yielded one group of phases that contained explicitly Cr(VI) in their structure, Calcium Aluminum Chromium Oxide Hydrates, accounting for 60% of the total Cr(VI). Micro-analyses at ALS yielded complimentary information, confirming that hydrogarnets and hydrotalcites, two mineral groups that can host Cr(VI) in their structure by substitution, were indeed Cr(VI) sinks. Chromatite (CaCrO4) was also identified by micro-XRD, which was not possible with bulk methods due to its low content. The acquisition of micro-XRF elemental maps enabled not only the identification of Cr(VI)-binding phases, but also the understanding of their location within the matrix. This information is invaluable when designing Cr(VI) treatment, to optimize release and availability for reduction.

  6. Use of Variamine Blue dye in Spectrophotometric determination of Water Soluble Cr(VI in Portland Cement

    Directory of Open Access Journals (Sweden)

    Devesh K. Sharma

    2015-12-01

    Full Text Available Variamine blue dye as chromogenic reagent was used for Portland cement samples in determination of soluble hexavalent chromium. This method was based on the reaction of Cr(VI with potassium iodide in acidic medium to liberate iodine, which oxidized variamine blue to form a violet colored species having an absorption maximum 556 nm. The extraction of soluble Cr(VI for quantification in cement was done according to European method. The validity of this method was thoroughly examined by comparing with standard DPC method as well as the accuracy of the method was checked using a standard reference material of National Institute of Standards & Technology (NIST, USA.

  7. Reduction of Cr(VI) and survival in Cr-contaminated sites by Caulobacter crescentus

    Science.gov (United States)

    Hu, P.; Chakraborty, R.; Brodie, E. L.; Andersen, G. L.; Hazen, T. C.

    2008-12-01

    The Caulobacter spp. is known to be able to live in low-nutrient environments, a characteristic of most heavy metal-contaminated sites. Recent studies have shown that Caulobacter crescentus can grow in chemically defined medium containing up to 1 mM uranium. Whole-genome transcriptional analysis and electron microscopic imaging of heavy metal stresses in Caulobacter crescentus also provided insight and evidence that the bacterium used an array of defensive mechanisms to deal with heavy metal stresses. In addition to up-regulated enzymes protecting against oxidative stress, DNA repair and down-regulated potential chromium transport, one of the major gene groups respond to chromium stress is "electron transport process and cytochrome oxidases", including cytochrome c oxidases, raising the possibility that the cells can employ the cytochromes to reduce chromium. Analysis of the microbial community at the chromium contaminated DOE site at Hanford, WA revealed the presence of Caulobacter spp. As an oligotroph, Caulobacter can play a significant role in chromium reduction in the environment where the nutrients are limited. This result was confirmed by both 16S rDNA based microarray (Phylochip) as well as by MDA-based clone library data. Based on these results we further investigated the capability of this organism to reduce Cr(VI) using the well known model strain Caulobacter crescentus CB15N. Preliminary cell suspension experiments were set up with glucose as the electron donor and Cr(VI) as the electron acceptor in phosphate based M2 salts buffer. After 22 hours almost 27% of Cr(VI) was reduced in the incubations containing active cells relative to the controls containing heat killed cells. Also, in another set of controls with no electron acceptor added, cells showed no increase in cell density during that time demonstrating that the reduction of Cr(VI) by cells of Caulobacter was due to biological activity. Future experiments will investigate the components

  8. Hexavalent chromium induces apoptosis in male somatic and spermatogonial stem cells via redox imbalance

    OpenAIRE

    Joydeep Das; Min-Hee Kang; Eunsu Kim; Deug-Nam Kwon; Yun-Jung Choi; Jin-Hoi Kim

    2015-01-01

    Hexavalent chromium [Cr(VI)], an environmental toxicant, causes severe male reproductive abnormalities. However, the actual mechanisms of toxicity are not clearly understood and have not been studied in detail. The present in vitro study aimed to investigate the mechanism of reproductive toxicity of Cr(VI) in male somatic cells (mouse TM3 Leydig cells and TM4 Sertoli cells) and spermatogonial stem cells (SSCs) because damage to or dysfunction of these cells can directly affect spermatogenesis...

  9. Effects of hexavalent chromium on bone growth in juveniles Wistar rats

    OpenAIRE

    A. Rafael; Alpoim, C; Cabrita, AS; Capela e Silva, F

    2012-01-01

    Workers at industrial settings, as well as the population in general is at risk of health problems caused by contaminating wastes, inadequate treated for their safe disposal. As result, certain toxic substances, such as hexavalent chromium [Cr(VI)] compounds, contaminate tap water and have reached the general population including children. The present study was undertaken to evaluate the effects of Cr(VI), in the form of potassium dichromate, on body and bone development in suckling Wistar ra...

  10. Removal of hexavalent chromium from aqueous solution by calcined Zn/Al-LDHs.

    Science.gov (United States)

    Yang, Hui-Duo; Zhao, Yun-Peng; Li, Shi-Feng; Fan, Xing; Wei, Xian-Yong; Zong, Zhi-Min

    2016-01-01

    In this study, Zn/Al-layered double hydroxides (Zn/Al-LDHs) were synthesized by a co-precipitation method and characterized with X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Then the hexavalent chromium Cr(VI) adsorption experiments on calcined Zn/Al-LDHs were carried out to analyze the effects of pH, temperature, adsorption time, initial Cr(VI) concentration and adsorbent dosage on the removal of Cr(VI) from aqueous solutions. The maximum adsorption capacity for Cr(VI) on calcined Zn/Al-LDHs under optimal conditions was found to be over 120 mg/g. The kinetic and isotherm of Cr(VI) adsorption on calcined Zn/Al-LDHs can be described with the pseudo-second-order kinetic model and Langmuir isotherm, respectively. PMID:27387001

  11. Application of NAA method to study chromium uptake by Arthrobacter oxydans

    International Nuclear Information System (INIS)

    To study chromium uptake by Arthrobacter oxydans (Cr(VI)-reducer bacteria isolated from Columbia basalt rocks, USA) instrumental neutron activation analysis method was applied. It was established that chromate accumulation is dose-dependent and it is more intensive in the interval of concentrations of Cr(VI) (10-50 mg/l). At low concentrations of Cr(VI) (up to 50 mg/l) the most intensive formation of Cr(V) was also found (using ESR method). Besides, it was estimated that reduction from Cr(VI) to Cr(V) is faster process than the uptake of Cr(VI). According to ENAA measurements Cr(III), in constant to Cr(VI), is not accumulated in Arthrobacter oxydans cells up to concentration of 200 mg/l. Using epithermal neutron activation analysis the background levels of 17 major, minor and trace elements were determined in Arthrobacter oxydans

  12. Assessment of the removal mechanism of hexavalent chromium from aqueous solutions by olive stone.

    Science.gov (United States)

    Martín-Lara, María Ángeles; Calero de Hoces, Mónica; Ronda Gálvez, Alicia; Pérez Muñoz, Antonio; Trujillo Miranda, Ma Carmen

    2016-01-01

    The objectives of this study were to study the removal mechanism of Cr(VI) by natural olive stone (OS) and to present a sequential-batch process for the removal of total chromium (original Cr(VI) and Cr(III) derived from reduction of Cr(VI) during biosorption at acidic conditions). First, experiments were conducted varying pH from 1 to 4, and showed that a combined effect of biosorption and reduction is involved in the Cr(VI) removal. Then, X-ray photoelectron spectroscopy and desorption tests were employed to verify the oxidation state of the chromium bound to OS and to elucidate the removal mechanism of Cr(VI) by this material. The goal of these tests was to confirm that Cr(III) is the species mainly absorbed by OS. Finally, the possibility of total chromium removal by biosorption in a sequential-batch process was analyzed. In the first stage, 96.38% of Cr(VI) is removed by OS and reduced to Cr(III). In the second stage, approximately 31% of the total Cr concentration was removed. However, the Cr(III) released in the first stage is not completely removed, and it could suggest that the Cr(III) could be in a hydrated compound or a complex, which could be more difficult to remove under these conditions. PMID:27232404

  13. Fluorescent silver nanoclusters for ultrasensitive determination of chromium(VI) in aqueous solution.

    Science.gov (United States)

    Zhang, Jian Rong; Zeng, Ai Lian; Luo, Hong Qun; Li, Nian Bing

    2016-03-01

    In this work, a simple and sensitive Cr(VI) sensor is proposed based on fluorescent polyethyleneimine-stabilized Ag nanoclusters, which allows the determination over a wide concentration range of 0.1 nM-3.0 μM and with a detection limit as low as 0.04 nΜ and a good selectivity. The quenching mechanism was discussed in terms of the absorption and fluorescence spectra, suggesting that Cr(VI) is connected to Ag nanoclusters by hydrogen bond between the oxygen atom at the vertex of tetrahedron structure of Cr(VI) and the amino nitrogen of polyethyleneimine that surrounded Ag nanoclusters and electron transfer from Ag nanoclusters to highly electron-deficient Cr(VI) results in fluorescence quenching. Despite the failure to quench the fluorescence efficiently, Cr(III) can also be measured using the proposed Ag nanoclusters by being oxidized to Cr(VI) in alkaline solution (pH ∼ 9) containing H2O2. Therefore, our approach could be used to detect Cr(VI), Cr(III) and the total chromium level in aqueous solution. In addition, Cr(VI) analysis in real water samples were satisfactory, indicating this method could be practically promising for chromium measurements. PMID:26546705

  14. Cr(VI) removal in acidic aqueous solution using iron-bearing industrial solid wastes and their stabilisation with cement.

    Science.gov (United States)

    Singh, I B; Singh, D R

    2002-01-01

    In this study, iron-bearing industrial solid wastes iron filings, ETP sludge of steel and red mud of aluminium industries; were used for Cr(VI) removal at pH 3. A complete removal of Cr(VI) was found for initial 10 mg 1(-1) of 100 ml solutions in the presence of 2.5 g iron filings, 8 g ETP sludge and 10 g red mud for up to one hour of shaking at room temperature. After Cr(VI) removal, inclusion of chromium on the reacted iron filing surface was demonstrated by EDAX analysis. Leachability of chromium and iron from the reacted wastes was determined by using Toxicity Characteristics Leaching Procedure (TCLP). This test showed a very low level of leachability of chromium as Cr(III) and iron from the reacted wastes. To minimise their leachability further, Cr(VI)-reacted solid wastes were stabilised with Portland cement in their 3:1 ratio. Leachability tests of stabilised wastes by TCLP indicated a considerable decrease in leachability of chromium and iron compared with the that of reacted wastes alone. To explore the possibility of utilisation in building materials, bricks of cement-mixed Cr(VI)-reacted wastes were made and their comprehensive strength, durability and leachability under immersion conditions were measured. PMID:11918404

  15. Selective Chromium(VI) Ligands Identified Using Combinatorial Peptoid Libraries

    Science.gov (United States)

    Knight, Abigail S.; Zhou, Effie Y.; Pelton, Jeffrey G.; Francis, Matthew B.

    2013-01-01

    Hexavalent chromium (Cr(VI)) is a world-wide water contaminant that is currently without cost-effective and efficient remediation strategies. This is in part due to a lack of ligands that can bind it amid an excess of innocuous ions in aqueous solution. We present herein the design and application of a peptoid-based library of ligand candidates for toxic metal ions. A selective screening process was used to identify members of the library that can bind to Cr(VI) species at neutral pH and in the presence of a large excess of spectator ions. Eleven sequences were identified, and their affinities were compared using titrations monitored with UV-Vis spectroscopy. To identify the interactions involved in coordination and specificity, we evaluated the effects of sequence substitutions and backbone variation in the highest affinity structure. Additional characterization of the complex formed between this sequence and Cr(VI) was performed using NMR spectroscopy. To evaluate the ability of the developed sequences to remediate contaminated solutions, the structures were synthesized on a solid-phase resin and incubated with environmental water samples that contained simulated levels of chromium contamination. The synthetic structures demonstrated the ability to reduce the amount of toxic chromium to levels within the range of the EPA contamination guidelines. In addition to providing some of the first selective ligands for Cr(VI), these studies highlight the promise of peptoid sequences as easily-prepared components of environmental remediation materials. PMID:24195610

  16. Selected science: an industry campaign to undermine an OSHA hexavalent chromium standard

    Directory of Open Access Journals (Sweden)

    Lurie Peter

    2006-02-01

    Full Text Available Abstract While exposure to hexavalent chromium (Cr(VI has been associated with increased lung cancer risk for more than 50 years, the chemical is not currently regulated by the U.S. Occupational Safety and Health Administration (OSHA on the basis of its carcinogenicity. The agency was petitioned in 1993 and sued in 1997 and 2002 to lower the workplace Cr(VI exposure limit, resulting in a court order to issue a final standard by February 2006. Faced with the threat of stronger regulation, the chromium industry initiated an effort to challenge the scientific evidence supporting a more protective standard. This effort included the use of "product defense" consultants to conduct post hoc analyses of a publicly-funded study to challenge results viewed unfavorably by the industry. The industry also commissioned a study of the mortality experience of workers at four low-exposure chromium plants, but did not make the results available to OSHA in a timely manner, despite multiple agency requests for precisely these sorts of data. The commissioned study found a statistically significant elevation in lung cancer risk among Cr(VI-exposed workers at levels far below the current standard. This finding changed when the multi-plant cohort was divided into two statistically underpowered components and then published separately. The findings of the first paper published have been used by the chromium industry to attempt to slow OSHA's standard setting process. The second paper was withheld from OSHA until it was accepted for publication in a scientific journal, after the rulemaking record had closed. Studies funded by private sponsors that seek to influence public regulatory proceedings should be subject to the same access and reporting provisions as those applied to publicly funded science. Parties in regulatory proceedings should be required to disclose whether the studies were performed by researchers who had the right to present their findings without the

  17. Role of L-Histidine in Preventing the Toxicological effects Induced by Chromium or Nickel Metals in Male Rats

    International Nuclear Information System (INIS)

    Many heavy metals including chromium and nickel are widely distributed evolving occupational and environmental exposure risks which may result in adverse health effects. Some antioxidantal amino acids such as L-histidine can ameliorate the toxic effects of these metals. In this study, forty male albino rats were divided into 5 groups, the first group served as control. On the base of body weight, the second group of rats was supplemented with 10 mg/kg hexavalent chromium, Cr(VI), dissolved in water for two months. The third group of rats was supplemented with 20 mg/kg nickel as NiCl2 dissolved in water for two months. The fourth group of rats was supplemented with 10 mg/kg chromium hexavalent Cr(VI) in water and fed on 2.5% L-histidine in diet for two months. The fifth group of rats was supplemented with 20 mg/kg nickel as NiCl2 in water and fed on 2.5% L-histidine in diet for two months. The protective effect of L-histidine was monitored by studying the haematological indices and some biochemical aspects in serum such as iron (Fe), copper (Cu), zinc(Zn), kidney function (urea, creatinine and creatinine clearance), albumin, total protein and globulin and also thyroid function; triiodothyronine (T3) and thyroxine (T4). Thiobarbituric acid-reactive substances (TBARS) and total antioxidant capacity (TAC) were evaluated. Spleen tissues were dissected for histopathological examination. The results showed that significant decrease in RBCs, blood hemoglobin, Ht%, MCV, MCH and MCHC were observed, while platelets count was increased significantly after supplementation the rats with chromium and nickel in toxic dose. White blood cells (WBCs) and lymphocytes were decreased significantly in chromium group and increased significantly in nickel group. Neutrophils were increased non-significantly and basophils were decreased only in nickel group. Monocytes and eosinophils were increased in chromium and nickel groups, and the pronounced increase was observed in nickel group. L

  18. Induction of micronuclei and nuclear abnormalities in Oreochromis niloticus following exposure to petroleum refinery and chromium processing plant effluents

    International Nuclear Information System (INIS)

    The genotoxic effects of effluents from a petroleum refinery and a chromium processing plant were evaluated in Oreochromis niloticus (Pisces: Perciformes) using the micronucleus test. Fish were exposed to different concentrations (5, 10 and 20%, v/v) of the effluents for 3, 6 and 9 days. Micronucleus analyses were carried out on gill epithelial cells and peripheral blood erythrocytes. Nuclear abnormalities other than micronuclei, considered as genetic damage indicators, were also evaluated on erythrocytes. Cyclophosphamide at a single dose of 4 mg/L was used as a positive control. The results of this study showed that both effluents had genotoxic potential. On the other hand, the level of genetic damage induced by petroleum refinery effluent was considerably higher than that of chromium processing plant effluent. Our results further indicate that nuclear abnormalities other than micronuclei, such as blebbed and lobed nuclei, may also be used as indicators of genotoxic damage

  19. Induction of micronuclei and nuclear abnormalities in Oreochromis niloticus following exposure to petroleum refinery and chromium processing plant effluents

    Energy Technology Data Exchange (ETDEWEB)

    Cavas, Tolga [Mersin University, Faculty of Sciences and Letters, Department of Biology, 33342 Mersin (Turkey)]. E-mail: tcavas@mersin.edu.tr; Ergene-Goezuekara, Serap [Mersin University, Faculty of Sciences and Letters, Department of Biology, 33342 Mersin (Turkey)

    2005-09-10

    The genotoxic effects of effluents from a petroleum refinery and a chromium processing plant were evaluated in Oreochromis niloticus (Pisces: Perciformes) using the micronucleus test. Fish were exposed to different concentrations (5, 10 and 20%, v/v) of the effluents for 3, 6 and 9 days. Micronucleus analyses were carried out on gill epithelial cells and peripheral blood erythrocytes. Nuclear abnormalities other than micronuclei, considered as genetic damage indicators, were also evaluated on erythrocytes. Cyclophosphamide at a single dose of 4 mg/L was used as a positive control. The results of this study showed that both effluents had genotoxic potential. On the other hand, the level of genetic damage induced by petroleum refinery effluent was considerably higher than that of chromium processing plant effluent. Our results further indicate that nuclear abnormalities other than micronuclei, such as blebbed and lobed nuclei, may also be used as indicators of genotoxic damage.

  20. Ultrasensitive photoelectrochemical determination of chromium(VI) in water samples by ion-imprinted/formate anion-incorporated graphitic carbon nitride nanostructured hybrid.

    Science.gov (United States)

    Fang, Tian; Yang, Xiaomin; Zhang, Lizhi; Gong, Jingming

    2016-07-15

    A rapid and highly sensitive photoelectrochemical (PEC) method has been proposed for the determination of trace amounts of chromium in water samples under visible-light irradiation. Here, a unique nanostructured hybrid of formate anion incorporated graphitic carbon nitride (F-g-C3N4) is smartly integrated with a Cr(VI) ion-imprinted polymer (IIP) as a photoactive electrode (denoted as IIP@F-g-C3N4). The nanohybrid of F-g-C3N4 exhibits an enhanced charge separation with substantially improved PEC responses versus g-C3N4. The newly designed IIP@F-g-C3N4 PEC sensor exhibits high sensitivity and selectivity for the determination of Cr(VI) because it offers efficient photogenerated electron reduction toward Cr(VI). The PEC analysis is highly linear over Cr(VI) concentrations ranging from 0.01 to 100.00ppb with a detection limit of 0.006ppb (S/N=3). Our approach can be used to detect Cr(VI), Cr(III) and the total chromium level in aqueous solution through oxidation of Cr(III) to Cr(VI) and the determination of the total chromium as Cr(VI). In practical applications, this low-cost and sensitive assay has been successfully applied for speciation determination of chromium in environmental water samples. PMID:27017396

  1. An Evaluation of Welding Processes to Reduce Hexavalent Chromium Exposures and Reduce Costs by Using Better Welding Techniques

    OpenAIRE

    Keane, Michael J.

    2014-01-01

    A group of stainless steel arc welding processes was compared for emission rates of fume and hexavalent chromium, and costs per meter length of weld. The objective was to identify those with minimal emissions and also compare relative labor and consumables costs. The selection included flux-cored arc welding (FCAW), shielded-metal arc welding (SMAW), and multiple gas metal arc welding (GMAW) processes. Using a conical chamber, fumes were collected, and fume generation rates and hexavalent chr...

  2. The oxidative stress response of the filamentous yeast Trichosporon cutaneum R57 to copper, cadmium and chromium exposure

    OpenAIRE

    Lazarova, Nevena; Krumova, Ekaterina; Stefanova, Tsvetanka; Georgieva, Nelly; Angelova, Maria

    2014-01-01

    Despite the intensive research in the past decade on the microbial bioaccumulation of heavy metals, the significance of redox state for oxidative stress induction is not completely clarified. In the present study, we examined the effect of redox-active (copper and chromium) and redox-inactive (cadmium) metals on the changes in levels of oxidative stress biomarkers and antioxidant enzyme defence in Trichosporon cutaneum R57 cells. This filamentous yeast strain showed significant tolerance and ...

  3. Iron species in layered clay: efficient electron shuttles for simultaneous conversion of dyes and Cr(VI).

    Science.gov (United States)

    Liu, Renlan; Guo, Yaoguang; Wang, Zhaohui; Liu, Jianshe

    2014-01-01

    The simultaneous reduction of Chromium(VI) (Cr(VI)) and oxidation of cationic dyes in dispersions of Montmorillonite K10 (MK10) were examined under visible irradiation (λ>420 nm). The iron species (i.e. iron oxides, structural iron and exchangeable interlayer iron) in layered clays are active for catalytically reducing Cr(VI) by using Malachite green (MG) and Rhodamine B (RhB) as the electron donors. Molecular oxygen does not have a significant effect on clay-catalyzed Cr(VI) reduction, but is important for oxidative degradation of dye pollutants. MK10 catalysts are stable and reusable, and are therefore considered as a promising naturally-abundant material for decontamination of dye and heavy metals. PMID:24120014

  4. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sisman, S. Lara [Univ. of Virginia, Charlottesville, VA (United States); Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  5. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    International Nuclear Information System (INIS)

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  6. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Gonzalez, J. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Peralta-Videa, J.R. [Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States); Rodriguez, E. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Ramirez, S.L. [Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States); Gardea-Torresdey, J.L. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States) and Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States)]. E-mail: jgardea@utep.edu

    2005-04-15

    The temperature dependence of the Cr(VI) bioadsorption and its possible reduction to Cr(III) by Agave lechuguilla biomass were studied. The experimental data obtained in batch experiments at different temperatures were fitted to the Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model. The adsorption equilibrium data fitted well with the Freundlich model. The average model parameters calculated from Freundlich's isotherms (adsorption capacity K{sub F} = 4 . 10{sup -2} mol . g{sup -1} and an average adsorption intensity value n = 13.07) showed that A. lechuguilla can be considered as an effective biomaterial for Cr(VI) removal from aqueous solution. Thermodynamic parameters ({delta}G{sup .}, {delta}H{sup .}, and {delta}S{sup .}) for Cr(VI) adsorption determined in the temperature range from (283 to 313) K suggest that a portion of Cr(VI) may be bound to functional groups on the surface of the adsorbent and then reduced to Cr(III). Additionally, the parameters of the Dubinin-Radushkevick equation indicated that the sorption of chromium species onto lechuguilla biomass mainly proceeds through binding surface functional groups.

  7. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass

    International Nuclear Information System (INIS)

    The temperature dependence of the Cr(VI) bioadsorption and its possible reduction to Cr(III) by Agave lechuguilla biomass were studied. The experimental data obtained in batch experiments at different temperatures were fitted to the Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model. The adsorption equilibrium data fitted well with the Freundlich model. The average model parameters calculated from Freundlich's isotherms (adsorption capacity KF = 4 . 10-2 mol . g-1 and an average adsorption intensity value n = 13.07) showed that A. lechuguilla can be considered as an effective biomaterial for Cr(VI) removal from aqueous solution. Thermodynamic parameters (ΔG., ΔH., and ΔS.) for Cr(VI) adsorption determined in the temperature range from (283 to 313) K suggest that a portion of Cr(VI) may be bound to functional groups on the surface of the adsorbent and then reduced to Cr(III). Additionally, the parameters of the Dubinin-Radushkevick equation indicated that the sorption of chromium species onto lechuguilla biomass mainly proceeds through binding surface functional groups

  8. Development of iron-based nanoparticles for Cr(VI removal from drinking water

    Directory of Open Access Journals (Sweden)

    Vourlias G.

    2013-01-01

    Full Text Available A great deal of research over recent decades has been motivated by the requirement to lower the concentration of chromium in drinking water. This study has been conducted to determine the feasibility of iron-based nanoparticles for chromium removal from contaminated water. Single Fe, Fe3O4 and binary Fe/Fe3O4 nanoparticles were grown at the 45-80 nm size range using the solar physical vapor deposition technique and tested as potential hexavalent chromium removing agents from aqueous solutions. Due to their higher electron donation ability compared to the Fe3O4 ones, single Fe nanoparticles exhibited the highest Cr(VI removal capacity of more than 3 µg/mg while maintaining a residual concentration 50 µg/L, equal to the regulation limit for drinking water. In combination to their facile and fast magnetic separation, the applicability of the studied particles in water treatment facilities should be considered.

  9. Inhalation cancer risk assessment of hexavalent chromium based on updated mortality for Painesville chromate production workers

    Science.gov (United States)

    Proctor, Deborah M; Suh, Mina; Mittal, Liz; Hirsch, Shawn; Valdes Salgado, Raydel; Bartlett, Chris; Van Landingham, Cynthia; Rohr, Annette; Crump, Kenny

    2016-01-01

    The exposure-response for hexavalent chromium (Cr(VI))-induced lung cancer among workers of the Painesville Ohio chromate production facility has been used internationally for quantitative risk assessment of environmental and occupational exposures to airborne Cr(VI). We updated the mortality of 714 Painesville workers (including 198 short-term workers) through December 2011, reconstructed exposures, and conducted exposure-response modeling using Poisson and Cox regressions to provide quantitative lung cancer risk estimates. The average length of follow-up was 34.4 years with 24,535 person-years at risk. Lung cancer was significantly increased for the cohort (standardized mortality ratio (SMR)=186; 95% confidence interval (CI) 145–228), for those hired before 1959, those with >30-year tenure, and those with cumulative exposure >1.41 mg/m3-years or highest monthly exposures >0.26 mg/m3. Of the models assessed, the linear Cox model with unlagged cumulative exposure provided the best fit and was preferred. Smoking and age at hire were also significant predictors of lung cancer mortality. Adjusting for these variables, the occupational unit risk was 0.00166 (95% CI 0.000713–0.00349), and the environmental unit risk was 0.00832 (95% CI 0.00359–0.0174), which are 20% and 15% lower, respectively, than values developed in a previous study of this cohort. PMID:26669850

  10. Biosorption potency of Aspergillus niger for removal of chromium (VI).

    Science.gov (United States)

    Srivastava, Shaili; Thakur, Indu Shekhar

    2006-09-01

    Aspergillus niger isolated from soil and effluent of leather tanning mills had higher activity to remove chromium. The potency of Aspergillus niger was evaluated in shake flask culture by absorption of chromium at pH 6 and temperature 30 degrees C. The results of the study indicated removal of more than 75% chromium by Aspergillus niger determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometry after 7 days. Study of microbial Cr(VI) reduction and identification of reduction intermediates has been hindered by the lack of analytical techniques that can identify the oxidation state with subcellular spatial resolution. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), which indicated an accumulation of chromium in the fungal mycelium. PMID:16874547

  11. Microbial community changes during sustained Cr(VI) reduction at the 100H site in Hanford, WA

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Brodie, Eoin L; Faybishenko, Boris; Piceno, Yvette M; Tom, Lauren; Choudhuri, Swati; Beller, Harry R; Liu, Jenny; Torok, Tamas; Joyner, Dominique C; Joachimiak, Marcin P; Zhou, Aifen; Van Nostrand, Joy D; Zhou, Joe; Long, Phil E; Newcomer, Darrell R; Andersen, Gary L; Hazen, Terry C.

    2010-05-17

    Hexavalent Chromium is a widespread contaminant found in soil, sediment, and groundwater. In order to stimulate microbially-mediated reduction of Cr(VI), a poly-lactate compound (HRC) was injected into the Chromium-contaminated aquifer at the Hanford (WA) 100H site in 2004. Cr(VI) concentrations rapidly declined to below the detection limit and remained so for more than three years after injection. Based on the results of the bacterial community composition using high-density DNA 16S rRNA gene microarrays, we observed the community to transition through denitrifying, ironreducing and sulfate-reducing populations. As a result, we specifically focused isolation efforts on three bacterial species that were significant components of the community. Positive enrichments in defined anaerobic media resulted in the isolation of an iron-reducing Geobacter metallireducens-like isolate, a sulfate-reducing Desulfovibrio vukgaris-like strain and a nitrate-reducing Pseudomonas stutzeri-like isolate among several others. All of these isolates were capable of reducing Cr(VI) anoxically and have been submitted for genome sequencing to JGI. To further characterize the microbial, and geochemical mechanisms associated with in situ Cr(VI) reduction at the site, additional HRC was injected in 2008. The goal was to restimulate the indigenous microbial community and to regenerate the reducing conditions necessary for continued Cr(VI) bio-immobilization in the groundwater. Analysis of the microbial populations post-injection revealed that they recovered to a similar density as after the first injection in 2004. In this study, we present the results from our investigation into microbially-mediated Cr(VI) reduction at Hanford, and a comparison of the microbial community development following two HRC injections four years apart.

  12. Effects of a rhizobacterium on the growth of and chromium remediation by Lemna minor.

    Science.gov (United States)

    Tang, Jie; Zhang, Ying; Cui, Yan; Ma, Jiong

    2015-07-01

    Duckweed has shown great potential for both energy and environmental applications, particularly in wastewater treatment and fuel ethanol production. A rhizobacterium, Exiguobacterium sp. MH3, has been reported to associate with the duckweed Lemna minor for symbiotic growth. The aim of this work is to study the effects of rhizobacterium MH3 on L. minor growth and chromium (Cr) remediation. It appeared to have a synergism between the rhizobacterium MH3 and duckweed; the presence of strain MH3 promoted the growth of duckweeds by increasing both the frond number and dry weight of duckweed by more than 30%, while duckweed in turn provided essential carbon source and energy for the growth of rhizobacterium MH3. Under Cr(VI) exposure, particularly at higher Cr(VI) concentrations, Exiguobacterium sp. MH3 significantly alleviated the harmful effects of the stress on the duckweed by promoting duckweed growth and preventing duckweed from excessive uptake of Cr. Potential mechanisms were also discussed in light of the genome sequence of strain MH3, and it was speculated that siderophores and indole-3-acetic acid (IAA) secreted by strain MH3 might contribute to promoting duckweed growth. PMID:25631740

  13. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens

    Directory of Open Access Journals (Sweden)

    Thompson Vicki S

    2006-01-01

    Full Text Available Abstract Background Chromium is a transition metal most commonly found in the environment in its trivalent [Cr(III] and hexavalent [Cr(VI] forms. The EPA maximum total chromium contaminant level for drinking water is 0.1 mg/l (0.1 ppm. Many water sources, especially underground sources, are at low temperatures (less than or equal to 15 Centigrade year round. It is important to evaluate the possibility of microbial remediation of Cr(VI contamination using microorganisms adapted to these low temperatures (psychrophiles. Results Core samples obtained from a Cr(VI contaminated aquifer at the Hanford facility in Washington were enriched in Vogel Bonner medium at 10 Centigrade with 0, 25, 50, 100, 200, 400 and 1000 mg/l Cr(VI. The extent of Cr(VI reduction was evaluated using the diphenyl carbazide assay. Resistance to Cr(VI up to and including 1000 mg/l Cr(VI was observed in the consortium experiments. Reduction was slow or not observed at and above 100 mg/l Cr(VI using the enrichment consortium. Average time to complete reduction of Cr(VI in the 30 and 60 mg/l Cr(VI cultures of the consortium was 8 and 17 days, respectively at 10 Centigrade. Lyophilized consortium cells did not demonstrate adsorption of Cr(VI over a 24 hour period. Successful isolation of a Cr(VI reducing organism (designated P4 from the consortium was confirmed by 16S rDNA amplification and sequencing. Average time to complete reduction of Cr(VI at 10 Centigrade in the 25 and 50 mg/l Cr(VI cultures of the isolate P4 was 3 and 5 days, respectively. The 16S rDNA sequence from isolate P4 identified this organism as a strain of Arthrobacter aurescens, a species that has not previously been shown to be capable of low temperature Cr(VI reduction. Conclusion A. aurescens, indigenous to the subsurface, has the potential to be a predominant metal reducer in enhanced, in situ subsurface bioremediation efforts involving Cr(VI and possibly other heavy metals and radionuclides.

  14. A study of low-cost adsorbent materials for removing Cr(VI from aqueous waste effluent

    Directory of Open Access Journals (Sweden)

    Claudia Vargas-Niño

    2011-01-01

    Full Text Available  The present paper shows very high potential for two types of solid (a commercial alumina and material obtained by composting, i.e. matured compost on Cr(VI adsorption/elimination in aqueous solution using a concentration range close to those previously detected in waste-water from Colombian industries. Both had important properties for eliminating Cr(VI, the compost being more important as it represents low-cost material. Optimal conditions for chromium adsorption on alumina and compost were established. Initial Cr(VI alumina concentration was 10 mgL-1, with 100 mL/g volume of solution per adsorbent mass, pH=2.0, 1 hour equilibrium time and 150 rpm stirring. For compost, initial Cr(VI concentration was = 3 mg L-1, 50 mL/g volume of solution per adsorbent mass, pH=2.5, 3 hour equilibrium time and 150 rpm stirring. The experiments showed that compost adsorption properties could be enhanced by adding small quantities of alumina. Compost could thus be chosen as a promising material for use in bioremediation chromium-containing waste water in a management programme for using solid waste in for minimising environmental impact.  

  15. Improvement on Simultaneous Determination of Cr(III) and Cr(VI) by Capillary Electrophoresis and Chemiluminescence Detection

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A sensitive method for the simultaneous determination of Cr(III) and Cr(VI) using in-capillary reaction capillary electrophoresis separation and chemiluminescence detection was developed. The procedures were designed as follows: The sample, hydrochloric acid and sodium hydrogen sulfite solution segments were injected sequentially into the capillary. The reaction of Cr(VI) reduced to Cr(III) by HSO3- occurred inside the capillary after applying the running voltage. According to the migration time difference of both Cr(III) ions moving towards to the cathode (detection end), they could be separated and determined. The limits of detection for chromium(III) and chromium(VI) (S/N = 3) were 6.0(10-13 mol/L (12 zmol) and 1.9(10-11 mol/L (380 zmol), respectively.

  16. Experimental and mathematical modeling studies on Cr(VI) reduction by CRB, SRB and IRB, individually and in combination.

    Science.gov (United States)

    Somasundaram, V; Philip, Ligy; Bhallamudi, S Murty

    2009-12-30

    Cr(VI) reduction studies were carried out with chromium reducing bacteria (CRB), sulphate reducing bacteria (SRB) and iron reducing bacteria (IRB), individually and in combination. Biokinetic parameters such as maximum specific growth rate (micro(max)), half saturation constant (K(s)), yield coefficient (Y(T)) and inhibition coefficient (K(i)) for individual cultures were evaluated. A mathematical model was proposed for simulating the chromium reduction, COD utilization and biomass growth, by individual cultures as well as by a combination of two or three different cultures, for different initial Cr(VI), SO(4)(2-) and Fe(III) concentrations. The biokinetic parameters evaluated from one set of experiments for individual cultures were utilized in all the validation studies. The performance of the mathematical model in terms of the dimensionless modified coefficient of efficiency (E) indicated that the proposed model simulates the system behavior very well. PMID:19692172

  17. Steel dust in the New York City subway system as a source of manganese, chromium, and iron exposures for transit workers.

    Science.gov (United States)

    Chillrud, Steven N; Grass, David; Ross, James M; Coulibaly, Drissa; Slavkovich, Vesna; Epstein, David; Sax, Sonja N; Pederson, Dee; Johnson, David; Spengler, John D; Kinney, Patrick L; Simpson, H James; Brandt-Rauf, Paul

    2005-03-01

    The United States Clean Air Act Amendments of 1990 reflected increasing concern about potential effects of low-level airborne metal exposure on a wide array of illnesses. Here we summarize results demonstrating that the New York City (NYC) subway system provides an important microenvironment for metal exposures for NYC commuters and subway workers and also describe an ongoing pilot study of NYC transit workers' exposure to steel dust. Results from the TEACH (Toxic Exposure Assessment, a Columbia and Harvard) study in 1999 of 41 high-school students strongly suggest that elevated levels of iron, manganese, and chromium in personal air samples were due to exposure to steel dust in the NYC subway. Airborne concentrations of these three metals associated with fine particulate matter were observed to be more than 100 times greater in the subway environment than in home indoor or outdoor settings in NYC. While there are currently no known health effects at the airborne levels observed in the subway system, the primary aim of the ongoing pilot study is to ascertain whether the levels of these metals in the subway air affect concentrations of these metals or related metabolites in the blood or urine of exposed transit workers, who due to their job activities could plausibly have appreciably higher exposures than typical commuters. The study design involves recruitment of 40 transit workers representing a large range in expected exposures to steel dust, the collection of personal air samples of fine particulate matter, and the collection of blood and urine samples from each monitored transit worker. PMID:15738337

  18. Use of immobilized tannin adsorbent for removal of Cr(VI) from water

    International Nuclear Information System (INIS)

    Adsorption of Cr(VI) by two tannin sorbents is evaluated using radiotracers. Evaluation of the sorption process shows that the Cr(VI) - tannin molecule binding is the principal responsible for chromium adsorption. High sorption capacities were registered for both sorbents at pH 2. For Eucaliptus Saligna Sm sorbent (ETS) sorption capacity is 0.92±0.03 mmol/g and for Lysiloma latisiliqua sorbent (LTS) is 3.8±0.3 mmol/g. Influence of different ions present in water is examined. High sorption capacity is reported for LTS in sea and tap water samples. It represents 90-94% of adsorption in distillated water. (author)

  19. The fate of chromium during tropical weathering

    DEFF Research Database (Denmark)

    Berger, Alfons; Frei, Robert

    2014-01-01

    We performed a mineral, geochemical and Cr–Sr–Pb isotope study on a laterite profile developed on ca. 540 Ma old tonalitic bedrock in Madagascar with special emphasis on the behavior of chromium during tropical weathering. The observed strong depletions of Ca, Si, and P, and enrichment of Fe and Al...... weathering profile. The negatively fractionated δ53Cr values measured in the weathering profile relative to the unaltered tonalitic bedrock characterized by a high temperature magmatic inventory Cr isotope signature are consistent with loss of a positively fractionated Cr(VI) pool formed during weathering...... highly oxidative conditions, which in well drained sulfide-bearing parent bedrocks potentially lead to both, acid dissolution of sulfide-hosted Cr and redox-promoted mobilization of Cr(VI) from silicates during later stages of weathering under basic pH conditions....

  20. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Hedberg, Yolanda S., E-mail: yolanda@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, SE-10044 Stockholm (Sweden); Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177 Stockholm (Sweden); Lidén, Carola, E-mail: carola.liden@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177 Stockholm (Sweden); Odnevall Wallinder, Inger, E-mail: ingero@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, SE-10044 Stockholm (Sweden)

    2014-09-15

    Graphical abstract: - Highlights: • Released reducing/complexing leather-specific species can reduce released Cr(VI). • No co-released species enable the formation of Cr(VI) in solution. • The major Cr species released from leather in phosphate buffer was Cr(III) (>82%). • No Cr(VI) was released into artificial sweat. - Abstract: About 1–3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH < 6.5) and phosphate buffer (PB, pH 7.5–8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB)

  1. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI)

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Released reducing/complexing leather-specific species can reduce released Cr(VI). • No co-released species enable the formation of Cr(VI) in solution. • The major Cr species released from leather in phosphate buffer was Cr(III) (>82%). • No Cr(VI) was released into artificial sweat. - Abstract: About 1–3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH < 6.5) and phosphate buffer (PB, pH 7.5–8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB)

  2. Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms

    International Nuclear Information System (INIS)

    discrete samples could not be correlated with the amount of chromium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium (i.e., effective Cr oxidation front). Exposure to oxygen (air or oxygen dissolved in water) results in the release of chromium through oxidation of Cr(III) to highly soluble chromate, Cr(VI). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) in the presence of oxygen. Consequently, this method for determining reduction capacity may not be a good indicator of the effective contaminant oxidation rate in a relatively porous solid (40 to 60 volume percent porosity). The chromium extracted in depth discrete samples ranged from a maximum of about 5.8 % at about 5 mm (118 day exposure) to about 4 % at about 10 mm (302 day exposure). The use of reduction capacity as an indicator of long-term performance requires further investigation. The carbonation front was also estimated to have advanced to at least 28 mm in 302 days based on visual observation of gas evolution during acid addition during the reduction capacity measurements. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance and will support conceptual model development

  3. Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Almond, P. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stefanko, D. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-03-01

    (III) in solution) performed on depth discrete samples could not be correlated with the amount of chromium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium (i.e., effective Cr oxidation front). Exposure to oxygen (air or oxygen dissolved in water) results in the release of chromium through oxidation of Cr(III) to highly soluble chromate, Cr(VI). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) in the presence of oxygen. Consequently, this method for determining reduction capacity may not be a good indicator of the effective contaminant oxidation rate in a relatively porous solid (40 to 60 volume percent porosity). The chromium extracted in depth discrete samples ranged from a maximum of about 5.8 % at about 5 mm (118 day exposure) to about 4 % at about 10 mm (302 day exposure). The use of reduction capacity as an indicator of long-term performance requires further investigation. The carbonation front was also estimated to have advanced to at least 28 mm in 302 days based on visual observation of gas evolution during acid addition during the reduction capacity measurements. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance and will support conceptual model development.

  4. Hexavalent chromium reduction by chromate-resistant haloalkaliphilic Halomonas sp. M-Cr newly isolated from tannery effluent

    OpenAIRE

    Mabrouk, Mona E.M.; Arayes, Mervat A.; Sabry, Soraya A.

    2014-01-01

    The current study aimed to isolate and characterize a chromate-resistant bacterium from tannery effluent, able to reduce Cr(VI) aerobically at high pH and salinity. Environmental contamination by hexavalent chromium, Cr(VI), presents a serious public health problem. Enrichment led to the isolation of 12 bacteria displaying different degrees of chromate reduction. Phenotypic characterization and phylogenetic analysis based on 16S rDNA sequence comparison indicated that the most potent strain b...

  5. Measurement of Soluble and Total Hexavalent Chromium in the Ambient Airborne Particles in New Jersey

    Science.gov (United States)

    Huang, Lihui; Yu, Chang Ho; Hopke, Philip K.; Lioy, Paul J.; Buckley, Brian T.; Shin, Jin Young; Fan, Zhihua (Tina)

    2015-01-01

    Hexavalent chromium (Cr(VI)) in ambient airborne particulate matter (PM) is a known pulmonary carcinogen and may have both soluble and insoluble forms. The sum of the two forms is defined as total Cr(VI). Currently, there were no methods suitable for large-scale monitoring of total Cr(VI) in ambient PM. This study developed a method to measure total Cr(VI) in ambient PM. This method includes PM collection using a Teflon filter, microwave extraction with 3% Na2CO3-2% NaOH at 95°C for 60 minutes, and Cr(VI) analysis by 1,5-diphenylcarbazide colorimetry at 540 nm. The recoveries of total Cr(VI) were 119.5 ± 10.4% and 106.3 ± 16.7% for the Cr(VI)-certified reference materials, SQC 012 and SRM 2700, respectively. Total Cr(VI) in the reference urban PM (NIST 1648a) was 26.0 ± 3.1 mg/kg (%CV = 11.9%) determined by this method. The method detection limit was 0.33 ng/m3. This method and the one previously developed to measure ambient Cr(VI), which is soluble in pH ~9.0 aqueous solution, were applied to measure Cr(VI) in ambient PM10 collected from three urban areas and one suburban area in New Jersey. The total Cr(VI) concentrations were 1.05–1.41 ng/m3 in the winter and 0.99–1.56 ng/m3 in the summer. The soluble Cr(VI) concentrations were 0.03–0.19 ng/m3 in the winter and 0.12–0.37 ng/m3 in the summer. The summer mean ratios of soluble to total Cr(VI) were 14.3–43.7%, significantly higher than 4.2–14.4% in the winter. The winter concentrations of soluble and total Cr(VI) in the suburban area were significantly lower than in the three urban areas. The results suggested that formation of Cr(VI) via atmospheric chemistry may contribute to the higher soluble Cr(VI) concentrations in the summer. PMID:26120324

  6. Enhanced removal of Cr(VI) from aqueous solutions using polypyrrole wrapped oxidized MWCNTs nanocomposites adsorbent.

    Science.gov (United States)

    Bhaumik, Madhumita; Agarwal, Shilpi; Gupta, Vinod Kumar; Maity, Arjun

    2016-05-15

    Polypyrrole wrapped oxidized multiwalled carbon nanotubes nanocomposites (PPy/OMWCNTs NCs) were prepared via in situ chemical polymerization of pyrrole (Py) monomer in the presence of OMWCNTs using FeCl3 as oxidant for the effective removal of hexavalent chromium [Cr(VI)]. The as-prepared PPy/OMWCNTs NCs were characterized by FE-SEM, HR-TEM, ATR-FTIR, XRD, XPS and BET method. Characterization results suggested that PPy was uniformly covered on the OMWCNTs surface and resulted in enhanced specific surface area. Adsorption experiments were carried out in batch sorption mode to investigate the effect of pH, dose of adsorbent, contact time, concentration of Cr(VI) and temperature. The adsorption of Cr(VI) on the nanocomposite surface was highly pH dependent and the kinetics of the adsorption followed the pseudo-second-order model. The adsorption isotherm data were in good conformity with the Langmuir isothermal model. The maximum adsorption capacity of the PPy/OMWCNTs NCs for Cr(VI) was 294mg/g at 25°C. The calculated values of the thermodynamic parameters such as ΔG(0) (-0.237kJ/mol), ΔH(0) (13.237kJ/mol) and ΔS(0) (0.0452kJ/mol/K) revealed that the adsorption process is spontaneous, endothermic and marked with an increase in randomness at the solid-liquid interface. The presence of co-existing ions slightly affected the Cr(VI) removal efficiency of the PPy/OMWCNTs. PMID:26962976

  7. Investigations of HRC®-Stimulated Bioreduction of Cr(VI) at Hanford 100H

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Hazen; B. Faybishenko; D. Joyner; S. Borglin; E.Brodie; S. Hubbard; K. Williams; J. Peterson; J. Wan; T. Tokunaga; Long, P.E.; Newcomer, D.; Koenigsberg, S.; Willet, A.

    2005-04-18

    Hypothesis: Lactate (Hydrogen Release Compound-HRC{trademark}) injection into chromium contaminated groundwater through an injection well will cause indirect or direct bioreduction of chromate [Cr(VI)] and precipitation of insoluble species of [Cr(III)] on soil particles, probably catalyzed at oxide surfaces, at the field scale. Objective: Assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford Site's 100-H Area field site. Types of Research: A three-well system (injection well and upgradient and downgradient monitoring wells) was used for conducting the in situ biostimulation and monitoring. To assess the pre- and post-injection test groundwater conditions, we used an integrated monitoring approach, involving hydraulic, geochemical, microbial, and geophysical techniques and analytical methods, as well as conducted five Br-tracer injection tests and four pumping tests (concurrently with the Br-tracer tests). Groundwater biostimulation was conducted by injection of 40 lbs of {sup 13}C-labeled HRC into the injection well (over the depth interval from 44-50 ft) on 8/3/2004, followed by low-flow pumping (1.2 to 2.5 l/min) through the downgradient well (to ensure capture of groundwater flow lines passing through the injection well) for 27 days. Main Results: Although the total microbial population in sediments is relatively low (<10{sup 5} cells g-1) under background conditions, which is likely insufficient for direct enzymatic Cr(VI) reduction, several types of bacteria, e.g., Bacillus/Arthrobacter and Geobacter, are present in the Hanford sediments, which are known to reduce or sorb hexavalent chromium. The HRC injection stimulated microbial cell counts to reach the maximum of 2 x 10{sup 7} cells g{sup -1} 13-17 days after the injection, and generated highly reducing conditions. Geochemical and isotopic observations confirmed microbial metabolism of HRC. The

  8. Investigations of HRC®-Stimulated Bioreduction of Cr(VI) at Hanford 100H

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Faybishenko, B.; Joyner, D.; Borglin, S.; Brodie, E.; Hubbard, S.; Williams, K.; Peterson, J.; Wan, J.; Tokunaga, T.; Firestone, M.; Long, P.E.; Resch, C.T.; Cantrell, K.; Newcomer, D.; Koenigsberg, S.; Willet, A.

    2006-04-05

    Hypothesis: Lactate (Hydrogen Release Compound-HRC{trademark}) injection into chromium contaminated groundwater through an injection well will cause indirect or direct bioreduction of chromate [Cr(VI)] and precipitation of insoluble species of [Cr(III)] on soil particles, probably catalyzed at oxide surfaces, at the field scale. Objective: Assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford Site's 100-H Area field site. Types of Research: A three-well system (injection well and upgradient and downgradient monitoring wells) was used for conducting the in situ biostimulation and monitoring. To assess the pre- and post-injection test groundwater conditions, we used an integrated monitoring approach, involving hydraulic, geochemical, microbial, and geophysical techniques and analytical methods, as well as conducted five Br-tracer injection tests and four pumping tests (concurrently with the Br-tracer tests). Groundwater biostimulation was conducted by injection of 40 lbs of {sup 13}C-labeled HRC into the injection well (over the depth interval from 44-50 ft) on 8/3/2004, followed by low-flow pumping (1.2 to 2.5 l/min) through the downgradient well (to ensure capture of groundwater flow lines passing through the injection well) for 27 days. Main Results: Although the total microbial population in sediments is relatively low (<10{sup 5} cells g{sup -1}) under background conditions, which is likely insufficient for direct enzymatic Cr(VI) reduction, several types of bacteria, e.g., Bacillus/Arthrobacter and Geobacter, are present in the Hanford sediments, which are known to reduce or sorb hexavalent chromium. The HRC injection stimulated microbial cell counts to reach the maximum of 2 x 10{sup 7} cells g{sup -1} 13-17 days after the injection, and generated highly reducing conditions. Geochemical and isotopic observations confirmed microbial metabolism of HRC

  9. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kundi; Li, Fuli [Chinese Academy of Sciences, Qingdao (China). Qingdao Inst. of Bioenergy and Bioprocess Technology

    2011-05-15

    A novel bacterium, Cr-10, was isolated from a chromium-contaminated site and capable of removing toxic chromium species from solution by reducing hexavalent chromium to an insoluble precipitate. Sequence analysis of 16S rRNA gene of strain Cr-10 showed that it was most closely related to Serratia rubidaea JCM 1240{sup T} (97.68%). Physiological and chemotaxonomic data also supported that strain Cr-10 was identified as Serratia sp., a genus which was never specially reported chromate-resistant before. Serratia sp., Cr-10 was tolerant to a concentration of 1,500 mg Cr(VI) L{sup -1}, which was the highest level reported until now. The optimum pH and temperature for reduction of Cr(VI) by Serratia sp. Cr-10 were found to be 7.0 and 37 C, respectively. The Cr(VI) reduction was significantly influenced by additional carbon sources, and among them fructose and lactose offered maximum reduction, with a rate of 0.28 and 0.25 mg Cr(VI) L{sup -1} h{sup -1}, respectively. The cell-free extracts and filtrate of the culture were able to reduce Cr(VI) while concentration of total chromium remained stable in the process, indicating that the enzyme-catalyzed mechanism was applied in Cr(VI) reduction by the isolate. Additionally, it was found that there was hardly any chromium on the cell surface of the strain, further supporting that reduction, rather than bioadsorption, plays a major role in the Cr(VI) removal. (orig.)

  10. Hydrophobic Poly(ionic liquid) for Highly Effective Separation of Methyl Blue and Chromium Ions from Water

    OpenAIRE

    Jie Kong; Hao Mi; Zhiguo Jiang

    2013-01-01

    The hydrophobic poly(ionic liquid) of poly(3-ethyl-1-vinylimidazolium bis(trifluoromethanesulfonyl)imide) (PVI-TFSI) containing imidazolium cations and bis(trifluoromethanesulfonyl)imide anions was synthesized for the separation of methyl blue and chromium ions [Cr(VI)] from water. The adsorption of methyl blue and Cr(VI) in PVI-TSFI/water system reached equilibrium stage within 60 min and 12 h, and the maximum adsorbed percentage for methyl blue and Cr(VI) was 97.6% and 98.0%, respectively. ...

  11. Adsorption of Chromium(VI from Aqueous Solutions by Coffee Polyphenol-Formaldehyde/Acetaldehyde Resins

    Directory of Open Access Journals (Sweden)

    Khudbudin Mulani

    2013-01-01

    Full Text Available Removal of chromium(VI from wastewater is essential as it is toxic. Thus, removal of chromium(VI was performed using coffee polyphenol-formaldehyde/acetaldehyde resins as adsorbents. Adsorbent resins were prepared by condensation of decaffeinated coffee powder with formaldehyde/acetaldehyde and used for the removal of Cr(VI ions from aqueous solutions. A simple and sensitive solid phase extraction procedure was applied for the determination of chromium at trace levels by spectroscopic method using 1,5-diphenylcarbazide reagent. The adsorption of Cr(VI on the coffee polyphenol-formaldehyde/acetaldehyde resins was monitored by FTIR and EDX analysis. The metal adsorption parameters such as contact time, pH, Cr(VI ion concentration, and adsorbent dose were investigated. For Cr(VI, the maximum adsorption capacity of coffee polyphenol-formaldehyde resins was 98% at pH 2. The experimental results showed that Cr(VI bound strongly with coffee polyphenol-formaldehyde/acetaldehyde resins and utilization of resins could be improved greatly by reuse.

  12. Efficacy of Agricultural Wastes in the Removal of Hexavalent Chromium- A Review.

    OpenAIRE

    N Muthulakshmi Andal; S. Charulatha

    2013-01-01

    Hexavalent Chromium is a major pollutant released during several industrial operations. It is also reported as one of the metals known to be carcinogenic and has an adverse potential to modify the DNA transcription process. The removal of hexavalent chromium has been studied by various authors employing adsorbents developed from waste agro by-products to assess their adsorption characteristics. This paper focuses on the comparison of some agro based products in the removal of Cr(VI) ions. An ...

  13. Electrodeposition of black chromium from CR(III) ionic liquid solution

    OpenAIRE

    Eugénio, S.; Rangel, C. M.; Vilar, Rui

    2009-01-01

    Black chromium is an important coating material used in solar thermal systems as a spectrally selective surface. This coating is usually obtained by electrodeposition from sulphate free chromium (VI) aqueous solutions which represent a health and environmental hazard due to the presence of Cr(VI), a known toxic and carcinogenic agent. Recent developments in green chemistry have shown that ionic liquids can be used as electrolytes, allowing the deposition of a wide range of materials with negl...

  14. Chromium-Induced Ultrastructural Changes and Oxidative Stress in Roots of Arabidopsis thaliana

    OpenAIRE

    Eleftheriou, Eleftherios P.; Adamakis, Ioannis-Dimosthenis S.; Emmanuel Panteris; Maria Fatsiou

    2015-01-01

    Chromium (Cr) is an abundant heavy metal in nature, toxic to living organisms. As it is widely used in industry and leather tanning, it may accumulate locally at high concentrations, raising concerns for human health hazards. Though Cr effects have extensively been investigated in animals and mammals, in plants they are poorly understood. The present study was then undertaken to determine the ultrastructural malformations induced by hexavalent chromium [Cr(VI)], the most toxic form provided a...

  15. Global transcriptome analysis of hexavalent chromium stress responses in Staphylococcus aureus LZ-01.

    Science.gov (United States)

    Zhang, Xiaowei; Wu, Wenyang; Virgo, Nolan; Zou, Luming; Liu, Pu; Li, Xiangkai

    2014-10-01

    Staphylococcus aureus strain LZ-01, isolated from the Lanzhou reaches of the Yellow River, is capable of reducing Cr(VI) to Cr(III) aerobically. We employed transcriptome sequencing analysis to identify genes involved in Cr(VI) stress responses in S. aureus LZ-01. Our results showed that 512 of the 2,370 predicted genes displayed up-regulation (>2-fold), and 49 genes were down-regulated (128 genes were annotated to encode proteins involved in cellular processes; 68 were categorized to transport and binding proteins; 26 were involved in DNA repair and 32 were associated with regulatory functions. To further elucidate the Cr(VI) resistance and reduction mechanism, we carried out physiological tests and quantitative PCR analysis. Both RNA-seq and qRT-PCR data showed genes encoding a thioredoxin reductase and main subunits of cytochrome c oxidase complex were up-regulated upon Cr(VI) treatment. Either cadmium or NaN3 treatment could inhibit Cr(VI) reduction which indicates that thioredoxin and cytochrome are involved in Cr(VI) reduction strain LZ-01. 29 ABC-type metal/multidrug transporters and efflux pumps were up-regulated, suggesting that they are involved in Cr(VI) resistance by pumping chromium ions out of cells. The up-regulation of 26 DNA repair genes demonstrate that Cr(VI) is toxic to DNA and those DNA protection proteins need to be responded for Cr(VI) stress. Based on these results, the mechanism of strain LZ-01 resists and reduces Cr(VI) is revealed. PMID:25086489

  16. Cr(VI) Sorption/Desorption on Pine Sawdust and Oak Wood Ash

    OpenAIRE

    Avelino Núñez-Delgado; María José Fernández-Sanjurjo; Esperanza Álvarez-Rodríguez; Laura Cutillas-Barreiro; JuanCarlos Nóvoa-Muñoz; Manuel Arias-Estévez

    2015-01-01

    The objective of this work was to study Cr(VI) sorption/desorption on two by-products from the wood industry: pine sawdust and oak wood ash. The retention/release experiments were carried out using standard batch-type trials. In the sorption-phase experiments, pine sawdust showed 23% sorption when a concentration of 100 mg Cr(VI)L−1 was added, whereas sorption on oak wood ash was 17%. In the desorption-phase, chromium release was clearly higher from pine sawdust than from oak wood ash (98% a...

  17. Adsorption of Waste Metal Cr(VI) with Composite Membranes (Chitosan-Silica Rice Husks)

    OpenAIRE

    Fifia Zulti

    2012-01-01

    Chromium compounds are widely used in modern industry. Many of these compounds are dumped into the surrounding environment. Membrane technology is more efficient and effective than conventional methods for waste treatment. The research objective is to make a membrane separation process that can be applied to Cr(VI). Membranes are made from chitosan and silica rice husks. Variations of chitosan and silica rice husk used (g) are 2:1 (A1), 2:2 (A2), 3:1 (B1), and 3:2 (B2). The membrane is made b...

  18. Development and validation of a model of bio-barriers for remediation of Cr(VI) contaminated aquifers using laboratory column experiments.

    Science.gov (United States)

    Shashidhar, T; Bhallamudi, S Murty; Philip, Ligy

    2007-07-16

    Bench scale transport and biotransformation experiments and mathematical model simulations were carried out to study the effectiveness of bio-barriers for the containment of hexavalent chromium in contaminated confined aquifers. Experimental results showed that a 10cm thick bio-barrier with an initial biomass concentration of 0.205mg/g of soil was able to completely contain a Cr(VI) plume of 25mg/L concentration. It was also observed that pore water velocity and initial biomass concentration are the most significant parameters in the containment of Cr(VI). The mathematical model developed is based on one-dimensional advection-dispersion reaction equations for Cr(VI) and molasses in saturated, homogeneous porous medium. The transport of Cr(VI) and molasses is coupled with adsorption and Monod's inhibition kinetics for immobile bacteria. It was found that, in general, the model was able to simulate the experimental results satisfactorily. However, there was disparity between the numerically simulated and experimental breakthrough curves for Cr(VI) and molasses in cases where there was high clay content and high microbial activity. The mathematical model could contribute towards improved designs of future bio-barriers for the remediation of Cr(VI) contaminated aquifers. PMID:17161527

  19. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).

    Science.gov (United States)

    Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger

    2014-09-15

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pHleather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB). PMID:25222930

  20. Study of the adsorption of Cr(VI) by tannic acid immobilised powdered activated carbon from micro-polluted water in the presence of dissolved humic acid.

    Science.gov (United States)

    Gong, Xujin; Li, Weiguang; Wang, Ke; Hu, Jinhua

    2013-08-01

    The adsorption of Cr(VI) (0.500 mg/L) onto food-grade tannic-acid immobilised powdered activated carbon (TA-PAC) in the presence of dissolved humic acid (DHA) was investigated at 280 K as a function of pH, along with the adsorption capacities and the adsorption isotherms for chromium ions. The results showed that the presence of DHA improved the adsorption capacities of Cr(VI) and its reduction product (Cr(III)) over a wide pH range (4.0-8.0). The main mechanism for metal-DHA complexation in the Cr(VI) system was the reduction of Cr(VI) followed by complexation between Cr(III) and DHA. The Freundlich isotherms yielded the best fits to all data (R(2)=0.9951, qm=5.639 mg/g) in the presence of DHA. The adsorption mechanisms of Cr(VI) onto TA-PAC in the presence of DHA were summarized into three categories: (i) binding by anion adsorption, (ii) Cr(VI) reduction followed by Cr(III) adsorption, and (iii) adsorption of Cr(III)-DHA complexes. PMID:23453800

  1. Analysis of chromium behaviour and speciation during the electrodialytic process

    OpenAIRE

    Gonçalves, Ana Rita Sarmento

    2015-01-01

    The interest in chromium (Cr) arises from the widespread use of this heavy metal in various industrial processes that cause its release as liquid, solid and gaseous waste into the environment. The impact of Cr on the environment and living organisms primarily depends on its chemical form, since Cr(III) is an essential micronutrient for humans, other animals and plants, and Cr(VI) is highly toxic and a known human carcinogen. This study aimed to evaluate if the electrodialytic process (ED) ...

  2. Influence of rhamnolipids, produced by Pseudomonas aeruginosa NCAIM(P), B001380 on Cr(VI) removal capacity in liquid medium

    OpenAIRE

    Avramović Nataša S.; Nikolić-Mandić Snežana D.; Karadžić Ivanka M.

    2013-01-01

    Pseudomonas aeruginosa NCAIM(P), B001380, a propitious bacterial strain isolated from mineral cutting oil was identified to be chromium tolerant and a producer of biosurfactant rhamnolipid (RL) with potential application in heavy metal bioremediation. Culture growth, RL production and Cr(VI) removal capacity of the strain in the presence of 50 mg L-1 (I) and 100 mg L-1 of Cr(VI) (II) were studied. Maximum of RL production were found in the late-stationary phase at 72 h for both Cr(VI)-a...

  3. Site-specific functionalization for chemical speciation of Cr(III) and Cr(VI) using polyaniline impregnated nanocellulose composite: equilibrium, kinetic, and thermodynamic modeling

    Science.gov (United States)

    Jain, Priyanka; Varshney, Shilpa; Srivastava, Shalini

    2015-10-01

    Site-specific functionalizations are the emergent attention for the enhancement of sorption latent of heavy metals. Limited chemistry has been applied for the fabrication of diafunctionalized materials having potential to tether both environmentally stable oxidation states of chromium (Cr(III) and Cr(VI). Polyaniline impregnated nanocellulose composite (PANI-NCC) has been fabricated using click chemistry and explored for the removal of Cr(III) and Cr(VI) from hydrological environment. The structure, stability, morphology, particle size, surface area, hydrophilicity, and porosity of fabricated PANI-NCC were characterized comprehensively using analytical techniques and mathematical tools. The maximum sorption performance of PANI-NCC was procured for (Cr(III): 47.06 mg g-1; 94.12 %) and (Cr(VI): 48.92 mg g-1; 97.84 %) by equilibrating 0.5 g sorbent dose with 1000 mL of 25 mg L-1 chromium conc. at pH 6.5 and 2.5 for Cr(III) and Cr(VI), respectively. The sorption data showed a best fit to the Langmuir isotherm and pseudo-second-order kinetic model. The negative value of ∆ G° (-8.59 and -11.16 kJ mol-1) and ∆ H° (66.46 × 10-1 and 17.84 × 10-1 kJ mol-1), and positive value of ∆ S° (26.66 and 31.46 J mol-1K-1) for Cr(III) and Cr(VI), respectively, reflect the spontaneous, feasibility, and exothermic nature of the sorption process. The application of fabricated PANI-NCC for removing both the forms of chromium in the presence of other heavy metals was also tested at laboratory and industrial waste water regime. These findings open up new avenues in the row of high performance, scalable, and economic nanobiomaterial for the remediation of both forms of chromium from water streams.

  4. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite–magnetite nanoparticles

    International Nuclear Information System (INIS)

    Highlights: ► Cr(VI) adsorption on mixed maghemite–magnetite is spontaneous and endothermic. ► Theoretical multiplet analysis shows that during Cr adsorption, the amount of maghemite increases (from 70 to 89%). ► Fe(II) was transformed into Fe(III) by the redox reaction. ► Cr(VI) species were reduced to Cr(III) species on the mixed maghemite–magnetite. - Abstract: Mixed maghemite–magnetite has been used as adsorbent for Cr(VI) removal in this study. Results show that the adsorption capacity is enhanced with an increase in reaction temperature and decrease in free energy change. Thermodynamic study shows that Cr(VI) adsorption on the mixed maghemite and magnetite is endothermic in nature and is dependent on solution pH between 3 and 6. X-ray photoelectron spectroscopy (XPS) results demonstrate the theoretical multiplet peaks for iron and chromium adsorbed iron at the surface of the γ-Fe2O3 and Fe3O4 mixture. Theoretical multiplet analysis shows that during Cr adsorption, the amount of maghemite increases (from 70 to 89%). In magnetite spectra, the relative content of Fe(II) decreases from 8.2 to 3.6% indicating the reduction of magnetite in the mixture particles. In Raman spectroscopy studies, clear peaks of chromium on iron oxide were generated at 826 cm−1, which could be attributed to chemical interactions between chromium compound and iron oxide. From the results of Raman and XPS studies, electrostatic attraction and oxidation–reduction between chromium and mixed maghemite–magnetite are postulated as mechanisms for the removal of Cr(VI) from aqueous solutions.

  5. Speciation of chromium using chronoamperometric biosensors based on screen-printed electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Calvo-Pérez, Ana, E-mail: anacp@ubu.es; Domínguez-Renedo, Olga, E-mail: olgado@ubu.es; Alonso-Lomillo, MAsunción, E-mail: malomillo@ubu.es; Arcos-Martínez, MJulia, E-mail: jarcos@ubu.es

    2014-06-23

    Highlights: • Chronoamperometric determination of Cr(III) on tyrosinase based biosensors using SPCEs. • Chronoamperometric determination of Cr(VI) on GOx based biosensors using SPCEs. • High degree of sensitivity and selectivity in the analysis of both chromium species. • Bipotentiostatic chronoamperometric determination of both chromium species in the same sample. - Abstract: Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPC{sub TTF}E response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0 ± 0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPC{sub Pt}Es) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5 ± 7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPC{sub TTF}E and a GOx/SPC{sub Pt}E connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples.

  6. Speciation of chromium using chronoamperometric biosensors based on screen-printed electrodes

    International Nuclear Information System (INIS)

    Highlights: • Chronoamperometric determination of Cr(III) on tyrosinase based biosensors using SPCEs. • Chronoamperometric determination of Cr(VI) on GOx based biosensors using SPCEs. • High degree of sensitivity and selectivity in the analysis of both chromium species. • Bipotentiostatic chronoamperometric determination of both chromium species in the same sample. - Abstract: Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPCTTFE response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0 ± 0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPCPtEs) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5 ± 7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPCTTFE and a GOx/SPCPtE connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples

  7. Investigation of Hexavalent Chromium Flux to Groundwater at the 100-C-7:1 Excavation Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vincent R.; Fritz, Brad G.; Mackley, Rob D.; Horner, Jacob A.; Johnson, Christian D.; Newcomer, Darrell R.

    2012-11-16

    Deep excavation of soil has been conducted at the 100-C-7 and 100-C-7:1 waste sites within the 100-BC Operable Unit at the Department of Energy (DOE) Hanford Site to remove hexavalent chromium (Cr(VI)) contamination with the excavations reaching to near the water table. Soil sampling showed that Cr(VI) contamination was still present at the bottom of the 100-C-7:1 excavation. In addition, Cr(VI) concentrations in a downgradient monitoring well have shown a transient spike of increased Cr(VI) concentration following initiation of excavation. Potentially, the increased Cr(VI) concentrations in the downgradient monitoring well are due to Cr(VI) from the excavation site. However, data were needed to evaluate this possibility and to quantify the overall impact of the 100-C-7:1 excavation site on groundwater. Data collected from a network of aquifer tubes installed across the floor of the 100-C-7:1 excavation and from temporary wells installed at the bottom of the entrance ramp to the excavation were used to evaluate Cr(VI) releases into the aquifer and to estimate local-scale hydraulic properties and groundwater flow velocity.

  8. Preparation of Silk Sericin/Lignin Blend Beads for the Removal of Hexavalent Chromium Ions.

    Science.gov (United States)

    Kwak, Hyo Won; Shin, Munju; Yun, Haesung; Lee, Ki Hoon

    2016-01-01

    In the present study, novel adsorbents having high adsorption capability and reusability were prepared using agricultural by-products: silk sericin and lignin. Silk sericin and lignin blend beads were successfully prepared using simple coagulation methods for the removal of hexavalent chromium (Cr(VI)) from aqueous solution. A 1 M lithium chloride (LiCl)/dimethyl sulfoxide (DMSO) solvent system successfully dissolved both sericin and lignin and had sufficient viscosity for bead preparation. Compared to the conventional sericin bead adsorbent, sericin/lignin blend beads showed higher Cr(VI) adsorption capacity. The amount of lignin added to the adsorbent greatly affected the adsorption capacity of the beads, and a 50:50 sericin/lignin blend ratio was optimal. Adsorption behavior followed the Freundlich isotherm, which means the adsorption of Cr(VI) occurred on the heterogeneous surface. Cr(VI) adsorption capability increased with temperature because of thermodynamic-kinetic effects. In addition, over 90% of Cr(VI) ions were recovered from the Cr(VI) adsorbed sericin/lignin beads in a 1 M NaOH solution. The adsorption-desorption recycling process was stable for more than seven cycles, and the recycling efficiency was 82%. It is expected that the sericin/lignin beads could be successfully applied in wastewater remediation especially for hazardous Cr(VI) ions in industrial wastewater. PMID:27598142

  9. An assessment of the environmental toxicity of hexavalent chromium in fish

    NARCIS (Netherlands)

    Putte, van der I.

    1981-01-01

    At present chromium is a common contaminant in surface waters in many countries. In water the metal may be present in the trivalent form (CrIII) or in the hexavalent form (CrVI), the latter of which is more toxic to aquatic organisms.The investigations presented in this thesis were aimed at a thorou

  10. Developed Fungal-Bacterial Biofilms as A Novel Tool for Bioremoval of Hexavelant Chromium from Wastewater

    DEFF Research Database (Denmark)

    Herath, Lasantha; Rajapaksha, R. M. A. U.; Vithanage, M.;

    2014-01-01

    Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal...

  11. MODELING HEXAVALENT CHROMIUM REDUCTION IN GROUND- WATER IN FIELD-SCALE TRANSPORT AND LABORATORY BATCH EXPERIMENTS

    Science.gov (United States)

    A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical cond...

  12. Core and Valence Structures in K beta X-ray Emission Spectra of Chromium Materials

    NARCIS (Netherlands)

    Torres Deluigi, Maria; de Groot, Frank M. F.; Lopez-Diaz, Gaston; Tirao, German; Stutz, Guillermo; Riveros de la Vega, Jose

    2014-01-01

    We analyze the core and valence transitions in chromium in a series of materials with a number of different ligands and including the oxidation states: Cr-II, Cr-III, Cr-IV, and Cr-VI. To study the core-to-core transitions we employ the CTM4XAS program and investigate the shapes, widths, intensities

  13. Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: Chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders

    International Nuclear Information System (INIS)

    Exposure to workplace airborne pollutants was examined in a group of 20 workers dealing mainly with welding, polishing, drilling and assembling of stainless steel constructions. Monitoring of airborne particulate matter (ARM) was performed using both personal and stationary samplers. For the personal full-shift monitoring, a SKC 224 PCRX-4 constant flow rate pump was used which was connected to a sampling head with mixed cellulose matched-weight filters having a diameter of 32 mm and a 0.8 μm pore size. The constant flow rate amounted to 2 L min-1. For the stationary sampling, the ''Gent'' stacked filter unit PM10 sampler was used, operating at a flow rate of 16 L min-1. It collects particles having an equivalent aerodynamic diameter (EAD) of less than 10,um in the separate ''coarse'' (2-10 μm EAD) and ''fine'' (< 2 μm EAD) size fractions on two sequential polycarbonate (Costar, Nuclepore) filters with a 47 mm diameter. The filters of both types were analyzed by instrumental neutron activation analysis (INAA). Of the elements determined, results for chromium, iron, manganese, molybdenum, nickel and vanadium are presented. Procedures for quality assurance of both sampling and analytical stages are described. Sampling of biological material for elemental analysis (hair, nails, urine and blood and/or serum) of exposed and control persons in contamination-free conditions was also performed. In addition, saliva samples were collected for studying immunological and genotoxicity aspects of occupational exposure. (author)

  14. Synthesis and characterization of polyaniline/zeolite nanocomposite for the removal of chromium(VI from aqueous solution

    Directory of Open Access Journals (Sweden)

    Abdulsalam A. Shyaa

    2015-01-01

    Batch adsorption experiments were used to investigate the effect of various experimental parameters on the equilibrium adsorption of chromium(VI on PANI/zeolite nanocomposite. The adsorption characteristics of the composite toward Cr(VI in dilute aqueous solution were followed spectrophotometrically. The effect of contact time, size of the sorbent and the concentration of Cr(VI in solution on the metal uptake behavior of the composite were studied. It has been observed that the capacity of chromium adsorption on PANI/zeolite increases with initial metal concentration, the metal ion adsorption on surfactant is well represented by the Freundlich isotherm.

  15. Response of soil catalase activity to chromium contamination

    Institute of Scientific and Technical Information of China (English)

    Zofia St(e)pniewska; Agnieszka Woli(n)ska; Joanna Ziomek

    2009-01-01

    The impact of chromium (III) and (VI) forms on soil catalase activity is presented.The Orthic Podzol, Haplic Phaeozem and Mollic Gleysol from different depths were used in the experiment.The soil samples were amended with solution of Cr(III) using CrCl3, and with Cr(VI) using K2Cr2O7 in the concentration range from 0 to 20 mg/kg, whereas the samples without the addition of chromium served as control.Catalase activity was assayed by one of the commonly used spectrophotometric methods.As it is demonstrated in the experiment, both Cr(III) and Cr(VI) forms have ability to reduce soil catalase activity.A chromium dose of 20 mg/kg caused the inhibition of catalase activity and the corresponding contamination levels ranged from 75% to 92% for Cr(III) and 68% to 76% for Cr(VI), with relation to the control.Catalase activity reached maximum in the soil material from surface layers (0-25 cm), typically characterized by the highest content of organic matter creating favorable conditions for microorganisms.

  16. Hexavalent chromium removal and bioelectricity generation by Ochrobactrum sp. YC211 under different oxygen conditions.

    Science.gov (United States)

    Chen, Chih-Yu; Cheng, Chiu-Yu; Chen, Ching-Kuo; Hsieh, Min-Chi; Lin, Ssu-Ting; Ho, Kuo-Ying; Li, Jo-Wei; Lin, Chia-Pei; Chung, Ying-Chien

    2016-01-01

    Bioremediation is an environmentally friendly method of reducing heavy metal concentration and toxicity. A chromium-reducing bacterial strain, isolated from the vicinity of an electroplate factory, was identified as Ochrobactrum sp. YC211. The efficiency and capacity per time of Ochrobactrum sp. YC211 for hexavalent chromium (Cr(VI)) removal under anaerobic conditions were superior to those under aerobic conditions. An acceptable removal efficiency (96.5 ± 0.6%) corresponding to 30.2 ± 0.8 mg-Cr (g-dry cell weight-h)(-1) was achieved by Ochrobactrum sp. YC211 at 300 mg L(-1) Cr(VI). A temperature of 30°C and pH 7 were the optimal parameters for Cr(VI) removal. By examining reactivated cells, permeabilized cells, and cell-free extract, we determined that Cr(VI) removal by Ochrobactrum sp. YC211 under anaerobic conditions mainly occurred in the soluble fraction of the cell and can be regarded as an enzymatic reaction. The results also indicated that an Ochrobactrum sp. YC211 microbial fuel cell (MFC) with an anaerobic anode was considerably superior to that with an aerobic anode in bioelectricity generation and Cr(VI) removal. The maximum power density and Cr(VI) removal efficiency of the MFC were 445 ± 3.2 mW m(-2) and 97.2 ± 0.3%, respectively. Additionally, the effects of coexisting ions (Cu(2+), Zn(2+), Ni(2+), SO4(2-), and Cl(-)) in the anolyte on the MFC performance and Cr(VI) removal were nonsignificant (P > 0.05). To our knowledge, this is the first report to compare Cr(VI) removal by different cells and MFC types under aerobic and anaerobic conditions. PMID:26889692

  17. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination

    Directory of Open Access Journals (Sweden)

    Guey-Horng Wang

    2016-08-01

    Full Text Available Fast hexavalent chromium (Cr(VI determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI concentration and voltage output for various Cr(VI concentration ranges (0.0125–0.3 mg/L and 0.3–5 mg/L. The MFC biosensor is a simple device that can accurately measure Cr(VI concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%. The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI determination even if O. anthropi YC152 is a possible opportunistic pathogen.

  18. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination.

    Science.gov (United States)

    Wang, Guey-Horng; Cheng, Chiu-Yu; Liu, Man-Hai; Chen, Tzu-Yu; Hsieh, Min-Chi; Chung, Ying-Chien

    2016-01-01

    Fast hexavalent chromium (Cr(VI)) determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI) concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC)-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI) concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI) concentration and voltage output for various Cr(VI) concentration ranges (0.0125-0.3 mg/L and 0.3-5 mg/L). The MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%). The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI) in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI) determination even if O. anthropi YC152 is a possible opportunistic pathogen. PMID:27537887

  19. Removal of Cr(VI from Water Using a New Reactive Material: Magnesium Oxide Supported Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Alessio Siciliano

    2016-08-01

    Full Text Available The chromium pollution of water is an important environmental and health issue. Cr(VI removal by means of metallic iron is an attractive method. Specifically, nanoscopic zero valent iron (NZVI shows great reactivity, however, its applicability needs to be further investigated. In the present paper, NZVI was supported on MgO grains to facilitate the treatments for remediation of chromium-contaminated waters. The performances and mechanisms of the developed composite, in the removal of hexavalent chromium, were investigated by means of batch and continuous tests. Kinetic studies, under different operating conditions, showed that reduction of Cr(VI could be expressed by a pseudo second-order reaction kinetic. The reaction rate increased with the square of Fe(0 amount, while it was inversely proportional to the initial chromium concentration. The process performance was satisfactory also under uncontrolled pH, and a limited influence of temperature was observed. The reactive material was efficiently reusable for many cycles without any regeneration treatment. The performances in continuous tests were close to 97% for about 80 pore volume of reactive material.

  20. Determination of hexavalent chromium in cosmetic products by ion chromatography and postcolumn derivatization.

    Science.gov (United States)

    Kang, Eun Kyung; Lee, Somi; Park, Jin-Hee; Joo, Kyung-Mi; Jeong, Hye-Jin; Chang, Ih Seop

    2006-05-01

    Chromium hydroxide green [Cr(2)O(OH)(4)] and chromium oxide green (Cr(2)O(3)) are colouring agents for use in cosmetic products. These colourants may contain chromium (VI), which cause skin allergies through percutaneous adsorption on the skin. Eye shadow is a representative cosmetic product in which significant colourants are used. We analysed the chromium (VI) in the eye shadows by ion chromatography and post column derivatization. We optimize conditions of chromium (VI) analysis in eye shadows. During the pretreatment procedure, there are no exchange of chromium (III) to chromium (VI). This method has a limit of quantification for chromium (VI) of 1.0 microg l(-1), recovery rate of 100 +/- 3% and analysis time less than 10 min. This result is 300 times more sensitive than the high-performance liquid chromatography method. We applied the optimized method to analyse 22 eye shadows and 6 colouring agents. 2 out of 22 of the products contained more than 5 mg l(-1). In our previous work, 5 mg l(-1) of Cr represented a threshold level. There was much more Cr(VI) in the colouring agents. The Cr(VI) in one of the colouring agents was 97.6 mg l(-1). PMID:16689807

  1. Conversion of Chromium(III) Propionate to Chromate/dichromate(VI) by the Advanced Oxidation Process. Pretreatment of a Biomimetic Complex for Metal Analysis

    OpenAIRE

    Lynn Rodman, D.; Carrington, Nathan A.; Xue, Zi-Ling

    2006-01-01

    The use of H2O2 and UV irradiation to remove organic ligands in a chromium(III) complex for the subsequent chromium analysis is reported. The Advanced Oxidation Process (AOP) using a 5.5-W UV lamp, H2O2 and Fe2+/Fe3+ as catalyst (photo Fenton process) was found to give complete and quantitative Cr(III) → Cr(VI) conversion and removal of ligands in chromium(III) propionate [Cr3O(O2CCH2CH3)6(H2O)3]NO3, a biomimetic chromium species, as subsequent chromium analyses by the 1,5-diphenylcarbazide m...

  2. Hybrid materials: Magnetite-Polyethylenimine-Montmorillonite, as magnetic adsorbents for Cr(VI) water treatment.

    Science.gov (United States)

    Larraza, Iñigo; López-Gónzalez, Mar; Corrales, Teresa; Marcelo, Gema

    2012-11-01

    Hybrid materials formed by the combination of a sodium rich Montmorillonite (MMT), with magnetite nanoparticles (40 nm, Fe(3)O(4) NPs) coated with Polyethylenimine polymer (PEI 800 g/mol or PEI 25000 g/mol) were prepared. The intercalation of the magnetite nanoparticles coated with PEI among MMT platelets was achieved by cationic exchange. The resulting materials presented a high degree of exfoliation of the MMT sheets and a good dispersion of Fe(3)O(4) NPs on both the surface and among the layers of MMT. The presence of amine groups in the PEI structure not only aids the exfoliation of the MMT layers, but also gives to the hybrid material the necessary functionality to interact with heavy metals. These hybrid materials were used as magnetic sorbent for the removal of hexavalent chromium from water. The effect that pH, Cr(VI) concentration, and adsorbent material composition have on the Cr(VI) removal efficiency was studied. A complete characterization of the materials was performed. The hybrid materials showed a slight dependence of the removal efficiency with the pH in a wide range (1-9). A maximum amount of adsorption capacity of 8.8 mg/g was determined by the Langmuir isotherm. Results show that these hybrid materials can be considered as potential magnetic adsorbent for the Cr(VI) removal from water in a wide range of pH. PMID:22841705

  3. Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Simeonidis, K., E-mail: ksime@physics.auth.gr [Department of Mechanical Engineering, School of Engineering, University of Thessaly, Volos 38334 (Greece); Kaprara, E. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Samaras, T.; Angelakeris, M.; Pliatsikas, N.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Mitrakas, M. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Andritsos, N. [Department of Mechanical Engineering, School of Engineering, University of Thessaly, Volos 38334 (Greece)

    2015-12-01

    The potential of magnetite nanoparticles to be applied in drinking water treatment for the removal of hexavalent chromium is discussed. In this study, a method for their preparation which combines the use of low-cost iron sources (FeSO{sub 4} and Fe{sub 2}(SO{sub 4}){sub 3}) and a continuous flow mode, was developed. The produced magnetite nanoparticles with a size of around 20 nm, appeared relatively stable to passivation providing a removal capacity of 1.8 μg Cr(VI)/mg for a residual concentration of 50 μg/L when tested in natural water at pH 7. Such efficiency is explained by the reducing ability of magnetite which turns Cr(VI) to an insoluble Cr(OH){sub 3} form. The successful operation of a small-scale system consisting of a contact reactor and a magnetic separator demonstrates a way for the practical introduction and recovery of magnetite nanoparticles in water treatment technology. - Highlights: • Iron sulfates were used for the kilogram scale production of Fe{sub 3}O{sub 4} nanoparticles. • Studied particles showed a Cr(VI) removal capacity of 2 μg/mg in natural water. • Cr(VI) uptake is mostly based on its reduction and precipitation as Cr(OH){sub 3}. • A continuous flow reactor–magnetic separator operated with nanoparticles.

  4. Cu-Zn powders as potential Cr(VI) adsorbents for drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Kaprara, E.; Seridou, P.; Tsiamili, V.; Mitrakas, M. [Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Vourlias, G.; Tsiaoussis, I.; Kaimakamis, G.; Pavlidou, E. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Andritsos, N. [Department of Mechanical Engineering, University of Thessaly, 38334 Volos (Greece); Simeonidis, K., E-mail: ksime@physics.auth.gr [Department of Mechanical Engineering, University of Thessaly, 38334 Volos (Greece)

    2013-11-15

    Highlights: • Preparation of CuZn powders by ball-milling and mild annealing. • Cr(VI) removal efficiency is maximized near the equiatomic alloy composition. • RSSCT on commercial CuZn granules indicates the potential for application. • Side-effects include Cu and Zn leaching during the process. -- Abstract: This work examines the possibility of applying CuZn alloys as a reducing medium for the efficient removal of hexavalent chromium from drinking water. In an effort to develop a route for producing powders of CuZn alloys under mild conditions and investigate the optimum composition for such application, a series of alloys in the form of powders were prepared, by a sequence of Cu and Zn ball-milling and low temperature annealing. Batch Cr(VI) removal tests, performed to evaluate and compare the efficiency of the products under typical natural water parameters (pH 7 and natural-like water), indicated that the best performing material have a composition around 50 wt% Cu. The dominant reduction mechanisms are both the corrosion of the alloy surface and the electron transfer to the solution. The behavior of granulated CuZn media was tested in rapid-scale column tests using the commercial KDF which verified the high potential of CuZn alloys in Cr(VI) removal. Nevertheless, Cu and Zn leaching problems should be also considered.

  5. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.

    Science.gov (United States)

    Dhal, B; Thatoi, H N; Das, N N; Pandey, B D

    2013-04-15

    Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed. PMID:23467183

  6. A novel modified graphene oxide/chitosan composite used as an adsorbent for Cr(VI) in aqueous solutions.

    Science.gov (United States)

    Zhang, Li; Luo, Hanjin; Liu, Peipei; Fang, Wei; Geng, Junjie

    2016-06-01

    A novel adsorbent for removal of hexavalent chromium (Cr(VI)) from aqueous solutions has been successfully prepared by modifying graphene oxide/chitosan composite with disodium ethylenediaminetetraacetate (EDTA-2Na) (GEC). This modified composite was characterized by various technologies; including scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Batch adsorption experiments were carried out to evaluate the adsorption of Cr(VI) by GEC under different conditions. The results indicate that the adsorption of Cr(VI) on GEC was highly pH-dependent, with the highest adsorption capacity (86.17mg/g) occurring at pH 2. The kinetics of adsorption exhibited pseudo-second-order behavior. The adsorption data were well described by the Freundlich isotherm model. The adsorption capacity increased with increasing temperature. The calculated thermodynamic parameters indicate that the adsorption is a spontaneous, endothermic and feasible process. The further regeneration experiments showed the adsorption capacity of GEC for Cr(VI) decreased 5% after 7 times reuse, indicating the potential of the as-prepared material for practical application. PMID:26993532

  7. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions

    International Nuclear Information System (INIS)

    In this study, the preparation of activated carbon from almond shell with H2SO4 activation and its ability to remove toxic hexavalent chromium from aqueous solutions are reported. The influences of several operating parameters such as pH, particle size and temperature on the adsorption capacity were investigated. Adsorption of Cr(VI) is found to be highly pH, particle size and temperature dependent. Four adsorption isotherm models namely, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich were used to analyze the equilibrium data. The Langmuir isotherm provided the best correlation for Cr(VI) onto the almond shell activated carbon (ASC). Adsorption capacity was calculated from the Langmuir isotherm as 190.3 mg/g at 323 K. Thermodynamic parameters were evaluated and the adsorption was endothermic showing monolayer adsorption of Cr(VI). Five error functions were used to treat the equilibrium data using non-linear optimization techniques for evaluating the fit of the isotherm equations. The highest correlation for the isotherm equations in this system was obtained for the Freundlich isotherm. ASC is found to be inexpensive and effective adsorbent for removal of Cr(VI) from aqueous solutions

  8. Determination of Chromium(III), Chromium(VI), and Chromium(III) acetylacetonate in water by ion-exchange disk extraction/metal furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kamakura, Nao, E-mail: minnie04_tb@yahoo.co.jp; Inui, Tetsuo; Kitano, Masaru; Nakamura, Toshihiro

    2014-03-01

    A new method for the separate determination of Chromium(III) (Cr(III)), Chromium(VI) (Cr(VI)), and Cr(III) acetylacetonate (Cr(acac){sub 3}) in water was developed using a cation-exchange extraction disk (CED) and an anion-exchange extraction disk (AED) combined with metal furnace atomic absorption spectrometry (MFAAS). A 100-mL water sample was adjusted to pH 5.6 and passed through the CED placed on the AED. Cr(acac){sub 3} and Cr(III) were adsorbed on the CED, and Cr(VI) was adsorbed on the AED. The adsorbed Cr(acac){sub 3} was eluted with 50 mL of carbon tetrachloride, followed by the elution of Cr(III) with 50 mL of 3 mol L{sup −1} nitric acid. Cr(VI) was eluted with 50 mL of 3 mol L{sup −1} nitric acid. The chemical species of Cr eluted from the CED with carbon tetrachloride was identified as Cr(acac){sub 3} using infrared spectroscopy. The eluate of Cr(acac){sub 3} was diluted to 100 mL with carbon tetrachloride, and those of Cr(III) and Cr(VI) were diluted to 100 mL with deionized water. All of the solutions were subsequently analyzed by MFAAS. The calibration curve for the Cr(acac){sub 3} aqueous solutions exhibited good linearity in the range of 0.1 to 1 ng. The detection limit of Cr, which corresponded to three times the standard deviation (n = 10) of the blank values, was 20 pg. The recovery test for Cr(III), Cr(VI), and Cr(acac){sub 3} exhibited desirable results (96.0%–107%) when 5 μg of each species (50 μg L{sup −1}) was added to 100 mL water samples (i.e., tap water, rainwater, and bottled drinking water). In a humic acid solution, Cr(acac){sub 3} was quantitatively recovered (103%), but Cr(III) and Cr(VI) exhibited poor recoveries (i.e., 84.8% and 78.4%, respectively). - Highlights: • A determination method of Cr(III), Cr(VI), and Cr(III) acetylacetonate in water was developed. • The combination of ion-exchange resin disks with metal furnace AAS was used. • No effect of humic acid on the recovery of Cr(III) acetylacetonate was

  9. Determination of Chromium(III), Chromium(VI), and Chromium(III) acetylacetonate in water by ion-exchange disk extraction/metal furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A new method for the separate determination of Chromium(III) (Cr(III)), Chromium(VI) (Cr(VI)), and Cr(III) acetylacetonate (Cr(acac)3) in water was developed using a cation-exchange extraction disk (CED) and an anion-exchange extraction disk (AED) combined with metal furnace atomic absorption spectrometry (MFAAS). A 100-mL water sample was adjusted to pH 5.6 and passed through the CED placed on the AED. Cr(acac)3 and Cr(III) were adsorbed on the CED, and Cr(VI) was adsorbed on the AED. The adsorbed Cr(acac)3 was eluted with 50 mL of carbon tetrachloride, followed by the elution of Cr(III) with 50 mL of 3 mol L−1 nitric acid. Cr(VI) was eluted with 50 mL of 3 mol L−1 nitric acid. The chemical species of Cr eluted from the CED with carbon tetrachloride was identified as Cr(acac)3 using infrared spectroscopy. The eluate of Cr(acac)3 was diluted to 100 mL with carbon tetrachloride, and those of Cr(III) and Cr(VI) were diluted to 100 mL with deionized water. All of the solutions were subsequently analyzed by MFAAS. The calibration curve for the Cr(acac)3 aqueous solutions exhibited good linearity in the range of 0.1 to 1 ng. The detection limit of Cr, which corresponded to three times the standard deviation (n = 10) of the blank values, was 20 pg. The recovery test for Cr(III), Cr(VI), and Cr(acac)3 exhibited desirable results (96.0%–107%) when 5 μg of each species (50 μg L−1) was added to 100 mL water samples (i.e., tap water, rainwater, and bottled drinking water). In a humic acid solution, Cr(acac)3 was quantitatively recovered (103%), but Cr(III) and Cr(VI) exhibited poor recoveries (i.e., 84.8% and 78.4%, respectively). - Highlights: • A determination method of Cr(III), Cr(VI), and Cr(III) acetylacetonate in water was developed. • The combination of ion-exchange resin disks with metal furnace AAS was used. • No effect of humic acid on the recovery of Cr(III) acetylacetonate was observed. • The proposed method enabled the determination of three Cr

  10. Investigation of the chemical stability of different Cr(VI) based compounds during regular X-ray photoelectron spectroscopy measurements

    International Nuclear Information System (INIS)

    Highlights: • XPS study of influence of regular data acquisition on different Cr(VI) compounds. • All of the investigated samples suffer sample damage, i.e. chemical decomposition. • Degradation is predominantly caused by the low energy ions from dual flood gun. • Photoreduction plays a minor role when using modern XPS systems with monochromator. • Dichromates suffer more severe damage than their corresponding chromates. - Abstract: Chromium compounds are of high importance for industrial applications, but due to their hazardous nature Cr(VI) species are subjected to strict regulations. XPS performed on these materials provides promising potential to identify the involved chemical states. However, hexavalent chromium is known to suffer degradation by decomposition, so the influence of standard XPS measurements, using a modern system with monochromatic X-rays and a dual flood gun, on the chemical stability of several Cr(VI) compounds was investigated in depth. Degradation of varying intensity is shown to be mainly induced by the dual flood gun instead of the expected photoreduction by X-rays

  11. Hexavalent chromium-resistant bacteria isolated from river sediments.

    Science.gov (United States)

    Luli, G W; Talnagi, J W; Strohl, W R; Pfister, R M

    1983-01-01

    Hexavalent chromium [Cr(VI)] is a known carcinogen and mutagen; however, the actual mechanisms of Cr toxicity are unknown. Two approaches were used to isolate Cr(VI)-resistant bacteria from metal-contaminated river sediments. Diluted sediments were plated directly onto a peptone-yeast extract (PYE) medium containing 0 to 100 micrograms of Cr(VI) ml-1. Approximately 8.4 x 10(5) CFU g-1 were recovered on 0 microgram of Cr(VI) ml-1, whereas 4.0 x 10(2) CFU g-1 were recovered on PYE plus 100 micrograms of Cr(VI) ml-1. Alternatively, continuous culture enrichment techniques were employed using PYE and 100 micrograms Cr(VI) ml-1 input at dilution rates of 0.02 and 0.10 h-1. After six residence periods, 10(9) CFU were recovered on PYE agar containing 0 microgram of Cr(VI) ml-1 and 10(7) CFU on PYE agar plus 100 micrograms of Cr(VI) ml-1. Of 89 isolates obtained by direct plating onto PYE, 47% were resistant to 100 micrograms of Cr(VI) ml-1, and 29% were resistant to 250 micrograms of Cr(VI) ml-1. When the same isolates were plated onto PYE containing Cr(III), 88% were resistant to 100 micrograms ml-1 but only 2% were resistant to 250 micrograms ml-1. Cr, Co, Sb, and Zn were found in significantly higher concentrations at an industry-related contaminated site than at a site 11 km downstream. Total Cr in the sediments at the contaminated site averaged 586 micrograms (dry weight) g-1, and the downstream site averaged 71 micrograms (dry weight) g-1. The Cr recovered from acid-digested Ottawa River sediment samples was predominantly hexavalent. Five acid digestion procedures followed by atomic absorption spectroscopy were compared and found to be 30 to 70% efficient for recovery of Cr relative to neutron activation analysis. A population of aerobic, heterotrophic bacteria was recovered from sediments containing elevated levels of Cr.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6639032

  12. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.

    Science.gov (United States)

    Jin, Zhisheng; Liu, Taoze; Yang, Yuangen; Jackson, Daniel

    2014-06-01

    Over the past few decades, zinc smelting activities in Guizhou, China have produced numerous slag dumps, which are often dispersed on roadsides and hill slopes throughout the region. During periods of acid rain, these exposed slags release heavy metals into surface water bodies. A column leaching study was designed to test the potential release of the heavy metals cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) under simulated acid rain events. Two slags with varying environmental exposure periods were packed in columns and subjected to leaching solutions of pH 3.5, 5.5, or DI H2O at intervals of 1, 7, 14, 28, 56d. Pulse concentrations of Cd in leachate were found above 5μg/L, Cr, Pb, and Zn >10μg/L, whereas, Cu reached 10μg/L. After five leaching events, the leachability (percentage of cumulative heavy metal leached after five leaching events as in its respective total concentration in slags) of Cd was 0.05 percent and 0.035 percent from the old and young slag, respectively. Cr (0.035 percent and 0.05 percent) was greater than Cu (0.002 percent and 0.005 percent) and Zn (0.006 percent and 0.003 percent), while the lowest leachability was observed for Pb (0.0005 percent and 0.0002 percent) from the old and young slags, respectively. Reaction rates (release amount of heavy metals in certain period of leaching) of heavy metals in the leachates demonstrated the sequence of Zn>Cr>Cd, Cu>Pb. Leaching release of heavy metals was jointly affected by the pH of leaching solution and mineral composition of slags (including chemical forms of Cd, Cr, Cu, Pb, and Zn). Environmental exposure period of slags, resulting in the alteration of minerals, could affect the release process of heavy metals in leaching as well. PMID:24632122

  13. Impact of environmental stress on biochemical parameters of bacteria reducing chromium

    Directory of Open Access Journals (Sweden)

    Rida Batool

    2014-06-01

    Full Text Available Chromium pollution is produced in connection with industrial processes like in tanneries. It has been suggested that bioremediation could be a good option for clean up. The stress effect of variable chromate levels, pHs and growth temperatures on biochemical parameters of two Cr(VI reducing bacterial strains Pseudomonas aeruginosa Rb-1 and Ochrobactrum intermedium Rb-2 was investigated. Transmission electrone microscopy (TEM was performed to study the intracellular distribution of Cr(VI. It was observed that initial stress of 1000 µgmL-1 caused significant enhancement of all studied biochemical parameters at pH 7.0 and growth temperature of 37 °C showing great bioremediation potential of the strains. Transmission electron microscopy revealed that the distribution of chromium precipitates was not uniform as they were distributed in the cytoplasm as well as found associated with the periplasm and outer membrane. Fourier transform infrared spectroscopy showed the possible involvement of carboxyl, amino, sulpohonate and hydroxyl groups present on the bacterial cell surface for the binding of Cr(VI ions. Cr(VI stress brought about changes in the distridution of these functional groups. It can be concluded that the investigated bacterial strains adjust well to Cr(VI stress in terms of biochemical parameters and along that exhibited alteration in morphology.

  14. Reduction of Hexavalent Chromium Using L-Cysteine Capped Nickel Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Razium Ali Soomro

    2013-06-01

    Full Text Available The aim of this study was to reduce the highly toxic hexavalent chromium Cr(VI into less toxic chromium Cr(III species by using nickel nanoparticles (Ni NPs as catalysts in order to provide safety to the aqueous environment. In the first phase Ni NPs were synthesized in ethylene glycol and capped with l-cysteine by a modified microwave irradiation method using NaOH as the accelerator. The formed Ni NPs were characterized by various techniques such as UV-Visible spectroscopy, Fourier Transform Infra-red (FTIR spectroscopy and Scanning Electron Microscopy (SEM. In the second phase the formed Ni NPs were immobilized on glass surfaces and employed as catalyst for the reduction of Cr(VI ions. According to observations, 99% reduction of Cr(VI ions was achieved in the presence of 0.5 mg of Ni NPs catalyst in just five minutes as compared to nickel powder that showed only 16% reduction in 15 minutes. The study has a great impact on the aqueous pollution control of Cr(VI especially caused by the discharge of waste water from several industries utilizing Cr(VI containing salt as one of the essential gradients.

  15. Chromium isotope inventory of Cr(VI)-polluted groundwaters at four industrial sites in Central Europe

    Science.gov (United States)

    Novak, Martin; Martinkova, Eva; Chrastny, Vladislav; Stepanova, Marketa; Curik, Jan; Szurmanova, Zdenka; Cron, Marcel; Tylcer, Jiri; Sebek, Ondrej

    2016-04-01

    Chromium is one of the most toxic elements, especially in its dissolved Cr(VI) form. In the Czech Republic (Central Europe), massive contamination of groundwater has been reported at more than 200 industrial operations. Under suitable conditions, i.e., low Eh, and high availability of reductive agents, Cr(VI) in groundwater may be spontaneously reduced to solid, largely non-toxic Cr(III). This process is associated with a Cr isotope fractionation, with the residual liquid Cr(VI) becoming enriched in the heavier isotope 53Cr. At industrial operations that have been closed and/or where no further leakage of Cr(VI) occurs, the contaminated groundwater plume may be viewed as a closed system. At such sites, an increasing degree of Cr(VI) reduction should result in an increasing del53/52Cr value of the residual liquid. Here we present del53/52Cr systematics at four contaminated Czech sites, focusing on groundwaters. At two of the four sites (Zlate Hory, Loucna) we were also able to analyze the source of contamination. Chromium in the electroplating solutes was isotopically relatively light, with del53/52Cr values close a Cr isotope mass balance.

  16. Assessing human exposure to aluminium, chromium and vanadium through outdoor dust ingestion in the Bassin Minier de Provence, France.

    Science.gov (United States)

    Reis, A P; Patinha, C; Noack, Y; Robert, S; Dias, A C

    2014-04-01

    The Western part of the "Bassin Minier de Provence", a former coal mining area, is still occupied by old polluting industries such as a coal-fired power plant and an alumina factory. The identified pollution sources that raise more concern in the population are the emission of gases and dusts, as well as the storage of raw and transformed materials. In 2011, a preliminary survey was carried out in the area as the first step to an exposure and health risk-assessment study. This first survey intends to assess human exposure through ingestion and health risk associated with potentially harmful elements (PHEs) in ground-level dusts collected in recreational areas used by children. Dust samples were taken at 19 sites distributed across the study area, depending on the location of public parks, public gardens, playgrounds and schools. Pseudo-total concentrations of 53 elements were determined by ICP-MS. Bioaccessible concentrations were estimated using the unified bioaccessibility method. This study presents the results obtained for Al, V and Cr, which seem to be related with industry and show similar distribution patterns. PHEs presumably related to traffic or other urban pollution sources are not discussed in this study. The highest total concentrations occur in dusts near the alumina plant that have significant amounts of Al mineral phases (gibbsite and alumina). However, in these dusts only small fractions of the elements under study are in bioaccessible forms. The highest bioaccessible fractions occur in dusts collected near the coal-fired power plant. Further investigation is required to assess potential pathways of exposure and health risk in this area. PMID:23990126

  17. THE CONSEQUENCES ON BLOOD GSH DYNAMICS ON WISTAR FEMALE RATS AT AD LIBITUM CHROMIUM (VI ADMINISTRATION DURING THE GESTATION AFTER THE WEAN

    Directory of Open Access Journals (Sweden)

    CORINA GRĂVILĂ

    2013-07-01

    Full Text Available Chromium (VI is a widely used industrial chemical, extensively used in paints, metal finishes, steel including stainless steel manufacturing, alloy cast irons, chrome, and wood treatment. In nature chromium occurs in divalent, trivalent and hexavalent forms. Hexavalent chromium predominates over the trivalent form in natural waters. We have studied the influence of potassium dichromate (K2Cr2O7 on blood GSH values in rats. This study was carried out on 28 Wistar adult female rats, divided in 3 experimental groups (E and one control group (C. The rats were feed with 25ppm (LOAEL, 50ppm and 75ppm potassium dichromate, ad libitum, in drinking water, during the gestation. The control batch received tap water. Reduced glutathione (GSH was measured quantitatively after the wean using a Perkin-Elmer spectrophotometer, through Beutler et al. method, at 412nm. This study reports that potassium dichromate exposure induced the depletion of blood GSH because Cr(VI can generate reactive oxygen species (ROS. It can induce oxidative stress and toxicity.

  18. Chromium speciation in rainwater: temporal variability and atmospheric deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kieber, R.J.; Willey, J.D.; Zvalaren, S.D. [University of North Carolina at Wilmington, Wilmington, NC (United States). Dept. of Chemistry

    2002-12-15

    Chromium is released into the atmosphere by a variety of anthropogenic activities which include steel manufacturing, leather tanning, wood presentation and fossil fuel combustion. The concentrations of the various chromium species were determined in 89 rainwater samples collected in Wilmington, NC from October 1, 1999 to December 31, 2001. Volume weighted annual average concentrations of Cr{sub total}, particulate Cr, Cr(III)(aq), and Cr(VI)(aq) were 4.6, 2.2, 0.8 and 1.2 nM, respectively. There was distinct seasonal and diurnal variability in the concentrations of the various chromium species. Chromium emissions to the global atmosphere by both natural and anthropogenic sources are estimated to be 2.2 x 10{sup 9} mol/yr. Using rainwater concentration data along with other published rainwater Cr concentrations and an estimate for total global annual rain, the total global flux of chromium removed from the atmosphere via wet deposition is 2.1 x 10{sup 9} mol/yr. This represents complete removal of Cr and indicates that essentially all chromium released into the global atmosphere is removed via rain. About half this chromium is dissolved with roughly equal concentrations of toxic Cr(VI) and relatively harmless Cr(III) species. 48 refs., 4 figs., 3 tabs.

  19. DANGER OF HEXAVALENT CHROMIUM AND STRATEGY FOR THE REMEDITATION

    Directory of Open Access Journals (Sweden)

    Aniruddha Roy

    2013-02-01

    Full Text Available Some metals as micronutrients have a major role in the life and growth process of plants and animals. However, certain forms of some metals may also act as toxic material even in relatively small quantities. Chromium is such a metal, whose concentration above a certain limit may cause a serious problem to the health of living organisms. Chromium (Cr may occur in several chemical forms in organic and inorganic systems. In biological systems only Cr (III and Cr (VI are significant. Among these two states, trivalent chromium (Cr-III is considered as an essential component, while hexavalent Chromium (Cr-VI in biological system has been detected as responsible for so many diseases, even some specific forms of cancer. This paper intends to present the adverse effect of Cr(VI on environment as well as on human beings and also try to find a way out to dissolve the problem by a newly developed efficient and cost effective technique.

  20. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes.

    Science.gov (United States)

    Dima, Jimena Bernadette; Sequeiros, Cynthia; Zaritzky, Noemi E

    2015-12-01

    Chitosan particles (CH) were obtained from seafood processing wastes (shrimp shells) and physicochemically characterized; deacetylation degree of CH was measured by Infrared Spectroscopy (FTIR) and potentiometric titration; polymer molecular weight was determined by intrinsic viscosity measurements. Reticulated micro/nanoparticles of chitosan (MCH) with an average diameter close to 100nm were synthesized by ionic gelation of chitosan using tripolyphosphate (TPP), and characterized by SEM, size distribution and Zeta-potential. Detoxification capacities of CH and MCH were tested analyzing the removal of hexavalent chromium Cr(VI) from contaminated water, at different initial chromium concentrations. The effect of pH on adsorption capacity of CH and MCH was experimentally determined and analyzed considering the Cr(VI) stable complexes (anions) formed, the presence of protonated groups in chitosan particles and the addition of the reticulating agent (TPP). Chitosan crosslinking was necessary to adsorb Cr(VI) at pH<2 due to the instability of CH particles in acid media. Langmuir isotherm described better than Freundlich and Temkin equations the equilibrium adsorption data. Pseudo-second order rate provided the best fitting to the kinetic data in comparison to pseudo-first order and Elovich equations. Chemical analysis to determine the oxidation state of the adsorbed Cr, showed that Cr(VI) was adsorbed on CH particles without further reduction; in contrast Cr(VI) removed from the solution was reduced and bound to the MCH as Cr(III). The reduction of toxic Cr(VI) to the less or nontoxic Cr(III) by the reticulated chitosan micro/nanoparticles can be considered a very efficient detoxification technique for the treatment of Cr(VI) contaminated water. PMID:26151484

  1. Biosorption Potential of Bacillus salmalaya Strain 139SI for Removal of Cr(VI) from Aqueous Solution

    Science.gov (United States)

    Dadrasnia, Arezoo; Chuan Wei, Kelvin Swee; Shahsavari, Nasser; Azirun, Mohd Sofian; Ismail, Salmah

    2015-01-01

    The present study investigated the biosorption capacity of live and dead cells of a novel Bacillus strain for chromium. The optimum biosorption condition was evaluated in various analytical parameters, including initial concentration of chromium, pH, and contact time. The Langmuir isotherm model showed an enhanced fit to the equilibrium data. Live and dead biomasses followed the monolayer biosorption of the active surface sites. The maximum biosorption capacity was 20.35 mg/g at 25 °C, with pH 3 and contact time of 50 min. Strain 139SI was an excellent host to the hexavalent chromium. The biosorption kinetics of chromium in the dead and live cells of Bacillus salmalaya (B. salmalaya) 139SI followed the pseudo second-order mechanism. Scanning electron microscopy and fourier transform infrared indicated significant influence of the dead cells on the biosorption of chromium based on cell morphological changes. Approximately 92% and 70% desorption efficiencies were achieved using dead and live cells, respectively. These findings demonstrated the high sorption capacity of dead biomasses of B. salmalaya 139SI in the biosorption process. Thermodynamic evaluation (ΔG0, ΔH0, and ΔS0) indicated that the mechanism of Cr(VI) adsorption is endothermic; that is, chemisorption. Results indicated that chromium accumulation occurred in the cell wall of B. salmalaya 139SI rather than intracellular accumulation. PMID:26633454

  2. Biosorption Potential of Bacillus salmalaya Strain 139SI for Removal of Cr(VI from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Arezoo Dadrasnia

    2015-12-01

    Full Text Available The present study investigated the biosorption capacity of live and dead cells of a novel Bacillus strain for chromium. The optimum biosorption condition was evaluated in various analytical parameters, including initial concentration of chromium, pH, and contact time. The Langmuir isotherm model showed an enhanced fit to the equilibrium data. Live and dead biomasses followed the monolayer biosorption of the active surface sites. The maximum biosorption capacity was 20.35 mg/g at 25 °C, with pH 3 and contact time of 50 min. Strain 139SI was an excellent host to the hexavalent chromium. The biosorption kinetics of chromium in the dead and live cells of Bacillus salmalaya (B. salmalaya 139SI followed the pseudo second-order mechanism. Scanning electron microscopy and fourier transform infrared indicated significant influence of the dead cells on the biosorption of chromium based on cell morphological changes. Approximately 92% and 70% desorption efficiencies were achieved using dead and live cells, respectively. These findings demonstrated the high sorption capacity of dead biomasses of B. salmalaya 139SI in the biosorption process. Thermodynamic evaluation (ΔG0, ΔH0, and ΔS0 indicated that the mechanism of Cr(VI adsorption is endothermic; that is, chemisorption. Results indicated that chromium accumulation occurred in the cell wall of B. salmalaya 139SI rather than intracellular accumulation.

  3. Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites.

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jinga, Sorin Ion; Mihalache, Nicoleta; Botez, Adriana; Matei, Cristian; Berger, Daniela; Damian, Celina Maria; Ionita, Valentin

    2016-10-01

    In this study bacterial cellulose-magnetite composites were synthesised for the removal of chromium(VI) from aqueous solutions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and X-ray Photoelectron Spectroscopy (XPS) were used to characterize the bacterial cellulose-magnetite composites and to reveal the uniform dispersion of nanomagnetite in the BC matrix. Magnetic properties were also measured to confirm the magnetite immobilization on bacterial cellulose membrane. The effects of initial Cr(VI) concentration, solution pH and solid/liquid ratio upon chromium removal were examined using the statistical Box-Behnken Design. Because of the possibility of magnetite dissolution during chromium(VI) adsorption, the degree of iron leaching was also analysed in the same conditions as Cr(VI) adsorption. From the factors affecting chromium(VI) adsorption the most important was solution pH. The highest Cr(VI) removal efficiency was observed at pH 4, accompanied by the lowest iron leaching in the solution. The adsorption experiments also indicated that the adsorption process of chromium(VI) is well described by Freundlich adsorption model. Our results proved that the BC-magnetite composites could be used for an efficient removal of chromium(VI) from diluted solutions with a minimum magnetite dissolution during operation. PMID:27343705

  4. Cr stable isotopes as indicators of Cr(VI) reduction in groundwater: a detailed time-series study of a point-source plume.

    Science.gov (United States)

    Berna, Emily C; Johnson, Thomas M; Makdisi, Richard S; Basu, Anirban

    2010-02-01

    Chromium stable isotope ratios show promise as indicators of Cr(VI) reduction in groundwater, but no published study has yet demonstrated that expected relationships between (53)Cr/(52)Cr and Cr(VI) concentration, position, and time occur in an actual groundwater plume. We present an extensive data set from a point-source plume in Berkeley, CA; data extend over 5 years and 14 locations covering the entire plume. We interpret the data using a Rayleigh distillation model with an effective fractionation factor that incorporates an intrinsic fractionation factor determined from incubations of site sediments and accounts for reservoir effects in the restricted subsurface zones where Cr(VI) reduction is thought to occur. The groundwater (53)Cr/(52)Cr and Cr(VI) concentration data are consistent with a scenario where the system has reached a steady state: Cr(VI) reduction continues, the extent of reduction at any point is constant over time, reduction proceeds to completion at the downgradient edge of the plume, and the plume is no longer advancing. The overall consistency of the results with a reasonable model for the site supports the use of Cr isotope-based estimates of reduction, but we discuss current uncertainties and limitations of the approach as well. PMID:20039722

  5. Removal of hexavalent chromium by using red mud activated with cetyltrimethylammonium bromide.

    Science.gov (United States)

    Li, Deliang; Ding, Ying; Li, Lingling; Chang, Zhixian; Rao, Zhengyong; Lu, Ling

    2015-01-01

    The removal of hexavalent chromium [Cr(VI)] from aqueous solution by using red mud activated with cetyltrimethylammonium bromide (CTAB) was studied. The optimum operation parameters, such as CTAB concentration, pH values, contact time, and initial Cr(VI) concentration, were investigated. The best concentration of CTAB for modifying red mud was found to be 0.50% (mCTAB/VHCl,0.6 mol/L). The lower pH (removal of Cr(VI). Red mud activated with CTAB can greatly improve the removal ratio of Cr(VI) as high as four times than that of original red mud. Adsorption equilibrium was reached within 30 min under the initial Cr(VI) concentration of 100 mg L(-1). The isotherm data were analysed using Langmuir and Freundlich models. The adsorption of Cr(VI) on activated red mud fitted well to the Langmuir isotherm model, and the maximum adsorption capacity was estimated as 22.20 mg g(-1) (Cr/red mud). The adsorption process could be well described using the pseudo-second-order model. The result shows that activated red mud is a promising agent for low-cost water treatment. PMID:25299348

  6. The Growth of Gypsum in the Presence of Hexavalent Chromium: A Multiscale Study

    Directory of Open Access Journals (Sweden)

    Juan Morales

    2016-03-01

    Full Text Available The sorption of dissolved inorganic pollutants into the structure of minerals is an important process that controls the mobility and fate of these pollutants in the Earth’s crust. It also modifies the surface structure and composition of the host mineral, affecting its crystallization kinetics. Here, we investigate the effect of hexavalent chromium, Cr(VI, on the nucleation and growth of gypsum by conducting two types of experiments: (i in situ atomic force microscopy (AFM observations of the growth of gypsum {010} surfaces in the presence of Cr(VI and (ii gypsum precipitation experiments by mixing aqueous solutions containing variable amounts of Cr(VI. Gypsum precipitation is progressively delayed when occurring from solutions bearing increasing Cr(VI concentrations. Chemical analyses of gypsum precipitates show that gypsum incorporates small Cr(VI amounts that correlate with the content of this ion in the aqueous solution. Gypsum cell parameters variation reflects this incorporation. At the molecular scale, Cr(VI induces a slowdown of step advance rates on gypsum {010} surfaces accompanied by the roughening of nanostep edges and the so-called “template effect”. This effect involves the reproduction of the original nanotopography after the completion of individual advancing monolayers and appears as a general nanoscale phenomenon occurring during growth of solid solutions from aqueous solutions even in the case of compositionally-restricted solid solutions.

  7. Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [University of Miskolc, Miskolc (Hungary). Dept. of Analytical Chemistry

    2002-03-01

    The aim of this study is to demonstrate the potential of coals as a low-cost reactive barrier material for environmental protection applications, with the ability to prevent leaching of toxic Cr(VI) and other transition metals. Depending upon the type of ion and the surface functionalities, the uptake can involve ion sorption, ion exchange, chelation and redox mechanisms with the surface functionalities being considered as partners in electron transfer processes. The capacity for Cr(VI) uptake of low rank coals and oxidized bituminous coals has been found to lie within the range 02-0.6 mM g{sup -1}. Air oxidation of bituminous coals can increase their Cr(VI) removal capacities. The effect of air oxidation of coals on uptake capacity was more pronounced for Cr(VI) than Cr(III) but less than for Hg(II) and the other ions (Ca{sup 2+}, Ba{sup 2+}, Zn{sup 2+}, Cd{sup 2}) investigated. As previously found for Hg(II), redox mechanisms plays an important role in Cr(VI) uptake, with resultant Cr(III) is exchanged back into solution by hydrogen ions, but some of the sorbed chromium is irreversibly bound to the coal. The reduction of Cr(VI) alone is often considered a satisfactory solution in view of Cr(III) being essentially nontoxic. 56 refs., 11 figs., 1 tab.

  8. Speciation of chromium using chronoamperometric biosensors based on screen-printed electrodes.

    Science.gov (United States)

    Calvo-Pérez, Ana; Domínguez-Renedo, Olga; Alonso-Lomillo, M Asunción; Arcos-Martínez, M Julia

    2014-06-23

    Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPC(TTF)E response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0±0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPCPtEs) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5±7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPC(TTF)E and a GOx/SPC(Pt)E connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples. PMID:24909769

  9. Oral exposure of mice to cadmium (II), chromium (VI) and their mixture induce oxidative- and endoplasmic reticulum-stress mediated apoptosis in the livers.

    Science.gov (United States)

    Jin, Yuanxiang; Zhang, Songbin; Tao, Runhua; Huang, Jie; He, Xingzhi; Qu, Lanya; Fu, Zhengwei

    2016-06-01

    Health concerns regarding the environmental heavy metals in wildlife and humans have increased in recent years. We evaluated the effects of exposure of mice to low doses of cadmium (Cd), chromium (Cr) and their mixtures on oxidative- and ER-stress. Male adult mice were orally exposed to Cd (0.5 and 2 mg kg(-1) ), Cr (1 and 4 mg kg(-1) ) and binary Cd+Cr mixtures (0.25 + 05 and 1 + 2 mg kg(-1) ) daily for 36 days. We observed that the bioaccumulation of Cd and Cr in the liver in a dose-dependent manner, and the Cd and Cr contents in the 2 mg kg(-1) Cd and 4 mg kg(-1) Cr treated groups reached 2.43 and 3.46 µg g(-1) liver weight. In addition, treatments with 2 mg kg(-1) Cd, 4 mg kg(-1) Cr or their mixture (1 + 2 mg kg(-1) ) significantly decreased body and liver weights, increased the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and activities of catalase (CAT) and glutathione peroxidase (GPX) in the liver. Moreover, Cd and Cr exposures also elevated the transcription of the oxidative- and endoplasmic reticulum (ER)-stress related genes including Cat, Gpx, heme oxygenase 1 (Ho-1), regulated protein 78 (Grp78), activating transcription factor 6 (Atf6) and proaoptotic CCAAT/-enhancer-binding protein homologous protein (Chop) in a dose dependent manner in the liver. And hepatic cytochrome c levels increased in all Cd, Cr or their mixture treated groups. Furthermore, the transcriptional status and the activities of Caspase 9 and Caspase 3 were increased significantly in the liver when exposed to high doses of Cd, Cr or their mixture. These results suggested that a long period exposure of mice to Cd or Cr has the potential to elicit oxidative- and ER-stress mediated apoptosis in their livers. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 693-705, 2016. PMID:25409916

  10. Removal of hexavalent chromium by new quaternized crosslinked poly(4-vinylpyridines)

    International Nuclear Information System (INIS)

    New quaternized crosslinked poly(4-vinylpyridines) prepared by nucleophilic substitution reactions of 4-vinylpyridine: divinylbenzene copolymers of gel and porous structure with halogenated compounds such as benzyl chloride and 2-chloracetone, were used to remove Cr(VI) from the aqueous solution. Batch adsorption studies were carried out to determine the effect of the initial concentration of Cr(VI), pH, temperature and the presence of sulfate anions. The process was found to be pH and concentration dependent. The adsorption capacities increase with the increase of the initial concentration of Cr(VI) and both resins exhibited the degrees of usage of the exchange capacities higher than 90% and good efficiency in the chromium removal. Equilibrium modeling of the process of Cr(VI) removal was carried out by using the Langmuir and Freundlich isotherms. The experimental data obeyed these isotherm models. The thermodynamic parameters (free energy change ΔG, enthalpy change ΔS and entropy change ΔH) for the adsorption have been evaluated and therefore, it was showed the spontaneous and endothermic process of the adsorption of Cr(VI) on the pyridine resins. In the competitive adsorption studies, chromate/sulfate revealed the selectivity of the pyridine adsorbents towards chromium ions. At acidic pH the synthesized pyridine resins offer much greater chromate removal capacities compared to alkaline pH. In the competitive adsorption studies, chromate/sulfate revealed the selectivity of the pyridine adsorbents towards chromium ions due to the formation a sandwich arrangement with the chromium anion and functional groups attached to the quaternary nitrogen atom.

  11. Determination of hexavalent chromium in sludge incinerator emissions using ion chromatography and inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Arar, E.J.; Long, S.E. (Technology Applications, Inc., Cincinnati, OH (United States)); Martin, T.D.; Gold, S. (Environmental Monitoring Systems Lab., Cincinnati, OH (United States))

    1992-10-01

    A unique approach is described using ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) for the determination of hexavalent chromium [Cr(VI)] in wastewater sludge incinerator emissions. Quartz fiber filters, spiked with an isotopically enriched ([sup 50]Cr or [sup 53]Cr) chromate salt, were used to collect emission particulates. The enriched Cr(VI) isotope was used to monitor the reduction of Cr(IV) during sample collection using a pseudo-first-order reaction model and to calculate the rate of deposition of native Cr(VI) on the filters. At the end of the sampling period, the Cr(VI) was extracted from the filters with 0.1 N sodium hydroxide and determined by IC using postcolumn derivatization with 1,5-diphenylcarbohydrazide. To determine the ratio of enriched Cr(VI) to the native Cr(VI) emitted from the incinerator, an additional aliquot of the sample extract was preconcentrated by IC and the isotopic composition of the Cr(VI) fraction determined by ICP-MS. 21 refs., 4 figs., 3 figs.

  12. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron.

    Science.gov (United States)

    Di Palma, L; Gueye, M T; Petrucci, E

    2015-01-01

    Iron sulphate (FeSO4) and colloidal nano zero-valent iron (nZVI) as reducing agents were compared, with the aim of assessing their effectiveness in hexavalent chromium [Cr(VI)] removal from a contaminated industrial soil. Experiments were performed on soil samples collected from an industrial site where a nickel contamination, caused by a long-term productive activity, was also verified. The influence of reducing agents amount with respect to chromium content and the effectiveness of deoxygenation of the slurry were discussed. The soil was fully characterized before and after each test, and sequential extractions were performed to assess chemico-physical modifications and evaluate metals mobility induced by washing. Results show that both the reducing agents successfully lowered the amount of Cr(VI) in the soil below the threshold allowed by Italian Environmental Regulation for industrial reuse. Cr(VI) reduction by colloidal nZVI proved to be faster and more effective: the civil reuse of soil [Cr(VI)<2mg/kg] was only achieved using colloidal nZVI within 60min adopting a nZVI/Cr(VI) molar ratio of 30. The reducing treatment resulted in an increase in the amount of chromium in the oxide-hydroxide fraction, thus confirming a mechanism of chromium-iron hydroxides precipitation. In addition, a decrease of nickel (Ni) and lead (Pb) content in soil was also observed when acidic conditions were established. PMID:25139286

  13. Study of corrosion behavior of a 22% Cr duplex stainless steel : influence of nano-sized chromium nitrides and exposure temperature

    OpenAIRE

    Bettini, Eleonora; Kivisäkk, Ulf; Leygraf, Christofer; Pan, Jinshan

    2013-01-01

    Chromium nitrides may precipitate in duplex stainless steels during processing and their influence on the corrosion behavior is of great importance for the steel performance. In this study, the influence of nano-sized quenched-in chromium nitrides on the corrosion behavior of a heat treated 2205 duplex stainless steel was investigated at room temperature and 50 °C (just above critical pitting temperature). The microstructure was characterized by SEM/EDS and AFM analyses, and quenched-in nitri...

  14. Chronic toxicity of arsenic, cobalt, chromium and manganese to Hyalella azteca in relation to exposure and bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Norwood, W.P. [Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 (Canada) and Aquatic Ecosystems Protection Research Division, Environment Canada, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada)]. E-mail: warren.norwood@ec.gc.ca; Borgmann, U. [Aquatic Ecosystems Protection Research Division, Environment Canada, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Dixon, D.G. [Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2007-05-15

    Chronic toxicity of As, Co, Cr and Mn to Hyalella azteca can be described using a saturation-based mortality model relative to total-body or water metal concentration. LBC25s (total-body metal concentrations resulting in 25% mortality in 4 weeks) were 125, 103, 152 and 57,900 nmol g{sup -1} dry weight for As, Co, Cr and Mn respectively. LC50s (metal concentrations in water resulting in 25% mortality in 4 weeks) were 5600, 183, 731, and 197,000 nmol L{sup -1}, respectively. A hormesis growth response to As exposure was observed. Growth was a more variable endpoint than mortality for all four toxicants; however, confidence limits based on growth and mortality all overlapped, except Cr which had no effect on growth. Mn toxicity was greater in glass test containers compared to plastic. Bioaccumulation of As, Co, Cr, and Mn was strongly correlated with, and is useful for predicting, chronic mortality. - Chronic toxicity of As, Co, Cr and Mn to Hyalella azteca can be described using a saturation-based mortality model in relationship to total-body or water metal concentration.

  15. Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

    Directory of Open Access Journals (Sweden)

    Sayel Hanane

    2014-07-01

    Full Text Available Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

  16. Kinetic parameters and mechanisms of the batch biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz biomass.

    Science.gov (United States)

    Li, Jianping; Lin, Qingyu; Zhang, Xuehong; Yan, Yan

    2009-05-01

    The hyperaccumulative plant species Leersia hexandra Swartz, particularly, has been considered for its detoxification mechanism for phytoremediation of chromium-contaminated water environments. This study investigates the role of the adsorption mechanism of the L. hexandra Sw. biomass on the removal of chromium ions Cr(VI) and Cr(III) from an aqueous solution. The interaction between chromium ions and the L. hexandra Sw. biomass was characterized by using infrared spectroscopy. The results indicate that the binding process of the chromium ions involves the active participation of ligands present in the biomass, such as acylamide, carbonyl, amino, carboxyl, and hydroxyl groups, to immobilize the chromium ions. Equilibrium biosorption experiments were carried out to investigate the effects of pH values and contact time. Adsorption isotherms were modeled with the Langmuir and Freundlich equations and isotherm constants were calculated. Kinetic experiments showed the rapid process of biosorption and the pseudo-second-order model was successfully applied to predict the rate constant of biosorption. This study firstly discovered the kinetics equilibrium modelling of L. hexandra Sw. biomass on biosorption Cr(VI) and Cr(III). PMID:19251269

  17. Chromium speciation in solid matrices and regulation: a review.

    Science.gov (United States)

    Unceta, N; Séby, F; Malherbe, J; Donard, O F X

    2010-06-01

    In recent years, the extensive use of chromium in industrial processes has led to the promotion of several directives and recommendations by the European Union, that try to limit and regulate the presence of Cr(VI) in the environment and to protect industrial workers using chromium and end-users of manufactured products. As a consequence, new standard methods and analytical procedures have been published at the EU level for Cr(VI) determination in soil, sludge, sediment, and similar waste materials, workplace atmospheres, cement, packaging materials, industrially produced samples, and corrosion-protection layers on some components of vehicles and electrical and electronic equipment. The objective of this article is to summarize the different directives and recommendations and to critically review the currently existing standard methods and the methods published in the literature for chromium speciation in the above mentioned solid matrices, putting the emphasis on the different extraction procedures which have been developed for each matrix. Particular attention has been paid to Cr(III) and Cr(VI) inter-conversions that can occur during extraction and efforts to minimize these unwanted reactions. Although the use of NaOH-Na(2)CO(3) solutions with hot plate extraction seems to be the more widespread procedure, species transformation can still occur and several studies suggest that speciated isotope-dilution mass spectrometry (SIDMS) could be a suitable tool for correction of these interconversions. Besides, recent studies have proved the role of Cr(III) in chromium toxicology. As a consequence, the authors suggest an update of standard methods in the near future. PMID:20099060

  18. Hexavalent Chromium Reduction under Fermentative Conditions with Lactate Stimulated Native Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Somenahally, Anil C [ORNL; Mosher, Jennifer J [ORNL; Yuan, Tong [University of Oklahoma; Phelps, Tommy Joe [ORNL; Brown, Steven D [ORNL; Yang, Zamin Koo [ORNL; Hazen, Terry C [ORNL; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Palumbo, Anthony Vito [ORNL; Van Nostrand, Dr. Joy D. [Oklahoma University; Zhou, Jizhong [University of Oklahoma; Elias, Dwayne A [ORNL

    2013-01-01

    Microbial reduction of toxic hexavalent chromium (Cr(VI)) in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI)] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI) concentrations on community structure and on the Cr(VI)-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to grow native communities enriched with lactate (30 mM) and continuously amended with Cr(VI) at 0.0 (No-Cr), 0.1 (Low-Cr) and 3.0 (High-Cr) mg/L. Microbial growth, metabolites, Cr(VI), 16S rRNA gene sequences and GeoChip based functional gene composition were monitored for 15 weeks. Temporal trends and differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) levels were below detection from week 1 until week 15. With lactate enrichment, native bacterial diversity substantially decreased as Pelosinus spp., and Sporotalea spp., became the dominant groups, but did not significantly differ between Cr concentrations. The Archaea diversity also substantially decreased after lactate enrichment from Methanosaeta (35%), Methanosarcina (17%) and others, to mostly Methanosarcina spp. (95%). Methane production was lower in High-Cr reactors suggesting some inhibition of methanogens. Several key functional genes were distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant microbes, Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result 3.0 mg/L Cr(VI) did not impact the overall bacterial community structure.

  19. Adsorption characteristics of hexavalent chromium on HCB/TiO2

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Sol–gel method was adopted to prepare HCB/TiO2. • Its adsorption performance of Cr(VI) was investigated. • The maximum adsorption capacity for Cr(VI) was at 27.33 mg g−1 in an acidic medium. • The value is worth comparable with other low-cost adsorbents. - Abstract: Sol–gel method was adopted to prepare HCB/TiO2 and its adsorption ability of hexavalent chromium, Cr(VI), and removal from aqueous solution were investigated. The samples were characterized by Power X-ray diffraction (XRD) and a transmission electron microscope (TEM) which showed that the TiO2 was deposited on the surface of HCB. FTIR was used to identify the changes of the surface functional groups before and after adsorption. Potentiometric titration method was used to characterize the zero charge (pHpzc) characteristics of the surface of HCB/TiO2 which showed more acidic functional groups containing. Batch experiments showed that initial pH, absorbent dosage, contact time and initial concentration of Cr(VI) were important parameters for the Cr(VI) adsorption studies. The Freundlich isotherm model better reflected the experimental data better. Cr(VI) adsorption process followed the pseudo-second order kinetic model, which illustrated chemical adsorption. The thermodynamic parameters, such as Gibbs free energy (ΔG), changes in enthalpy change (ΔH) and changes in entropy change (ΔS) were also evaluated. Negative value of free energy occurred at temperature range of 25–45 °C, so Cr(VI) adsorption by HCB/TiO2 is spontaneous. Desorption results showed that the adsorption capacity could maintain 80% after five cycles. The maximum adsorption capacity for Cr(VI) was at 27.33 mg g−1 in an acidic medium, of which the value is worth comparable with other low-cost adsorbents

  20. Evaluating the toxicity of environmental concentrations of waterborne chromium (VI) to a model teleost, Oncorhynchus mykiss: a comparative study of in vivo and in vitro.

    Science.gov (United States)

    Li, Zhi-Hua; Li, Ping; Randak, Tomas

    2011-05-01

    Toxic effects of environmental concentrations (50, 100, and 200μg/L) of waterborne chromium (VI) were evaluated in rainbow trout by comparison of in vitro and in vivo assays. Multiple biomarkers were measured including oxidative stress indices and antioxidant response parameters in liver and brain, as well as Na(+)-K(+)-ATPase in gill. Superoxide dismutase (SOD) and glutathione reductase (GR) activities were significantly induced (1.54-fold and 1.37-fold, respectively) in fish brain in vivo, but no significant differences were observed in any other biomarker or in vivo test group. Oxidative stress was apparent in vitro as significantly higher levels of oxidative indices, with the highest induction of TBARS and CP found in brain at 200μg/L Cr(VI) (2.41-fold and 1.95-fold, respectively), and SOD and GR activities and reduced glutathione in brain were significantly inhibited (65%, 44%, and 36%, respectively). In vitro Na(+)-K(+)-ATPase activity in gill was also significantly inhibited at concentrations of 100 and 200μg/L (69% and 45%, respectively). Short-term exposure to environmental concentrations of Cr(VI) does not therefore evoke marked effects in fish in vivo. Based on the present results, a set of in vitro tests with tissue homogenate can be evoked more remarkable effects by the lower concentrations of Cr(VI) than in vivo, which could provide some useful information and might be a potential alternative approach for monitoring heavy metal pollution in aquatic environments. However, it needs more detailed studies in other area, such as hormonal response or genotoxicity, before these findings could be applied in the field investigation. PMID:21324377

  1. Determination of Chromium(III), Chromium(VI), and Chromium(III) acetylacetonate in water by ion-exchange disk extraction/metal furnace atomic absorption spectrometry

    Science.gov (United States)

    Kamakura, Nao; Inui, Tetsuo; Kitano, Masaru; Nakamura, Toshihiro

    A new method for the separate determination of Chromium(III) (Cr(III)), Chromium(VI) (Cr(VI)), and Cr(III) acetylacetonate (Cr(acac)3) in water was developed using a cation-exchange extraction disk (CED) and an anion-exchange extraction disk (AED) combined with metal furnace atomic absorption spectrometry (MFAAS). A 100-mL water sample was adjusted to pH 5.6 and passed through the CED placed on the AED. Cr(acac)3 and Cr(III) were adsorbed on the CED, and Cr(VI) was adsorbed on the AED. The adsorbed Cr(acac)3 was eluted with 50 mL of carbon tetrachloride, followed by the elution of Cr(III) with 50 mL of 3 mol L- 1 nitric acid. Cr(VI) was eluted with 50 mL of 3 mol L- 1 nitric acid. The chemical species of Cr eluted from the CED with carbon tetrachloride was identified as Cr(acac)3 using infrared spectroscopy. The eluate of Cr(acac)3 was diluted to 100 mL with carbon tetrachloride, and those of Cr(III) and Cr(VI) were diluted to 100 mL with deionized water. All of the solutions were subsequently analyzed by MFAAS. The calibration curve for the Cr(acac)3 aqueous solutions exhibited good linearity in the range of 0.1 to 1 ng. The detection limit of Cr, which corresponded to three times the standard deviation (n = 10) of the blank values, was 20 pg. The recovery test for Cr(III), Cr(VI), and Cr(acac)3 exhibited desirable results (96.0%-107%) when 5 μg of each species (50 μg L- 1) was added to 100 mL water samples (i.e., tap water, rainwater, and bottled drinking water). In a humic acid solution, Cr(acac)3 was quantitatively recovered (103%), but Cr(III) and Cr(VI) exhibited poor recoveries (i.e., 84.8% and 78.4%, respectively).

  2. Kinetics and equilibrium studies for sorption of Cu(II) and Cr(Vi) Ions onto polymeric composite resins

    International Nuclear Information System (INIS)

    The sorption behavior of Cu(II) and Cr(Vi) ions from aqueous solutions was studied using polymeric composite resins. Batch sorption experiments were performed as a function of hydrogen ion concentration, presence of complexing agent, effect of sorbent dosage and ionic strength. Kinetic parameters as a function of initial ion concentration were determined to predict the sorption behavior of Cu(Il) and Cr(Vi) onto polymeric composite resins. The equilibrium data could be fitted by the Freundlich adsorption isotherm equation. Industrial and mining waste water are important sources of heavy metals pollution (Quek et al, 1998). Chromium compounds are widely used by modern industries, resulting in large quantities of this element being discharged into the environment. Some of the main uses of chromium compounds are: plastic coating of surfaces, electroplating of metal, leather tanning and finishing, and in pigments and wood preservative (Korngold et al., 2003 and (Demirbas et al., 2004). Chromium occurs in waste water resulting from these operations is in both trivalent Cr(III) and hexavalent Cr(Vi) forms. The presence of Cu(II) in wastewater is also a problem. Copper is used extensively by electrical industries, in fungicides and in anti-fouling paints. When Cu is ingested at high concentrations, it become toxic to humans, causing cancer and promoting oxidation. The present method for removal of Cu(II) is to be precipitated as copper hydroxide by liming. However, with this process, residual Cu remains a problem (Findon et al, 1993). Owing to their wide uses, the efficient removal of toxic metal ions from waste water is an important and widely studied research area where a number of technologies have been developed over the years (Deans et al., 1992). The most important of these methods are filtration, chemical precipitation, ion exchange, sorption, electrodeposition and membrane systems. All these approaches have their inherent advantages and limitations

  3. Removal of Cr(VI) and Cr(lll) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite.

    Science.gov (United States)

    Lu, Anhuai; Zhong, Shaojun; Chen, Jie; Shi, Junxian; Tang, Junli; Lu, Xiaoying

    2006-05-01

    This paper introduced a simple method of treating Cr(Vl)-bearing toxic wastewaters using a natural mineral: clino-pyrrhotite. Laboratory bench-scale mixing experiments were carried out in both Cr(VI)-bearing artificial solutions and industrial wastewaters under controlled conditions. The effects of solution pH, Cr(VI) concentration, mineral grain size, mineral/solution ratio, and reaction time on the Cr(VI) removal were studied. Chromium was effectively removed from the solutions and wastewaters. After the treatment, the liquid was clean enough to be discharged directly into the natural environment. The Cr(VI) removal process involved sequentially the adsorption of Cr(VI), in the form of Cr2O7(2-) or CrO4(2-), onto the mineral surface, the reduction of the adsorbed Cr(VI) to Cr(lll), catalyzed at the vacant Fe sites of the mineral, and finally the precipitation of Cr(lll) as Cr2S3, Cr2O3, and Cr(OH)3 solid phases. Conditions such as a fine mineral grain size, an excessive quantity of clino-pyrrhotite and a weak acidic media, favored the removal process. For clino-pyrrhotite with a restricted grain size, the minimum required quantity of the mineral was proportional to the total quantity of Cr(VI) to be removed. Quantitatively, one cubic meter of industrial wastewater that contained approximately 1 mmol dm(-3) of Cr(VI) and had a pH value between 1 and 10 would be effectively treated after it was in contact with 220 kg of 145 +/- 28 microm clino-pyrrhotite for an hour. Furthermore, the quantity of the final solid waste byproduct was small, and the solid residue of clino-pyrrhotite could be reused after a simple rinse with water. Compared to the previous Cr(VI)-bearing wastewater treatment schemes, this method was simple, effective, economical, and environmentally sound. It has great potential for use in industrial-scale applications. PMID:16719112

  4. Aqueous solubility speciation of Cr(VI) in ferrochrome bag filter dust / Willem Petrus Johannes van Dalen

    OpenAIRE

    Van Dalen, Willem Petrus Johannes

    2015-01-01

    The production of ferrochrome (FeCr) from chromite ore is a reducing process, whereby the Cr(III) and Fe(II) in the ore are reduced to metallic chromium (Cr) and iron (Fe) in the final product. FeCr is mostly used for the production of stainless steel, which is a vital alloy in modern society. It is, however, impossible to exclude oxygen completely from all the high temperature steps during the production process and very small amounts of Cr(VI) are therefore formed, although not intended. Th...

  5. Electrothermal atomic absorption spectrometric determination of total and hexavalent chromium in atmospheric aerosols

    International Nuclear Information System (INIS)

    A method was developed which allow separate determination of Cr(VI) and total Cr from the same minute sample of atmospheric aerosols. Cr(VI) was leached was with 0.1 M Na2CO3 and the total Cr concentrations were determined after acid digestion. The method was validated by the analysis of certified reference materials, CRM 545, Mess-3 and Pacs-2 with good agreement between certified and found values. Cr concentrations in air samples taken around the chromium smelter show concentrations that exceed the maximum allowed levels in 8 h with higher values closer to the smelter. The limit of detection (LOD) of the method for Cr(VI) determination in air samples was found to be 0.2 ng m-3, i.e. lower than offered by the commonly preferred spectrophotometric and colorimetric techniques

  6. Extraction-absorptiometric determination of chromium by acridine yellow in natural and waste waters

    International Nuclear Information System (INIS)

    In interaction of Cr(VI) anion with acridine basic dye - acridine yellow has been studied. The colored ionic associate could be extracted by dichlorethane: acetone (3:1) binary mixture in Ph 1 to 2 N hydrochloric acid solution. Optimal concentration of reagent is 1,83·10-3-2,94·10-3M. The celebration graph obeyed Beer's law over the range 0,625-10 mkg Cr/ml and the apparent molar absorptivity of the extract at 454 nm was 3,4·104±500 l mol-1cm1. The molar ratio between Cr(VI) anion and acridine yellow in ionic associate has been determined by method Asmuse which is (1:1). The influence of interfering elements on the determination of chromium has been studied. The elaborated methods has been applied for determination of Cr(VI) in natural and waste waters

  7. Development of analytical procedures for determination of total chromium by quadrupole ICP-MS and high-resolution ICP-MS, and hexavalent chromium by HPLC-ICP-MS, in different materials used in the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Seby, F.; Garraud, H. [Ultratraces Analyses Aquitaine, Helioparc Pau-Pyrenees, 2 avenue du President Angot, 64053, Pau Cedex 9 (France); Gagean, M. [PSA Peugeot Citroen, Centre technique de Belchamp, 25218, Montbeliard Cedex (France); Castetbon, A.; Donard, O.F.X. [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, UMR CNRS 5034, Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 avenue du President Angot, 64053, Pau Cedex 9 (France)

    2003-10-01

    A European directive was recently adopted limiting the use of hazardous substances such as Pb, Hg, Cd, and Cr(VI) in vehicle manufacturing. From July 2003 a maximum of 2 g Cr(VI) will be authorised per vehicle in corrosion-preventing coatings of key components. As no standardised procedures are available to check if produced vehicles are in agreement with this directive, the objective of this work was to develop analytical procedures for total chromium and Cr(VI) determination in these materials. The first step of this study was to optimise digestion procedures for total chromium determination in plastic and metallic materials by inductively coupled plasma mass spectrometry (ICP-MS). High resolution (HR) ICP-MS was used to examine the influence of polyatomic interferences on the detection of the {sup 52}Cr{sup +} and {sup 53}Cr{sup +} isotopes. If there was strong interference with m/z 52 for plastic materials, it was possible to use quadrupole ICP-MS for m/z 53 if digestions were performed with HNO{sub 3}+H{sub 2}O{sub 2}. This mixture was also necessary for digestion of chromium from metallic materials. Extraction procedures in alkaline medium (NH{sub 4}{sup +}/NH{sub 3} buffer solution at pH 8.9) assisted by sonication were developed for determining Cr(VI) in four different corrosion-preventing coatings by HPLC-ICP-MS. After optimisation and validation with the only solid reference material certified for its Cr(VI) content (BCR 545; welding dusts), the efficiency of this extraction procedure for screw coatings was compared with that described in the EN ISO 3613 standard generally used in routine laboratories. For coatings comprising zinc and aluminium passivated in depth with chromium oxides the extraction procedure developed herein enabled determination of higher Cr(VI) concentrations. This was also observed for the screw covered with a chromium passivant layer on zinc-nickel. For coating comprising a chromium passivant layer on alkaline zinc the standardized

  8. Development of analytical procedures for determination of total chromium by quadrupole ICP-MS and high-resolution ICP-MS, and hexavalent chromium by HPLC-ICP-MS, in different materials used in the automotive industry.

    Science.gov (United States)

    Séby, F; Gagean, M; Garraud, H; Castetbon, A; Donard, O F X

    2003-10-01

    A European directive was recently adopted limiting the use of hazardous substances such as Pb, Hg, Cd, and Cr(VI) in vehicle manufacturing. From July 2003 a maximum of 2 g Cr(VI) will be authorised per vehicle in corrosion-preventing coatings of key components. As no standardised procedures are available to check if produced vehicles are in agreement with this directive, the objective of this work was to develop analytical procedures for total chromium and Cr(VI) determination in these materials. The first step of this study was to optimise digestion procedures for total chromium determination in plastic and metallic materials by inductively coupled plasma mass spectrometry (ICP-MS). High resolution (HR) ICP-MS was used to examine the influence of polyatomic interferences on the detection of the (52)Cr(+) and (53)Cr(+) isotopes. If there was strong interference with m/ z 52 for plastic materials, it was possible to use quadrupole ICP-MS for m/ z 53 if digestions were performed with HNO(3)+H(2)O(2). This mixture was also necessary for digestion of chromium from metallic materials. Extraction procedures in alkaline medium (NH(4)(+)/NH(3) buffer solution at pH 8.9) assisted by sonication were developed for determining Cr(VI) in four different corrosion-preventing coatings by HPLC-ICP-MS. After optimisation and validation with the only solid reference material certified for its Cr(VI) content (BCR 545; welding dusts), the efficiency of this extraction procedure for screw coatings was compared with that described in the EN ISO 3613 standard generally used in routine laboratories. For coatings comprising zinc and aluminium passivated in depth with chromium oxides the extraction procedure developed herein enabled determination of higher Cr(VI) concentrations. This was also observed for the screw covered with a chromium passivant layer on zinc-nickel. For coating comprising a chromium passivant layer on alkaline zinc the standardized extraction procedure was more efficient

  9. Heterogeneous chromium catalysts

    OpenAIRE

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based silica-containing support, (c) activating the chromium-based silica-containing support, (d) chemically reducing the activated chromium-based silica-containing support to produce a precursor catalyst, (e) r...

  10. RICE BRAN CARBON: AN ALTERNATIVE TO COMMERCIAL ACTIVATED CARBON FOR THE REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTION

    OpenAIRE

    Syed Hadi Hasan; Deeksha Ranjan

    2010-01-01

    Rice bran carbon (RBC) prepared from rice bran (an agricultural waste) was successfully utilized for the removal of hexavalent chromium from aqueous solution. The potentiality of RBC was tested and compared with commercial activated carbon (CAC), and it was found that RBC removed 95% of hexavalent chromium at pH 2, 1000 µM Cr(VI) concentration, temperature 30 oC, and adsorbent dose of 2 g/L. The maximum uptake of total chromium obtained by applying the Langmuir isotherm model was 138.88 mg/g ...

  11. Transformed yeast (Schizosaccharomyces pombe) overexpressing rice Tau class glutathione S-transferase (OsGSTU30 and OsGSTU41) shows enhanced resistance to hexavalent chromium.

    Science.gov (United States)

    Tripathi, Ankita; Indoliya, Yuvraj; Tiwari, Madhu; Tiwari, Poonam; Srivastava, Dipali; Verma, Pankaj kumar; Verma, Shikha; Gautam, Neelam; Chakrabarty, Debasis

    2014-08-01

    Extensive use of hexavalent chromium [Cr(VI)] in leather tanning, stainless-steel production, wood preservatives and electroplating industries has resulted in widespread environmental pollution and poses a serious threat to human health. A plant's response to Cr(VI) stress results in growth inhibition and toxicity leading to changes in components of antioxidant systems. In a previous study, we observed that a large number of glutathione S-transferase (GST) genes were up-regulated under Cr(VI) stress in rice. In this study, two rice root-specific Tau class GST genes (OsGSTU30 and OsGSTU41) were introduced into yeast (Schizosaccharomyces pombe). Transformed yeast cells overexpressing OsGSTU30 and OsGSTU41 had normal growth, but had much higher levels of GST activities and showed enhanced resistance to Cr(VI) as compared to control cells (transformed with empty vector). Also, a higher accumulation of chromium was found in the transformed yeast cells as compared to the control cells. Manipulation of glutathione biosynthesis by exogenous application of buthionine sulfoximine abolishes the protective effect of OsGSTs against Cr(VI) stress. These results suggest that Tau class OsGSTs play a significant role in detoxification of Cr(VI), probably by chelating and sequestrating glutathione-Cr(VI) complexes into vacuoles. PMID:24968244

  12. Chemical Stability of Chromium Carbide and Chromium Nitride Powders Compared with Chromium Metal in Synthetic Biological Solutions

    OpenAIRE

    Tao Jiang; Inger Odnevall Wallinder; Gunilla Herting

    2012-01-01

    Chromium carbide (Cr-C) and chromium nitride (Cr-N) powders were compared with a chromium metal powder (Cr-metal) to evaluate their chemical stability in solution. All three powders were exposed in five different synthetic biological solutions of varying pH and chemical composition simulating selected human exposure conditions. Characterisation of the powders, using GI-XRD, revealed that the predominant bulk crystalline phases were Cr7C3 and Cr2N for Cr-C and Cr-N respectively. The outermost ...

  13. Evaluating the risk of chromium reoxidation in aquifer sediments following a reductive bioremediation treatment

    Science.gov (United States)

    Varadharajan, C.; Nico, P. S.; Yang, L.; Han, R.; Bill, M.; Larsen, J.; Van Hise, A.; Molins, S.; Steefel, C.; Conrad, M. E.; Lim, H.; Brodie, E. L.; Beller, H. R.

    2011-12-01

    Remediation of chromium contamination typically involves reducing the toxic and soluble hexavalent form, Cr(VI), to the relatively harmless and mostly immobile trivalent state, Cr(III). The objective of this study is to investigate the potential for reduced chromium precipitates to be remobilized under oxidizing conditions that are expected to be prevalent some time after the bioremediation treatment is completed. In an initial phase of the experiment, reduction under anaerobic conditions was observed for over 12 months by subjecting flow-through columns containing homogenized sediments from the Hanford 100H aquifer to different dominant electron acceptors, i.e. NO3-, Fe(III), or SO42-, in the presence of 5 μM Cr(VI) and 5 mM lactate. Cr(VI) was depleted in the effluent solutions of the nitrate-treated columns, all of which exhibited denitrification, as well as in sulfate-amended columns in which fermentative conditions became dominant (with a minor amount of sulfate reduction). In the second phase of the study, oxygenated water with 2 mM nitrate was flowed through the denitrifying and fermentative columns for several months, without addition of Cr(VI) or lactate. The results show that the chromium that precipitated in the denitrifying columns was steadily mobilized under the oxidizing conditions, although the concentration of Cr(VI) in the effluent remained low (effluent from the fermentative sulfate-amended column. Reducing conditions were sustained in the fermentative column despite the continuous influx of O2, as indicated by the decrease of nitrate and accumulation of nitrite, potentially due to the presence of sulfides precipitated during the initial reducing phase of the experiment. The results from this study suggest that the biogeochemical conditions present during the reductive treatment phase can substantially impact the long-term sustainability of the remediation effort.

  14. EFFECTS OF EXPOSURE TO HEAVY METALS ON SELECTED FRESHWATER FISH. (TOXICITY OF COPPER, CADMIUM, CHROMIUM AND LEAD TO EGGS AND FRY OF SEVEN FISH SPECIES.)

    Science.gov (United States)

    Embryo and larvae of rainbow trout, lake trout, channel catfish, bluegill, white sucker, northern pike, and walleye were exposed for 60 days after hatch to lead and chromium in soft water. Brook trout, channel catfish, and walleyes were also exposed for 60 days after hatch to cop...

  15. Levels of chromium contamination in the estuary of the Iraja river (Guanabara Bay) and experimental incorporation of 51Cr in barnacles (Balanus sp)

    International Nuclear Information System (INIS)

    Levels were determined of chromium contamination in the estuary of Iraja River, produced by an electroplating industry located 3 km upstream the study area. Uptake-and release kinetics of Cr(VI) and Cr(III) in barnacles (Balanus sp.) were studied. Samples of barnacles and suspended particles from Guanabara Bay were analysed. Chromium concentrations (dry weight) ranged from not detectable (ND) to 154,66 μg/g for soft tissues and from ND to 423,76 μg/g for suspended particles. Mean of maximum concentrations of chromium in samples from Guanabara Bay are 3 and 4 times above those of identical samples from control area (Coroa Grande). Soft tissues presented a concentration factor (CF) of 103 related to chromium available in suspended particles. 51Cr(VI) is preferentiably incorparated by soft tissues (biological half life being 100 days). Chromium uptake by Balanus sp from solution is as significant as it is from particulate matter available in sea water from experimental sets. CF for Cr(VI) in soft tissues in laboratory conditions was 102 related to 51Cr present in sea water. Environmental chromium contamination was found to be of the same order of magnitude or above levels reported for other areas subjected to industrial impacts. Barnacles appear to be able to accumulate chromium in soft tissues from the available metal in the environment. Cr(VI) is the critical form, being greatly accumulated in soft tissues of barnacles, that act as a long-term integrator of this metal. For Cr(III), this organism can only be regarded as an instantaneous indicator of environmental contamination of chromium attached to suspended particles. (M.A.)

  16. Reproductive toxicological aspects of chromium in males

    International Nuclear Information System (INIS)

    To expand our present understanding of the effects of chromium on male fertility a number of studies were designed to achieve this through the use of chromium intoxicated experimental animals and through investigation of sexual hormones and sperm quality in welders. Also in view of the lack of an experimental model for effects of noxious substance on the epididymal spermatozoa the main objectives of the series of studies reviewed here were: A. To establish a model for evaluation of epididymal sperm count and motility in the rat. B. To investigate and compare the effects of tri- and hexavalent chromium on epididymal spermatozoa. Further to describe the effects of low-dose long-time exposure of rats to the most toxicological interesting chromium oxidative state - hexavalent chromium. C. By the use of autoradiography and γ-countinuing to expand the present knowledge on the distribution of chromium in the body with special reference to the male reproductive organs. D. To describe the effects of exposure to hexavalent chromium in welding fume on levels of sexual hormones and semen parameters in welders. (EG)

  17. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions. PMID:26361854

  18. Role of Iron Anode Oxidation on Transformation of Chromium by Electrolysis.

    Science.gov (United States)

    Sarahney, Hussam; Mao, Xuhui; Alshawabkeh, Akram N

    2012-12-30

    The potential for chemical reduction of hexavalent chromium Cr(VI) in contaminated water and formation of a stable precipitate by Zero Valent Iron (ZVI) anode electrolysis is evaluated in separated electrodes system. Oxidation of iron electrodes produces ferrous ions causing the development of a reducing environment in the anolyte, chemical reduction of Cr(VI) to Cr(III) and formation of stable iron-chromium precipitates. Cr(VI) transformation rates are dependent on the applied electric current density. Increasing the electric current increases the transformation rates; however, the process is more efficient under lower volumetric current density (for example 1.5 mA L(-1) in this study). The transformation follows a zero order rate that is dependent on the electric current density. Cr(VI) transformation occurs in the anolyte when the electrodes are separated as well as when the electrolytes (anolyte/catholyte) are mixed, as used in electrocoagulation. The study shows that the transformation occurs in the anolyte as a result of ferrous ion formation and the product is a stable Fe(15)Cr(5)(OH)(60) precipitate. PMID:23284182

  19. Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell.

    Science.gov (United States)

    Pehlivan, Erol; Altun, Türkan

    2008-06-30

    The potential to remove Cr(VI) ion from aqueous solutions through biosorption using, the shells of Walnut (WNS) (Juglans regia), Hazelnut (HNS) (Corylus avellana) and Almond (AS) (Prunus dulcis) was investigated in batch experiments. The equilibrium adsorption level was determined to be a function of the solution contact time and concentration. Kinetic experiments revealed that the dilute chromium solutions reached equilibrium within 100 min. The biosorptive capacity of the shells was dependent on the pH of the chromium solution, with pH 3.5 being optimal. Adsorption of Cr(VI) ion uptake is in all cases pH-dependent showing a maximum at equilibrium pH values between 2.0 and 3.5, depending on the biomaterial, that correspond to equilibrium pH values of 3.5 for (WNS), 3.5 for (HNS) and 3.2 for (AS). The adsorption data fit well with the Langmuir isotherm model. The sorption process conformed to the Langmuir isotherm with maximum Cr(VI) ion sorption capacities of 8.01, 8.28, and 3.40 mg/g for WNS, HNS and AS, respectively. Percentage removal by WNS, HNS and AS was 85.32, 88.46 and 55.00%, respectively at a concentration of 0.5 mM. HNS presented the highest adsorption capacities for the Cr(VI) ion. PMID:18179865

  20. Adsorption and desorption characteristics of imidazole-modified silica for chromium(VI)

    International Nuclear Information System (INIS)

    Imidazole-modified silica adsorbent with chloride as counter ion (SilprIm-Cl) was synthesized and characterized by scanning electron microscope, infrared spectra, thermogravimetric analysis, elemental analysis and BET analysis. The adsorption of chromium(VI) from aqueous solutions onto the SilprIm-Cl was investigated at varying pH, contact time, initial Cr(VI) concentration, adsorbent amount and temperature. The experimental results showed that the modification of silica with imidazole enhanced significantly the adsorption capacity for Cr(VI). The SilprIm-Cl was of primary anion-exchange adsorption nature, pH and excess Cl− ions in solutions affected significantly the adsorption of chromium(VI). The adsorption isotherms would be well defined with Langmuir model instead of Freundlich model. The adsorption process follows the pseudo-second-order kinetics. The maximum adsorption capacity of Cr(VI) of 47.79 mg g−1 with an initial Cr(VI) concentration of 150 mg L−1 was achieved at pH of 2.0. The adsorption–desorption experiments of the SilprIm-Cl exhibited that the adsorbent could be regenerated and reused eight times at least by simple washings with NaCl and water in turn.

  1. Adsorption and desorption characteristics of imidazole-modified silica for chromium(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhike, E-mail: wzk@htu.cn; Ye, Cunling; Wang, Xueyuan; Li, Juan

    2013-12-15

    Imidazole-modified silica adsorbent with chloride as counter ion (SilprIm-Cl) was synthesized and characterized by scanning electron microscope, infrared spectra, thermogravimetric analysis, elemental analysis and BET analysis. The adsorption of chromium(VI) from aqueous solutions onto the SilprIm-Cl was investigated at varying pH, contact time, initial Cr(VI) concentration, adsorbent amount and temperature. The experimental results showed that the modification of silica with imidazole enhanced significantly the adsorption capacity for Cr(VI). The SilprIm-Cl was of primary anion-exchange adsorption nature, pH and excess Cl{sup −} ions in solutions affected significantly the adsorption of chromium(VI). The adsorption isotherms would be well defined with Langmuir model instead of Freundlich model. The adsorption process follows the pseudo-second-order kinetics. The maximum adsorption capacity of Cr(VI) of 47.79 mg g{sup −1} with an initial Cr(VI) concentration of 150 mg L{sup −1} was achieved at pH of 2.0. The adsorption–desorption experiments of the SilprIm-Cl exhibited that the adsorbent could be regenerated and reused eight times at least by simple washings with NaCl and water in turn.

  2. High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption.

    Science.gov (United States)

    Lu, Yi; Jiang, Bin; Fang, Liang; Ling, Faling; Gao, Jiemei; Wu, Fang; Zhang, Xihua

    2016-06-01

    The NiFe layered double hydroxides (LDHs) with different mole ratio of Ni/Fe (4:1, 3:1, 7:3 and 1:1) were prepared by a simple coprecipitation method. The adsorption performance were evaluated by the removal of methyl orange (MO) dye and hexavalent chromium(VI) heavy metal ion. It is found that Ni4Fe1-LDH can remove more than 92% of MO in 10 min at the 10 mg/L MO initial concentration, and 97% of Cr(VI) in 1 h at 4 mg/L Cr2O7(2-) initial concentration. The saturated adsorption capacity of Ni4Fe1-LDH is found to be as large as 205.76 mg/g for MO and 26.78 mg/g for Cr(VI). The adsorption behavior of this new adsorbent is fitted well with Langmuir isotherm and the pseudo-second-order kinetic model, indicative of a monolayer and chemical adsorption that synergistically originates from exchangeable anions mechanism and layer charge density. Due to the excellent removal capacity of MO and Cr(VI), the NiFe-LDHs could be a promising adsorbent for wastewater treatment. PMID:26999751

  3. Biosorption of Cr(VI) from aqueous solution using A. hydrophila in up-flow column. Optimization of process variables

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S.H.; Srivastava, P.; Ranjan, D. [Banaras Hindu Univ., Varanasi (India). Water Pollution Research Lab.; Talat, M. [Banaras Hindu Univ., Varanasi (India). Dept. of Biochemistry

    2009-06-15

    In the present study, continuous up-flow fixed-bed column study was carried out using immobilized dead biomass of Aeromonas hydrophila for the removal of Cr(VI) from aqueous solution. Different polymeric matrices were used to immobilized biomass and polysulfone-immobilized biomass has shown to give maximum removal. The sorption capacity of immobilized biomass for the removal of Cr(VI) evaluating the breakthrough curves obtained at different flow rate and bed height. A maximum of 78.58% Cr(VI) removal was obtained at bed height of 19 cm and flow rate of 2 mL/min. Bed depth service time model provides a good description of experimental results with high correlation coefficient (>0.996). An attempt has been made to investigate the individual as well as cumulative effect of the process variables and to optimize the process conditions for the maximum removal of chromium from water by two-level two-factor full-factorial central composite design with the help of Minitab {sup registered} version 15 statistical software. The predicted results are having a good agreement (R{sup 2}=98.19%) with the result obtained. Sorption-desorption studies revealed that polysulfone-immobilized biomass could be reused up to 11 cycles and bed was completely exhausted after 28 cycles. (orig.)

  4. Cr(VI Sorption/Desorption on Pine Sawdust and Oak Wood Ash

    Directory of Open Access Journals (Sweden)

    Avelino Núñez-Delgado

    2015-07-01

    Full Text Available The objective of this work was to study Cr(VI sorption/desorption on two by-products from the wood industry: pine sawdust and oak wood ash. The retention/release experiments were carried out using standard batch-type trials. In the sorption-phase experiments, pine sawdust showed 23% sorption when a concentration of 100 mg Cr(VIŸL−1 was added, whereas sorption on oak wood ash was 17%. In the desorption-phase, chromium release was clearly higher from pine sawdust than from oak wood ash (98% and 66%, respectively. Sorption curves were well fitted to the Freundlich and Lineal models. In view of the results, both materials can be considered of very limited value to remove Cr from polluted soil and water, which can be of relevance regarding its appropriate use as biosorbents and recycled by-products.

  5. Cr(VI) Sorption/Desorption on Pine Sawdust and Oak Wood Ash.

    Science.gov (United States)

    Núñez-Delgado, Avelino; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Cutillas-Barreiro, Laura; Nóvoa-Muñoz, JuanCarlos; Arias-Estévez, Manuel

    2015-08-01

    The objective of this work was to study Cr(VI) sorption/desorption on two by-products from the wood industry: pine sawdust and oak wood ash. The retention/release experiments were carried out using standard batch-type trials. In the sorption-phase experiments, pine sawdust showed 23% sorption when a concentration of 100 mg Cr(VI)ŸL-1 was added, whereas sorption on oak wood ash was 17%. In the desorption-phase, chromium release was clearly higher from pine sawdust than from oak wood ash (98% and 66%, respectively). Sorption curves were well fitted to the Freundlich and Lineal models. In view of the results, both materials can be considered of very limited value to remove Cr from polluted soil and water, which can be of relevance regarding its appropriate use as biosorbents and recycled by-products. PMID:26230705

  6. Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA

    Science.gov (United States)

    Izbicki, J.A.; Ball, J.W.; Bullen, T.D.; Sutley, S.J.

    2008-01-01

    Chromium(VI) concentrations in excess of the California Maximum Contaminant Level (MCL) of 50 ??g/L occur naturally in alkaline, oxic ground-water in alluvial aquifers in the western Mojave Desert, southern California. The highest concentrations were measured in aquifers eroded from mafic rock, but Cr(VI) as high as 27 ??g/L was measured in aquifers eroded from granitic rock. Chromium(VI) concentrations did not exceed 5 ??g/L at pH < 7.5 regardless of geology. ??53Cr values in native ground-water ranged from 0.7 to 5.1??? and values were fractionated relative to the average ??53Cr composition of 0??? in the earth's crust. Positive ??53Cr values of 1.2 and 2.3??? were measured in ground-water recharge areas having low Cr concentrations, consistent with the addition of Cr(VI) that was fractionated on mineral surfaces prior to entering solution. ??53Cr values, although variable, did not consistently increase or decrease with increasing Cr concentrations as ground-water flowed down gradient through more oxic portions of the aquifer. However, increasing ??53Cr values were observed as dissolved O2 concentrations decreased, and Cr(VI) was reduced to Cr(III), and subsequently removed from solution. As a result, the highest ??53Cr values were measured in water from deep wells, and wells in discharge areas near dry lakes at the downgradient end of long flow paths through alluvial aquifers. ??53Cr values at an industrial site overlying mafic alluvium having high natural background Cr(VI) concentrations ranged from -0.1 to 3.2???. Near zero ??53Cr values at the site were the result of anthropogenic Cr. However, mixing with native ground-water and fractionation of Cr within the plume increased ??53Cr values at the site. Although ??53Cr was not necessarily diagnostic of anthropogenic Cr, it was possible to identify the extent of anthropogenic Cr at the site on the basis of the ??53Cr values in conjunction with major-ion data, and the ??18O and ??D composition of water from wells.

  7. Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium

    Directory of Open Access Journals (Sweden)

    Yang Yuan

    2012-06-01

    Full Text Available This study explored the reduction of adenosine triphosphate (ATP levels in L-02 hepatocytes by hexavalent chromium (Cr(VI using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%. The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI group (P < 0.05. The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.

  8. Hydrophobic Poly(ionic liquid for Highly Effective Separation of Methyl Blue and Chromium Ions from Water

    Directory of Open Access Journals (Sweden)

    Jie Kong

    2013-10-01

    Full Text Available The hydrophobic poly(ionic liquid of poly(3-ethyl-1-vinylimidazolium bis(trifluoromethanesulfonylimide (PVI-TFSI containing imidazolium cations and bis(trifluoromethanesulfonylimide anions was synthesized for the separation of methyl blue and chromium ions [Cr(VI] from water. The adsorption of methyl blue and Cr(VI in PVI-TSFI/water system reached equilibrium stage within 60 min and 12 h, and the maximum adsorbed percentage for methyl blue and Cr(VI was 97.6% and 98.0%, respectively. The adsorption regi me of either methyl blue or Cr(VI for PVI-TFSI was in correspondence with the Langmuir adsorption model. The maximum adsorption capacity of PVI-TFSI for methyl blue and Cr(VI was determined as 476.2 and 17.9 mg/g, respectively. The hydrophobic poly(ionic liquid with a remarkable adsorbent capacity of methyl blue and Cr(VI can be conveniently synthesized and shows potential in water treatment for the effective separation of organic dyes or heavy metal ions.

  9. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.

    Science.gov (United States)

    Gangadharan, Praveena; Nambi, Indumathi M

    2015-01-01

    Microbial fuel cell (MFC) technology is utilized to treat hexavalent chromium (Cr(VI)) from wastewater and to generate electricity simultaneously. The Cr(VI) is bioelectrochemically reduced to non-toxic Cr(III) form in the presence of an organic electron donor in a dual-chambered MFC. The Cr(VI) as catholyte and artificial wastewater inoculated with anaerobic sludge as anolyte, Cr(VI) at 100 mg/L was completely removed within 48 h (initial pH value 2.0). The total amount of Cr recovered was 99.87% by the precipitation of Cr(III) on the surface of the cathode. In addition to that 78.4% of total organic carbon reduction was achieved at the anode chamber within 13 days of operation. Furthermore, the maximum power density of 767.01 mW/m² (2.08 mA/m²) was achieved by MFCs at ambient conditions. The present work has successfully demonstrated the feasibility of using MFCs for simultaneous energy production from wastewater and reduction of toxic Cr(VI) to non-toxic Cr(III). PMID:25714633

  10. Evaluation of multi-walled carbon nanotubes performance in adsorption and desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    Gholipour Mina

    2012-01-01

    Full Text Available In this study, the removal of hexavalent chromium from aqueous solutions using multi-walled carbon nanotubes (MWCNTs has been investigated as a function of adsorbent dosage, initial Cr(VI concentration, initial pH, contact time and temperature. Low pH, low initial concentrations of Cr(VI, increasing contact time and high temperature were found as optimal conditions. A comparison of kinetics models applied to the adsorption of Cr(VI ions on the MWCNTs was evaluated for the pseudo first-order, the pseudo second-order, and Elovich kinetics models, respectively. Pseudo second-order kinetics model was found to correlate the experimental data well. Equilibrium isotherms were measured experimentally and results show that data were fitted well by the BET model. Thermodynamic parameters were estimated and results suggest that the adsorption process is spontaneous, physical and endothermic. The reversibility of Cr(VI adsorption onto MWCNTs by desorption process and the effect of operating factors such as regeneration solution characteristics, contact time and temperature on this process was investigated. Results show that MWCNTs are effective Cr(VI adsorbents and can be reused through many cycles of regeneration without any high decreasing in their performance.

  11. Effect of Hexavalent Chromium on Electron Leakage of Respiratory Chain in Mitochondria Isolated from Rat Liver

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2013-03-01

    Full Text Available Background/Aims: In the present study, we explored reactive axygen species (ROS production in mitochondria, the mechanism of hexavalent chromium (Cr(VI hepatotoxicity, and the role of protection by GSH. Methods: Intact mitochondria were isolated from rat liver tissues and mitochondrial basal respiratory rates of NADH and FADH2 respiratory chains were determined. Mitochondria were treated with Cr(VI, GSH and several complex inhibitors. Mitochondria energized by glutamate/malate were separately or jointly treated with Rotenone (Rot, diphenyleneiodonium (DPI and antimycinA (Ant, while mitochondria energized by succinate were separately or jointly treated with Rot, DPI ‚ thenoyltrifluoroacetone (TTFA and Ant. Results: Cr(VI concentration-dependently induced ROS production in the NADH and FADH2 respiratory chain in liver mitochondria. Basal respiratory rate of the mitochondrial FADH2 respiratory chain was significantly higher than that of NADH respiratory chain. Hepatic mitochondrial electron leakage induced by Cr(VI from NADH respiratory chain were mainly from ubiquinone binding sites of complex I and complex III. Conclusion: Treatment with 50µM Cr(VI enhances forward movement of electrons through FADH2 respiratory chain and leaking through the ubiquinone binding site of complex III. Moreover, the protective effect of GSH on liver mitochondria electron leakage is through removing excess H2O2 and reducing total ROS.

  12. Common occurrence of a positive δ53Cr shift in Central European waters contaminated by geogenic/industrial chromium relative to source values.

    Science.gov (United States)

    Novak, Martin; Chrastny, Vladislav; Cadkova, Eva; Farkas, Juraj; Bullen, Thomas D; Tylcer, Jiri; Szurmanova, Zdenka; Cron, Marcel; Prechova, Eva; Curik, Jan; Stepanova, Marketa; Pasava, Jan; Erbanova, Lucie; Houskova, Marie; Puncochar, Karel; Hellerich, Lucas A

    2014-06-01

    Carcinogenic effects of hexavalent chromium in waters are of concern in many countries worldwide. We explored Cr isotope systematics at 11 sites in the Czech Republic and Poland. Geogenic Cr pollution was associated with serpentinite bodies at former convergent plate margins, while anthropogenic Cr pollution resulted from electroplating, tanning, and the chemical industry. Cr(VI) concentration in geogenic waters was less than 40 ppb. Anthropogenic waters contained up to 127,000 ppb Cr(VI). At both geogenic and anthropogenic sites, where known, the source of pollution had a low δ53Cr (contaminated waters was significantly higher (p<0.001) compared to δ53Cr of waters carrying geogenic Cr(VI), implying that either the effective fractionation factor or process extent was greater for Cr(VI) reduction than for Cr(III) oxidation. PMID:24779992

  13. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    International Nuclear Information System (INIS)

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm2 lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm2 lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health

  14. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S., E-mail: sandra.wise@maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Xie, Hong, E-mail: hongxie@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Fukuda, Tomokazu, E-mail: tomofukuda009@gmail.com [Graduate School of Agricultural Sciences, Tohoku University, Laboratory of Animal Breeding and Genetics, Second Research Building, Rm 112, 1-1 Amamiyamachi, Aoba-ku, Sendai 981-8555 (Japan); Douglas Thompson, W., E-mail: dougt@usm.maine.edu [Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); and others

    2014-09-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health.

  15. Solid phase distribution of chromium in industrially contaminated urban soil, Glasgow

    OpenAIRE

    Broadway, A.; Farmer, J G; Ngwenya, B. T.; Cave, M.R.; Fordyce, F.M.; Bewley, R.J.F.

    2007-01-01

    Like many cities throughout the UK, Glasgow has a long history of both urbanisation and industrialisation, resulting in elevated concentrations of potentially harmful elements. Between 1830 and 1968 Glasgow was home to one of the world’s largest producers of chromium-based chemicals. Chromite ore processing residue (COPR) arising from the factory was used as infill material across large areas of SE Glasgow, resulting in widespread land contamination with Cr(VI), a known carcino...

  16. The Growth of Gypsum in the Presence of Hexavalent Chromium: A Multiscale Study

    OpenAIRE

    Juan Morales; José Manuel Astilleros; Emilio Matesanz; Lurdes Fernández-Díaz

    2016-01-01

    The sorption of dissolved inorganic pollutants into the structure of minerals is an important process that controls the mobility and fate of these pollutants in the Earth’s crust. It also modifies the surface structure and composition of the host mineral, affecting its crystallization kinetics. Here, we investigate the effect of hexavalent chromium, Cr(VI), on the nucleation and growth of gypsum by conducting two types of experiments: (i) in situ atomic force microscopy (AFM) observations of ...

  17. Iron(II) modified natural zeolites for hexavalent chromium removal from contaminated water

    OpenAIRE

    Lofù Antonio; Mastrorilli Piero; Dell’Anna Maria Michela; Mali Matilda; Sisto Raffaello; Vignola Rodolfo

    2016-01-01

    Three different types of Fe(II)-modified natural zeolites were tested as supports in continuous-flow columns for the treatment of Cr(VI) contaminated water. The natural zeolites chosen as support were commercially available Zeosand (80% clinoptilolite), ATZ (79% phillipsite/chabazite), and ZS-55RW (90% Chabazite). All the examined modified zeolites turned out active for hexavalent chromium abatement, lowering its concentration below the European regulation level, even at relatively high flow ...

  18. Prevention of chromium(VI) formation by improving the tannery processes

    OpenAIRE

    Font Vallès, Joaquim; Rius Carrasco, Antoni; Marsal Monge, Agustín; Hauber, Christiane; Tommaselli, Michelle

    2006-01-01

    This work has been funded by the European Commission through the Chrom6less Project (CRAFT -1999-71638). The objectives of the project were: - Establishment of the analytical methodology which provided reproducible results that may be free of interferences. - Identification of the factors that facilitated or impeded the transformation of Cr(III) to Cr(VI). - Establishment of the best conditions that allowed the production of chromium(VI) free leather, even during the l...

  19. A novel approach for speciation of airborne chromium by convective-interaction media fast-monolithic chromatography with electrothermal atomic-absorption spectrometric detection.

    Science.gov (United States)

    Scancar, Janez; Milacic, Radmila

    2002-05-01

    A new analytical procedure using an anion-exchange separation support based on convective-interaction media (CIM) was developed for the speciation of chromium. The separation of Cr(VI) was performed on a weak anion-exchange CIM diethylamine (DEAE) fast-monolithic chromatographic disc. Buffer A (0.005 mol dm(-3) TRIS-HCl, pH 8.0) and buffer B (buffer A plus 3 mol dm(-3) NH4NO3) were employed in the separation procedure. The separated chromium species were determined 'off-line' by ETAAS in 0.5 cm3 fractions. The applicability of the CIM DEAE-ETAAS procedure was investigated for the determination of airborne Cr(VI) at a plasma cutting workplace. Aerosols were collected on polycarbonate membrane filters of 8 and 0.4 microm pore size (inhalable and respirable aerosols). Alkaline extraction of filters in a heated ultrasonic bath was applied to leach chromium. Good repeatability of measurement (+/-3.0%) of the alkaline extracts was obtained for Cr(VI). The LOD (3s) was found to be 0.30 microg m(-3) Cr(VI), when 0.25 m3 of air was collected on the filter. The validation of the procedure was performed by spiking filters with Cr(VI) and by the analysis of the standard reference material CRM 545, Cr(VI) in welding dust loaded on a filter. Good recoveries for spiked samples (101-102%) and good agreement between Cr(VI) found and the reported certified value for CRM 545 were obtained. The extracts were also analysed by the FPLC-ETAAS technique. Good agreement between two techniques (r2 = 0.9978) confirmed the reliability of the CIM DEAE-ETAAS procedure developed. The main advantage of the procedure lies in the speed of the chromatographic separation (chromatographic run completed in 15 min). PMID:12081040

  20. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUND WATER: VOLUME 1 DESIGN AND INSTALLATION

    Science.gov (United States)

    A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...

  1. AN IN SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER:VOLUME 2 PERFORMANCE MONITORING

    Science.gov (United States)

    A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...

  2. Determination and evaluation of hexavalent chromium in power plant coal combustion by-products and cost-effective environmental remediation solutions using acid mine drainage.

    Science.gov (United States)

    Kingston, H M Skip; Cain, Randy; Huo, Dengwei; Rahman, G M Mizanur

    2005-09-01

    The chromium species leaching from a coal combustion fly ash landfill has been characterized as well as a novel approach to treat leachates rich in hexavalent chromium, Cr(VI), by using another natural waste by-product, acid mine drainage (AMD), has been investigated during this study. It is observed that as much as 8% (approximately 10 microg g(-1) in fly ash) of total chromium is converted to the Cr(VI) species during oxidative combustion of coal and remains in the resulting ash as a stable species, however, it is significantly mobile in water based leaching. Approximately 1.23 +/- 0.01 microg g(-1) of Cr(VI) was found in the landfill leachate from permanent deposits of aged fly ash. This study also confirmed the use of AMD, which often is in close proximity to coal combustion by-product landfills, is an extremely effective and economical remediation option for the elimination of hexavalent chromium in fly ash generated leachate. Speciated isotope dilution mass spectrometry (SIDMS), as described in EPA Method 6800, was used to analytically evaluate and validate the field application of the ferrous iron and chromate chemistry in the remediation of Cr(VI) runoff. PMID:16121270

  3. Influence of rhamnolipids, produced by Pseudomonas aeruginosa NCAIM(P, B001380 on Cr(VI removal capacity in liquid medium

    Directory of Open Access Journals (Sweden)

    Avramović Nataša S.

    2013-01-01

    Full Text Available Pseudomonas aeruginosa NCAIM(P, B001380, a propitious bacterial strain isolated from mineral cutting oil was identified to be chromium tolerant and a producer of biosurfactant rhamnolipid (RL with potential application in heavy metal bioremediation. Culture growth, RL production and Cr(VI removal capacity of the strain in the presence of 50 mg L-1 (I and 100 mg L-1 of Cr(VI (II were studied. Maximum of RL production were found in the late-stationary phase at 72 h for both Cr(VI-amended cultures: I (236 mg L-1 and II (160 mg L-1, as well as the maximum of Cr(VI removal capacity: 70 % (I and 57 % (II. The amount of Cr in RL preparation II was 22 mg mg-1 determined by flame atomic absorption spectroscopy (FAAS. Appearance of a new band at 914 cm-1 in infrared (IR spectrum of RL (II indicated a significant proof for possible coordination of CrO42-ion with RL. The effect of Cr(VI on monorhamnolipids (RL1 and dirhamnolipids (RL2 distribution and its ratio were studied by electrospray ionization mass spectrometry (ESI-MS. An increase was observed in a RL2/RL1 ratio for II compared to control.

  4. Specification of the Operational Parameters Contribution in the Efficiency of TiO2-P25 Nanoparticles in the Photocatalytic Removal of Cr(VI by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Maryam SabonianSchoolari

    2014-12-01

    Full Text Available Chromium exists in environment both as trivalent [Cr(III] and hexavalent [Cr(VI] forms. However, hexavalent form is five hundred times more toxic than the trivalent form. Heterogeneous photocatalysis processes, using aqueous suspensions of semiconductors, have received considerable attention in the removal of toxic metals from aqueous media. In this work the nanoparticles of TiO2-P25 in the form of slurry were used for photoreduction of Cr(VI to the less harmful Cr(III. The process has been conducted in different operational conditions such as different initial concentrations of Cr(VI, dosage of photocatalyst, irradiation times, irradiation intensities of light and pH. For the optimization of the process Taguchi experimental design was used. The results of optimization using the Taguchi method, indicated that the pH with 28%, initial concentration of Cr(VI with 26.99% and dosage of TiO2 nanocatalyst with 20.53% have the most effects among the selected factors. The intensity of UV light irradiation has the least effect on the efficiency of the process.

  5. Cr(VI) transport via a supported ionic liquid membrane containing CYPHOS IL101 as carrier: system analysis and optimization through experimental design strategies.

    Science.gov (United States)

    Rodríguez de San Miguel, Eduardo; Vital, Xóchitl; de Gyves, Josefina

    2014-05-30

    Chromium(VI) transport through a supported liquid membrane (SLM) system containing the commercial ionic liquid CYPHOS IL101 as carrier was studied. A reducing stripping phase was used as a mean to increase recovery and to simultaneously transform Cr(VI) into a less toxic residue for disposal or reuse. General functions which describe the time-depending evolution of the metal fractions in the cell compartments were defined and used in data evaluation. An experimental design strategy, using factorial and central-composite design matrices, was applied to assess the influence of the extractant, NaOH and citrate concentrations in the different phases, while a desirability function scheme allowed the synchronized optimization of depletion and recovery of the analyte. The mechanism for chromium permeation was analyzed and discussed to contribute to the understanding of the transfer process. The influence of metal concentration was evaluated as well. The presence of different interfering ions (Ca(2+), Al(3+), NO3(-), SO4(2-), and Cl(-)) at several Cr(VI): interfering ion ratios was studied through the use of a Plackett and Burman experimental design matrix. Under optimized conditions 90% of recovery was obtained from a feed solution containing 7mgL(-1) of Cr(VI) in 0.01moldm(-3) HCl medium after 5h of pertraction. PMID:24751491

  6. Removal of chromium and toxic ions present in mine drainage by Ectodermis of Opuntia

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Hector [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca, Estado de Mexico (Mexico); Urena-Nunez, Fernando [Instituto Nacional de Investigaciones Nucleares, A.P.18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801, Mexico, D.F. (Mexico); Bilyeu, Bryan [University of North Texas, Department of Materials Science and Engineering, P.O. Box 305310, Denton, TX 76203-5310 (United States); Barrera-Diaz, Carlos [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca, Estado de Mexico (Mexico)]. E-mail: cbarrera@uaemex.mx

    2006-08-25

    This work presents conditions for hexavalent and trivalent chromium removal from aqueous solutions using natural, protonated and thermally treated Ectodermis of Opuntia. A removal of 77% of Cr(VI) and 99% of Cr(III) can be achieved. The sorbent material is characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, infrared spectroscopy, thermogravimetric analysis, before and after the contact with the chromium containing aqueous media. The results obtained from the characterization techniques indicate that the metal ion remains on the surface of the sorbent material. The percentage removal is found to depend on the initial chromium concentration and pH. The Cr(VI) and Cr(III) uptake process is maximum at pH 4, using 0.1 g of sorbent per liter of aqueous solution. The natural Ectodermis of Opuntia showed a chromium adsorption capacity that was adequately described by the Langmuir adsorption isotherm. Finally, an actual mine drainage sample that contained Cd, Cr, Cu, Fe Zn, Ni and Pb was tested under optimal conditions for chromium removal and Ectodermis of Opuntia was found to be a suitable sorbent material. The use of this waste material for the treatment of metal-containing aqueous solutions as well as mine drainage is effective and economical.

  7. Antioxidant Activity of Lawsonia inermis Extracts Inhibits Chromium(VI-Induced Cellular and DNA Toxicity

    Directory of Open Access Journals (Sweden)

    Gunjan Guha

    2011-01-01

    Full Text Available Hexavalent chromium Cr(VI is a very strong oxidant which consequently causes high cytotoxicity through oxidative stress. Prevention of Cr(VI-induced cellular damage has been sought in this study in aqueous and methanolic extracts of Lawsonia inermis Linn. (Lythraceae, commonly known as Henna. The extracts showed significant (P < .05 potential in scavenging free radicals (DPPH• and ABTS•+ and Fe3+, and in inhibiting lipid peroxidation. DNA damage caused by exposure of pBR322 to Cr(VI-UV is markedly inhibited by both extracts in varying degrees. A distinct decline in Cr(VI-induced cytotoxicity was noticed in MDA-MB-435S (human breast carcinoma cells with an increase in dosage of both extracts individually. Furthermore, both extracts proved to contain a high content of phenolic compounds which were found to have a strong and significant (P < .05 positive correlation to the radical scavenging potential, lipid peroxidation inhibition capacity and cyto-protective efficiency against Cr(VI-induced oxidative cellular damage. HPLC analysis identified some of the major phenolic compounds in both extracts, which might be responsible for the antioxidant potential and the properties of DNA and cyto-protection. This study contributes to the search for natural resources that might yield potent therapeutic drugs against Cr(VI-induced oxidative cell damage.

  8. [Experimental study on the remediation of chromium contaminated groundwater with PRB media].

    Science.gov (United States)

    Zhu, Wen-Hui; Dong, Liang-Fei; Wang, Xing-Run; Zhai, Ya-Li

    2013-07-01

    Due to the surface reaction between zero-valent iron and Cr(VI), iron cannot be fully utilized in the Fe(0)-Permeable Reactive Barrier(PRB), and the PRB is prone to compaction and blockage. In order to resolve these problems, iron powder coated with different polymer was tested in the treatment of chromium-polluted groundwater. Experimental results demonstrated that sodium alginate (SA) was the best package materials. According to analysis with FEI and EDX, pore structures were created by cross-linking of SA with Ca2+, in which a lot of attaching points exist, and through which Cr(VI) could react with interior iron powder. SA coating cast iron (SAC) and reduced iron (SAR) were tested in the treatment of chromium-polluted groundwater individually; the results showed that the removal efficiency of Cr( VI) by SAC was double that by SAR. After optimization of technology parameters of SAC, the Cr(VI) removal process follows the pseudo first-order kinetics. Based on dynamic experiments with SAC, Cr(VI)/Fe(0) was up to 32.25 mg x g(-1) and the PRB maintained high permeability coefficient (2.38 cm x s(-1)) after complete reaction. Compared with cast iron media is feasible in the remediation of chromium contaminated groundwater. PMID:24028003

  9. Characterization of concentration, particle size distribution, and contributing factors to ambient hexavalent chromium in an area with multiple emission sources

    Science.gov (United States)

    Yu, Chang Ho; Huang, Lihui; Shin, Jin Young; Artigas, Francisco; Fan, Zhi-hua (Tina)

    2014-09-01

    Airborne hexavalent chromium (Cr(VI)) is a known pulmonary carcinogen and can be emitted from both natural and anthropogenic sources, including diesel emissions. However, there is limited knowledge about ambient Cr(VI) concentration levels and its particle size distribution. This pilot study characterized ambient Cr(VI) concentrations in the New Jersey Meadowlands (NJ ML) district, which is close to the heavily trafficked New Jersey Turnpike (NJTPK) as well as Chromium Ore Processing Residue (COPR) waste sites. Monitoring was simultaneously conducted at two sites, William site (∼50 m from NJTPK) and MERI site (∼700 m from NJTPK). The distance between the two sites is approximately 6.2 km. Ambient Cr(VI) concentrations and PM2.5 mass concentrations were concurrently measured at both sites during summer and winter. The summer concentrations (mean ± S.D. [median]), 0.13 ± 0.06 [0.12] ng/m3 at the MERI site and 0.08 ± 0.05 [0.07] ng/m3 at the William site, were all significantly higher than the winter concentrations, 0.02 ± 0.01 [0.02] ng/m3 and 0.03 ± 0.01 [0.03] ng/m3 at the MERI and William sites, respectively. The site difference (i.e., MERI > William) was observed for summer Cr(VI) concentrations; however, no differences for winter and pooled datasets. These results suggest higher Cr(VI) concentrations may be attributed from stronger atmospheric reactions such as photo-oxidation of Cr(III) to Cr(VI) in the summer. The Cr(VI) distribution as a function of particle size, ranging from 0.18 to 18 μm, was determined at the William site. It was found that Cr(VI) was enriched in the particles less than 2.5 μm in diameter (PM2.5). This finding suggested potential health concerns, because PM2.5 are easily inhaled and deposited in the alveoli. A multiple linear regression analysis confirmed ambient Cr(VI) concentrations were significantly affected by meteorological factors (i.e., temperature and humidity) and reactive gases/particles (i.e., O3, Fe and Mn).

  10. Optimizing Cr(VI) and Tc(VII) remediation through nanoscale biomineral engineering.

    Science.gov (United States)

    Cutting, Richard S; Coker, Victoria S; Telling, Neil D; Kimber, Richard L; Pearce, Carolyn I; Ellis, Beverly L; Lawson, Richard S; van der Laan, Gerrit; Pattrick, Richard A D; Vaughan, David J; Arenholz, Elke; Lloyd, Jonathan R

    2010-04-01

    The influence of Fe(III) starting material on the ability of magnetically recoverable biogenic magnetites produced by Geobacter sulfurreducens to retain metal oxyanion contaminants has been investigated. The reduction/removal of aqueous Cr(VI) was used to probe the reactivity of the biomagnetites. Nanomagnetites produced by the bacterial reduction of schwertmannite powder were more efficient at reducing Cr(VI) than either ferrihydrite "gel"-derived biomagnetite or commercial nanoscale Fe(3)O(4). Examination of post-exposure magnetite surfaces indicated both Cr(III) and Cr(VI) were present. X-ray magnetic circular dichroism (XMCD) studies at the Fe L(2,3)-edge showed that the amount of Fe(III) "gained" by Cr(VI) reduction could not be entirely accounted for by "lost" Fe(II). Cr L(2,3)-edge XMCD spectra found Cr(III) replaced approximately 14%-20% of octahedral Fe in both biogenic magnetites, producing a layer resembling CrFe(2)O(4). However, schwertmannite-derived biomagnetite was associated with approximately twice as much Cr as ferrihydrite-derived magnetite. Column studies using a gamma-camera to image a (99)mTc(VII) radiotracer were performed to visualize the relative performances of biogenic magnetites at removing aqueous metal oxyanion contaminants. Again, schwertmannite-derived biomagnetite proved capable of retaining more (approximately 20%) (99)mTc(VII) than ferrihydrite-derived biomagnetite, confirming that the production of biomagnetite can be fine-tuned for efficient environmental remediation through careful selection of the Fe(III) mineral substrate supplied to Fe(III)-reducing bacteria. PMID:20196588

  11. Chromium and Genomic Stability

    OpenAIRE

    Wise, Sandra S.; Wise, John Pierce

    2011-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as high...

  12. Reduction of hexavalent chromium by fasted and fed human gastric fluid. II. Ex vivo gastric reduction modeling.

    Science.gov (United States)

    Kirman, Christopher R; Suh, Mina; Hays, Sean M; Gürleyük, Hakan; Gerads, Russ; De Flora, Silvio; Parker, William; Lin, Shu; Haws, Laurie C; Harris, Mark A; Proctor, Deborah M

    2016-09-01

    To extend previous models of hexavalent chromium [Cr(VI)] reduction by gastric fluid (GF), ex vivo experiments were conducted to address data gaps and limitations identified with respect to (1) GF dilution in the model; (2) reduction of Cr(VI) in fed human GF samples; (3) the number of Cr(VI) reduction pools present in human GF under fed, fasted, and proton pump inhibitor (PPI)-use conditions; and (4) an appropriate form for the pH-dependence of Cr(VI) reduction rate constants. Rates and capacities of Cr(VI) reduction were characterized in gastric contents from fed and fasted volunteers, and from fasted pre-operative patients treated with PPIs. Reduction capacities were first estimated over a 4-h reduction period. Once reduction capacity was established, a dual-spike approach was used in speciated isotope dilution mass spectrometry analyses to characterize the concentration-dependence of the 2nd order reduction rate constants. These data, when combined with previously collected data, were well described by a three-pool model (pool 1 = fast reaction with low capacity; pool 2 = slow reaction with higher capacity; pool 3 = very slow reaction with higher capacity) using pH-dependent rate constants characterized by a piecewise, log-linear relationship. These data indicate that human gastric samples, like those collected from rats and mice, contain multiple pools of reducing agents, and low concentrations of Cr(VI) (<0.7 mg/L) are reduced more rapidly than high concentrations. The data and revised modeling results herein provide improved characterization of Cr(VI) gastric reduction kinetics, critical for Cr(VI) pharmacokinetic modeling and human health risk assessment. PMID:27396814

  13. Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria

    Science.gov (United States)

    He, Zhiguo; Hu, Yuting; Yin, Zhen; Hu, Yuehua; Zhong, Hui

    2016-06-01

    Three soil samples obtained from different sites adjacent to a chromium slag heap in a steel alloy factory were taken to examine the effect of chromium contamination on soil bacterial diversity as determined by construction of 16S rDNA clone libraries and sequencing of selected clones based on restriction fragment length polymorphism (RFLP) analysis. Results revealed that Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Alphaproteobacteria occurred in all three soil samples, although the three samples differed in their total diversity. Sample 1 had the highest microbial diversity covering 12 different classes, while Sample 3 had the lowest microbial diversity. Strains of six different species were successfully isolated, one of which was identified as Zobellella denitrificans. To our knowledge, this is the first report of a strain belonging to the genus Zobellella able to resist and reduce chromium. Among all isolates studied, Bacillus odysseyi YH2 exhibited the highest Cr(VI)-reducing capability, with a total removal of 23.5 % of an initial Cr(VI) concentration of 350 mg L-1.

  14. Oral administration of Cr(VI) induced oxidative stress, DNA damage and apoptotic cell death in mice

    International Nuclear Information System (INIS)

    Potassium dichromate (Cr(VI)) was given orally to Swiss mice for 1 and 5 days with the dose of 25, 50 and 100 mg/kg body weight per day, respectively. Oxidative stress including the level of reactive oxygen species (ROS), the extent of lipid peroxidation and the activity of antioxidant enzymes in liver and kidney was determined. DNA damage in peripheral blood lymphocytes was determined by single-cell gel electrophoresis (comet assay). Apoptotic cell death in liver was detected using transmission electron microscopy and TUNEL assay. The results indicated that administration of Cr(VI) had caused a significant increase of ROS level in liver both after 1 and 5 days of exposure, accompanied with a dose-dependent decrease in superoxide dismutase (SOD) and catalase (CAT) activities. The malondialdehyde (MDA) content in liver was not changed as compared to the control animals. In contrast to the liver, no significant changes were observed in kidney on ROS, SOD, CAT and MDA as compared to the control animals. Dose- and time-dependent effects were observed on DNA damage after 1 and 5 days treatment. Significant difference was observed on the number of TUNEL positive liver cells between the control and Cr(VI) treatment groups. The apoptotic cells were also identified by characteristic ultrastructural features. The results obtained from the present study showed that Cr(VI) given orally to mice could induce dose- and time-dependent effects on DNA damage, hepatic oxidative stress and hepatocytes apoptosis. No significant oxidative stress observed in kidney in the study may suggest that the way of Cr(VI) exposure is an important factor affecting its toxicity

  15. Efficacy of mangrove leaf powder for bioremediation of chromium (VI) from aqueous solutions: kinetic and thermodynamic evaluation

    Science.gov (United States)

    Sathish, Thadikamala; Vinithkumar, N. V.; Dharani, G.; Kirubagaran, R.

    2014-03-01

    Biosorption of heavy metals by bio-materials has been posited as a potential alternative to the existing physicochemical technologies for detoxification and recovery of toxic and valuable metals from wastewaters. In this context, the role of mangrove leaf powder (MLP) as biosorbent for chromium removal was investigated. In the present study, the effect of process parameters such as particle size, solution pH, initial concentration of Cr(VI) ion and adsorbent dose on chromium removal by MLP was investigated. The maximum sorption was observed at particle size 0.5 mm and pH 2.0. The adsorption data follow the pseudo second-order kinetics model. The isotherms denote that Langmuir model is the best fitted than Freundlich model. The maximum adsorption capacity (Q 0) of 60.24 mg/g of Cr(VI) at 30 min on MLP was determined using the Langmuir model. The adsorption isotherm model indicates that the chromium is adsorbing as monolayer on the surface of MLP with heterogeneous energetic distribution of active sites. Various thermodynamic parameters, such as Gibb's free energy (∆G °), enthalpy (∆H °) and entropy (∆S °) have been calculated. The thermodynamic data revealed that the adsorption of chromium ions onto MLP is endothermic in nature and a spontaneous process. The results of the present study suggest that MLP is an effective bioremediation measure for removal of high concentration of Cr(VI) in waste waters.

  16. Specific extraction of chromium(VI) using supercritical fluid extraction.

    Science.gov (United States)

    Foy, G P; Pacey, G E

    2000-02-01

    In some situations, it is no longer sufficient to give a total concentration of a metal. Instead, what is required to understand the potential toxicity of a sample is the concentration of metal species or oxidation state. When developing species specific methods, the major concern is that the integrity of the species ratio is not changed. In other words, the sample preparation or the analytical method will not convert metal ions from one oxidation state to another. Normal extraction techniques and chromatography methods have shown some tendencies to change species ratios. An ideal extraction method would extract the metal efficiently while retaining the metal's oxidation state. The properties of supercritical fluids should approach the ideal of retention of oxidation states. For example, the need for speciation of chromium is obvious since Cr(III) is considered an essential element while Cr(VI) is thought to be toxic and carcinogenic. This paper presents the results of a species specific extraction of Cr(VI) using two different carbamate derivatives as the chelator. Supercritical fluid extraction (SFE) coupled with a fluorinated dithiocarbamate and a methanol modifier allows extraction of 1 ppm Cr(VI) from a solid matrix with a recovery level of 88.4+/-2.57% using the NIST standard sample. The optimized conditions using the HP 7680 supercritical fluid extractor were: 0.1 ml of methanol, 0.05 ml of pure water, and 0.01 g of chelate via a saturation chamber. PMID:18967865

  17. Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant.

    Science.gov (United States)

    Adki, Vinayak S; Jadhav, Jyoti P; Bapat, Vishwas A

    2013-02-01

    Hexavalant chromium [Cr(VI)] tolerance and accumulation in in vitro grown Nopalea cochenillifera Salm. Dyck. plants was investigated. A micropropagation protocol was establish for a rapid multiplication of N. cochenillifera and [Cr(VI)] tolerance and accumulation was studied in in vitro grown cultures. Cr concentration was estimated by atomic absorption spectroscopy in roots and shoots to confirm plant's hyperaccumulation capacity. Plants showed tolerance up to 100 μM K(2)Cr(2)O(7) without any significant changes in root growth after 16 days treatment; whereas, chlorophyll content in plants treated with 1 and 10 μM K(2)Cr(2)O(7) were not so different than the control plant. The levels of lipid peroxidation and protein oxidation increased significantly (p 100 μM) inhibited the activities of CAT and SOD. Roots accumulated a maximum of 25,263.396 ± 1,722.672 mg Cr Kg(-1) dry weight (DW); while the highest concentration of Cr in N. cochenillifera shoots was 705.714 ± 32.324 mg Cr Kg(-1) DW. N. cochenillifera could be a prospective hyperaccumulator plant of Cr(VI) and a promising candidate for phytoremediation purposes. PMID:22914913

  18. Determination of chromium(III), chromium(VI), manganese(II) and manganese(VII) by EDXRF method

    International Nuclear Information System (INIS)

    This paper describes EDXRF, a quick, sensitive and selective method for determining Cr(III), Cr(VI), Mn(II) and Mn(VII) in environmental and industrial liquid samples via preconcentration with ammonium pyrrolidine dithiocarbamate (APDC) and diethylenetriaminepentaacetic acid (DTPA). The effect of pH in the range of 3-11 on the recovery of Cr(III), Cr(VI), Mn(II) and Mn(VII) was investigated separately and in combination. The influence of organic matter, carbonate species and elements V and Fe was also tested on the recovery of each chromium and manganese species (separately/in combination) over the whole pH range in order to simulate conditions in natural waters that usually contain a certain amount of dissolved organic matter and carbonate ions. Characteristic of different species to create complexes with APDC and DTPA in the different pH ranges makes possible to separate those two species. All created complexes of Cr(III), Cr(VI), Mn(II) and Mn(VIII) with APDC and DTPA were characterised by IR spectroscopy.(author)

  19. Nitrification inhibition by hexavalent chromium Cr(VI)--Microbial ecology, gene expression and off-gas emissions.

    Science.gov (United States)

    Kim, Young Mo; Park, Hongkeun; Chandran, Kartik

    2016-04-01

    The goal of this study was to investigate the responses in the physiology, microbial ecology and gene expression of nitrifying bacteria to imposition of and recovery from Cr(VI) loading in a lab-scale nitrification bioreactor. Exposure to Cr(VI) in the reactor strongly inhibited nitrification performance resulting in a parallel decrease in nitrate production and ammonia consumption. Cr(VI) exposure also led to an overall decrease in total bacterial concentrations in the reactor. However, the fraction of ammonia oxidizing bacteria (AOB) decreased to a greater extent than the fraction of nitrite oxidizing bacteria (NOB). In terms of functional gene expression, a rapid decrease in the transcript concentrations of amoA gene coding for ammonia oxidation in AOB was observed in response to the Cr(VI) shock. In contrast, transcript concentrations of the nxrA gene coding for nitrite oxidation in NOB were relatively unchanged compared to Cr(VI) pre-exposure levels. Therefore, Cr(VI) exposure selectively and directly inhibited activity of AOB, which indirectly resulted in substrate (nitrite) limitation to NOB. Significantly, trends in amoA expression preceded performance trends both during imposition of and recovery from inhibition. During recovery from the Cr(VI) shock, the high ammonia concentrations in the bioreactor resulted in an irreversible shift towards AOB populations, which are expected to be more competitive in high ammonia environments. An inadvertent impact during recovery was increased emission of nitrous oxide (N2O) and nitric oxide (NO), consistent with recent findings linking AOB activity and the production of these gases. Therefore, Cr(VI) exposure elicited multiple responses on the microbial ecology, gene expression and both aqueous and gaseous nitrogenous conversion in a nitrification process. A complementary interrogation of these multiple responses facilitated an understanding of both direct and indirect inhibitory impacts on nitrification. PMID:26874778

  20. Long-term effect of low concentration Cr(VI) on P removal in granule-based enhanced biological phosphorus removal (EBPR) system.

    Science.gov (United States)

    Fang, Jing; Su, Bin; Sun, Peide; Lou, Juqing; Han, Jingyi

    2015-02-01

    In light of the fact that most wastewater in China contained both industrial and domestic wastewater, a 52-d systematical investigation was conducted on the long-term effect of low concentration Cr(VI) (0.3-0.8 mg L(-1)) on P removal performance of granule-based EBPR system in this study. The mechanisms were likewise discussed. Results showed that high Cr(VI) concentration (⩾0.5 mg L(-1)) could significantly inhibit P removal, while this phenomenon was not found when Cr(VI) concentration was less than (or equal to) 0.4 mg L(-1). Most of the granules was disintegrated and filamentous bacteria overgrew inducing sludge bulking occurred at 0.7 mg L(-1) Cr(VI). During the exposure test, the abundance of poly-phosphate-accumulating organisms (PAOs) significantly decreased while the populations of glycogen accumulating organisms (GAOs) and other bacteria increased. Both production and degradation of poly-β-hydroxyakanoates (PHAs) were apparently inhibited. An improved polysaccharide/protein (PS/PN) ratio was observed with the increasing Cr(VI) concentration, implying excessive polysaccharide was secreted by microorganisms to support its resistance to the toxicity of Cr(VI). Besides, good linear regression between PS/PN ratio and the granule size (R(2)=-0.86, p<0.01) was obtained, indicating that high PS/PN was adverse to granule stability. Correlation analysis indicated that the accumulation of granules intracellular Cr was directly responsible for the observed inhibitory effect on P removal process. The long-term Cr(VI) treatment had irreversible effects on granule-based EBPR system as it could not revive after a 16-d recovery process. PMID:25479809

  1. [Physiological responses of tubificidae to heavy metal chromium stress].

    Science.gov (United States)

    Lou, Ju-Qing; Yang, Dong-Ye; Cao, Yong-Qing; Sun, Pei-De; Zheng, Ping

    2014-11-01

    Tubificidae is now used in the wastewater treatment systems to successfully minimize the sludge production, which has been proved an effective, economical and sustainable technology. But the excess sludge inevitably contains a variety of heavy metals, especially the sludge from industrial wastewater treatment plant. In order to apply tubificidae to these systems, Chromium was selected as pollutant object and the physiological responses of tubificidae to Chromium were studied in this paper. Acute toxicity was analyzed and Median lethal concentrations (LC50) were determined over 96 h periods for Cr. Results indicated that 24 h LC50 and 96 h LC50 were 7.94 mg x L(-1) and 0.49 mg x L(-1), respectively. The duration f tubificidae in Cr solution decreased with increasing Cr concentration. Under the Cr stress, a highest respiration rate was obtained when the concentration of Cr(VI), temperature, pH and DO was 2.50 mg x L(-1), 26 degrees C, 6.0 and 6.0 mg x L(-1), respectively. The order of these factors was the concerntration of Cr(VI), temperature, DO and pH. The respiration experiments demonstrated that low concentration (< 2.50 mg x L(-1)) of Cr could promote the respiration rate of tubificidaes. On the other hand, when the concentration of Cr was 8.00 mg x L(-1), it could remarkably inhibit the respiratory rates of tubificidae. PMID:25639096

  2. Preconcentrative separation of chromium(III) species from chromium(VI) by cloud point extraction and determination by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    We describe a high-throughput technique for the determination of chromium species in water samples by flame atomic absorption spectrometry (FAAS) after preconcentrative separation of Cr(III) species from Cr(VI) by cloud point extraction (CPE) using diethyldithiocarbamate (DDTC) as the chelating agent and the nonionic surfactant Triton X-100 as the extractant. The Cr(III)-DDTC complex is extracted if the temperature is higher than the CPE temperature of Triton X-100, while Cr(VI) remains in the aqueous phase. The Cr(III) in the surfactant phase was analyzed by FAAS, and the concentration of Cr(VI) was calculated by subtraction of Cr(III) from total chromium which was directly determined by FAAS. The effect of pH, concentration of chelating agent, surfactant, and equilibration temperature were investigated. The detection limit for Cr(III) was 0. 08 μg L-1with an enrichment factor of 98, and the relative standard deviation was 1. 2% (n = 3, c = 100 μg L-1). A certified reference material and several water samples were analyzed with satisfactory results. (author)

  3. Experimental skin deposition of chromium on the hands following handling of samples of leather and metal

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P.; Jellesen, Morten Stendahl;

    2016-01-01

    Background: Chromium is an important skin sensitizer. Exposure to it has been regulated in cement, and recently in leather. Studies on the deposition of chromium ions on the skin as a result of handling different chromium-containing materials are sparse, but could improve the risk assessment of...... contact sensitization and allergic contact dermatitis caused by chromium. Objectives: To determine whether the handling of chromium-containing samples of leather and metal results in the deposition of chromium onto the skin. Methods: Five healthy volunteers participated. For 30 min, they handled samples...... of leather and metal known to contain and release chromium. Skin deposition of chromium was assessed with the acid wipe sampling technique. Results: Acid wipe sampling of the participants' fingers showed chromium deposition on the skin in all participants who had been exposed to leather (range 0...

  4. The Morphology of Chromium and LIF Measurement of Atomic Arsenic in Laminar Diffusion Flames

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young Bin [Department of Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of)

    1997-06-26

    The morphology and size distribution of chromium oxides and the concentration measurement of atomic arsenic have been studied in laminar diffusion flames. Nitrogen was added to vary flame temperatures in hydrogen flames. Ethene flames were used in order to investigate the potential for interaction between the soot aerosol that is formed in these flames and the chromium aerosol. Two sources of chromium compounds were introduced:chromium nitrate and chromium hexacarbonyl. A detailed investigation of the morphology was carried out by scanning electron microscopy(SEM). The amounts of Cr(VI) and total Cr were determined by a spectrophotometric method and by X-ray fluorescence spectrometry, respectively. Also, LIF was used for the measurement of atomic arsenic, which was excited at 197.2 nm and was detected at 249.6 nm. Results showed that the morphology of the particles varied with the flame temperature and with the chromium source. The particles were characterized by porous structures, cenospheres and agglomerated dense particles when chromium nitrate solution was added to the flames. At low to moderate temperature, porous sintered cenospheric structures were formed, in some cases with a blow hole. At higher temperatures, an agglomerated cluster which was composed Cr(VI) from the undiluted H{sub 2} flame was more than 10 times larger than in the 50%H{sub 2}/50%N{sub 2} flame on a mass basis. Single point LIF measurement of atomic arsenic indicated that arsenic exist only in the low temperature, fuel rich region. (author). 14 refs., 1 tab., 7 figs.

  5. Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil

    International Nuclear Information System (INIS)

    Chromium is an important industrial metal used in various products/processes. Remediation of Cr contaminated sites present both technological and economic challenges, as conventional methods are often too expensive and difficult to operate. In the present investigation, Zero-valent iron (Fe0) nanoparticles were synthesized, characterized, and were tested for removal of Cr(VI) from the soil spiked with Cr(VI). Fe0 nanoparticles were synthesized by the reduction of ferric chloride with sodium borohydride and were characterized by UV–Vis (Ultra violet–Visible) and FTIR (Fourier transform infrared) spectroscopy. The UV–Vis spectrum of Fe0 nanoparticles suspended in 0.8% Carboxymethyl cellulose showed its absorption maxima at 235 nm. The presence of one band at 3,421 cm−1 ascribed to OH stretching vibration and the second at 1,641 cm−1 to OH bending vibration of surface-adsorbed water indicates the formation of ferrioxyhydroxide (FeOOH) layer on Fe0 nanoparticles. The mean crystalline dimension of Fe0 nanoparticles calculated by XRD (X-ray diffraction) using Scherer equation was 15.9 nm. Average size of Fe0 nanoparticles calculated from TEM (Transmission electron microscopy) images was found around 26 nm. Dynamic Light Scattering (DLS) also showed approximately the same size. Batch experiments were performed using various concentration of Fe0 nanoparticles for reduction of soil spiked with 100 mg kg−1 Cr(VI). The reduction potential of Fe0 nanoparticles at a concentration of 0.27 g L−1 was found to be 100% in 3 h. Reaction kinetics revealed a pseudo-first order kinetics. Factors like pH, contact time, stabilizer, and humic acid facilitates the reduction of Cr(VI).

  6. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass

    International Nuclear Information System (INIS)

    In the present study adsorption of Cr(VI) from aqueous solutions onto different agricultural wastes, viz., sugarcane bagasse, maize corn cob and Jatropha oil cake under various experimental conditions has been studied. Effects of adsorbent dosage, Cr(VI) concentration, pH and contact time on the adsorption of hexavalent chromium were investigated. The concentration of chromium in the test solution was determined spectrophotometrically. FT-IR spectra of the adsorbents (before use and after exhaustion) were recorded to explore number and position of the functional groups available for the binding of chromium ions on to studied adsorbents. SEMs of the adsorbents were recorded to explore the morphology of the studied adsorbents. Maximum adsorption was observed in the acidic medium at pH 2 with a contact time of 60 min at 250 rpm stirring speed. Jatropha oil cake had better adsorption capacity than sugarcane bagasse and maize corn cob under identical experimental conditions. The applicability of the Langmuir and Freundlich adsorption isotherms was tested. The results showed that studied adsorbents can be an attractive low cost alternative for the treatment of wastewaters in batched or stirred mode reactors containing lower concentrations of chromium

  7. Linear sweep anodic stripping voltammetry: Determination of Chromium (VI) using synthesized gold nanoparticles modified screen-printed electrode

    Indian Academy of Sciences (India)

    Salamatu Aliyu Tukur; Nor Azah Yusof; Reza Hajian

    2015-06-01

    A highly sensitive electrochemical sensor has been constructed for determination of Cr(VI) with the lowest limit of detection (LOD) reported to date using gold nanoparticles (AuNPs) modified screen-printed electrode (SPE). The modification of SPE by casting pure AuNPs increases the sensitivity for detection of Cr(VI) ion using anodic stripping voltammetry. Cr(VI) ions are reduced to chromium metal on SPE-AuNPs by applying deposition potential of –1.1 V for 180 s. Afterwards, the oxidation peak current of chromium is obtained by linear sweep voltammetry in the range of −1.0 V to 0.2 V. Under the optimized conditions (HClO4, 0.06 mol L−1; deposition potential, –1.1 V; deposition time, 180s; scan rate, 0.1 V s−1), the limit of detection (LOD) was 1.6 pg mL−1. The fabricated electrode was successfully used for detection of Cr(VI) in tap and seawater.

  8. Remoción de Cromo (VI por una Cepa de Paecilomyces sp Resistente a Cromato Removal of Chromium (VI in a Chromate-Resistant Strain of Paecilomyces sp

    Directory of Open Access Journals (Sweden)

    Juan F Cárdenas-González

    2011-01-01

    Full Text Available Se analizó la capacidad de remoción de Cr(VI de una cepa de Paecilomyces sp. Cuando el hongo se incubó en medio mínimo con glucosa y otras fuentes de carbono comerciales y de bajo costo, como azúcar moscabada y piloncillo ó glicerol, en presencia de 50 mg/L de Cr(VI, removió totalmente el Cr(VI. La reducción a Cr(III ocurre en el medio de cultivo después de 7 días de incubación a 28°C, pH 4.0, y un inoculo de 38 mg. El hongo también redujo eficientemente la concentración de Cr(VI a partir de tierra contaminada. Los resultados indican que la cepa de Paecilomyces sp tiene la capacidad de reducir Cr(VI a Cr(III, y por lo tanto puede utilizarse para eliminar la contaminación por Cr(VI.The ability to reduce chromium (VI by a fungal strain of Paecilomyces sp was studied. When it was incubated in minimal medium with glucose and other inexpensive commercial carbon sources such as unrefined and brown sugar or glycerol, in the presence of 50 mg/L of Cr(VI, the strain caused complete removal of Cr(VI. The reduction to Cr (III occurs in the growth medium after 7 days of incubation, at 28°C, pH 4.0, and inoculum of 38 mg. Also, the fungi efficiently reduced the concentration of Cr(VI from contaminated soil wastes. The results indicate that the fungal strain of Paecilomyces sp has the capacity of reducing Cr(VI to Cr(III, and therefore it could be useful for the removal of Cr(VI pollution.

  9. Preconcentration and speciation of chromium in a sequential injection system incorporating dual mini-columns coupled with electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zou Aimei; Tang Xiaoyan; Chen Mingli [Research Center for Analytical Sciences, Northeastern University, Box 332, Shenyang 110004 (China); Wang Jianhua [Research Center for Analytical Sciences, Northeastern University, Box 332, Shenyang 110004 (China)], E-mail: jianhuajrz@mail.neu.edu.cn

    2008-05-15

    A procedure for chromium preconcentration and speciation with a dual mini-column sequential injection system coupled with electrothermal atomic absorption spectrometry (ETAAS) was developed. At pH 6, the sample solution was firstly aspirated to flow through a Chlorella vulgaris cell mini-column on which the Cr(III) was retained. The effluent was afterwards directed to flow through a 717 anion exchange resin mini-column accompanied by the retention of Cr(VI). Thereafter, Cr(III) and Cr(VI) were eluted by 0.04 mol L{sup -1} and 1.0 mol L{sup -1} nitric acid, respectively, and the eluates were quantified with ETAAS. Chemical and flow variables governing the performance of the system were investigated. By using a sampling volume of 600 {mu}L, sorption efficiencies of 99.7% for Cr(III) and 99% for Cr(VI) were achieved along with enrichment factors of 10.5 for Cr(III) and 11.6 for Cr(VI), within linear ranges of 0.1-2.5 {mu}g L{sup -1} for Cr(III) and 0.12-2.0 {mu}g L{sup -1} for Cr(VI). Detection limits of 0.02 {mu}g L{sup -1} for Cr(III) and 0.03 {mu}g L{sup -1} for Cr(VI) along with RSD values of 1.9% for Cr(III) and 2.5% for Cr(VI) (1.0 {mu}g L{sup -1}, n = 11) were obtained. The procedure was validated by analyzing a certified reference material of GBW08608 and further demonstrated by chromium speciation in river and tap water samples.

  10. Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium.

    Directory of Open Access Journals (Sweden)

    Katherine J Robins

    Full Text Available Hexavalent chromium is a serious and widespread environmental pollutant. Although many bacteria have been identified that can transform highly water-soluble and toxic Cr(VI to insoluble and relatively non-toxic Cr(III, bacterial bioremediation of Cr(VI pollution is limited by a number of issues, in particular chromium toxicity to the remediating cells. To address this we sought to develop an immobilized enzymatic system for Cr(VI remediation. To identify novel Cr(VI reductase enzymes we first screened cell extracts from an Escherichia coli library of soluble oxidoreductases derived from a range of bacteria, but found that a number of these enzymes can reduce Cr(VI indirectly, via redox intermediates present in the crude extracts. Instead, activity assays for 15 candidate enzymes purified as His6-tagged proteins identified E. coli NemA as a highly efficient Cr(VI reductase (k(cat/K(M= 1.1×10(5 M(-1 s(-1 with NADH as cofactor. Fusion of nemA to the polyhydroxyalkanoate synthase gene phaC from Ralstonia eutropha enabled high-level biosynthesis of functionalized polyhydroxyalkanoate granules displaying stable and active NemA on their surface. When these granules were combined with either Bacillus subtilis glucose dehydrogenase or Candida boidinii formate dehydrogenase as a cofactor regenerating partner, high levels of chromate transformation were observed with only low initial concentrations of expensive NADH cofactor being required, the overall reaction being powered by consumption of the cheap sacrificial substrates glucose or formic acid, respectively. This system therefore offers promise as an economic solution for ex situ Cr(VI remediation.

  11. Determination of Equilibrium and Kinetic Parameters of the Adsorption of Cr(III) and Cr(VI) from Aqueous Solutions to Agave Lechuguilla Biomass

    OpenAIRE

    Jaime Romero-González; Gardea-Torresdey, Jorge L.; José R. Peralta-Videa; Elena Rodríguez

    2005-01-01

    This investigation reveals the capability of Agave lechuguilla for trivalent and hexavalent chromium removal from aqueous solutions. Experimentation included pH profile, time dependence, adsorption capacity (KF and QL), adsorption intensity (n and RL) and saturation capacity (qs) studies. Batch experiments were conducted at 22°C to characterize and model the adsorption equilibrium as well as biomass adsorption rates. pH 4 was the optimum for Cr(III) binding, while Cr(VI) optimum binding wa...

  12. Oxidation of chromium telluride

    International Nuclear Information System (INIS)

    The authors study the interaction between chromium telluride and oxygen at elevated temperatures in view of its application in semiconductor technology. Thermodynamic analysis of the oxidation process and experimental data showed that the alloys of chromium telluride suffer oxidation in the presence of even traces of oxygen in a gaseous medium. Chromium telluride oxidation is a complex process that gives rise to various oxides and is accompanied by partial sublimation

  13. Oxidation of chromium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Pakhomovskaya, N.S.; Iorga, E.V.; Sheveleva, T.F.; Solov' eva, A.E.

    1986-03-01

    The authors study the interaction between chromium telluride and oxygen at elevated temperatures in view of its application in semiconductor technology. Thermodynamic analysis of the oxidation process and experimental data showed that the alloys of chromium telluride suffer oxidation in the presence of even traces of oxygen in a gaseous medium. Chromium telluride oxidation is a complex process that gives rise to various oxides and is accompanied by partial sublimation.

  14. Mechanism of electron transfer in the bioadsorption of hexavalent chromium within Leersia hexandra Swartz granules by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Leersia hexandra Swartz biogranules were used to adsorb Cr(VI) from aqueous solutions. Batch biosorption experiments showed that the Cr(VI) concentration sharply decreases in the first 15 min. The main functional groups that may be involved in chromium sorption were determined using Fourier transform infrared spectroscopy. The use of X-ray photoelectron spectroscopy confirmed the reduction of Cr(VI) to Cr(III) through L. hexandra Sw. Results indicate that Cr(III) is the dominant species on the surface of the biogranules and that the redox reaction can be accomplished within 40 min. The mechanism of electron transfer during Cr(VI) reduction to Cr(III) was investigated. Protonation of the oxygen-containing groups produces electrostatic-sorption power over Cr(VI). The nitrogen-containing groups serve as the electron-donor groups in the process of reduction-sorption. Moreover, after the complete reduction of Cr(VI), the pH of the suspension significantly increases.

  15. Determination of hexavalent chromium in plastic certified reference materials by X-ray absorption fine structure analysis

    Science.gov (United States)

    Ohata, Masaki; Matsubayashi, Nobuyuki

    X-ray absorption fine structure (XAFS) analysis with transmission mode was used to determine the percentages of hexavalent chromium {Cr(VI)} in total Cr in plastic certified reference materials (CRMs). Cr-K edge X-ray absorption near-edge structure (XANES) spectra were observed and the normalized pre-edge peaks of the spectrum where absorption data was summed was acquired for the determination of Cr(VI). Examination of different number of data point and range of photon energy for summed absorption of the pre-edge peak resulted in reproducible absorption data, though the measurements were carried out at different beam time and beam line. The concentrations of Cr(VI) in the plastic CRMs were also estimated from both the certified value of total Cr and the determined percentage of Cr(VI). The analytical procedure and the estimated concentrations can be useful for the determination of Cr(VI) in plastics with respect to RoHS (restriction of the use of hazardous substances in electrical and electronics equipment) directive.

  16. Determination of hexavalent chromium in plastic certified reference materials by X-ray absorption fine structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ohata, Masaki, E-mail: m-oohata@aist.go.jp [Inorganic Standard Section, Inorganic Analytical Chemistry Division, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) (Japan); Matsubayashi, Nobuyuki [Super-Spectroscopy System Research Group, Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST) (Japan)

    2014-03-01

    X-ray absorption fine structure (XAFS) analysis with transmission mode was used to determine the percentages of hexavalent chromium {Cr(VI)} in total Cr in plastic certified reference materials (CRMs). Cr-K edge X-ray absorption near-edge structure (XANES) spectra were observed and the normalized pre-edge peaks of the spectrum where absorption data was summed was acquired for the determination of Cr(VI). Examination of different number of data point and range of photon energy for summed absorption of the pre-edge peak resulted in reproducible absorption data, though the measurements were carried out at different beam time and beam line. The concentrations of Cr(VI) in the plastic CRMs were also estimated from both the certified value of total Cr and the determined percentage of Cr(VI). The analytical procedure and the estimated concentrations can be useful for the determination of Cr(VI) in plastics with respect to RoHS (restriction of the use of hazardous substances in electrical and electronics equipment) directive.

  17. Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: Equilibrium and kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hong; Tang Yi; Cai Dongqing; Liu Xianan; Wang Xiangqin [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang Qing, E-mail: huangq@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Yu Zengliang, E-mail: zlyu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2010-09-15

    A novel approach to prepare activated carbon from blue-green algal bloom residue has been tried for first time and its adsorption capability to remove hexavalent chromium Cr(VI) from aqueous solution has been examined. For this algal bloom residue derived activated carbon, the physical characters regarding adsorption capability were analyzed by scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDS) and Fourier transform infrared (FTIR) spectroscopy. Batch studies showed that initial pH, absorbent dosage, and initial concentration of Cr(VI) were important parameters for Cr(VI) absorption. It was found that initial pH of 1.0 was most favorable for Cr(VI) removal. The adsorption process followed the pseudo-second-order equation and Freundlich isotherm. The maximum adsorption capacity for Cr(VI) was 155.52 mg g{sup -1} in an acidic medium, which is comparable to best result from activated carbons derived from biomass. Therefore, this work put forward a nearly perfect solution which on one hand gets rid of environment-unfriendly algae residue while on the other hand produces high-quality activated carbon that is in return advantageous to environment protection.

  18. An organic-reagent-free method for determination of chromium(VI) in steel alloys, sewage sludge and wastewater.

    Science.gov (United States)

    Fan, Jing; Sun, Yuping; Wang, Jianji; Fan, Maohong

    2009-04-27

    One of the active areas of green chemistry research and development is in the development of new analytical methods and techniques that reduce and eliminate the use and generation of hazardous substances. In this work, a rapid and organic-reagent-free method was developed for the determination of chromium(VI) by sequential injection analysis (SIA). The method was based on the detection of a blue unstable intermediate compound resulting from the reaction of Cr(VI) with hydrogen peroxide (H(2)O(2)) in acidic medium. H(2)O(2) and its reaction products were environmentally friendly, and chromogenic reagents and organic solvents were not used in the proposed method. Different SIA parameters have been optimized and used to obtain the analytical figures of merit. Under the optimum experimental conditions, the linear range for Cr(VI) was 0.5-100.0 microg mL(-1), and the detection limit was 0.16 microg mL(-1). The sample throughput was 80 h(-1), and the total volume of only 145 microL was consumed in each determination of Cr(VI). The method was applied for the determination of Cr(VI) in seven real samples, including alloy steel, sewage sludge and wastewater samples, and the results were compared with those obtained by atomic absorption spectrometry as well as with the certified value of Cr(VI) in standard reference material. Statistical analysis revealed that there was no significant difference at 95% confidence level. PMID:19362620

  19. Study of the removal of mercury(II) and chromium(VI) from aqueous solutions by Moroccan stevensite.

    Science.gov (United States)

    Benhammou, A; Yaacoubi, A; Nibou, L; Tanouti, B

    2005-01-31

    The objective of the present study was to investigate the adsorption of the heavy metals mercury(II) and chromium(VI), from aqueous solutions, onto Moroccan stevensite. A mineralogical and physicochemical characterization of natural stevensite was carried out. In order to improve the adsorption capacity of stevensite for Cr(VI), a preparation of stevensite was carried out. It consists in saturating the stevensite by ferrous iron Fe(II) and reducing the total Fe by Na(2)S(2)O(4). Then, the adsorption experiments were studied in batch reactors at 25+/-3 degrees C. The influence of the pH solution on the Cr(VI) and Hg(II) adsorption was studied in the pH range of 1.5-7.0. The optimum pH for the Cr(VI) adsorption is in the pH range of 2.0-5.0 while that of Hg(II) is at the pH values above 4.0. The adsorption kinetics were tested by a pseudo-second-order model. The adsorption rate of Hg(II) is 54.35 mmol kg(-1)min(-1) and that of Cr(VI) is 7.21 mmol kg(-1)min(-1). The adsorption equilibrium time for Hg(II) and Cr(VI) was reached within 2 and 12 h, respectively. The adsorption isotherms were described by the Dubinin-Radushkevich model. The maximal adsorption capacity for Cr(VI) increases from 13.7 (raw stevensite) to 48.86 mmol kg(-1) (modified stevensite) while that of Hg(II) decreases from 205.8 to 166.9 mmol kg(-1). The mechanism of Hg(II) and Cr(VI) adsorption was discussed. PMID:15629583

  20. Study of the removal of mercury(II) and chromium(VI) from aqueous solutions by Moroccan stevensite

    International Nuclear Information System (INIS)

    The objective of the present study was to investigate the adsorption of the heavy metals mercury(II) and chromium(VI), from aqueous solutions, onto Moroccan stevensite. A mineralogical and physicochemical characterization of natural stevensite was carried out. In order to improve the adsorption capacity of stevensite for Cr(VI), a preparation of stevensite was carried out. It consists in saturating the stevensite by ferrous iron Fe(II) and reducing the total Fe by Na2S2O4. Then, the adsorption experiments were studied in batch reactors at 25 ± 3 deg. C. The influence of the pH solution on the Cr(VI) and Hg(II) adsorption was studied in the pH range of 1.5-7.0. The optimum pH for the Cr(VI) adsorption is in the pH range of 2.0-5.0 while that of Hg(II) is at the pH values above 4.0. The adsorption kinetics were tested by a pseudo-second-order model. The adsorption rate of Hg(II) is 54.35 mmol kg-1 min-1 and that of Cr(VI) is 7.21 mmol kg-1 min-1. The adsorption equilibrium time for Hg(II) and Cr(VI) was reached within 2 and 12 h, respectively. The adsorption isotherms were described by the Dubinin-Radushkevich model. The maximal adsorption capacity for Cr(VI) increases from 13.7 (raw stevensite) to 48.86 mmol kg-1 (modified stevensite) while that of Hg(II) decreases from 205.8 to 166.9 mmol kg-1. The mechanism of Hg(II) and Cr(VI) adsorption was discussed

  1. Study of the removal of mercury(II) and chromium(VI) from aqueous solutions by Moroccan stevensite

    Energy Technology Data Exchange (ETDEWEB)

    Benhammou, A. [Ecole Superieure de Technologie, Route Dar Si Aissa, BP: 89 Safi (Morocco)]. E-mail: benhammou_ab@yahoo.fr; Yaacoubi, A. [Faculte des Sciences Semlalia, Avenue My Abdellah, BP: 2390 Marrakech (Morocco); Nibou, L. [Ecole Superieure de Technologie, Route Dar Si Aissa, BP: 89 Safi (Morocco); Tanouti, B. [Faculte des Sciences Semlalia, Avenue My Abdellah, BP: 2390 Marrakech (Morocco)

    2005-01-31

    The objective of the present study was to investigate the adsorption of the heavy metals mercury(II) and chromium(VI), from aqueous solutions, onto Moroccan stevensite. A mineralogical and physicochemical characterization of natural stevensite was carried out. In order to improve the adsorption capacity of stevensite for Cr(VI), a preparation of stevensite was carried out. It consists in saturating the stevensite by ferrous iron Fe(II) and reducing the total Fe by Na{sub 2}S{sub 2}O{sub 4}. Then, the adsorption experiments were studied in batch reactors at 25 {+-} 3 deg. C. The influence of the pH solution on the Cr(VI) and Hg(II) adsorption was studied in the pH range of 1.5-7.0. The optimum pH for the Cr(VI) adsorption is in the pH range of 2.0-5.0 while that of Hg(II) is at the pH values above 4.0. The adsorption kinetics were tested by a pseudo-second-order model. The adsorption rate of Hg(II) is 54.35 mmol kg{sup -1} min{sup -1} and that of Cr(VI) is 7.21 mmol kg{sup -1} min{sup -1}. The adsorption equilibrium time for Hg(II) and Cr(VI) was reached within 2 and 12 h, respectively. The adsorption isotherms were described by the Dubinin-Radushkevich model. The maximal adsorption capacity for Cr(VI) increases from 13.7 (raw stevensite) to 48.86 mmol kg{sup -1} (modified stevensite) while that of Hg(II) decreases from 205.8 to 166.9 mmol kg{sup -1}. The mechanism of Hg(II) and Cr(VI) adsorption was discussed.

  2. Root uptake and reduction of hexavalent chromium by aquatic macrophytes as assessed by high-resolution X-ray emission.

    Science.gov (United States)

    Espinoza-Quiñones, Fernando R; Martin, Neiva; Stutz, Guillermo; Tirao, German; Palácio, Soraya M; Rizzutto, Márcia A; Módenes, Aparecido N; Silva, Fernando G; Szymanski, Nayara; Kroumov, Alexander D

    2009-09-01

    Aquatic macrophytes Salvinia auriculata, Pistia stratiotes and Eichhornia crassipes were chosen to investigate the Cr(VI) reduced by root-based biosorption in a chromium uptake experiment, using a high-resolution XRF technique. These plants were grown in hydroponics medium supplied with non-toxic Cr concentrations during a 27-day metal uptake experiment. The high-resolution Cr-Kbeta fluorescence spectra for dried root tissues and Cr reference material (100% Cr, Cr(2)O(3), and CrO(3)) were measured using an XRF spectrometer. For all species of aquatic plant treated with Cr(VI), the energy of the Cr-Kbeta(2,5) line was shifted around 8 eV below the same spectral line identified for the Cr(VI) reference, but it was also near to the line identified for the Cr(III) reference. Moreover, there was a lack of the strong Cr-Kbeta'' line assigned to the Cr(VI) reference material within the Cr(VI)-treated plant spectra, suggesting the reduction of Cr(VI) for other less toxic oxidation states of Cr. As all Cr-Kbeta spectra of root tissue species were compared, the peak energies and lineshape patterns of the Cr-Kbeta(2,5) line are coincident for the same aquatic plant species, when they were treated with Cr(III) and Cr(VI). Based on the experimental evidence, the Cr(VI) reduction process has happened during metal biosorption by these plants. PMID:19595427

  3. Effect of Cr-Vi on skeletal muscles of albino mice

    International Nuclear Information System (INIS)

    Chromium plays an important role in normal carbohydrate and lipid metabolism, as it's an essential trace element in human nutrition. It was found that patients receiving long-term total parenteral nutrition (TPN) without chromium developed glucose intolerance, weight loss and peripheral neuropathy Chromium is present in a normal diet at trace (but essential) levels. Occupational exposure is related to the industrial uses of chrome compounds in production and use of steels, pigments, leather tanning and wood preservation solutions, plating chemicals, and cement. Toxicity is predominantly associated with industrial exposures. Its trivalent form is the most stable form and can't cross the cell membrane. Hexavalent chromium crosses the cell membrane and is reduced to Cr- V, Cr-IV and Cr-111. Once in trivalent form it can combine with nuclear proteins and nucleic acids causing adverse effects and derangements. Hexavalent chromium compounds appear to have severe toxicity and almost all tissues of body are affected. To evaluate the effects on skeletal muscles, present study was carried out. The mice of experimental group (2wks, 4wks, 6wks and 8wks) were injected Potassium dichromate (K/sub 2/ Cr/sub 2/0/sub 7/) intraperitoneally according to experimental design. The drug caused slight to marked inflammation of skeletal muscle fibers and vaculations of nuclei was also observed indicating degenerative changes. (author)

  4. HEALTH ASSESSMENT DOCUMENT FOR CHROMIUM. FINAL REPORT

    Science.gov (United States)

    The full document represents a comprehensive data base that considers all sources of chromium in the environment, the likelihood for its exposure to humans, and the possible consequences to man and lower organisms from its absorption. This information is integrated into a format ...

  5. A study of nanostructured gold modified glassy carbon electrode for the determination of trace Cr(VI)

    Indian Academy of Sciences (India)

    Benzhi Liu; Liyuan Lu; Min Wang; Yanqin Zi

    2008-09-01

    A nanostructured gold modified glassy carbon electrode (Aunano/GCE) was employed for the determination of trace chromium(VI). To prepare Aunano/GCE, the GCE was immersed into KAuCl4 solution and electrodeposition was conducted at the potential of -0.4 V (vs Ag/AgCl) for 600 s. Scanning electron microscopy measurements show that the electrochemically synthesized gold nanoparticles were deposited in aggregated form. Any undue effects caused by the presence of foreign ions in the solution were also analysed to ensure that common interference in the determination of chromium(VI) by square wave voltammetry, do not influence the electrochemical response of the latter element. The results show that this method allows for Cr(VI) determinations with a much lower detection limit (0.01 g L-1) in the presence of excess of Cr(III) than the commonly used diethylenetriammine pentaacetic acid (DTPA) method. The method was applied to determine levels of chromium(VI) in tap water and sewage water.

  6. Removal of Cr(VI from Aqueous Solutions Using Powder of Potato Peelings as a Low Cost Sorbent

    Directory of Open Access Journals (Sweden)

    Farai Mutongo

    2014-01-01

    Full Text Available Potato peels which are a low cost, renewable agroindustry by-product were used for the removal of hexavalent chromium from aqueous effluents. Batch experiments were carried out with an artificial effluent comprising of potassium dichromate in deionised water. The effects of the initial hexavalent chromium concentration, dose of biosorbent, and removal kinetics were explored. An adsorbent dosage of 4 g/L was effective in complete removal of the metal ion, at pH 2.5, in 48 minutes. The kinetic process of Cr(VI adsorption onto potato peel powder was tested by applying pseudo-first-order and pseudo-second-order models as well as the Elovich kinetic equation to correlate the experimental data and to determine the kinetic parameters. The adsorption data were correlated by the Langmuir and Freundlich isotherms. A maximum monolayer adsorption capacity of 3.28 mg/g was calculated using the Langmuir adsorption isotherm, suggesting a functional group limited adsorption process. The results confirmed that potato peels are an effective biosorbent for the removal of hexavalent chromium from effluent.

  7. Removal of Cr(VI) from Aqueous Solutions Using Powder of Potato Peelings as a Low Cost Sorbent.

    Science.gov (United States)

    Mutongo, Farai; Kuipa, Olga; Kuipa, Pardon K

    2014-01-01

    Potato peels which are a low cost, renewable agroindustry by-product were used for the removal of hexavalent chromium from aqueous effluents. Batch experiments were carried out with an artificial effluent comprising of potassium dichromate in deionised water. The effects of the initial hexavalent chromium concentration, dose of biosorbent, and removal kinetics were explored. An adsorbent dosage of 4 g/L was effective in complete removal of the metal ion, at pH 2.5, in 48 minutes. The kinetic process of Cr(VI) adsorption onto potato peel powder was tested by applying pseudo-first-order and pseudo-second-order models as well as the Elovich kinetic equation to correlate the experimental data and to determine the kinetic parameters. The adsorption data were correlated by the Langmuir and Freundlich isotherms. A maximum monolayer adsorption capacity of 3.28 mg/g was calculated using the Langmuir adsorption isotherm, suggesting a functional group limited adsorption process. The results confirmed that potato peels are an effective biosorbent for the removal of hexavalent chromium from effluent. PMID:25136289

  8. Morphological and transcriptional responses of Lycopersicon esculentum to hexavalent chromium in agricultural soil.

    Science.gov (United States)

    Li, Shi-Guo; Hou, Jing; Liu, Xin-Hui; Cui, Bao-Shan; Bai, Jun-Hong

    2016-07-01

    The carcinogenic, teratogenic, and mutagenic effects of hexavalent chromium (Cr[VI]) on living organisms through the food chain raise the immediate need to assess the potential toxicological impacts of Cr(VI) on human health. Therefore, the concentration-dependent responses of 12 Cr(VI)-responsive genes selected from a high-throughput Lycopersicon esculentum complementary DNA microarray were examined at different Cr concentrations. The results indicated that most of the genes were differentially expressed from 0.1 mg Cr/kg soil, whereas the lowest-observable-adverse-effect concentrations of Cr(VI) were 1.6 mg Cr/kg soil, 6.4 mg Cr/kg soil, 3.2 mg Cr/kg soil, and 0.4 mg Cr/kg soil for seed germination, root elongation, root biomass, and root morphology, respectively, implying that the transcriptional method was more sensitive than the traditional method in detecting Cr(VI) toxicity. Dose-dependent responses were observed for the relative expression of expansin (p = 0.778), probable chalcone-flavonone isomerase 3 (p = -0.496), and 12S seed storage protein CRD (p = -0.614); therefore, the authors propose the 3 genes as putative biomarkers in Cr(VI)-contaminated soil. Environ Toxicol Chem 2016;35:1751-1758. © 2015 SETAC. PMID:26627465

  9. Bioreduction of hexavalent chromium by live and active phanerochaete chrysosporium: kinetics and modeling

    International Nuclear Information System (INIS)

    In this work the potential of live and active Phanerochaete chrysosporium, a white rot fungi, to remove lower Cr(VI) concentration from aqueous solutions was reported for the first time. A medium pH had significant effect on the growth of the fungus and bioremoval of Cr(VI). Substrate inhibition on the growth of Phanerochaete chrysosporium was evident beyond 20 g L-1 of dextrose concentration. A maximum biomass concentration of 15.64 g L-1 was obtained for an initial dextrose concentration of 20 g L-1 in metal free medium at pH 6.0. An increase in Cr(VI) concentration beyond 10 mg L-1 inhibited the growth of the fungi, thereby, reducing the chromium bioremoval efficiency. A maximum reduction efficiency of 98.92% was reported for an initial metal concentration of 10 mg L-1. A mathematical expression for the bioreduction of Cr(VI) considering the organic compounds in the cells was proposed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Bioreduction of hexavalent chromium by live and active phanerochaete chrysosporium: kinetics and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Murugavelh, Somasundaram; Mohanty, Kaustubha [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam (India)

    2012-07-15

    In this work the potential of live and active Phanerochaete chrysosporium, a white rot fungi, to remove lower Cr(VI) concentration from aqueous solutions was reported for the first time. A medium pH had significant effect on the growth of the fungus and bioremoval of Cr(VI). Substrate inhibition on the growth of Phanerochaete chrysosporium was evident beyond 20 g L{sup -1} of dextrose concentration. A maximum biomass concentration of 15.64 g L{sup -1} was obtained for an initial dextrose concentration of 20 g L{sup -1} in metal free medium at pH 6.0. An increase in Cr(VI) concentration beyond 10 mg L{sup -1} inhibited the growth of the fungi, thereby, reducing the chromium bioremoval efficiency. A maximum reduction efficiency of 98.92% was reported for an initial metal concentration of 10 mg L{sup -1}. A mathematical expression for the bioreduction of Cr(VI) considering the organic compounds in the cells was proposed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Hexavalent chromium removal performance of anionic functionalized monolithic polymers: column adsorption, regeneration and modelling.

    Science.gov (United States)

    Barlik, Necla; Keskinler, Bülent; Kocakerim, M Muhtar

    2016-01-01

    Anionic functionalized monolithic macro-porous polymers were used for the removal of hexavalent chromium(VI) anions from aqueous solution in column experiments. At a flux of 1.0 cm min and 30 mg Cr(VI) L(-1) feed concentration, breakthrough capacity and apparent capacity were 0.066 g Cr(VI) g(-1) anionic monolith and 0.144 g Cr(VI) g(-1) anionic monolith, respectively. The degree of column utilization was found to lie in the range 41-46%. Two kinetic models, theoretical and Thomas models, were applied to experimental data to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The simulation of the whole breakthrough curve was effective with the models. At a flux of 1.0 cm min and 30 mg Cr(VI) L(-1) feed concentration, the dispersion coefficient and adsorption equilibrium constant (K) were 3.14 × 10(-7) m s(-1) and 3,840, respectively. Also, Thomas model parameters k1 (rate constant of adsorption) and qm (equilibrium solid-phase concentration of sorbed solute) were 1.08 × 10(-3) L mg(-1) min(-1) and 0.124 g g(-1), respectively. After reaching equilibrium adsorption capacity, the monoliths were regenerated using 1 N HCl and were subsequently re-tested. It was found that the regeneration efficiency reduced from 98% after second usage to 97% after the third usage. PMID:27003067

  12. Chemical state of chromium in sewage sludge ash based phosphorus-fertilisers.

    Science.gov (United States)

    Vogel, Christian; Adam, Christian; Kappen, Peter; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don

    2014-05-01

    Sewage sludge ash (SSA) based P-fertilisers were produced by thermochemical treatment of SSA with Cl-donors at approximately 1000°C. During this thermochemical process heavy metals are separated as heavy metal chlorides via the gas phase. Chromium cannot be separated under normal conditions. The risk of the development of toxic Cr(VI) during the thermochemical process was investigated. X-ray Absorption Spectroscopy measurements showed that SSA and thermochemically treated SSA with CaCl2, MgCl2 and NaCl contain Cr(III) compounds only. In contrast, treating SSA with elevated quantities of Na2CO3, to enhance the plant-availability of the phosphate phases of the fertiliser, developed approximately 10-15% Cr(VI). Furthermore, Raman microspectroscopy showed that using Mg-carbonate reduces the risk of a Cr(VI) development during thermochemical treatment. Additionally, leaching tests showed that only a Cr-water solubility>10% is an indicator for Cr(VI) in SSA based P-fertilisers. PMID:24373226

  13. Thermal stabilization of chromium(VI) in kaolin.

    Science.gov (United States)

    Wei, Yu-Ling; Chiu, Shu-Yuan; Tsai, Hsien-Neng; Yang, Yaw-Wen; Lee, Jyh-Fu

    2002-11-01

    Reduction of Cr(VI) by heating may be a useful detoxification mechanism for thermal immobilization. Using X-ray absorption spectroscopy, the change of speciation of chromium in 105 degrees C dried 3.7% Cr(VI)-sorbed kaolin further heated at 500, 900, or 1100 degrees C was studied. The 105 degrees C dried 3.7% Cr(VI)-sorbed kaolin sample was prepared by mixing 1.5 L of 0.257 M CrO3 solution (pH 0.71) with 0.5 kg of kaolin powder for 48 h, and then the slurry was heated (dried) at 105 degrees C until a constant weight was reached. The toxicity characteristic leaching procedure method was used to determine the percentage of leached chromium from all heated samples. In all 500-900 degrees C heated Cr(VI)-sorbed kaolin samples, Cr2O3 transformed from the hydrated Cr(VI) by a 4-h heat application was identified by the X-ray absorption near edge structure and extended X-ray absorption fine structure (EXAFS) spectroscopy as the key species that is leaching-resistant due to its low solubility. For the 1100 degrees C heated Cr(VI)-sorbed kaolin sample, the Fourier transform of its EXAFS spectrum indicates that the intensity of the peaks at 2.45 (Cr-Cr shell of Cr2O3) and 5.00 A (Cr-Cr and Cr-O shells of Cr2O3) without phase shift correction is either relatively smaller or disappearing, compared with that of the 500-900 degrees C heated Cr(VI)-sorbed kaolin samples. It is suggested that chromium octahedra were bridged to silica tetrahedra and incorporated in minerals formed at 1100 degrees C, such as mullite or sillimanite, since these phases were detected by XRD. Cr of this form is not easily leached. PMID:12433175

  14. Evaluation of the Effectiveness of Cr(VI) Biostimulation in Groundwater at Hanford 100H Site

    Science.gov (United States)

    Faybishenko, B.; Hazen, T. C.; Brodie, E.; Joyner, D.; Borglin, S.; Hanlon, J.; Conrad, M.; Tokunaga, T.; Wan, J.; Hubbard, S.; Williams, K. H.; Peterson, J. E.; Firestone, M.; Andersen, G.; Desantis, T.; Long, P. E.; Newcomer, D. R.; Resch, C. T.; Willett, A.; Koenigsberg, S.

    2006-05-01

    To demonstrate the feasibility of a cost-effective field-scale bioimmobilization of Cr(VI) in contaminated groundwater, using a slow release polylactate, Hydrogen Release Compound (HRCTM), we have conducted a pilot study at the Hanford 100H field site. To assess the pre- and post-injection test groundwater conditions, we used an integrated monitoring approach, involving hydraulic, geochemical, microbial, and geophysical techniques and analytical methods, as well as conducted five Br-tracer injection tests and four pumping tests (concurrently with the Br-tracer tests). Although the total microbial population in sediments is bacteria, e.g., Bacillus/Arthrobacter and Geobacter, are present in the Hanford sediments, which are known to reduce or sorb hexavalent chromium. Groundwater biostimulation was conducted by injection of 18.2 kg of 13C-labeled HRC into the injection well (over the depth interval from 13.4-15.2 m) on 8/3/2004. Pumping from the downgradient monitoring well (located 5 m from the injection well) started immediately after the injection, and continued for 27 days. We determined that the HRC injection stimulated microbial cell counts to reach the maximum of 2×107cells g-1 13-17 days after the injection, and generated highly reducing conditions: DO dropped from 8.2 mg/l to non-detect, redox potential - from 240 to -130 mV, and pH - from 8.9 to 6.5. Monitoring of δ13C ratios in dissolved inorganic carbon confirmed microbial metabolism of HRC. The total Cr concentration in the monitoring well decreased by a factor of 4 compared to that under background conditions. The Cr(VI) concentration in the monitoring and pumping wells decreased below the drinking water maximum contaminant limit and remained below background concentrations even after 1.5 years, when redox conditions and microbial densities had returned to background levels. The presence of Fe(II) in groundwater may also account for the continued reduction of Cr(VI). The results of geophysical (radar

  15. Flow injection solid phase extraction electrothermal atomic absorption spectrometry for the determination of Cr(VI) by selective separation and preconcentration on a lab-made hybrid mesoporous solid microcolumn

    International Nuclear Information System (INIS)

    good results. Validation was performed by means of recovery studies as no certified materials were available for Cr(VI). Total chromium determinations, obtained by the sum of Cr(III) and Cr(VI) concentrations, were validated using NIST, SRM 1643e certificate reference material (Trace Element in Natural Water).

  16. Abatement of toxicity of effluents containing Cr(VI) by heterogeneous photocatalysis. Toxicity assessment by AMPHITOX assay.

    Science.gov (United States)

    Hojman, Jonatan Y; Meichtry, J Martín; Litter, Marta I; Pérez Coll, Cristina S

    2015-12-01

    Toxicity of a Cr(VI) solution before and after treatment by TiO2 heterogeneous photocatalysis (HP) was performed with AMPHITOX bioassay. Changes in toxicity on Rhinella arenarum larvae for 10-d were monitored after exposure to an untreated Cr(VI) solution and to the same solution after HP treatment. The HP treatment of a 41.60 mg L(-1) Cr(VI) solution reduced to 37.5% the concentration of the metal ion. A 10-fold reduction in toxicity at acute exposure (72 h) and 150-fold reduction in toxicity after 240 h was found. Further, the LOEC value increased from 0.001% for the untreated solution to 0.153% after HP treatment. Moreover, the safe concentration in untreated solution corresponded to 0.0001% sample, and it was 0.01% after the treatment, i.e., 100 times higher. A saving of water of about 100,000 L per L of effluent would be possible through dilution to allow safer concentrations for discharge; the saving would reach the highest value (1,000,000 L per L) at 240 h. Sub-lethal effects were completely absent in larvae exposed to the treated solution. The AMPHITOX test allowed to detect chronic effects at low Cr concentrations, i.e. at environmentally relevant levels. PMID:26432027

  17. Morphology controlled synthesis of SnS₂ nanomaterial for promoting photocatalytic reduction of aqueous Cr(VI) under visible light.

    Science.gov (United States)

    Mondal, Chanchal; Ganguly, Mainak; Pal, Jaya; Roy, Anindita; Jana, Jayasmita; Pal, Tarasankar

    2014-04-15

    A mild, template free protocol has been demonstrated for SnS2 nanoflake formation at the gram level from SnCl2 and thioacetamide (TAA). The SnS2 nanoflakes congregate to nanoflowers and nanoyarns with variable TAA concentrations. BET measurements reveal that the synthesized nanomaterials are highly porous having very high surface area, and the nanoflower has higher surface area than the nanoyarn. The synthesized nanomaterial finds application for promoting photoreduction of extremely toxic and lethal Cr(VI) under visible light irradiation due to their porous nature. The nanoflowers photocatalyst is proved to be superior to nanoyarn due to the increased surface area and higher pore volume. It was also inferred that increased pH decreased the reaction rate. The present result suggests that the morphology-dependent photoreduction of Cr(VI) by SnS2 nanomaterial under visible light exposure will endorse a new technique for harvesting energy and purification of wastewater. PMID:24649847

  18. Effect of genotype, Cr(III and Cr(VI on plant growth and micronutrient status in Silene vulgaris (Moench

    Directory of Open Access Journals (Sweden)

    A. E. Pradas-del-Real

    2013-06-01

    Full Text Available Chromium released into the environment from industrial activities has become an important environmental concern. Silene vulgaris has been proven to be tolerant to many heavy metals, so it is considered an interesting species in the revegetation and restoration of polluted soils, but no information is available about its response to Cr. The objective of this work was to study uptake and influence on plant growth of Cr(III and Cr(VI in six genotypes (four hermaphrodites and two females of S. vulgaris from different sites of Madrid (Spain. Plants were treated for 12 days with 60 µM of Cr(III or Cr(VI in semihydroponics. Dry weights, soil-plant analysis development values (SPAD reading with chlorophylls and micronutrient and total Cr concentrations were determined. Metal uptake was higher in presence of Cr(VI than of Cr(III and poorly translocated to the shoots. In both cases S. vulgaris did not show visual toxicity symptoms, biomass reduction, or differences among SPAD values as consequence of Cr additions. However genotypes SV36 and SV38 showed Fe and Mn imbalance. This is the first report on the relatively good performance of hermaphrodite and female S. vulgaris genotypes in Cr uptake and physiological traits, but further studies will be necessary to elucidate the mechanisms by which the gender may influence these variables. S. vulgaris presented high diversity at genotypic level; the treatment with hexavalent Cr increased the differences among genotypes so the use of cuttings from an homogeneous genotype seems to be an adequate method for the study of this species.

  19. Adsorption characteristics of hexavalent chromium on HCB/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li; Zhang, Yonggang, E-mail: 13502182420@163.com

    2014-10-15

    Graphical abstract: - Highlights: • Sol–gel method was adopted to prepare HCB/TiO{sub 2}. • Its adsorption performance of Cr(VI) was investigated. • The maximum adsorption capacity for Cr(VI) was at 27.33 mg g{sup −1} in an acidic medium. • The value is worth comparable with other low-cost adsorbents. - Abstract: Sol–gel method was adopted to prepare HCB/TiO{sub 2} and its adsorption ability of hexavalent chromium, Cr(VI), and removal from aqueous solution were investigated. The samples were characterized by Power X-ray diffraction (XRD) and a transmission electron microscope (TEM) which showed that the TiO{sub 2} was deposited on the surface of HCB. FTIR was used to identify the changes of the surface functional groups before and after adsorption. Potentiometric titration method was used to characterize the zero charge (pH{sub pzc}) characteristics of the surface of HCB/TiO{sub 2} which showed more acidic functional groups containing. Batch experiments showed that initial pH, absorbent dosage, contact time and initial concentration of Cr(VI) were important parameters for the Cr(VI) adsorption studies. The Freundlich isotherm model better reflected the experimental data better. Cr(VI) adsorption process followed the pseudo-second order kinetic model, which illustrated chemical adsorption. The thermodynamic parameters, such as Gibbs free energy (ΔG), changes in enthalpy change (ΔH) and changes in entropy change (ΔS) were also evaluated. Negative value of free energy occurred at temperature range of 25–45 °C, so Cr(VI) adsorption by HCB/TiO{sub 2} is spontaneous. Desorption results showed that the adsorption capacity could maintain 80% after five cycles. The maximum adsorption capacity for Cr(VI) was at 27.33 mg g{sup −1} in an acidic medium, of which the value is worth comparable with other low-cost adsorbents.

  20. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral

  1. Ultratrace Determination of Cr(VI and Pb(II by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    Directory of Open Access Journals (Sweden)

    Jameel Ahmed Baig

    2013-01-01

    Full Text Available Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI and lead (Pb(II by dispersive liquid-liquid microextraction (DLLME using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS. For the current study, ammonium pyrrolidine dithiocarbamate (APDC, carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI and Pb(II were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, were 96%. The proposed method was successfully applied to the determination of Cr(VI and Pb(II at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method.

  2. Removal of Cr(VI) from low-temperature micro-polluted surface water by tannic acid immobilized powdered activated carbon.

    Science.gov (United States)

    Li, Weiguang; Gong, Xujin; Li, Xin; Zhang, Duoying; Gong, Hainan

    2012-06-01

    In this study, food-grade tannic acid-immobilized powdered activated carbon (TA-PAC) was prepared, and adsorption of Cr(VI) (0.500 mg/L) onto TA-PAC as a function of pH, contact time, adsorption capacities and adsorption isotherms at 280 K was investigated. The results indicated that the immobilization process introduced abundant acid functional groups. The adsorption capacity of TA-PAC was found to be pH-dependent, and the optimal pH value was found to be 4.0. The equilibrium time was 240 min for TA-PAC. Adsorption data for total chromium were modeled using both two-parameter and three-parameter isotherm models. Freundlich and linear forms of three-parameter models yielded the best results for all of the data. Desorption studies of immobilized material suggested that the immobilization of food-grade tannic acid is steady. The adsorption mechanism of Cr(VI) on TA-PAC was assumed to be a comprehensive process consisting of surface reduction of Cr(VI), esterification between catechol and chromate, and ion exchange. PMID:22243926

  3. Investigations on photoelectrocatalytic reduction of Cr(VI) over titanium dioxide anode and metal cathode

    International Nuclear Information System (INIS)

    Photocatalytic and photoelectrocatalytic (PEC) reductions of Cr(VI) based on TiO2 thin films were investigated under various conditions. Photogenerated electrons transferred from TiO2 thin film to cathode can contribute to PEC reduction of Cr(VI) only when the Fermi level of cathode lies above the chemical potential of Cr(VI), almost independent on the applied voltage of the direct current. In addition, the TiO2-coated anode is the major site that accommodates the PEC reduction of Cr(VI) with hole scavenger citric acid, regardless of the Fermi level of the cathode. Although electron transfer from TiO2 to Cr(VI) is an exothermic process, the photogenerated holes in TiO2 can markedly hamper Cr(VI) reduction over the TiO2 thin film by oxidizing the lower-valence Cr back to Cr(VI), which may be counteracted by the citric acid. This research provides some in-depth insights on developing photocatalysts which enable highly efficient PEC reduction of Cr(VI) in the future. - Highlights: • Cr(VI) reduction on TiO2 photoanode is dominant with the addition of citric acid. • Cr(VI) is reduced on photocathode with Fermi level above Cr(VI) chemical potential. • Photogenerated holes can hamper Cr(VI) photoreduction over TiO2

  4. Chromium stable isotope systematic – implications for the redox evolution of the earth

    DEFF Research Database (Denmark)

    Døssing, Lasse Nørbye

    The isotopic composition of chromium (Cr) holds great promise as a paleo-redox proxy.Whereas the reduction of oxidized Cr(VI) to Cr(III) yields a well-defined kineticfractionation, the fractionation imparted during oxidative weathering is only described theoretically. This thesis demonstrates that...... Cr isotopes fractionate during oxidative weathering of modern soil systems. The result is the retention of light Cr(III) and the release of heavy Cr(VI) to runoff. Deviations in Cr isotope compositions from mantle inventory values are ultimately attributed to oxidative weathering in modern systems...... and thus indicate the presence of oxidizing redox species. To track paleo-redox processes deep in the Earth’s history, a number of ancient soil horizons (e.g. the Drakenstein and Nsuze paleosols) formed ~2.2 and ~3.0 billion years ago have been analyzed. These horizons document similar behavior of Cr...

  5. Assessment of Hexavalent Chromium Natural Attenuation for the Hanford Site 100 Area

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sahajpal, Rahul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    Hexavalent chromium (Cr(VI)) plumes are present in the 100 Area at the Hanford Site. Remediation efforts are under way with objectives of restoring the groundwater to meet the drinking-water standard (48 µg/L) and protecting the Columbia River by ensuring that discharge of groundwater to the river is below the surface-water quality standard (10 µg/L). Current remedies include application of Pump-and-Treat (P&T) at the 100-D, 100-H, and 100-K Areas and Monitored Natural Attenuation (MNA) at the 100-F/IU Area. Remedy selection is still under way at the other 100 Areas. Additional information about the natural attenuation processes for Cr(VI) is important in all of these cases. In this study, laboratory experiments were conducted to demonstrate and quantify natural attenuation mechanisms using 100 Area sediments and groundwater conditions.

  6. Hair chromium concentration and chromium excretion in tannery workers.

    OpenAIRE

    Saner, G; Yüzbasiyan, V; Cigdem, S

    1984-01-01

    Hair and urine samples were collected from 34 male tannery workers and from 12 normal adults. Eighteen of the workers dealt directly with chromium and the remaining 16 (controls) worked in the offices and kitchen of the same factory. All were found to be clinically healthy. Chromium was determined by flameless atomic absorption spectroscopy. When compared with normal adult values, urinary chromium concentration, Cr/Creatinine ratio, daily chromium excretion, and hair chromium, concentrations ...

  7. High-Purity Chromium Targets

    OpenAIRE

    Rudoy, A.; Milman, Yu.; Korzhova, N.

    1995-01-01

    A procedure for producing large-scale chromium ingots by means of induction-arc melting was developed. From the high-purity, low-alloyed chromium ingots obtained, chromium targets were produced by of thermoplastic treatment techniques. The method of electron-beam evaporation of high-purity chromium was also used for production of targets.

  8. Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA

    International Nuclear Information System (INIS)

    Chromium(VI) concentrations in groundwater sampled from three contaminant plumes in aquifers in the Mojave Desert near Hinkley, Topock and El Mirage, California, USA, were as high as 2600, 5800 and 330 μg/L, respectively. δ53/52Cr compositions from more than 50 samples collected within these plumes ranged from near 0‰ to almost 4‰ near the plume margins. Assuming only reductive fractionation of Cr(VI) to Cr(III) within the plume, apparent fractionation factors for δ53/52Cr isotopes ranged from εapp = 0.3 to 0.4 within the Hinkley and Topock plumes, respectively, and only the El Mirage plume had a fractionation factor similar to the laboratory derived value of ε = 3.5. One possible explanation for the difference between field and laboratory fractionation factors at the Hinkley and Topock sites is localized reductive fractionation of Cr(VI) to Cr(III), with subsequent advective mixing of native and contaminated water near the plume margin. Chromium(VI) concentrations and δ53/52Cr isotopic compositions did not uniquely define the source of Cr near the plume margin, or the extent of reductive fractionation within the plume. However, Cr(VI) and δ53/52Cr data contribute to understanding of the interaction between reductive and mixing processes that occur within and near the margins of Cr contamination plumes. Reductive fractionation of Cr(VI) predominates in plumes having higher εapp, these plumes may be suitable for monitored natural attenuation. In contrast, advective mixing predominates in plumes having lower εapp, the highly dispersed margins of these plumes may be difficult to define and manage.

  9. Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA

    Science.gov (United States)

    Izbicki, John A.; Bullen, Thomas D.; Martin, Peter; Schroth, Brian

    2012-01-01

    Chromium(VI) concentrations in groundwater sampled from three contaminant plumes in aquifers in the Mojave Desert near Hinkley, Topock and El Mirage, California, USA, were as high as 2600, 5800 and 330 μg/L, respectively. δ53/52Cr compositions from more than 50 samples collected within these plumes ranged from near 0‰ to almost 4‰ near the plume margins. Assuming only reductive fractionation of Cr(VI) to Cr(III) within the plume, apparent fractionation factors for δ53/52Cr isotopes ranged from εapp = 0.3 to 0.4 within the Hinkley and Topock plumes, respectively, and only the El Mirage plume had a fractionation factor similar to the laboratory derived value of ε = 3.5. One possible explanation for the difference between field and laboratory fractionation factors at the Hinkley and Topock sites is localized reductive fractionation of Cr(VI) to Cr(III), with subsequent advective mixing of native and contaminated water near the plume margin. Chromium(VI) concentrations and δ53/52Cr isotopic compositions did not uniquely define the source of Cr near the plume margin, or the extent of reductive fractionation within the plume. However, Cr(VI) and δ53/52Cr data contribute to understanding of the interaction between reductive and mixing processes that occur within and near the margins of Cr contamination plumes. Reductive fractionation of Cr(VI) predominates in plumes having higher εapp, these plumes may be suitable for monitored natural attenuation. In contrast, advective mixing predominates in plumes having lower εapp, the highly dispersed margins of these plumes may be difficult to define and manage.

  10. Photocatalytic reduction of hexavalent chromium at gold nanoparticles modified titania nanotubes

    International Nuclear Information System (INIS)

    N-[3-(Trimethoxysilyl)propyl]ethylenediamine (EDAS) silicate supported titanium dioxide nanotubes-gold ((TiO2 NTs-Au)NCM) nanocomposite material (EDAS/(TiO2 NTs-Au)NCM) was prepared by deposition–precipitation method and characterized by diffuse reflectance spectra, X-ray diffraction pattern, Brunauer–Emmett–Teller surface area analysis, transmission electron micrographs, scanning electron micrographs and energy-dispersive X-ray spectra analysis. The photocatalytic activity of the EDAS/(TiO2 NTs-Au)NCM in the film form was investigated towards the reduction of toxic hexavalent chromium (Cr(VI)) into trivalent chromium (Cr(III)) in the presence of oxalic acid as an electron donor. The EDAS/(TiO2 NTs-Au)NCM film exhibited higher photocatalytic activity when compared to the photocatalytic activities of pristine TiO2 nanoparticles and TiO2 nanotubes (TiO2 NTs) which can be attributed to the effective photoinduced interfacial charge transfer from the (TiO2 NTs-Au)NCM to Cr(VI) through Au nanoparticles (Aunps). The Aunps present in the TiO2 NTs act as an electron sink for the photogenerated electrons that minimizes the charge recombination process at the TiO2 NTs. The Aunps on the TiO2 NTs surface facilitates the transfer of photogenerated electrons to the Cr(VI) leading to the formation of Cr(III) ions. - Highlights: • Gold modified titania nanotubes are used to design solid-phase photocatalyst. • Gold nanoparticles deposition increases the surface area of titania nanotubes. • Gold on titania nanotubes improves the photocatalytic reduction of Cr(VI). • The holes produced at the titania nanotubes are scavenged by oxalic acid. • Gold modified titania nanotubes is a potential candidate for treatment of heavy metals

  11. The chromium accumulation and its physiological effects in juvenile rockfish, Sebastes schlegelii, exposed to different levels of dietary chromium (Cr(6+)) concentrations.

    Science.gov (United States)

    Kim, Jun-Hwan; Kang, Ju-Chan

    2016-01-01

    Juvenile rockfish (mean length 13.7±1.7 cm, and mean weight 55.6±4.8 g) were exposed for 4 weeks with the different levels of dietary chromium (Cr(6+)) at 0, 30, 60, 120 and 240 mg/kg. The profile of chromium in the tissues of rockfish is dependent on the exposure periods and chromium concentration. After 4 weeks, the order of chromium accumulation in tissues was liver>kidney>spleen>intestine>gill>muscle. The dietary chromium exposure decreased the growth rate and hepatosomatic index of rockfish. The major hematological findings were significant decrease in the red blood cell (RBC) count, hematocrit (Ht) value, and hemoglobin (Hb) concentration exposed to ≥120 mg/kg chromium concentrations. The dietary chromium exposure (≥120 mg/kg) led to notable increase in glucose, cholesterol, glutamic oxalate transaminase (GOT), and glutamic pyruvate transaminase (GPT) in plasma, whereas there was no considerable change in calcium, magnesium, total protein, and alkaline phosphatase (ALP). The results indicated that the dietary chromium exposure to rockfish can induce significant chromium accumulation in the specific tissues, inhibition of growth, and hematological alterations. PMID:26705966

  12. Half life of chromium in serum and urine in a former plasma cutter of stainless steel

    OpenAIRE

    Petersen, R.; Thomsen, J. F.; Jorgensen, N. K.; Mikkelsen, S

    2000-01-01

    For 8 years chromium in serum and urine has been followed up in a former plasma cutter of stainless steel who was exposed to airborne dust and fumes containing chromium during this work. After the first examination for serum chromium the exposure ended. Serum chromium concentration has been measured seven times during the period and was initially very high and has subsequently dropped slowly. The half life was 40 months in serum. Urinary chromium has been measured five times. The half life wa...

  13. Fabrication of chitosan-magnetite nanocomposite strip for chromium removal

    Science.gov (United States)

    Sureshkumar, Vaishnavi; Kiruba Daniel, S. C. G.; Ruckmani, K.; Sivakumar, M.

    2016-02-01

    Environmental pollution caused by heavy metals is a serious threat. In the present work, removal of chromium was carried out using chitosan-magnetite nanocomposite strip. Magnetite nanoparticles (Fe3O4) were synthesized using chemical co-precipitation method at 80 °C. The nanoparticles were characterized using UV-visible spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction spectrometer, atomic force microscope, dynamic light scattering and vibrating sample magnetometer, which confirm the size, shape, crystalline nature and magnetic behaviour of nanoparticles. Atomic force microscope revealed that the particle size was 15-30 nm and spherical in shape. The magnetite nanoparticles were mixed with chitosan solution to form hybrid nanocomposite. Chitosan strip was casted with and without nanoparticle. The affinity of hybrid nanocomposite for chromium was studied using K2Cr2O7 (potassium dichromate) solution as the heavy metal solution containing Cr(VI) ions. Adsorption tests were carried out using chitosan strip and hybrid nanocomposite strip at different time intervals. Amount of chromium adsorbed by chitosan strip and chitosan-magnetite nanocomposite strip from aqueous solution was evaluated using UV-visible spectroscopy. The results confirm that the heavy metal removal efficiency of chitosan-magnetite nanocomposite strip is 92.33 %, which is higher when compared to chitosan strip, which is 29.39 %.

  14. Microstructural characterisation of chromium slags

    OpenAIRE

    Burja, J.; F. Tehovnik; Vode, F.; Arh, B.

    2015-01-01

    In this chromium slags that form during melting of chromium alloyed steels are examined. During melting and oxidation of these steel grades a considerable amount of chromium is lost, and gained back with slag reduction. Laboratory experiments were performed to study the mechanism of chromium oxide reduction by silicon. Slags chemistry and phase composition have a strong effect on the steelmaking process. Phase analysis revealed two types of chromium oxides, calcium chromites and chromite spin...

  15. Occupational asthma due to chromium.

    Science.gov (United States)

    Leroyer, C; Dewitte, J D; Bassanets, A; Boutoux, M; Daniel, C; Clavier, J

    1998-01-01

    We describe a 28-year-old subject employed as a roofer in a construction company since the age of 19, who developed work-related symptoms of a cough, shortness of breath, wheezing, rhinitis and headaches. A description of a usual day at work suggested that the symptoms worsened while he was sawing corrugated fiber cement. Baseline spirometry was normal, and there was a mild bronchial hyperresponsiveness to carbachol. A skin patch test to chromium was negative. A specific inhalation challenge showed a boderline fall in forced expiratory volume in 1 s (FEV1) after exposure to fiber cement dust. Exposure to nebulization of potassium dichromate (K2Cr2O7), at 0.1 mg.ml-1 for 30 min, was followed by an immediate fall by 20% FEV1. Simultaneously, a significant increase in bronchial hyperresponsiveness was demonstrated. PMID:9782225

  16. Optimization and Modeling of Hexavalent Chromium Removal from Aqueous Solution Via Adsorption on Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mina Gholipour

    2011-09-01

    Full Text Available Hexavalent chromium and its derivatives are potential pollutant due to their mortal affects. Therefore, It is essential to remove these components from wastewaters before disposal. Adsorption can be effective and versatile method for removing of hexavalent chromium. In this article, removal of hexavalent chromium via adsorption on multiwalled carbon nanotubes was investigated as a function of adsorbent dosage, initial solution pH, initial Cr(VI concentrations, contact time and temperature. The batch experiments were conducted at 3 different temperatures (17, 27 and 37ºC and shows that Cr (VI removal obeys pseudo-second order rate equation. Rate constant (K values in 3 temperatures, pre-exponential factor and adsorption activation energy (E was also obtained. The sorption data fitted well with Freundlich isotherm adsorption model. Thermodynamic parameters such as Gibbs free energy (ΔGº, enthalpy (ΔHº and entropy (ΔSº for Cr(VI adsorption were estimated and Results suggest that the adsorption process is a spontaneous and endothermic.

  17. Assessment of chromium biostabilization in contaminated soils using standard leaching and sequential extraction techniques

    International Nuclear Information System (INIS)

    The iron reducing microorganism Desulfuromonas palmitatis was evaluated as potential biostabilization agent for the remediation of chromate contaminated soils. D. palmitatis were used for the treatment of soil samples artificially contaminated with Cr(VI) at two levels, i.e. 200 and 500 mg kg-1. The efficiency of the treatment was evaluated by applying several standard extraction techniques on the soil samples before and after treatment, such as the EN12457 standard leaching test, the US EPA 3060A alkaline digestion method and the BCR sequential extraction procedure. The water soluble chromium as evaluated with the EN leaching test, was found to decrease after the biostabilization treatment from 13 to less than 0.5 mg kg-1 and from 120 to 5.6 mg kg-1 for the soil samples contaminated with 200 and 500 mg Cr(VI) per kg soil respectively. The BCR sequential extraction scheme, although not providing accurate estimates about the initial chromium speciation in contaminated soils, proved to be a useful tool for monitoring the relative changes in element partitioning, as a consequence of the stabilization treatment. After bioreduction, the percentage of chromium retained in the two least soluble BCR fractions, i.e. the 'oxidizable' and 'residual' fractions, increased from 54 and 73% to more than 96% in both soils

  18. Toxic hexavalent chromium reduction by Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium

    Science.gov (United States)

    Rehman, Fatima; Faisal, Muhammad

    2015-05-01

    Three bacterial strains Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium were investigated when grown in Luria-Bertani (LB) medium at 500 μg/mL Cr(VI). The hexavalent chromium reduction was measured by growing the strains in DeLeo and Ehrlich (1994) medium at 200 and 400 μg/mL K2CrO4. The optimal Cr (VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 51%, 39%, and 41%, respectively, at an initial K2CrO4 concentration of 200 μg/mL at pH 3 and temperature 37°C. At an initial chromate concentration of 400 μg/mL, the Cr(VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 24%, 19%, and 18%, respectively at pH 3 at 37°C after 24 h. These strains have ability to reduce toxic hexavalent chromium to the less mobile trivalent chromium at a wide range of different environmental conditions and can be useful for the treatment of contaminated wastewater and soils.

  19. Photoreduction of Cr(VI) in water using Bi{sub 2}O{sub 3}-ZrO{sub 2} nanocomposite under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vignesh, Kumaravel [Post Graduate and Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamilnadu (India); Priyanka, Rajarajan [Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai 625015, Tamilnadu (India); Rajarajan, Muthuramalingam, E-mail: rajarajan_1962@yahoo.com [Department of Chemistry, Cardamom Planters' Association College, Bodinayakanur 626513, Tamilnadu (India); Suganthi, Ayyadurai, E-mail: suganthitcarts@gmail.com [Post Graduate and Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamilnadu (India)

    2013-02-01

    Highlights: Black-Right-Pointing-Pointer Bi{sub 2}O{sub 3}-ZrO{sub 2} nanocomposite was prepared by simple co-precipitation method. Black-Right-Pointing-Pointer PL measurements confirm the high suppression of electron-hole recombination. Black-Right-Pointing-Pointer The photocatalytic activity was measured by the reduction of Cr(VI). Black-Right-Pointing-Pointer The reaction conditions are optimized. Black-Right-Pointing-Pointer Bi{sub 2}O{sub 3}-ZrO{sub 2} was stable without loss of its activity up to 4 cyclic experiments. - Abstract: Chromium(VI) is a common heavy metal pollutant and extensively used in variety of industrial processes. In the present study, bismuth oxide-zirconium oxide nanocomposite (Bi{sub 2}O{sub 3}-ZrO{sub 2}) was synthesized to improve photoreduction of Cr(VI) under visible light irradiation. The synthesized photocatalyst was characterized by UV-visible-diffuse reflectance spectroscopy (UV-vis-DRS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (B.E.T) surface area analysis and photoluminescence spectroscopy (PL). Bi{sub 2}O{sub 3}-ZrO{sub 2} was found to be more photoactive than Bi{sub 2}O{sub 3}, ZrO{sub 2}, TiO{sub 2} and ZnO for the reduction of Cr (VI). The influences of various reaction parameters like the effect of catalyst concentration, initial Cr(VI) concentration and addition of inorganic salts on the photocatalytic activity have been investigated in detail. Meanwhile, the stability of Bi{sub 2}O{sub 3}-ZrO{sub 2} was investigated by repeatedly performing Cr(VI) photoreducing experiments.

  20. Photoreduction of Cr(VI) in water using Bi2O3–ZrO2 nanocomposite under visible light irradiation

    International Nuclear Information System (INIS)

    Highlights: ► Bi2O3–ZrO2 nanocomposite was prepared by simple co-precipitation method. ► PL measurements confirm the high suppression of electron–hole recombination. ► The photocatalytic activity was measured by the reduction of Cr(VI). ► The reaction conditions are optimized. ► Bi2O3–ZrO2 was stable without loss of its activity up to 4 cyclic experiments. - Abstract: Chromium(VI) is a common heavy metal pollutant and extensively used in variety of industrial processes. In the present study, bismuth oxide–zirconium oxide nanocomposite (Bi2O3–ZrO2) was synthesized to improve photoreduction of Cr(VI) under visible light irradiation. The synthesized photocatalyst was characterized by UV-visible-diffuse reflectance spectroscopy (UV-vis-DRS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (B.E.T) surface area analysis and photoluminescence spectroscopy (PL). Bi2O3–ZrO2 was found to be more photoactive than Bi2O3, ZrO2, TiO2 and ZnO for the reduction of Cr (VI). The influences of various reaction parameters like the effect of catalyst concentration, initial Cr(VI) concentration and addition of inorganic salts on the photocatalytic activity have been investigated in detail. Meanwhile, the stability of Bi2O3–ZrO2 was investigated by repeatedly performing Cr(VI) photoreducing experiments.

  1. Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization.

    Science.gov (United States)

    Ding, Yuanzhao; Peng, Ni; Du, Yonghua; Ji, Lianghui; Cao, Bin

    2014-02-01

    Although biofilm-based bioprocesses have been increasingly used in various applications, the long-term robust and efficient biofilm performance remains one of the main bottlenecks. In this study, we demonstrated that biofilm cohesiveness and performance of Shewanella oneidensis can be enhanced through disrupting putrescine biosynthesis. Through random transposon mutagenesis library screening, one hyperadherent mutant strain, CP2-1-S1, exhibiting an enhanced capability in biofilm formation, was obtained. Comparative analysis of the performance of biofilms formed by S. oneidensis MR-1 wild type (WT) and CP2-1-S1 in removing dichromate (Cr2O7(2-)), i.e., Cr(VI), from the aqueous phase showed that, compared with the WT biofilms, CP2-1-S1 biofilms displayed a substantially lower rate of cell detachment upon exposure to Cr(VI), suggesting a higher cohesiveness of the mutant biofilms. In addition, the amount of Cr(III) immobilized by CP2-1-S1 biofilms was much larger, indicating an enhanced performance in Cr(VI) bioremediation. We further showed that speF, a putrescine biosynthesis gene, was disrupted in CP2-1-S1 and that the biofilm phenotypes could be restored by both genetic and chemical complementations. Our results also demonstrated an important role of putrescine in mediating matrix disassembly in S. oneidensis biofilms. PMID:24362428

  2. Phosphinic acid functionalized carbon nanotubes for sensitive and selective sensing of chromium(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Akash, E-mail: dr.akashdeep@csio.res.in; Sharma, Amit L.; Tuteja, Satish K.; Paul, A.K.

    2014-08-15

    Highlights: • SWCNTs have been conjugated with bis(2,4,4-trimethylpentyl) phosphinic acid (PA/d). • SWCNT-PA/d adduct is demonstrated for electrochemical sensing of Cr(VI). • Linear response is obtained for 0.01–10 ppb Cr(VI). • Sensitivity and the limit of detection are 35 ± 4 nA/ppb and 0.01 ppb, respectively. • Proposed sensing of Cr(VI) is selective with respect to many other metals. - Abstract: Single-walled carbon nanotubes (SWCNTs) have been functionalized with a phosphinic acid derivative ‘bis(2,4,4-trimethylpentyl) phosphinic acid’ (PA/d). It has been achieved by treating the chlorinated SWCNTs with PA/d at 80 °C. Successful functionalization and different nanomaterial properties have been investigated by UV–vis–NIR, FTIR, Raman spectroscopy, AFM and FE-SEM. PA/d conjugated SWCNTs (CNT–PA) are dispersible in some common organic solvents, e.g. CH{sub 2}Cl{sub 2}, DMF, CHCl{sub 3}, and THF. The ‘CNT–PA’ complex was spin-casted on boron doped silicon wafer. Thus fabricated sensing electrode is demonstrated for sensitive and selective electrochemical sensing of chromium(VI) ions. A linear response is obtained over a wide range of Cr(VI) concentration (0.01–10 ppb). The sensor's sensitivity and the limit of detection are observed to be 35 ± 4 nA/ppb and 0.01 ppb, respectively. The practical utility of the proposed sensor is demonstrated by determining the Cr(VI) concentration in an industrial effluent sample and an underground water sample.

  3. Evaluation of extraction methods for hexavalent chromium determination in dusts, ashes, and soils

    Science.gov (United States)

    Wolf, Ruth E.; Wilson, Stephen A.

    2010-01-01

    One of the difficulties in performing speciation analyses on solid samples is finding a suitable extraction method. Traditional methods for extraction of hexavalent chromium, Cr(VI), in soils, such as SW846 Method 3060A, can be tedious and are not always compatible with some determination methods. For example, the phosphate and high levels of carbonate and magnesium present in the U.S. Environmental Protection Agency (USEPA) Method 3060A digestion for Cr(VI) were found to be incompatible with the High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS) detection method used by our laboratory. Modification of Method 3060A by eliminating the use of the phosphate buffer provided improved performance with the detection method, however dilutions are still necessary to achieve good chromatographic separation and detection of Cr(VI). An ultrasonic extraction method using a 1 mM Na2CO3 - 9 mM NaHCO3 buffer solution, adapted from Occupational Safety and Health Administration (OSHA) Method ID215, has been used with good results for the determination of Cr(VI) in air filters. The average recovery obtained for BCR-545 - Welding Dust Loaded on Filter (IRMM, Belgium) using this method was 99 percent (1.2 percent relative standard deviation) with no conversion of Cr(VI) to Cr(III) during the extraction process. This ultrasonic method has the potential for use with other sample matrices, such as ashes and soils. Preliminary investigations using NIST 2701 (Hexavalent Chromium in Contaminated Soil) loaded onto quartz filters showed promising results with approximately 90 percent recovery of the certified Cr(VI) value. Additional testing has been done using NIST 2701 and NIST 2700 using different presentation methods. Extraction efficiency of bulk presentation, where small portions of the sample are added to the bottom of the extraction vessel, will be compared with supported presentation, where small portions of the sample are loaded onto a

  4. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent

    International Nuclear Information System (INIS)

    Oak wood and oak bark chars were obtained from fast pyrolysis in an auger reactor at 400-450 deg. C. These chars were characterized and utilized for Cr(VI) remediation from water. Batch sorption studies were performed at different temperatures, pH values and solid to liquid ratios. Maximum chromium was removed at pH 2.0. A kinetic study yielded an optimum equilibrium time of 48 h with an adsorbent dose of 10 g/L. Sorption studies were conducted over a concentration range of 1-100 mg/L. Cr(VI) removal increased with an increase in temperature (QOakwoodo: 25 deg. C = 3.03 mg/g; 35 deg. C = 4.08 mg/g; 45 deg. C = 4.93 mg/g and QOakbarko: 25 deg. C = 4.62 mg/g; 35 deg. C = 7.43 mg/g; 45 deg. C = 7.51 mg/g). More chromium was removed with oak bark than oak wood. The char performances were evaluated using the Freundlich, Langmuir, Redlich-Peterson, Toth, Radke and Sips adsorption isotherm models. The Sips adsorption isotherm model best fits the experimental data [high regression (R2) coefficients]. The overall kinetic data was satisfactorily explained by a pseudo second order rate expression. Water penetrated into the char walls exposing Cr(VI) to additional adsorption sites that were not on the surfaces of dry char pores. It is remarkable that oak chars (SBET: 1-3 m2 g-1) can remove similar amounts of Cr(VI) as activated carbon (SBET: ∼1000 m2 g-1). Thus, byproduct chars from bio-oil production might be used as inexpensive adsorbents for water purification. Char samples were successfully used for chromium remediation from contaminated surface water with dissolved interfering ions.

  5. IRIS Toxicological Review of Hexavalent Chromium Part 2: Human, Toxicokinetic, and Mechanistic Studies (Preliminary Assessment Materials)

    Science.gov (United States)

    In August 2014, EPA released the second part of draft literature searches and associated search strategies, evidence tables, and exposure response arrays for Cr(VI) to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA w...

  6. IRIS Toxicological Review of Hexavalent Chromium Part 1: Experimental Animal Studies (Preliminary Assessment Materials)

    Science.gov (United States)

    In April 2014, EPA released the draft literature searches and associated search strategies, evidence tables, and exposure response arrays for Cr(VI) to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA was interested in...

  7. Cr(VI) removal from aqueous solution by dried activated sludge biomass

    International Nuclear Information System (INIS)

    Batch experiments were conducted to remove Cr(VI) from aqueous solution using activated sludge biomass. The effects of acid pretreatment of the biomass, initial pH, biomass and Cr(VI) concentrations on Cr(VI) removal efficiency were investigated. Proton consumption during the removal process and the reducing capacity of sludge biomass were studied. The results show that acid pretreatment could significantly improve Cr(VI) removal efficiency and increase Cr(VI) reducing capacity by 20.4%. Cr(VI) removal was remarkably pH-dependent; lower pH (pH = 1, 2) facilitated Cr(VI) reduction while higher pH (pH = 3, 4) favored sorption of the converted Cr(III). Lower Cr(VI) concentration as well as higher biomass concentration could accelerate Cr(VI) removal. Cr(VI) reduction was not the only reason for proton consumption in the removal process. Pseudo-second-order adsorption kinetic model could successfully simulate Cr(VI) removal except under higher pH conditions (pH = 3, 4).

  8. Physiological mechanisms to cope with Cr(VI) toxicity in lettuce: can lettuce be used in Cr phytoremediation?

    Science.gov (United States)

    Dias, Maria Celeste; Moutinho-Pereira, José; Correia, Carlos; Monteiro, Cristina; Araújo, Márcia; Brüggemann, Wolfgang; Santos, Conceição

    2016-08-01

    This research aims at identifying the main deleterious effects of Cr(VI) on the photosynthetic apparatus and at selecting the most sensitive endpoints related to photosynthesis. To achieve this goal, we used lettuce (Lactuca sativa), a sensible ecotoxicological crop model. Three-week-old plants were exposed to 0, 50, 150 and 200 mg L(-1) of Cr(VI). These concentrations ranged from levels admitted in irrigation waters to values found in several Cr industry effluents and heavily contaminated environments. After 30 days of exposure, plants accumulated Cr preferably in roots and showed nutritional impairment, with decreases of K, Mg, Fe and Zn in both roots and leaves. Cr(VI)-exposed plants showed decreased levels of chlorophyll (Chl) a and anthocyanins, as well as decreased effective quantum yield of photostystem II (ΦPSII) and photochemical Chl fluorescence quenching (qp), but increases in the non-photochemical Chl fluorescence quenching (NPQ) and in the de-epoxidation state (DEP) of the xanthophyll cycle. Net CO2 assimilation rate (P N ) and RuBisCO activity were mostly impaired in the highest Cr(VI) concentration tested. Concerning the final products of photosynthesis, starch content was not affected, while soluble sugar contents increased. These alterations were accompanied by a reduction in protein content and in plant growth. Our results support that endpoints related to the photosynthesis photochemical processes (ΦPSII and the qp) and the content of anthocyanins are sensitive predictors of Cr(VI) toxicity. The advantages of using these parameters as biomarkers for Cr toxicity in plants are discussed. Finally, we report that, despite showing physiological disorders, L. sativa plants survived and accumulated high doses of Cr, and their use in environmental/decontamination studies is open to debate. PMID:27130342

  9. Substoichiometric extraction of chromium

    International Nuclear Information System (INIS)

    Substoichiometric extraction of chromium with tetraphenylarsonium chloride (TPACl), tri-n-octylamine (TNOA), diethylammonium diethyldithiocarbamate (DDDC) and ammonium pyrrolidinedithiocarbamate (APDC) was examined in detail. Chromium can be extracted substoichiometrically in a pH range, which is 1.1-2.6 for the TPACl compound, 0.6-2.3 for the TNOA compound, 5.1-6.4 for the DDDC chelate and 3.9-4.9 for the APDC chelate. Chromium in high-purity calcium carbonate, Orchard Leaves (NBS SRM-1571) and Brewers Yeast (NBS SRM-1569) was determined by neutron activation analysis combined with substoichiometric extraction by DDDC and APDC. The values of 2.0+-0.02 ppm and 2.6+-0.2 ppm were obtained for Brewers Yeast and Orchard Leaves, respectively. These values were in good agreement with those reported by NBS. The reaction mechanism and the reaction ratio between hexavalent chromium and dithiocarbamate are also discussed. (author)

  10. Chromium in diet

    Science.gov (United States)

    ... Chromium deficiency may be seen as impaired glucose tolerance. It occurs in older people with type 2 ... PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Minerals Browse the Encyclopedia ...

  11. Accumulation of copper, chromium, and arsenic in blue mussels (Mytilus edulis) from laboratory and field exposures to wood treated with chromated copper arsenate type C

    Energy Technology Data Exchange (ETDEWEB)

    Adler-Ivanbrook, L.; Breslin, V.T. [State Univ. of New York, Stony Brook, NY (United States)

    1999-02-01

    Laboratory and field experiments were conducted to examine the uptake of Cu, Cr, and As leached from southern yellow pine (SYP) treated with chromated copper arsenate type C (CCA-C), as well as effects on mortality and growth, in blue mussels (Mytilus edulis). Mussels were exposed to CCA-C-treated wood at a preservative retention of 40 kg/m{sup 3} and control (nontreated) SYP in laboratory flow-through sea table and field exposure experiments for 9 months in 1994 and 3 months in 1995. Mussels were sampled at regular intervals to evaluate possible short- and long-term exposure effects., Individual mussels were measured to determine the length, dry weight, and condition index. Mussel tissues were than analyzed for Cu, Cr, and As. Results showed few significant differences in condition index, dry weight, and length between CCA-C-exposed and control mussels. In addition, no statistically significant differences in mortality were found between the mussels exposed to CCA-C-treated and nontreated SYP in the laboratory flow-through sea table and field exposure experiments. Significant differences in Cu, As, and Cr contents in mussel tissues between treatments were few, and generally cannot be attributed to exposure to CCA-C-treated SYP. The lack of Cu, Cr, and As uptake from CCA-C-treated SYP was attributed to the low, although continuous, rate of release of these elements from CCA-C-treated wood and to the experimental design, which allowed continuous flushing, prohibiting the accumulation of these elements in the water surrounding the mussels.

  12. Microscopic changes induced by Cr-VI in smooth muscles of albino mice

    International Nuclear Information System (INIS)

    Chromium is believed to be an essential trace element in human nutrition. Evidence suggests that it plays an important role in normal carbohydrate metabolism. It was found that patients receiving long-term total parenteral nutrition (TPN) without chromium developed glucose intolerance, weight loss and peripheral neuropathy Chromium is present in a normal diet at trace (but essential) levels. Occupational exposure is related to the industrial uses of chrome compounds in production and use of steels, pigments, leather tanning and wood preservation solutions, plating chemicals, and cement. Toxicity is predominantly associated with industrial exposures. Hexavalent chromium compounds appear to have greatest toxicity and almost all tissues of body are affected. To evaluate the effects on smooth muscles, present study was carried out. The mice of experimental group (2wks, 4wks, 6wks ,and 8wks) were injected Potassium dichromate (K/sub 2/Cr/sub 2/O/sub 7/) intraperitoneally according to experimental design. The drug caused slight to marked inflammation of smooth muscle fibers and vaculations of nuclei was also observed indicating degenerative changes. (author)

  13. The Adsorption of Cr(VI Using Chitosan-Alumina Adsorbent

    Directory of Open Access Journals (Sweden)

    Darjito Darjito

    2013-12-01

    Full Text Available Chitosan as adsorbent has been used widely, however it was not effective yet for metal ions adsorption in industrial scale. In acidic condition, chitosan’s active site tends to decrease. This drawback can was solved by coating of chitosan active site on alumina. This paper discloses to overcome that limitation. The charateristic of the active side was analysed by FTIR spectrometry toward vibration N-H group at 1679.15 cm-1, C=O group of oxalate at 1703.30 cm-1, and Al-O group of alumina at 924.07 cm-1. The adsorption capacity of the developed adsorbent was tester to adsorb Cr(VI ions under various of pH value such as 1, 2, 3, 4, 5, 6, and 7. The contact time affect toward the adsorption was also reported in 20, 30, 40 50, 60, 70, and 80 minute. In addition, the concentration effects (100, 200, 300, 400, 500, and 600 ppm was also studied. Chromium (VI was measured using spectronic-20. Adsorption capacity was obtained at 66.90 mg/g under optimum conditions pH 2, and contact time 60 minute, respectively.

  14. The Adsorption of Cr(VI Ions Using Chitosan-Alumina Adsorbent

    Directory of Open Access Journals (Sweden)

    Darjito Darjito

    2014-06-01

    Full Text Available Chitosan as adsorbent has been used widely, however it was not effective yet for metal ions adsorption in industrial scale. In acidic condition, chitosan’s active site tends to decrease. This drawback can was solved by coating of chitosan active site on alumina. This paper discloses to overcome that limitation. The charateristic of the active side was analysed by FTIR spectrometry toward vibration N-H group at 1679.15 cm-1, C=O group of oxalate at 1703.30 cm-1, and Al-O group of alumina at 924.07 cm-1. The adsorption capacity of the developed adsorbent was tester to adsorb Cr(VI ions under various of pH value such as 1, 2, 3, 4, 5, 6, and 7. The contact time affect toward the adsorption was also reported in 20, 30, 40 50, 60, 70, and 80 minute. In addition, the concentration effects (100, 200, 300, 400, 500, and 600 ppm was also studied. Chromium (VI was measured using spectronic-20. Adsorption capacity was obtained at 66.90 mg/g under optimum conditions pH 2, and contact time 60 minute, respectively.

  15. Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells

    Science.gov (United States)

    Park, Soyoung; Li, Cen; Zhao, Hong; Darzynkiewicz, Zbigniew; Xu, Dazhong

    2016-01-01

    Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI). PMID:26760771

  16. Chromium-induced membrane damage: protective role of ascorbic acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100gbody weight). It has been observed that the intoxication with chromium ( i. p. ) at the dose of 0.8 mg/100g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospbolipid of both liver and kidney. The alkaline pbosphatase, total ATPase and Na + -K + -ATPase activities were significantly decreased in both liver and kidney after chromium treatment,except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid ( i.p. at the dose of 0.5 mg,/100g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  17. Selective extraction of chromium (VI) from multicomponent acidic solutions by emulsion liquid membranes using tributhylphosphate as carrier

    International Nuclear Information System (INIS)

    The facilitated extraction of Cr(VI) through an emulsion liquid membrane (ELM) was investigated, using tributyl phosphate (TBP) as mobile carrier. The emulsion liquid membrane phase consists of kerosene as diluent, TBP as carrier, SPAN 80 as surfactant and (NH4)2CO3 solution as stripping phase. The extraction of chromium (VI) has been studied under various experimental conditions and have been determined the influences of surfactant concentration, extractant concentration, stripping solution base concentration, mixing speed, phase ratio, treatment ratio, chromium (VI) and HCl concentrations of the feed solution. It was observed that the extraction rate of Cr(VI) was affected by changes of surfactant concentration, extractant concentration, stripping solution base concentration, and mixing speed. The results obtained showed that by appropriate selection of the extraction and stability conditions, nearly all of chromium (VI) ions present in the feed solution were extracted within 2-4 min. The separation factors of chromium (VI) with respect to cobalt, nickel, copper, cadmium and zinc ions, based on initial feed concentration, have experimentally determined.

  18. Skin permeation and cutaneous hypersensitivity as a basis for making risk assessments of chromium as a soil contaminant.

    OpenAIRE

    Bagdon, R E; Hazen, R E

    1991-01-01

    A literature review of experimental and human exposure studies of skin permeation and cutaneous hypersensitivity reactions evoked by chromium was carried out to provide a basis for making a risk assessment of chromium as a soil contaminant. In vitro and in vivo studies demonstrated that 1 to 4% of the applied dose of hexavalent and trivalent chromium to guinea pig skin penetrated skin within 5 to 24 hr after application. Ultrastructural investigations showed that hexavalent chromium localized...

  19. Interconversion of chromium species during air sampling: effects of O3, NO2, SO2, particle matrices, temperature, and humidity.

    Science.gov (United States)

    Huang, Lihui; Fan, Zhihua Tina; Yu, Chang Ho; Hopke, Philip K; Lioy, Paul J; Buckley, Brian T; Lin, Lin; Ma, Yingjun

    2013-05-01

    The interconversion between Cr(VI), a pulmonary carcinogen, and Cr(III), an essential human nutrient, poses challenges to the measurement of Cr(VI) in airborne particles. Chamber and field tests were conducted to identify the factors affecting Cr(VI)-Cr(III) interconversion in the basic filter medium under typical sampling conditions. In the chamber tests, isotopically enriched (53)Cr(VI) and (50)Cr(III) were spiked on diesel particulate matter (DPM) and secondary organic aerosol (SOA) that were precollected on a basic MCE filter. The filter samples were then exposed to clean air or the air containing SO2 (50 and 160 ppb), 100 ppb O3, or 150 ppb NO2 for 24 h at 16.7 LPM flow rate at designated temperature (20 and 31 °C) and RH (40% and 70%) conditions. Exposure to 160 ppb SO2 had the greatest effect on (53)Cr(VI) reduction, with (53)Cr(VI) recovery of 31.7 ± 15.8% (DPM) and 42.0 ± 7.9% (SOA). DPM and SOA matrix induced (53)Cr(VI) reduction when exposed to clean air while reactive oxygen species in SOA could promote (50)Cr(III) oxidation. Deliquescence when RH increased from 40% to 70% led to conversion of Cr(III) in SOA, whereas oxidized organics in DPM and SOA enhanced hygroscopicity and thus facilitated Cr(VI) reduction. Field tests showed seasonal variation of Cr(VI)-Cr(III) interconversion during sampling. Correction of the interconversion using USEPA method 6800 is recommended to improve accuracy of ambient Cr(VI) measurements. PMID:23550818

  20. Adsorption of hexavalent chromium by graphite–chitosan binary composite

    Indian Academy of Sciences (India)

    RAJENDRA S DONGRE

    2016-06-01

    Graphite chitosan binary (GCB) composite was prepared for hexavalent chromium adsorption from studied water. GCB was characterized by TGA, FTIR, SEM and X-ray diffraction techniques.Wide porous sorptive surface of 3.89 m$^2$ g$^{−1}$ and absorptive functionalities of GCB was due to 20% (w/w) graphite support on chitosan evidenced from FTIR and SEM that impart maximum adsorption at pH 4, agitation with 200 rpm for 180 min. Adsorption studies revealed intraparticle diffusion models and best-fitted kinetics was pseudo 2nd order one. A wellfitted Langmuir isotherm model suggested monolayer adsorption with an adsorption capacity ($q_m$) of 105.6 mg g$^{−1}$ and $R^2 = 0.945$. Sorption mechanisms based on metal ionic interactions, intrusion/diffusion and chemisorptions onto composite. This graphite chitosan binary composite improve sorbent capacity for Cr(VI).

  1. Laboratory scale electrokinetic remediation of hexavalent chromium from contaminated soil

    International Nuclear Information System (INIS)

    Pakistan hosts a variety of waste soils around industrial sites located in and around large population centers. Clean up of these waste soils is essential to save potable groundwater reserves beneath these waste soils. Among several waste remediation approaches, the electrokinetic remediation (EKR) technology has fast emerged as a reliable, powerful and highly prominent candidate for effective in situ removal of soluble and leachable toxic species of metals, radionuclides, organics from contaminated soils and water environment. This paper presents results of the first laboratory trial experiment performed at PINSTECH, Islamabad, Pakistan to demonstrate applicability of EKR approach for removal of aqueous phase chromium from silty clay soil around Islamabad. The electro osmotic flow rate was 3.13 ml/hour while the mass balance calculations revealed that the removal efficiency of Cr(VI) was 44.58% for the experimental soil during a period of 24 hours of electro remediation. (author)

  2. Biosorption of hexavalent chromium based on modified Y zeolites obtained by alkali-treatment

    OpenAIRE

    Figueiredo, Hugo de; Silva, Bruna Andreia Nogueira Airosa; Quintelas, C.; Pereira, M.F.R.; Neves, Isabel C.; Tavares, M. T.

    2010-01-01

    The structural modification of external surface of NaY was investigated in order to enhance efficient biosorption systems consisting of a bacterial biofilm, Arthrobacter viscosus, supported on that zeolite, for removing hexavalent chromium from aqueous solutions. The supported bacterial biofilm reduces Cr(VI) to Cr(III) and this cation is then retained in the zeolite by ion exchange. NaY zeolite was modified by alkali-treatments using NaOH 2.0 M, with two different contact periods of...

  3. XANES determination of chromium oxidation states in glasses: comparison with optical absorption spectroscopy

    OpenAIRE

    Villain, Olivier; Calas, Georges; Galoisy, Laurence; Cormier, Laurent; Hazemann, Jean-Louis

    2007-01-01

    The oxidation state of chromium in glasses melted in an air atmosphere with and without refining agents was investigated by Cr K-edge X-ray Absorption Near-Edge Structure (XANES) and optical absorption spectroscopy. A good agreement in the relative proportion of Cr(III) and Cr(VI) is obtained between both methods. We show that the chemical dependence of the absorption coefficient of Cr(III) is less important in XANES than in optical absorption spectroscopy. The comparison of glasses melted un...

  4. Biochemical study on the protective role of folic acid in rabbits treated with chromium (VI).

    Science.gov (United States)

    El-Demerdash, Fatma M; Yousef, Mokhtar I; Elaswad, Fathia A M

    2006-01-01

    Deleterious effects of chromium (VI) compounds are diversified affecting almost all the organ systems in a wide variety of animals. Therefore, the present study was carried out to determine the effectiveness of folic acid (FA) in alleviating the toxicity of chromium (VI) on certain biochemical parameters, lipid peroxidation, and enzyme activities of male New Zealand white rabbits. Six rabbits per group were assigned to one of four treatment groups: 0 mg FA and 0 mg Cr(VI)/kg BW (control); 8.3 microg FA/kg BW; 5 mg Cr(VI)/kg BW; 5 mg Cr(VI) plus 8.3 microg FA/kg BW, respectively. Rabbits were orally administered their respective doses every day for 10 weeks. Results obtained showed that Cr(VI) significantly (P GST), and decreased the content of sulfhydryl groups (SH groups) in liver, testes, brain, kidney, and lung. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AlP), acid phosphatase (AcP), and lactate dehydrogenase (LDH) were significantly decreased in liver and testes due to Cr(VI) administration. Also, AlP and AcP activities were significantly decreased in kidney and lung. The activity of acetylcholinesterase (AChE) was significantly decreased in brain and plasma. Contrariwise, the activities of AST and ALT were significantly increased in plasma, while AlP and AcP decreased. Chromium (VI) treatment caused a significant decrease in plasma total protein (TP) and globulin, and increased total lipids (TL), cholesterol, glucose, urea, creatinine, and bilirubin concentrations. Folic acid alone significantly decreased the levels of free radicals in liver, brain, and kidney, and increased the content of SH-group. The activities of AST, ALT, and LDH in liver; AST, ALT, AlP, AcP, and LDH in testes; AcP in kidney; AlP and AcP in lung, and LDH in brain were significantly increased. Plasma TP and albumin were increased, while urea and creatinine were decreased. The presence of FA with Cr(VI) restored the changes in

  5. Differential physiological responses of two Salvinia species to hexavalent chromium at a glance.

    Science.gov (United States)

    Prado, Carolina; Chocobar Ponce, Silvana; Pagano, Eduardo; Prado, Fernando E; Rosa, Mariana

    2016-06-01

    In plants of Salvinia rotundifolia and Salvinia minima the effect of two Cr(VI) concentrations (5 and 20mgL(-1)) applied for 7days was assessed by measuring changes in biomass, photosynthetic pigments, Cr accumulation, malondialdehyde (MDA), membrane stability index (MSI), thiols (TT, NPT and PBT), and phenolics (SP and IP). Biomass in S. minima was decreased at highest Cr(VI) concentration, but there were no changes in S. rotundifolia. Metal accumulation was different in both species. S. minima accumulates more metal in fronds, but S. rotundifolia accumulates more metal in lacinias. Results also showed that S. minima translocates more Cr to fronds than S. rotundifolia, but at the whole plant level higher accumulation occurred in this last. Tolerance index (Ti) was higher in S. rotundifolia. Chl b and carotenoids were decreased only upon exposure to high Cr(VI) concentration in both species. Cr(VI) treatment did not enhance MDA accumulation. Cr exposure had no impact on MSI values when comparing with Cr-untreated values. Thiols in fronds and lacinias showed different distribution patterns between species. IP and NPT were higher in S. rotundifolia lacinias that accumulate more Cr than S. minima lacinias. Whilst SP and NPT were higher in S. minima fronds compared with S. rotundifolia ones. This may indicate that these species can cope with Cr(VI) toxicity, either through metal complexation and/or metal reduction or by the scavenging of ROS derived from Cr-induced oxidative stress. Based on Cr accumulation and biomass production, S. rotundifolia seems more suitable to remove Cr(VI) from polluted waters. PMID:27061358

  6. Effect of trace metals and electron shuttle on simultaneous reduction of reactive black-5 azo dye and hexavalent chromium in liquid medium by Pseudomonas sp.

    Science.gov (United States)

    Mahmood, Shahid; Khalid, Azeem; Arshad, Muhammad; Ahmad, Riaz

    2015-11-01

    This study demonstrates the role of electron shuttles and trace metals in the biotransformation of azo dye reactive black-5 and hexavalent chromium (CrVI) that are released simultaneously in tannery effluent. Previously isolated bacterial strain Pseudomonas putida KI was used for the simultaneous reduction of the dye (100 mg L(-1)) and CrVI (2 mg L(-1)) in a mineral salts medium (MSM). Among various trace metals, only Cu(II) had a stimulating effect on the bacterial-mediated reduction process. Application of electron shuttles such as hydroquinone and uric acid at a low concentration (1mM) had a positive effect on the reduction process and caused simultaneous reduction of 100% dye and 97% CrVI in 12-18 h. Mannitol, EDTA and sodium benzoate at all concentrations (ranging from 1 to 9 mM) showed an inhibitory effect on the reduction of reactive black-5 and CrVI. An inverse linear relationship between the velocity of reaction (V) and the concentration [S] of electron shuttles was observed. The results imply that both types and concentration of an electron shuttle and trace metals can affect the simultaneous reduction of reactive black-5 and CrVI. PMID:25556007

  7. Redox behavior of chromium on the corrosion of austenitic stainless steel (R-SUS304ULC) in 8 M nitric acid solution

    International Nuclear Information System (INIS)

    We investigated the relationship between the corrosion of austenitic stainless steel (R-SUS304ULC) and the redox behavior of chromium in nitric acid solution under three conditions – boiling at atmospheric pressure, boiling at reduced pressure, and non-boiling – to evaluate the effects of the boiling phenomenon. In the Cr(III) oxidation rate measurement, about 20% of the Cr(III) was oxidized to Cr(VI) under atmospheric-pressure boiling at 384 K after 168 h. Under non-boiling conditions at 373 K, Cr(VI) was not observed. However, about 3% of Cr(III) oxidation was observed at 373 K with reduced-pressure boiling. Thermodynamic calculations showed that the abundance of Cr(VI) in boiling nitric acid was increased over that in non-boiling nitric acid, even at the same temperature. These results show that Cr(III) is more likely to oxidize under boiling conditions than non-boiling conditions. On the other hand, in the corrosion tests, we found that the apparent reduction rate of Cr(VI) as a result of corrosion of R-SUS304ULC was more than 10 times greater than the Cr(III) oxidation rate. Therefore, the corrosion of R-SUS304ULC appears to be dominated by the rate of Cr(VI) reduction in nitric acid solution regardless of the boiling or non-boiling conditions. (author)

  8. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent.

    Science.gov (United States)

    Li, Kun; Li, Pei; Cai, Jun; Xiao, Shoujun; Yang, Hu; Li, Aimin

    2016-07-01

    A quaternary ammonium salt modified chitosan magnetic composite adsorbent (CS-CTA-MCM) was prepared by combination of Fe3O4 nanoparticles. Various techniques were used to characterize the molecular structure, surface morphology, and magnetic feature of this composite adsorbent. CS-CTA-MCM was employed for the removal of Cr(VI) and methyl orange (MO), an anionic dye, from water in respective single and binary systems. Compared with chitosan magnetic adsorbent (CS-MCM) without modification, CS-CTA-MCM shows evidently improved adsorption capacities for both pollutants ascribed to the additional quaternary ammonium salt groups. Based on the adsorption equilibrium study, MO bears more affinity to CS-CTA-MCM than Cr(VI) causing a considerable extent of preferential adsorption of dye over metal ions in their aqueous mixture. However, at weak acidic solutions, Cr(VI) adsorption is evidently improved due to more efficient Cr(VI) forms, i.e. dichromate and monovalent chromate, binding to this chitosan-based adsorbent. Thus chromium could be efficient removal together with MO at suitable pH conditions. The adsorption isotherms and kinetics indicate that adsorptions of Cr(VI) and MO by CS-CTA-MCM both follow a homogeneous monolayer chemisorption process. This magnetic adsorbent after saturated adsorption could be rapidly separated from water and easily regenerated using dilute NaOH aqueous solutions then virtually reused with little adsorption capacity loss. PMID:27060639

  9. Pyridine appended L-methionine: A novel chelating resin for pH dependent Cr speciation with scanning electron microscopic evidence and monitoring of yeast mediated green bio-reduction of Cr(VI) to Cr(III) in environmental samples

    International Nuclear Information System (INIS)

    Chemical speciation and pH dependent separation of Cr(III) and Cr(VI) species in environmental samples have been achieved by solid phase extraction using a new chelating resin containing pyridine appended L-methionine. Cr(III) is completely sorbed on the resin at pH 8.0 and Cr(VI) at pH 2.0. Hence a pH dependent separation of Cr(III) and Cr(VI) is possible with a limit of detection of 1.6 μg mL-1 and 0.6 μg mL-1 respectively. The sorption capacity of the resin for Cr(III) and Cr(VI) is 2.8 mmol g-1 and 1.3 mmol g-1 respectively. The sorption of chromium on the resin is supported by scanning electron microscopy (SEM). Complete desorption of Cr(III) and Cr(VI) from 1 g of Cr loaded resin was achieved using 10 mL of 2 mol L-1 HNO3 and 6 mL of 3 mol L-1 HNO3 respectively. Quantitative recoveries of Cr(III) (pH 8.0) and Cr(VI) (pH 2.0) were found to be 96.0% and 98.0% respectively. Reduction efficiency of Rhodotornula mucilaginosa yeast from Cr(VI) to Cr(III) was monitored with this new resin. Concentrations of metal ions were measured by flame atomic absorption spectroscopy (FAAS).

  10. Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1997 mid-year progress report

    International Nuclear Information System (INIS)

    'Treatment of High Level Waste (HLW) is the second most costly problem identified by OEM. In order to minimize costs of disposal, the volume of HLW requiring vitrification and long term storage must be reduced. Methods for efficient separation of chromium from waste sludges, such as the Hanford Tank Wastes (HTW), are key to achieving this goal since the allowed level of chromium in high level glass controls waste loading. At concentrations above 0.5 to 1.0 wt.% chromium prevents proper vitrification of the waste. Chromium in sludges most likely exists as extremely insoluble oxides and minerals, with chromium in the plus III oxidation state [1]. In order to solubilize and separate it from other sludge components, Cr(III) must be oxidized to the more soluble Cr(VI) state. Efficient separation of chromium from HLW could produce an estimated savings of $3.4B[2]. Additionally, the efficient separation of technetium [3], TRU, and other metals may require the reformulation of solids to free trapped species as well as the destruction of organic complexants. New chemical processes are needed to separate chromium and other metals from tank wastes. Ideally they should not utilize additional reagents which would increase waste volume or require subsequent removal. The goal of this project is to apply hydrothermal processing for enhanced chromium separation from HLW sludges. Initially, the authors seek to develop a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions. The authors also wish to evaluate the potential of hydrothermal processing for enhanced separations of technetium and TRU by examining technetium and TRU speciation at hydrothermal conditions optimal for chromium dissolution.'

  11. Anaerobic bio-removal of uranium (VI) and chromium (VI): Comparison of microbial community structure

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande 1749-016 Lisboa (Portugal); Santos, Erika [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-04-15

    Several microbial communities, obtained from uranium contaminated and non-contaminated samples, were investigated for their ability to remove uranium (VI) and the cultures capable for this removal were further assessed on their efficiency for chromium (VI) removal. The highest efficiency for removal of both metals was observed on a consortium from a non-contaminated soil collected in Monchique thermal place, which was capable to remove 91% of 22 mg L{sup -1} U(VI) and 99% of 13 mg L{sup -1} Cr(VI). This study revealed that uranium (VI) removing communities have also ability to remove chromium (VI), but when uranium (VI) was replaced by chromium (VI) several differences in the structure of all bacterial communities were observed. TGGE and phylogenetic analysis of 16S rRNA gene showed that the uranium (VI) removing bacterial consortia are mainly composed by members of Rhodocyclaceae family and Clostridium genus. On the other hand, bacteria from Enterobacteriaceae family were detected in the community with ability for chromium (VI) removal. The existence of members of Enterobacteriaceae and Rhodocyclaceae families never reported as chromium or uranium removing bacteria, respectively, is also a relevant finding, encouraging the exploitation of microorganisms with new abilities that can be useful for bioremediation.

  12. Anaerobic bio-removal of uranium (VI) and chromium (VI): Comparison of microbial community structure

    International Nuclear Information System (INIS)

    Several microbial communities, obtained from uranium contaminated and non-contaminated samples, were investigated for their ability to remove uranium (VI) and the cultures capable for this removal were further assessed on their efficiency for chromium (VI) removal. The highest efficiency for removal of both metals was observed on a consortium from a non-contaminated soil collected in Monchique thermal place, which was capable to remove 91% of 22 mg L-1 U(VI) and 99% of 13 mg L-1 Cr(VI). This study revealed that uranium (VI) removing communities have also ability to remove chromium (VI), but when uranium (VI) was replaced by chromium (VI) several differences in the structure of all bacterial communities were observed. TGGE and phylogenetic analysis of 16S rRNA gene showed that the uranium (VI) removing bacterial consortia are mainly composed by members of Rhodocyclaceae family and Clostridium genus. On the other hand, bacteria from Enterobacteriaceae family were detected in the community with ability for chromium (VI) removal. The existence of members of Enterobacteriaceae and Rhodocyclaceae families never reported as chromium or uranium removing bacteria, respectively, is also a relevant finding, encouraging the exploitation of microorganisms with new abilities that can be useful for bioremediation.

  13. Obtaining decorative chromium plating from trivalent chromium solutions

    OpenAIRE

    Óscar Javier Suárez García

    2010-01-01

    The present work was aimed at a qualitative evaluation, in the laboratory, of different alternatives for assembling and operating a trivalent chromium bath for decorative chromium plating. Different chromium concentration solutions and different complexing agents were used. The initial result of this analysis was that chloride, formate and acetate solutions produced the best results. Solution preparation conditions were evaluated: temperature, chromium III complex formation time and also ...

  14. Membrane Made of Cellulose Acetate with Polyacrylic Acid Reinforced with Carbon Nanotubes and Its Applicability for Chromium Removal

    Directory of Open Access Journals (Sweden)

    J. A. Sánchez-Márquez

    2015-01-01

    Full Text Available Membranes made of carbon nanotubes and cellulose acetate with polyacrylic acid were designed in order to study their properties and their applicability for chromium removal. The membranes were prepared by phase inversion method using cellulose acetate and polyacrylic acid. Carbon nanotubes were added to the membrane during their process of synthesis in proportions of 1% by weight. The pores in the material are formed in layers, giving the effect of depth and forming a network. Both the carbon nanotubes and membranes were characterized by IR, Raman, and SEM spectroscopy. In addition, the concentration of acidic and basic sites and the surface charge in the materials were determined. The concentration of acid sites for oxidized nanotubes was 4.0 meq/g. The removal of Cr(VI was studied as a function of contact time and of initial concentration of Cr(VI. The removal of Cr(VI (~90% mainly occurs in a contact time from 32 to 64 h when the initial concentration of Cr(VI is 1 mg/L.

  15. Adsorption of hexavalent chromium from synthetic and electroplating effluent on chemically modified Swietenia mahagoni shell in a packed bed column.

    Science.gov (United States)

    Rangabhashiyam, S; Nandagopal, M S Giri; Nakkeeran, E; Selvaraju, N

    2016-07-01

    Packed bed column studies were carried out to evaluate the performance of chemically modified adsorbents for the sequestration of hexavalent chromium from synthetic and electroplating industrial effluent. The effects of parameters such as bed height (3-9 cm), inlet flow rate (5-15 mL/min), and influent Cr(VI) concentration (50-200 mg/L) on the percentage removal of Cr(VI) and the adsorption capacity of the adsorbents in a packed bed column were investigated. The breakthrough time increased with increasing bed height and decreased with the increase of inlet flow rate and influent Cr(VI) concentration. The adsorption column models such as Thomas, Adams-Bohart, Yoon-Nelson, and bed depth service time (BDST) were successfully correlated with the experimental data. The Yoon-Nelson and BDST model showed good agreement with the experimental data for all the studied parameter conditions. Results of the present study indicated that the chemically modified Swietenia mahagoni shell can be used as an adsorbent for the removal of Cr(VI) from industrial wastewater in a packed bed column. PMID:27312254

  16. Graphene quantum dots as on-off-on fluorescent probes for chromium(VI) and ascorbic acid

    International Nuclear Information System (INIS)

    We report that graphene quantum dots (GQDs) are viable fluorescent probes for the determination of chromium(VI) and ascorbic acid in an on-off-on mode. The fluorescence of GQDs is strongly quenched by Cr(VI) mainly due to an inner filter effect and static quenching. This shifts the system to the “off” status. The quenching mechanism of this fluorescent system was investigated in some detail. Fluorescence intensity is inversely proportional to the concentration of Cr(VI) in the 0.05 to 500 μM concentration range with a 3.7 nM detection limit. The fluorescence of GQDs-Cr(VI) system is converted back to “on” by adding ascorbic acid which will reduce yellow Cr(VI) ion, thereby eliminating the inner filter effect and static quenching. The relative intensity of restored fluorescence is directly proportional to the concentration of ascorbic acid in the 1.0 to 500 μM range, and the limit of detection is 0.51 μM. There are almost no interferences to commonly encountered other substances. The methods were applied to the determination of Cr(VI) in spiked tape, lake and river waters, and of ascorbic acid in a tablet and human urine. Both gave satisfactory results. (author)

  17. Groundwater remediation of hexavalent chromium along the Columbia River at the Hanford site in Washington state, USA - 59030

    International Nuclear Information System (INIS)

    The U.S. Department of Energy Hanford Site, formerly used for nuclear weapons production, encompasses 1500 square kilometers in southeast Washington State along the Columbia River. A principle threat to the river are the groundwater plumes of hexavalent chromium (Cr(VI)), which affect approximately 9.8 square kilometers, and 4.1 kilometers of shoreline. Cleanup goals are to stop Cr(VI) from entering the river by the end of 2012 and remediate the groundwater plumes to the drinking water standards by the end of 2020. Five groundwater pump-and-treat systems are currently in operation for the remediation of Cr(VI). Since the 1990's, over 13.6 billion L of groundwater have been treated; over 1, 435 kg of Cr(VI) have been removed. This paper describes the unique aspects of the site, its environmental setting, hydrogeology, groundwater-river interface, riverine hydraulic effects, remediation activities completed to date, a summary of the current and proposed pump-and-treat operations, the in situ redox manipulation barrier, and the effectiveness of passive barriers, resins, and treatability testing results of calcium polysulfide, bio-stimulation, and electrocoagulation, currently under evaluation. (authors)

  18. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions

    International Nuclear Information System (INIS)

    The hexavalent chromium, Cr(VI), biosorption by raw and acid-treated Oedogonium hatei were studied from aqueous solutions. Batch experiments were conducted to determine the biosorption properties of the biomass. The optimum conditions of biosorption were found to be: a biomass dose of 0.8 g/L, contact time of 110 min, pH and temperature 2.0 and 318 K respectively. Both Langmuir and Freundlich isotherm equations could fit the equilibrium data. Under the optimal conditions, the biosorption capacities of the raw and acid-treated algae were 31 and 35.2 mg Cr(VI) per g of dry adsorbent, respectively. Thermodynamic parameters showed that the adsorption of Cr(VI) onto algal biomass was feasible, spontaneous and endothermic under studied conditions. The pseudo-first-order kinetic model adequately describe the kinetic data in comparison to second-order model and the process involving rate-controlling step is much complex involving both boundary layer and intra-particle diffusion processes. The physical and chemical properties of the biosorbent were determined and the nature of biomass-metal ions interactions were evaluated by FTIR analysis, which showed the participation of -COOH, -OH and -NH2 groups in the biosorption process. Biosorbents could be regenerated using 0.1 M NaOH solution, with up to 75% recovery. Thus, the biomass used in this work proved to be effective materials for the treatment of chromium bearing aqueous solutions

  19. Cathodic stripping voltammetric determination of chromium in coastal waters on cubic Nano-titanium carbide loaded gold nanoparticles modified electrode

    Directory of Open Access Journals (Sweden)

    Haitao eHan

    2015-09-01

    Full Text Available The novel cubical nano-titanium carbide loaded gold nanoparticles modified electrode for selective and sensitive detection of trace chromium (Cr in coastal water was established based on a simple approach. Nano-titanium carbide is used as the typical cubical nanomaterial with wonderful catalytic activity towards the reduction of Cr(VI. Gold nanoparticles with excellent physical and chemical properties can facilitate electron transfer and enhance the catalytic activity of the modified electrode. Taking advantage of the synergistic effects of nano-titanium carbide and gold nanoparticles, the excellent cathodic signal responses for the stripping determination of Cr(VI can be obtained. The detection limit of this m