WorldWideScience

Sample records for chromium conversion coatings

  1. Studies on Chromium-free Conversion coatings on Aluminum | Oki ...

    African Journals Online (AJOL)

    The development of a chromium-free conversion coating on aluminum has been studied using transmission electron microscopy (TEM), Auger Electron (AES) and Secondary ion mass spectroscopy (SIMS) techniques. Within the limits of the resolution of the TEM, the coating is uniformly clear and featureless. It is composed ...

  2. Laboratory Validation and Demonstrations of Non-Hexavalent Chromium Conversion Coatings for Steel Substrates (Briefing Charts)

    Science.gov (United States)

    2011-02-01

    UNCLASSIFIED: Approved for public release; distribution unlimited. Laboratory Validation and Demonstrations of Non- Hexavalent Chromium Conversion...00-00-2011 4. TITLE AND SUBTITLE Laboratory Validation and Demonstrations of Non- Hexavalent Chromium Conversion Coatings for Steel Substrates 5a...to MRAP II Acquisition Pretreatment /conversion coatings omitted: • Hex- chrome pretreatments prohibited for new ground vehicles • Hydrogen

  3. Preparation of Trivalent Chromium and Rare Earth Composite Conversion Coating on Aluminum Alloy Surface

    Science.gov (United States)

    Huang, Jianzhen

    2018-01-01

    In this paper, the surface conversion film on 6063 aluminum alloy was prepared by chemical plating process with chromium sulfate, lanthanum sulfate and sodium phosphate as film forming agent. The corrosion resistance and surface morphology of the conversion film were analyzed by pitting corrosion test of copper sulfate and SEM. The results show that when Cr2(SO4)3 is 10 g/L, La2(SO4)3 is 2 g/L, Na3PO4 is 8 g/L, pH value is 3, temperature is 40 °C, reaction time is 10 min, the corrosion resistance of the surface conversion film is the best. The conversion coating is light green, composed of Cr, La, P, Al, O and other elements.

  4. Hexavalent Chromium Free Coatings Projects for Aerospace Applications

    Science.gov (United States)

    2012-08-01

    laboratory qualification of a total hexavalent chrome free coating systems for use on magnesium transmission housings. This project will leverage... hexavalent chrome free coating system by utilizing a hexavalent chrome free topcoat, primer, and pretreatment for magnesium parts used on Army...of the hexavalent chrome free conversion coatings. Hexavalent Chromium Free Coating System for Magnesium Housings on Aviation Systems Desert

  5. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Santa Coloma, P., E-mail: patricia.santacoloma@tecnalia.com [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J. [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Lapeña, N. [Boeing Research & Technology Europe, S.L.U., Avenida Sur del Aeropuerto de Barajas 38, Building 4 – 3rd Floor, E-28042 Madrid (Spain)

    2015-08-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  6. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    International Nuclear Information System (INIS)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J.; Lapeña, N.

    2015-01-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  7. Steam generated conversion coating on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    Aluminium and its alloys are widely used in aerospace industry owing to their high strength to weight ratio. The surface of aluminium under normal conditions has a thin oxide film (2.5-10 nm) responsible for its inherent corrosion resistance. This oxide film can further be converted or transformed...... into functional conversion coatings in order to enhance corrosion resistance and adhesion to paint systems. Chromium based conversion coatings have been extensively used on aluminium alloys to improve adhesion of subsequent paint layers and corrosion resistance. However, the use of hexavalent chromium is strictly...... regulated due to its toxic nature and suspected carcinogenicity. So, it is highly imperative to develop other alternatives for chrome conversion coatings. Treatment of aluminium with natural water at elevated temperatures results in the formation of different forms of aluminium oxide (γ-AlO(OH) , Al(OH)3...

  8. Study on the deterioration process of a chromium-free conversion coating on AZ91D magnesium alloy in NaCl solution

    International Nuclear Information System (INIS)

    Zhao Ming; Wu Shusen; An Ping; Luo Jirong

    2006-01-01

    The morphology of a chromium-free conversion coating for AZ91D magnesium alloy was observed with an Atomic Force Microscopy. The results showed the uniform conversion coating has a relatively smooth appearance with shallow valleys. The EDX results indicated that the compositions of the coating were mainly compounds of Mg, Al, Mn, P, Ca and O. The XRD result showed that the coating contained amorphous materials and a small quantity of crystalline compound. The pitting product of the coating in NaCl water solution mainly composed of Mg, Cl, Mn, P, Ca and O. The corrosion behavior of the samples in NaCl solution was also studied by electrochemical impedance spectroscopy (EIS), which was characterized by one capacitive loop and one inductive loop. Based upon study on both a mathematical model for Faradic admittance of coating in NaCl solution and EIS, it could be considered that the inductive loop was caused by the adsorption of Cl anion and the appearance of pitting corrosion. A degradation mechanism of the coating in NaCl solution is set forth: dissolution velocity of the Cl - adsorption regions of the coating is higher than those non-adsorption regions, for Cl - anions are selective adsorption at some regions of coating surface. When the adsorption regions of coating layer are penetrated by dissolution, the pitting comes into being. The degradation mechanism of conversion coating and the mathematical model are consistent with the EIS results, polarization measurement results and coating's corrosion test results

  9. Experimental patch testing with chromium-coated materials

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Jellesen, Morten Stendahl

    2017-01-01

    Chromium coatings on metal alloys can be decorative, and prevent corrosion and metal ion release. We recently showed that handling of a chromium-containing disc resulted in chromium deposition on the skin. To examine patch test reactivity to chromium-coated discs. We included 15 patients: 10...... chromium-allergic patients, and 5 patients without chromium allergy. All were patch tested with potassium dichromate, cobalt chloride, nickel sulfate, and nine different metallic discs. The chromium-allergic patients were also patch tested with serial dilutions of potassium dichromate. Positive...

  10. Preparation and Characterization of Plasma-Sprayed Ultrafine Chromium Oxide Coatings

    International Nuclear Information System (INIS)

    Lin Feng; Jiang Xianliang; Yu Yueguang; Zeng Keli; Ren Xianjing; Li Zhenduo

    2007-01-01

    Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings

  11. Study of chromate coatings by radioisotope tracing

    International Nuclear Information System (INIS)

    Drozda, T.; Maleczki, E.; Farkas, G.

    1984-01-01

    New radioactive tracer methods were developed to determine chromium(III) and total chromium [chromium(III)+chromium(VI)] content simultaneously. They are capable of investigating solutions and the conversion coating itself in the solid phase, respectively. The increase of chromium(III) concentration in the yellow chromate coating, and the chromium(III) to total chromium ratio in the conversion coating were determined as a function of the treating period. (author)

  12. Experimental patch testing with chromium-coated materials.

    Science.gov (United States)

    Bregnbak, David; Thyssen, Jacob P; Jellesen, Morten S; Zachariae, Claus; Johansen, Jeanne D

    2017-06-01

    Chromium coatings on metal alloys can be decorative, and prevent corrosion and metal ion release. We recently showed that handling of a chromium-containing disc resulted in chromium deposition on the skin. To examine patch test reactivity to chromium-coated discs. We included 15 patients: 10 chromium-allergic patients, and 5 patients without chromium allergy. All were patch tested with potassium dichromate, cobalt chloride, nickel sulfate, and nine different metallic discs. The chromium-allergic patients were also patch tested with serial dilutions of potassium dichromate. Positive/weaker reactions were observed to disc B (1 of 10), disc C (1 of 10), and disc D, disc E, and disc I (4 of 10 each). As no controls reacted to any of the discs, the weak reactions indicate allergic reactions. Positive patch test reactions to 1770 ppm chromium(VI) in the serial dilutions of potassium dichromate were observed in 7 of 10 patients. When the case group was narrowed down to include only the patients with a current positive patch test reaction to potassium dichromate, elicitation of dermatitis by both chromium(III) and chromium(VI) discs was observed in 4 of 7 of patients. Many of the patients reacted to both chromium(III) and chromium(VI) surfaces. Our results indicate that both chromium(VI) and chromium(III) pose a risk to chromium-allergic patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Using Fluorescence XANES Measurement to Correct the Content of Hexavalent Chromium in Chromate Conversion Coatings Determined by Diphenyl Carbazide Color Test

    International Nuclear Information System (INIS)

    Nishino, Junichi; Ofuchi, Hironori; Taniguchi, Yosuke; Honma, Tetsuo; Sekikawa, Toshikazu; Otani, Haruka; Bando, Akio

    2007-01-01

    The Restriction of the use of certain Hazardous Substances (RoHS) directive will take effect on July 1 of this year. From that date, the use of chromate conversion coatings containing hexavalent chromium will not be permitted. By comparing the concentration of Cr6+ determined by the diphenyl carbazide color test and by fluorescence XANES (X-Ray Absorption Near Edge Structure) measurement, we can correct for the Cr6+ content of the color test. This will enable the use of the diphenyl carbazide color test to check product shipments in compliance with the RoHS directive

  14. Composite Coatings of Chromium and Nanodiamond Particles on Steel

    Directory of Open Access Journals (Sweden)

    Gidikova N.

    2017-12-01

    Full Text Available Chrome plating is used to improve the properties of metal surfaces like hardness, corrosion resistance and wear resistance in machine building. To further improve these properties, an electrodeposited chromium coating on steel, modified with nanodiamond particles is proposed. The nanodiamond particles (average size 4 nm measured by TEM are produced by detonation synthesis (NDDS. The composite coating (Cr+NDDS has an increased thickness, about two times greater microhardness and finer micro-structure compared to that of unmodified chromium coating obtained under the same galvanization conditions. In the microstructure of specimen obtained from chrome electrolyte with concentration of NDDS 25 g/l or more, “minisections” with chromium shell were found. They were identified by metallographic microscope and X-ray analyser on etched section of chromium plated sample. The object of further research is the dependence of the presence of NDDS in the composite coating from the nanodiamond particles concentration in the chroming electrolyte.

  15. Kinetics and mechanism of oxidation of carbidized electrolytic chromium coatings

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Yar-Mukhamedov, Sh.Kh.

    1978-01-01

    Thermal stability carbidized electrolytic chromium coatings has been studied depending on the conditions of their formation; the specific features of the mechanism of oxidation at 1200 deg in an air atmosphere have been elucidated. It has been established that kinetics of high temperature oxidation of the coatings depends essentially on the conditions of their formation and on the composition of steel to which the coating is applied. It has been shown that two oxidation mechanisms are possible: by diffusion of the residual chromium through a carbide layer along the carbide grain boundaries outwards or, when there is no residual chromium, by chemical reaction of carbon combustion and oxidation of the liberated chromium. The comparison of oxidation kinetic curves of the samples of 38KhMYuA, 35KhGSA, and DI-22 steels with and without coating has shown that the coatings under study have a better protective effect on 38KhMYuA steel than on 35KhGSA, although without coating oxidability of the first steel is higher than that of the second

  16. ASTM B 117 Screening of Nonchromate Conversion Coatings on Aluminum Alloys 2024, 2219, 5083, and 7075 Using DOD Paint Systems

    National Research Council Canada - National Science Library

    Placzankis, Brian

    2003-01-01

    This study examines the corrosion resistance of eight nonchromate conversion coatings versus hexavalent chromium-based Alodine 1200S controls on scribed coated test panels of aluminum alloys 2024, 2219, 5083, and 7075...

  17. 77 FR 32998 - Tin- and Chromium-Coated Steel Sheet From Japan

    Science.gov (United States)

    2012-06-04

    ...-Coated Steel Sheet From Japan Determination On the basis of the record \\1\\ developed in the subject five... order on tin- and chromium-coated steel sheet from Japan would be likely to lead to continuation or... USITC Publication 4325 (May 2012), entitled Tin- and Chromium-Coated Steel Sheet from Japan...

  18. Chromate conversion coatings and their current application

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-04-01

    Full Text Available This paper describes formation, composition and possible production technologies of application chromate coatings. Summation of common examples of applications of these coatings in corrosion protection of metals and alloys is provided. Individual chromate coatings are divided by their dominant anions either with CrVI or CrIII. Restrictions of chromate coatings with dominantly CrVI and related toxicity of hexavalent chromium is discussed in detail. In conclusion, examples of both chromium and other, alternative coatings are summed up. Application of these coatings as a protection for concrete hot-dip galvanized reinforcement is also reviewed.

  19. GM 9540P Cyclic Accelerated Corrosion Analysis of Nonchromate Conversion Coatings on Aluminum Alloys 2024, 2219, 5083, and 7075 Using DOD Paint Systems

    National Research Council Canada - National Science Library

    Placzankis, Brian

    2003-01-01

    This study examines corrosion resistance of eight nonchromate conversion coatings versus hexavalent chromium based Alodine 1200 controls on scribed coated test panels of aluminum alloys 2024, 2219, 5083, and 7075...

  20. INVESTIGATION OF TRIVALENT CHROMIUM-BASED CONVERSION COATINGS ON ELECTROGALVANISED STEEL

    Directory of Open Access Journals (Sweden)

    Célia Regina Tomachuk

    2012-12-01

    Full Text Available The passivation process of electrogavanised steel is very important, especially for improving of the corrosion protection and the thickness of the layer obtained can further enhance such protection. In the market exists Cr(III‑based thick layers passivation, however, are operated around 60°C. In order to attend market demands a new process with only 20% of the chromium content is developed, which operates at room temperature. The corrosion behavior was investigated through electrochemical impedance spectroscopy technique in chloride solution and accelerated tests in salt spray chamber. The combination of these tests provides a more complete assessment of the behavior against corrosion of layer passivation obtained. The results with respect to appearance, brightness, uniformity, layer thickness and corrosion resistance are similar to those presented by Cr(III based passivation existing market and Cr(VI based conversion treatment.

  1. Cavitation erosion of chromium-manganese and chromium-cobalt coatings processed by laser beam

    International Nuclear Information System (INIS)

    Giren, B.G.; Szkodo, M.

    2002-01-01

    In this work the cavitation erosion of chromium-manganese and chromium-cobalt clads were tested, each of them for three cases: (1) without additional processing; (2) after laser heating of the solid state and (3) after laser remelting of the material. Armco iron, carbon steel 45 and chromium-nickel steel 0H18N9T were used as substrates. C.W. CO 2 laser with a beam power of 1000 W was used as a source of radiation. The investigated samples were subjected to cavitation impingement in a rotating disk facility. The results indicate that laser processing of the thick, electrode deposited coatings by laser beam leads in some cases to an increase of their cavitation resistance. Strong dependence of the coatings performance on the substrate, both for the laser processed or unprocessed parts of the materials was also discovered. (author)

  2. GM 9540P Cyclic Accelerated Corrosion Analysis of Nonchromate Conversion Coatings on Aluminum Alloys 2024, 2219, 5083, and 7075 Using DoD Paint Systems

    National Research Council Canada - National Science Library

    Placzankis, Brian

    2003-01-01

    This study examines corrosion resistance of eight nonchromate conversion coatings versus bexavalent chromium based Alodine 1200 controls on scribed coated test panels of aluminum alloys 2024, 2219, 5083, and 7075...

  3. Influence of coatings on the corrosion fatigue behaviour on 13% chromium steel

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Thomas, K G; Meisel, H; Sessler, W

    1986-01-01

    The influence of coatings on the corrosion fatigue behaviour of 13% chromium steel has been studied. There have been selected different coating systems: Barrier coating (enamel), diffusion coatings, (aluminizing, chromizing) and anodic coating, (aluminium, zinc, tin, cadmium). The corrosion fatigue limits of coated with uncoated specimens in neutral NaCl-solution are compared. Salt-concentrations were 0,01 and 22% (=0,38 M) NaCl at 80/sup 0/C and 150/sup 0/C. The tests were carried out with alternating tensions and a constant frequency of 50 Hz. Only the use of anodic coatings improved the corrosion fatigue behaviour of the chromium steel.

  4. Experimental evaluation of chromium-carbide-based solid lubricant coatings for use to 760 C

    Science.gov (United States)

    Dellacorte, Christopher

    1987-01-01

    A research program is described which further developed and investigated chromium carbide based self-lubricating coatings for use to 760 C. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The three coating components were blended in powder form, applied to stainless steel substrates by plasma spraying and then diamond ground to the desired coating thickness. A variety of coating compositions was tested to determine the coating composition which gave optimum tribological results. Coatings were tested in air, helium, and hydrogen at temperatures from 25 to 760 C. Several counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications, such as piston ring/cylinder liner couples for Stirling engines. In general, silver and fluoride additions to chromium carbide reduced the friction coefficient and increased the wear resistance relative to the unmodified coating. The lubricant additives acted synergistically in reducing friction and wear.

  5. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  6. Chromium-nanodiamond coatings obtained by magnetron sputtering and their tribological properties

    Science.gov (United States)

    Atamanov, M. V.; Khrushchov, M. M.; Marchenko, E. A.; Shevchenko, N. V.; Levin, I. S.; Petrzhik, M. I.; Miroshnichenko, V. I.; Relianu, M. D.

    2017-07-01

    Peculiarities of structure, chemical and phase composition, micromechanical and tribological properties of chromium-based coatings obtained by magnetron-sputtering of composite and/or compacted chromium-nanodiamond targets have been investigated.

  7. A comparative tribological study of chromium coatings with different specific hardness

    International Nuclear Information System (INIS)

    Darbeida, A.; Von Stebut, J.; Barthole, M.; Belliard, P.; Lelait, L.

    1995-06-01

    The wear resistance in dry friction of two electrolytic and two pVD hard chromium coatings deposited on construction steel substrates is studied by means of standard pin on disc multi-pass, unidirectional operation. For both of these friction modes low cycle high load operation with cemented carbide pins leads to essentially coatings hardness controlled, abrasive wear. For these well adhering commercial coatings (both for through thickness cracking and for spalling failure) assessed by standard testing, are inadequate for quality ranking with respect to wear resistance. Steady state friction corresponds to a stabilised third body essentially composed of chromium oxide. (authors). 13 refs., 7 figs., 1 tab

  8. Workshop on effects of chromium coating on Nb3Sn superconductor strand: Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    This report discusses the following topics: Chromium coating on superconductor strand -- an overview; technology of chromium plating; comparison of wires plated by different platers; search for chromium in copper; strand manufactures' presentations; chromium plating at the Lawrence Livermore National Laboratory; a first look at a chromium plating process development project tailored for T.P.X. and I.T.E.R. strand; and influence of chromium diffusion and related phenomena on the reference ratios of bare and chromium plated Nb 3 Sn strand

  9. Chemical state analysis of conversion coatings by SR-XPS and TEY-XANES

    CERN Document Server

    Noro, H; Nagoshi, M

    2002-01-01

    Chromate coatings on galvanized steel have been studied by Synchrotron Radiation (SR) based techniques that include X-ray Photoelectron Spectroscopy (XPS) and Total-Electron-Yield X-ray Absorption Near Edge Structure (TEY-XANES). Non-destructive depth profiling of the coatings by SR-XPS reveals the enhancement of Cr sup 6 sup + in the outer surface. TEY-XANES spectroscopy based on simple specimen current measurement is demonstrated as an effective technique for analyzing chemical states of conversion coatings on general bulk substrates. The sampling depth of this technique, which exceeds several tens of nanometer, is determined by the penetration length of Auger electrons excited by X-ray and the inelastic mean free path of secondary electrons excited by inelastically scattered Auger electrons. The chemical states of phosphoric acid added chromate coatings are studied using this technique. The phosphoric acid is taken into the chromate coatings as partially changed into zinc and chromium phosphates, and the r...

  10. Deposition of multicomponent chromium carbide coatings using a non-conventional source of chromium and silicon with micro-additions of boron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Ruiz, Jesus Eduardo, E-mail: jesus.gonzalez@biomat.uh.cu [Biomaterials Center, University of Havana (Cuba); Rodriguez Cristo, Alejandro [Mechanical Plants Company, Road of the Sub-Plan, Farm La Cana, Santa Clara, Villa Clara (Cuba); Ramos, Adrian Paz [Department of Chemistry, Universite de Montreal, Quebec (Canada); Quintana Puchol, Rafael [Welding Research Center, Central University Marta Abreu of Las Villas, Villa Clara (Cuba)

    2017-01-15

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 deg for 4 hours. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectroscopy, optical microscopy, microhardness test method and pin-on-disc wear test. It was found that the coatings formed on W108 steel were mainly constituted by (Cr,Fe){sub 23}C{sub 6} , (Cr,Fe){sub 7} C{sub 3} , Cr{sub 5-x}Si{sub 3-x} C{sub x+z}, Cr{sub 3} B{sub 0,44}C{sub 1,4} and (or) Cr{sub 7} BC{sub 4} . The carbide layers showed thicknesses between 14 and 15 μm and maximum values of microhardness between 15.8 and 18.8 GPa. Also, the micro-additions of boron to the mixtures showed statistically significant influence on the thickness, microhardness and abrasive wear resistance of the carbide coatings. (author)

  11. Hexavalent Chrome Free Coatings for Electronics; Electromagnetic Interference (EMI) Shielding Effectiveness (SE)

    Science.gov (United States)

    Kessel, Kurt R.

    2014-01-01

    The purpose of this testing is to determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. This project will evaluate the ability of coated aluminum to form adequate EMI seals. Testing will assess performance of the trivalent chromium coatings against the known control hexavalent chromium MIL-DTL-5541 Type I Class 3 before and after they have been exposed to a set of environmental conditions. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings.

  12. Initiation and Performance of a Coating for Countering Chromium Poisoning in a SOFC-stack

    DEFF Research Database (Denmark)

    Nielsen, Karsten Agersted; Persson, Åsa Helen; Beeaff, Dustin

    2007-01-01

    Minimising transport of chromium from the metallic interconnect (e.g. of Crofer 22APU) to the cathode in a planar solid oxide fuel cell is done by application of a coating between the two parts. The coating is applied by slurry coating, and taken through stack initialisation it transforms...... into a stable and densely grown barrier layer, which minimises both the evaporation of chromium from the interconnect surface and the electrical contact resistance between the interconnect and the cathode. Between comparable stack element tests with and without coatings at 750 degrees C, the degradation rate...

  13. Implementing New Non-Chromate Coatings Systems (Briefing Charts)

    Science.gov (United States)

    2011-02-09

    Initiate Cr6+ authorization process for continued Cr6+ use using the form, Authorization to Use Hexavalent Chromium. YES NO • Approval of...Aluminum and magnesium anodizing • Hard Chrome Plating • Type II conversion coating on aluminum alloys under chromated primer • Type II conversion coating...Elimination of Hexavalent Chromium 80% 5% 14% 1% Type II Type III Type IC Type IC Fatigue Critical 50% 50% Type II Type IC FRC-SE (JAX) Fully Integrated FRC

  14. Conversion chimique des surfaces d'alliages d'aluminium sans chrome hexavalent

    OpenAIRE

    Ely , Marion

    2016-01-01

    Conversion coatings are used in aerospace industry to protect the metal from corrosion and to promote paint adhesion. Currently, chromate conversion coatings are used, but chromate is toxic and carcinogenic and its use will be forbidden by the European REACh regulation. TCP (Trivalent Chromium Protection) conversion coatings, are considered as a promising alternative to replace chromate conversion coating. This work focuses on the characterisation of the TCP layer and considers each step of t...

  15. 76 FR 58536 - Tin- and Chromium-Coated Steel Sheet From Japan; Notice of Commission Determination To Conduct a...

    Science.gov (United States)

    2011-09-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium... Concerning the Antidumping Duty Order on Tin- and Chromium-Coated Steel Sheet From Japan AGENCY: United.... 1675(c)(5)) to determine whether revocation of the antidumping duty order on tin- and chromium-coated...

  16. 76 FR 31633 - Tin- and Chromium-Coated Steel Sheet from Japan; Institution of a Five-Year Review Concerning the...

    Science.gov (United States)

    2011-06-01

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium... Tin- and Chromium-Coated Steel Sheet from Japan AGENCY: United States International Trade Commission... the antidumping duty order on tin- and chromium-coated steel sheet from Japan would be likely to lead...

  17. Sliding wear studies of sprayed chromium carbide-nichrome coatings for gas-cooled reactor applications

    International Nuclear Information System (INIS)

    Li, C.C.; Lai, G.Y.

    1978-09-01

    Chromium carbide-nichrome coatings being considered for wear protection of some critical components in high-temperature gas-cooled reactors (HTGR's) were investigated. The coatings were deposited either by the detonation gun or the plasma-arc process. Sliding wear tests were conducted on specimens in a button-on-plate arrangement with sliding velocities of 7.1 x 10 -3 and 7.9 mm/s at 816 0 C in a helium environment simulates HTGR primary coolant chemistry. The coatings containing 75 or 80 wt % chromium carbide exhibited excellent wear resistance. As the chromium carbide content decreased from either 80 or 75 to 55 wt %, with a concurrent decrease in coating hardness, wear-resistance deteriorated. The friction and wear behavior of the soft coating was similar to that of the bare metal--showing severe galling and significant amounts of wear debris. The friction characteristics of the hard coating exhibited a strong velocity dependence with high friction coefficients in low sliding velocity tests ad vice versa. Both the soft coating and bare metal showed no dependence on sliding velocity. The wear behavior observed in this study is of adhesive type, and the wear damage is believed to be controlled primarily by the delamination process

  18. Formation and properties of chromium nitride coatings on martensitic steels

    International Nuclear Information System (INIS)

    Mendala, B.; Swadzba, L.; Hetmanczyk, M.

    1999-01-01

    In this paper the results of investigation of coatings obtained by ARC-PVD method on martensitic E1961 (13H12NWMFA) steel, which is used on compressor blades in the aircraft engines, were presented. The chemical composition of E1961 was given. The PVT-550 device was used for coating. The protective chromium nitride coatings were tested. The influence of ARC-PVD method parameters for example: bias, pressure and flow rate of reactive gases on the structure and properties of the CrN coatings in corrosion tests were investigated. Technical parameters of obtained CrN coatings were given. The phase analysis of chromium nitride coatings obtained with different technical parameters were tested. The results of phase analysis are given. The pitting corrosion resistance tests in 10% FeCl 3 solution was conducted. The corrosion rate for CrN coated samples were defined. It was found that 50 V and 100 V bias, about 0.5 and 0.7 Pa pressure and 140 sccm (standard cubic centimeter) flow rate of nitride during coating favour the CrN monophase structure while increasing bias to 150 V, decreasing the pressure to about 0.5 Pa and 0.3 Pa and increasing the flow rate of nitride to 160 - 180 sccm favour the CrN+Cr 2 N diphase structure. On the basis of corrosion investigations for CrN coatings obtained with different ARC-PVD parameters the best corrosion resistance in 10% FeCl 3 solution for CrN+Cr 2 N diphase structure was found. (author)

  19. Frictional properties of self-adaptive chromium doped tungsten–sulfur–carbon coatings at nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Zekonyte, J., E-mail: j.zekonyte@soton.ac.uk [National Centre for Advanced Tribology, Faculty of Engineering and Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Cavaleiro, A. [SEG-CEMUC – Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, P-3030 788 Coimbra (Portugal); Polcar, T. [National Centre for Advanced Tribology, Faculty of Engineering and Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic)

    2014-06-01

    Transition metal dichalcogenides (TMD) are excellent dry lubricants forming thin (∼10 nm) tribolayer that simultaneously protects the coating from environmental attack and provides low friction. In this paper, we focus on nanoscale frictional properties of chromium doped tungsten–sulfur–carbon (WSC–Cr) coatings with various Cr content. Friction force microscopy was used to investigate friction force as a function of load. A non-linear contact area dependence on the normal force was observed. The calculated interfacial shear strength was relatively low in the region of 70–99 MPa. Friction coefficient decreased with increased applied load independently of chromium content in the coatings.

  20. Electrochemical corrosion behaviour of nickel chromium-chromium carbide coating by HVOF process

    Science.gov (United States)

    Amudha, A.; Nagaraja, H. S.; Shashikala, H. D.

    2018-04-01

    To overcome the corrosion problem in marine industry, coatings are one of the most economical solutions. In this paper, the corrosion behaviour of 25(NiCr)-75Cr3C2 cermet coating on low carbon steel substrate by HVOF process is studied. Different phases such as Cr7C3 and Cr3C2, along with Ni and chromium oxide(Cr3O2) constituents present in the coating were revealed by X-Ray Diffraction (XRD) analysis. The morphology of the coating obtained by scanning electron microscope (SEM) gave confirmation for the XRD analysis. Electrochemical corrosion techniques such as Linear Polarization Resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) were used to study the corrosion behaviour of the cermet in 3.5wt% NaCl electrolyte solution. The corrosion current density of the coated sample and substrate were found to be 6.878µA/cm-2 and 21.091µA/cm-2 respectively. The Nyquist Impedance spectra were used to derive an equivalent circuit to analyze the interaction between the coating and electrolyte. The Bode Impedance plots obtained by EIS for the coating showed a typical passive material capacitive behaviour, indicated by medium to low frequency with phase angle approaching -60o, suggesting that a stable film is formed on the tested material in the electrolyte used.

  1. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  2. 76 FR 77013 - Tin- and Chromium-Coated Steel Sheet From Japan; Scheduling of a Full Five-Year Review Concerning...

    Science.gov (United States)

    2011-12-09

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium-Coated Steel Sheet From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty... order on tin- and chromium-coated steel sheet from Japan would be likely to lead to continuation or...

  3. Annealing of chromium oxycarbide coatings deposited by plasma immersion ion processing (PIIP) for aluminum die casting

    International Nuclear Information System (INIS)

    Peters, A.M.; He, X.M.; Trkula, M.; Nastasi, M.

    2001-01-01

    Chromium oxycarbide coatings have been investigated for use as non-wetting coatings for aluminum die casting. This paper examines Cr-C-O coating stability and non-wetability at elevated temperatures for extended periods. Coatings were deposited onto 304 stainless steel from chromium carbonyl [Cr(CO) 6 ] by plasma immersion ion processing. The coatings were annealed in air at an aluminum die casting temperature of 700 deg. C up to 8 h. Coatings were analyzed using resonant ion backscattering spectroscopy, nanoindentation and pin-on-disk tribometry. Molten aluminum was used to determine coating wetting and contact angle. Results indicate that the surface oxide layer reaches a maximum thickness of 900 nm. Oxygen concentrations in the coatings increased from 24% to 34%, while the surface concentration rose to almost 45%. Hardness values ranged from 22.1 to 6.7 GPa, wear coefficients ranged from 21 to 8x10 -6 mm 3 /Nm and contact angles ranged from 156 deg. to 127 deg

  4. Comparison of high temperature wear behaviour of plasma sprayed WC–Co coated and hard chromium plated AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Balamurugan, G.M.; Duraiselvam, Muthukannan; Anandakrishnan, V.

    2012-01-01

    Highlights: ► WC–12wt.%Co powders were deposited to a thickness of 300 μm on to steel substrates. ► The micro hardness of the above coatings was lower than that of chromium plating. ► Wear resistance of chromium coating was increased up to five times of AISI 304 austenitic stainless steel. ► Wear resistance of chromium coat higher than plasma coat at different temperatures. -- Abstract: The wear behaviour of plasma sprayed coating and hard chrome plating on AISI 304 austenitic stainless steel substrate is experimentally investigated in unlubricated conditions. Experiments were conducted at different temperatures (room temp, 100 °C, 200 °C and 300 °C) with 50 N load and 1 m/s sliding velocity. Wear tests were carried out by dry sliding contact of EN-24 medium carbon steel pin as counterpart on a pin-on-disc wear testing machine. In both coatings, specimens were characterised by hardness, microstructure, coating density and sliding wear resistance. Wear studies showed that the hard chromium coating exhibited improved tribological performance than that of the plasma sprayed WC–Co coating. X-ray diffraction analysis (XRD) of the coatings showed that the better wear resistance at high temperature has been attributed to the formation of a protective oxide layer at the surface during sliding. The wear mechanisms were investigated through scanning electron microscopy (SEM) and XRD. It was observed that the chromium coating provided higher hardness, good adhesion with the substrate and nearly five times the wear resistance than that obtained by uncoated AISI 304 austenitic stainless steel.

  5. Mechanical properties of composite coatings of chromium and nanodiamonds on aluminum

    Directory of Open Access Journals (Sweden)

    Gidikova Nelly

    2018-01-01

    Full Text Available Aluminum offers engineers weight saving advantages in their product design. However, aluminum has poor wear and friction properties. In addition, the surface oxide layer of this chemically active metal, which gives it the corrosion resistance, makes it a very difficult metal to plate [1]. Specific pre-treatment must be applied to remove the oxide layer from the aluminum surface. The nanodiamond particles additionally facilitates the process of chromium deposition. The object of this study is to evaluate the impact of nanodiamonds on the mechanical properties of the chromium coating plated on

  6. Reduction Expansion Synthesis of Chromium and Nickel Metal Coatings

    Science.gov (United States)

    2017-06-01

    Garth V. Hobson Chair, Department of Mechanical and Aerospace Engineering iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT This thesis represents a...chromium and nickel coatings,” Plating and Surface Finishing, vol. 92, no. 4, pp. 42–48, Apr. 2005. [43] S. I. Sandler, Chemical and Engineering ...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. REDUCTION EXPANSION SYNTHESIS OF

  7. A Novel Nonelectrolytic Process for Chromium and Nickel Coating

    Science.gov (United States)

    2015-06-01

    chromium (CrVI) has been regarded as the “ gold standard” against corrosion in military applications for decades [2]. Its uses range from electronics to...silver or gold . Furthermore, these researchers discovered that for centuries, the metal plating industry was dominated by mercury-based coating...generation of metal and metal alloy particles, including nanoparticles, from a physical mixture of metal nitrate, oxide or hydroxide species and urea. This

  8. In situ removal of carbon contamination from a chromium-coated mirror: ideal optics to suppress higher-order harmonics in the carbon K-edge region.

    Science.gov (United States)

    Toyoshima, Akio; Kikuchi, Takashi; Tanaka, Hirokazu; Mase, Kazuhiko; Amemiya, Kenta

    2015-11-01

    Carbon-free chromium-coated optics are ideal in the carbon K-edge region (280-330 eV) because the reflectivity of first-order light is larger than that of gold-coated optics while the second-order harmonics (560-660 eV) are significantly suppressed by chromium L-edge and oxygen K-edge absorption. Here, chromium-, gold- and nickel-coated mirrors have been adopted in the vacuum ultraviolet and soft X-ray branch beamline BL-13B at the Photon Factory in Tsukuba, Japan. Carbon contamination on the chromium-coated mirror was almost completely removed by exposure to oxygen at a pressure of 8 × 10(-2) Pa for 1 h under irradiation of non-monochromated synchrotron radiation. The pressure in the chamber recovered to the order of 10(-7) Pa within a few hours. The reflectivity of the chromium-coated mirror of the second-order harmonics in the carbon K-edge region (560-660 eV) was found to be a factor of 0.1-0.48 smaller than that of the gold-coated mirror.

  9. Molybdate and molybdate/permanganate conversion coatings on Mg-8.5Li alloy

    International Nuclear Information System (INIS)

    Wang Guixiang; Zhang Milin; Wu Ruizhi

    2012-01-01

    A novel environment-friendly conversion coating for Mg-8.5Li alloy was obtained by immersing in a solution of molybdate. The concentration of ammonium molybdate and the addition of potassium permanganate were discussed in this experiment. The surface morphology of the conversion coatings was observed by scanning electron microscopy (SEM), and the chemical composition was investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Mg-8.5Li alloy and conversion coatings were investigated by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The results showed that the coatings with cracked morphology were homogeneous and uniform. The conversion coatings were mainly composed of metal-oxide as detected by XPS. The results of electrochemical measurement and weight loss measurement revealed that the molybdate conversion coating had better corrosion resistance than bare alloy and chromate conversion coating, and the molybdate/permanganate conversion coating had lower corrosion current density and higher coating resistance than the molybdate conversion coating.

  10. Molybdate and molybdate/permanganate conversion coatings on Mg-8.5Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guixiang, E-mail: wgx0357@126.com [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang Milin; Wu Ruizhi [Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2012-01-15

    A novel environment-friendly conversion coating for Mg-8.5Li alloy was obtained by immersing in a solution of molybdate. The concentration of ammonium molybdate and the addition of potassium permanganate were discussed in this experiment. The surface morphology of the conversion coatings was observed by scanning electron microscopy (SEM), and the chemical composition was investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Mg-8.5Li alloy and conversion coatings were investigated by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The results showed that the coatings with cracked morphology were homogeneous and uniform. The conversion coatings were mainly composed of metal-oxide as detected by XPS. The results of electrochemical measurement and weight loss measurement revealed that the molybdate conversion coating had better corrosion resistance than bare alloy and chromate conversion coating, and the molybdate/permanganate conversion coating had lower corrosion current density and higher coating resistance than the molybdate conversion coating.

  11. In-situ phosphatizing coatings for aerospace, OEM and coil coating applications

    Science.gov (United States)

    Neuder, Heather Aurelia

    The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is

  12. Effect of the pretreatment of silicone penetrant on the performance of the chromium-free chemfilm coated on AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Chang, Shiuan-Ho; Niu, Liyuan; Su, Yichang; Wang, Wenquan; Tong, Xian; Li, Guangyu

    2016-01-01

    This paper reported a new pretreatment of silicone penetrant for forming the chromium-free chemfilm (chemical conversion coating) on the surface of an AZ91D magnesium (Mg) alloy. Through applying micro current on the pretreatment solution, an uniform mask membrane was created on the surface of a Mg alloy. By using X-ray diffraction (XRD), scanning electron microscope (SEM), and Energy Dispersive Spectrometer (EDS) analyses, the chromium-free chemfilm on a Mg alloy was examined to analyze the performance during initial, middle, and final deposition periods. As a result, the pretreatment of silicone penetrant can effectively prevent the chemfilm from cracking, improve the anticorrosion ability and nucleation rate of the chromium-free chemfilm on a Mg alloy, and make the surface crystallization transform a long strip into short axis shape. - Highlights: • An AZ91D Mg alloy was pretreated by using silicone penetrant. • Surface crystallization of the chemfilm on a silicone-pretreated Mg alloy is smooth. • The pretreatment of silicone penetrant for a Mg alloy enhanced the anticorrosion ability.

  13. Effect of the pretreatment of silicone penetrant on the performance of the chromium-free chemfilm coated on AZ91D magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shiuan-Ho, E-mail: 1802186169@qq.com [College of Electronic Information and Mechatronic Engineering, Zhaoqing University, Zhaoqing Road, Duanzhou District, Zhaoqing, Guangdong, 526061 (China); Niu, Liyuan [Department of Material Engineer, Zhejiang Industry & Trade Vocational Colledge, WenZhou, 325000 (China); Su, Yichang [Department of Material Engineer, Zhejiang Industry & Trade Vocational Colledge, WenZhou, 325000 (China); College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025 (China); Wang, Wenquan [College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025 (China); Tong, Xian [Department of Material Engineer, Zhejiang Industry & Trade Vocational Colledge, WenZhou, 325000 (China); Li, Guangyu [College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025 (China)

    2016-03-01

    This paper reported a new pretreatment of silicone penetrant for forming the chromium-free chemfilm (chemical conversion coating) on the surface of an AZ91D magnesium (Mg) alloy. Through applying micro current on the pretreatment solution, an uniform mask membrane was created on the surface of a Mg alloy. By using X-ray diffraction (XRD), scanning electron microscope (SEM), and Energy Dispersive Spectrometer (EDS) analyses, the chromium-free chemfilm on a Mg alloy was examined to analyze the performance during initial, middle, and final deposition periods. As a result, the pretreatment of silicone penetrant can effectively prevent the chemfilm from cracking, improve the anticorrosion ability and nucleation rate of the chromium-free chemfilm on a Mg alloy, and make the surface crystallization transform a long strip into short axis shape. - Highlights: • An AZ91D Mg alloy was pretreated by using silicone penetrant. • Surface crystallization of the chemfilm on a silicone-pretreated Mg alloy is smooth. • The pretreatment of silicone penetrant for a Mg alloy enhanced the anticorrosion ability.

  14. Comparison of Heavy-Duty Scuffing Behavior between Chromium-Based Ceramic Composite and Nickel-Chromium-Molybdenum-Coated Ring Sliding against Cast Iron Liner under Starvation

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-10-01

    Full Text Available A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS, and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM is compared at different nominal pressures (40~100 MPa and temperatures (180~250 °C. With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL, the cast iron liner enters into a “polish wear” stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs.

  15. Anti-corrosive Conversion Coating on Aluminium Alloys Using High Temperature Steam

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    or convert to a functional conversion coating. In the last several decades chromate conversion coating (CrCCs) have been the most common conversion coatings used for aluminium alloys. Due to the toxicity of the hexavalent chrome, however, environmental friendly alternatives to CrCCs have been investigated...

  16. Rare earth conversion coating on Mg-8.5Li alloys

    International Nuclear Information System (INIS)

    Yang Xiaowei; Wang Guixiang; Dong Guojun; Gong Fan; Zhang Milin

    2009-01-01

    The conversion coating formed by immersion in a solution containing rare earth salt on Mg-8.5Li alloy was studied and the corrosion resistance was evaluated as well. The surface morphology was observed by scanning electron microscopy (SEM), and the chemical composition was characterized by X-ray photoelectron spectroscopy (XPS). The corrosion behaviors of Mg-8.5Li alloy and conversion coating were assessed by means of potentiodynamic polarization curves, electrochemical impedance spectra (EIS) and immersion tests. The experimental results indicated that the coating with cracked morphology was homogeneous. It was mainly composed of La 2 O 3 , CeO 2 , Mn 2 O 3 and MnO 2 as detected by XPS. The results of electrochemical measurements and immersion tests revealed that the rare earth conversion coating possessed better corrosion resistance than bare alloy and chromate conversion coating.

  17. Stannate conversion coatings on Mg-8Li alloy

    International Nuclear Information System (INIS)

    Yang Lihui; Zhang Milin; Li Junqing; Yu Xiang; Niu Zhongyi

    2009-01-01

    The stannate conversion coatings (SnCC) on Mg-8Li alloy were investigated by simple immersion method. The surface morphology and composition were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction spectroscopy (XRD) techniques. The corrosion resistance was assessed by means of potentiodynamic polarization measurements and electrochemical impedance spectra (EIS). The effects of time of a stannate bath on the quality of stannate conversion coatings were investigated by SEM and EIS. It was found that the coating particles were mainly composed of hemispherical particles MgSnO 3 .3H 2 O. A comparison of results revealed the coating treated for 60 min exhibited the most uniform, dense and corrosion-resistant

  18. Mechanical and tribological characterization of the Al 6061-T651 and the Al 6061-T651 with chromium phosphate coating

    International Nuclear Information System (INIS)

    Pena B, A.

    2002-01-01

    This work consist of two parts. The first one, related with theoretic concepts of tribology, condensed the friction and wear phenomena, considering aspects to bring something relevant into a process. In this conditions, to add lubricant cause a significant performance change during the phenomena mentioned above. The second part of this work, described experimental aspects as how we do a chromium phosphate coating in immersion cell, using 6061-T651 aluminum as substrate. In the process, we consider values of parameters in optimum conditions, obtained by commercial aluminum during previous investigations made in National Institute of Nuclear Research. Here, we characterized chromium phosphate coating and, 6061-T651 aluminum alloy using Sem and X-Ray Diffraction techniques. The measurement of some chromium phosphate characteristic as thickness, weight for area unit, density, roughness, microhardness, adhesion and corrosion resistant were made with appropriately equipment and, in accordance with international standards procedures. In tribological aspect, we determinate adhesive wear resistance and abrasive wear resistance for 6061-T651 aluminum alloy and chromium phosphate coating. Adhesive wear resistance was made for dry condition while abrasive wear resistance were made for dry and wet conditions. Tests are to guide by ASTM G99, G65 and G105 designations respectively. (Author)

  19. Unconventional fluoride conversion coating preparation and characterization

    Czech Academy of Sciences Publication Activity Database

    Drábiková, J.; Fintová, Stanislava; Tkacz, J.; Doležal, P.; Wasserbauer, J.

    2017-01-01

    Roč. 64, č. 6 (2017), s. 613-619 ISSN 0003-5599 Institutional support: RVO:68081723 Keywords : fluoride conversion coating * magnesium * corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 0.364, year: 2016 http://www.emeraldinsight.com/doi/abs/10.1108/ACMM-02-2017-1757

  20. Chromium(VI) Removal from Aqueous Solution by Magnetite Coated by a Polymeric Ionic Liquid-Based Adsorbent

    Science.gov (United States)

    Ferreira, Thania Alexandra; Rodriguez, Jose Antonio; Paez-Hernandez, María Elena; Guevara-Lara, Alfredo; Barrado, Enrique; Hernandez, Prisciliano

    2017-01-01

    An evaluation of the chromium(VI) adsorption capacity of four magnetite sorbents coated with a polymer phase containing polymethacrylic acid or polyallyl-3-methylimidazolium is presented. Factors that influence the chromium(VI) removal such as solution pH and contact time were investigated in batch experiments and in stirred tank reactor mode. Affinity and rate constants increased with the molar ratio of the imidazolium. The highest adsorption was obtained at pH 2.0 due to the contribution of electrostatic interactions. PMID:28772865

  1. Composition and Performance of Nanostructured Zirconium Titanium Conversion Coating on Aluminum-Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-xue Yu

    2013-01-01

    Full Text Available Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF6 0.75 g·L−1, NaF 1.25 g·L−1, MgSO4 1.0 g/L, and tetra-n-butyl titanate (TBT 0.08 g·L−1. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM and scanning electron microscopy (SEM. Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS. Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is 9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.

  2. Modification of NiAl intermetallic coatings processed by PTA with chromium carbides

    International Nuclear Information System (INIS)

    Yano, Diogo Henrique Sepel; Brunetti, Cristiano; Pintaude, Giuseppe; Oliveira, Ana Sofia Climaco Monteiro d'

    2010-01-01

    Equipment that operate under high-temperatures can be protected with NiAl intermetallic coatings mainly because of their metallurgical stability. This study as it evaluates the effect of chromium carbide added to Ni-Al intermetallic coatings processed by PTA. Three Ni-Al-Cr23C6 powder mixtures with different carbide fractions (15, 30 and 45 wt%) and another without carbides were deposited by PTA on an AISI 304 stainless steel plate, using two different current intensities (100 and 150A). Coatings were evaluated regarding the presence of welding defects, and resultant microstructures were characterized by X-ray diffraction and scanning electron microscopy. Vickers microhardness and EDS chemical composition were also determined. NiAl and Cr_7C_3 development was confirmed by X-ray diffraction analysis. A combination of NiAl/Cr-Fe-Ni phases was identified. The hardness was strongly related to the formed phases and their amounts. Besides presenting advances toward the development of coatings which can withstand severe operation conditions, the present study shows that PTA hardfacing is able to produce reinforced intermetallic coatings for high-temperature applications. (author)

  3. Adhesion and corrosion studies of a lithium based conversion coating film on the 2024 aluminum alloy

    International Nuclear Information System (INIS)

    Castro, M.R.S.; Nogueira, J.C.; Thim, G.P.; Oliveira, M.A.S.

    2004-01-01

    AA2024-T3-aluminum alloy surfaces were coated using non-chromate and chromate conversion coatings. All coatings were painted with the 10P4-2-primer epoxy resin. Independent on the film formation process, films passed on the substrate/conversion coating wet tape adhesion test. However, only the chromate conversion coating passed on the conversion coating/primer epoxy resin adhesion test. Electrochemical corrosion measurements showed that non-chromate conversion coated surfaces present lower corrosion current density, bigger polarization resistance and less negative corrosion potential than chromate conversion coated surfaces

  4. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Jiang, Xiao; Guo, Ruiguang; Jiang, Shuqin

    2015-01-01

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E corr by 157 mV and decrease the i corr by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy

  5. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiao, E-mail: xiaoxiao217@126.com; Guo, Ruiguang; Jiang, Shuqin

    2015-06-30

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E{sub corr} by 157 mV and decrease the i{sub corr} by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy.

  6. The formation of neodymium conversion coating and the influence of post-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cui Xiufang [School of Materials Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St., Harbin 150001 (China); Jin Guo, E-mail: jg97721@yahoo.com.cn [Center for Biomedical Materials and Engineering, School of Materials Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St., Harbin 150001 (China); Yang Yuyun; Liu Erbao; Lin Lili; Zhong Jinggao [Center for Biomedical Materials and Engineering, School of Materials Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St., Harbin 150001 (China)

    2012-01-15

    In this paper, neodymium-based conversion coating is used as a substitute for toxic chromate conversion coating on AZ91D magnesium alloys. Its formation and growth were observed via SEM, EDS, XPS, electrochemical tests and weighting experiment. The influence of post-treatment on neodymium conversion coating was measured by FTIR and electrochemical experiments in terms of morphology, component, surface functional group and corrosion resistance. The dissolution of matrix and the deposition of neodymium/magnesium oxides compete with each other in initial time. Then the deposition of neodymium oxides dominates the process. Compact coating is obtained after 20 min immersion and it is mainly made of neodymium oxides and a small amount of magnesium oxides/hydroxides. The coating post-treated is rich in OH{sup -} and PO{sub 4}{sup 3+}. The post-treatment can improve the corrosion resistance of the neodymium conversion coating effectually examined by EIS.

  7. The formation of neodymium conversion coating and the influence of post-treatment

    International Nuclear Information System (INIS)

    Cui Xiufang; Jin Guo; Yang Yuyun; Liu Erbao; Lin Lili; Zhong Jinggao

    2012-01-01

    In this paper, neodymium-based conversion coating is used as a substitute for toxic chromate conversion coating on AZ91D magnesium alloys. Its formation and growth were observed via SEM, EDS, XPS, electrochemical tests and weighting experiment. The influence of post-treatment on neodymium conversion coating was measured by FTIR and electrochemical experiments in terms of morphology, component, surface functional group and corrosion resistance. The dissolution of matrix and the deposition of neodymium/magnesium oxides compete with each other in initial time. Then the deposition of neodymium oxides dominates the process. Compact coating is obtained after 20 min immersion and it is mainly made of neodymium oxides and a small amount of magnesium oxides/hydroxides. The coating post-treated is rich in OH - and PO 4 3+ . The post-treatment can improve the corrosion resistance of the neodymium conversion coating effectually examined by EIS.

  8. Chromium(VI Removal from Aqueous Solution by Magnetite Coated by a Polymeric Ionic Liquid-Based Adsorbent

    Directory of Open Access Journals (Sweden)

    Thania Alexandra Ferreira

    2017-05-01

    Full Text Available An evaluation of the chromium(VI adsorption capacity of four magnetite sorbents coated with a polymer phase containing polymethacrylic acid or polyallyl-3-methylimidazolium is presented. Factors that influence the chromium(VI removal such as solution pH and contact time were investigated in batch experiments and in stirred tank reactor mode. Affinity and rate constants increased with the molar ratio of the imidazolium. The highest adsorption was obtained at pH 2.0 due to the contribution of electrostatic interactions.

  9. Study of electrochemical phosphate conversion coating of metallic surfaces

    International Nuclear Information System (INIS)

    Gougelin, Patrick

    1985-01-01

    After an overview on phosphate conversion coating processes, on models of iron electrochemical dissolution, on the passivation phenomenon, and on the phosphate conversion coating treatment, this research thesis reports a detailed study of this last process. The author presents the experimental method, reports the study of this process and of passivation under constant polarization. He reports the use of various techniques and conditions: chrono-amperometry, chrono-potentiometry, cyclic volt-amperometry

  10. Adhesion of epoxy primer to hydrotalcite conversion coated AA2024

    Science.gov (United States)

    Leggat, Robert Benton, III

    Hydrotalcite-based (HT) conversion coatings are being developed as an environmentally benign alternative to chromate conversion coatings (CCC). Accelerated exposure tests were conducted on epoxy primed, HT-modified AA2024 to gauge service performance. HT-based conversion coatings did not perform as well as the CCC when used with an epoxy primer. The current HT chemistries are optimized for stand-alone corrosion protection, however additional research into the primer/HT interactions is necessary before they can be implemented within a coating scheme. The relative contribution of mechanical and physico-chemical interactions in controlling adhesion has been investigated in this study. Practical adhesion tests were used to assess the dry and wet bond strength of epoxy primer on HT coatings using the pull-off tensile strength (POTS) as the figure of merit. The practical adhesion of HT coated samples generally fell between that observed for the CCC and bare AA2024. Laboratory testing was done to assess the physical and chemical properties of HT coatings. Contact angle measurements were performed using powders representative of different HT chemistries to evaluate the dispersive and acid-base character of the surface. The wet POTS correlated with the electrodynamic (dipole + dispersive) parameter of the surface tension. The HT surfaces were found to be predominantly basic. Given the basicity of epoxy, these results indicate that increasing the acidic character of HT coatings may increase the adhesion performance. This was supported by electrokinetic measurements in which the dry POTS was found to increase with decreasing conversion coating iso-electric point. The correlations with the dry and wet state adhesion are interpreted as indicating that dry state adhesion is optimized by minimizing unfavorable polar interactions between the basic epoxy and HT interfaces. Wet state adhesion, where polar interactions are disrupted, is dictated by non-polar bonding. FTIR

  11. SiC Conversion Coating Prepared from Silica-Graphite Reaction

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2017-01-01

    Full Text Available The β-SiC conversion coatings were successfully synthesized by the SiO(v-graphite(s reaction between silica powder and graphite specimen. This paper is to describe the effects on the characteristics of the SiC conversion coatings, fabricated according to two different reaction conditions. FE-SEM, FE-TEM microstructural morphologies, XRD patterns, pore size distribution, and oxidation behavior of the SiC-coated graphite were investigated. In the XRD pattern and SAD pattern, the coating layers showed cubic SiC peak as well as hexagonal SiC peak. The SiC coatings showed somewhat different characteristics with the reaction conditions according to the position arrangement of the graphite samples. The SiC coating on graphite, prepared in reaction zone (2, shows higher intensity of beta-SiC main peak (111 in XRD pattern as well as rather lower porosity and smaller main pore size peak under 1 μm.

  12. Electrical conductivity of chromate conversion coating on electrodeposited zinc

    International Nuclear Information System (INIS)

    Tencer, Michal

    2006-01-01

    For certain applications of galvanized steel protected with conversion coatings it is important that the surface is electrically conductive. This is especially important with mating surfaces for electromagnetic compatibility. This paper addresses electrical conductivity of chromate conversion coatings. A cross-matrix study using different zinc plating techniques by different labs showed that the main deciding factor is the type of zinc-plating bath used rather than the subsequent chromating process. Thus, chromated zinc plate electrodeposited from cyanide baths is non-conductive while that from alkaline (non-cyanide) and acid baths is conductive, even though the plate from all the bath types is conductive before conversion coating. The results correlate well with the microscopic structure of the surfaces as observed with scanning electron microscopy (SEM) and could be further corroborated and rationalized using EDX and Auger spectroscopies

  13. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Abu Khalid, Rivai; Minoru, Takahashi

    2007-01-01

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10 -7 wt.% for Al-Fe-coated steels and 5*10 -6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti 3 SiC 2 . The ceramic materials of SiC and Ti 3 SiC 2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  14. Effect of coatings obtanied by sputtering of chromium catode on the corrosion resistance of AISI H13 steel

    International Nuclear Information System (INIS)

    Sandoval, A; Peña, D; Piratoba, U

    2013-01-01

    Corrosion resistance of coatings obtained by sputtering a chromium target were evaluated. The films were deposited on substrates of disk-shaped AISI H13 steel. By means of potentiodynamic polarization curves were able to determine the current density vs. potential for the coated and uncoated substrate and the difference in the corrosion potential Ecorr. All samples with coating showed an increase in Ecorr respect to substrate. The electrochemical tests were conducted in an electrolytic solution of 3% NaCl

  15. Lithium salts as leachable corrosion inhibitors and potential replacement for hexavalent chromium in organic coatings for the protection of aluminum alloys

    NARCIS (Netherlands)

    Visser, P; Liu, Y; Terryn, H.A.; Mol, J.M.C.

    2016-01-01

    Lithium salts are being investigated as leachable corrosion inhibitor and potential replacement for hexavalent chromium in organic coatings. Model coatings loaded with lithium carbonate or lithium oxalate demonstrated active corrosion inhibition and the formation of a protective layer in a

  16. Growth of permanganate conversion coating on 2024-Al alloy

    International Nuclear Information System (INIS)

    Kulinich, S.A.; Akhtar, A.S.; Wong, P.C.; Wong, K.C.; Mitchell, K.A.R.

    2007-01-01

    The growth of permanganate conversion coating on aluminum 2024-T3 alloy has been studied by characterizing, with scanning Auger microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy, the coatings formed by immersion of the alloy in the coating bath (containing KMnO 4 and Na 2 B 4 O 7 , pH 9.1) for different periods of time and at different temperatures. At room temperature, during the first 1-5 min of immersion, MnO 2 deposits are formed only on the second-phase intermetallic particles (of Al-Cu-Mg and Al-Cu-Fe-Mn types), but the coating starts to develop on the Al matrix surface after 5-10 min. The coating slows down and stops after about 150 min, with a thinner deposit over the alloy matrix. The process is accelerated at higher temperatures, for example at 68 deg. C it self-limits after about 3 min. The electrochemical growth process appears to follow that established for the chromate conversion coatings, although XPS does not detect significant MnO 4 - incorporation into the permanganate coatings

  17. Microwave-assisted synthesis of lanthanum conversion coating on Mg-Li alloy and its corrosion resistance

    International Nuclear Information System (INIS)

    Song Dalei; Jing Xiaoyan; Wang Jun; Lu Shanshan; Yang Piaoping; Wang Yanli; Zhang Milin

    2011-01-01

    Graphical abstract: Highlights: → The method of microwave is used to synthesize lanthanum conversion coating. → Lanthanum conversion coating on Mg-Li alloy was studied. → Different conditions between room temperature and microwave were compared. → The corrosion behavior of lanthanum conversion coatings was studied. → The corrosion mechanism of lanthanum conversion coatings was studied. - Abstract: Lanthanum-based conversion coating on Mg-Li alloy has been prepared by a microwave-assisted method. X-ray diffractions (XRD) indicate that the intermetallic compounds of lanthanum are formed on Mg-Li alloy surface. Scanning electron microscopy (SEM) images show that the coating has different morphologies and special structures. The corrosion resistance was assessed by means of potentiodynamic polarization curves and electrochemical impedance spectra (EIS). The results indicate that this coating significantly reduces the corrosion rate of Mg-Li alloy in NaCl solution. A comparing experiment indicates that the coating prepared by microwave-assisted process has superior corrosion resistance to the coating obtained at room temperature.

  18. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection

    International Nuclear Information System (INIS)

    Yong Zhiyi; Zhu Jin; Qiu Cheng; Liu Yali

    2008-01-01

    In this paper, a new conversion coating-molybdate/phosphate (Mo/P) coating on magnesium alloy was prepared and investigated by electrochemical impedance spectra (EIS), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and salt-water immersion experiments, respectively. The results demonstrated that the Mo/P coating contained composite phases, which were consisted of metaphosphate as well as molybdate oxide with an 'alveolate-crystallized' structure. The composite Mo/P conversion coating had better corrosion resistance performance than molybdate (Mo) coating, and even had almost comparable corrosion protection for Mg alloy to the traditional chromate-based coating.

  19. Zr-based conversion coatings for multi-metal substrates

    NARCIS (Netherlands)

    Cerezo Palacios, J.M.

    2015-01-01

    In this PhD work, a new surface treatment based on the application of Zr-based conversion coatings by immersion in a Cu containing Zr-based conversion solution was investigated as a replacement of the traditional phosphating process for the automotive industry. Nowadays most of the cars are made of

  20. Corrosion behaviors in physiological solution of cerium conversion coatings on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Cui Xiufang; Yang Yuyun; Liu Erbao; Jin Guo; Zhong Jinggao; Li Qingfen

    2011-01-01

    In this paper, a non-toxic Ce-based conversion coating was obtained on the surface of bio-medical AZ31 magnesium alloys. The micro-morphology of the coating prepared with optimal technical parameters and immersed in physiological solution (Hank's solution) in different time was observed by scanning electron microscopy (SEM), composition of the cerium conversion coating and corrosion products in Hank's solution were characterized by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS), respectively. In addition, the corrosion property in Hank's solution was studied by electrochemical experiment and immersion test. The results show that the dense Ce-based conversion coating is obtained on the surface of AZ31 magnesium alloys in optimal technical parameters and the conversion coating consists of a mass of trivalent and tetravalent cerium oxides. The cerium conversion coating can provide obvious protection of magnesium alloys and can effectively reduce the degradation speed in Hank's solution. Also the degradation products have little influence on human body.

  1. Chemical conversion coating for protecting magnesium alloys from corrosion

    Science.gov (United States)

    Bhargava, Gaurang; Allen, Fred M.; Skandan, Ganesh; Hornish, Peter; Jain, Mohit

    2016-01-05

    A chromate-free, self-healing conversion coating solution for magnesium alloy substrates, composed of 10-20 wt. % Mg(NO.sub.3).sub.2.6H.sub.2O, 1-5 wt. % Al(NO.sub.3).sub.3.9H.sub.2O, and less than 1 wt. % of [V.sub.10O.sub.28].sup.6- or VO.sub.3.sup.- dissolved in water. The corrosion resistance offered by the resulting coating is in several hundreds of hours in salt-spray testing. This prolonged corrosion protection is attributed to the creation of a unique structure and morphology of the conversion coating that serves as a barrier coating with self-healing properties. Hydroxoaluminates form the backbone of the barrier protection offered while the magnesium hydroxide domains facilitate the "slow release" of vanadium compounds as self-healing moieties to defect sites, thus providing active corrosion protection.

  2. Stimulus responsive hydrogel-coated etched fiber Bragg grating for carcinogenic chromium (VI) sensing

    Science.gov (United States)

    Kishore, Pabbisetti Vayu Nandana; Madhuvarasu, Sai Shankar; Moru, Satyanarayana

    2018-01-01

    This paper proposes a chemo-mechanical-optical sensing approach for the detection of carcinogenic chromium (VI) metal ion using an etched fiber Bragg grating (FBG) coated with stimulus responsive hydrogel. Hydrogel synthesized from the blends of (3-acrylamidopropyl)-trimethylammonium chloride, which is highly responsive to chromium ions suffers a volume change when placed in Cr solution. When the proposed sensor system is exposed to various concentrations of Cr (VI) ion solution, FBG peak shifts due to the mechanical strain induced by the swelling of the hydrogel. The peak shift is correlated with the concentration of the Cr (VI) metal ion. Due to the reduction in the cladding diameter of FBG, wastage of swelling force due to hydrogel on FBG is lowered and utilized for more wavelength peak shift of FBG resulting in the increase in the sensitivity. The resolution of the sensor system is found to be 0.072 ppb. Trace amounts of chromium (VI) ion as low as 10 ppb can be sensed by this method. The sensor has shown good sensitivity, selectivity, and repeatability. The salient features of the sensors are its compact size, light weight, and adoptability for remote monitoring.

  3. A new type of Ce-Mo based conversion coatings for aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Di; Li Guoqiang; Guo Baolan; Peng Mingxia [Coll. of Materials Science and Engineering, Beijing Univ. of Aeronautics and Astronautics, Beijing, BJ (China)

    2002-07-01

    A new type of process for forming Ce-Mo conversion coatings on Al-alloys has been developed. Conversion coatings about 3.6 {mu}m thickness were obtained by immersing Al-alloys for 20 minutes in boiling film forming solutions containing (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6} 2.5 g/l, NaKC{sub 4}H{sub 4}O{sub 6}.4H{sub 2}O 2.5 g/l, Na{sub 2}CO{sub 3} 7.5 g/l and Na{sub 2}MoO{sub 4} 5.0 g/l. In the case of LF4 Al-alloy, polarization curves and immersion tests in 5% NaCl indicated that the conversion coatings exhibited more excellent resistance to localized corrosion than the conventional chromate conversion coatings. However, its resistance to localized corrosion was not satisfactory on LC4 Al alloy. Scanning electron microscopy (SEM) and energy dispersion analyzer of X-ray (EDAX) analysis revealed that the conversion coatings having complex surface microstructure on both LC4 and LF6 Al alloys consist mainly of O, Al and other alloying elements in addition to significant Ce and Mo. A mechanism of film formation was proposed to explain the experimental results. (orig.)

  4. Evaluation of self-healing ability of Ce–V conversion coating on AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Xiao Jiang

    2016-09-01

    Full Text Available This study investigated the influence of cerium nitrate in vanadate solutions on the properties of Ce–V conversion coatings on AZ31 magnesium alloys, and evaluated the self-healing behavior of the Ce–V conversion coating for AZ31 magnesium alloy. The results showed that the additions of cerium nitrate prevented pentavalent vanadium from reducing to tetravalent vanadium in the coatings during conversion reaction process. Adding appropriate cerium nitrate to vanadate solution led to a thicker coating with a more compact CeVO4 layer. The corrosion behavior of the Ce–V conversion coating was investigated by the electrochemical tests and the scratch immersion test in 3.5 wt.% NaCl solution. The self-healing ability of the coating was confirmed from all tests. The surface analysis revealed that the self-healing effect of the Ce–V conversion coating was only provided by the release and migration of vanadium compounds.

  5. Trivalent Chromium Process (TCP) as a Sealer for MIL-A-8625F Type II, IIB, and IC Anodic Coatings

    National Research Council Canada - National Science Library

    Matzdorf, Craig; Beck, Erin; Hilgeman, Amy; Prado, Ruben

    2008-01-01

    This report documents evaluations of trivalent chromium compositions (TCP) as sealers for MIL-A-8625F Type II, IIB, and IC anodic coatings conducted from March 2001 through December 2007 by Materials Engineering...

  6. Effect of coating parameters on the microstructure of cerium oxide conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Benedict Y.; Edington, Joe; O' Keefe, Matthew J

    2003-11-25

    The microstructure and morphology of cerium oxide conversion coatings prepared under different deposition conditions were characterized by transmission electron microscopy (TEM). The coatings were formed by a spontaneous reaction between a water-based solution containing CeCl{sub 3} and aluminum alloy 7075-T6 substrates. Microstructural characterization was performed to determine the crystallinity of the coatings and to obtain a better understanding of the deposition parameters on coating microstructure. The results of TEM imaging and electron diffraction analysis indicated that the as-deposited coating was composed of nanocrystalline particles of a previously unreported cerium compound. The particles of the coatings produced using glycerol as an additive were found to be much finer than those of the coatings prepared in the absence of glycerol. This indicates that glycerol may act as a grain refiner and/or growth inhibitor during coating deposition. After deposition, the coated panels were treated for 5 min in a phosphate sealing solution. The sealing treatment converted the as-deposited coating into hydrated cerium phosphate. Panels coated from solutions containing no glycerol followed by phosphate sealing performed poorly in salt fog tests. With glycerol addition, the corrosion resistance of the coatings that were phosphate sealed improved considerably, achieving an average passing rate of 85%.

  7. Preconcentration and determination of trace chromium using 1-(2-pyridylazo-2 -naphthol) immobilization on surfactant- coated alumina

    International Nuclear Information System (INIS)

    Shemirani, F.; Zamani, M

    2002-01-01

    Full text: Chromium is one of the essential elements for all vertebrates, as it appears to play a role in the metabolism of glucose and some lipids such as cholesterol. Since chromium is used widely in various industries, such as in the galvanization, steel, leather and paint industries, the resulting anthropogenic contamination of chromium is observed in the coastal sediments and seawater. Chromium in natural waters is normally present at low concentration levels, typically 0.3 - 1.0 μg/L in river water, and 0.1.5 μg/L in sea water. In many cases, the separation and preconcentration techniques are generally required to determined chromium at low concentration levels in natural waters, even when the most sensitive techniques, for instance electrothermal atomic absorption spectrometry and inductively coupled plasma-mass spectrometry (ICP - MS), are used. In the present work, the column of alumina modified with SDS and PAN was prepared in order to achieve a simple, low - cost and effective method for the improvement of the detection limit of ETAAS by preconcentration of chromium from a large volume of the aqueous through immobilization of PAN on surfactant coated alumina. The influence of P H, flow rate of sample solution and eluent, amount of eluent and effect of cationic interferences on percent recovery of chromium were studied. A concentration factor of 100 can be achieved by passing 500 ml of sample through the column. The method was applied to the determination of chromium in waste and mineral waters

  8. Removal of Hexavalent Chromium from Aqueous Solutions Using Magnetic Nanoparticles Coated with Alumina and Modified by Cetyl Trimethyl Ammonium Bromide

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2015-12-01

    Full Text Available Introduction: The development of an effective method regarding chromium removal from the environment is of great importance. Therefore, the present study aimed to examiner magnetic nanoparticles coated with alumina modified by Cetyl Trimethyl Ammonium Bromide (CTAB in the removal of Cr6+ through magnetic solid phase extraction method. Materials & Methods: At first, iron oxide nanoparticles were synthesized, coated with alumina, modified with CTAB and characterized with suitable instruments. The factors affecting the process of chromium removal were investigated, including the concentration of CTAB, the pH, the amount of nanoparticles, the sample volume, a proper eluent, the adsorption and desorption time, and the effect of interfering ions. Moreover, the chromium concentration was determined by flame atomic absorption spectrometric (FAAS technique. The adsorption isotherm, adsorption capacity, and recoverability of the adsorbent were further examined. Results: The modified magnetic nanoparticles were demonstrated to be homogeneous, spherical, with a size lower than 20 nanometer having a magnetic property. The optimal conditions for chromium removal entailed 7*10-6 mol/L concentration of CTAB, pH range of 6-8, 0.1 g of the nanoparticles, 10 mL volume of the chromium sample (5 &mug mL-1, nitric acid 2 M as a suitable eluent, 15 minutes of adsorption and desorption, and no interference of interfering ions in the process of chromium separation. The process efficiency under optimal conditions was determined to be over 95%, which this process followed the Langmuir adsorption isotherm. The adsorption capacity proved to be 23.8 mg/g. Reusing after four times of adsorbent recovering was effective in the chromium removal (80%. The method accuracy for five measurement times was 4.155% and the method’s LOD was 0.081 mg/L. Conclusion: The method enjoys the benefits of convenient preparation of the adsorbent, high selectivity, high accuracy, short process

  9. Performance Comparison of Steam-Based and Chromate Conversion Coatings on Aluminum Alloy 6060

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    In this study, oxide layers generated on aluminum alloy 6060(UNS A96060) using a steam-based process were compared with conventional chromate and chromate-phosphate conversion coatings. Chemical composition and microstructure of the conversion coatings were investigated and their corrosion perfor...

  10. Nanomagnetic domains of chromium deposited on vertically-aligned carbon nanotubes

    International Nuclear Information System (INIS)

    Wright, Andrew C.; Faulkner, Michael K.; Harris, Robert C.; Goddard, Alex; Abbott, Andrew P.

    2012-01-01

    The drive to create ever smaller magnetic memory devices has led to the development of new nanomagnetic domains on surfaces. This paper reports the development of nano-chromium magnetic domains obtained using electrodeposition on vertically aligned carbon nanofibers arrays. Attempts to achieve this using conventional aqueous solutions were unsuccessful even after thin nickel underlayers were applied. The use of a novel electrolyte, a deep eutectic solvent, made from choline chloride: chromium (III) chloride enabled highly conformal overcoatings of chromium on individual bare carbon nanotubes to be obtained. Very high aspect ratio metal microstructures could be obtained by this novel technology. Magnetic imaging of the coated nanoarrays showed there to be clear magnetic character to the coating when the thin coatings were applied but this disappeared when the deposits were thicker and more contiguous. - Highlights: ► Nanoscale chromium deposited from non-aqueous electrolyte shows magnetic behavior. ► Vertically aligned carbon nanotubes conformally coated with chromium metal. ► Ionic liquid electrolyte superior to chromic acid for plating high aspect ratio structures.

  11. Nanomagnetic domains of chromium deposited on vertically-aligned carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Andrew C., E-mail: a.wright@glyndwr.ac.uk [Advanced Materials Research Laboratory, Materials Science Research Center, Glyndwr University, Wrexham LL11 2AW (United Kingdom); Faulkner, Michael K., E-mail: m.faulkner@manchester.ac.uk [Manchester Materials Science Centre, University of Manchester, Grosvenor Street, Manchester M13 9PL (United Kingdom); Harris, Robert C.; Goddard, Alex; Abbott, Andrew P., E-mail: apa1@le.ac.uk [Department of Chemistry, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2012-12-15

    The drive to create ever smaller magnetic memory devices has led to the development of new nanomagnetic domains on surfaces. This paper reports the development of nano-chromium magnetic domains obtained using electrodeposition on vertically aligned carbon nanofibers arrays. Attempts to achieve this using conventional aqueous solutions were unsuccessful even after thin nickel underlayers were applied. The use of a novel electrolyte, a deep eutectic solvent, made from choline chloride: chromium (III) chloride enabled highly conformal overcoatings of chromium on individual bare carbon nanotubes to be obtained. Very high aspect ratio metal microstructures could be obtained by this novel technology. Magnetic imaging of the coated nanoarrays showed there to be clear magnetic character to the coating when the thin coatings were applied but this disappeared when the deposits were thicker and more contiguous. - Highlights: Black-Right-Pointing-Pointer Nanoscale chromium deposited from non-aqueous electrolyte shows magnetic behavior. Black-Right-Pointing-Pointer Vertically aligned carbon nanotubes conformally coated with chromium metal. Black-Right-Pointing-Pointer Ionic liquid electrolyte superior to chromic acid for plating high aspect ratio structures.

  12. Synthesis and characterization of binder-free Cr3C2 coatings on nickel-based alloys for molten fluoride salt corrosion resistance

    International Nuclear Information System (INIS)

    Brupbacher, Michael C.; Zhang, Dajie; Buchta, William M.; Graybeal, Mark L.; Rhim, Yo-Rhin; Nagle, Dennis C.; Spicer, James B.

    2015-01-01

    Under various conditions, chromium carbides appear to be relatively stable in the presence of molten fluoride salts and this suggests that their use in corrosion resistant coatings for fluoride salt environments could be beneficial. One method for producing these coatings is the carburization of sprayed Cr coatings using methane-containing gaseous precursors. This process has been investigated for the synthesis of binder-free chromium carbide coatings on nickel-based alloy substrates for molten fluoride salt corrosion resistance. The effects of the carburization process on coating microstructure have been characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) in conjunction with energy dispersive spectroscopy (EDS). Both plasma-sprayed and cold-sprayed Cr coatings have been successfully converted to Cr 3 C 2 , with the mechanism of conversion being strongly influenced by the initial porosity in the as-deposited coatings

  13. Preparation and properties of chrome-free colored Ti/Zr based conversion coating on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yi Aihua [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Li Wenfang, E-mail: mewfl@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Du Jun; Mu Songlin [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2012-06-01

    A golden conversion coating on the surface of aluminum alloy was prepared by adding tannic acid and coating-forming accelerator in the treatment solution containing titanium and zirconium ions. The growth process, main component and corrosion resistance of the conversion coating were characterized by EDS, SEM, XRD, XPS, FIIR and electrochemical workstation. The results showed that the main components of the conversion coating were Na{sub 3}AlF{sub 6} and the conversion coating owns a double-layer structure. The outer layer consists of metal-organic complex and the inner layer is mainly made up of Na{sub 3}AlF{sub 6}. The mechanism of the formation of the golden conversion coating can be deemed as nucleation, growth of Na{sub 3}AlF{sub 6} crystal and formation of metal-organic complex. In potentiodynamic polarization test, the corrosion current density decreases to 0.283 {mu}A cm{sup -2} from 5.894 {mu}A cm{sup -2}, which indicates an obvious improvement of corrosion resistance.

  14. Vacuum-arc chromium coatings for Zr-1%Nb alloy protection against high-temperature oxidation in air

    International Nuclear Information System (INIS)

    Kuprin, A.S.; Belous, V.A.; Bryk, V.V.; Vasilenko, R.L.; Voevodin, V.N.; Ovcharenko, V.D.; Tolmacheva, G.N.; Kolodij, I.V.; Lunev, V.M.; Klimenko, I.O.

    2015-01-01

    The effect of vacuum-arc Cr coatings on the alloy E110 resistance to the oxidation in air at temperatures 1020 and 1100 deg C for 3600 s has been investigated. The methods of scanning electron microscope, X-ray analysis and nanoindentation were used to determine the thickness, phase, mechanical properties of coatings and oxide layers. The results show that the chromium coating can effectively protect fuel tubes against high-temperature oxidation in air for one hour. In the coating during oxidation at T = 1100 deg C a Cr 2 O 3 oxide layer of 5 μm thickness is formed preventing further oxygen penetration into the coating, and thus the tube shape is conserved. Under similar test conditions the oxidation of uncoated tubes with formation of a porous monocline oxide of ZrO 2 of a thickness more than ≥ 250 μm is observed, then the deformation and cracking of samples occur and the oxide layer breaks away

  15. Friction Modifier Using Adherent Metallic Multilayered or Mixed Element Layer Conversion Coatings

    Science.gov (United States)

    Schramm, Harry F. (Inventor); Defalco, Francis G. (Inventor); Starks, Lloyd L., Sr. (Inventor)

    2013-01-01

    A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, and one or more non-alkaline metals and/or one or more metalloids. The process comprises forming an aqueous solution of water, phosphoric acid or sulfuric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals and/or one or more metalloids. The aqueous solution forms an anti-friction multilayer conversion and/or mixed element coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly without the use of applied external electromotive force, or as an additive in lubricating fluids.

  16. MnCo{sub 2}O{sub 4} spinel chromium barrier coatings for SOFC interconnect by HVOF

    Energy Technology Data Exchange (ETDEWEB)

    Lagerbom, J.; Varis, T.; Pihlatie, M.; Himanen, O.; Saarinen, V.; Kiviaho, J.; Turunen, E. [VTT Technical Research Centre of Finland, Espoo (Finland); Puranen, J. [Tampere Univ. of Technology (Finland). Inst. of Materials Science

    2010-07-01

    Chromia released from steel parts used for interconnect plates by evaporation and condensation can quickly degrade the cell (cathode) performance in solid oxide fuel cell SOFC. Coatings on top of the IC plate can work as a chromium evaporation barrier. The coating material should have good electrical conductivity, high temperature stability and nearly the same coefficient of thermal expansion as the cell materials. One candidate for the coating material is MnCo{sub 2}O{sub 4} spinel because of its suitable properties. High velocity oxy fuel (HVOF) spraying was used for the coating application on Crofer 22 APU steel samples. Using commercial and self made spray dried powders together with an HV2000 spray gun it was possible to successfully manufacture, well adhering, dense and reasonably uniform coatings. The samples were tested in oxidation exposure tests in air followed by post analysis in SEM. Powders and coatings microstructures are presented here, both before and after exposure. It was found out that together with spraying parameters the powder characteristics used influence clearly to the coating quality. Especially as very thin coatings was aimed with dense structure fine powders was found to be essential. (orig.)

  17. Effect of Silicon Addition on Microstructure and Mechanical Properties of Chromium and Titanium Based Coatings

    Directory of Open Access Journals (Sweden)

    Luis Carlos Ardila-Téllez

    2014-07-01

    Full Text Available The changes in the microstructure, mechanical properties and residual stresses of AlTiN, AlTiSiN, AlCrN and AlCrSiN coatings, has been studied before and after annealing at 900 ºC and 1100 ºC, using scanning and transmission electron microscopy, along with nano-indentation and X-ray diffraction techniques. The As-deposited coatings show a columnar structure, with a crystallite size between 18 nm and 28 nm. Despite the silicon addition, no effect on the crystallite size refinement was observed.However, the addition of silicon increases hardness, elastic modulus and compressive residual stresses. After annealing at 900 ºC, the crystallite size growth and the residual stress relaxes; therefore, the coating hardness decreases. At 1100 ºC, the oxide layers formed in AlTiN and AlTiSiN, which act as protective layers enhancing oxidation resistance; meanwhile, a complete oxidation of AlCrN and AlCrSiN coatings take place. The Titanium based coatings present some superior mechanical properties and oxidation resistance than the chromium based coatings at 900 ºC and 1100 ºC.

  18. Thick sputtered tantalum coatings for high-temperature energy conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika, E-mail: stelmakh@mit.edu; Peykov, Daniel; Chan, Walker R.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castillo, Robert; Coulter, Kent; Wei, Ronghua [Materials Engineering Department, Southwest Research Institute, San Antonio, Texas 78238 (United States)

    2015-11-15

    Thick sputtered tantalum (Ta) coatings on polished Inconel were investigated as a potential replacement for bulk refractory metal substrates used for high-temperature emitters and absorbers in thermophotovoltaic energy conversion applications. In these applications, high-temperature stability and high reflectance of the surface in the infrared wavelength range are critical in order to sustain operational temperatures and reduce losses due to waste heat. The reflectance of the coatings (8 and 30 μm) was characterized with a conformal protective hafnia layer as-deposited and after one hour anneals at 700, 900, and 1100 °C. To further understand the high-temperature performance of the coatings, the microstructural evolution was investigated as a function of annealing temperature. X-ray diffraction was used to analyze the texture and residual stress in the coatings at four reflections (220, 310, 222, and 321), as-deposited and after anneal. No significant changes in roughness, reflectance, or stress were observed. No delamination or cracking occurred, even after annealing the coatings at 1100 °C. Overall, the results of this study suggest that the thick Ta coatings are a promising alternative to bulk substrates and pave the way for a relatively low-cost and easily integrated platform for nanostructured devices in high-temperature energy conversion applications.

  19. Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y., E-mail: liu_yunli@hotmail.com [R and D Department, MacDermid plc, 198 Golden Hillock Road, Birmingham B11 2PN (United Kingdom); Beckett, D.; Hawthorne, D. [R and D Department, MacDermid plc, 198 Golden Hillock Road, Birmingham B11 2PN (United Kingdom)

    2011-02-15

    Electroless black nickel-phosphorus plating is an advanced electroless nickel plating process formulated to deposit a black finish when processed through an oxidizing acid solution. Heat treatment, five types of top organic coating techniques and one conversion coating technique with three different experimental conditions were investigated to stabilize the black film and increase the hardness and corrosion resistance. Morphology and compositions of electroless nickel-phosphorous films with or without heat treatment, with five types of top organic coatings, and with three conversion coatings were compared to examine nickel, phosphorus, oxygen, carbon, silicon and chrome contents on the corrosion resistance of black surfaces by energy dispersive X-ray microanalysis and scanning electron microscope. Corrosion resistance of black electroless nickel-phosphorus coatings with or without heat treatment, with five types of top organic coatings, and with three conversion coatings was investigated by the polarization measurements and the salt spray test in 5% NaCl solution, respectively. HydroLac as the top organic coating from MacDermid showed the excellent corrosion resistance and the black EN film did not lose the black color after 48 h salt spray test. Electrotarnil B process with 0.5 ASD for 1 min stabilized the black Ni-P film immediately and increased the hardness and corrosion performance of the black Ni-P film. The black Ni-P coating with Electroarnil B process passed the 5% NaCl salt spray test for 3000 h in the black color and had a minimal corrosion current 0.8547 {mu}A/cm{sup 2} by the polarization measurement.

  20. Hexavalent Chrome Free Coatings for Electronics: Electromagnetic Interference (EMI) Shielding Effectiveness (SE)

    Science.gov (United States)

    Kessel, Kurt R.

    2016-01-01

    Determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. Evaluate the ability of hexavalent chrome free pretreated aluminum to form adequate EMI seals, and maintain that seal while being subjected to harsh environmental conditions. Assess the performance of trivalent chromium pretreatments against a known control hexavalent chrome pretreatment before and after they have been exposed to a set of environmental conditions. It is known that environmental testing causes a decrease in shielding effectiveness when hexavalent chrome pretreatments are used (Alodine 1200s). Need to determine how shielding effectiveness will be affected with the use of hexavalent chrome free pretreatments. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings. The formation of corrosion will be evaluated between the mating surfaces and gasket to assess the corrosion resistant properties of the pretreatments, comparing the hexavalent control to the hexavalent chrome free pretreatments.

  1. Mono-carboxylate conversion coatings for AZ31 Mg alloy protection

    Energy Technology Data Exchange (ETDEWEB)

    Frignani, A.; Grassi, V.; Zucchi, F.; Zanotto, F. [Corrosion Study Centre A. Dacco, University of Ferrara (Italy)

    2011-11-15

    Conversion coatings on a magnesium alloy were obtained by dipping AZ31 specimens in aqueous solutions of sodium salts of mono-carboxylic acids (stearic, palmitic, myristic, lauric, mono-carboxylate ion concentration from 1 to 5 mM, depending on the salt solubility) for 24 and 72 h at room temperature, or 24 h at 50 C. The influence exerted by the treatment time, bath temperature and alkyl chain length on the efficiency of these coatings was studied. The performances of the coatings were evaluated by potentiodynamic polarization curve recording after 1 h immersion in 0.05 M Na{sub 2}SO{sub 4} solution, while their temporal evolution was monitored by electrochemical impedance spectroscopy (EIS) spectra during 24 h. Further and long lasting tests were carried out also in 0.1 M NaCl solution. The efficiency of the coatings depended on the aliphatic chain length, and increased as the treatment time and the bath temperature were increased. The coating of lower homologue only hindered the cathodic process, while those of the higher homologues markedly inhibited the anodic process too. The best performances were displayed by 24 h-50 C stearic conversion coating, which maintained a very high efficiency for over 800 h immersion in 0.05 M sulphate solution. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  3. The role of phosphate conversion coatings in make-up of casing connections

    NARCIS (Netherlands)

    Ernens, D; van Riet, E.J.; de Rooij, M.B.; Pasaribu, H.R.; van Haaften, W.M.; Schipper, D.J.

    2017-01-01

    Phosphate conversion coatings are widely used on (premium) casing connections for protection against corrosion. Next to that, in conjunction with the lubricant these coatings provide galling protection. The friction and wear that occurs during make-up and subsequent load cycling determines the

  4. Ultra low nanowear in novel chromium/amorphous chromium carbide nanocomposite films

    Science.gov (United States)

    Yate, Luis; Martínez-de-Olcoz, Leyre; Esteve, Joan; Lousa, Arturo

    2017-10-01

    In this work, we report the first observation of novel nanocomposite thin films consisting of nanocrystalline chromium embedded in an amorphous chromium carbide matrix (nc-Cr/a-CrC) with relatively high hardness (∼22,3 GPa) and ultra low nanowear. The films were deposited onto silicon substrates using a magnetic filtered cathodic arc deposition system at various negative bias voltages, from 50 to 450 V. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) suggested the co-existence of chromium and chromium carbide phases, while high resolution transmission electron microscopy (HRTEM) confirmed the presence of the nc-Cr/a-CrC structure. The friction coefficient measured with the ball-on disk technique and the nanowear results showed a strong correlation between the macro and nano-tribological properties of the samples. These novel nanocomposite films show promising properties as solid lubricant and wear resistant coatings with relatively high hardness, low friction coefficient and ultra low nanowear.

  5. Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings.

    Science.gov (United States)

    Filova, Elena; Vandrovcova, Marta; Jelinek, Miroslav; Zemek, Josef; Houdkova, Jana; Jan Remsa; Kocourek, Tomas; Stankova, Lubica; Bacakova, Lucie

    2017-01-01

    Diamond-like carbon (DLC) thin films are promising for use in coating orthopaedic, dental and cardiovascular implants. The problem of DLC layers lies in their weak layer adhesion to metal implants. Chromium is used as a dopant for improving the adhesion of DLC films. Cr-DLC layers were prepared by a hybrid technology, using a combination of pulsed laser deposition (PLD) from a graphite target and magnetron sputtering. Depending on the deposition conditions, the concentration of Cr in the DLC layers moved from zero to 10.0 at.%. The effect of DLC layers with 0.0, 0.9, 1.8, 7.3, 7.7 and 10.0 at.% Cr content on the adhesion and osteogenic differentiation of human osteoblast-like Saos-2 cells was assessed in vitro. The DLC samples that contained 7.7 and 10.0 at.% of Cr supported cell spreading on day 1 after seeding. On day three after seeding, the most apparent vinculin-containing focal adhesion plaques were also found on samples with higher concentrations of chromium. On the other hand, the expression of type I collagen and alkaline phosphatase at the mRNA and protein level was the highest on Cr-DLC samples with a lower concentration of Cr (0-1.8 at.%). We can conclude that higher concentrations of chromium supported cell adhesion; however DLC and DLC doped with a lower concentration of chromium supported osteogenic cell differentiation.

  6. Structure and corrosion properties of Cr coating deposited on aerospace bearing steel

    Science.gov (United States)

    Wang, Fangfang; Zhang, Fengxiang; Zheng, Lijing; Zhang, Hu

    2017-11-01

    The corrosion protection of chromium coating deposited on aerospace bearing steels by using the Filtered Cathodic Vacuum Arc deposition- Metal Evaporation Vacuum Arc duplex technique (MEVVA-FCVA) had been investigated. The protection efficiency of chromium coating on different substrate materials had also been evaluated. The chromium coating was mainly composed of nanocrystallineα-Cr in a range of 50-200 nm. The orientation distributions of α-Cr film on substrates with different composition had a certain difference to each other. Electrochemical experimental results indicated that the chromium coating significantly improved the corrosion resistance of experimental bearing steels in 3.5% NaCl solution. The protective efficiency of chromium films were all over 98%. The corrosion resistance of chromium coating was influenced by the chemical composition of substrate material. The chromium coatings on higher Cr-containing substrate displayed lower corrosion current density and more positive corrosion potential. The increase of passive film thickness and the formation of a mass of chromium oxide and hydroxide on the surface are responsible for the improved corrosion properties.

  7. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer

    International Nuclear Information System (INIS)

    Huo Hongwei; Li Ying; Wang Fuhui

    2004-01-01

    A chemical conversion treatment and an electroless nickel plating were applied to AZ91D alloy to improve its corrosion resistance. By conversion treatment in alkaline stannate solution, the corrosion resistance of the alloy was improved to some extent as verified by immersion test and potentiodynamic polarization test in 3.5 wt.% NaCl solution at pH 7.0. X-ray diffraction patterns of the stannate treated AZ91D alloy showed the presence of MgSnO 3 · H 2 O, and SEM images indicated a porous structure, which provided advantage for the adsorption during sensitisation treatment prior to electroless nickel plating. A nickel coating with high phosphorus content was successfully deposited on the chemical conversion coating pre-applied to AZ91D alloy. The presence of the conversion coating between the nickel coating and the substrate reduced the potential difference between them and enhanced the corrosion resistance of the alloy. An obvious passivation occurred for the nickel coating during anodic polarization in 3.5 wt.% NaCl solution

  8. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun; Liu, Junyao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China)

    2015-10-30

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V{sup 5+}, V{sup 4+} and Mg(OH){sub 2}. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  9. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-01-01

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V"5"+, V"4"+ and Mg(OH)_2. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  10. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Brunelli, Katya; Dabala, Manuele; Calliari, Irene; Magrini, Maurizio

    2005-01-01

    The corrosion protection afforded by a cerium conversion coating, formed by immersion in a solution containing rare earth salt and hydrogen peroxide, on pure magnesium and two magnesium alloys, AZ91 and AM50, has been studied. The effect of HCl pre-treatments on the morphology and on the corrosion resistance of the cerium conversion layer was investigated. A thicker and more homogeneous distribution of the conversion coating was obtained when the sample surface was pre-treated with acid. Higher amounts of cerium on the surface of the pre-treated samples were detected. The cerium conversion coating increased the corrosion resistance of the alloys because it ennobled the corrosion potential and decreased both the anodic and cathodic current. The acid pre-treatment further increased the corrosion resistance of the coated alloys. After five days of immersion in chloride environment the untreated samples showed localized corrosion while the chemical conversion coated samples appeared unaffected

  11. The enriched chromium neutrino source for GALLEX

    International Nuclear Information System (INIS)

    Hartmann, F.X.; Hahn, R.L.

    1991-01-01

    The preparation and study of an intense source of neutrinos in the form of neutron irradiated materials which are enriched in Cr-50 for use in the GALLEX solar neutrino experiment are discussed. Chromyl fluoride gas is enriched in the Cr-50 isotope by gas centrifugation and subsequently converted to a very stable form of chromium oxide. The results of neutron activation analyses of such chromium samples indicate low levels of any long-lived activities, but show that short-lived activities, in particular Na-24, may be of concern. These results show that irradiating chromium oxide enriched in Cr-50 is preferable to irradiating either natural chromium or argon gas as a means of producing a neutrino source to calibrate the GALLEX detector. These results of the impurity level analysis of the enriched chromyl fluoride gas and its conversion to the oxide are also of interest to work in progress by other members of the Collaboration investigating an alternative conversion of the enriched gas to chromium metal. 35 refs., 12 figs., 5 tabs

  12. Self-healing Li-Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy

    International Nuclear Information System (INIS)

    Zhang, Caixia; Luo, Xiaohu; Pan, Xinyu; Liao, Liying; Wu, Xiaosong; Liu, Yali

    2017-01-01

    Highlights: • A self-healing chrome-free Li-Al layered double hydroxide conversion coating modified with Aspartic acid was prepared. • One-step conversion coating formed by simple immersion in a conversion solution for a short time and a low temperature. • The conversion coating had excellent corrosion resistance. • The possible mechanism via exchange/self-assembly of the conversion coating was proposed in this paper. - Abstract: A self-healing Li-Al layered double hydroxide conversion coating (LCC) modified with aspartic acid (ALCC) was prepared on 6N01 Al alloy for corrosion protection. Scanning electron microscopy (SEM) showed that a compact thin film has been successfully formed on the alloy. X-ray diffraction (XRD) and FT-IR spectra proved that species of aspartic acid anions were successfully intercalated into LCC. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and neutral salt spray (NSS) testing showed that the resultant ALCC could provide effective corrosion protection for the Al alloy. During immersion of the ALCC-coated alloy in 3.5% NaCl solution, new film was formed in the area of artificially introduced scratch, indicating its self-healing capability. XPS results demonstrated that Cl- anions exchange partial Asp anions according to the change content of element on conversion coating. From the above results, the possible mechanism via exchange/self-assembly was proposed to illustrate the phenomenon of self-healing.

  13. Self-healing Li-Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Caixia; Luo, Xiaohu; Pan, Xinyu; Liao, Liying; Wu, Xiaosong; Liu, Yali, E-mail: yaliliu@hnu.edu.cn

    2017-02-01

    Highlights: • A self-healing chrome-free Li-Al layered double hydroxide conversion coating modified with Aspartic acid was prepared. • One-step conversion coating formed by simple immersion in a conversion solution for a short time and a low temperature. • The conversion coating had excellent corrosion resistance. • The possible mechanism via exchange/self-assembly of the conversion coating was proposed in this paper. - Abstract: A self-healing Li-Al layered double hydroxide conversion coating (LCC) modified with aspartic acid (ALCC) was prepared on 6N01 Al alloy for corrosion protection. Scanning electron microscopy (SEM) showed that a compact thin film has been successfully formed on the alloy. X-ray diffraction (XRD) and FT-IR spectra proved that species of aspartic acid anions were successfully intercalated into LCC. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and neutral salt spray (NSS) testing showed that the resultant ALCC could provide effective corrosion protection for the Al alloy. During immersion of the ALCC-coated alloy in 3.5% NaCl solution, new film was formed in the area of artificially introduced scratch, indicating its self-healing capability. XPS results demonstrated that Cl- anions exchange partial Asp anions according to the change content of element on conversion coating. From the above results, the possible mechanism via exchange/self-assembly was proposed to illustrate the phenomenon of self-healing.

  14. Plasma Spraying and Characterization of Chromium Carbide-Nickel Chromium Coatings

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Prantnerová, M.

    2016-01-01

    Roč. 9, č. 4 (2016), s. 281-290, č. článku PCCC-2016-09-16-339. ISSN 2008-2134 Institutional support: RVO:61389021 Keywords : Plasma spraying * Chromium carbide * Slurry abrasion * Dry rubber wheel test * Friction * Microhardness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass http://www.pccc.icrc.ac.ir/?xid=0113010121000001804&id=976

  15. Diamondlike carbon coating as a galvanic corrosion barrier between dental implant abutments and nickel-chromium superstructures.

    Science.gov (United States)

    Ozkomur, Ahmet; Erbil, Mehmet; Akova, Tolga

    2013-01-01

    The objectives of this study were to evaluate the galvanic corrosion behavior between titanium and nickel-chromium (Ni-Cr) alloy, to investigate the effect of diamondlike carbon (DLC) coating over titanium on galvanic corrosion behavior between titanium and Ni-Cr alloy, and to evaluate the effect of DLC coating over titanium abutments on the fit and integrity of prosthetic assemblies by scanning electron microcopy (SEM). Five Ni-Cr and 10 titanium disks with a diameter of 5 mm and thickness of 3 mm were prepared. DLC coating was applied to five titanium disks. Electrode samples were prepared, and open circuit potential measurements, galvanic current measurements over platinum electrodes, and potentiodynamic polarization tests were carried out. For the SEM evaluation, 20 Ni-Cr alloy and 10 gold alloy superstructures were cast and prepared over 30 abutments. DLC coating was applied to 10 of the abutments. Following the fixation of prosthetic assemblies, the samples were embedded in acrylic resin and cross sectioned longitudinally. Internal fit evaluations were carried out through examination of the SEM images. Titanium showed more noble and electrochemically stable properties than Ni-Cr alloy. DLC coating over the cathode electrode served as an insulating film layer over the surface and prevented galvanic coupling. Results of the SEM evaluations indicated that the DLC-coated and titanium abutments showed no statistically significant difference in fit. Hence, no adverse effects on the adaptation of prosthetic components were found with the application of DLC coating over abutment surfaces. DLC coating might serve as a galvanic corrosion barrier between titanium abutments and Ni-Cr superstructures.

  16. Investigation of the surface composition of electrodeposited black chromium by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Survilienė, S.; Češūnienė, A.; Jasulaitienė, V.; Jurevičiūtė, I.

    2015-01-01

    Highlights: • Black chromium electrodeposited from a Cr(III) bath is composed of oxide, hydroxide and metallic chromium. • Metallic phase is absent in black chromium electrodeposited from a Cr(III) + ZnO bath. • The near-surface layer is rich in hydroxides, whereas oxides of both metals predominate in the depth of the coatings. - Abstract: The paper reviews black chromium electrodeposited from a trivalent chromium bath containing ZnO as a second main component. The chemical compositions of the top layers of the black chromium coatings were studied by the X-ray photoelectron spectroscopy method. The surface of black chromium was found to be almost entirely covered with organic substances. To gain information on the state of each element in the deposit bulk, the layer-by-layer etching of the black chromium surface with argon gas was used. Analysis of XPS spectra has shown that the top layers of black chromium without zinc are composed of various Cr(III) components, organic substances and metallic Cr, whereas metallic Cr is almost absent in black chromium containing some amount of Zn(II) compounds. The ratios of metal/oxide phases were found to be 10/27 and 2/28 for black chromium without and with zinc, respectively. It has been determined that owing to the presence of ZnO in the Cr(III) bath, the percentage of metallic chromium is substantially reduced in black chromium which is quite important for good solar selective characteristics of the coating. The results confirm some of earlier observations and provide new information on the composition of the near-surface layers

  17. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Science.gov (United States)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-10-01

    A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  18. 77 FR 6627 - National Emission Standards for Hazardous Air Pollutant Emissions: Hard and Decorative Chromium...

    Science.gov (United States)

    2012-02-08

    ... aluminum to provide resistance to corrosion. The chromium anodizing process is used to coat aircraft parts... Electroplating and Chromium Anodizing Tanks; and Steel Pickling-HCl Process Facilities and Hydrochloric Acid... Decorative Chromium Electroplating and Chromium Anodizing Tanks; and Steel Pickling-HCl Process Facilities...

  19. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Science.gov (United States)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-07-01

    The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Sisbnd Osbnd Si and Sisbnd Osbnd M chemical bonds. The optimum corrosion resistance of the coating in the corrosive media is obtained by 25 ml L-1 BTESPT modification. This whole study implies that the cerium conversion coating modified with certain silane agent deserves cautiousness before its application for corrosion resistance.

  20. Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy

    International Nuclear Information System (INIS)

    Yang, K.H.; Ger, M.D.; Hwu, W.H.; Sung, Y.; Liu, Y.C.

    2007-01-01

    In this study, magnesium alloy (AZ61) was immersed in vanadium containing bath with various conditions, such as the vanadium concentration, immersion time and bath temperature. The results indicate that increase of both vanadium concentration and immersion time produces a thicker conversion layer. However, when immersion time is too long, it will worsen the corrosion resistance due to the increasing of the crack density. The experimental parameter of bath temperature has no significant effect on corrosion resistance. Our results demonstrated that the better corrosion resistance coating can be obtained when the samples are submitted to an immersion in the conversion bath containing NaVO 3 with concentration of 30 g l -1 for 10 min at 80 deg. C. The presented conversion treatment has its potential to replace the chrome-based conversion coating treatment

  1. Preparation of micro/nano-fibrous brushite coating on titanium via chemical conversion for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China); Guo, Yong-yuan [Orthopedic Department, Qilu Hospital of Shandong University, Ji’nan, 250012 (China); Xiao, Gui-yong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China); Lu, Yu-peng, E-mail: biosdu@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China)

    2017-03-31

    Highlights: • A chemical conversion brushite coating was prepared on titanium. • The coating exhibits fibrous morphology in micro/nano-scale. • The surface of the coating shows high hydrophilicity and corrosion resistance in the simulated body fluid. • An improvement of cell response was observed on the surface of coated Ti compared to that of the uncoated. - Abstract: Calcium phosphate coatings have been applied on the surface of Ti implants to realize better osseointegration. The formation of dicalcium phosphate dihydrate (CaHPO{sub 4}·2H{sub 2}O), mineralogically named brushite on pure Ti substrate has been investigated via chemical conversion method. Coating composition and microstructure have been investigated by X-ray diffractometer, Fourier transform infrared spectrometer and field emission scanning electron microscope. The results reveal that the coatings are composed of high crystalline brushite with minor scholzite (CaZn{sub 2}(PO{sub 4}){sub 2}·2H{sub 2}O). A micro/nano-scaled fibrous morphology can be produced in the acidic chemical conversion bath with pH 5.00. The surface of the fibrous brushite coating exhibits high hydrophilicity and corrosion resistance in the simulated body fluid. The osteoblast cells grow and spread actively on the coated samples and the proliferation numbers and alkaline phosphate activities of the cells improve significantly compared to the uncoated Ti. It is suggested that the micro/nano-fibrous brushite coating can be a potential approach to improve the osteoinductivity and osteoconductivity of Ti implant, due to its similarity in morphology and dimension to inorganic components of biological hard tissues, and favorable responses to the osteoblasts.

  2. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Li; Shi, Jing, E-mail: shijing@ouc.edu.cn; Wang, Xin, E-mail: wangxin.hd@163.com; Liu, Dan; Xu, Haigang

    2016-07-15

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L{sup −1} BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si

  3. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    International Nuclear Information System (INIS)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-01-01

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L"−"1 BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si−O−M chemical

  4. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings.

    Science.gov (United States)

    Sonntag, Robert; Feige, Katja; Dos Santos, Claudia Beatriz; Kretzer, Jan Philippe

    2017-12-20

    Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr 6+ ) electrolyte with a reduced chromium trioxide (CrO₃) content, both without solid additives and (c) with the addition of fullerene (C 60 ) nanoparticles; and (d) a trivalent chromium (Cr 3+ ) electrolyte with C 60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23-40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70-84% compared with the CoCr-CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.

  5. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    2017-12-01

    Full Text Available Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a an industrial standard chromium electrolyte; (b a custom-made hexavalent chromium (Cr6+ electrolyte with a reduced chromium trioxide (CrO3 content, both without solid additives and (c with the addition of fullerene (C60 nanoparticles; and (d a trivalent chromium (Cr3+ electrolyte with C60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm than the hexavalent coatings (23–40 µm and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70–84% compared with the CoCr–CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.

  6. Coatings for fast breeder reactor components

    International Nuclear Information System (INIS)

    Johnson, R.N.

    1984-04-01

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  7. Environmentally Friendly Anticorrosion Coating for High Strength Fasteners

    Science.gov (United States)

    2011-01-01

    electroplated coatings followed by a hexavalent chrome rinse. The environmental and health hazards associated with cadmium and hexavalent chromium are...have been used with cadmium (Cd) electroplated coatings, followed by a hexavalent chromium (Cr6+) rinse. The environmental and human health hazards...followed by a hexavalent chromium (Cr6+) rinse. The environmental and human health hazards associated with both cadmium and chromates are well

  8. Method for electrodeposition of nickel--chromium alloys and coating of uranium

    International Nuclear Information System (INIS)

    Stromatt, R.W.; Lundquist, J.R.

    1975-01-01

    High-quality electrodeposits of nickel-chromium binary alloys in which the percentage of chromium is controlled can be obtained by the addition of a complexing agent such as ethylenediaminetetraacetic disodium salt to the plating solution. The nickel-chromium alloys were found to provide an excellent hydrogen barrier for the protection of uranium fuel elements. (U.S.)

  9. The role of hexafluorozirconate in the formation of chromate conversion coatings on aluminum alloys

    International Nuclear Information System (INIS)

    Chidambaram, Devicharan; Clayton, Clive R.; Halada, Gary P.

    2006-01-01

    Aluminum based surfaces are routinely coated with a chromate based layer that provides unparalleled corrosion protection. Widely used conversion coating treatment formulations contain hexafluorozirconate as a major constituent besides chromate, ferricyanide, fluoride, and fluoborate. The function of hexafluorozirconate is the subject of this study as its function is still largely unknown. Hydrophobicity, surface morphology, and the chemistry of the surface, resulting from treatment with hexafluorozirconate, were studied using contact angle measurements, scanning electron microscopy, and energy dispersive spectroscopy, respectively. X-ray photoelectron spectroscopy was extensively utilized to determine the chemistry of the surface resulting from the hexafluorozirconate pretreatment. Our results indicate that fluoride ion containing hexafluorozirconate complex does not attack the oxide film in a manner that uncomplexed simple fluoride ion does. Hexafluorozirconate is involved in the formation of an Al-Zr-O-F based hydrated layer that increases the hydrophilicity of the surface, activates the surface, and lowers the corrosion resistance. These factors enhance the interaction of chromate with the alloy surface to result in the formation of a uniform conversion coating. Based on these results, a new model has been proposed for the formation of chromate conversion coatings

  10. Influence of phytic acid concentration on performance of phytic acid conversion coatings on the AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Cui Xiufang; Li Ying; Li Qingfen; Jin Guo; Ding Minghui; Wang Fuhui

    2008-01-01

    In this study, the phytic acid conversion coating, a new environmentally friendly chemical protective coating for magnesium alloys, was prepared. The influences of phytic acid concentration on the formation process, microstructure, chemical state and corrosion resistance of the conversion coatings on AZ91D magnesium alloy were investigated by means of weight gain measurement, field-emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS), respectively. And the depth profile of all elements in the optimal conversion coatings was analyzed by auger electron spectroscopy (AES). The results show that the growth, microstructure, chemical state and corrosion resistance of the conversion coatings are all obviously affected by the phytic acid concentration. The concentration of 5 g l -1 corresponds to the maximum weight gain. The main elements of the coating are Mg, Al, O, P, and C, which are distributed gradually in depth. The functional groups of conversion coatings formed in higher concentration phytic acid solution are closer to the constituent of phytic acid than those formed in lower concentration phytic acid solution. The coatings formed in 1-5 g l -1 are integrated and uniform. However, those formed in 20-50 g l -1 have some micro-cracks on the α phase. The coating formed in 5 g l -1 has the best corrosion resistance, whose open circuit current density decreases about six orders than that of the untreated sample, although the coatings deposited in 1-20 g l -1 can all improve the corrosion resistance of AZ91D

  11. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    Science.gov (United States)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  12. Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: insights into the formation mechanism

    International Nuclear Information System (INIS)

    Lostak, Thomas; Maljusch, Artjom; Klink, Björn; Krebs, Stefan; Kimpel, Matthias; Flock, Jörg; Schulz, Stephan; Schuhmann, Wolfgang

    2014-01-01

    Zr-based conversion layers are considered as environmentally friendly alternatives replacing trication phosphatation in the automotive industry. Based on excellent electronic barrier properties they provide an effective corrosion protection of the metallic substrate. In this work, thin protective layers were grown on novel Zn-Al-Mg alloy coated steel sheets by increasing the local pH-value at the sample surface leading to deposition of a Zr-based conversion layer. For this purpose Zn-Al-Mg alloy (ZM) coated steel sheets were treated in an aqueous model conversion solution containing well-defined amounts of hexafluorozirconic acid (H 2 ZrF 6 ) and characterized after different immersion times with SKPFM and field emission SEM (FE-SEM)/EDX techniques. A deposition mechanism of Zr-based conversion coatings on microstructural heterogeneous Zn-Al-Mg alloy surfaces was proposed

  13. Chromium carbide-CNT nanocomposites with enhanced mechanical properties

    International Nuclear Information System (INIS)

    Singh, Virendra; Diaz, Rene; Balani, Kantesh; Agarwal, Arvind; Seal, Sudipta

    2009-01-01

    Chromium carbide is widely used as a tribological coating material in high-temperature applications requiring high wear resistance and hardness. Herein, an attempt has been made to further enhance the mechanical and wear properties of chromium carbide coatings by reinforcing carbon nanotubes (CNTs) as a potential replacement of soft binder matrix using plasma spraying. The microstructures of the sprayed CNT-reinforced Cr 3 C 2 coatings were characterized using transmission electron microscopy and scanning electron microscopy. The mechanical properties were assessed using micro-Vickers hardness, nanoindentation and wear measurements. CNT reinforcement improved the hardness of the coating by 40% and decreased the wear rate of the coating by almost 45-50%. Cr 3 C 2 reinforced with 2 wt.% CNT had an elastic modulus 304.5 ± 29.2 GPa, hardness of 1175 ± 60 VH 0.300 and a coefficient of friction of 0.654. It was concluded that the CNT reinforcement increased the wear resistance by forming intersplat bridges while the improvement in the hardness was attributed to the deformation resistance of CNTs under indentation

  14. Lanthanide based conversion coatings for long term wet storage of aluminium-clad spent fuel

    International Nuclear Information System (INIS)

    Fernandes, S.M.C.; Correa, O.V.; De Souza, J.A.; Ramanathan, L.V.

    2010-01-01

    Spent fuels from research reactors are stored in basins with water of less than desirable quality at many facilities around the world and instances of cladding failure caused by pitting corrosion have been reported. Conversion coatings have been used in many industries to protect different metals, including aluminium alloys. This paper presents the results of an ongoing investigation in which the corrosion resistance of lanthanide (cerium, lanthanum and praseodymium) based conversion coated RR fuel cladding alloys has been studied. Electrochemical tests in the laboratory revealed higher corrosion resistance of CeO 2 , La 2 O 3 and Pr 2 O 3 coated AA 1100 and AA 6061 alloys in NaCl solutions. Uncoated and CeO 2 coated coupons of these alloys exposed for 50 days to the spent fuel basin of the IEA-R1 research reactor in IPEN, Brazil, revealed marked reductions in the extent of pitting corrosion. (author)

  15. Conversion Coatings Produced on AZ61 Magnesium Alloy by Low-Voltage Process

    Directory of Open Access Journals (Sweden)

    Nowak M.

    2016-03-01

    Full Text Available The resultes of anodic oxide conversion coatings on wrought AZ61 magnesium alloy production are describe. The studies were conducted in a solution containing: KOH (80 g/l and KF (300 g/l using anodic current densities of 3, 5 and 10 A/dm2 and different process durations. The obtained coatings were examined under a microscope and corrosion tests were performed by electrochemical method. Based on these results, it was found that the low-voltage process produces coatings conferring improved corrosion resistance to the tested magnesium alloy.

  16. Titanium composite conversion coating formation on CRS In the presence of Mo and Ni ions: Electrochemical and microstructure characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Eivaz Mohammadloo, H.; Sarabi, A.A., E-mail: Sarabi@aut.ac.ir

    2016-11-30

    Highlights: • Eco-friendly protective thin films for covering the CRS substrates were presented. • Comprehensive analyses were performed to evaluate the surface characteristics. • Promising approach for the surface modification of CRS substrate by Ti-based conversion coatings. - Abstract: There have been an increasing interest in finding a replacement for the chromating process due to environmental and health concerns. Hence, in this study Chrome-free chemical conversion coatings were deposited on the surface of cold-rolled steel (CRS) on the basis of Titanium (TiCC), Titanium-Nickel (TiNiCC) and titanium-molybdate (TiMoCC) based conversion coating solutions. The surface characterization was performed by field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measuring device. Also, the corrosion behavior was assessed by the means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. FESEM and AFM study show that the TiNiCC is denser and more uniform than that TiCC and TiMoCC since, TiMoCC conversion coating presents network feature, and there were abundant micro-cracks on the surface of the coating. XPS results confirmed the precipitation of Ti and Ni oxide/hydroxide, Mn dioxide/trioxide on the surface of different Ti-based conversion coatings. Electrochemical results revealed that all Ti-based conversion coatings have better anti-corrosion properties than bare CRS. Moreover, TiNiCC treatment inhibited the corrosion of CRS to a significant degree (polarization resistance (R{sub p}) = 5510 Ω cm{sup 2}) in comparison with TiCC (R{sub p} = 2705 Ω cm{sup 2}) and TiMoCC (R{sub p} = 805 Ω cm{sup 2}).

  17. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  18. Protective coatings on structural materials for energy conversion systems

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Srinivasa, R.S.

    2000-01-01

    Full text: Structural Materials and Components used in coal fired energy conversion systems, crude oil refineries and coal gasification plants are subjected to degradation due to oxidation, sulfidation, carbonization and halogenation. Suitable protective coatings can significantly enhance their life. Protective coatings work by forming a highly stable, self-healing and slow growing protective scale at the operating temperatures. These scales act as barriers between the corrosive environment and the alloy and prevent degradation of the substitute. Three types of scales that provide such protection are based on Al 2 O 3 , Cr 2 O 3 and SiO 2 . Aluminide coatings are major alumina forming protecting coatings, applied on nickel, cobalt and iron base alloys. Aluminide coatings are prepared by enriching the surface of a component by aluminum. In this paper the formation of aluminide coatings of nickel, IN738, Alloy 800, Zircaloy-2 and pure iron by chemical vapor deposition has been described. In this technique, Aluminum chloride vapors from bath kept at 353-373 K are carried in a stream of hydrogen gas into a Hot Walled CVD chamber kept at 1173-1373 K. The AlCl 3 vapors were allowed to react with pure aluminum whereby aluminum sub-chlorides like AlCl and AlCl 2 are produced which deposit aluminum on the substrates. At the high temperature of the deposition, aluminum diffuses into the substrate and forms the aluminide coating. The process can be represented by the reaction Al (i) + AlCl 3(g) AlCl 2(s) + AlCl 2 (g) . XRD and optical microscopic studies have characterized the coatings. On pure nickel and Alloy 800 the coating consists of Ni 2 Al 3 and NiAl respectively. On pure iron the coatings consisted of FeAl. On Zircaloy-2, ZrAl 2 was also detected. The CVD coating process, XRD and optical microscopy data will be discussed further

  19. Microstructural and electrochemical characterization of environmentally friendly conversion layers on aluminium alloys

    Directory of Open Access Journals (Sweden)

    Palomino Luis Enrique M.

    2003-01-01

    Full Text Available Cerium conversion layers (CeCL have been investigated as a replacement for chromium conversion layers to protect Al alloys against corrosion. In this work the microstructure and the electrochemical behaviour of aluminium alloy 2024 with and without CeCL were investigated using, respectively, SEM-EDX and EIS. EDX results have shown that the presence of dispersed plated Cu particles on the alloy surface enhances the formation of the CeCL increasing the intensity of Ce peaks in the EDX spectra. EIS measurements on conversion-coated samples have shown that the presence of the layer increases the impedance, and that its presence is detected by the presence of a high frequency time constant. Results of potentiodynamic experiments have shown that the corrosion protection afforded by the conversion layer is due to the hindrance of the oxygen reduction reaction and that the pitting potential of the alloy is not changed.

  20. Electrodeposited tungsten-nickel-boron: A replacement for hexavalent chromium

    International Nuclear Information System (INIS)

    Steffani, C.; Meltzer, M.

    1995-04-01

    Chromium, deposited from acidic solutions of its hexavalent ion, has been the rule for wear resistant, corrosion resistant coatings for many years. Although chromium coatings are durable, the plating process generates air emissions, effluent rinse waters, and process solutions that are toxic, suspected carcinogens, and a risk to human health and the environment. Tungsten-nickel-boron (W-Ni-B) alloy deposition is a potential substitute for hexavalent chrome. It has excellent wear, corrosion, and mechanical properties and also may be less of an environmental risk. This study examines the electroplating process and deposit properties of W-Ni-B and compares them with those of hexavalent chrome

  1. Development of control system of coating of rod hydraulic cylinders

    Science.gov (United States)

    Aizhambaeva, S. Zh; Maximova, A. V.

    2018-01-01

    In this article, requirements to materials of hydraulic cylinders and methods of eliminating the main factors affecting the quality of the applied coatings rod hydraulic cylinders. The chromium plating process - one of ways of increase of anti-friction properties of coatings rods, stability to the wear and corrosion. The article gives description of differences of the stand-speed chromium plating process from other types of chromium plating that determines a conclusion about cutting time of chromium plating process. Conducting the analysis of technological equipment suggested addressing the modernization of high-speed chromium plating processes by automation and mechanization. Control system developed by design of schematic block diagram of a modernized and stand-speed chromium plating process.

  2. Fabrication of silica-coated gold nanorods and investigation of their property of photothermal conversion

    International Nuclear Information System (INIS)

    Inose, Tomoya; Oikawa, Takahiro; Shibuya, Kyosuke; Tokunaga, Masayuki; Hatoyama, Keiichiro; Nakashima, Kouichi; Kamei, Takashi; Gonda, Kohsuke; Kobayashi, Yoshio

    2017-01-01

    This study described the preparation of silica-coated Au nanorods (AuNR/SiO 2 ) in a colloidal solution, assessed their property of photothermal conversion, and investigated their ability to kill cancer cells using photothermal conversion. Au-seed nanoparticles were produced by reducing hydrogen tetrachloroaurate (HAuCl 4 ) with sodium borohydride (NaBH 4 ) in aqueous n-hexadecyltrimethylammonium bromide (CTAB) solution. AuNRs were then fabricated by reducing HAuCl 4 and silver nitrate (AgNO 3 ) with L-ascorbic acid in the aqueous CTAB solution in the presence of Au-seed nanoparticles. The as-prepared AuNRs were washed by a process composed mainly of centrifugation to remove the CTAB. The washed AuNRs were coated with silica by mixing the AuNR colloidal solution, an aqueous solution of (3-aminopropyl)trimethoxysilane, and tetraethylorthosilicate/ethanol solution with a water/ethanol solution. We found that the addition of AuNR/SiO 2 in water, in mice, and in a culture medium with cancer cells, followed by irradiation with a laser, cause an increase in temperature, demonstrating that AuNR/SiO 2 have the ability of photothermal conversion. In addition, the cancer cells in the culture medium were found to be killed due to the increase in temperature caused by the photothermal conversion. - Highlights: • This study described the preparation of silica-coated Au nanorods (AuNR/SiO 2 ) colloidal solution. • The AuNR/SiO 2 had the ability of photothermal conversion. • The AuNR/SiO 2 also had the ability to kill cancer cells using the photothermal conversion.

  3. Corrosion of chromatic conversion coatings on Aluminium Alloys in electrical and electronic equipment

    International Nuclear Information System (INIS)

    Razavi, R.Sh.; Shahrabi, T.; Mozafarnia, R.

    2002-01-01

    Chromate conversion coating is applied on aluminum 6061. The optimum conditions for chromate bath composition and immersion time are also obtained for standard requirements provision such as corrosion resistance in salt spray test, electrical resistance and coating quality. The applied coatings are electrochemically tested in sea and distilled water. According to Tafel and cyclic polarization curves, the protection mechanism are evaluated in said environments. This evaluation has shown the formation of passive film layer, contains chromate and alumina on the base. The proper behavior of corrosion and electrical conductivity is probably due to this mechanism

  4. On the growth of conversion chromate coatings on 2024-Al alloy

    International Nuclear Information System (INIS)

    Kulinich, S.A.; Akhtar, A.S.; Susac, D.; Wong, P.C.; Wong, K.C.; Mitchell, K.A.R.

    2007-01-01

    The initial growth of chromate conversion coatings on aluminium 2024-T3 alloy has been investigated by scanning Auger microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The coating initiation is shown to be influenced by the alloy microstructure. In agreement with previously proposed growth models, Cr(VI) to Cr(III) reduction begins on the Al-Cu-Fe-Mn intermetallic second-phase particles, which act as cathodic sites, and then over the entire Al matrix surface. The less noble Al-Cu-Mg second-phase particles demonstrate dual behaviour during the initial stage of coating; some dealloy, with formation of a Cu-rich sponge-like structure, while others show no evidence for etching during the first few seconds and coating deposits on them similar to the situation for the Al-Cu-Fe-Mn particles. XPS measurements show more Cr(III) at the very initial stage of nucleation and growth, whereas the amount of Cr(VI) in the coating increases with the length of the chromating treatment. This is discussed in relation to Raman spectroscopy measurements made in a separate study

  5. Examination of Nonchromate Conversion Coatings for Aluminum Armor From Three Final Candidates Using Accelerated Corrosion and Adhesion Test Methods

    National Research Council Canada - National Science Library

    Placzankis, Brian

    2001-01-01

    This study examines the effectiveness of three final candidate nonchromate conversion coatings on aluminum alloys 5083, 7039, and 6061 coated with standard solvent-based Chemical Agent Resistant Coating (CARC) system...

  6. A two layer coating system for metallic substrates

    International Nuclear Information System (INIS)

    1979-01-01

    Plasma deposited cermet coatings are used for protecting components in sodium or helium cooled reactors. An inner layer of cermet made from a powder mixture of chromium carbide and a nickel -20% chromium and an outer layer of chromium carbide is preferred. (UK)

  7. Mechanical stability and adhesion of ceramic coatings deposited on steels

    International Nuclear Information System (INIS)

    Ignat, M.; Armann, A.; Moberg, L.; Sibieude, F.

    1991-01-01

    This paper presents the results of two sorts of deformation experiment performed on coating/substrate systems. The coating/substrate systems were constituted by coatings of titanium nitride and chromium carbide, deposited in both cases on steel substrates. The formation experiments were cyclic bending tests on macroscopic samples with chromium carbide coatings, and straining experiments performed in a scanning electron microscope on samples with titanium nitride coatings. By the analysis of our experimental results we develop an attempt to correlate the mechanical stability of the systems with the interfacial adhesion, by taking into account the internal residual stresses as an adhesion parameter. For the samples with chromium carbide coatings, the evolution of internal stresses is detected from X-ray diffractometry and discussed in terms of the observed induced damaging mechanisms, in the cyclic tests. For the samples with titanium nitride coatings, we discussed the adhesion from the microstructural observations and from the critical parameters determined during the in-situ straining experiments. (orig.)

  8. Cavitation Erosion of Plasma -sprayed Coatings

    International Nuclear Information System (INIS)

    Kim, J. J.; Park, J. S.; Jeon, S. B.

    1991-01-01

    Tungsten Carbide, chromium carbide and chromium oxide coatings were obtained on a 304 stainless steel substrate by plasma spraying technique. The coated samples were exposed to cavitation generated in distilled water by a 20KHz ultrasonic horn. The results of investigation reveal that all the samples tested are significantly eroded even within ten minutes of exposure, indicative of a short incubation period. The eroded surfaces can be characterized as having large pits and flat smooth areas. The latter may be associated with the poor cohesive strength of the coatings, which leads to the failures between individual lamellae

  9. Influence of silane films in the zinc coating post-treatment

    International Nuclear Information System (INIS)

    Costa, Marlla Vallerius da; Menezes, Tiago Lemos; Malfatti, Celia de Fraga; Muller, Iduvirges Lourdes; Oliveira, Claudia Trindade; Bonino, Jean-Pierre

    2009-01-01

    The sol-gel process based on silanes precursors appeared in recent years as a strong alternative for post-treatment to provide an optimization of the protective efficacy of zinc. Moreover, this process has been used to replace chemical chromating conversion based on hexavalent chromium. The silane films are hybrid compounds that provide characteristics of both polymeric materials, such as flexibility and functional compatibility, and ceramic materials, such as high strength and durability. The present work aimed to evaluate the influence of silane films obtained by dip-coating, on the characteristics of electrodeposited zinc coatings. The xerogel films showed a homogeneous surface and a better performance on the corrosion resistance than zinc coating without post-treatment, what can be confirmed by the electrochemical impedance results. These tests showed that application of the silane film promotes the occurrence of one more time constant compared to pure zinc system, hindering the corrosion process. (author)

  10. Tribological coatings for liquid metal and irradiation environments

    International Nuclear Information System (INIS)

    Johnson, R.N.

    1986-01-01

    Several metallurgical coatings have been developed that provide good tribological performances in high-temperature liquid sodium and that are relatively unaffected by neutron fluences to 6 X 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV). The coatings that have consistently provided the best tribological performance have been the nickel aluminide diffusion coatings created by the pack cementation process, chromium carbide or Tribaloy 700 trade mark (a nickel-base hardfacing alloy) applied by the detonation-gun process, and chromium carbide and other hardfacing alloy) applied by the detonation-gun process, and chromium carbide and other hardfacing materials applied by the electro-spark deposition process. The latter process is a relatively recent development for nuclear applications and is expected to find wide usage. Other coating processes, such as plasma-spray coating, sputtering, and chemical vapor deposition, were candidates for use on various components, but the coatings did not pass the required qualification tests or were not economically competitive. The advantages and limitations of the three selected processes are discussed, the tribological performance of the coatings is reviewed, and representative applications and their performance requirements are described

  11. Development of analytical procedures for determination of total chromium by quadrupole ICP-MS and high-resolution ICP-MS, and hexavalent chromium by HPLC-ICP-MS, in different materials used in the automotive industry.

    Science.gov (United States)

    Séby, F; Gagean, M; Garraud, H; Castetbon, A; Donard, O F X

    2003-10-01

    A European directive was recently adopted limiting the use of hazardous substances such as Pb, Hg, Cd, and Cr(VI) in vehicle manufacturing. From July 2003 a maximum of 2 g Cr(VI) will be authorised per vehicle in corrosion-preventing coatings of key components. As no standardised procedures are available to check if produced vehicles are in agreement with this directive, the objective of this work was to develop analytical procedures for total chromium and Cr(VI) determination in these materials. The first step of this study was to optimise digestion procedures for total chromium determination in plastic and metallic materials by inductively coupled plasma mass spectrometry (ICP-MS). High resolution (HR) ICP-MS was used to examine the influence of polyatomic interferences on the detection of the (52)Cr(+) and (53)Cr(+) isotopes. If there was strong interference with m/ z 52 for plastic materials, it was possible to use quadrupole ICP-MS for m/ z 53 if digestions were performed with HNO(3)+H(2)O(2). This mixture was also necessary for digestion of chromium from metallic materials. Extraction procedures in alkaline medium (NH(4)(+)/NH(3) buffer solution at pH 8.9) assisted by sonication were developed for determining Cr(VI) in four different corrosion-preventing coatings by HPLC-ICP-MS. After optimisation and validation with the only solid reference material certified for its Cr(VI) content (BCR 545; welding dusts), the efficiency of this extraction procedure for screw coatings was compared with that described in the EN ISO 3613 standard generally used in routine laboratories. For coatings comprising zinc and aluminium passivated in depth with chromium oxides the extraction procedure developed herein enabled determination of higher Cr(VI) concentrations. This was also observed for the screw covered with a chromium passivant layer on zinc-nickel. For coating comprising a chromium passivant layer on alkaline zinc the standardized extraction procedure was more efficient

  12. Effects of vacuum and ageing on Zr4/Cr3 based conversion coatings on aluminium alloys

    Science.gov (United States)

    Thirupathi, Kalaivanan; Bárczy, Pál; Vad, Kálmán; Csik, Attila; Somosvári, Béla Márton

    2018-05-01

    In this study, we investigate the impact of ageing and high vacuum on existing environmentally friendly Zr4/Cr3-based conversion coatings. The freshly formed coating undergoes several changes during ageing and exposure to high vacuum. Based on the present data, we propose that the coating formed over AA6082 and AA7075 alloys is sol-gel in nature, confirmed by secondary neutral mass spectroscopy (SNMS) using the depth profiling technique. Our findings reveal that there are elemental level changes that result in shrinkage of the coating. Most Zr ions in the coating are in the solute form, with lesser number of Cr and Al ions that disappear under high vacuum over a certain period of time. The remaining Cr, Zr and O atoms exist in a gelatinous state. During ageing, there is a continuous transition of ions from solute to gelatinous state. In addition, the deposition of coating ions is directly influenced by the substrates and their constituents. The extent of dissolution of aluminium in the conversion bath determines both Zr and Cr ion deposition. For a highly alloyed metal like AA7075, the dissolution rate is disturbed by copper and zinc.

  13. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    Science.gov (United States)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  14. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Tanigawa, Hiroyasu; Ando, Masami

    2014-01-01

    Oxide-dispersion-strengthened (ODS) steels are attractive materials for application as fuel cladding in fast reactors and first-wall material of fusion blanket. Recent studies have focused more on high-chromium ferritic (12-18 wt% Cr) ODS steels with attractive corrosion resistance properties. However, they have poor material workability, require complicated heat treatments for recrystallization, and possess anisotropic microstructures and mechanical properties. On the other hand, low-chromium ferritic/martensitic (8-9 wt% Cr) ODS steels have no such limitations; nonetheless, they have poor corrosion resistance properties. In our work, we developed a corrosion-resistant coating technique for a low-chromium ferritic/martensitic ODS steel. The ODS steel was coated with the 304 or 430 stainless steel, which has better corrosion resistances than the low-chromium ferritic/martensitic ODS steels. The 304 or 430 stainless steel was coated by changing the canning material from mild steel to stainless steel in the conventional material processing procedure for ODS steels. Microstructural observations and micro-hardness tests proved that the stainless steels were successfully coated without causing a deterioration in the mechanical property of the low-chromium ferritic/martensitic ODS steel. (author)

  15. Irradiation effects on low-friction coatings for LMFBR applications

    International Nuclear Information System (INIS)

    Ward, A.L.; Johnson, R.N.; Guthrie, G.L.; Aungst, R.C.

    1975-11-01

    A variety of wear-resistant low-friction materials has been irradiated in the EBR-II in order to assess their reponse to LMFBR environments. Pre- and postirradiation testing and examination efforts have concentrated on candidate materials for application to the wear pads on FTR ducts (fuel, control, and reflector assemblies), and a significant result has been qualification of a proprietary detonation-gun-applied chromium carbide coating which employs a Ni Cr binder. Additional materials such as Inconel-718, Haynes-273, aluminides, and various chromium carbide/binder combinations, and other application processes such as plasma-spray, weld-overlays, diffusion bonding and explosive bonding, have also been studied. The most detailed examinations were conducted on selected chromium carbide coatings and included visual inspection, weight and dimensional measurements, metallography, electron microprobe, epoxy-lift-off, and x-ray diffraction analysis. Chromium carbide coatings applied by the detonation-gun process have demonstrated a marked superiority to those applied by plasma-spray techniques

  16. Contribution of Titanium, Chromium and Carbon Buffer Interlayers to Bio-Tribological Properties of Multilayer Composites

    Directory of Open Access Journals (Sweden)

    Major Ł

    2016-09-01

    Full Text Available Research studies on bio-tribological protective coatings of titanium, chromium and carbon based have been performed. Thin films were fabricated by hybrid PLD technique (PLD supported by magnetron sputtering. Coatings consisted of two parts; the inner part (first from the substrate in each case was formed by titanium or chromium/titanium nitride or chromium nitride (Ti/TiN or Cr/Cr2N. The outer part was formed by pure DLC or multilayer DLC/Ti or Cr. No delamination was found at the interface. Titanium or chromium metallic layer was deposited as a first layer directly on the metallic substrate to avoid delamination. All individual layers were built of columnar nano-crystallites. Mechanisms of the mechanical wear of analyzed systems were presented, focusing on the cracking propagation in ball-on-disc tests using an 1 N and 5 N applied loads for 5 000 cycles. Complex microstructure analysis of presented nano-multilayer coatings, before and after mechanical tests, were performed by means of transmission electron microscopy (TEM. The highest stress concentration during mechanical uploading was moved through the multilayer coating by breaking only one layer at the time. The microstructure characterization revealed that cracking propagating in the outer part of the coating was stopped at the interface. In the case of the inner part of the coating Ti/TiN; Cr/Cr2N, ceramic layers showed brittle cracking, while metallic (Ti or Cr ones deformed plastically. Fabricated coatings were subjected under the analysis in the biomechanical system optimized to test for the direct contact with a human whole blood. The study considered physiological conditions mainly related to the temperature and humidity and the frequency of cyclic deformation of the artificial vessel into which the tested sample was introduced.

  17. [Occupational exposure to hexavalent chromium during aircraft painting].

    Science.gov (United States)

    Gherardi, M; Gatto, M P; Gordiani, A; Paci, E; Proietto, A

    2007-01-01

    Hygienists are interested in hexavalent chromium due to its genotoxic and carcinogenic effect on humans. The use of products containing hexavalent chromium is decreasing in many industrial fields because of the substitution with less-toxic compounds. In the aeronautical industry, however, the chromate are added to primer paint as a corrosion inhibitor of aircrafts surfaces: so hexavalent chromium compounds are available in many primers with a composition ranging from 10% to 13%. The application of these primers by using electrostatic guns potentially exposes painting and coating workers at high concentrations of aerosols containing Cr(VI). The aim of the present study is the evaluation of professional exposure to hexavalent chromium during aircraft painting, by adopting both environmental personal sampling and biological monitoring. To valuate workers exposure levels the personal measurements results have been compared with the exposure limit values (TLV-TWA) and the urinary chromium contents with the biological exposure indices (IBE). Moreover the strategy of coupling environmental sampling with biological monitoring seems to be a useful instrument to measure the validity of the individual protection devices.

  18. NAVAIR Progress in Assessing, Validating and Implementing Non-Chromate Primers (Briefing charts)

    Science.gov (United States)

    2011-02-09

    logistics for any new coating or coating system NAVAIR Application Areas for Hexavalent Chromium Alternatives: Status Components/ Structure... Hexavalent chromium alternatives Sacrificial Coating Post Treatment MIL-A-8625 Anodize Avionics/ Electronics Magnesium/Titanium Conversion Aluminum Anodizing...Aluminum Pretreatment Type IC Seal Type IIB Seal Type II Seal Phosphating Rinse (Aluminum)Rinse (Steel) Cadmium Zinc-Nickel Aluminum Bonding Chrome

  19. Chemical and structural analyses of subsurface crevices formed during spontaneous deposition of cerium-based conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Daimon K, E-mail: dkheller@mmm.com; Fahrenholtz, William G., E-mail: billf@mst.edu; O' Keefe, Matthew J., E-mail: mjokeefe@mst.edu

    2011-11-15

    Subsurface crevices formed during the deposition of cerium-based conversion coatings were analyzed in cross-section to assess the effect of deposition and post-treatment on the structure and chemistry of phases present. An Al-O containing phase, believed to be amorphous Al(OH){sub 3}, was formed in crevices during coating deposition. Analysis by energy dispersive X-ray spectroscopy revealed the presence of up to 1.6 at.% chlorine within the Al-O phase, which was likely a product of soluble chlorides that were present in the coating solution. Cerium was not detected within crevices. After post-treatment in an 85 deg. C aqueous phosphate solution, the chloride concentration was reduced to {<=} 0.30 at.% and electron diffraction of the Al-O phase produced ring patterns, indicating it had crystallized. Some diffraction patterns could be indexed to gibbsite (Al(OH){sub 3}), but others are believed to be a combination of hydrated aluminum hydroxides and/or oxides. Aluminum phosphate was not identified. Separately from its effect on cerium-based conversion coatings, phosphate post-treatment improved the corrosion resistance of Al 2024-T3 substrates by acting to crystallize Al(OH){sub 3} present on interior surfaces of crevices and by reducing the chloride concentration in this phase. - Highlights: {yields} Analysis of subsurface crevices formed during deposition of Ce-based conversion coatings. {yields} Phosphate post-treatment improved corrosion protection in salt spray testing. {yields} Post-treatment affected the composition and structure of regions within crevices. {yields} Crystallized Al(OH){sub 3} within crevices acted as a more effective barrier to chloride ions.

  20. Mitigation of chromium poisoning of cathodes in solid oxide fuel cells employing CuMn1.8O4 spinel coating on metallic interconnect

    Science.gov (United States)

    Wang, Ruofan; Sun, Zhihao; Pal, Uday B.; Gopalan, Srikanth; Basu, Soumendra N.

    2018-02-01

    Chromium poisoning is one of the major reasons for cathode performance degradation in solid oxide fuel cells (SOFCs). To mitigate the effect of Cr-poisoning, a protective coating on the surface of interconnect for suppressing Cr vaporization is necessary. Among the various coating materials, Cu-Mn spinel coating is considered to be a potential candidate due to their good thermal compatibility, high stability and good electronic conductivity at high temperature. In this study, Crofer 22 H meshes with no protective coating, those with commercial CuMn2O4 spinel coating and the ones with lab-developed CuMn1.8O4 spinel coating were investigated. The lab-developed CuMn1.8O4 spinel coating were deposited on Crofer 22 H mesh by electrophoretic deposition and densified by a reduction and re-oxidation process. With these different Crofer 22 H meshes (bare, CuMn2O4-coated, and CuMn1.8O4-coated), anode-supported SOFCs with Sr-doped LaMnO3-based cathode were electrochemically tested at 800 °C for total durations of up to 288 h. Comparing the mitigating effects of the two types of Cu-Mn spinel coatings on Cr-poisoning, it was found that the performance of the denser lab-developed CuMn1.8O4 spinel coating was distinctly better, showing no degradation in the cell electrochemical performance and significantly less Cr deposition near the cathode/electrolyte interface after the test.

  1. Defect structure of electrodeposited chromium layers

    International Nuclear Information System (INIS)

    Marek, T.; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U.

    2000-01-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  2. Defect structure of electrodeposited chromium layers

    Energy Technology Data Exchange (ETDEWEB)

    Marek, T. E-mail: marek@para.chem.elte.hu; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U

    2000-06-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  3. Processing and properties of electrodeposited layered surface coatings

    DEFF Research Database (Denmark)

    Horsewell, Andy

    1998-01-01

    Hard chromium, produced by conventional dir ect curl ent (DC) electrodeposition, cannot be deposited to thicknesses gl enter than about 5 mu m because of the buildup of processing stresses which cause channel cracks in the coating. Much thicker chromium coatings map be produced by depositing a la...... geometry is almost always analogous to bending, and fracture resistance is provided through deviation of the channel crack by weak interfaces, resulting in 'terrace cracking'....

  4. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Cerium–vanadium (Ce–V) conversion coating was proposed as a new pretreatment for application of electroless Ni–P coating on AM60B magnesium alloy to replace the traditional chromium oxide pretreatment. Morphology and chemical composition of the conversion coating were investigated. The subsequent Ni–P ...

  5. A Method for Effective Conversion of Saccharides to Furfural Compounds

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a method for the effective conversion of one or more mono-, di-, oligo- or polysaccharides to hydroxymethylfurfural (HMF), in an ionic liquid by means of a chromium catalyst mixture comprising chromium (II) and chromium (III) species. The invention also provides a...

  6. Effect of mechanical pre-loadings on corrosion resistance of chromium-electroplated steel rods in marine environment

    Science.gov (United States)

    Shubina Helbert, Varvara; Dhondt, Matthieu; Homette, Remi; Arbab Chirani, Shabnam; Calloch, Sylvain

    2018-03-01

    Providing high hardness, low friction coefficient, as well as, relatively good corrosion resistance, chromium-plated coatings (∼20 μm) are widely used for steel cylinder rods in marine environment. However, the standardized corrosion test method (ISO 9227, NSS) used to evaluate efficiency of this type of coatings does not take into account in-service mechanical loadings on cylinder rods. Nevertheless, the uniform initial network of microcracks in chromium coating is changing under mechanical loadings. Propagation of these microcracks explains premature corrosion of the steel substrate. The aim of the study was to evaluate relationship between mechanical loadings, propagation of microcracks network and corrosion resistance of chromium coatings. After monotonic pre-loading tests, it was demonstrated by microscopic observations that the microcracks propagation started at stress levels higher than the substrate yield stress (520 MPa). The microcracks become effective, i.e. they have instantly undergone through the whole coating thickness to reach the steel substrate. The density of effective microcracks increases with the total macroscopic level, i.e. the intercrack distance goes from 60 ± 5 μm at 1% of total strain to approximately 27 ± 2 μm at 10%. Electrochemical measurements have shown that the higher the plastic strain level applied during mechanical loading, the more the corrosion potential of the sample decreased until reaching the steel substrate value of approximately ‑0.65 V/SCE after 2 h of immersion. The polarization curves have also highligthed an increase in the corrosion current density with the strain level. Therefore, electrochemical measurements could be used to realize quick and comprehensive assesment of the effect of monotonic pre-loadings on corrosion properties of the chromium coating.

  7. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  8. Evaluation of resistant starch, glycemic index and fortificants content of premix rice coated with various concentrations and types of edible coating materials

    Science.gov (United States)

    Yulianto, W. A.; Susiati, A. M.; Adhini, H. A. N.

    2018-01-01

    The incidence of diabetes in Indonesia has been increasing year by year. Diets with a low glycemic index and high resistant starch foods can assist diabetics in controlling their blood glucose levels. Diabetics are known to have micro-nutrient deficiencies of chromium, magnesium and vitamin D that can be overcome by consuming parboiled rice fortified by use of a coating method. The fortification of parboiled rice (premix rice) can be achieved by coating with HPMC (hydroxypropyl methyl cellulose), MC (methyl cellulose), CMC (carboxyl methyl cellulose), gum arabic and rice starch. This research aimed to evaluate the levels of resistant starch, glycemic index and fortificants of premix rice coated with different concentrations and types of edible coating materials. This research used completely randomized design, with treatments to the concentrations and the types of edible coating (HPMC, CMC, MC, gum arabic and rice starch). The concentrations of edible coating were 0.15%, 0.2% and 0.25% for cellulose derivative coatings; 25%, 30%, 35% for gum arabic and 2%, 3.5% and 5% for rice starch. This research shows that fortified premix rice coated with various concentrations and types of edible coating materials is high in resistant starch and has a low glycemic index. The coating treatment affects the levels of magnesium and vitamin D, but does not affect the levels of chromium in parboiled rice. The premix rice with a low glycemic index and high nutrient content (chromium, magnesium and vitamin D) was premix rice coated by CMC 0.25% and HPMC 0.25% with glycemic indeces of 39.34 and 38.50, respectively.

  9. Corrosion resistance of Cr(III) conversion treatments applied on electrogalvanised steel and subjected to chloride containing media

    International Nuclear Information System (INIS)

    Tomachuk, C.R.; Elsner, C.I.; Di Sarli, A.R.; Ferraz, O.B.

    2010-01-01

    The corrosion resistance of pure zinc coatings can be improved through the application of suitable chemical passivation treatments. Hexavalent chromium compounds have widely been used to formulate conversion layers providing better anticorrosive protection as well as anchorage properties to painting systems. However, taking into account that they are produced using hazardous chemical compounds, the development of alternative and 'green' technologies with equivalent protective performance is a paramount purpose of many R and D laboratories working around the world. In the present paper, the corrosion behavior of zinc coatings obtained from free-cyanide alkaline baths and later subjected to a Cr 3+ based passivation treatment, with and without a sealing treatment, was studied. The experimental work involved electrochemical impedance spectroscopy measurements in 0.5 M NaCl solution, surface microstructural and morphological characterization by electronic microscopy as well as chemical analysis by EDXS. The salt spray test was also performed. The analysis and interpretation of all the data coming from this battery of tests allowed inferring that both the Cr 3+ based conversion treatment + adequate sealer presented a good corrosion resistance and, therefore, they could be used as neither a polluting nor toxic alternative to the traditional chromate coatings.

  10. Magnetic field effects on coating deposition rate and surface morphology coatings using magnetron sputtering

    International Nuclear Information System (INIS)

    Yang, Yu-Sen; Huang, Wesley

    2010-01-01

    Chromium nitride coatings exhibit superior hardness, excellent wear and oxidation resistance, and are widely applied in the die and mold industries. The aim of this study was to investigate magnetic field effects on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering. Four types of magnetic field configurations, including the magnetron sputtering system, SNSN, SNNN, and intermediate magnetron modification, are discussed in this paper. SKD11 cold work die steel and a silicon (100) chip were used as substrates in the chromium nitride depositions. The process parameters, such as target current, substrate bias, and the distance between the substrate and target, are at fixed conditions, except for the magnetic arrangement type. The experimental results showed that the deposition rates of the four types of magnetic field configurations were 1.06, 1.38, 1.67 and 1.26 µm h −1 , respectively. In these cases, the SNNN type performs more than 58% faster than the unbalanced magnetron configuration does for the deposition rate. The surface morphology of chromium nitride films was also examined by SEM and is discussed in this paper

  11. Electronic structure of chromium-doped lead telluride-based diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Skipetrov, E.P.; Pichugin, N.A.; Slyn'ko, E.I.; Slyn'ko, V.E.

    2011-01-01

    The crystal structure, composition, galvanomagnetic and oscillatory properties of the Pb 1-x-y Sn x Cr y Te (x = 0, 0.05-0.30, y ≤ 0.01) alloys have been investigated with varying matrix composition and chromium impurity concentration. It is shown that the chromium impurity atoms dissolve in the crystal lattice at least up to 1 mol.%. The following increase of the chromium concentration leads to the appearance of microscopic regions enriched with chromium and inclusions of Cr-Te compounds. A decrease of the hole concentration, a p-n-conversion of the conductivity type and a pinning of the Fermi level by the chromium resonant level are observed with increasing chromium content. Initial rates of changes in the free carrier concentration on doping are determined. The dependences of electron concentration and Fermi level on tin content are calculated by the two-band Kane dispersion relation. A diagram of electronic structure rearrangement for the chromium-doped alloys with varying the matrix composition is proposed.

  12. Establishment of Wear Resistant HVOF Coatings for 50CrMo4 Chromium Molybdenum Alloy Steel as an Alternative for Hard Chrome Plating

    Science.gov (United States)

    Karuppasamy, S.; Sivan, V.; Natarajan, S.; Kumaresh Babu, S. P.; Duraiselvam, M.; Dhanuskodi, R.

    2018-05-01

    High cost imported components of seamless steel tube manufacturing plants wear frequently and need replacement to ensure the quality of the product. Hard chrome plating, which is time consuming and hazardous, is conventionally used to restore the original dimension of the worn-out surface of the machine components. High Velocity Oxy-Fuel (HVOF) thermal spray coatings with NiCrBSi super alloy powder and Cr3C2 NiCr75/25 alloy powder applied on a 50CrMo4 (DIN-1.7228) chromium molybdenum alloy steel, the material of the wear prone machine component, were evaluated for use as an alternative for hard chrome plating in this present work. The coating characteristics are evaluated using abrasive wear test, sliding wear test and microscopic analysis, hardness test, etc. The study results revealed that the HVOF based NiCrBSi and Cr3C2NiCr75/25 coatings have hardness in the range of 800-900 HV0.3, sliding wear rate in the range of 50-60 µm and surface finish around 5 microns. Cr3C2 NiCr75/25 coating is observed to be a better option out of the two coatings evaluated for the selected application.

  13. Corrosion kinetics of 316L stainless steel bipolar plate with chromiumcarbide coating in simulated PEMFC cathodic environment

    Directory of Open Access Journals (Sweden)

    N.B. Huang

    Full Text Available Stainless steel with chromium carbide coating is an ideal candidate for bipolar plates. However, the coating still cannot resist the corrosion of a proton exchange membrane fuel cell (PEMFC environment. In this work, the corrosion kinetics of 316L stainless steel with chromium carbide is investigated in simulated PEMFC cathodic environment by combining electrochemical tests with morphology and microstructure analysis. SEM results reveal that the steel’s surface is completely coated by Cr and chromium carbide but there are pinholes in the coating. After the coated 316L stainless steel is polarized, the diffraction peak of Fe oxide is found. EIS results indicate that the capacitive resistance and the reaction resistance first slowly decrease (2–32 h and then increase. The potentiostatic transient curve declines sharply within 2000 s and then decreases slightly. The pinholes, which exist in the coating, result in pitting corrosion. The corrosion kinetics of the coated 316L stainless steel are modeled and accords the following equation: i0 = 7.6341t−0.5, with the corrosion rate controlled by ion migration in the pinholes. Keywords: PEMFC, Metal bipolar plate, Chromium carbide coating, Corrosion kinetics, Pitting corrosion

  14. Aluminum and Other Coatings for the Passivation of Tritium Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Korinko, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-16

    Using a highly sensitive residual gas analyzer, the off-gassing of hydrogen, water, and hydrocarbons from surface-treated storage vessels containing deuterium was measured. The experimental storage vessels were compared to a low-off-gassing, electro-polished 304L canister. Alternative vessels were made out of aluminum, or were coatings on 304L steel. Coatings included powder pack aluminide, electro-plated aluminum, powder pack chromide, dense electro-plated chromium, copper plated, and copper plated with 25 and 50 percent nano-diamond. Vessels were loaded with low pressure deuterium to observe exchange with protium or hydrogen as observed with formation of HD and HDO. Off gas of D2O or possible CD4 was observed at mass 20. The main off-gas in all of the studies was H2. The studies indicated that coatings required significant post-coating treatment to reduce off-gas and enhance the permeation barrier from gases likely added during the coating process. Dense packed aluminum coatings needed heating to drive off water. Electro-plated aluminum, chromium and copper coatings appeared to trap hydrogen from the plating process. Nano-diamond appeared to enhance the exchange rate with hydrogen off gas, and its coating process trapped significant amounts of hydrogen. Aluminum caused more protium exchange than chromium-treated surfaces. Aluminum coatings released more water, but pure aluminum vessels released small amounts of hydrogen, little water, and generally performed well. Chromium coating had residual hydrogen that was difficult to totally outgas but otherwise gave low residuals for water and hydrocarbons. Our studies indicated that simple coating of as received 304L metal will not adequately block hydrogen. The base vessel needs to be carefully out-gassed before applying a coating, and the coating process will likely add additional hydrogen that must be removed. Initial simple bake-out and leak checks up to 350° C for a few hours was

  15. Ti substrate coated with composite Cr–MoO2 coatings as highly selective cathode materials in hypochlorite production

    International Nuclear Information System (INIS)

    Lačnjevac, U.Č.; Jović, B.M.; Gajić-Krstajić, Lj.M.; Kovač, J.; Jović, V.D.; Krstajić, N.V.

    2013-01-01

    Highlights: ► Composite Cr–MoO 2 coatings were prepared by electrodeposition onto mild steel and Ti substrates. ► Ti/Cr–MoO 2 electrodes were investigated as cathode materials for the hypochlorite production. ► Selectivity of electrodes increased with the increase of the content of MoO 2 in the coating. ► The current efficiency for the HER exceeded 97% at the best cathode. ► The suppression of hypochlorite reduction is caused by the presence of Cr 2 O 3 at the surface. -- Abstract: The aim of this work was to investigate the possibility of preparation of the composite Cr–MoO 2 coatings onto steel and titanium substrates as cathode materials with high selective properties which imply the suppression of hypochlorite reduction as a side reaction during hypochlorite commercial production. The electrodes were prepared by simultaneous deposition of chromium and suspended MoO 2 particles on titanium substrate from acid chromium (VI) bath. The current efficiency for electrodeposition of the composite coatings did not vary significantly with the concentration of suspended MoO 2 particles. The content of molybdenum in the deposits was relatively low (0.2–1.5 at.%) and increased with increasing the concentration of suspended MoO 2 particles in the bath, in the range from 0 to 10 g dm −3 . With further increase in the concentration of MoO 2 , the content of molybdenum in the coating varied insignificantly. X-ray photoelectron spectroscopy-XPS and EDS analysis were applied to analyze elemental composition and chemical bonding of elements on the surface and in the sub-surface region of obtained coatings. When the concentration of MoO 2 particles in the bath was raised above 5 g dm −3 , the appearance of the coating changed from the typical pure chromium deposit to needle-like deposit with the appearance of black inclusions on the surface. XPS analysis and corresponding Cr 2p spectra showed the presence of chromium oxide, probably Cr 2 O 3 with Cr(3

  16. Characterization and corrosion behavior of phytic acid coatings, obtained by chemical conversion on magnesium substrates in physiological solution; Caracterizacion y comportamiento frente a la corrosion de recubrimientos de acido fitico, obtenidos por conversion quimica, sobre substratos de magnesio en solucion fisiologica

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Alvarado, L. A.; Lomeli, M. A.; Hernandez, L. S.; Miranda, J. M.; Narvaez, L.; Diaz, I.; Garcia-Alonso, M. C.; Escudero, M. L.

    2014-10-01

    In order to improve the corrosion resistance of biodegradable magnesium and AZ31 magnesium alloy implants, a phytic acid coating has been applied on both substrates and their protective effect against corrosion has been assessed. The morphology and the chemical nature of the conversion coating were analyzed by SEM/EDX, XRD and FTIR. The spectra showed that the conversion coating was amorphous, and it was composed of Mg, O, and P on magnesium surface, along with Al, Zn and C on AZ31 alloy. The main coating components were chelate compounds formed by phytic acid and metallic ions. The corrosion resistance of bare and coated samples was evaluated by potentiodynamic polarization technique in Hank's solution at 37 degree centigrade. The results indicate that phytic acid conversion coatings provided a very effective protection to the magnesium substrates studied. (Author)

  17. Work Environment Factors and Their Influence on Urinary Chromium Levels in Informal Electroplating Workers

    Science.gov (United States)

    Setyaningsih, Yuliani; Husodo, Adi Heru; Astuti, Indwiani

    2018-02-01

    One of the informal sector which absorbs labor was electroplating business. This sector uses chromium as coating material because it was strong, corrosion resistant and strong. Nonetheless hexavalent chromium is highly toxic if inhaled, swallowed and contact with skin. Poor hygiene, the lack of work environment factors and sanitation conditions can increase the levels of chromium in the body. This aimed of this study was to analyze the association between work environment factors and levels of urinary chromium in informal electroplating worker. A Purposive study was conducted in Tegal Central Java. The research subjects were 66 male workers. Chi Square analysis was used to establish an association between work environment factors and level of urinary chromium. There is a relationship between heat stress and wind direction to the chromium levels in urine (p 0.05). This explains that work environment factors can increase chromium levels in the urine of informal electroplating workers.

  18. Work Environment Factors and Their Influence on Urinary Chromium Levels in Informal Electroplating Workers

    Directory of Open Access Journals (Sweden)

    Setyaningsih Yuliani

    2018-01-01

    Full Text Available One of the informal sector which absorbs labor was electroplating business. This sector uses chromium as coating material because it was strong, corrosion resistant and strong. Nonetheless hexavalent chromium is highly toxic if inhaled, swallowed and contact with skin. Poor hygiene, the lack of work environment factors and sanitation conditions can increase the levels of chromium in the body. This aimed of this study was to analyze the association between work environment factors and levels of urinary chromium in informal electroplating worker. A Purposive study was conducted in Tegal Central Java. The research subjects were 66 male workers. Chi Square analysis was used to establish an association between work environment factors and level of urinary chromium. There is a relationship between heat stress and wind direction to the chromium levels in urine (p 0.05. This explains that work environment factors can increase chromium levels in the urine of informal electroplating workers.

  19. Hexavalent Chromium Substitution Projects

    Science.gov (United States)

    2011-05-12

    Hexavalent Chromium Substitution Projects Date (12 May 2011) Gene McKinley ASC/WNV (937) 255-3596 Gene.McKinley@wpafb.af.mil Aeronautical Systems...valid OMB control number. 1. REPORT DATE 12 MAY 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Hexavalent ...A-10) – AETC (T-6, T-38 and T1A) • Both Cr Primers & Non-Cr primers as well as Cr Surface Treatment – F-22 8 Non- Chrome Tie-coat & touch-up

  20. Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency

    Directory of Open Access Journals (Sweden)

    Gur Mittelman

    2016-09-01

    Full Text Available Utilizing self-assembled nano-structured coatings on top of existing solar cells has thepotential to increase the total quantum efficiency of the cell using a simple and cheap process. In ourwork we have exploited the controlled absorption of nano-crystal with different band gaps to realizedown conversion artificial antennas that self-assembled on the device surface. The UV sun light isconverted to the visible light enhancing the solar cell performance in two complementary routes; a.protecting the solar cell and coatings from the UV illumination and therefore reducing the UVradiation damage. b. enhancing the total external quantum efficiency of the cell by one percent. Thisis achieved using a simple cheap process that can be adjusted to many different solar cells.

  1. Differences in proliferation, differentiation, and cytokine production by bone cells seeded on titanium-nitride and cobalt-chromium-molybdenum surfaces

    NARCIS (Netherlands)

    van Hove, R.P.; Nolte, P.A.; Semeins, C.M.; Klein-Nulend, J.

    2013-01-01

    Titanium-nitride coating is used to improve cobalt-chromium-molybdenum implant survival in total knee arthroplasty, but its effect on osteoconduction is unknown. Chromium and cobalt ions negatively affect the growth and metabolism of cultured osteoblasts while enhancing osteoclastogenic cytokine

  2. Prospective, multi-center evaluation of a silicon carbide coated cobalt chromium bare metal stent for percutaneous coronary interventions: Two-year results of the ENERGY Registry

    International Nuclear Information System (INIS)

    Erbel, Raimund; Eggebrecht, Holger; Roguin, Ariel; Schroeder, Erwin; Philipp, Sebastian; Heitzer, Thomas; Schwacke, Harald; Ayzenberg, Oded; Serra, Antonio; Delarche, Nicolas; Luchner, Andreas; Slagboom, Ton

    2014-01-01

    Background: Novel bare metal stents with improved stent design may become a viable alternative to drug-eluting stents in certain patient groups, particularly, when long-term dual antiplatelet therapy should be avoided. Purpose: The ENERGY registry aimed to assess the safety and benefits of a cobalt–chromium thin strut bare metal stent with a passive coating in a large series of patients under real-world conditions. Methods and materials: This prospective registry recruited 1016 patients with 1074 lesions in 48 centers from April to November 2010. The primary endpoint was the rate of major adverse cardiac events (MACEs), a composite of cardiac death, myocardial infarction and clinically driven target lesion revascularization. Results: More than half of the lesions (61.0%) were type A/B1 lesions, mean lesion length was 14.5 ± 6.5 mm and mean reference vessel diameter 3.2 ± 0.5 mm. MACE rates at 6, 12 and 24 months were 4.9%, 8.1% and 9.4%, target lesion revascularization rates 2.8%, 4.9% and 5.4% and definite stent thrombosis rates 0.5%, 0.6% and 0.6%. Subgroups showed significant differences in baseline and procedural characteristics which did not translate into significantly different clinical outcomes. Specifically, MACE rates at 24 months were 13.5% in diabetics, 8.6% in small stents and 9.6% in acute coronary syndrome patients. Conclusion: The population of ENERGY reflects real-world conditions with bare metal stents being mainly used in simple lesions. In this setting, percutaneous coronary intervention using a cobalt–chromium thin strut bare metal stent with a passive coating showed very good results up to 24 months. (ClinicalTrials.gov:NCT01056120) Summary for annotated table of contents: The ENERGY international registry evaluated the safety and benefits of a cobalt–chromium thin strut bare metal stent with passive coating in 1016 patients under real-world conditions until 2 years. Results were encouraging with a low composite rate of cardiac death

  3. Prospective, multi-center evaluation of a silicon carbide coated cobalt chromium bare metal stent for percutaneous coronary interventions: Two-year results of the ENERGY Registry

    Energy Technology Data Exchange (ETDEWEB)

    Erbel, Raimund, E-mail: erbel@uk-essen.de [Department of Cardiology, University of Duisburg-Essen, Essen (Germany); Eggebrecht, Holger [Cardioangiological Center Bethanien (CCB), Frankfurt (Germany); Roguin, Ariel [Department of Cardiology, Rambam Medical Center, Haifa (Israel); Schroeder, Erwin [Division of Cardiovascular Medicine, Cliniques Universitaires de Mont-Godinne, Yvoir (Belgium); Philipp, Sebastian [Department Internal Medicine/Cardiology, Elbe Klinikum Stade, Stade (Germany); Heitzer, Thomas [Department of Cardiology, Heart Center Dortmund, Dortmund (Germany); Schwacke, Harald [Department of Internal Medicine, Diakonissen-Stiftungs- Krankenhaus Speyer (Germany); Ayzenberg, Oded [The Heart Institute, Kaplan Medical Center, Rehovot (Israel); Serra, Antonio [Servicio de Cardiología, Hospital de la Santa Creu i Sant Pau, Barcelona, España (Spain); Delarche, Nicolas [Cardiology unit, Pau General Hospital, Pau (France); Luchner, Andreas [Department of Internal Medicine/Cardiology, Universitätsklinikum Regensburg (Germany); Slagboom, Ton [Department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam (Netherlands)

    2014-11-15

    Background: Novel bare metal stents with improved stent design may become a viable alternative to drug-eluting stents in certain patient groups, particularly, when long-term dual antiplatelet therapy should be avoided. Purpose: The ENERGY registry aimed to assess the safety and benefits of a cobalt–chromium thin strut bare metal stent with a passive coating in a large series of patients under real-world conditions. Methods and materials: This prospective registry recruited 1016 patients with 1074 lesions in 48 centers from April to November 2010. The primary endpoint was the rate of major adverse cardiac events (MACEs), a composite of cardiac death, myocardial infarction and clinically driven target lesion revascularization. Results: More than half of the lesions (61.0%) were type A/B1 lesions, mean lesion length was 14.5 ± 6.5 mm and mean reference vessel diameter 3.2 ± 0.5 mm. MACE rates at 6, 12 and 24 months were 4.9%, 8.1% and 9.4%, target lesion revascularization rates 2.8%, 4.9% and 5.4% and definite stent thrombosis rates 0.5%, 0.6% and 0.6%. Subgroups showed significant differences in baseline and procedural characteristics which did not translate into significantly different clinical outcomes. Specifically, MACE rates at 24 months were 13.5% in diabetics, 8.6% in small stents and 9.6% in acute coronary syndrome patients. Conclusion: The population of ENERGY reflects real-world conditions with bare metal stents being mainly used in simple lesions. In this setting, percutaneous coronary intervention using a cobalt–chromium thin strut bare metal stent with a passive coating showed very good results up to 24 months. (ClinicalTrials.gov:NCT01056120) Summary for annotated table of contents: The ENERGY international registry evaluated the safety and benefits of a cobalt–chromium thin strut bare metal stent with passive coating in 1016 patients under real-world conditions until 2 years. Results were encouraging with a low composite rate of cardiac death

  4. Biodegradation of hexavalent chromium (Cr+6) in wastewater using Pseudomonas sp. and Bacillus sp. bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Muhammad [Department of Chemical Engineering, American University of Sharjah (United Arab Emirates)

    2013-07-01

    The recovery of toxic metal compounds is a deep concern in all industries. Hexavalent chromium is particularly worrying because of its toxic influence on human health. In this paper, biodegradation of hexavalent chromium (Cr+6) present in wastewater has been studied using two different bacterial strains; Pseudomonas sp. and Bacillus sp. A chemostat (with and without recycle of cells) with 10 L liquid culture volume was used to study the substrate and the biomass cell concentrations with time. Also, the degree of substrate conversion was studied by the varying the dilution rate as an independent parameter. The dilution rate (ratio of feed flow rate to the culture volume) was varied by varying the feed volumetric rate from 110-170 mL/h for inlet hexavalent chromium concentrations of 70 mg/dm3. The results show that a chemostat with recycle gives a better performance in terms of substrate conversion than a chemostat without a recycle. Moreover, the degree of substrate conversion decreases as the dilution rate is increased. Also, Bacillus sp. was found to give higher conversions compared to pseudomonas sp.

  5. Corrosion properties of chromia based eco - friendly coatings on mild steel

    Directory of Open Access Journals (Sweden)

    V. Brozek

    2016-10-01

    Full Text Available Ceramic nanocrystalline coatings of chromium oxide (III on steel S235JRH-1.0038 (EN 10025-1 were prepared using the liquid precursor plasma spraying (LPPS method from ammonia dichromate (VI. Their structure and anti – corrosion properties were compared to the standard chromium oxide (III coating prepared by thermal spraying. The newly prepared coatings had very high adhesion and minimal porosity. Anticorrosion properties were characterized by the means of the electrochemical impedance spectroscopy (EIS, measuring the charge transfer resistance Rct and capacitance of electrical double layer CPEdl in the 0,5 mol/l NaCl. Coatings of Cr2 O3 prepared by the LPPS method showed unambiguously improved anti - corrosion properties.

  6. Corrosion resistance of Cr(III) conversion treatments applied on electrogalvanised steel and subjected to chloride containing media

    Energy Technology Data Exchange (ETDEWEB)

    Tomachuk, C.R., E-mail: celia@br.surtec.com [Corrosion and Degradation Division, National Institute of Technology, Av. Venezuela, 82 sala 608, CEP 20081-312, Rio de Janeiro, RJ (Brazil); Elsner, C.I. [CIDEPINT: Research and Development Center in Paint Technology (CIC-CCT-CONICET-La Plata), Av. 52 s/n entre 121 y 122, CP B1900AYB, La Plata (Argentina); Di Sarli, A.R., E-mail: direccion@cidepint.gov.ar [CIDEPINT: Research and Development Center in Paint Technology (CIC-CCT-CONICET-La Plata), Av. 52 s/n entre 121 y 122, CP B1900AYB, La Plata (Argentina); Ferraz, O.B. [Corrosion and Degradation Division, National Institute of Technology, Av. Venezuela, 82 sala 608, CEP 20081-312, Rio de Janeiro, RJ (Brazil)

    2010-01-15

    The corrosion resistance of pure zinc coatings can be improved through the application of suitable chemical passivation treatments. Hexavalent chromium compounds have widely been used to formulate conversion layers providing better anticorrosive protection as well as anchorage properties to painting systems. However, taking into account that they are produced using hazardous chemical compounds, the development of alternative and 'green' technologies with equivalent protective performance is a paramount purpose of many R and D laboratories working around the world. In the present paper, the corrosion behavior of zinc coatings obtained from free-cyanide alkaline baths and later subjected to a Cr{sup 3+} based passivation treatment, with and without a sealing treatment, was studied. The experimental work involved electrochemical impedance spectroscopy measurements in 0.5 M NaCl solution, surface microstructural and morphological characterization by electronic microscopy as well as chemical analysis by EDXS. The salt spray test was also performed. The analysis and interpretation of all the data coming from this battery of tests allowed inferring that both the Cr{sup 3+} based conversion treatment + adequate sealer presented a good corrosion resistance and, therefore, they could be used as neither a polluting nor toxic alternative to the traditional chromate coatings.

  7. Ecologically sustainable coating technology. BehrOxal process; Oekologisch nachhaltige Beschichtungstechnologie. BehrOxal-Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-10-15

    Since 1st July, 2007, any more hexavalent chromium (chromium(VI)) has to be used in vehicles. Two years ago, Behr GmbH and Co. KG (Stuttgart, Federal Republic of Germany) developed a new procedure in order to coat evaporators in air conditioners perfectly chrome-free. Since one year, the coating process is used serially. The resonance of the customers is positively throughout - so the manufacturer.

  8. Thin coatings for heavy industry: Advanced coatings for pipes and valves

    Science.gov (United States)

    Vernhes, Luc

    Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with government regulations, original equipment manufacturers (OEMs) must maintain their products in state-of-the-art condition. The first valves were invented over 3,000 years ago to supply water to farms and cities. They were made with bronze alloys, providing good corrosion resistance and acceptable tribological performance. The industrial revolution drove manufacturers to develop new and improved tribological materials. In the 20th century, innovative alloys such as Monel copper-nickel and Stellite cobalt-chrome as well as hard chrome plating were introduced to better control tribological properties and maximize in-service life. Since then, new materials have been regularly introduced to extend the range of applications for valves. For example, Teflon fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in research to develop the most suitable coatings for specific uses. There is increasing evidence that the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The overall objectives of this thesis were 1) to report on advances in the development of structurally controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other

  9. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    Energy Technology Data Exchange (ETDEWEB)

    Durmaz, M., E-mail: mdurmaz@sakarya.edu.tr; Abakay, E.; Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey); Kilinc, B. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layer formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr{sub 2}N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV{sub 0.025}. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.

  10. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    International Nuclear Information System (INIS)

    Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.; Kilinc, B.

    2015-01-01

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layer formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr 2 N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV 0.025 . For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results

  11. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    Science.gov (United States)

    Durmaz, M.; Kilinc, B.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layer formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr2N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV0.025. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.

  12. Steam initiated hydrotalcite conversion coatings

    DEFF Research Database (Denmark)

    Zhou, Lingli; Friis, Henrik; Roefzaad, Melanie

    2018-01-01

    A facile process of exploiting high-temperature steam to deposit nvironmentally friendly hydrotalcite (HT) coatings on Al alloy 6060 was developed in a spray system. Scanning electron microscopy showed the formationf a continuous and conformal coating comprised of a compact mass of crystallites. ...

  13. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  14. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    Energy Technology Data Exchange (ETDEWEB)

    Cai Jingshun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Cao Fahe, E-mail: nelson_cao@zju.edu.cn [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Chang Linrong; Zheng Junjun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Zhang Jianqing; Cao Chunan [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-02-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  15. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    International Nuclear Information System (INIS)

    Cai Jingshun; Cao Fahe; Chang Linrong; Zheng Junjun; Zhang Jianqing; Cao Chunan

    2011-01-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  16. Synthesis and evaluation of MgF2 coatings by chemical conversion on magnesium alloys for producing biodegradable orthopedic implants of temporary use

    International Nuclear Information System (INIS)

    Casanova, P Y; Jaimes, K J; Parada, N J; Viejo, F; Hernández-Barrios, C A; Aparicio, M; Coy, A E

    2013-01-01

    The aim of the present work was the synthesis of biodegradable MgF 2 coatings by chemical conversion on the commercial Elektron 21 and AZ91D magnesium alloys, in aqueous HF solutions for different concentrations and temperatures. The chemical composition and morphology of the coatings were analyzed by scanning electron microscopy (SEM-EDX) and X-ray diffraction (XRD). On the other hand, their corrosion behavior was evaluated by gravimetric and electrochemical measurements in Hank's solution at 37°C for different immersion times. The experimental results revealed that chemical conversion in HF produced MgF 2 coatings which corrosion resistance was enhanced by increasing the HF concentration. Further, the microstructure and composition of the base alloy played a key role on the growth and degradation mechanisms of the MgF 2 coatings

  17. Characterization of black and white chromium electrodeposition films. Surface and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, M.; Palomar-Pardave, M. [Departamento de Materiales, UAM-Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, Mexico D.F. 02200 (Mexico); Barrera, E. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana - Iztapalapa, Av. Rafael Atlixco No. 186, Col. Vicentina, Mexico, D.F. 09340 (Mexico); Huerta, L.; Muhl, S. [Instituto de Investigaciones en Materiales, UNAM, Mexico, D.F. 04510 (Mexico)

    2003-11-01

    Thin films of black and white chromium have been prepared by electrodeposition on stainless steel substrates. The potentiodynamic and potentiostatic technique was used in order to prepare these materials. XRD, XPS, SEM and spectral reflectance in the UV-Visible-near IR and medium IR ranges, for both films coatings were characterized. From the SEM analysis, it was found while the black chromium has a lamellar morphology that leads to a strong dispersion level, the white one has a flat morphology. The chemical composition of these thin films was determined by XRD and XPS technique. The XRD results showed that in both cases chromium is the main bulk chemical compound in both films. However, from XPS analysis of these surfaces, it was possible to determine that the most external layers of the films are made of different kinds of chromium compounds. The black chromium film has better optical properties to transform solar energy into thermal energy, and these properties remain practically constant even when heat treated to a high temperature, 400 C. On the other hand the white chromium film is a better substrate for hydrogen evolution reactions than the black one.

  18. Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wen; Li, Wenfang, E-mail: mewfli@163.com; Mu, Songlin; Fu, Nianqing; Liao, Zhongmiao

    2017-05-31

    Highlights: • The surface roughness and surface free energy of the AA6063 are significantly increased after TZVCC treatment. • The anti-corrosion performance of the AA6063 is effectively enhanced after TZVCC treatment. • Both the corrosion resistance and wet adhesion properties of the epoxy coating on the AA6063 are noticeably improved after TZVCC treatment. - Abstract: In this study, a Ti/Zr/V conversion coating (TZVCC) was deposited on the surface of aluminum alloy 6063 (AA6063) as an alternative of the chromate conversion coating (CCC). Both the TZVCC treated AA6063 (TZVCC/AA6063) and CCC treated AA6063 (CCC/AA6063) were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and contact angle measuring device. The anti-corrosion performance of the TZVCC/AA6063 and CCC/AA6063 was evaluated by electrochemical measurements and neutral salt spray tests. It showed that both the surface roughness and surface free energy of the AA6063 were significantly increased after TZVCC treatment. The anti-corrosion performance of TZVCC/AA6063 was superior to that of CCC/AA6063. In addition, the effects of the TZVCC and CCC on the adhesion properties and anti-corrosion performance of epoxy coating applied on samples were examined by pull-off tests and electrochemical impedance spectroscopy (EIS). The dry, wet and recovery adhesive strengths of the epoxy coating on TZVCC treated samples (epoxy coated TZVCC/AA6063) were very close to those of epoxy coating on CCC treated ones (epoxy coated CCC/AA6063). The epoxy coated TZVCC/AA6063 showed better corrosion resistance than the epoxy coated CCC/AA6063 and epoxy coated AA6063.

  19. Corrosion mitigation of rare-earth metals containing magnesium EV31A-T6 alloy via chrome-free conversion coating treatment

    International Nuclear Information System (INIS)

    Hamdy, Abdel Salam; Butt, Darryl P.

    2013-01-01

    Highlights: • Protective stannate coatings have been proposed for rare-earth-EV31A-T6 magnesium alloy. • A simple coating method based on direct treatment of EV31A-T6 in a diluted stannate was found promising. • Surface modification prior to stannate coating offer no substantial advantage over directly coating. • Stannate conversion coatings decrease corrosion rates by a factor of 1/7. • The coating does not display any self-healing characteristics as shown in AZ91D. -- Abstract: Magnesium alloys posses unique mechanical and physical characteristics making them attractive light-weight materials for several strategic industries such as electronics, computer, automotive and aerospace. Due to their high chemical reactivity and poor corrosion resistance, the protection of magnesium alloys from corrosion is one of the hottest topics in materials science and engineering. Addition of rare-earth metals (RE) as alloying elements to magnesium alloys is one of the common approaches to improve their mechanical properties and, sometimes, the corrosion resistance. However, the potential difference between the RE metals phase formed in the Mg matrix enhances the galvanic corrosion at the interfaces where RE metals inert phase acts as cathode and the active Mg matrix acts as anode. This paper introduces a simple one-step clean conversion coating treatment for improving the protection of RE containing magnesium EV31A-T6 alloy in Cl − media

  20. Selective removal of chromium from sulphuric acid leach liquor of ...

    African Journals Online (AJOL)

    ... removed in multiple batch extractions from the leach liquor and titanium losses were minimal (< 1%). The chromium content of extracted solutions was reduced to less than 1 ppm and thermal hydrolysis of these solutions yielded white titanium(IV) oxide pigments that are suitable for use in the coatings pigment industry.

  1. Influence of Mn-Co Spinel Coating on Oxidation Behavior of Ferritic SS Alloys for SOFC Interconnect Applications

    DEFF Research Database (Denmark)

    Venkatachalam, Vinothini; Molin, Sebastian; Kiebach, Wolff-Ragnar

    2014-01-01

    Chromia forming ferritic stainless steels (SS) are being considered for intermediate temperature solid oxide fuel cell interconnect applications. However, protective coatings are in general needed to avoid chromium volatilization and poisoning of cathodes from chromium species. Mn-Co spinel is one...... of the promising candidates to prevent chromium outward diffusion, improve oxidation resistance and ensure high electrical conductivity over the lifetime of interconnects. In the present study, uniform and well adherent Mn-Co spinel coatings were produced on Crofer 22APU using electrophoretic deposition (EPD...

  2. Appearance of a conductive carbonaceous coating in a CO2 dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency

    International Nuclear Information System (INIS)

    Belov, Igor; Paulussen, Sabine; Bogaerts, Annemie

    2016-01-01

    This work examines the properties of a dielectric barrier discharge (DBD) reactor, built for CO 2 decomposition, by means of electrical characterization, optical emission spectroscopy and gas chromatography. The discharge, formed in an electronegative gas (such as CO 2 , but also O 2 ), exhibits clearly different electrical characteristics, depending on the surface conductivity of the reactor walls. An asymmetric current waveform is observed in the metal-dielectric (MD) configuration, with sparse high-current pulses in the positive half-cycle (HC) and a more uniform regime in the negative HC. This indicates that the discharge is operating in two alternating regimes with rather different properties. At high CO 2 conversion regimes, a conductive coating is deposited on the dielectric. This so-called coated MD configuration yields a symmetric current waveform, with current peaks in both the positive and negative HCs. In a double-dielectric (DD) configuration, the current waveform is also symmetric, but without current peaks in both the positive and negative HC. Finally, the DD configuration with conductive coating on the inner surface of the outer dielectric, i.e. so-called coated DD, yields again an asymmetric current waveform, with current peaks in the negative HC. These different electrical characteristics are related to the presence of the conductive coating on the dielectric wall of the reactor and can be explained by an increase of the local barrier capacitance available for charge transfer. The different discharge regimes affect the CO 2 conversion, more specifically, the CO 2 conversion is lowest in the clean DD configuration. It is somewhat higher in the coated DD configuration, and still higher in the MD configuration. The clean and coated MD configuration, however, gave similar CO 2 conversion. These results indicate that the conductivity of the dielectric reactor walls can highly promote the development of the high-amplitude discharge current pulses and

  3. Wear-resistant EBW coatings based on a TiB{sub 2}-Fe SHS composite with a high-alloy matrix

    Energy Technology Data Exchange (ETDEWEB)

    Galchenko, Nina K.; Kolesnikova, Ksenia A.; Belyuk, Sergei I. [Institute of Strength Physics and Materials Science SB RAS, Tomsk (Russian Federation); Semenov, Grigoriy V., E-mail: Kolesnikova_KsAl@mail.ru [Tomsky Instrument Manufacturing Company, Tomsk (Russian Federation)

    2011-07-01

    In the work, we studied the structure and properties of “titanium diboride – high-chromium cast iron binder” coatings obtained by electron beam welding. It is demonstrated that the phase and structure formation of the composite coatings depends on the content of high-chromium cast iron in the deposited mixture. Varying the volume fraction of the hardening compounds and the chemical composition of the metal binder makes possible wear-resistant coatings with specified operating characteristics. Key words: electron beam technology, composite coatings.

  4. Advanced Powder Coating Systems for Military Applications

    Science.gov (United States)

    2011-05-01

    UVCPC • Conclusions • DoD spends billions of dollars annually on protective organic coatings – Hexavalent chrome primer use still widespread – Contains...Elimination of Hazardous Air Pollutants (HAP) • Reduction/Elimination of ESOH Concerns – Elimination of hexavalent chromium – Elimination of free...production and release; hexavalent chromium; free isocyanates; up to 72 hrs “dry to fly” time Longer cure times than traditional primers and

  5. Roll-coating fabrication of flexible large area small molecule solar cells with power conversion efficiency exceeding 1%

    DEFF Research Database (Denmark)

    Liu, Wenqing; Liu, Shiyong; Zawacka, Natalia Klaudia

    2014-01-01

    All solution-processed flexible large area small molecule bulk heterojunction solar cells were fabricated via roll-coating technology. Our devices were produced from slot-die coating on a lab-scale mini roll-coater under ambient conditions without the use of spin-coating or vacuum evaporation.......01%, combined with an open circuit voltage of 0.73 V, a short-circuit current density of 3.13 mA cm (2) and a fill factor of 44% were obtained for the device with SM1, which was the first example reported for efficient roll-coating fabrication of flexible large area small molecule solar cells with PCE exceeding...... methods. Four diketopyrrolopyrrole based small molecules (SMs 1-4) were utilized as electron donors with (6,6)phenyl- C61-butyric acid methyl ester as an acceptor and their photovoltaic performances based on roll-coated devices were investigated. The best power conversion efficiency (PCE) of 1...

  6. Self-healing Li-Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy

    Science.gov (United States)

    Zhang, Caixia; Luo, Xiaohu; Pan, Xinyu; Liao, Liying; Wu, Xiaosong; Liu, Yali

    2017-02-01

    A self-healing Li-Al layered double hydroxide conversion coating (LCC) modified with aspartic acid (ALCC) was prepared on 6N01 Al alloy for corrosion protection. Scanning electron microscopy (SEM) showed that a compact thin film has been successfully formed on the alloy. X-ray diffraction (XRD) and FT-IR spectra proved that species of aspartic acid anions were successfully intercalated into LCC. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and neutral salt spray (NSS) testing showed that the resultant ALCC could provide effective corrosion protection for the Al alloy. During immersion of the ALCC-coated alloy in 3.5% NaCl solution, new film was formed in the area of artificially introduced scratch, indicating its self-healing capability. XPS results demonstrated that Cl- anions exchange partial Asp anions according to the change content of element on conversion coating. From the above results, the possible mechanism via exchange/self-assembly was proposed to illustrate the phenomenon of self-healing.

  7. The effects of addition of poly(vinyl) alcohol (PVA) as a green corrosion inhibitor to the phosphate conversion coating on the anticorrosion and adhesion properties of the epoxy coating on the steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir; Vakili, H.; Amini, R.

    2015-02-01

    Highlights: • Room temperature zinc phosphate coating was applied on the surface of steel sample. • Poly(vinyl) alcohol was added to the phosphating bath as a green corrosion inhibitor. • The adhesion and anticorrosion properties of the epoxy coating were investigated. • PVA decreased the phosphate crystal size and porosity. • PVA enhanced the corrosion protection and adhesion properties of the epoxy coating. - Abstract: Steel substrates were chemically treated by room temperature zinc phosphate conversion coating. Poly(vinyl) alcohol (PVA) was added to the phosphate solution as a green corrosion inhibitor. Finally, the epoxy/polyamide coating was applied on the untreated and surface treated steel samples. The effects of PVA on the morphological properties of the phosphate coating were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measuring device. The adhesion properties of the epoxy coatings applied on the surface treated samples were investigated by pull-off and cathodic delamination tests. Also, the anticorrosion properties of the epoxy coatings were studied by electrochemical impedance spectroscopy (EIS). Results showed that addition of PVA to the phosphate coating increased the population density of the phosphate crystals and decreased the phosphate grain size. The contact angle of the steel surface treated by Zn-PVA was lower than Zn treated one. The corrosion resistance of the epoxy coating was considerably increased on the steel substrate treated by zinc phosphate conversion coating containing PVA. PVA also enhanced the adhesion properties of the epoxy coating to the steel surface and decreased the cathodic delamination significantly.

  8. Corrosion resistant coatings suitable for elevated temperature application

    Science.gov (United States)

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  9. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  10. Advances In Hexavalent Chromium Removal At Hanford

    International Nuclear Information System (INIS)

    Neshem, D.O.; Riddelle, J.

    2012-01-01

    At the Hanford Site, chromium was used as a corrosion inhibitor in the reactor cooling water and was introduced into the groundwater as a result of planned and unplanned discharges from reactors during plutonium production since 1944. Beginning in 1995, groundwater treatment methods were evaluated leading to the use of pump and treat facilities with ion exchange using Dowex 21 K, a regenerable strong base anion exchange resin. This required regeneration of the resin, which is currently performed offsite. Resin was installed in a 4 vessel train, with resin removal required from the lead vessel approximately once a month. In 2007, there were 8 trains (32 vessels) in operation. In 2008, DOE recognized that regulatory agreements would require significant expansion in the groundwater chromium treatment capacity. Previous experience from one of the DOE project managers led to identification of a possible alternative resin, and the contractor was requested to evaluate alternative resins for both cost and programmatic risk reductions. Testing was performed onsite in 2009 and 2010, using a variety of potential resins in two separate facilities with groundwater from specific remediation sites to demonstrate resin performance in the specific groundwater chemistry at each site. The testing demonstrated that a weak base anion single-use resin, ResinTech SIR-700, was effective at removing chromium, had a significantly higher capacity, could be disposed of efficiently on site, and would eliminate the complexities and programmatic risks from sampling, packaging, transportation and return of resin for regeneration. This resin was installed in Hanford's newest groundwater treatment facility, called 100-DX, which began operations in November, 2010, and used in a sister facility, 100-HX, which started up in September of 2011. This increased chromium treatment capacity to 25 trains (100 vessels). The resin is also being tested in existing facilities that utilize Dowex 21 K for

  11. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingguang, E-mail: xingguangliu1@gmail.com [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Iamvasant, Chanon, E-mail: ciamvasant1@sheffield.ac.uk [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Liu, Chang, E-mail: chang.liu@sheffield.ac.uk [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Matthews, Allan, E-mail: allan.matthews@manchester.ac.uk [Pariser Building - B24 ICAM, School of Materials, The University of Manchester, Manchester, M13 9PL (United Kingdom); Leyland, Adrian, E-mail: a.leyland@sheffield.ac.uk [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-01-15

    Highlights: • Coatings with nitrogen content up to 16 at.% exhibit a metallic Cr solid solution, even after post-coat annealing at 300 °C and 500 °C. • At higher N/Cr atomic ratios (approaching Cr{sub 2}N stoichiometry), chromium was still inclined to exist in solid solution with nitrogen, rather than as a ceramic nitride phase, even after annealing at 500 °C. • Transportation of Cu and Ag to the surface depends on annealing temperature, annealing duration, nitrogen concentration and ‘global’ Cu + Ag concentration. • Incorporation of copper appears to be a powerful strategy to enhance Ag mobility at low concentration (∼3 at.% Ag in this study) under moderately high service temperature. • A significant decrease in friction coefficient was obtained at room temperature after annealing, or during sliding wear testing at elevated temperature. - Abstract: CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also

  12. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent.

    Science.gov (United States)

    Boddu, Veera M; Abburi, Krishnaiah; Talbott, Jonathan L; Smith, Edgar D

    2003-10-01

    A new composite chitosan biosorbent was prepared by coating chitosan, a glucosamine biopolymer, onto ceramic alumina. The composite bioadsorbent was characterized by high-temperature pyrolysis, porosimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy. Batch isothermal equilibrium and continuous column adsorption experiments were conducted at 25 degrees C to evaluate the biosorbent for the removal of hexavalent chromium from synthetic as well as field samples obtained from chrome plating facilities. The effect of pH, sulfate, and chloride ion on adsorption was also investigated. The biosorbent loaded with Cr(VI) was regenerated using 0.1 M sodium hydroxide solution. A comparison of the results of the present investigation with those reported in the literature showed that chitosan coated on alumina exhibits greater adsorption capacity for chromium(VI). Further, experimental equilibrium data were fitted to Langmuir and Freundlich adsorption isotherms, and values of the parameters of the isotherms are reported. The ultimate capacity obtained from the Langmuir model is 153.85 mg/g chitosan.

  13. The electrochemistry of chromium, chromium-boron and chromium-phosphorus alloys

    International Nuclear Information System (INIS)

    Moffat, T.P.; Ruf, R.R.; Latanision, R.M.

    1987-01-01

    It is fairly well established that chromium-metalloid interactions represent the key to understanding the remarkable corrosion behavior of TM-Cr-M glasses; (Fe, Ni, Co,...)-Cr-(P, Si, C, S). The character and kinetics of passive film growth on the glasses are being studied ni order to assess the role of the film former, chromium, and the metalloids in the passivation process. A series of thin film microcrystalline chromium, Cr-B and Cr-P binary alloys have been fabricated by physical vapor deposition techniques. Vacuum melted conventionally processed chromium has also been studied. Examination of these materials in lM H/sub 2/SO/sub 4/ and lM HCl by voltammetry, potentiostatic and impedance techniques yields the following conclusion: 1. Pure chromium with a grain size varying from < 400 A to 0.5 mm exhibits no well defined differences in electrochemical behavior in lM H/sub 2/SO/sub 4/. 2. The tremendous corrosion resistance of Cr-B alloys has been confirmed. 3. The beneficial effects observed for boron alloyed with chromium may be considered surprising in view of the neutral/negative influence of alloying boron with iron, i.e. Fe/sub 80/B/sub 20/. 4. The interaction of the electrochemistry of the metalloid constituent with that of the transition base element determines the corrosion behavior. 5. Preliminary work with Cr-P alloys indicates that certain compositions exhibit promising properties - certain films were found to be intact after two days of immersion in concentrated HCl. Further work is in progress

  14. Diffusion of Cr, Fe, and Ti ions from Ni-base alloy Inconel-718 into a transition alumina coating

    Energy Technology Data Exchange (ETDEWEB)

    Dressler, M., E-mail: martin.dressler@bam.de; Nofz, M.; Doerfel, I.; Saliwan-Neumann, R.

    2012-04-30

    Heat treating metals at high temperatures trigger diffusion processes which may lead to the formation of oxide layers. In this work the diffusion of Cr, Fe and Ti into an alumina coating applied to Inconel-718 is being investigated. Mass gain measurements, UV-vis spectroscopy and transmission electron microscopy were applied in order to study the evolution of the diffusion process. It was found that mainly Cr as well as minor amounts of Fe and Ti are being incorporated into the alumina coating upon prolonged heat treatment at 700 Degree-Sign C. It could be shown that alumina coatings being void of Cr have the same oxidation related mass gain as uncoated samples. However, incorporation of Cr into the alumina coating decreased their mass gain below that of uncoated substrates forming a Cr oxide scale only. - Highlights: Black-Right-Pointing-Pointer We investigated the diffusion of Cr into alumina coatings applied on IN-718. Black-Right-Pointing-Pointer The ingress of Cr led to the formation of mixed alumina/chromium coatings. Black-Right-Pointing-Pointer The mass gain of mixed alumina/chromium coatings was compared to uncoated IN-718. Black-Right-Pointing-Pointer The mixed alumina/chromium coatings improved the oxidation resistance of IN-718.

  15. Role of paramagnetic chromium in chromium(VI)-induced damage in cultured mammalian cells.

    OpenAIRE

    Sugiyama, M

    1994-01-01

    Chromium(VI) compounds are known to be potent toxic and carcinogenic agents. Because chromium(VI) is easily taken up by cells and is subsequently reduced to chromium(III), the formation of paramagnetic chromium such as chromium(V) and chromium(III) is believed to play a role in the adverse biological effects of chromium(VI) compounds. The present report, uses electron spin resonance (ESR) spectroscopy; the importance of the role of paramagnetic chromium in chromium(VI)-induced damage in intac...

  16. Characterization of the corrosion protection mechanism of cerium-based conversion coatings on high strength aluminum alloys

    Science.gov (United States)

    Pinc, William Ross

    The aim of the work presented in this dissertation is to investigate the corrosion protection mechanism of cerium-based conversion coatings (CeCCs) used in the corrosion protection of high strength aluminum alloys. The corrosion resistance of CeCCs involves two general mechanisms; barrier and active. The barrier protection mechanism was influenced by processing parameters, specifically surface preparation, post-treatment, and the use of gelatin. Post-treatment and the addition of gelatin to the coating solution resulted in fewer cracks and transformation of the coating to CePO4, which increased the corrosion resistance by improving the barrier aspect of CeCCs. CeCCs were found to best act as barriers when crack size was limited and CePO4 was present in the coating. CeCCs were found to protect areas of the substrate that were exposed in the coating, indicating that the coatings were more than simple barriers. CeCCs contained large cracks, underneath which subsurface crevices were connected to the surface by the cracks. Despite the observation that no cerium was present in crevices, coatings with crevices exhibited significant corrosion protection. The impedance of post-treated coatings with crevices increased during salt spray exposure. The increase in impedance was associated with the formation of protective oxides / hydroxides; however, crevice-free coatings also exhibited active protection leading to the conclusion that the formation of interfacial layers between the CeCC and the substrate also contributed to the active protection. Based on the overall results of the study, the optimal corrosion protection of CeCCs occurred when processing conditions produced coatings with morphologies and compositions that facilitated both the barrier and active protection mechanisms.

  17. Biocompatible wear-resistant thick ceramic coating

    Directory of Open Access Journals (Sweden)

    Vogt Nicola

    2016-09-01

    Full Text Available Sensitisation to immunologically active elements like chromium, cobalt or nickel and debris particle due to wear are serious problems for patients with metallic implants. We tested the approach of using a hard and thick ceramic coating as a wear-resistant protection of titanium implants, avoiding those sensitisation and foreign body problems. We showed that the process parameters strongly influence the coating porosity and, as a consequence, also its hardness.

  18. Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides

    Directory of Open Access Journals (Sweden)

    Beixiao Zhang

    2010-08-01

    Full Text Available The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl3, FeCl3 and CuCl2 and a group IIIA metal chloride (AlCl3, exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 °C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.

  19. Chromium allergy

    DEFF Research Database (Denmark)

    Hansen, M B; Johansen, J D; Menné, Torkil

    2003-01-01

    Most studies investigating chromium allergy have been performed with Cr(VI). However, real exposure to chromium from leather products includes both Cr(III) and Cr(VI). We have determined and compared the minimum elicitation threshold (MET) concentration for Cr(III) and Cr(VI) in Cr(VI)-sensitive ......Most studies investigating chromium allergy have been performed with Cr(VI). However, real exposure to chromium from leather products includes both Cr(III) and Cr(VI). We have determined and compared the minimum elicitation threshold (MET) concentration for Cr(III) and Cr(VI) in Cr......(III) was concluded to play an important role in chromium allergy, because Cr(III) and Cr(VI) were both capable of eliciting eczema at low concentrations. Rather than regarding chromium dermatitis as a result of Cr(VI) allergy alone, it may be more correct to consider it as a result of a combined Cr(III) and Cr......(VI) allergy....

  20. Corrosion behaviour of Arc-PVD coatings and hybrid systems

    International Nuclear Information System (INIS)

    Reichel, K.

    1992-01-01

    To achieve a comprehensive protective effect against corrosion and wear stresses, coating systems are increasingly being developed, in which there is a separation of the tasks of the coating materials regarding the protective effect. On the one hand, pure PVD coating systems are used, on the other hand hybrid coatings are examined, where galvanic processes are combined with PVD technique. The results of experiments introduced in this article were determined on Arc-PVD coatings. By this process, titanium nitride and chromium nitride coatings are both deposited directly on the basic material and are also deposited as combination coatings of Ti/TiN and chemical nickel/TiN. (orig.) [de

  1. The microstructure and properties of unbalanced magnetron sputtered CrNx coatings

    International Nuclear Information System (INIS)

    Hurkmans, Antonius Petrus Arnoldus

    2002-01-01

    The most widely used surface treatment to protect engineering components is the deposition of hard chromium by electroplating. The coatings are known to be quite thick (up to 20 μm), reasonably hard (∼HV1000), but contain micro-cracks. This wet deposition process is well understood, but it has technical limitations and is under high political pressure because of the environmental pollution by hexavalent chromium. The physical vapour deposition (PVD) technique is an alternative method to produce high quality coatings. PVD is an almost pollution free technique, because the process occurs under vacuum. CrN by PVD is one of the most promising PVD coatings as a candidate to replace eventually electroplated hard chromium. The growth characteristics of CrN coatings are less understood than those of TiN, the well-known PVD coating material. This thesis anticipates to fill this technological gap. Along a wide range of experiments based on the deposition of CrN x coatings, XRD, SEM, SNMS and tribological analysis have been used to complete a thorough understanding of CrN x growth. The experiments show that there exist several different phases within the Cr-N system: bcc-Cr, hcp-Cr 2 N, fcc-CrN, and mixed phases. This is not fundamentally new, but the work has resulted in two new modifications, which are highly interesting candidates for the industry, including electroplating replacements, namely high nitrogen containing metallic bcc-Cr (solid solution with up to 18 at.% nitrogen) in the hardness range up to HV1800 and a very hard fcc-CrN phase with hardness values between HV1500 and HV3000, similar to TiN. The solid solution bcc-Cr-N is very dense fine-grained, reasonably hard (almost twice as hard as electroplated hard chromium), very smooth, and with a Young's modulus very similar to that of (hardened) steel. The hard fcc-CrN phase (approximately three times harder than electroplated hard chromium) could only be obtained by the current experiments in a rather non

  2. Selective removal of chromium from sulphuric acid leach liquor of ilmenite ore by solvent extraction with trioctylamine

    Directory of Open Access Journals (Sweden)

    E.O. Olanipekun

    2000-12-01

    Full Text Available The selective removal of chromium, a trace impurity that degrades the whiteness of titanium(IV oxide pigments, from sulphuric acid leach liquor of ilmenite, was investigated by solvent extraction with xylene solutions of trioctylamine. Important factors of commercial significance affecting the extraction operation have been examined. More than 99% of the chromium was selectively removed in multiple batch extractions from the leach liquor and titanium losses were minimal (< 1%. The chromium content of extracted solutions was reduced to less than 1 ppm and thermal hydrolysis of these solutions yielded white titanium(IV oxide pigments that are suitable for use in the coatings pigment industry.

  3. A Chromium-Free Coating System for DoD Applications

    Science.gov (United States)

    2008-05-01

    brushing • The coating is translucent allowing direct inspection of both the film and substrate 60 • The coating is thermally stable to at least 250˚C for...for steel in concrete it is preferable to re-establish passivity. In sacrificial anode cathodic protection, a galvanic cell is set up by connecting

  4. Microstructure, in vitro corrosion and cytotoxicity of Ca-P coatings on ZK60 magnesium alloy prepared by simple chemical conversion and heat treatment.

    Science.gov (United States)

    Li, Kaikai; Wang, Bing; Yan, Biao; Lu, Wei

    2013-09-01

    Magnesium alloys are potential biodegradable materials for biomedical application. But their poor corrosion resistance may result in premature failure of implants. In this study, to solve this problem, Ca-P coatings were prepared on ZK60 magnesium alloy by a simple chemical conversion process and heat treatment. Surface characterization showed that a flake-like Dicalcium phosphate dihydrate (DCPD) (CaHPO₄·2H₂O) coating was formed on ZK60 alloy by the chemical conversion process. DCPD transformed into Dicalcium phosphate anhydrous (DCPa) (CaHPO₄) and Ca₂P₂O₇ after heat treatment. Results of potentiodynamic polarization showed the corrosion potential of ZK60 was increased from -1666 mV to -1566 mV with DCPD coating, while -1515 mV was obtained after heat treatment. The corrosion current density of ZK60 was measured to be reduced from 35 µA/cm² to 3.5 µA/cm² with DCPD coating, while a further reduction to 1 µA/cm² was observed after heat treatment. This indicated that the coatings improved the substrate corrosion resistance significantly, and apparently, the heat-treated coating had a higher corrosion resistance. Immersion test demonstrated that both the coatings could provide protection for the substrate and the heat-treated coating could induce deposition of bone-like apatite. Cytotoxicity evaluation revealed that none of the samples induced toxicity to L-929 cells after 1- and 3-day culture. The cytocompatibility of ZK60 was improved by the coatings, with the following sequence: uncoated ZK60 < DCPD-coated ZK60 < heat-treated coating.

  5. Hexavalent Chrome Free Coatings for Electronics Applications: Joint Test Report

    Science.gov (United States)

    Kessel, Kurt

    2012-01-01

    Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that alloys meet or exceed design or performance life. The standard practice for protecting metallic substrates is the application of a coating system. Applied coating systems work via a variety of methods (barrier, galvanic, and/or inhibitor) and adhere to the substrate through a combination of chemical and physical bonds. For years hexavalent chromium has been a widely used element within applied coating systems because of its self healing and corrosion resistant properties. Occupational Safety and Health Administration (OSHA) studies have concluded that hexavalent chromium (hex chrome) is carcinogenic and poses significant risk to human health. On May 5, 2011 amendments to the Defense Federal Acquisition Regulation Supplement (DFARS) were issued in the Federal Register. Subpart 223.73 prohibits contracts from requiring hexavalent chromium in deliverables unless certain exceptions apply. These exceptions include authorization from a general or flag officer and members of the Senior Executive Service from a Program Executive Office, and unmodified legacy systems. Otherwise, Subpart 252.223-7008 provides the contract clause prohibiting contractors from using or delivering hexavalent chromium in a concentration greater than 0.1 percent by weight for all new contracts and to be included down to subcontractors for supplies, maintenance and repair services, and construction materials. National Aeronautics and Space Administration (NASA), Department of Defense (DoD), and industry stakeholders continue to search for alternatives to hex chrome in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and safety, while typically specifying that performance must be equal to or greater than existing systems.

  6. Joint Test Protocol: Environmentally Friendly Zirconium Oxide Pretreatment Demonstration

    Science.gov (United States)

    2013-12-01

    and compliance issues associated with the use of zinc phosphate and chromate/ chrome containing conversion coatings while maintaining military...safety, and occupational health risks associated with the use of zinc phosphate and chromate/ chrome -containing conversion coatings. There is a need to...zirconium-based pretreatment will be shown to be both environmentally acceptable (no hazardous air pollutants or heavy metals such as hexavalent chromium

  7. Assessment of Some Advanced Protective Schemes, Including Chromate and Non-Chromate Conversion Coatings for Mg Alloy ZE41A-T5 Using Electrochemical Impedance Spectroscopy

    National Research Council Canada - National Science Library

    Chang, Frank

    1994-01-01

    .... Electrochemical Impedance Spectroscopy (EIS) and salt spray tests have been employed to compare the corrosion behavior in chloride containing solutions of Mg alloy ZE41A-T5 which has been coated with various combinations of a conversion coating...

  8. Chromium

    Science.gov (United States)

    ... 2 Whole wheat bread, 2 slices 2 Red wine, 5 ounces 1–13 Apple, unpeeled, 1 medium ... chromium or a placebo) might simply show the benefits of supplementation in a chromium-deficient population. Overall, ...

  9. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    International Nuclear Information System (INIS)

    Simescu, Florica; Idrissi, Hassane

    2008-01-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 . After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  10. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    Directory of Open Access Journals (Sweden)

    Florica Simescu and Hassane Idrissi

    2008-01-01

    Full Text Available We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO46(OH2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  11. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce D; Legg, Keith O; Schell, Jerry; Bondaruk, Bob; Alford, Charles; Natishan, Paul; Lawrence, Steven; Shubert, Gary; Bretz, Philip; Kaltenhauser, Anne

    2005-01-01

    .... However, chrome plating utilizes hexavalent chromium, which is a highly toxic carcinogen, and increasingly, stringent environmental and worker-safety regulations are making chrome plating more expensive for the DoD...

  12. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0% and nickel does not exceed 50.0%

  13. Chromium-doped DLC for implants prepared by laser-magnetron deposition.

    Science.gov (United States)

    Jelinek, Miroslav; Kocourek, Tomáš; Zemek, Josef; Mikšovský, Jan; Kubinová, Šárka; Remsa, Jan; Kopeček, Jaromir; Jurek, Karel

    2015-01-01

    Diamond-like carbon (DLC) thin films are frequently used for coating of implants. The problem of DLC layers lies in bad layer adhesion to metal implants. Chromium is used as a dopant for improvement of adhesion of DLC films. DLC and Cr-DLC layers were deposited on silicon, Ti6Al4V and CoCrMo substrates by a hybrid technology using combination of pulsed laser deposition (PLD) and magnetron sputtering. The topology of layers was studied using SEM, AFM and mechanical profilometer. Carbon and chromium content and concentration of trivalent and toxic hexavalent chromium bonds were determined by XPS and WDS. It follows from the scratch tests that Cr doping improved adhesion of DLC layers. Ethylene glycol, diiodomethane and deionized water were used to measure the contact angles. The surface free energy (SFE) was calculated. The antibacterial properties were studied using Pseudomonas aeruginosa and Staphylococcus aureus bacteria. The influence of SFE, hydrophobicity and surface roughness on antibacterial ability of doped layers is discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Preliminary Evaluation of PS300: A New Self-Lubricating High Temperature Composite Coating for Use to 800 C

    Science.gov (United States)

    Dellacorte, C.; Edmonds, B. J.

    1995-01-01

    This paper introduces PS300, a plasma sprayed, self-lubricating composite coating for use in sliding contacts at temperatures to 800 C. PS300 is a metal bonded chrome oxide coating with silver and BaF2/CaF2 eutectic solid lubricant additives. PS300 is similar to PS200, a chromium carbide based coating, which is currently being investigated for a variety of tribological applications. In pin-on-disk testing up to 650 C, PS300 exhibited comparable friction and wear properties to PS200. The PS300 matrix, which is predominantly chromium oxide rather than chromium carbide, does not require diamond grinding and polishes readily with silicon carbide abrasives greatly reducing manufacturing costs compared to PS200. It is anticipated that PS300 has potential for sliding bearing and seal applications in both aerospace and general industry.

  15. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  16. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, M.; He, Y.R.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  17. Effect of supplementing finishing pigs with different sources of chromium on performance and meat quality

    Directory of Open Access Journals (Sweden)

    Louise Manha Peres

    2014-07-01

    Full Text Available The objective was to evaluate the dietary supplementation of different sources of chromium (inorganic: chromium sulfate and chelated: chromium-methionine during the finishing period of pigs to obtain improvements in the animal performance, and carcass and meat quality. The statistical design was randomized blocks, where 44 barrows, with an initial weight 60.49±5.12 kg, were divided into four blocks (heavier, heavy, light and lighter according to initial weight. The experimental diets were isoenergetic and isonutrient, except for the chromium level. The treatments were divided as follows: control (without chromium, control + 200 ppb of inorganic chromium (chromium sulfate, and control + 200 ppb of chelated chromium (chromium-methionine. In the performance measures, the stall was considered the experimental unit and in the blood parameters, carcass and meat evaluations each animal constituted the experimental unit. Animals were slaughtered when they reached the final average weight of 107.23±5.23 kg. Blood samples were collected and tested for blood parameters (cholesterol, triglycerides and glucose as well as carcass quality (hot and cold weights, yield, loin-eye area, muscle depth and backfat thickness and meat quality (initial and final pH, drip loss, color, chemical composition and lipid oxidation parameters. Chromium-methionine supplementation provides a greater daily weight gain only compared with the animals that are not supplemented with chromium, because feed conversion is better as compared with the other treatments. After 24 hours of storage, the meat from pigs supplemented either with chromium-methionine or with chromium sulfate presents lower lipid oxidation than that from non-supplemented animals. However, after three days of storage, only chromim-methionine is effective in reducing lipid oxidation.

  18. DMF as an Additive in a Two-Step Spin-Coating Method for 20% Conversion Efficiency in Perovskite Solar Cells.

    Science.gov (United States)

    Wu, Jionghua; Xu, Xin; Zhao, Yanhong; Shi, Jiangjian; Xu, Yuzhuan; Luo, Yanhong; Li, Dongmei; Wu, Huijue; Meng, Qingbo

    2017-08-16

    DMF as an additive has been employed in FAI/MAI/IPA (FA= CH 2 (NH 2 ) 2 , MA = CH 3 NH 3 , IPA = isopropanol) solution for a two-step multicycle spin-coating method in order to prepare high-quality FA x MA 1-x PbI 2.55 Br 0.45 perovskite films. Further investigation reveals that the existence of DMF in the FAI/MAI/IPA solution can facilitate perovskite conversion, improve the film morphology, and reduce crystal defects, thus enhancing charge-transfer efficiency. By optimization of the DMF amount and spin-coating cycles, compact, pinhole-free perovskite films are obtained. The nucleation mechanisms of perovskite films in our multicycle spin-coating process are suggested; that is, the introduction of DMF in the spin-coating FAI/MAI/IPA solution can lead to the formation of an amorphous phase PbX 2 -AI-DMSO-DMF (X = I, Br; A = FA, MA) instead of intermediate phase (MA) 2 Pb 3 I 8 ·2DMSO. This amorphous phase, similar to that in the one-step method, can help FAI/MAI penetrate into the PbI 2 framework to completely convert into the perovskite. As high as 20.1% power conversion efficiency (PCE) has been achieved with a steady-state PCE of 19.1%. Our work offers a simple repeatable method to prepare high-quality perovskite films for high-performance PSCs and also help further understand the perovskite-crystallization process.

  19. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Science.gov (United States)

    Gąsiorek, Jolanta; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-01

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented. PMID:29373540

  20. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation.

    Science.gov (United States)

    Gąsiorek, Jolanta; Szczurek, Anna; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-26

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  1. Calculated electronic structure of chromium surfaces and chromium monolayers on iron

    International Nuclear Information System (INIS)

    Victora, R.H.; Falicov, L.M.

    1985-01-01

    A self-consistent calculation of the magnetic and electronic properties of the chromium (100) and (110) surfaces and of a chromium monolayer on the (100) and (110) iron surfaces is presented. It is found that (i) the (100) chromium surface is ferromagnetic with a greatly enhanced spin polarization (3.00 electrons); (ii) a substantial enhancement of the spin imbalance exists several (>5) layers into the bulk; (iii) the (110) chromium surface is antiferromagnetic with a large (2.31) spin imbalance; (iv) the (100) chromium monolayer on ferromagnetic iron is ferromagnetic, with a huge spin imbalance (3.63), and aligned antiferromagnetically with respect to the bulk iron; (v) the (110) chromium monolayer on ferromagnetic iron is also ferromagnetic, with a spin imbalance of 2.25 and antiferromagnetically aligned to the iron. The spin imbalance of chromium on iron (100) is possibly the largest of any transition-metal system

  2. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    International Nuclear Information System (INIS)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-01-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  3. Production of metal and metal-ceramic coatings on D-Gun Ob

    International Nuclear Information System (INIS)

    Gavrilenko, T.P.; Nikolaev, Y.A.; Ulianitsky, V.Y.

    1995-01-01

    Optimization of the detonation spraying process has been made for the production of metal and metal-ceramics coatings with the D-Gun Ob. Owing to the ability of Ob to work with several fuels and an inert diluent simultaneously, variation of detonation regimes in a wide range is possible, and because of localized powder injection in the D-Gun barrel, high uniformity of parameters of powder particles is achieved. The best conditions for particle heating and acceleration were calculated with the help of mathematical simulation, and the corresponding regimes were realized on D-Gun Ob. High-quality aluminum, copper, nickel, and nickel-chromium-silicon-carbon-boron alloy coatings were produced by using only propane fuel. Chromium carbide with nickel and tungsten carbide with cobalt coatings were produced with addition of acetylene. Optimal efficiency and high bonding strength were achieved for all powders. Data on microhardness, bonding strength, and efficiency are presented

  4. Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy: Morphological and corrosion studies

    International Nuclear Information System (INIS)

    Saei, E.; Ramezanzadeh, B.; Amini, R.; Kalajahi, M. Salami

    2017-01-01

    Highlights: •Cn-Mn-polyvinyl alcohol conversion coating led to more uniform and crack free film deposition. •The corrosion resistance of Ce film was noticeably improved by using combination of polyvinyl alchol and Mn2+ cations. •A synergistic effect between polyvinyl alchol-Mn2+ resulted in Ce film with enhanced morphology and corrosion resistance. -- Abstract: Magnesium (Mg) AZ31 samples were chemically treated by a series of room temperature nanostructure cerium based conversion coatings containing Mn(NO 3 ) 2 ·4H 2 O, Co(NO 3 ) 2 ·6H 2 O, and polyvinyl alcohol (PVA). The microstructure and corrosion protection properties of different samples were studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and polarization test in 3.5 wt.% NaCl solution. Results demonstrated that the AZ31 Mg alloy sample treated by Ce-Mn-PVA showed the highest corrosion resistance. A denser Ce film with lower crack was precipitated on the sample treated by Ce-Mn-PVA conversion coating.

  5. Roentgenoelectronic investigation into oxidation of iron-chromium and iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Akimov, A.G.; Rozenfel'd, I.L.; Kazanskij, L.P.; Machavariani, G.V.

    1978-01-01

    Kinetics of iron-chromium and iron-chromium-nickel alloy oxidation (of the Kh13 and Kh18N10T steels) in oxygen was investigated using X-ray electron spectroscopy. It was found that according to X-ray electron spectra chromium oxidation kinetics in the iron-chromium alloy differs significantly from oxidation kinetics of chromium pattern. Layer by layer X-ray electron analysis showed that chromium is subjected to a deeper oxidation as compared to iron, and accordingly, Cr 2 O 3 layer with pure iron impregnations is placed between the layer of mixed oxide (Fe 3 O 4 +Cr 2 O 3 ) and metal. A model of the iron-chromium alloy surface is suggested. The mixed oxide composition on the steel surface is presented as spinel Fesub(2+x)Crsub(1-x)Osub(y)

  6. Nanostructure of plasma-sprayed hydroxyapatite coating

    International Nuclear Information System (INIS)

    Suvorova, E.I.; Klechkovskaya, V.V.; Bobrovsky, V.V.; Khamchukov, Yu.D.; Klubovich, V.V.

    2003-01-01

    Calcium phosphate coatings were studied by high-resolution transmission microscopy, microdiffraction, and X-ray energy-dispersive spectroscopy. Coatings were prepared by spraying hydroxyapatite targets onto copper, nickel, and chromium substrates and onto NaCl and BaF 2 single crystals in an argon plasma at a gas pressure of ∼1 Pa; the sputter power was about 200 W; and the RF-generator frequency was 13.56 MHz. Under the conditions used, thin layers of nanocrystalline hydroxyapatite were formed regardless of the nature of the substrate

  7. Investigation of the chromate conversion coating on Alclad 2024 aluminium alloy: effect of the pH of the chromate bath

    NARCIS (Netherlands)

    Campestrini, P.; Westing, E.P.M. van; Hovestad, A.; Wit, J.H.W. de

    2002-01-01

    The parameters of the chromate bath, like temperature, pH, and fluoride content, strongly affect the morphology and chemical composition of the chromate conversion coating and as a consequence have a large influence on its corrosion performance. In this paper, electrochemical impedance spectroscopy

  8. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes normally are used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium-nickel steels in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  9. Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3

    Energy Technology Data Exchange (ETDEWEB)

    Pinc, W. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)], E-mail: wrphw5@mst.edu; Geng, S.; O' Keefe, M.; Fahrenholtz, W.; O' Keefe, T. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2009-01-15

    Cerium based conversion coatings were spray deposited on Al 2024-T3 and characterized to determine the effect of surface preparation on the deposition rate and surface morphology. It was found that activation of the panel using a 1-wt.% sulfuric acid solution increased the coating deposition rate compared to alkaline cleaning alone. Analysis of the surface morphology of the coatings showed that the coatings deposited on the acid treated panels exhibited fewer visible cracks compared to coatings on alkaline cleaned panels. Auger electron spectroscopy depth profiling showed that the acid activation decreased the thickness of the aluminum oxide layer and the concentration of magnesium on the surface of the panels compared to the alkaline treatment. Additionally, acid activation increased the copper concentration at the surface of the aluminum substrate. Based on the results, the acid based surface treatment appeared to expose copper rich intermetallics, thus increasing the number of cathodic sites on the surface, which led to an overall increase in the deposition rate.

  10. Preliminary evaluation of PS300: A new self-lubricating high temperature composite coating for use to 800{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    DellaCorte, C.; Edmonds, B.J.

    1996-12-31

    This paper introduces PS300, a plasma sprayed, self-lubricating composite coating for use in sliding contacts at temperatures to 800{degrees}C. PS300 is a metal bonded chrome oxide coating with silver and BaF{sub 2}/CaF{sub 2} eutectic solid lubricant additives. PS300 is similar to PS200, a chromium carbide based coating; which is currently being investigated for a variety of tribological applications. In pin-on-disk testing up to 650{degrees}C, PS300 exhibited comparable friction and wear properties to PS200. The PS300 matrix, which is predominantly chromium oxide rather than chromium carbide, does not require diamond grinding and polishes readily with silicon carbide abrasives greatly reducing manufacturing costs compared to PS200. It is anticipated that PS300 has potential for sliding bearing and seal applications in both aerospace and general industry.

  11. Chromium in leather footwear-risk assessment of chromium allergy and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Strandesen, Maria; Poulsen, Pia B

    2012-01-01

    Background. Chromium-tanned leather footwear, which releases >3 ppm hexavalent Cr(VI), may pose a risk of sensitizing and eliciting allergic dermatitis. Objectives. To determine the content and potential release of chromium in leather footwear and to discuss the prevention of chromium contact...... allergy and dermatitis. Methods. Sixty pairs of leather shoes, sandals and boots (20 children's, 20 men's, and 20 women's) were purchased in Copenhagen and examined with X-ray fluorescence spectroscopy. Chromium was extracted according to the International Standard, ISO 17075. The detection level for Cr......(VI) was 3 ppm. Results. Chromium was identified in 95% of leather footwear products, the median content being 1.7% (range 0-3.3%). No association with store category or footwear category was found. A tendency for there to be a higher chromium content in footwear with high prices was shown (p(trend) = 0...

  12. Effect of Thickness on the Morphology and Corrosion Behavior of Cerium-Based Conversion Coatings on AZ31B Magnesium Alloy

    Science.gov (United States)

    Castano, Carlos E.; Maddela, Surender; O'Keefe, Matthew J.; Wang, Yar-Ming

    Cerium-based conversion coatings (CeCCs) were deposited onto AZ31B magnesium alloy substrates using a spontaneous reaction of CeCl3, H2O2 and gelatin in a water-based solution. The coating thickness was adjusted by controlling the immersion time in the deposition solution. Prior to deposition, the AZ31B substrates were treated using an acid pickling in nitric acid and then an alkaline cleaning in sodium metasilicate pentahydrate. After deposition, the coated samples were immersed in a phosphate bath that converted cerium oxide/hydroxide into cerium phosphate. Electrochemical impedance spectroscopy, potentiodynamic polarization and neutral salt spray testing studies indicated that 100 nm thick CeCC had better corrosion performance than 400 nm coatings. Characterization of the CeCCs by transmission electron microscopy (TEM) revealed a three layer structure with different compositions.

  13. Heterogeneous chromium catalysts

    NARCIS (Netherlands)

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based

  14. Determination of chromium combined with DNA, RNA and protein in chromium-rich brewer's yeast

    International Nuclear Information System (INIS)

    Ding Wenjun; Qian Qinfang; Hou Xiaolin; Feng Weiyue; Chai Zhifang

    2000-01-01

    The contents of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast were determined with the neutron activation analysis in order to study the combination of Cr with DNA, RNA and protein in chromium-rich brewer's yeast. The results showed that the extracting rats and concentrations of DNA, RNA and protein had no significant difference in two types of yeast, but the chromium contents of DNA, RNA and protein in the chromium-rich yeast were significantly higher than those in the normal. In addition, the content of chromium in DNA was much higher than that in RNA and protein, which indicated that the inorganic chromium compounds entered into the yeast cell, during the yeast cultivation in the culture medium containing chromium were converted into organic chromium compounds combined with DNA, RNA and protein

  15. Sorption of chromium(III) and chromium(VI) on lead sulfide

    International Nuclear Information System (INIS)

    Music, S.

    1985-01-01

    The sorption of chromium(III) and chromium(VI) on lead sulfide was investigated in dependence on pH, time of sorption, and on the concnetrations of sorbate and sorbent. The mechanisms of the sorption of Crsup(3+) and CrOsub(4)sup(2-) traces on lead sulfide are discussed; a difference between CrOsub(4)sup(2-) sorption on PbS and α-Fesub(2)Osub(3) was found. Sulfates and molybdates affect the removal of chromates from aqueous solutions. Lead sulfide carrier prepared in this work was also used for the preconcentration of chromium(III) and chromium(VI) from tap water. (author)

  16. Protection of zirconium and its alloys by metallic coatings

    International Nuclear Information System (INIS)

    Loriers, H.; Lafon, A.; Darras, R.; Baque, P.

    1968-01-01

    At 600 deg. C in an atmosphere of carbon dioxide, zirconium and its alloys undergo corrosion which presents two aspects simultaneously: - formation of a surface layer of zirconia, - dissolution of oxygen in the alloy sub-layer leading to brittleness. The two phenomena greatly restrict the possibilities of using zirconium alloys as a canning material for fuel elements in CO 2 cooled nuclear reactors. An attempt has thus been made to limit, and perhaps to suppress, the corrosion effects in zirconium under these conditions by protecting it with metallic coatings. A first attempt to obtain a protection using copper-based coatings did not produce the result hoped for. Aluminium coatings produced by vacuum evaporation, followed by a consolidating thermal treatment make it possible to prevent the formation of the zirconia layer, but they do not eliminate the hardening effect produced by oxygen diffusion. On the other hand, electrolytically produced chromium deposits whose adherence is improved by a thermal vacuum treatment, counteract both these phenomena simultaneously. A similar result has been obtained with coatings of molybdenum produced by the technique of high-frequency inductive plasma sputtering. The particular effectiveness of the last two types of coatings is due to their structures characterized by the existence of an adherent film of chromium or molybdenum in the free state. (authors) [fr

  17. Solid-state dewetting of continuous thin platinum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hanief, N. [University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Topić, M.; Pineda-Vargas, C. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West (South Africa)

    2015-11-15

    Thermal stability of coatings is of crucial importance for reliability of electronic devices operating at high temperature. Thus, we investigated the Cr–Pt system where a thin platinum coating of 0.1 μm was deposited on chromium substrate and annealed at 1000 °C for 8 h. The scanning electron microscope (SEM) showed that a continuous and uniformly deposited Pt coating experienced the formation of “islands” after annealing. The grain-boundary grooving, dewetting and agglomeration were the main mechanisms of degradation of thermally annealed coatings. Results by μ-PIXE (particle-induced X-ray emission) and transmission electron microscope (TEM) showed the presence of Cr{sub 3}Pt phase in “islands” and the coating thickness was approximately 0.5 μm. The surrounding regions were left uncovered due to coating agglomeration at the expense of initially deposited coating.

  18. Molybdate Coatings for Protecting Aluminum Against Corrosion

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    2005-01-01

    Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).

  19. Hexavalent chromium exposures and exposure-control technologies in American enterprise: results of a NIOSH field research study.

    Science.gov (United States)

    Blade, L M; Yencken, M Story; Wallace, M E; Catalano, J D; Khan, A; Topmiller, J L; Shulman, S A; Martinez, A; Crouch, K G; Bennett, J S

    2007-08-01

    The National Institute for Occupational Safety and Health (NIOSH) conducted 21 field surveys in selected industries to characterize workers' exposures to hexavalent chromium-containing airborne particulate and to evaluate existing technologies for controlling these exposures. Hexavalent chromium Cr(VI) is a respiratory irritant and chronic inhalation may cause lung cancer. Primary evaluation methods included collection of full work shift, personal breathing-zone (PBZ) air samples for Cr(VI), measurement of ventilation system parameters, and documentation of processes and work practices. This study emphasized evaluation of engineering exposure control measures, so PBZ exposures were measured on the outside of personal protective equipment, for example, respirators. Field surveys were conducted in two chromium electroplating facilities, including one where full-shift PBZ exposures to Cr(VI) ranged from 3.0 to 16 times the 1 micro g/m(3)NIOSH recommended exposure limit (REL) despite several engineering controls on the plating tanks. At a painting and coating facility that used Cr(VI)-containing products, full-shift exposures of painters and helpers (2.4 to 55 micro g/m(3)) exceeded the REL, but LEV effectiveness was limited. Other operations evaluated included welding in construction; metal cutting operations on chromium-containing materials in ship breaking; chromate-paint removal with abrasive blasting; atomized alloy-spray coating; foundry operations; printing; and the manufacture of refractory brick, colored glass, prefabricated concrete products, and treated wood products. NIOSH researchers concluded that, in many of the evaluated processes, Cr(VI) exposures at or below the current NIOSH REL are achievable. However, for some processes, it is unclear whether controlling exposures to this range is consistently achievable without respirator use. Some operations involving the application of coatings and finishes may be among those most difficult to control to this

  20. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    Directory of Open Access Journals (Sweden)

    Jolanta Gąsiorek

    2018-01-01

    Full Text Available Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  1. Development of low-chromium, chromium-tungsten steels for fusion

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.; Kenik, E.A.

    1995-01-01

    High-chromium (9-12% Cr) Cr-Mo and Cr-W ferritic steels are favored as candidates for fusion applications. In early work to develop reduced-activation steels, an Fe-2.25Cr-2W-0.25V-0.1C steel (designated 2.25Cr-2WV) had better strength than an Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) steel (compositions are in weight percent). However, the 2.25Cr-2WV had poor impact properties, as determined by the ductile-brittle transition temperature and upper-shelf energy of subsize Charpy impact specimens. Because low-chromium steels have some advantages over high-chromium steels, a program to develop low-chromium steels is in progress. Microstructural analysis indicated that the reason for the inferior impact toughness of the 2.25Cr-2WV was the granular bainite obtained when the steel was normalized. Properties can be improved by developing an acicular bainite microstructure by increasing the cooling rate after austenitization. Alternatively, acicular bainite can be promoted by increasing the hardenability. Hardenability was changed by adding small amounts of boron and additional chromium to the 2.25Cr-2WV composition. A combination of B, Cr, and Ta additions resulted in low-chromium reduced-activation steels with mechanical properties comparable to those of 9Cr-2WVTa. (orig.)

  2. Determination of chromium(III) and total chromium in marine waters

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, M J [WRc, Henley Road, Medmenham, Marlow SL7 2HD (United Kingdom); Ravenscroft, J E [WRc, Henley Road, Medmenham, Marlow SL7 2HD (United Kingdom)

    1996-03-01

    The development of an analytical technique is described which may be used to determine chromium, chromium(III) and chromium(VI) in estuarine and coastal waters. The method is based on selective micro-solvent extraction with subsequent GFAAS. The technique has been applied in a major North Sea estuary. The results obtained confirm that thermodynamic factors alone cannot be relied upon to describe the form of chromium in estuaries. Kinetic factors appear to have a strong influence over speciation and lead to the persistence of Cr(III) species in environments where Cr(VI) would be expected to be present. (orig.). With 5 figs., 2 tabs.

  3. Interaction of Cr-Ti-Si coating on VN-3 niobium alloy with air environment

    International Nuclear Information System (INIS)

    Lazarev, Eh.M.; Kozlov, A.T.; Monakhova, L.A.

    1985-01-01

    Investigation of heat-resistance, microstructure and phase composition of Cr-Ti-Si coating on VN-3 niobium alloy with air oxidation in the temperature interval of 1200-1600 deg C is conducted. Thermogravimetry, metallography, X-ray diffraction and microprobe analysis methods are used. It is ascertained that the coating is a dense niobium disilicide layer, luriched on the surface with chromium and titanium disilicides and separated and from the protected alloy by a narrow zone of the lowest niobium silicide Nb 5 Si 3 . The coating protective junctions are provided by a selective chromium and titanium disilicides oxidation as well as niobium disilicide oxidation at the temperature of 1600 deg C, and by the rates of niobium and silicon diffusion through Nb 5 SI 3 and NbSi 2 and oxygen diffusion through the amorphous SiO 2

  4. The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Li Qing; Xu Shuqiang; Hu Junying; Zhang Shiyan; Zhong Xiankang; Yang Xiaokui

    2010-01-01

    This paper discussed a zinc phosphate conversion coating formed on magnesium alloy AZ91D from the phosphating bath with varying amounts of ethanolamine (MEA). The effects of MEA on the form, structure, phase composition and electrochemical behavior of the phosphate coatings were examined using an scanning electron microscopy (SEM), X-ray diffraction (XRD) potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Interpretations of the electrical elements of the equivalent circuit were obtained from the SEM structure of the coatings, assumed to be formed of two layers: an outer porous crystal layer and an inner flat amorphous layer. The result showed that adding MEA refined the microstructure of the crystal layer and that the phosphate coating, derived at the optimal content of 1.2 g/L, with the most uniform and compact outer crystal layer provided the best corrosion protection.

  5. Surface and Microstructural Failures of PET-Coated ECCS Plates by Salmon-Polymer Interaction

    Directory of Open Access Journals (Sweden)

    Ernesto Zumelzu

    2016-03-01

    Full Text Available The new types of knowledge-intensive, multilayer containers consist of steel plates protected against corrosion by nanometric electrolytic chromium (Cr0 and chromium oxide (Cr2O3 layers chemically bonded to polyethylene terephthalate (PET polymer coating to preserve food. It was observed that after emptying the cans, the salmon adhered to the polymer coating, changing its color, and that this adhesion increased with longer storage times. This work was aimed at determining the product-container interactions and their characterization by X-ray diffraction (XRD, confocal Raman and micro-Raman imaging and scanning electron microscopy (SEM analysis. The zones of adhesion showed surface changes, variations in crystallinity and microstructural degradation of the PET coating. In addition, localized damages altering the functional properties of the multilayer system were observed as microcracking in the chromium layers that protect the steel. The degradation undergone was evaluated and characterized at a surface and microstructural level to establish the failure mechanisms, which were mainly associated with the activity of the adhered muscle and its biochemical components. Finally, a recommendation is done to preserve the useful life and functionality of cans for the preservation and efficient use of resources with an impact on recycling and environmental conservancy.

  6. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer-chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS).

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A; Schimmelmann, Arndt

    2017-03-30

    Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H 2 ) is responsible for non-quantitative H 2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer-Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual-detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. The modified EA-Cr/HTC reactor setup showed an overall H 2 -recovery of more than 96% for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via two-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and

  7. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    Smith, W.H.; Purdy, G.M.

    1995-01-01

    This study was undertaken to determine if chromium(+6) could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium(+3) to chromium(+6) by nitric acid; and the reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium(+3) to chromium(+6) was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium(+6) back to chromium(+3) by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the (+6) oxidation state and would not exist in the (+6) state in the final process waste solutions

  8. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    Smith, W.H.; Purdy, G.

    1995-01-01

    This study was undertaken to determine if chromium +6 could exist in plutonium process solutions under normal operating conditions. Four individual reactions were studied: the rate of dissolution of stainless steel, which is the principal source of chromium in process solutions; the rate of oxidation of chromium +3 to chromium +6 by nitric. acid; and the reduction of chromium +6 back to chromium +3 by reaction with stainless steel and with oxalic acid. The stainless steel corrosion rate was found to increase with increasing nitric acid concentration, increasing hydrofluoric acid concentration, and increasing temperature. Oxidation of chromium +3 to chromium +6 was negligible at room temperature and only became significant in hot concentrated nitric acid. The rate of reduction of chromium +6 back to chromium +3 by reaction with stainless steel or oxalic acid was found to be much greater than the rate of the reverse oxidation reaction. Based on these findings and taking into account normal operating conditions, it was determined that although there would be considerable chromium in plutonium process streams it would rarely be found in the +6 oxidation state and would not exist in the +6 state in the final process waste solutions

  9. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  10. Dietary inclusion of chromium to improve growth performance and immune-competence of broilers under heat stress

    Directory of Open Access Journals (Sweden)

    Tagwa M. Norain

    2013-11-01

    Full Text Available This study was conducted to investigate the effects of dietary supplementation with chromium chloride, CrCl3.6H2O (2mg kg–1 basal diet on the performance and immune response of broiler chickens under heat stress condition (25-43°C. A total of 80 one-day-old broiler chicks (Ross-308 were assigned to two treatment groups according to a completely randomized design. Each treatment consisted of four equal replicates, each contained ten chicks. Chicks were fed on basal diets supplemented with different concentrations of chromium (0 and 2 mg kg–1 CrCl3 from 1 to 35 days of age. Chromium supplementation as feed additives resulted in a slightly lower rectal temperature, and significantly (P<0.05 lower respiration rate for the broiler chickens received diet supplemented with chromium compared to the control (0 mg kg–1 CrCl3. Dietary chromium supplementation increased final body weight (BW at the end of the production period (5 weeks. Average weight gain was significantly (P<0.05 higher in chickens fed on chromium supplemented diet. Feed intake was not influenced by dietary chromium supplementation, however, the efficiency of feed conversion was improved (P<0.05 in chromium supplemented chickens. Furthermore, dressing percentage was significantly (P<0.05 higher in Cr-treated chickens compared to control chickens. Chromium supplementation significantly (P<0.05 improved the immune response to Newcastle Disease Virus vaccine (NDV. The present results suggest that dietary chromium supplementation provides a good nutritional management approach to ameliorate heat stress induced depression in production performance and immune response of broiler chickens. 

  11. Self-adapting metal-ceramic coating for biomass and waste incineration plants

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, Martin [Technische Univ. Muenchen (Germany); Fehr, Karl Thomas; Ye, Ya-Ping [Ludwig-Maximilians-Univ., Muenchen (Germany); Loeh, Ingrid; Mocker, Mario; Wolf, Gerhard [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany)

    2010-07-01

    Thermally sprayed coatings might become a reasonable alternative to cost-intensive cladding of heat exchangers in biomass and waste incineration. Shortcomings of these coatings might be overcome by a double-layer system, consisting of Alloy 625 covered with yttria-stabilized zirconia. Under appropriate conditions, re-crystallized zirconium oxide and chromium oxide form a dense, self-adapting and self-healing barrier against further infiltration of gaseous species. (orig.)

  12. Hexavalent Chromium Minimization Strategy

    Science.gov (United States)

    2011-05-01

    Logistics 4 Initiative - DoD Hexavalent Chromium Minimization Non- Chrome Primer IIEXAVAJ ENT CHRO:M I~UMI CHROMIUM (VII Oil CrfVli.J CANCEfl HAnRD CD...Management Office of the Secretary of Defense Hexavalent Chromium Minimization Strategy Report Documentation Page Form ApprovedOMB No. 0704-0188...00-2011 4. TITLE AND SUBTITLE Hexavalent Chromium Minimization Strategy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  13. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling

    Directory of Open Access Journals (Sweden)

    Anđelković Darko H.

    2012-01-01

    Full Text Available Distribution of chromium between soil and leachate was monitored. A natural process of percolating rainwater through the soil was simulated in the laboratory conditions and studied with column leaching extraction. Migration of chromium in the soil is conditioned by the level of chromium soil contamination, the soil organic matter content, and rainwater acidity. Chromium (III and chromium(VI were determined by spectrophotometric method with diphenilcarbazide in acidic media. Comparing the results of chromium speciation in leachate obtained by experimental model systems and geochemical modelling calculations using Visual MINTEQ model, a correlation was observed regarding the influence of the tested parameters. Leachate solutions showed that the concentration of Cr depended on the organic matter content. The influence of pH and soil organic matter content is in compliance after its definition through experimental and theoretical way. The computer model - Stockholm Humic Model used to evaluate the leaching results corresponded rather well with the measured values.

  14. A new strategy for improvement of the corrosion resistance of a green cerium conversion coating through thermal treatment procedure before and after application of epoxy coating

    Energy Technology Data Exchange (ETDEWEB)

    Mahidashti, Z. [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Shahrabi, T., E-mail: tshahrabi34@modares.ac.ir [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), P.O. 16765-654, Tehran (Iran, Islamic Republic of)

    2016-12-30

    Highlights: • The Ce conversion coating was post-heated at various conditions. • The corrosion resistance of post-heated Ce films was evaluated. • A crack free and denser Ce film were obtained after post-heating. • The corrosion resistance of Ce film noticeably increased. • Post-heated Ce film resulted better protection performance of epoxy coating. - Abstract: The effect of post-heating of CeCC on its surface morphology and chemistry has been studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and contact angle (CA) measurements. The corrosion protection performance of the coatings was investigated by electrochemical impedance spectroscopy (EIS). The effect of thermal treatment of CeCC on the corrosion protection performance of epoxy coating was investigated by EIS. Results showed that the heat treatment of Ce film noticeably improved its corrosion resistance and adhesion properties compared to that of untreated samples. The CeCC deposited on the steel substrate at room temperature had a highly cracked structure, while the amount of micro-cracks significantly reduced after post-heating procedure. Results obtained from EIS analysis confirmed the effect of post-heating of CeCC on its corrosion protection performance enhancement. The increase of post-heating temperature and time up to 140 °C and 3 h led to better results.

  15. Microstructure and corrosion performance of steam-based conversion coatings produced in the presence of TiO2 particles on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl

    2016-01-01

    The steam-based conversion coatings containing TiO2 particleswere prepared using a two-step process comprising of spin coating of particles onto an aluminiumsubstrate followed by a high-pressure steam treatment. Process has resulted in the formation of aluminium oxide layer (~1.3 μm thick) embedded...... to the coatings without TiO2 particles, while the shift in thepitting potential was a function of the steam treatment time and degree of particle incorporation into the oxide....... with TiO2 particles. The electrochemical measurements showthe beneficial effect of TiO2 particles in the oxide layer by exhibiting lowestanodic and cathodic activities, and reduced pit depth. The presence of TiO2 particles shifts the corrosion potentialvalues to positive side (noble side) when compared...

  16. Chromium in aqueous nitrate plutonium process streams: Corrosion of 316 stainless steel and chromium speciation

    International Nuclear Information System (INIS)

    Smith, W.H.; Purdy, G.

    1994-01-01

    According to the measurements made in this study, the only situation in which chromium (+6) could exist in a plutonium process solution is one in which a feed containing chromium is dissolved in a glass pot dissolver in high nitric acid concentration and at high temperature. But when the resulting feed is prepared for ion exchange, the chemical treatment reduces chromium to the +3 state. Any solution being processed through the evaporator will only contain chromium in the +3 state and any chromium salts remaining in the evaporator bottoms will be chromium +3 salts

  17. Influence of a powder feed rate on the properties of the plasma sprayed chromium carbide- 25% nickel chromium coating

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2014-04-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 The plasma spray process is a leading technology of powder depositing in the production of coatings widely used in the aerospace industry for the protection of new parts and for the repair of worn ones. Cermet 75Cr3C2 - 25Ni(Cr coatings based on Cr3C2 carbides are widely used to protect parts as they retain high values of hardness, strength and resistance to wear up to a temperature of 850°C. This paper discusses the influence of the parameters of the plasma spray deposition of 75Cr3C2 - 25Ni(Cr powder on the structure and mechanical properties of the coating. The powder is deposited using plasma spraying at atmospheric pressure (APS. The plasma gas is He, which is an inert gas and does not react with the powder; it produces dense plasma with lower heat content and less incorporated ambient air in the plasma jet thus reducing temperature decomposition and decarburization of Cr3C2 carbide.. In this study, three groups of coatings were deposited with three different powder feed rates of: 30, 45 and 60 g/min. The  coating with the best properties was deposited on the inlet flange parts of the turbo - jet engine TV2-117A to reduce the influence of vibrations and wear. The structures and the mechanical properties of 75Cr3C2 - 25Ni(Cr coatings are analyzed in accordance with the Pratt & Whitney standard. Studies have shown that powder feed rates have an important influence on the mechanical properties and structures of 75Cr3C2 - 25Ni(Cr coatings

  18. Carcinogenicity and mutagenicity of chromium.

    Science.gov (United States)

    Léonard, A; Lauwerys, R R

    1980-11-01

    Occupational exposure represents the main source of human contamination by chromium. For non-occupationally exposed people the major environmental exposure to chromium occurs as a consequence of its presence in food. Chromium must be considered as an essential element. Its deficiency impairs glucose metabolism. Trivalent chromium salts are poorly absorbed through the gastro-intestinal and respiratory tracts because they do not cross membranes easily. Hexavalent chromium can be absorbed by the oral and pulmonary routes and probably also through the skin. After its absorption, hexavalent chromium is rapidly reduced to the trivalent form which is probably the only form to be found in biological material. Epidemiological studies have shown that some chromium salts (mainly the slightly soluble hexavalent salts) are carcinogens. Lung cancers have, indeed, often been reported among workers in chromate-producing industry and, to a lesser extent, in workers from the chrome-pigment industry. The first attempts to produce cancers in experimental animals by inhalation or parenteral introduction gave negative or equivocal results but, from 1960, positive results have been obtained with various chromium compounds. As for the carcinogenic activity, the mutagenicity of chromium has mainly been found with hexavalent salts. In the majority of assay systems used, trivalent chromium appears inactive. It can be considered as evident, however, that the ultimate mutagen which binds to the genetic material is the trivalent form produced intracellularly from hexavalent chromium, the apparent lack of activity of the trivalent form being due to its poor cellular uptake.

  19. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    Science.gov (United States)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  20. X-ray diffraction on nanoparticles chromium and nickel oxides obtained by gelatin using synchrotron radiation

    International Nuclear Information System (INIS)

    Menezes, Alan Silva de; Medeiros, Angela Maria de Lemos; Miranda, Marcus Aurelio Ribeiro; Almeida, Juliana Marcela Abraao; Remedios, Claudio Marcio Rocha; Silva, Lindomar R.D. da; Gouveia, S.T.; Sasaki, Jose Marcos; Jardim, P.M.

    2003-01-01

    Full text: Cr 2 O 3 nanoparticles has many applications like green pigments, wear resistance, and coating materials for thermal protection. Several methods to produce chromium oxide nanoparticles have already been studied, gas condensation, laser induced pyrolysis, microwave plasma, sol-gel and gamma radiation methods. Many applications for this kind of material can be provide concerning the particle size. For instance, particle size approximately of 200 nm are preferable as pigment due to its opacity and below 50 nm can be used as transparent pigment. In this work we have demonstrated that chromium and nickel oxide nanoparticles can be prepared by gelatin method. X-Ray diffraction (XRD) show that mean particle size for chromium oxide of 15-150 nm and nickel oxide of 90 nm were obtained for several temperature of sintering. The X-Ray powder diffraction pattern were performed using Synchrotron Radiation X-Ray source at XRD1 beamline in National Laboratory of Light Synchrotron (LNLS). (author)

  1. Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil.

    Science.gov (United States)

    Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling

    2018-02-01

    Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.

  2. Chromium speciation in solid matrices and regulation: a review

    Energy Technology Data Exchange (ETDEWEB)

    Unceta, N. [University of the Basque Country, Department of Analytical Chemistry, Faculty of Pharmacy, Vitoria-Gasteiz (Spain); Seby, F. [Ultra Traces Analyses Aquitaine (UT2A), Helioparc Pau-Pyrenees, Pau (France); Malherbe, J.; Donard, O.F.X. [Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM, UMR CNRS 5254, Pau (France)

    2010-06-15

    In recent years, the extensive use of chromium in industrial processes has led to the promotion of several directives and recommendations by the European Union, that try to limit and regulate the presence of Cr(VI) in the environment and to protect industrial workers using chromium and end-users of manufactured products. As a consequence, new standard methods and analytical procedures have been published at the EU level for Cr(VI) determination in soil, sludge, sediment, and similar waste materials, workplace atmospheres, cement, packaging materials, industrially produced samples, and corrosion-protection layers on some components of vehicles and electrical and electronic equipment. The objective of this article is to summarize the different directives and recommendations and to critically review the currently existing standard methods and the methods published in the literature for chromium speciation in the above mentioned solid matrices, putting the emphasis on the different extraction procedures which have been developed for each matrix. Particular attention has been paid to Cr(III) and Cr(VI) inter-conversions that can occur during extraction and efforts to minimize these unwanted reactions. Although the use of NaOH-Na{sub 2}CO{sub 3} solutions with hot plate extraction seems to be the more widespread procedure, species transformation can still occur and several studies suggest that speciated isotope-dilution mass spectrometry (SIDMS) could be a suitable tool for correction of these interconversions. Besides, recent studies have proved the role of Cr(III) in chromium toxicology. As a consequence, the authors suggest an update of standard methods in the near future. (orig.)

  3. Chromium carcinogenicity: California strategies.

    Science.gov (United States)

    Alexeeff, G V; Satin, K; Painter, P; Zeise, L; Popejoy, C; Murchison, G

    1989-10-01

    Hexavalent chromium was identified by California as a toxic air contaminant (TAC) in January 1986. The California Department of Health Services (CDHS) concurred with the findings of the International Agency for Research on Cancer that there is sufficient evidence to demonstrate the carcinogenicity of chromium in both animals and humans. CDHS did not find any compelling evidence demonstrating the existence of a threshold with respect to chromium carcinogenesis. Experimental data was judged inadequate to assess potential human reproductive risks from ambient exposures. Other health effects were not expected to occur at ambient levels. The theoretically increased lifetime carcinogenic risk from a continuous lifetime exposure to hexavalent chromium fell within the range 12-146 cancer cases per nanogram hexavalent chromium per cubic meter of air per million people exposed, depending on the potency estimate used. The primary sources found to contribute significantly to the risk of exposure were chrome platers, chromic acid anodizing facilities and cooling towers utilizing hexavalent chromium as a corrosion inhibitor. Evaluation of genotoxicity data, animal studies and epidemiological studies indicates that further consideration should be given to the potential carcinogenicity of hexavalent chromium via the oral route.

  4. Effect of Zn content on the chemical conversion treatments of AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Hu Lifang; Meng Qingsen; Chen Shaoping; Wang Hao

    2012-01-01

    Highlights: ► The effect of Zn content on the chemical conversion process of Mg alloy was studied. ► The coating thickness grows up with the increase of the Zn content. ► The corrosion resistance of the coating is comparable if the Zn content below 2 wt.%. ► The corrosion resistance of the coating became poorer if the Zn content beyond 2 wt.%. - Abstract: In this study, four AZ91D magnesium plates with different Zn content were treated with chemical conversion treatments. The chemical conversion coating was examined using scanning electron microscope, optical microscope and glow discharge optical emission spectrometer. The testing results indicated that increase in Zn content produced a thicker chemical conversion coating. However, when the Zn content exceeded 2 wt.%, the thickness of the chemical conversion coating decreased. To investigate the chemical conversion mechanism, potentiodynamic polarization and electrochemical impedance spectroscopy were employed to evaluate the corrosion resistance of the magnesium substrate in 3.5 wt.% NaCl solution.

  5. Ultraviolet (UV)-Curable Coatings for Aerospace Applications

    Science.gov (United States)

    2012-08-31

    implement hexavalent chromium reduction, any new primers introduced would have to be chrome -free. Formulating a chrome -free primer that can provide...5955 All painting was done on panels of 2024-T3 Aluminum (4" x 6" x 0.020") with ¼” hole in center of short side, coated with an Alodine 1200S chrome

  6. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  7. Determination of chromium combined with DNA, RNA and proteins in chromium-rich brewer's yeast by NAA

    International Nuclear Information System (INIS)

    Ding, W.J.; Qian, Q.F.; Hou, X.L.; Feng, W.Y.; Chai, Z.F.

    2000-01-01

    The content of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast was determined by neutron activation analysis (NAA). Our results show that the extracted relative amounts and concentrations of DNA, RNA and proteins have no significant difference for two types of yeast, but the chromium content in DNA, RNA and proteins fractions extracted from the chromium-rich yeast are substantially higher than those from the normal. In addition, the concentration of chromium in DNA is much higher than that in RNA and proteins. It is evident that the inorganic chromium compounds can enter the yeast cell during the yeast cultivation in the chromium-containing culture medium and are converted into organic chromium species, which are combined with DNA, RNA and proteins. (author)

  8. Testing Cadmium-Free Coatings

    Science.gov (United States)

    2011-08-30

    Secretary of Defense Directive • “Approve the use of alternatives [to hexavalent chromium (Cr6+)] where they can perform adequately for the intended...Effect of corrosion on breakaway torque 12 OPSEC approved for public release Fastener Finish Study FINISH POST-TREATMENT LUBRICANT Cadmium Hexavalent ...Past Testing Electrical Connectors Coatings Al / TCP ZnNi / TCP ZnNi / Non- Chrome Passivation (NCP) Ni-PTFE 1 Ni-PTFE 2 Note: SnZn tested on flat

  9. In Vitro Corrosion and Cytocompatibility of ZK60 Magnesium Alloy Coated with Hydroxyapatite by a Simple Chemical Conversion Process for Orthopedic Applications

    Science.gov (United States)

    Wang, Bing; Huang, Ping; Ou, Caiwen; Li, Kaikai; Yan, Biao; Lu, Wei

    2013-01-01

    Magnesium and its alloys—a new class of degradable metallic biomaterials—are being increasingly investigated as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. However, the high corrosion rate in physiological environments prevents the clinical application of Mg-based materials. Therefore, the objective of this study was to develop a hydroxyapatite (HA) coating on ZK60 magnesium alloy substrates to mediate the rapid degradation of Mg while improving its cytocompatibility for orthopedic applications. A simple chemical conversion process was applied to prepare HA coating on ZK60 magnesium alloy. Surface morphology, elemental compositions, and crystal structures were characterized using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, respectively. The corrosion properties of samples were investigated by immersion test and electrochemical test. Murine fibroblast L-929 cells were harvested and cultured with coated and non-coated ZK60 samples to determine cytocompatibility. The degradation results suggested that the HA coatings decreased the degradation of ZK60 alloy. No significant deterioration in compression strength was observed for all the uncoated and coated samples after 2 and 4 weeks’ immersion in simulated body fluid (SBF). Cytotoxicity test indicated that the coatings, especially HA coating, improved cytocompatibility of ZK60 alloy for L929 cells. PMID:24300096

  10. Investigation of alternative phosphating treatments for nickel and hexavalent chromium elimination

    International Nuclear Information System (INIS)

    Jazbinsek, Luiz Antonio Rossi

    2014-01-01

    The phosphating processes are widely used in industry as surface treatments for metals, especially for low thickness plates, improving the adhesion between the metallic surface and the paint coating, and increasing the durability of paint systems against corrosion attacks. The tricationic phosphates containing zinc, nickel and manganese are commonly applied on steel. There is much discussion about the replacement of nickel by another element in order to have an environmentally friendly phosphating process. Niobium as a replacement for nickel has been evaluated. The most significant environmental impacts of phosphating processes are related to the presence of nickel and hexavalent chromium used in the process, this last as a passivation treatment. Nickel and hexavalent chromium are harmful to human and environment leading to contamination of water and soil. In the present study phosphate layers containing zinc, manganese and niobium have been evaluated and characterized on galvanized steel, and the results were compared with phosphates containing zinc, manganese and nickel, or a bicationic phosphate layer with zinc and manganese. Although the use of hexavalent chromium is not recommended worldwide, it is still used in processes for sealing the porosity of phosphate layers. This element is carcinogenic and has been associated with various diseases. Due to the passivation characteristics of niobium, this study also evaluated the tricationic bath containing niobium ammonium oxalate as a passivation treatment. The results showed that it could act as a replacement for the hexavalent chromium. The results of the present study showed that formulations containing niobium are potential replacements for hexavalent chromium and similar corrosion protection was obtained for the phosphate containing nickel or that with niobium. The morphology observed by scanning electron microscopy, gravimetric tests, porosity and adhesion evaluation results indicated that the phosphate

  11. Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jøns, O; Nielsen, B

    1992-01-01

    A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both...

  12. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    International Nuclear Information System (INIS)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings

  13. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings.

  14. Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative (Briefing Charts)

    Science.gov (United States)

    2011-02-10

    chrome plating utilizes chromium in the hexavalent state (Cr6+) Cr6+ is a known carcinogen and poses a health risk to operators OSHA lowered the Cr6+ PEL...from 52 µg/m3 to 5 µg/m3 8 Apr 09, Memorandum, DoD Directive Hexavalent Chromium Management Policy NAVAIR Cr6+ Authorization Process Hard Chrome ...Aerospace & Defense February 10, 2011 Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative Jack Benfer Co-PI NAVAIR

  15. Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A., E-mail: catledge@uab.edu

    2015-02-15

    Highlights: • Metal-boride layer creates a compatible surface for NSD deposition. • PECVD boriding on CoCrMo produces robust metal-boride layer. • Deposition temperature comparison shows 750 °C boriding masks surface cobalt. • EDS shows boron diffusion as well as deposition. • Nanoindentation hardness of CoCrMo substantially increases after boriding. - Abstract: Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt–chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B{sub 2}H{sub 6}) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal–boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.

  16. Electrochemical characterization of ceramic coatings on steels for nuclear applications

    International Nuclear Information System (INIS)

    Perillo, Patricia M.; Haddad, Roberto

    1999-01-01

    The corrosion behavior of low chromium steels coated with TiN by plasma CVD, was studied in neutral medium chloride, in sulfuric solution and in alkaline buffer solution, at ambient temperature. Polarization potentiokinetic curves of coated and uncoated probes (M2 HSS) in NaCl 0,1 N and Na 2 CO 3 /NaHCO 3 (1:1) 0,5 M (pH=10), H 2 SO 4 al 5% solutions deaerated with nitrogen gas in conventional corrosion cells were obtained. The passive current measured for coated samples was nearly two orders of magnitude lower than for the uncoated ones. (author)

  17. The effect of post-treatment time and temperature on cerium-based conversion coatings on Al 2024-T3

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Daimon K [Missouri University of Science and Technology, 101 Straumanis Hall, 401 West 16th Street, Rolla, MO 65409 (United States)], E-mail: dkhvwb@mst.edu; Fahrenholtz, William G. [Missouri University of Science and Technology, 101 Straumanis Hall, 401 West 16th Street, Rolla, MO 65409 (United States)], E-mail: billf@mst.edu; O' Keefe, Matthew J. [Missouri University of Science and Technology, 101 Straumanis Hall, 401 West 16th Street, Rolla, MO 65409 (United States)

    2010-02-15

    Corrosion performance, morphology, and electrochemical characteristics of cerium-based conversion coatings on Al 2024-T3 were examined as a function of phosphate post-treatment time and temperature. Corrosion resistance improved after post-treatment in 2.5 wt.% NH{sub 4}H{sub 2}PO{sub 4} for times up to 10 min or temperatures up to 85 deg. C. Electrochemical impedance spectroscopy and polarization testing correlated to neutral salt spray corrosion performance. Hydrated cerium oxide and peroxide species present in the as-deposited coatings were transformed to CePO{sub 4}.H{sub 2}O for post-treatments at longer times and/or higher temperatures. Based on these results, processes active during post-treatment are kinetically dependent and strongly influenced by the post-treatment time and temperature.

  18. Characteristics of chromium-allergic dermatitis patients prior to regulatory intervention for chromium in leather

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus

    2014-01-01

    BACKGROUND: Chromium-tanned leather articles currently constitute the most important cause of contact allergy to chromium in Denmark. A regulation on the content of hexavalent chromium in leather was adopted in November 2013 by the EU member states. OBJECTIVES: To characterize patients...... with chromium allergy and their disease, to serve as a baseline for future studies on the potential effect of the new regulation on chromium in leather. METHODS: A questionnaire case-control study was performed on 155 dermatitis patients with positive patch test reactions to potassium dichromate and a matched...... control group of 621 dermatitis patients. Comparisons were made by use of a χ(2) -test and the Mann-Whitney U-test. Logistic regression analyses were used to test for associations. RESULTS: Sixty-six per cent of chromium-allergic patients had a positive history of contact dermatitis caused by leather...

  19. Investigation of Plasma Spray Coatings as an Alternative to Hard Chrome Plating on Internal Surfaces

    National Research Council Canada - National Science Library

    Legg, Keith O; Sartwell, Bruce D; Legoux, Jean-Gabriel; Nestler, Montia; Dambra, Christopher; Wang, Daming; Quets, John; Natishan, Paul; Bretz, Philip; Devereaux, Jon

    2006-01-01

    .... This document constitutes the final report on an investigation of deposition of coatings using miniature plasma spray guns that could replace hard chromium on internal surfaces where conventional...

  20. Specification for corrosion-resisting chromium and chromium-nickel steel welding rods and bare electrodes - approved 1969

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    This specification covers corrosion-resisting chromium and chromium-nickel steel welding rods for use with the atomic hydrogen and gas-tungsten-arc welding processes and bare electrodes for use with the submerged arc and gas metal-arc welding processes. These welding rods and electrodes include those alloy steels designated as corrosion- or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4% and nickel does not exceed 50%

  1. Synthesis, Characterization and Application of A Novel Carbon Bridged Half-metallocene Chromium Catalyst for Methyl Methacrylate Polymerization

    Institute of Scientific and Technical Information of China (English)

    CHENG Zhengzai; GONG Kai; WANG Yang; ZHOU Xue; ZHANG Weixing; LI Yin; SUN Junquan; LI Wenbing

    2014-01-01

    A new carbon bridged cyclopentadienyl chromium complex of the type [(C5H4)C(CH3)2 CH2(C5H4N)]CrCl2 was prepared by treatment of CrCl3•(THF)3 in THF solution with the lithium salt of ligand containing cyclopentadienyl and pyridyl groups. The chromium complex was characterized by 1H NMR and elemental analysis(EA), and the crystal structure was determined by X-ray diffraction analysis. Activated by Al(i-Bu)3, the chromium complex displayed a very high activity for methyl methacrylate (MMA) polymerization. After 24 hours,more than 95.5%MMA was converted to polymethyl methacrylate (PMMA) with a viscosity average molecular weight (Wη) of 416000 g•mol-1 at 60℃for MMA/Al(i-Bu)3/chromium catalyst molar ratio of up to 2000:20:1. Effects of temperature, molar ratios of MMA/catalyst and catalyst/cocatalyst on the polymerization have been studied. The high conversion of MMA and high molecular weight of PMMA with narrow molecular weight distribution is caused by the unique stable active site formed by the new chromium complex and aluminum cocatalyst.

  2. Laboratory and field evaluations of a methodology for determining hexavalent-chromium emissions from stationary sources. Final report

    International Nuclear Information System (INIS)

    Carver, A.C.

    1991-10-01

    The study was initiated to determine whether chromium emissions should be regulated under Section 112 of the Clean Air Act National Emissions Standards for Hazardous Air Pollutants (NESHAP). To support stationary source regulations, it is important that (1) the sampling procedure not change the chromium valence state during sampling and (2) an analytical technique for measuring low concentration levels of chromium be available. These goals are achieved with the current EPA 'Draft Method for Sampling and Analysis of Hexavalent Chromium at Stationary Sources.' The draft method utilizes a recirculating system to flush impinger reagent into the sampling nozzle during sample collection. Immediate contact of the stack gas with impinger reagent 'fixes' the chromium valence state. Ion chromatography coupled with post column derivatization and ultraviolet visible detector is used to analyze Cr(VI) in the parts per trillion range. Field tests were conducted at metal plating facilities, industrial cooling towers, municipal waste incinerators, sewage sludge incinerators, and hazardous waste incinerators. It was at the hazardous waste facility that the new method was proven to have acceptable precision and essentially no conversion in the sample train

  3. Development of Cr cold spray–coated fuel cladding with enhanced accident tolerance

    Directory of Open Access Journals (Sweden)

    Martin Ševeček

    2018-03-01

    Full Text Available Accident-tolerant fuels (ATFs are currently of high interest to researchers in the nuclear industry and in governmental and international organizations. One widely studied accident-tolerant fuel concept is multilayer cladding (also known as coated cladding. This concept is based on a traditional Zr-based alloy (Zircaloy-4, M5, E110, ZIRLO etc. serving as a substrate. Different protective materials are applied to the substrate surface by various techniques, thus enhancing the accident tolerance of the fuel. This study focuses on the results of testing of Zircaloy-4 coated with pure chromium metal using the cold spray (CS technique. In comparison with other deposition methods, e.g., Physical vapor deposition (PVD, laser coating, or Chemical vapor deposition techniques (CVD, the CS technique is more cost efficient due to lower energy consumption and high deposition rates, making it more suitable for industry-scale production. The Cr-coated samples were tested at different conditions (500°C steam, 1200°C steam, and Pressurized water reactor (PWR pressurization test and were precharacterized and postcharacterized by various techniques, such as scanning electron microscopy, Energy-dispersive X-ray spectroscopy (EDX, or nanoindentation; results are discussed. Results of the steady-state fuel performance simulations using the Bison code predicted the concept's feasibility. It is concluded that CS Cr coating has high potential benefits but requires further optimization and out-of-pile and in-pile testing. Keywords: Accident-Tolerant Fuel, Chromium, Cladding, Coating, Cold Spray, Nuclear Fuel

  4. Examination of Spray-Applied Oxsilan 9810/2 Steel Pretreatment on a Mine Resistant Ambush Protected (MRAP) Vehicle

    Science.gov (United States)

    2013-10-01

    Coating (CARC) system. The product demonstrated here is Oxsilan 9810/2, manufactured by Chemetall Inc., which satisfies the hexavalent chrome ...system. The product demonstrated here is Oxsilan 9810/2, manufactured by Chemetall Inc., and satisfies the hexavalent chrome prohibition while...2 Omitting this pretreatment/conversion coating step was justified because hexavalent chromium- based pretreatments, such as DOD-P-15328 (8

  5. Hexavalent Chromium Compounds

    Science.gov (United States)

    Learn about chromium, exposure to which can increase your risk of lung cancer and cancer of the paranasal sinuses and nasal cavity. Hexavalent chromium compounds have been used as corrosion inhibitors in a wide variety of products and processes.

  6. Influence of acids on the zinc conversion process with molybdate

    International Nuclear Information System (INIS)

    Silva, Cosmelina Goncalves da; Margarit-Mattos, Isabel Cristina Pereira; Mattos, Oscar Rosa; Barcia, Oswaldo Esteves

    2010-01-01

    Molybdate conversion coatings have been evaluated as possible alternative to the chromate ones. The acid used in the pH adjustment of the conversion baths exerts great influence on the anti corrosive properties of these coatings. The aim of this work was to verify the role of phosphoric and sulfuric acids on the zinc conversion process with molybdate. The techniques used were: chronopotentiometry, electrochemical impedance spectroscopy (EIS) and interfacial pH measurements. The surface characterization was made with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The chronopotentiometry results have shown that the influence of the variation of the electrode rotation speed on the conversion process is acid-dependent: the acid influences the mass transport during the conversion. The EIS measures have suggested that the conversion mechanism does not change with the acid, being the coatings thicker when H_2SO_4 is used than the obtained with H_3PO_4. The pH interfacial results have shown a pH increase more significant for the bath with H_2SO_4, indicating a fastest kinetic of zinc dissolution. It was identified the presence of Mo in all analyzed coatings, for both acids, and P in those obtained with H_3PO_4. (author)

  7. Recent developments in high temperature coatings for gas turbine airfoils

    Science.gov (United States)

    Goward, G. W.

    1983-01-01

    The importance of coatings for hot section airfoils has increased with the drive for more cost-effective use of fuel in a wide variety of gas turbine engines. Minor additions of silicon have been found to appreciably increase the oxidation resistance of plasma-sprayed NiCoCrAlY coatings on a single crystal nickel-base superalloy. Increasing the chromium content of MCrAlY coatings substantially increases the resistance to acidic (Na2SO4-SO3) hot corrosion at temperatures of about 1300 F (704 C) but gives no significant improvement beyond contemporary coatings in the range of 1600 F (871 C). Surface enrichment of MCrAlY coatings with silicon also gives large increases in resistance to acidic hot corrosion in the 1300 F region. The resistance to the thermal stress-induced spalling of zirconia-based thermal barrier coatings has been improved by lowering coating stresses with segmented structures and by controlling the substrate temperature during coating fabrication.

  8. The adhesion performance of epoxy coating on AA6063 treated in Ti/Zr/V based solution

    International Nuclear Information System (INIS)

    Zhu, Wen; Li, Wenfang; Mu, Songlin; Yang, Yunyu; Zuo, Xi

    2016-01-01

    Highlights: • A non-chrome titanium/zirconium/vanadium-based (Ti/Zr/V) conversion coating is prepared on AA6063 at room temperature. • The Ti/Zr/V conversion coating is produced on AA6063 within 50 s. • The adhesion strength between epoxy coating and AA6063 is improved significantly after the Ti/Zr/V conversion treatment. - Abstract: An environment-friendly titanium/zirconium/vanadium-based (Ti/Zr/V) conversion coating was prepared on aluminum alloy 6063 (AA6063). The epoxy powder coatings were applied on the AA6063 samples with/without Ti/Zr/V conversion coatings via electrostatic spraying. The morphology and composition of the conversion coating were studied by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The surface free energy components of AA6063 samples were measured by a static contact angle measuring device with Owens method. The adhesion properties of the epoxy coating on AA6063 treated with different conversion times were evaluated using a pull-off tester. The Ti/Zr/V conversion coating was mainly composed of metal oxide (TiO 2 , ZrO 2 , V 2 O 5 , Al 2 O 3 , etc.), metal fluoride (ZrF 4 , AlF 3 , etc.) and metal organic complex. The formation time of this conversion coating was reduced to 50 s. After such surface treatment, the samples' surface roughness was increased and the contact angle with water was decreased. Both the surface free energy and the work of adhesion were increased. The adhesion strength between the epoxy coating and AA6063 was enhanced significantly.

  9. Modelling of solar cells with down-conversion of high energy photons, anti-reflection coatings and light trapping

    International Nuclear Information System (INIS)

    Vos, Alexis de; Szymanska, Aleksandra; Badescu, Viorel

    2009-01-01

    In classical solar cells, each absorbed photon gives rise to one electron-hole pair, irrespective of the photon energy. By applying an appropriate photoluminescent layer in front of the solar cell semiconductor, one can convert one high energy photon into two low energy photons (so-called down-conversion). In the present study, we do not consider photoluminescent layers that merely shift down photon energies (without enhancing the number of photons). In principle, these two photons can then generate two electron-hole pairs in the solar cell, thus increasing the efficiency of the device. However, the two photons emitted by the converter, are not necessarily emitted in the direction of the semiconductor: they can also be emitted in the direction 'back to the sun'. As most semiconductors have a high refractive index, in case the luminescent material has a low refractive index, more than half of the photoluminescence emission is lost in the sun direction, resulting in a net loss of light current generated by the solar cell instead of an increase. On the other hand, a high refractive index of the conversion layer (e.g. equal to the solar cell refractive index) will lead to a bad optical coupling with the air and a good optical coupling with the semiconductor, and therefore, more than 50% of the emitted low energy photons will actually reach the solar cell. However, in the latter case, many solar photons do not reach the converter in the first place because of reflection at the air-converter interface. As a result, it turns out that, in the absence of any anti-reflection coating, a refractive index n 2 of the converting layer in the range between n 1 1/2 and n 1 is optimal, where n 1 is the refractive index of the solar cell material. If, however, an anti-reflection coating is applied between air and the converter, the best choice for n 2 is n 1 . Finally, if two anti-reflection coatings are applied (the former between air and the converter, the latter between the

  10. Up-conversion luminescence application in Er3+: TiO2 thin film prepared by dip coating sol-gel route

    International Nuclear Information System (INIS)

    Badr, Y.; Battisha, I.K.; Salah, A.; Salem, M.A.

    2008-01-01

    Sol-gel derived nano-crystalline titanium dioxide films doped with 1 up to 5% Er 3+ ions were prepared by dip coating sol-gel method. The coating sol was obtained by hydrolysis of Ti(OC 4 H 9 ) 4 in ethanol/HCI solution. The FT-Raman and the X-ray diffraction (XRD) were carried out to determine the crystal structure of the prepared samples. The morphology SEM and the cross-sectional of the film were used to characterize the microstructure and the thickness of the prepared film. It is shown that relative homogeneous, crack-free and transparent film was achieved via dipping process at 500 deg C. After the excitation with laser diode at wavelength 808 nm, visible (Vis) and infrared (IR) up-conversion emissions were evidenced in the thin film samples under investigation. The up-conversion was found to depend strongly on the Er 3+ ion concentrations. The visible emission was found to be at 540, 560, 590 and 640 nm for thin film. They are attributed to intra-4f transition of Er 3+ ions and assigned to the ( 2 H 11/2 + 4 S 3/2 ) and 4 F 9/2 , which are populated through excited state absorption (ESA) for 808 nm excitation. (author)

  11. Anticorrosion performance of chromized coating prepared by pack cementation in simulated solution with H2S and CO2

    Science.gov (United States)

    Wang, Qin-Ying; Behnamian, Yashar; Luo, Hong; Wang, Xian-Zong; Leitch, Michael; Zeng, Hongbo; Luo, Jing-Li

    2017-10-01

    A hash service environment containing H2S and CO2 in oil industry usually causes corrosion of carbon steel. In this study, the chromized coatings with different deposited time were prepared on the surface of carbon steel by the method of pack cementation to enhance its corrosion resistance. Then the microstructure, hardness, corrosion resistance as well as the semiconductor behavior of coatings in the simulated solution with saturated H2S and CO2 were investigated. The results show that the content of Cr in coating was increased by prolonging deposited time, and both chromium carbides and chromium nitrides were formed. Furthermore, coatings display higher polarization resistance, Rp, than that of the substrate, indicating a higher resistance to charge transfer on coating surface. The corrosion rates of coatings with different deposited time were significantly lower than that of substrate. Chemical analysis showed the formation of heavy sulfides on the surface of substrates after corrosion, while the least corrosion products were detected on the surface of coating with deposited time of 12 h. Mott-Schottky results indicated that coating of 12 h displayed less defects than the other two coatings with deposited time of 4 h and 8 h, which will be beneficial to improve corrosion resistance. The investigation showed that chromized coatings exhibited high corrosion resistance and owned a potential application in oil industry for corrosion prevention.

  12. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles

    Science.gov (United States)

    Janicki, Damian

    2017-09-01

    Inconel 625/Cr3C2 composite coatings were produced via a laser cladding process using Cr3C2 reinforcing particles presenting an open porosity of about 60%. A laser cladding system used consisted of a direct diode laser with a rectangular beam spot and the top-hat beam profile, and an off-axis powder injection nozzle. The microstructural characteristics of the coatings was investigated with the use of scanning electron microscopy and X-ray diffraction. A complete infiltration of the porous structure of Cr3C2 reinforcing particles and low degree of their dissolution have been achieved in a very narrow range of processing parameters. Crack-free composite coatings having a uniform distribution of the Cr3C2 particles and their fraction up to 36 vol% were produced. Comparative erosion tests between the Inconel 625/Cr3C2 composite coatings and the metallic Inconel 625 coatings were performed following the ASTM G 76 standard test method. It was found that the composite coatings have a significantly higher erosion resistance to that of metallic coatings for both 30° and 90° impingement angles. Additionally, the erosion performances of composite coatings were similar for both the normal and oblique impact conditions. The erosive wear behaviour of composite coatings is discussed and related to the unique microstructure of these coatings.

  13. Navy Successes and Challenges in Cr6+ Minimization

    Science.gov (United States)

    2011-05-12

    Authorization to Use Hexavalent Chromium. YES NO • Approval of alternatives by W/S PM and Corrosion SME designee. • Change technical/maintenance...Inorganic Coatings and Processes – Alternatives authorized for • Aluminum and magnesium anodizing • Hard Chrome Plating • Type II, Class 1A conversion...savings due to use of aluminum cathodes – Allows for consolidation of anodizing processes – Elimination of Hexavalent Chromium 80% 5% 14% 1% Type II

  14. High-temperature resistant, thermally sprayed diffusion barrier coatings on CFC lightweight materials; Hochtemperaturbestaendige, thermisch gespritzte Diffusionsbarriereschichten auf CFC-Leichtbauchargiergestellen

    Energy Technology Data Exchange (ETDEWEB)

    Drehmann, Rico; Rupprecht, Christian; Wielage, Bernhard; Lampke, Thomas [Technische Univ. Chemnitz (Germany). Inst. fuer Werkstoffwissenschaft und Werkstofftechnik (IWW); Gilbert, Maria; Uhlig, Volker; Trimis, Dimosthenis [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Thermodynamik (IWTT); Heuer, Volker [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2013-03-15

    In heat treating processes as well as in high temperature brazing processes, charge carriers enable the positioning and transport of work pieces. Recently, charge carriers consisting of graphite or carbon fibre reinforced carbon (CFC) are used. The main disadvantage of charge carriers based on CFC is the undesirable carburization of the overlying components due to diffusion processes. Under this aspect, thermally sprayed coatings are applied on CFC and tested with respect to their suitability as a high-temperature diffusion barrier. The ceramic powders aluminium oxide, aluminium oxide/chromium oxide, aluminium oxide/titanium oxide and zirconium oxide/yttrium oxide are used as a coating material which is processed by means of the powder flame spraying as well as atmospheric plasma spraying. Molybdenum and silicon carbide are used as an adhesive layer. The coating materials aluminium oxide and aluminium oxide/chromium oxide on siliconized CFC presented excellent results. This supplies a large potential of application for thermally sprayed ceramic coatings on carbon-based lightweight materials.

  15. Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91 D magnesium alloy

    International Nuclear Information System (INIS)

    Elsentriecy, Hassan H.; Azumi, Kazuhisa; Konno, Hidetaka

    2008-01-01

    The effects of pH and temperature of a stannate bath on the quality of stannate chemical conversion coatings formed on AZ91 D magnesium alloy by using the potentiostatic polarization technique at E = -1.1 V were investigated in order to improve uniformity and corrosion protection performance of the coating films. It was found that the uniformity and corrosion resistance of coating films deposited by potentiostatic polarization were closely associated with pH and temperature of the coating bath. The pH and temperature to obtain the best coating film were investigated as a function of corrosion protection performance evaluated by curves of potentiodynamic anodic polarization conducted in borate buffer solution. Scanning electron microscope observation and electrochemical corrosion tests of the stannate-coated samples confirmed significant improvement in uniformity and corrosion resistivity of coating films deposited by the potentiostatic technique by modifying the pH and temperature of the coating bath. It was also found that uniformity and corrosion resistivity of the coating films deposited by the potentiostatic technique were considerably improved compared to those of coatings deposited by the simple immersion method at the best conditions of pH and temperature of the coating bath

  16. Design of a Nickel-Based Bond-Coat Alloy for Thermal Barrier Coatings on Copper Substrates

    Directory of Open Access Journals (Sweden)

    Torben Fiedler

    2014-11-01

    Full Text Available To increase the lifetime of rocket combustion chambers, thermal barrier coatings (TBC may be applied on the copper chamber wall. Since standard TBC systems used in gas turbines are not suitable for rocket-engine application and fail at the interface between the substrate and bond coat, a new bond-coat material has to be designed. This bond-coat material has to be chemically compatible to the copper substrate to improve the adhesion and needs a coefficient of thermal expansion close to that of copper to reduce thermal stresses. One approach to achieve this is to modify the standard NiCrAlY alloy used in gas turbines by adding copper. In this work, the influence of copper on the microstructure of NiCrAlY-alloys is investigated with thermodynamical calculations, optical microscopy, SEM, EDX and calorimetry. Adding copper leads to the formation of a significant amount of \\(\\beta\\ and \\(\\alpha\\ Reducing the aluminum and chromium content leads furthermore to a two-phase fcc microstructure.

  17. Chrome - Free Aluminum Coating System

    Science.gov (United States)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  18. Treatment of chromium contaminated soil using bioremediation

    Science.gov (United States)

    Purwanti, Ipung Fitri; Putri, Tesya Paramita; Kurniawan, Setyo Budi

    2017-11-01

    Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L

  19. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    OpenAIRE

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resis...

  20. The adhesion performance of epoxy coating on AA6063 treated in Ti/Zr/V based solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wen; Li, Wenfang, E-mail: mewfli@scut.edu.cn; Mu, Songlin; Yang, Yunyu; Zuo, Xi

    2016-10-30

    Highlights: • A non-chrome titanium/zirconium/vanadium-based (Ti/Zr/V) conversion coating is prepared on AA6063 at room temperature. • The Ti/Zr/V conversion coating is produced on AA6063 within 50 s. • The adhesion strength between epoxy coating and AA6063 is improved significantly after the Ti/Zr/V conversion treatment. - Abstract: An environment-friendly titanium/zirconium/vanadium-based (Ti/Zr/V) conversion coating was prepared on aluminum alloy 6063 (AA6063). The epoxy powder coatings were applied on the AA6063 samples with/without Ti/Zr/V conversion coatings via electrostatic spraying. The morphology and composition of the conversion coating were studied by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The surface free energy components of AA6063 samples were measured by a static contact angle measuring device with Owens method. The adhesion properties of the epoxy coating on AA6063 treated with different conversion times were evaluated using a pull-off tester. The Ti/Zr/V conversion coating was mainly composed of metal oxide (TiO{sub 2}, ZrO{sub 2}, V{sub 2}O{sub 5}, Al{sub 2}O{sub 3}, etc.), metal fluoride (ZrF{sub 4}, AlF{sub 3}, etc.) and metal organic complex. The formation time of this conversion coating was reduced to 50 s. After such surface treatment, the samples' surface roughness was increased and the contact angle with water was decreased. Both the surface free energy and the work of adhesion were increased. The adhesion strength between the epoxy coating and AA6063 was enhanced significantly.

  1. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process.

    Science.gov (United States)

    Tôrres Filho, Artur; Lange, Liséte Celina; de Melo, Gilberto Caldeira Bandeira; Praes, Gustavo Eduardo

    2016-02-01

    Pyrolysis is the thermal degradation of organic material in oxygen-free or very lean oxygen atmosphere. This study evaluates the use of pyrolysis for conversion of leather wastes from chromium tanning processes into Carbonized Leather Residues (CLR), and the utilization of CLR in metallurgical processes through the production of iron ore pellets. CLR was used to replace mineral coal in proportions of 10% and 25% on fixed carbon basis content in the mixtures for pellets preparation. Experimental conversions were performed on a pilot scale pyrolysis plant and a pelletizing reactor of the "pot grate" type. The results demonstrated the technical feasibility of using the charcoal product from animal origin as an energy source, with recovery of up to 76.47% of chromium contained in CLR in the final produced of iron ore pellets. Pellets with 25% replacement of fixed carbon in the coal showed an enhanced compressive strength, with an average value of 344kgfpellet(-1), compared to 300kgfpellet(-1) for standard produced pellets. Copyright © 2015. Published by Elsevier Ltd.

  2. Separation of valence forms of chromium(III) and chromium(VI) by coprecipitation with iron(III) hydroxide

    International Nuclear Information System (INIS)

    Nazirmadov, B.; Khamidov, B.O.; Egorova, L.A.

    1989-01-01

    The sorption of 9.62·10 -5 M of Cr (III) and Cr (VI) with iron hydroxide in 1 M potassium nitrate and potassium chloride was investigated in relation to the pH of the medium. Experimental data on the sorption of chromium(III) and chromium(VI) with iron(III) hydroxide made it possible to determine the region of practically complete concentration of Cr (III) and Cr (VI) (pH = 3-6.5). The results from spectrophotometric investigations, calculated data on the distribution of the hydroxocationic forms of chromium(III) and the anions of chromium(IV), and their sorption by iron-(III) hydroxide made it possible to characterize the sorbability of the cationic and anionic forms of chromium in various degrees of oxidation. On this basis a method was developed for the separation of chromium(III) and chromium(VI) by coprecipitation on iron(III) hydroxide and their separation from the iron(III) hydroxide support

  3. Characterization of steam generated anti-corrosive oxide films on Aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    of hexavalent chromium is strictly regulated due to its toxic nature and suspected carcinogenicity. So, it is highly imperative to develop other alternatives for chrome conversion coatings. Treatment of aluminium with natural water at elevated temperatures results in the formation of different forms...

  4. Dual-enhanced photothermal conversion properties of reduced graphene oxide-coated gold superparticles for light-triggered acoustic and thermal theranostics

    Science.gov (United States)

    Lin, Li-Sen; Yang, Xiangyu; Niu, Gang; Song, Jibin; Yang, Huang-Hao; Chen, Xiaoyuan

    2016-01-01

    A rational design of highly efficient photothermal agents that possess excellent light-to-heat conversion properties is a fascinating topic in nanotheranostics. Herein, we present a facile route to fabricate size-tunable reduced graphene oxide (rGO)-coated gold superparticles (rGO-GSPs) and demonstrate their dual-enhanced photothermal conversion properties for photoacoustic imaging and photothermal therapy. For the first time, graphene oxide (GO) was directly used as an emulsifying agent for the preparation of gold superparticles (GSPs) with near-infrared absorption by the emulsion method. Moreover, GO spontaneously deposited on the surface of GSPs could also act as the precursor of the rGO shell. Importantly, both the plasmonic coupling of the self-assembled gold nanoparticles and the interaction between GSPs and rGO endow rGO-GSPs with enhanced photothermal conversion properties, allowing rGO-GSPs to be used for sensitive photoacoustic detection and efficient photothermal ablation of tumours in vivo. This study provides a facile approach to prepare colloidal superparticles-graphene hybrid nanostructures and will pave the way toward the design and optimization of photothermal nanomaterials with improved properties for theranostic applications.A rational design of highly efficient photothermal agents that possess excellent light-to-heat conversion properties is a fascinating topic in nanotheranostics. Herein, we present a facile route to fabricate size-tunable reduced graphene oxide (rGO)-coated gold superparticles (rGO-GSPs) and demonstrate their dual-enhanced photothermal conversion properties for photoacoustic imaging and photothermal therapy. For the first time, graphene oxide (GO) was directly used as an emulsifying agent for the preparation of gold superparticles (GSPs) with near-infrared absorption by the emulsion method. Moreover, GO spontaneously deposited on the surface of GSPs could also act as the precursor of the rGO shell. Importantly, both the

  5. Reaction of Oxygen with Chromium and Chromium Carbide at Low O2 Pressures and High Temperatures

    International Nuclear Information System (INIS)

    Hur, Dong O.; Kang, Sung G.; Paik, Young N.

    1984-01-01

    The oxidation rate of chromium carbide has been measured continuously using thermogravimetric analysis at different oxygen pressures ranging from 1.33x10 -2 to 2.67x10 -1 Pa O 2 at 1000-1300 .deg. C. The oxidation of pure chromium has also been studied between 1000-1300 .deg. C under 6.67x10 -2 Pa O 2 and compared with that of chromium carbide. The oxidation of chromium carbide showed a linear behavior which was different from that of chromium. The oxidation rate of chromium carbide increased with increasing temperature and oxygen pressure was lower than of pure chromium. Above 1200 .deg. C, the volatile oxide was formed and evaporated causing a weight loss. The compositions and morphology of the oxide were studied with X-ray diffractometer and scanning electron microscope, respectively. The morphology of oxide changed with varying temperature and pressure. The oxide scale was consisted of mainly two different layers of Cr 2 O 3 and CrO, and the properties of oxide scale were correlated with oxidation behavior. The oxide film formed in the above test condition has been detached from the carbide surface. The crack and pore were thought to be from CO gas evolving at the interface of chromium carbide and its oxide and the major factor of the linear behavior of chromium carbide

  6. Proteomic Responses of BEAS-2B Cells to Nontoxic and Toxic Chromium: Protein Indicators of Cytotoxicity Conversion

    Science.gov (United States)

    Hexavalent chromium (Cr (VI)) is an environmental human carcinogen which primarily targets lungs. Among a variety of toxic mechanisms, disruption of biological pathways via translational and post-translational modifications represents a key mechanism through which Cr (VI) induces...

  7. Tribology and Microstructure of PS212 with a Cr2O3 Seal Coat

    Science.gov (United States)

    Sliney, Harold E.; Benoy, Patricia A.; Korenyi-Both, Andras; Dellacorte, Christopher

    1994-01-01

    PS212 is a plasma sprayed metal bonding chrome carbide coating with solid lubricant additives which has lubricating properties at temperatures up to about 900 deg C. The coating is diamond ground to achieve an acceptable tribological surface. But, as with many plasma spray coatings, PS212 is not fully-dense. In this study, a chromium oxide base seal coating is used in an attempt to seal any porosity that is open to the surface of the PS212 coating, and to study the effect of the sealant on the tribological properties of PS212. The results indicate that the seal coating reduces friction and wear when it is applied and then diamond ground leaving a thin layer of seal coating which fills in the surface pits of the PS212 coating.

  8. Characteristics and corrosion studies of vanadate conversion coating formed on Mg–14 wt%Li–1 wt%Al–0.1 wt%Ce alloy

    International Nuclear Information System (INIS)

    Ma Yibin; Li Ning; Li Deyu; Zhang Milin; Huang Xiaomei

    2012-01-01

    Highlights: ► Vanadate film forms on the surface of Mg–Li–Al–Ce alloy. ► Vanadate coating improves the corrosion resistance. ► Vanadate coating is composed of Mg(OH) 2 , Li 2 O and V 2 O 5 . - Abstract: Mg–14Li–1Al–0.1Ce alloy is immersed in NH 4 VO 3 + K 3 (Fe(CN) 6 ) solutions with different NH 4 VO 3 and/or K 3 (Fe(CN) 6 ) concentrations, and different immersion time. The surface morphology and composition of the vanadate coating are then characterized by scanning electron microscopy with energy dispersion spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), and the corrosion behavior of the conversion coating is studied by polarization technique and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the vanadate film with better corrosion resistance forms on Mg–Li–Al–Ce surface after the sample is immersed in 30 g L −1 NH 4 VO 3 + 3.75 g L −1 K 3 (Fe(CN) 6 ) solution at 80 °C for 10 min. The coating consists of V 2 O 5 , Li 2 O and Mg(OH) 2 .

  9. Cerium oxide as conversion coating for the corrosion protection of aluminum

    Directory of Open Access Journals (Sweden)

    JELENA GULICOVSKI

    2013-11-01

    Full Text Available CeO2 coatings were formed on the aluminum after Al surface preparation, by dripping the ceria sol, previously prepared by forced hydrolysis of Ce(NO34. The anticorrosive properties of ceria coatings were investigated by the electrochemical impedance spectroscopy (EIS during the exposure to 0.03 % NaCl. The morphology of the coatings was examined by the scanning electron microscopy (SEM. EIS data indicated considerably larger corrosion resistance of CeO2-coated aluminum than for bare Al. The corrosion processes on Al below CeO2 coating are subjected to more pronounced diffusion limitations in comparison to the processes below passive aluminum oxide film, as the consequence of the formation of highly compact protective coating. The results show that the deposition of ceria coatings is an effective way to improve corrosion resistance for aluminum.

  10. Characterization of coatings and the low cycle fatigue behaviour of 316L

    International Nuclear Information System (INIS)

    Groot, P.; Horsten, M.G.; Tjoa, G.L.

    1993-03-01

    In the framework of the European Fusion Technology Programme ECN participates in a NET task PSM-8 'Coatings and Surface Effects on Stainless Steel 316L'. High emissivity coatings were developed for enhanced heat transfer from graphite tiles to a Stainless Steel First Wall. Four candidate materials, Cr 2 O 3 , Black Cr, Al 2 O 3 /TiO 2 and TiC were tested as candidate high emissivity coatings. These coatings were manufactured by atmospheric and vacuum plasma spraying technique and the Black Chromium coatings were manufactured by a galvanic coating technique. The tests included total emissivity measurements and Low Cycle Fatigue (LCF) experiments. The total emissivity of two TiC coatings at 525 K appeared to be 0.62 and 0.64. The total emissivity of the TiC and 5 wt% TiO 2 /Al 2 O 3 coating was about 0.7. (orig.)

  11. Tribological study of lubricious DLC biocompatible coatings.

    Science.gov (United States)

    Brizuela, M; Garcia-Luis, A; Viviente, J L; Braceras, I; Oñate, J I

    2002-12-01

    DLC (diamond-like carbon) coatings have remarkable tribological properties due mainly to their good frictional behavior. These coatings can be applied in many industrial and biomedical applications, where sliding can generate wear and frictional forces on the components, such as orthopaedic metal implants. This work reports on the development and tribological characterization of functionally gradient titanium alloyed DLC coatings. A PVD-magnetron sputtering technique has been used as the deposition method. The aim of this work was to study the tribological performance of the DLC coating when metal to metal contact (cobalt chromium or titanium alloys) takes place under dry and lubricated test conditions. Prior work by the authors demonstrates that the DLC coating reduced considerably the wear of the ultra-high-molecular-weight polyethylene (UHMWPE). The DLC coating during mechanical testing exhibited a high elastic recovery (65%) compared to the values obtained from Co-Cr-Mo (15%) and Ti-6Al-4V (23%). The coating exhibited an excellent tribo-performance against the Ti-6Al-4V and Co-Cr-Mo alloys, especially under dry conditions presenting a friction value of 0.12 and almost negligible wear. This coating has passed biocompatibility tests for implant devices on tissue/bone contact according to international standards (ISO 10993).

  12. Diminishing Chromium Use on Combined Chromium-Gambier Tanning Process Upon the Characteristics of Tanned Leather

    Directory of Open Access Journals (Sweden)

    A. Kasim

    2014-04-01

    Full Text Available The research was aimed to investigate the influence of minimizing chromium use on combined chromium-gambier process upon the characteristics of tanned leather. At the first stage of tanning process, chromium was used and in the second stage it was replaced by gambier. The raw material used was dried saline-preserved goat skin. The treatments applied on the tanning process were the different concentrations of chromium ranging from the highest level of 6% to the lowest level of 1% which was then re-tanned by using 8% concentration of gambier. The examination parameters included chemical and physical properties as well as visual investigation on the tanned leather in accordance with SNI-06-0463-1989-A. The result showed that the tanning process by using 2% chromium in the first step and 8% gambier in the second step was a treatment combination producing tanned leather that met the standard. The examination on tanned leather resulted from such treatment showed 56.33% rawhide, 17.45% of bound tannin, 31.22% of tanning level, tensile strength 386.30 kg/cm2, flexibility 31.91%, leather width 1.3 mm, density 0.75 g/cm3, the leather was quite elastic with light brownish color. In conclusion, minimizing the use of chromium in the combined tanning process of chromium and gambier can be implemented to the lowest of 2% chromium concentration and 8% gambier in the first and second step, respectively.

  13. The effect of surface pre-conditioning treatments on the local composition of Zr-based conversion coatings formed on aluminium alloys

    Science.gov (United States)

    Cerezo, J.; Vandendael, I.; Posner, R.; de Wit, J. H. W.; Mol, J. M. C.; Terryn, H.

    2016-03-01

    This study investigates the effect of different alkaline, acidic and thermal pre-conditioning treatments applied to different Al alloy surfaces. The obtained results are compared to the characteristics of Zr-based conversion coatings that were subsequently generated on top of these substrates. Focus is laid on typical elemental distributions on the sample surfaces, in particular on the amount of precipitated functional additives such as Cu species that are present in the substrate matrix as well as in the conversion bath solutions. To this aim, Field Emission Auger Electron spectra, depth profiles and surface maps with superior local resolution were acquired and compared to scanning electron microscopy images of the sample. The results show how de-alloying processes, which occur at and around intermetallic particles in the Al matrix during typical industrial alkaline or acidic cleaning procedures, provide a significant source of crystallization cores for any following coating processes. This is in particular due for Cu-species, as the resulting local Cu structures on the surface strongly affect the film formation and compositions of state-of-the-art Zr-based films. The findings are highly relevant for industrial treatments of aluminium surfaces, especially for those that undergo corrosion protection and painting process steps prior to usage.

  14. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V., E-mail: vdaditya1000@gmail.com [Department of Electrical Engineering,College of Technology and Engineerin, MPUAT Udaipur, 313001,India (India); Rao, G. P., E-mail: ragrao38@gmail.com; Tiwari, G. S., E-mail: tiwarigsin@yahoo.com [Department of Farm Machinery and Power Engineering, MPUAT Udaipur, 313001,India (India); Sanger, A., E-mail: amitsangeriitr@gmail.com; Kumar, A., E-mail: 01ashraj@gmail.com; Chandra, R., E-mail: ramesfic@gmail.com [Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2016-04-13

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  15. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    International Nuclear Information System (INIS)

    Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.

    2016-01-01

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  16. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    Science.gov (United States)

    Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.

    2016-04-01

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  17. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-04-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  18. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-06-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  19. Biomedical coatings on magnesium alloys - a review.

    Science.gov (United States)

    Hornberger, H; Virtanen, S; Boccaccini, A R

    2012-07-01

    This review comprehensively covers research carried out in the field of degradable coatings on Mg and Mg alloys for biomedical applications. Several coating methods are discussed, which can be divided, based on the specific processing techniques used, into conversion and deposition coatings. The literature review revealed that in most cases coatings increase the corrosion resistance of Mg and Mg alloys. The critical factors determining coating performance, such as corrosion rate, surface chemistry, adhesion and coating morphology, are identified and discussed. The analysis of the literature showed that many studies have focused on calcium phosphate coatings produced either using conversion or deposition methods which were developed for orthopaedic applications. However, the control of phases and the formation of cracks still appear unsatisfactory. More research and development is needed in the case of biodegradable organic based coatings to generate reproducible and relevant data. In addition to biocompatibility, the mechanical properties of the coatings are also relevant, and the development of appropriate methods to study the corrosion process in detail and in the long term remains an important area of research. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Role of oxides and porosity on high temperature oxidation of liquid fuelled HVOF thermal sprayed Ni50Cr coatings

    OpenAIRE

    Song, B.; Bai, M.; Voisey, K.T.; Hussain, Tanvir

    2017-01-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid fuelled high velocity oxy-fuel (HVOF) thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using...

  1. On the influence of Ti-Al intermetallic coating architecture on mechanical properties and wear resistance of end mills

    Science.gov (United States)

    Vardanyan, E. L.; Budilov, V. V.; Ramazanov, K. N.; Ataullin, Z. R.

    2017-07-01

    Thin-film wear-resistant coatings are widely used to increase life and efficiency of metal cutting tools. This paper shows the results of a study on the influence of architecture (number, sequence and thickness of layers) of wear-resistant coatings on physical, mechanical and operational properties of end mills. Coatings consisting of alternating Ti-Al/Ti-Al-N layers of equal thickness demonstrated the best physical and mechanical properties. Durability of coated tools when processing materials from chromium-vanadium steel increased twice as compared to uncoated tools.

  2. Conversion electron Moessbauer spectroscopic studies on the chemical states of surface layers of corroded tin plates and tin-coated iron plates

    International Nuclear Information System (INIS)

    Kato, Akinori; Endo, Kazutoyo; Sano, Hirotoshi

    1980-01-01

    By means of the conversion electron Moessbauer spectroscopy (CEMS), we studied surface layers of ''tin'' plates and tin-coated iron plates corroded by various acids. Transmission Moessbauer spectra and X-ray diffraction patterns were also measured. Metastannic acid was formed, when the ''tin'' plate was corroded by nitric acid solution. In corrosion by phosphoric acid solution, the X-ray diffractometry revealed the formation of tin(IV) pyrophosphate. In corrosion by various organic acid solutions, the formation of oxides was identified by the 119 Sn CEMS, but not by the X-ray diffractometry because of the too thin corrosion layer. In corrosion of tin-coated iron plates, maleic acid, malonic acid, formic acid, and oxalic acid were used. It was determined by CEMS that the corrosion products caused by these acids were tin(IV) oxides, although they could not be identified by the X-ray diffractometry. CEMS also confirmed that the surface of uncorroded tin-coated iron plate was already oxidized by air. Colorimetric determinations of Sn and Fe dissolved from tin-coated iron plates to various acid solutions confirmed that maleic acid had the strongest corrosion effect among the organic acids studied. (author)

  3. Protective Coatings for Wet Storage of Aluminium-Clad Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, S.M.C.; Correa, O.V.; Souza, J.A. De; Ramanathan, L.V. [Materials science and Technology Center, Instituto de Pesquisas Energeticas e Nucleares - IPEN, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2011-07-01

    Corrosion protection of spent RR fuel for long term wet storage was considered important, primarily from the safety standpoint and the use of conversion coatings was proposed in 2008. This paper presents the results of: (a) on-going field tests in which un-coated and lanthanide-based conversion coated Al alloy coupons were exposed to the IEA-R1 reactor spent fuel basin for durations of up to a year; (b) preparation of cerium modified hydrotalcite coatings and cerium sealed boehmite coatings on AA 6061 alloy; (c) corrosion resistance of coated specimens in NaCl solutions. The field studies indicated that the oxidized and cerium dioxide coated coupons were the most corrosion resistant. The cerium modified hydrotalcite and cerium sealed boehmite coated specimens showed marked increase in pitting corrosion resistance. (author)

  4. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    Science.gov (United States)

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  5. Chromium-induced skin damage among Taiwanese cement workers.

    Science.gov (United States)

    Chou, Tzu-Chieh; Wang, Po-Chih; Wu, Jyun-De; Sheu, Shiann-Cherng

    2016-10-01

    Little research has been done on the relationships between chromium exposure, skin barrier function, and other hygienic habits in cement workers. Our purpose was to investigate chromium-induced skin barrier disruption due to cement exposure among cement workers. One hundred and eight cement workers were recruited in this study. Urinary chromium concentration was used to characterize exposure levels. The biological exposure index was used to separate high and low chromium exposure. Transepidermal water loss (TEWL) was used to assess the skin barrier function. TEWL was significantly increased in workers with high chromium exposure levels than those with low chromium exposure levels (p = 0.048). A positive correlation was also found between urinary chromium concentration and TEWL (R = 0.28, p = 0.004). After adjusting for smoking status and glove use, a significant correlation between urinary chromium concentrations and TEWL remained. Moreover, workers who smoked and had a high chromium exposure had significantly increased TEWL compared to nonsmokers with low chromium exposure (p = 0.01). Skin barrier function of cement workers may have been disrupted by chromium in cement, and smoking might significantly enhance such skin barrier perturbation with chromium exposure. Decreased chromium skin exposure and smoking cessation should be encouraged at work. © The Author(s) 2015.

  6. Mg substituted apatite coating from alkali conversion of acidic calcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Navarro da Rocha, Daniel, E-mail: dnr.navarro@gmail.com [Military Institute of Engineering-IME, Pça. Gen. Tiburcio, 80, P. Vermelha, Urca, Rio de Janeiro, R.J. (Brazil); Cruz, Leila Rosa de Oliveira [Military Institute of Engineering-IME, Pça. Gen. Tiburcio, 80, P. Vermelha, Urca, Rio de Janeiro, R.J. (Brazil); Campos, José Brant de [Rio de Janeiro State University - UERJ, Rio de Janeiro, R.J. (Brazil); Marçal, Rubens L. Santana Blazutti [Military Institute of Engineering-IME, Pça. Gen. Tiburcio, 80, P. Vermelha, Urca, Rio de Janeiro, R.J. (Brazil); Mijares, Dindo Q.; Coelho, Paulo G. [Department of Biomaterials and Biomimetics, New York University College of Dentistry (NYU), New York, NY (United States); Prado da Silva, Marcelo H. [Military Institute of Engineering-IME, Pça. Gen. Tiburcio, 80, P. Vermelha, Urca, Rio de Janeiro, R.J. (Brazil)

    2017-01-01

    In this work, two solutions were developed: the first, rich in Ca{sup 2+}, PO{sub 4}{sup 3−} ions and the second, rich in Ca{sup 2+}, PO{sub 4}{sup 3−} and Mg{sup 2+}, defined as Mg-modified precursor solution. For each Mg-modified precursor solution, the concentrations of Mg{sup 2+} ions were progressively increased by 5%, 10% and 15%wt. The aims of this research were to investigate the influence of magnesium ions substitution in calcium phosphate coatings on titanium surface and to evaluate these coatings by bioactivity assay in McCoy culture medium. The obtained coatings were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis, and the presence of Mg ions was confirmed by the inductively coupled plasma atomic emission spectroscopy (ICP) analysis. In vitro bioactivity assay in McCoy culture medium showed bioactivity after 14 days in incubation for the HA and 10% Mg-monetite coatings. The high chemical stability of Mg-HA coatings was verified by the bioactivity assays, and no bone-like apatite deposition, characteristic of bioactivity, was observed for Mg-HA coatings, for the time period used in this study. - Highlights: • The presence of Mg ions influenced the final apatite phase present in the produced coatings. • A lower efficiency in heterogeneous deposition and an exposure of Ti substrate in 5% Mg-monetite coatings was soon verified. • McCoy culture medium was effective in predicting the coatings bioactivity.

  7. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been...

  8. Separation of valent forms of chromium (3) and chromium (6) by coprecipitation with iron (3) hydroxide

    International Nuclear Information System (INIS)

    Nazirmadov, B.; Khamidov, B.O.; Egorova, L.A.

    1988-01-01

    Soption 9.62x10 -5 mol/l of 51 Cr radioactive isotope in oxidation states 3 and 6 by iron(3) hydroxide in 1 mol/l of KNO 3 and KCl depending on pH medium is investigated. The region of practically total concentration of Cr(3) and Cr(6 + ) (pH=3-6.5) is determined. The results of spectrophotometric investigations, calculational data on distribution of hydroxocation forms of chromium (3) and of chromium (6) anions and sorption by iron (3) hydroxide permit to characterize sorption of chromium forms in different stages of oxidation. The methods of chromium (3) and chromium (6) separation by coprecipitation of iron (3) hydroxide and their precipitation from it is developed on the above foundation

  9. Lessons Learned in Technology Transition (Briefing Charts)

    Science.gov (United States)

    2011-02-01

    recertification • Environmental regulations • Federal clean air act • OSHA and EPA requirements – Cadmium, hexavalent chromium, VOC reduction • ReaCH Copyright...Efforts • Non-Chromated Exterior System Non-chromated conversion coat and primer • Non- Chrome for other areas • Chemical topcoat reactivation Future

  10. MICROSTRUCTURE FEATURES OF CHROME-NICKEL COATING WELDED WITH FILLER WIRE PL AN-111 WITH A 50% OVERLAP

    Directory of Open Access Journals (Sweden)

    A. G. Belik

    2017-04-01

    Full Text Available Purpose. The paper involves investigation of microstructure features of the coating welded with filler wire PL AN-111 with a 50% beads overlap. Methodology. Wear-resistant layer was formed by means of electric arc deposit welding using filler wire PL AN-111 on the plate from steel 09G2S. Deposit welding was conducted under the following parameters: welding current is of 650-750 A; arc voltage is of 30-34 V; welding speed is of 32 m/h. Microstructure was researched with application of optical microscopies “Neophot-21”, “Nikon Eclipse M200” and electron scanning microscopy JEOL JSM-6510 LV. Microhardness of structural constituentswas measuredwithtesterFM-300 (Future-Tech under loading of 10-50 g. Findings. It is shown that the overlap of the beads leads to the formation of inhomogeneous microstructure in the cross section that varies by zones from free-carbide austenite to hypereutectic microstructure with primary chromium carbides. The analysis of the microhardness of the structural constituents in various coating areas was carried out. It was found that hardness of austenite, carbide eutectic and carbides M7C3 varies in coatings in the range of 3 100-3 850 МPа, 4 100-6 800 МPа and 12 100-15 100 МPа, accordingly. Originality. Authors determined that Cr-Ni coating comprises substantially austenitic-carbide eutectic with different density and thickness of carbide fibers within eutectic colonies. Along the border “base/coating” a single-phase austenitic layer lies which turns into a layer with a hypoeutectic structure. In the heat affected zone from beads fusion austenite disintegration with the granular carbides formation was recorded. This leads to decreasing of matrix corrosion resistance due to chromium depletion. Above the zone of beads fusion, the coating has a hypereutectic structure with the presence of large primary chromium carbides. Practical value. It is shown that deposit welding with filler wire PL AN-111 with a 50

  11. Reduction of hexavalent chromium collected on PVC filters.

    Science.gov (United States)

    Shin, Y C; Paik, N W

    2000-01-01

    Chromium exists at various valences, including elemental, trivalent, and hexavalent chromium, and undergoes reduction-oxidation reactions in the environment. Since hexavalent chromium is known as a human carcinogen, it is most important to evaluate the oxidation-reduction characteristics of the hexavalent chromium species. Although hexavalent chromium can be reduced to trivalent state, the detailed information on this in workplace environments is limited. The purpose of this study was to investigate hexavalent chromium reduction in time in various conditions. A pilot chrome plating operation was prepared and operated in a laboratory for this study. There was evidence that the hexavalent chromium was reduced by time after mist generation. The percentage ratio (with 95% confidence intervals in parentheses) of hexavalent chromium to total chromium was almost 100% (99.1 approximately 102.3) immediately after mist generation, and was reduced to 87.4% (84.8 approximately 89.9) at 1 hour and 81.0% (78.3 approximately 83.5) at 2 hours, respectively. Another test indicated that hexavalent chromium collected on PVC filters was also reduced by time after sampling. Hexavalent chromium was reduced to 90.8% (88.2 approximately 93.3) at 2 hours after sampling. It also was found that hexavalent chromium was reduced during storage in air. It is recommended that air samples of hexavalent chromium be protected against reduction during storage.

  12. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  13. Stabilization and solidification of chromium-contaminated soil

    International Nuclear Information System (INIS)

    Cherne, C.A.; Thomson, B.M.

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments

  14. Study of Thermal Fatigue Resistance of a Composite Coating Made by a Vacuum Fusion Sintering Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Thermal fatigue behavior of a Ni-base alloy chromium carbide composite coating made by a vacuum fusion sintering method are discussed. Results show that thermal fatigue behavior is associated with cyclic upper temperature and coating thickness. As the thickness of the coating decreases, the thermal fatigue resistance increases. The thermal fatigue resistance cuts down with the thermal cyclic upper temperature rising. The crack growth rate decreases with the increase in cyclic number until crack arrests. Thermal fatigue failure was not found along the interface of the coating/matrix. The tract of thermal fatigue crack cracks along the interfaces of phases.

  15. Recovery of Proteins and Chromium Complexes from Chromium – Containing Leather Waste (CCLW

    Directory of Open Access Journals (Sweden)

    B. Gutti

    2010-08-01

    Full Text Available Chromium – Containing Leather Waste (CCLW constitutes an environmental pollution problem to leather industries disposing the waste by landfill. The waste mainly consists of collagen and chromium III complexes. This work is a design of reactors to recover gelatin, polypeptides and chromium from CCLW. The results of the experiment shows that 68% of protein, based on dry weight of leather scraps, could be recovered. Three reactors with a total volume of 18 m3 was designed to handle 10,431 kg of waste generated from the tanning industries.

  16. The adhesion performance of epoxy coating on AA6063 treated in Ti/Zr/V based solution

    Science.gov (United States)

    Zhu, Wen; Li, Wenfang; Mu, Songlin; Yang, Yunyu; Zuo, Xi

    2016-10-01

    An environment-friendly titanium/zirconium/vanadium-based (Ti/Zr/V) conversion coating was prepared on aluminum alloy 6063 (AA6063). The epoxy powder coatings were applied on the AA6063 samples with/without Ti/Zr/V conversion coatings via electrostatic spraying. The morphology and composition of the conversion coating were studied by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The surface free energy components of AA6063 samples were measured by a static contact angle measuring device with Owens method. The adhesion properties of the epoxy coating on AA6063 treated with different conversion times were evaluated using a pull-off tester. The Ti/Zr/V conversion coating was mainly composed of metal oxide (TiO2, ZrO2, V2O5, Al2O3, etc.), metal fluoride (ZrF4, AlF3, etc.) and metal organic complex. The formation time of this conversion coating was reduced to 50 s. After such surface treatment, the samples' surface roughness was increased and the contact angle with water was decreased. Both the surface free energy and the work of adhesion were increased. The adhesion strength between the epoxy coating and AA6063 was enhanced significantly.

  17. Examination of Internally and Externally Coated Cr3C2 Exhaust Pipe of a Diesel Engine via Plasma Spray Method

    OpenAIRE

    H. Hazar; S. Sap

    2017-01-01

    In this experimental study; internal and external parts of an exhaust pipe were coated with a chromium carbide (Cr3C2) material having a thickness of 100 micron by using the plasma spray method. A diesel engine was used as the test engine. Thus, the results of continuing chemical reaction in coated and uncoated exhaust pipes were investigated. Internally and externally coated exhaust pipe was compared with the standard exhaust system. External heat transfer occurring as a result of coating th...

  18. Substoichiometric extraction of chromium

    International Nuclear Information System (INIS)

    Shigematsu, T.; Kudo, K.

    1980-01-01

    Substoichiometric extraction of chromium with tetraphenylarsonium chloride (TPACl), tri-n-octylamine (TNOA), diethylammonium diethyldithiocarbamate (DDDC) and ammonium pyrrolidinedithiocarbamate (APDC) was examined in detail. Chromium can be extracted substoichiometrically in a pH range, which is 1.1-2.6 for the TPACl compound, 0.6-2.3 for the TNOA compound, 5.1-6.4 for the DDDC chelate and 3.9-4.9 for the APDC chelate. Chromium in high-purity calcium carbonate, Orchard Leaves (NBS SRM-1571) and Brewers Yeast (NBS SRM-1569) was determined by neutron activation analysis combined with substoichiometric extraction by DDDC and APDC. The values of 2.0+-0.02 ppm and 2.6+-0.2 ppm were obtained for Brewers Yeast and Orchard Leaves, respectively. These values were in good agreement with those reported by NBS. The reaction mechanism and the reaction ratio between hexavalent chromium and dithiocarbamate are also discussed. (author)

  19. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior

    Energy Technology Data Exchange (ETDEWEB)

    López-Luna, J., E-mail: jlol_24@hotmail.com [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Silva-Silva, M.J. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Martinez-Vargas, S. [Facultad de Ingeniería, Universidad Autónoma del Carmen, Ciudad del Carmen 24115, Campeche (Mexico); Mijangos-Ricardez, O.F. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); González-Chávez, M.C. [Colegio de Postgraduados en Ciencias Agrícolas, Carr. México–Texcoco km 36.5, Montecillo 56230, Estado de México (Mexico); Solís-Domínguez, F.A. [Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Baja California Norte (Mexico); Cuevas-Díaz, M.C. [Facultad de Ciencias Químicas, Universidad Veracruzana, Coatzacoalcos 96535, Veracruz (Mexico)

    2016-09-15

    The aim of this work was to assess the uptake of citrate-coated magnetite nanoparticles (NPs) by wheat plants and its effect on the bioaccumulation and toxicity of individual and joint Cd{sup 2+} and Cr{sup 6+} levels. Seven-day assays were conducted using quartz sand as the plant growth substrate. The endpoints measured were seed germination, root and shoot lengths, and heavy metal accumulation. Magnetite exhibited very low toxicity, regardless of the wheat seedling NP uptake and distribution into roots and shoots. The seed germination and shoot length were not sensitive enough, while the root length was a more sensitive toxicity endpoint. The root length of wheat seedlings exposed to individual metals decreased by 50% at 2.67 mg Cd{sup 2+} kg{sup −1} and 5.53 mg Cr{sup 6+} kg{sup −1}. However, when magnetite NPs (1000 mg kg{sup −1}) were added, the root length of the plants increased by 25 and 50%. Cd{sup 2+} and Cr{sup 6+} showed similar and noninteractive joint action, but strongly impaired the wheat seedlings. In contrast, an interactive infra-additive or antagonistic effect was observed upon adding magnetite NPs. Thus, cadmium and chromium accumulation in vegetable tissues was considerately diminished and the toxicity alleviated. - Highlights: • We assessed the effect of nanomagnetite on heavy metal toxicity in wheat plants. • Citrate-coated magnetite nanoparticles (NPs) exerted very low toxicity to plants. • Cadmium was more toxic than chromium and toxicity was mitigated by magnetite NPs. • Cadmium and chromium had a similar and noninteractive joint action on plants. • Metals showed an interactive infra-additive joint effect by adding magnetite NPs.

  20. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    Science.gov (United States)

    Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.

    2006-06-01

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.

  1. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    International Nuclear Information System (INIS)

    Riccardi, B.; Montanari, R.; Casadei, M.; Costanza, G.; Filacchioni, G.; Moriani, A.

    2006-01-01

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component

  2. Optimisation and characterisation of tungsten thick coatings on copper based alloy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, B. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, P.B. 65 00044 Frascati, Roma (Italy)]. E-mail: riccardi@frascati.enea.it; Montanari, R. [Dipartimento di Ingegneria Meccanica, Universita di Roma, Tor Vergata, 00133 Roma (Italy); Casadei, M. [Centro Sviluppo Materiali, 00100 Roma (Italy); Costanza, G. [Dipartimento di Ingegneria Meccanica, Universita di Roma, Tor Vergata, 00133 Roma (Italy); Filacchioni, G. [ENEA CR Casaccia, I-00060 S. M. di Galeria, Roma (Italy); Moriani, A. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, P.B. 65 00044 Frascati, Roma (Italy)

    2006-06-30

    Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors because of its low sputter rate and favourable thermo-mechanical properties. Among all the techniques able to realise W armours, plasma spray looks particularly attractive owing to its simplicity and low cost. The present work concerns the optimisation of spraying parameters aimed at 4-5 mm thick W coating on copper-chromium-zirconium (Cu,Cr,Zr) alloy substrates. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. The work performed has demonstrated the feasibility of thick W coatings on flat and curved geometries. These coatings appear as a reliable armour for medium heat flux plasma facing component.

  3. CrAlN coatings deposited by cathodic arc evaporation at different substrate bias

    International Nuclear Information System (INIS)

    Romero, J.; Gomez, M.A.; Esteve, J.; Montala, F.; Carreras, L.; Grifol, M.; Lousa, A.

    2006-01-01

    CrAlN is a good candidate as an alternative to conventional CrN coatings especially for high temperature oxidation-resistance applications. Different CrAlN coatings were deposited on hardened steel substrates by cathodic arc evaporation (CAE) from chromium-aluminum targets in a reactive nitrogen atmosphere at negative substrate bias between - 50 and - 400 V. The negative substrate bias has important effects on the deposition growth rate and crystalline structure. All our coatings presented hardness higher than conventional CrN coatings. The friction coefficient against alumina and tungsten carbide balls was around 0.6. The sliding wear coefficient of the CrAlN coatings was very low while an important wear was observed in the balls before a measurable wear were produced in the coatings. This effect was more pronounced as the negative substrate bias was increased

  4. Comparative of the Tribological Performance of Hydraulic Cylinders Coated by the Process of Thermal Spray HVOF and Hard Chrome Plating

    Directory of Open Access Journals (Sweden)

    R.M. Castro

    2014-03-01

    Full Text Available Due to the necessity of obtaining a surface that is resistant to wear and oxidation, hydraulic cylinders are typically coated with hard chrome through the process of electroplating process. However, this type of coating shows an increase of the area to support sealing elements, which interferes directly in the lubrication of the rod, causing damage to the seal components and bringing oil leakage. Another disadvantage in using the electroplated hard chromium process is the presence of high level hexavalent chromium Cr+6 which is not only carcinogenic, but also extremely contaminating to the environment. Currently, the alternative process of high-speed thermal spraying (HVOF - High Velocity Oxy-Fuel, uses composite materials (metal-ceramic possessing low wear rates. Research has shown that some mechanical properties are changed positively with the thermal spray process in industrial applications. It is evident that a coating based on WC has upper characteristics as: wear resistance, low friction coefficient, with respect to hard chrome coatings. These characteristics were analyzed by optical microscopy, roughness measurements and wear test.

  5. Evaluation of electrodeposited Mn-Co protective coatings on Crofer 22 APU steel

    DEFF Research Database (Denmark)

    Molin, Sebastian

    2018-01-01

    Interconnects used in Solid Oxide Cells stacks require protective coatings to lower their parabolic rate constant and block chromium evaporation (on the air side). In this work four different protective coatings on steel are evaluated for their high temperature corrosion resistance and electrical...... conductivity. A commercial electroplating process was used for the preparation of coatings with different Mn/Co ratios on Crofer 22 APU steel. Oxidation of samples was performed in air at 800°C for 1000 hours. Postmortem analysis of the coated samples was performed by scanning electron microscopy and x......-ray diffractomettry. Based on the results, influence of the Co/Mn ratio on the resulting corrosion properties are discussed. Parabolic rate constant of the coated samples is the lowest for the MnCo sample, whereas electrical resistance is the lowest for the Co sample, which has a corrosion rate similar to the not-coated...

  6. Magnesium analysis. Spectrophotometric determination of chromium

    International Nuclear Information System (INIS)

    Anon.

    Chromium determination in magnesium used in uranium fabrication by magnesiothermics, applicable for chromium content between 2 to 10 ppm. Magnesium is dissolved in sulfuric acid, oxidized by potassium permanganate, the excess of permanganate is eliminated by sodium nitride. Spectrophotometry at 540 nm of the chromium (VI)-diphenylcarbazide complex [fr

  7. Evaluation of a Low Temperature Cure Powder Coating

    Science.gov (United States)

    2008-05-01

    4”x6”x1/4” Al 2024-T3 panels were chromate conversion coated by NDCEE per MIL-DTL-5514F Type 1 Class A  Reserved for LTCPC  27 – 4”x6”x1/4” Al...2024-T3 panels were chromate conversion coated by FRC Southeast per MIL-DTL- 5514F Type 1 Class A  Reserved for baseline coating JSEM - May...conducted under contract W74V8H- 04-D-0005 Task 427. DISCLAIMER: The contents of this document are not to be used for advertising , publication, or

  8. Functional coatings: the sol-gel approach

    International Nuclear Information System (INIS)

    Belleville, Ph.

    2010-01-01

    CEA's sol-gel laboratory is specialized in the development of innovative sol-gel optical coatings and has extended its application field to membrane materials and coatings for energy conversion, to electric coatings for microelectronics devices and to thin films for gas sensing. This article describes, by way of examples, the laboratory's research on sol-gel functional coatings, including nano-material synthesis, organic-inorganic hybrid-based solution preparation as well as deposition process development and prototyping. (author)

  9. Less-Toxic Coatings for Inhibiting Corrosion of Aluminum

    Science.gov (United States)

    Minevski, Zoran; Clarke, Eric; Eylem, Cahit; Maxey, Jason; Nelson, Carl

    2003-01-01

    Two recently invented families of conversion- coating processes have been found to be effective in reducing or preventing corrosion of aluminum alloys. These processes offer less-toxic alternatives to prior conversion-coating processes that are highly effective but have fallen out of favor because they generate chromate wastes, which are toxic and carcinogenic. Specimens subjected to these processes were found to perform well in standard salt-fog corrosion tests.

  10. Chromium: a review of environmental and occupational toxicology.

    Science.gov (United States)

    Bencko, V

    1985-01-01

    The following topics are covered in this brief review on the environmental and occupational toxicology of chromium: occurrence, production and uses of chromium and chromium compounds; experimental toxicology; chromium toxicity for man; hygienic and ecologic aspects of chromium contamination of the environment. The review provides a conclusive evidence which suggests that chromium, especially its hexavalent form, is both toxic and carcinogenic, but its trivalent form is physiologically essential in the metabolism of insulin. It is also emphasized that among the major sources of environmental chromium today are the cement industry and the increasingly widespread use of chromium compounds added as an anticorrosion admixture to a variety of cooling systems, e.g. in large power plants, which may greatly contribute to the overall pollution of outdoor air at the sites.

  11. Chromium: a review of environmental and occupational toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Bencko, V

    1985-01-01

    The following topics are covered in this brief review on the environmental and occupational toxicology of chromium: occurrence, production and uses of chromium and chromium compounds; experimental toxicology; chromium toxicity for man; hygienic and ecologic aspects of chromium contamination of the environment. The review provides a conclusive evidence which suggests that chromium, especially its hexavalent form, is both toxic and carcinogenic, but its trivalent form is physiologically essential in the metabolism of insulin. It is also emphasized that among the major sources of environmental chromium today are the cement industry and the increasingly widespread use of chromium compounds added as an anticorrosion admixture to a variety of cooling systems, e.g. in large power plants, which may greatly contribute to the overall pollution of outdoor air at the sites. 108 references.

  12. Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts

    DEFF Research Database (Denmark)

    Ståhlberg, Tim; Sørensen, Mathilde Grau; Riisager, Anders

    2010-01-01

    The direct conversion of glucose to 5-(hydroxymethyl)furfural (HMF) in ionic liquids with lanthanide catalysts was examined in search of a possibly more environmentally feasible process not involving chromium. The highest HMF yield was obtained with ytterbium chloride or triflate together...

  13. Antibacterial Functionalization of PVD Coatings on Ceramics

    Directory of Open Access Journals (Sweden)

    Javier Osés

    2018-05-01

    Full Text Available The application of surface treatments that incorporate silver or copper as antibacterial elements has become a common practice for a wide variety of medical devices and materials because of their effective activity against nosocomial infections. Ceramic tiles are choice materials for cladding the floors and walls of operation rooms and other hospital spaces. This study is focused on the deposition of biocide physical vapor deposition (PVD coatings on glazed ceramic tiles. The objective was to provide antibacterial activity to the surfaces without worsening their mechanical properties. Silver and copper-doped chromium nitride (CrN and titanium nitride (TiN coatings were deposited on samples of tiles. A complete characterization was carried out in order to determine the composition and structure of the coatings, as well as their topographical and mechanical properties. The distribution of Ag and Cu within the coating was analyzed using glow discharge optical emission spectrometry (GD-OES and field emission scanning electron microscope (FE-SEM. Roughness, microhardness, and scratch resistance were measured for all of the combinations of coatings and dopants, as well as their wettability. Finally, tests of antibacterial efficacy against Staphylococcus aureus and Escherichia coli were carried out, showing that all of the doped coatings had pronounced biocide activity.

  14. Self-healing atmospheric plasma sprayed Mn1.0Co1.9Fe0.1O4 protective interconnector coatings for solid oxide fuel cells

    Science.gov (United States)

    Grünwald, Nikolas; Sebold, Doris; Sohn, Yoo Jung; Menzler, Norbert Heribert; Vaßen, Robert

    2017-09-01

    Dense coatings on metallic interconnectors are necessary to suppress chromium poisoning of SOFC cathodes. Atmospherically plasma sprayed (APS) Mn1.0Co1.9Fe0.1O4 (MCF) protective layers demonstrated reduced chromium related degradation in laboratory and stack tests. Previous analyses revealed strong microstructural changes comparing the coating's as-sprayed and operated condition. This work concentrates on the layer-densification and crack-healing observed by annealing APS-MCF in air, which simulates the cathode operation conditions. The effect is described by a volume expansion induced by a phase transformation. Reducing conditions during the spray process lead to a deposition of the MCF in a metastable rock salt configuration. Annealing in air activates diffusion processes for a phase transformation to the low temperature stable spinel phase (T coating. The process decelerates when the cracks are closed, as the gas route is blocked and further oxidation continues over solid state diffusion. The self-healing abilities of metastable APS coatings could be interesting for other applications.

  15. Synthesis of chromium containing pigments from chromium galvanic sludges

    International Nuclear Information System (INIS)

    Andreola, F.; Barbieri, L.; Bondioli, F.; Cannio, M.; Ferrari, A.M.; Lancellotti, I.

    2008-01-01

    In this work the screening results of the scientific activity conducted on laboratory scale to valorise chromium(III) contained in the galvanic sludge as chromium precursor for ceramic pigments are reported. The valorisation of this waste as a secondary raw material (SRM) is obtained by achievement of thermal and chemical stable crystal structures able to color ceramic material. Two different pigments pink CaCr 0.04 Sn 0.97 SiO 5 and green Ca 3 Cr 2 (SiO 4 ) 3 were synthesized by solid-state reactions using dried Cr sludge as chromium oxide precursor. The obtained pigments were characterized by X-ray diffraction and SEM analysis. Furthermore the color developed in a suitable ceramic glaze was investigated in comparison with the color developed by the pigments prepared from pure Cr 2 O 3 . The characterization carried out corroborates the thermal and chemical stability of the synthesized pigments and, especially for the Cr-Sn pink pigment, the powders develop an intense color that is very similar to the color developed by the pigments obtained starting from pure Cr 2 O 3

  16. Responses of endogenous proline in rice seedlings under chromium exposure

    Directory of Open Access Journals (Sweden)

    X.Z. Yu

    2016-12-01

    Full Text Available Hydroponic experiments were performed to exam the dynamic change of endogenous proline in rice seedlings exposed to potassium chromate chromium (VI or chromium nitrate chromium (III. Although accumulation of both chromium species in rice seedlings was obvious, more chromium was detected in plant tissues of rice seedlings exposed to chromium (III than those in chromium (VI, majority being in roots rather than shoots. Results also showed that the accumulation capacity of chromium by rice seedlings was positively correlated to chromium concentrations supplied in both chromium variants and the accumulation curve depicted an exponential trend in both chromium treatments over the entire period of exposure. Proline assays showed that both chromium variants induced the change of endogenous proline in shoots and roots of rice seedlings. Chromium (VI of 12.8 mg/L increased proline content significantly (p

  17. Optimization of Arc-Sprayed Ni-Cr-Ti Coatings for High Temperature Corrosion Applications

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-04-01

    High Cr content Ni-Cr-Ti arc-spray coatings have proven successful in resisting the high temperature sulfidizing conditions found in black liquor recovery boilers in the pulp and paper industry. The corrosion resistance of the coatings is dependent upon the coating composition, to form chromium sulfides and oxides to seal the coating, and on the coating microstructure. Selection of the arc-spray parameters influences the size, temperature and velocity of the molten droplets generated during spraying, which in turn dictates the coating composition and formation of the critical coating microstructural features—splat size, porosity and oxide content. Hence it is critical to optimize the arc-spray parameters in order to maximize the corrosion resistance of the coating. In this work the effect of key spray parameters (current, voltage, spray distance and gas atomizing pressure) on the coating splat thickness, porosity content, oxide content, microhardness, thickness, and surface profile were investigated using a full factorial design of experiment. Based on these results a set of oxidized, porous and optimized coatings were prepared and characterized in detail for follow-up corrosion testing.

  18. Chromium depletion from stainless steels during vacuum annealing

    International Nuclear Information System (INIS)

    Smith, A.F.; Hales, R.

    1977-01-01

    During selective chromium oxidation of stainless steels the changes in chromium concentration at the metal surface and in the metal have an important bearing on the overall oxidation performance. It has been proposed that an analogue of chromium behaviour during selective oxidation is obtained from volatilisation of chromium during high temperature vacuum annealing. In the present report the evaporation of chromium from 316 type of steel, vacuum annealed at 1,000 0 C, has been investigated by means of energy dispersive X-ray analysis and by neutron activation analysis. It was established that chromium loss from austenitic stainless steels is rate controlled by interdiffusion in the alloy. As predicted the chromium concentration at the metal surface decreased with increasing vacuum annealing time. The chromium depletion profile in the metal was in good agreement with the previously derived model apart from an anomalous region near the surface. Here the higher resolution of the neutron activation technique indicated a zone within approximately 2μm of the surface where the chromium concentration decreased more steeply than expected. (orig.) [de

  19. Protection of uranium by metallic coatings

    International Nuclear Information System (INIS)

    Baque, P.; Koch, P.; Dominget, R.; Darras, R.

    1968-01-01

    A study is made of the possibilities of inhibiting or limiting, by means of protective metallic coatings, the oxidation of uranium by carbon dioxide at high temperature. In general, surface films containing intermetallic compounds or solid solutions of uranium with aluminium, zirconium, copper, niobium, nickel or chromium are formed, according to the techniques employed which are described here. The processes most to be recommended are those of direct diffusion starting from a thin sheet or tube, of vacuum deposition, or of immersion in a molten bath of suitable composition. The conditions for preparing these coatings have been optimized as a function of the protective effect obtained in carbon dioxide at 450 or at 500 C. Only the aluminium and zirconium based coatings are really satisfactory since they can lead to a reduction by a factor of 5 to 10 in the oxidation rate of uranium in the conditions considered; they make it possible in particular to avoid or to reduce to a very large extent the liberation of powdered oxide. Furthermore, the coatings produced generally give the uranium good protection against atmospheric corrosion. (author) [fr

  20. Characteristics and corrosion studies of vanadate conversion coating formed on Mg-14 wt%Li-1 wt%Al-0.1 wt%Ce alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yibin [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Li Ning, E-mail: lininghit@263.net [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Li Deyu [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Zhang Milin; Huang Xiaomei [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Vanadate film forms on the surface of Mg-Li-Al-Ce alloy. Black-Right-Pointing-Pointer Vanadate coating improves the corrosion resistance. Black-Right-Pointing-Pointer Vanadate coating is composed of Mg(OH){sub 2}, Li{sub 2}O and V{sub 2}O{sub 5}. - Abstract: Mg-14Li-1Al-0.1Ce alloy is immersed in NH{sub 4}VO{sub 3} + K{sub 3}(Fe(CN){sub 6}) solutions with different NH{sub 4}VO{sub 3} and/or K{sub 3}(Fe(CN){sub 6}) concentrations, and different immersion time. The surface morphology and composition of the vanadate coating are then characterized by scanning electron microscopy with energy dispersion spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), and the corrosion behavior of the conversion coating is studied by polarization technique and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the vanadate film with better corrosion resistance forms on Mg-Li-Al-Ce surface after the sample is immersed in 30 g L{sup -1} NH{sub 4}VO{sub 3} + 3.75 g L{sup -1} K{sub 3}(Fe(CN){sub 6}) solution at 80 Degree-Sign C for 10 min. The coating consists of V{sub 2}O{sub 5}, Li{sub 2}O and Mg(OH){sub 2}.

  1. Reproductive toxicological aspects of chromium in males

    International Nuclear Information System (INIS)

    Ernst, E.

    1994-01-01

    To expand our present understanding of the effects of chromium on male fertility a number of studies were designed to achieve this through the use of chromium intoxicated experimental animals and through investigation of sexual hormones and sperm quality in welders. Also in view of the lack of an experimental model for effects of noxious substance on the epididymal spermatozoa the main objectives of the series of studies reviewed here were: A. To establish a model for evaluation of epididymal sperm count and motility in the rat. B. To investigate and compare the effects of tri- and hexavalent chromium on epididymal spermatozoa. Further to describe the effects of low-dose long-time exposure of rats to the most toxicological interesting chromium oxidative state - hexavalent chromium. C. By the use of autoradiography and γ-countinuing to expand the present knowledge on the distribution of chromium in the body with special reference to the male reproductive organs. D. To describe the effects of exposure to hexavalent chromium in welding fume on levels of sexual hormones and semen parameters in welders. (EG)

  2. A review of producing hard coatings by means of duplex treatments using an electroplated coating–thermochemical treatment combination

    Directory of Open Access Journals (Sweden)

    Héctor Cifuentes Aya

    2011-09-01

    Direct deposition by physical vapour deposition (PVD, used for obtaining chromium nitride films on steel substrates, is limited by high production costs, the low thickness obtained and low resistance to corrosion due to the presence of micro pores. Some studies have combined an electroplated chromium with thermochemical treatments made in a controlled atmosphere or vacuum furnaces or by plasma. This kind of duplex treatment allows compounds such as CrxN, CrxCyN and CrxCy to be obtained from chemical and micro structural transformation of chromium with nitrogen and/or carbon, the sealing of cracks in the coating and increasing the magnitude of properties like hardness and density, improving wear and abrasion and corrosion resistance.

  3. Optimizing cathodic electrodeposition parameters of ceria coating to enhance the oxidation resistance of a Cr{sub 2}O{sub 3}-forming alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu, E-mail: xuw388@mail.usask.ca; Fan, Fan; Szpunar, Jerzy A.

    2016-07-29

    Nano-ceria coating was deposited onto a chromium oxide forming alloy through galvanostatic cathodic electro-deposition method in cerium nitrate electrolyte. The electrochemical behavior and influence of main deposition parameters of current density, deposition time, and temperature were studied. It was seen that the crystal size decreased with increasing of current density while micro-cracks were also observed at higher current density. Slightly increasing of crystal size and smoothing of surface morphology were seen with increasing of deposition time. It was reported that the bath temperature has the most significant effect on crystal size and surface morphology of the deposit. Green rust as corrosion product was also observed with deposition temperatures higher than 35 °C. Optimized deposition parameters were used to produce homogeneous, continuous and green rust-free coatings which enhance the oxidation resistance of alloy 230. The electro-deposition process was found to be an accessible and efficient method to prepare nano-crystalline ceria coating. - Highlights: • Electrodeposition was used to make ceria coating on a chromium oxide forming alloy; • Deposition parameters of current density, time and temperature were investigated; • Crystal size and morphology of coating vary with changing of deposition parameters; • Coating prepared with optimized parameters reduced oxidation rate of alloy 230.

  4. Thermal Processing Effects on the Adhesive Strength of PS304 High Temperature Solid Lubricant Coatings

    Science.gov (United States)

    DellaCorte, Christopher; Edmonds, Brian J.; Benoy, Patricia A.

    2001-01-01

    In this paper the effects of post deposition heat treatments on the cohesive and adhesive strength properties of PS304, a plasma sprayed nickel-chrome based, high temperature solid lubricant coating deposited on stainless steel, are studied. Plasma spray deposited coating samples were exposed in air at temperatures from 432 to 650 C for up to 500 hr to promote residual stress relief, enhance particle to particle bonding and increase coating to substrate bond strength. Coating pull-off strength was measured using a commercial adhesion tester that utilizes 13 mm diameter aluminum pull studs attached to the coating surface with epoxy. Pull off force was automatically recorded and converted to coating pull off strength. As deposited coating samples were also tested as a baseline. The as-deposited (untreated) samples either delaminated at the coating-substrate interface or failed internally (cohesive failure) at about 17 MPa. Samples heat treated at temperatures above 540 C for 100 hr or at 600 C or above for more than 24 hr exhibited strengths above 31 MPa, nearly a two fold increase. Coating failure occurred inside the body of the coating (cohesive failure) for nearly all of the heat-treated samples and only occasionally at the coating substrate interface (adhesive failure). Metallographic analyses of heat-treated coatings indicate that the Nickel-Chromium binder in the PS304 appears to have segregated into two phases, a high nickel matrix phase and a high chromium precipitated phase. Analysis of the precipitates indicates the presence of silicon, a constituent of a flow enhancing additive in the commercial NiCr powder. The exact nature and structure of the precipitate phase is not known. This microstructural change is believed to be partially responsible for the coating strength increase. Diffusion bonding between particles may also be playing a role. Increasing the heat treatment temperature, exposure time or both accelerate the heat treatment process. Preliminary

  5. Characterization of emission factors related to source activity for trichloroethylene degreasing and chrome plating processes.

    Science.gov (United States)

    Wadden, R A; Hawkins, J L; Scheff, P A; Franke, J E

    1991-09-01

    A study at an automotive parts fabrication plant evaluated four metal surface treatment processes during production conditions. The evaluation provides examples of how to estimate process emission factors from activity and air concentration data. The processes were open tank and enclosed tank degreasing with trichloroethylene (TCE), chromium conversion coating, and chromium electroplating. Area concentrations of TCE and chromium (Cr) were monitored for 1-hr periods at three distances from each process. Source activities at each process were recorded during each sampling interval. Emission rates were determined by applying appropriate mass balance models to the concentration patterns around each source. The emission factors obtained from regression analysis of the emission rate and activity data were 16.9 g TCE/basket of parts for the open-top degreaser; 1.0 g TCE/1000 parts for the enclosed degreaser; 1.48-1.64 mg Cr/1000 parts processed in the hot CrO3/HNO3 tank for the chrome conversion coating; and 5.35-9.17 mg Cr/rack of parts for chrome electroplating. The factors were also used to determine the efficiency of collection for the local exhaust systems serving each process. Although the number of observations were limited, these factors may be useful for providing initial estimates of emissions from similar processes in other settings.

  6. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  7. Inhibition of the corrosion of mild steel by phosphate conversion coatings

    International Nuclear Information System (INIS)

    Ashraf, W.; Khalid, S.; Rashid, A.; Arshad, M.

    1993-01-01

    Phosphating is the treatment of a metal surface to provide a coating of insoluble metal phosphate crystals which strongly adhere to the base material. Such coatings affect the appearance, surface hardness, and electrical conductivity of the metal. Phosphating is major industrial importance in the production of iron and steel surfaces, e.g., in automotive and appliance industries. The present article discusses a novel description of process controlling parameters. The process may be termed as hot phosphate (95-100 deg. C) and it employs the use of low cost chemicals and entirely new accelerator. Effective layer thickness is found to be 0.72 mg/cm /sup 2/ and can withstand moist and mild chemical conditions. The thickness of coating depends upon dipping time and temperature of the working bath. It seems to increase with increasing dipping time but then reaches a maxima. Any more dipping causes stripping and uneven coating layers. In our system most appropriate dipping time was found to be 45 minutes. The stability and completeness of coating was tested by Ferro Test and Tape Pull Test and was found to be satisfactory. The quality control parameters, such as free and total acidity have been controlled for optimum coating thickness and stability. (author)

  8. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C

    1992-01-01

    Chromium permeation studies were performed on full thickness human skin in diffusion cells. All samples were analysed for the total chromium content by graphite furnace Zeeman-corrected atomic absorption spectrometry. Some samples were analysed by an ion chromatographic method permitting...... the simultaneous determination of Cr(VI) and Cr(III) as well. The amounts of chromium found in all skin layers were significantly higher when potassium dichromate was applied to the skin compared with chromium chloride or chromium nitrate. Chromium could only be detected in the recipient phase after application...... of the dichromate solution. Chromium skin levels increased with increasing concentrations of applied chromium salts up to 0.034 M Cr. The amount of chromium in recipient phase and skin layers increased with increasing pH when the applied solution contained potassium dichromate. This was ascribed to a decreased skin...

  9. Ceramic protective coating

    International Nuclear Information System (INIS)

    Harbach, F.; Nicoll, A.

    1987-01-01

    The basic material of the above-mentioned layer consists of pure aluminium oxide or essentially aluminium oxide. To improve this protective layer metal oxides from the groups IIA, IIIA, IIIB, VB, VIB, VIIB or VIII of the periodic system are added to its basic material before the said protective coating is applied. In this way a corundum structure is formed in the case of aluminium oxide. Gallium oxide, vanadium oxide, chromium oxide or iron oxide are particularly suited for the correlation of such a corundum structure. The formation of the corundum structure increases the resistance of the protective coating to the corrosive effects of vanadium pentoxide and sodium sulfate. By the addition of a specific quantity of magnesium oxide it is possible not only to stimulate the formation of corundum but also to reduce the increase in grain size in the case of the aluminium oxide. The other metallic oxides are especially favorable to the formation of the corundum structure, so that preferably magnesium oxide is to be added to these metallic oxides in order to reduce the increase in grain size. (author)

  10. Specification for corrosion-resisting chromium and chromium-nickel steel bare and composite metal cored and stranded arc welding electrodes and welding rods

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for corrosion or heat resisting chromium and chromium-nickel steel electrodes and welding rods. These electrodes and welding rods are normally used for arc welding and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  11. Stabilization of chromium: an alternative to make safe leathers.

    Science.gov (United States)

    Gong, Ying; Liu, Xiaoling; Huang, Li; Chen, Wuyong

    2010-07-15

    In this study, the original causes for hexavalent chromium presence in the leather were first evaluated by ageing of chromium(III) solutions and chrome tanned hide powder (50 degrees C, UV lightening at 340 nm, 0-36 h). The results showed that the trivalent chromium at instable coordination state was easy to convert into hexavalent chromium in high pH environment, and the probability of the oxidation increased in this order: multi-coordinate chromium, mono-coordinate chromium, and free chromium. For this reason, the process for stabilizing chromium in the leather was designed with the specific material, which was mostly consisted of the reducers and the chelating agents. After treated with the developed process, these leathers were aged (50 degrees C, UV irradiance as 0.68 W/m(2) at 340 nm, 0-72 h) to estimate chromium(VI) presence. Hexavalent chromium was not found in these treated leathers even if the leathers were aged for 72 h. Moreover, the physical and mechanical properties for the leathers varied little after treating. In a word, an inherent safe and effective process was proved to avoid the formation of hexavalent chromium in the leather. 2010 Elsevier B.V. All rights reserved.

  12. Nasal manifestations in chromium industry workers.

    Science.gov (United States)

    Aiyer, R G; Kumar, Gaurav

    2003-04-01

    People working in mines, plating factories, cement industries are mainly exposed to chrome substances, IIexavalent chromium has been implicated for its toxic effect on the nasal mucosa. Hereby we present a rare study of 28 patients who attended out patient department of Otorhinolaryngology at SSG Hospital, Baroda from a nearby chromium industry. This study aims to present various nasal manifestations of toxic effects of prolonged chromium exposure.

  13. An Alternative Cu-Based Bond Layer for Electric Arc Coating Process

    Science.gov (United States)

    Fadragas, Carlos R.; Morales, E. V.; Muñoz, J. A.; Bott, I. S.; Lariot Sánchez, C. A.

    2011-12-01

    A Cu-Al alloy has been used as bond coat between a carbon steel substrate and a final coating deposit obtained by applying the twin wire electric arc spraying coating technique. The presence of a copper-based material in the composite system can change the overall temperature profile during deposition because copper exhibits a thermal conductivity several times higher than that of the normally recommended bond coat materials (such as nickel-aluminum alloys or nickel-chromium alloys). The microstructures of 420 and 304 stainless steels deposited by the electric arc spray process have been investigated, focusing attention on the deposit homogeneity, porosity, lamellar structure, and microhardness. The nature of the local temperature gradient during deposition can strongly influence the formation of the final coating deposit. This study presents a preliminary study, undertaken to investigate the changes in the temperature profile which occur when a Cu-Al alloy is used as bond coat, and the possible consequences of these changes on the microstructure and adhesion of the final coating deposit. The influence of the thickness of the bond layer on the top coating temperature has also been also evaluated.

  14. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept. 2009 Elsevier B.V. All rights reserved.

  15. Effect of carbon and silicon on nitrogen solubility in liquid chromium and iron-chromium alloys

    International Nuclear Information System (INIS)

    Khyakkinen, V.I.; Bezobrazov, S.V.

    1986-01-01

    The study is aimed at specifying the role of carbon and silicon in high-chromium melts nitridation processes. It is shown that in high-chromium melts of the Cr-Fe-C system the nitrogen solubility is reduced with the growth of carbon content and in the chromium concentration range of 70-100% at 1873 K and P N 2 =0.1 MPa it is described by the lg[%N] Cr-Fe-C =lg[%N] cr-fe -0.098[%C] equation. While decreasing the temperature the nitrogen solubility in alloys is increased. Silicon essentially decreases the nitrogen solubility in liquid chromium. For the 0-10% silicon concentration range the relation between the equilibrium content of nitrogen and silicon at 1873 K and P N 2 =0.1 MPa is described by the straight line equation [%N] Cr-Si =6.1-0.338 [%Si

  16. Compatibility of aluminide-coated Hastelloy x and Inconel 617 in a simulated gas-cooled reactor environment

    International Nuclear Information System (INIS)

    Chin, J.; Johnson, W.R.; Chen, K.

    1982-03-01

    Commercially prepared aluminide coatings on Hastelloy X and Inconel 617 substrates were exposed to controlled-impurity helium at 850 0 and 950 0 C for 3000 h. Optical and scanning electron (SEM) microscopy, electron microprobe profiles, and SEM X-ray mapping were used to evaluate and compare exposed and unexposed control samples. Four coatings were evaluated: aluminide, aluminide with platinum, aluminide with chromium, and aluminide with rhodium. With extended time at elevated temperature, nickel diffused into the aluminide coatings to form epsilon-phase (Ni 3 Al). This diffusion was the primary cause of porosity formation at the aluminide/alloy interface

  17. A Comparison of Afghanistan, Yuma, Az, and Manufactured Sands Melted on EB-PVD Thermal Barrier Coatings

    Science.gov (United States)

    2014-09-18

    mentoring me through the field of geology . His vast knowledge in this field and close “First Cousins” motivate me to broaden my knowledge within the...Blade sand sample BC – Bond Coat Button A – TBC Button made by Manufacturer A Button B – TBC Button made by Manufacturer B Ca – Calcium CMAS... Calcium , Magnesium, Aluminum, Silicate CTIO – Coating Technology Integration Office Cr – Chromium CTE – Coefficient of Thermal Expansion DoD

  18. Auxiliary Electrodes for Chromium Vapor Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    2018-05-15

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establish a sodium activity.

  19. Chromium allergy and dermatitis: prevalence and main findings

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl

    2015-01-01

    The history of chromium as an allergen goes back more than a century, and includesan interventional success with national legislation that led to significant changes inthe epidemiology of chromium allergy in construction workers. The 2015 EU Leather Regulation once again put a focus on chromium...... allergy, emphasizing that the investigation of chromium allergy is still far from complete. Our review article on chromium focuses on the allergen’s chemical properties, its potential exposure sources, and the allergen’s interaction with the skin, and also provides an overview of the regulations...

  20. Surface coating of ceria nanostructures for high-temperature oxidation protection

    Science.gov (United States)

    Aadhavan, R.; Bhanuchandar, S.; Babu, K. Suresh

    2018-04-01

    Stainless steels are used in high-temperature structural applications but suffer from degradation at an elevated temperature of operation due to thermal stress which leads to spallation. Ceria coating over chromium containing alloys induces protective chromia layer formation at alloy/ceria interface thereby preventing oxidative degradation. In the present work, three metals of differing elemental composition, namely, AISI 304, AISI 410, and Inconel 600 were tested for high-temperature stability in the presence and absence of ceria coating. Nanoceria was used as the target to deposit the coating through electron beam physical vapor deposition method. After isothermal oxidation at 1243 K for 24 h, Ceria coated AISI 304 and Inconel 600 exhibited a reduced rate of oxidation by 4 and 1 orders, respectively, in comparison with the base alloy. The formation of spinel structure was found to be lowered in the presence of ceria due to the reduced migration of cations from the alloy.

  1. Novel Base Metal-Palladium Catalytic Diesel Filter Coating with NO2 Reducing Properties

    DEFF Research Database (Denmark)

    Johansen, K.; Dahl, S.; Mogensen, G.

    2007-01-01

    A novel alternative base metal/palladium coat has been developed that has limited NO2 formation and which even removes NO2 in a wide temperature range.Soot combustion, HC conversion and CO conversion properties are comparable to current platinum based solutions but the coating has a more attracti...... solutions. Furthermore, durability results from base metal/Pd coated DPFs installed on operating taxis and related tests cycle data is given....

  2. Compatibility studies on Mo-coating systems for nuclear fuel cladding applications

    Science.gov (United States)

    Koh, Huan Chin; Hosemann, Peter; Glaeser, Andreas M.; Cionea, Cristian

    2017-12-01

    To improve the safety factor of nuclear power plants in accident scenarios, molybdenum (Mo), with its high-temperature strength, is proposed as a potential fuel-cladding candidate. However, Mo undergoes rapid oxidation and sublimation at elevated temperatures in oxygen-rich environments. Thus, it is necessary to coat Mo with a protective layer. The diffusional interactions in two systems, namely, Zircaloy-2 (Zr2) on a Mo tube, and iron-chromium-aluminum (FeCrAl) on a Mo rod, were studied by aging coated Mo substrates in high vacuum at temperatures ranging from 650 °C to 1000° for 1000 h. The specimens were characterized using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and nanoindentation. In both systems, pores in the coating increased in size and number with increasing temperature over time, and cracks were also observed; intermetallic phases formed between the Mo and its coatings.

  3. Chromium base high performance materials: Where and how do they come from?

    Science.gov (United States)

    Choi, In-Kap

    1996-08-01

    The origin of chromium base performance materials (CBPM) is described. CBPM may include (1) trivalent chromium chemicals such as chromic acetate, chromic chloride, chromic bromide, chromic fluoride, chromic iodide, chromic phosphate, and chromic sulfate; (2) hexavalent chromium chemicals such as chromic acid, lithium chromate, sodium chromate, sodium dichromate, and potassium dichromate; (3) oxide forms of chromium such as black chrome, chromium dioxide, chromium oxide, and chromium hydroxide; and (4) other chromium compounds such as chromium aluminide, chromium boride, chromium carbide, chromium molybdate, chromium nitride, chromium silicide, chromium tungstate and lanthanum chromite. Extensive reviews of production processes, properties, and applications/end uses of CBPM are made.

  4. 21 CFR 73.2327 - Chromium oxide greens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium oxide greens. 73.2327 Section 73.2327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2327 Chromium oxide greens. (a) Identity and specifications. The color additive chromium oxide greens shall conform in identify and specifications to the...

  5. 21 CFR 73.3111 - Chromium oxide greens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium oxide greens. 73.3111 Section 73.3111... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3111 Chromium oxide greens. (a) Identity and specifications. The color additive chromium oxide greens (chromic oxide) (CAS Reg. No. 1308-38-9...

  6. 21 CFR 73.2326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.2326 Section 73.2326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and specifications.The color additive chromium hydroxide green shall conform in identity and specifications to the...

  7. Kinetics of chromium (VI) reduction by ferrous iron

    International Nuclear Information System (INIS)

    Batchelor, B.; Schlautman, M.; Hwang, I.; Wang, R.

    1998-09-01

    Chromium is a primary inorganic contaminant of concern at the Pantex Plant. Chromium concentrations have been found to be two orders of magnitude higher than the drinking water standards, particularly in certain wells in the perched aquifer below Zone 12. In situ reduction of a mobile form of chromium, Cr(VI) to an immobile form, Cr(III), was examined as a viable option to active soil restoration. Successfully immobilizing chromium in the vadose zone as Cr(III) will reduce the amount of chromium that reaches the groundwater table. The results from the solution experiments indicated that chromium was rapidly and stoichiometrically reduced by Fe(II) in solution. Also, the slurry experiments showed that the aquifer solids removed Fe(II) from solution, but a portion of the iron removed remained available for reaction with Cr(VI), but at a slower rate. A model to predict different amounts of iron pseudo-components was developed, which allowed prediction of iron amounts required to reduce chromium under in situ conditions

  8. Chromium fate in constructed wetlands treating tannery wastewaters.

    Science.gov (United States)

    Dotro, Gabriela; Palazolo, Paul; Larsen, Daniel

    2009-06-01

    Nine experimental wetlands were built to determine chromium partitioning inside systems treating tannery wastewaters. Results showed 5-day biochemical oxygen demand and chromium removals of 95 to 99% and 90 to 99%, respectively. The majority of chromium was found in association with media (96 to 98%), followed by effluents (2.9 to 3.9%), and the least was found in plant parts (0.1%). Chemical speciation modeling of solutions and scanning electron microscope analysis suggest two potential chromium removal mechanisms--sorption/coprecipitation with iron hydroxides or oxyhydroxides and biomass sorption. The release of the majority of chromium in the iron- and organic-bound phases during sequential extractions supports the proposed dominant removal mechanisms. The use of a mixture of peat and gravel resulted in lower removal efficiencies and stronger partitioning in organic phases during sequential extractions. Chromium was efficiently removed by wetlands, retained through chemical and biological processes. Future research will focus on further exploring removal mechanisms and proposing management strategies for the chromium-containing wetland media.

  9. Photoelectrode Fabrication of Dye-Sensitized Nanosolar Cells Using Multiple Spray Coating Technique

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen

    2013-01-01

    Full Text Available This paper presents a spray coating technique for fabricating nanoporous film of photoelectrode in dye-sensitized nanosolar cells (DSSCs. Spray coating can quickly fabricate nanoporous film of the photoelectrode with lower cost, which can further help the DSSCs to be commercialized in the future. This paper analyzed photoelectric conversion efficiency of the DSSCs using spray coated photoelectrode in comparison with the photoelectrode made with the doctor blade method. Spray coating can easily control transmittance of the photoelectrode through the multiple spray coating process. This work mainly used a dispersant with help of ultrasonic oscillation to prepare the required nano-TiO2 solution and then sprayed it on the ITO glasses. In this work, a motor-operated conveyor belt was built to transport the ITO glasses automatically for multiple spray coating and drying alternately. Experiments used transmittance of the photoelectrode as a fabrication parameter to analyze photoelectric conversion efficiency of the DSSCs. The influencing factors of the photoelectrode transmittance during fabrication are the spray flow rate, the spray distance, and the moving speed of the conveyor belt. The results show that DSSC with the photoelectrode transmittance of ca. 68.0 ± 1.5% and coated by the spray coating technique has the best photoelectric conversion efficiency in this work.

  10. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    International Nuclear Information System (INIS)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang; Lin, Min; Jiang, Liqiang; Che, Shenglei; Hu, Yangwu

    2014-01-01

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection

  11. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Lin, Min [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Jiang, Liqiang; Che, Shenglei [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Hu, Yangwu, E-mail: 346648086@qq.com [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Wenzhou Institute of Industry and Science, Wenzhou 325000 (China)

    2014-12-15

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection.

  12. Formation of a cerium conversion coating on magnesium alloy using ascorbic acid as additive. Characterisation and anticorrosive properties of the formed films

    OpenAIRE

    A.P. Loperena; I.L. Lehr; S.B. Saidman.

    2016-01-01

    Cerium-based conversion coatings were formed on AZ91D magnesium alloy by immersion of the substrate in solutions containing Ce(NO3)3, H2O2 and ascorbic acid (HAsc). The characterisation of the films was performed by electrochemical and surface analysis techniques such as SEM, EDS, X-ray diffraction and X-ray photoelectron spectroscopy (XPS). The degree of corrosion protection achieved was evaluated in simulated physiological solution by the open circuit potential monitoring, polarisation tech...

  13. Chromium in potatoes

    International Nuclear Information System (INIS)

    Stoddard-Gilbert, K.; Blincoe, C.

    1989-01-01

    Chromium concentration in potatoes was determined, and tubes were labeled either intrinsically or extrinsically with radioactive chromate ( 51 Cr). A labeled chromium complex was isolated from preparations of raw, baked, or fried potatoes and chromatographed on gel permeation media. Potato pulp and peel contained 1.63 and 2.70 μg of Cr/g tissue, respectively. There was no correlation between the two, nor did they respond similarly to changes of variety or locations. No significant differences were apparent in relative migration of the isolated complexes except between raw and cooked extrinsically labeled preparations

  14. The chromium accumulation and its physiological effects in juvenile rockfish, Sebastes schlegelii, exposed to different levels of dietary chromium (Cr(6+)) concentrations.

    Science.gov (United States)

    Kim, Jun-Hwan; Kang, Ju-Chan

    2016-01-01

    Juvenile rockfish (mean length 13.7±1.7 cm, and mean weight 55.6±4.8 g) were exposed for 4 weeks with the different levels of dietary chromium (Cr(6+)) at 0, 30, 60, 120 and 240 mg/kg. The profile of chromium in the tissues of rockfish is dependent on the exposure periods and chromium concentration. After 4 weeks, the order of chromium accumulation in tissues was liver>kidney>spleen>intestine>gill>muscle. The dietary chromium exposure decreased the growth rate and hepatosomatic index of rockfish. The major hematological findings were significant decrease in the red blood cell (RBC) count, hematocrit (Ht) value, and hemoglobin (Hb) concentration exposed to ≥120 mg/kg chromium concentrations. The dietary chromium exposure (≥120 mg/kg) led to notable increase in glucose, cholesterol, glutamic oxalate transaminase (GOT), and glutamic pyruvate transaminase (GPT) in plasma, whereas there was no considerable change in calcium, magnesium, total protein, and alkaline phosphatase (ALP). The results indicated that the dietary chromium exposure to rockfish can induce significant chromium accumulation in the specific tissues, inhibition of growth, and hematological alterations. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. 21 CFR 73.1327 - Chromium oxide greens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium oxide greens. 73.1327 Section 73.1327... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1327 Chromium oxide greens. (a) Identity. (1) The color additive chromium oxide greens is principally chromic sesquioxide (Cr2O3). (2) Color additive...

  16. Near-edge X-ray absorption fine structure studies of Cr{sub 1−x}M{sub x}N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mahbubur Rahman, M. [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Duan, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Jiang, Zhong-Tao, E-mail: Z.Jiang@murdoch.edu.au [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Xie, Zonghan [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia); School of Engineering, Edith Cowan University, WA 6027 (Australia); Wu, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Amri, Amun [Department of Chemical Engineering, Riau University, Pekanbaru (Indonesia); Cowie, Bruce [Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168 (Australia); Yin, Chun-Yang [Chemical and Analytical Sciences, Murdoch University, Murdoch, WA 6150 (Australia)

    2013-11-25

    Highlights: •Al or Si is doped on CrN and AlN coatings using magnetron sputtering system. •NEXAFS analysis is conducted to measure the Al and Si K-edges, and chromium L-edge. •Structural evolution of CrN matrix with addition of Al or Si element is investigated. -- Abstract: Cr{sub 1−x}M{sub x}N coatings, with doping concentrations (Si or Al) varying from 14.3 to 28.5 at.%, were prepared on AISI M2 tool steel substrates using a TEER UDP 650/4 closed field unbalanced magnetron sputtering system. Near-edge X-ray absorption fine structure (NEXAFS) characterization was carried out to measure the aluminum and silicon K-edges, as well as chromium L-edge, in the coatings. Two soft X-ray techniques, Auger electron yield (AEY) and total fluorescence yield (TFY), were employed to investigate the surface and inner structural properties of the materials in order to understand the structural evolution of CrN matrix with addition of Al (or Si) elements. Investigations on the local bonding states and grain boundaries of the coatings, using NEXAFS technique, provide significant information which facilitates understanding of the local electronic structure of the atoms and shed light on the origins of the high mechanical strength and oxidation resistance of these technologically important coatings.

  17. Acute and chronic systemic chromium toxicity.

    Science.gov (United States)

    Gad, S C

    1989-10-01

    Although chromium and compounds containing it have been recognized as having potential severe adverse effects on health for more than 160 years, understanding of the systemic toxicology and true hazard of these compounds is still not complete. A review of the current state of knowledge is attempted in this paper, with appropriate attention given to the complications of multiple valence states and solubility. Selected chromium compounds, particularly hexavalent ones, are carcinogens, corrosives, delayed contact sensitizers, and have the kidney as their primary target organ. But chromium is also an essential element for humans. The body clearly possesses some effective detoxification mechanisms for some degree of exposure to hexavalent chrome compounds. The significant features of acute and chronic chromium toxicity are presented in view of these considerations.

  18. Establishment of a reference value for chromium in the blood for biological monitoring among occupational chromium workers.

    Science.gov (United States)

    Li, Ping; Li, Yang; Zhang, Ji; Yu, Shan-Fa; Wang, Zhi-Liang; Jia, Guang

    2016-10-01

    The concentration of chromium in the blood (CrB) has been confirmed as a biomarker for occupational chromium exposure, but its biological exposure indices (BEIs) are still unclear, so we collected data from the years 2006 and 2008 (Shandong Province, China) to analyze the relationship between the concentration of chromium in the air (CrA) of the workplaces and CrB to establish a reference value of CrB for biological monitoring of occupational workers. The levels of the indicators for nasal injury, kidney (β2 microglobulin (β2-MG)), and genetic damages (8-hydroxy-deoxyguanosine (8-OHdG) and micronucleus (MN)) were measured in all subjects of the year 2011 (Henan Province, China) to verify the protective effect in this reference value of CrB. Compared with the control groups, the concentrations of CrA and CrB in chromium exposed groups were significantly higher (P value of CrB was recommended to 20 μg/L. The levels of nasal injury, β2-MG, 8-OhdG, and MN were not significantly different between the low chromium exposed group (CrB ≤ 20 μg/L) and the control group, while the levels of β2-MG, 8-OHdG, and MN were statistically different in the high chromium exposed group than that in the control group. This research proved that only in occupational workers, CrB could be used as a biomarker to show chromium exposure in the environment. The recommended reference value of CrB was 20 μg/L. © The Author(s) 2015.

  19. Catalytic conversion of cellulose into 5-hydroxymethylfurfural over chromium trichloride in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shui; Du, Yizhen; Zhang, Wenqian; Cheng, Xiaowei; Wang, Jidong [Beijing University of Chemical Technology, Beijing (China)

    2014-10-15

    An efficient method for converting cellulose into 5-hydroxymethylfurfural (5-HMF) using an inexpensive ionic liquid tetrabutylammonium chloride (TBAC) and relatively low-toxicity catalyst of chromium (Ⅲ) trichloride (CrCl{sub 3}·6H{sub 2}O) was developed. The effects of hydrochloric acid loading, catalyst dosage, reaction temperature and time on the yield of 5-HMF were surveyed to achieve optimal reaction conditions. A 5-HMF yield of 43.7% was obtained within 90 min at 140 .deg. C using oil-bath heating. Glucose and starch were also investigated as feedstock to produce 5-HMF in TBAC/CrCl{sub 3}·6H{sub 2}O system, in which the 5-HMF yield was considerable. After 5-HMF was extracted, TBAC/CrCl{sub 3}·6H{sub 2}O could be used for several runs.

  20. Wetting of polymer melts on coated and uncoated steel surfaces

    Science.gov (United States)

    Vera, Julie; Contraires, Elise; Brulez, Anne-Catherine; Larochette, Mathieu; Valette, Stéphane; Benayoun, Stéphane

    2017-07-01

    A comparative study of the wetting of three different commercial polymer melts on various coated and uncoated steel surfaces is described in this report. The wettability of steel and coatings (three different titanium nitride coatings, TiN, TiNOx, TiNOy, a chromium coating, CrN, and a diamond-like carbon coating, DLC) used for mold in polymer processing is determined at different temperatures between 25 °C and 120 °C. Contact angle measurements of melted polypropylene (PP), Acrylonitrile Butadiene Styrene (ABS) and Polycarbonate (PC) on steel and on the different coatings were performed to investigate the wetting behavior under closer-to-processing conditions. Recommendations for good measurement conditions were proposed. Moreover, the surface free energy of each melt polymer was determined. The works of adhesion between all polymers and all substrates were established. Among all tested polymers, the lowest value of the works of adhesion is calculated for ABS and for PC thereafter, and the highest value is calculated for PP. These results will be particularly important for such applications as determining the extent to which these polymers can contribute to the replication quality in injection molding.

  1. 21 CFR 73.1326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide (Cr2O3·XH2O...

  2. Adhesion analysis for chromium nitride thin films deposited by reactive magnetron sputtering

    Science.gov (United States)

    Rusu, F. M.; Merie, V. V.; Pintea, I. M.; Molea, A.

    2016-08-01

    The thin film industry is continuously growing due to the wide range of applications that require the fabrication of advanced components such as sensors, biological implants, micro-electromechanical devices, optical coatings and so on. The selection regarding the deposition materials, as well as the deposition technology influences the properties of the material and determines the suitability of devices for certain real-world applications. This paper is focused on the adhesion force for several chromium nitride thin films obtained by reactive magnetron sputtering. All chromium nitride thin films were deposited on a silicon substrate, the discharge current and the argon flow being kept constant. The main purpose of the paper is to determine the influence of deposition parameters on the adhesion force. Therefore some of the deposition parameters were varied in order to study their effect on the adhesion force. Experimentally, the values of the adhesion force were determined in multiple points for each sample using the spectroscopy in point mode of the atomic force microscope. The obtained values were used to estimate the surface energy of the CrN thin films based on two existing mathematical models for the adhesion force when considering the contact between two bodies.

  3. Chromium Uptake Efficiency of Spinacea olaracea from ...

    African Journals Online (AJOL)

    The aim of the study was to evaluate the uptake of chromium by Spinacea olaracea and its accumulation in roots and shoots of plants grown in pots at various concentrations of chromium (30, 60, 90,120,150 mg/l). The results revealed that the levels of chromium accumulation in roots and shoots were higher at minimum ...

  4. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    The extensive demand of aluminium alloys in various industries such as in transportationis mainly due to the high strength to weight ratio, which could be translated into fuel economy and efficiency. Corrosion protection of aluminium alloys is an important aspect for all applications which includes...... the use of aluminium alloys in the painted form requiring a conversion coating to improve the adhesion. Chromate based conversion coating processes are extremely good for these purposes, however the carcinogenic and toxic nature of hexavalent chromium led to the search for more benign and eco......, crystalline nano-particles, role of steam-based treatment on adhesion of industrially applied powder coating, and investigations of a failed painted aluminium window profile due to defects in the extruded profile. Chapters 13 and 14 describe the overall discussion, conclusions and future work based...

  5. Microstructural and electrical characterization of Mn-Co spinel protective coatings for solid oxide cell interconnects

    DEFF Research Database (Denmark)

    Molin, S.; Sabato, A. G.; Bindi, M.

    2017-01-01

    Electrophoretic deposition, thermal co-evaporation and RF magnetron sputtering methods are used for the preparation of Mn-Co based ceramic coatings for solid oxide fuel cell steel interconnects. Both thin and relatively thick coatings (1–15 μm) are prepared and characterised for their potential...... protective behaviour. Mn-Co coated Crofer22APU samples are electrically tested for 5000 h at 800 °C under a 500 mA cm−2 current load to determine their Area Specific Resistance increase due to a growing chromia scale. After tests, samples are analysed by scanning and transmission electron microscopy....... Analysis is focused on the potential chromium diffusion to or through the coating, the oxide scale thickness and possible reactions at the interfaces. The relationships between the coating type, thickness and effectiveness are reviewed and discussed. Out of the three Mn-Co coatings compared in this study...

  6. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Substoichiometric determination of chromium by neutron activation analysis

    International Nuclear Information System (INIS)

    Kudo, K.; Shigematsu, T.; Kobayashi, K.

    1977-01-01

    A method of radioactivation analysis has been developed for the determination of chromium. It is based on the substoichiometric extraction of chromium diethyldithiocarbamate into methyl-isobutyl-ketone from acetate buffer solution in the presence of EDTA and potassium cyanide. A solution of NaDDC was prepared by dissolving an appropriate amount of GR grade salt in bidistelled water. The concentration of NaDDC was determined by substoichiometric isotope dilution method using 64 Cu or sup(114m)In tracer of known specific activity. The extraction of chromium is not influenced by the presence of EDTA or potassium cyanide while the extraction of chromium is inhibited in tartrate or citrate solution. All metal ions examined are extracted by NaDDC together with chromium and become to interfere for the substoichiometric extraction of chromium. This can be avoided, however, by the addition of EDTA except for copper and silver. The method has been applied for the determination of chromium in high-purity calcium carbonate and NBS glasses as standard reference materials. (T.G.)

  8. Antimicrobial and anti-biofilm properties of polypropylene meshes coated with metal-containing DLC thin films.

    Science.gov (United States)

    Cazalini, Elisa M; Miyakawa, Walter; Teodoro, Guilherme R; Sobrinho, Argemiro S S; Matieli, José E; Massi, Marcos; Koga-Ito, Cristiane Y

    2017-06-01

    A promising strategy to reduce nosocomial infections related to prosthetic meshes is the prevention of microbial colonization. To this aim, prosthetic meshes coated with antimicrobial thin films are proposed. Commercial polypropylene meshes were coated with metal-containing diamond-like carbon (Me-DLC) thin films by the magnetron sputtering technique. Several dissimilar metals (silver, cobalt, indium, tungsten, tin, aluminum, chromium, zinc, manganese, tantalum, and titanium) were tested and compositional analyses of each Me-DLC were performed by Rutherford backscattering spectrometry. Antimicrobial activities of the films against five microbial species (Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis) were also investigated by a modified Kirby-Bauer test. Results showed that films containing silver and cobalt have inhibited the growth of all microbial species. Tungsten-DLC, tin-DLC, aluminum-DLC, zinc-DLC, manganese-DLC, and tantalum-DLC inhibited the growth of some strains, while chromium- and titanium-DLC weakly inhibited the growth of only one tested strain. In-DLC film showed no antimicrobial activity. The effects of tungsten-DLC and cobalt-DLC on Pseudomonas aeruginosa biofilm formation were also assessed. Tungsten-DLC was able to significantly reduce biofilm formation. Overall, the experimental results in the present study have shown new approaches to coating polymeric biomaterials aiming antimicrobial effect.

  9. Thermal spray coatings replace hard chrome

    International Nuclear Information System (INIS)

    Schroeder, M.; Unger, R.

    1997-01-01

    Hard chrome plating provides good wear and erosion resistance, as well as good corrosion protection and fine surface finishes. Until a few years ago, it could also be applied at a reasonable cost. However, because of the many environmental and financial sanctions that have been imposed on the process over the past several years, cost has been on a consistent upward trend, and is projected to continue to escalate. Therefore, it is very important to find a coating or a process that offers the same characteristics as hard chrome plating, but without the consequent risks. This article lists the benefits and limitations of hard chrome plating, and describes the performance of two thermal spray coatings (tungsten carbide and chromium carbide) that compared favorably with hard chrome plating in a series of tests. It also lists three criteria to determine whether plasma spray or hard chrome plating should be selected

  10. Chromium supplementation improved post-stroke brain infarction and hyperglycemia.

    Science.gov (United States)

    Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung

    2016-04-01

    Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia.

  11. Adsorption of Radioactive Chromium onto Iron Oxide Coated Sand

    International Nuclear Information System (INIS)

    Tadros, N.

    2008-01-01

    Iron oxide coated sand (IOCS) has been prepared and used as granular sorbent for 51 Cr radionuclide at different and specified concentration Ievels in aqueous solutions of constant ph value. Effect of different parameters such as: ph variation, contact time, 51 Cr ion concentration and variation of temperature on the adsorption of the radionuclide onto IOCS material have been discussed. At high ph value about 9()% of 51 Cr is adsorbed onto IOCS from the aqueous solution, The sorption capability of 51 Cr and the effect of ion concentration on the adsorbitivity have been discussed. Adsorption isotherms of Langmuir and Freundlich were expressed and their adsorption isotherm parameters are tabulated

  12. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    Cruz V, J. P.; Vite T, J.; Castillo S, M.; Vite T, M.

    2009-01-01

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  13. Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil.

    Science.gov (United States)

    Gupta, Pratishtha; Kumar, Vipin; Usmani, Zeba; Rani, Rupa; Chandra, Avantika

    2018-02-01

    In this study, an effort was made to identify an efficient phosphate solubilizing bacterial strain from chromium contaminated agricultural soils. Based on the formation of a solubilized halo around the colonies on Pikovskaya's agar amended with chromium (VI), 10 strains were initially screened out. Out of 10, strain CPSB4, which showed significantly high solubilization zone at different chromium concentrations, was selected for further study. The strain CPSB4 showed significant plant growth promotion traits with chromium (VI) stress under in-vitro conditions in broth. The plant growth promotion activities of the strain decreased regularly, but were not completely lost with the increase in concentration of chromium up to 200 mg L -1 . On subjected to FT-IR analysis, the presence of the functional group, indicating the organic acid aiding in phosphate solubilization was identified. At an optimal temperature of 30  ° C and pH 7.0, the strain showed around 93% chromium (VI) reduction under in-vitro conditions in broth study. In soil condition, the maximum chromium (VI) reduction obtained was 95% under in-vitro conditions. The strain CPSB4 was identified as Klebsiella sp. on the basis of morphological, biochemical and 16S rRNA gene sequencing. This study shows that the diverse role of the bacterial strain CPSB4 would be useful in the chromium contaminated soil as a good bioremediation and plant growth promoting agent as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterization of thermally sprayed coatings for high-temperature wear-protection applications

    International Nuclear Information System (INIS)

    Li, C.C.

    1980-03-01

    Under normal high-temperature gas-cooled reactor (HTGR) operating conditions, faying surfaces of metallic components under high contact pressure are prone to friction, wear, and self-welding damage. Component design calls for coatings for the protection of the mating surfaces. Anticipated operating temperatures up to 850 to 950 0 C (1562 to 1742 0 F) and a 40-y design life require coatings with excellent thermal stability and adequate wear and spallation resistance, and they must be compatible with the HTGR coolant helium environment. Plasma and detonation-gun (D-gun) deposited chromium carbide-base and stabilized zirconia coatings are under consideration for wear protection of reactor components such as the thermal barrier, heat exchangers, control rods, and turbomachinery. Programs are under way to address the structural integrity, helium compatibility, and tribological behavior of relevant sprayed coatings. In this paper, the need for protection of critical metallic components and the criteria for selection of coatings are discussed. The technical background to coating development and the experience with the steam cycle HTGR (HTGR-SC) are commented upon. Coating characterization techniques employed at General Atomic Company (GA) are presented, and the progress of the experimental programs is briefly reviewed. In characterizing the coatings for HTGR applications, it is concluded that a systems approach to establish correlation between coating process parameters and coating microstructural and tribological properties for design consideration is required

  15. Final Test Report: Hexavalent Chrome Free Coatings for Electronics Electromagnetic Interference (EMI) Shielding Effectiveness (SE)

    Science.gov (United States)

    Kessel, Kurt R.

    2016-01-01

    The test results for Salt Spray Resistance, Static Heat and Humidity and Marine Environment can be found in Sections 3.1.3.3, 3.1.4.3 and 3.1.5.3 respectively. In summary, both the Metalast TCP and SurTec 650 Type 2 conversion coatings perform very similar to the incumbent Type 1 conversion coating against both 6061 and 5052 aluminum under all three test conditions. Significant prior work was performed to select the aluminum and conversion coating included within this test cycle; Reference - NASA GSDO Program Hexavalent Chrome Alternatives Final Pretreatments Test Report Task Order: NNH12AA45D September 01, 2013. As illustrated in the data, the 6061 aluminum panels SLIGHTLY out-performed the 5052 aluminum panels. Individual shielding effectiveness graphs for each panel are included within Appendix C and D. One other notable effect found during review of the data is that the Test Panels exposed to B117 Salt Fog reduced in shielding effectiveness significantly more than the Marine Environment Test Panels. The shielding effectiveness of the Marine Test Panels was approximately 20dB higher than the Test Panels that underwent B117 Salt Fog Exposure. The intent of this evaluation was not to maximize shielding effectiveness values. The same Parker Chomerics Cho-Seal 6503 gasket material was used for all panels with aluminum and conversion coating variants. A typical EMI gasket design for corrosive environments would be done quite differently. The intent was to execute a test that would provide the best possible evaluation of different aluminum materials and conversion coatings in corrosive environments. The test program achieved this intent. The fact that the two aluminums and two Type II conversion coatings performed similar to the incumbent Type 1 conversion coating is a positive outcome. It was desired to have an outcome that further differentiation the performance of two aluminum types and two conversion coating types but this could not be extracted by the test

  16. Nanophase hardfaced coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reisgen, U.; Stein, L.; Balashov, B.; Geffers, C. [RWTH Aachen University (Germany). ISF - Welding and Joining Institute

    2009-08-15

    This paper demonstrates the possibility of producing iron or chromium-based nanophase hardfaced coatings by means of common arc welding methods (TIG, PTA). The appropriate composition of the alloys to be deposited allows to control the structural properties and thus also the coating properties of the weld metal. Specific variations of the alloying elements allow also the realisation of a nanostructured solidification of the carbides and borides with cooling rates that are common for arc surfacing processes. The hardfaced coatings, which had been thus produced, showed phase dimensions of approximately 100-300 nm. Based on the results it is established that the influence of the surfacing parameters and of the coating thickness and thus the influence of the heat control on the nanostructuring process is, compared with the influence of the alloy composition, of secondary importance. The generation of nanoscale structures in hardfaced coatings allows the improvement of mechanical properties, wear resistance and corrosion resistance. Potential applications for these types of hardfaced coatings lie, in particular, in the field of cutting tools that are exposed to corrosion and wear. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Diese Arbeit demonstriert die Moeglichkeit zur Herstellung Eisen- und Chrom-basierter nanophasiger Hartauftragschweissschichten mithilfe ueblicher Lichtbogenschweissverfahren (WIG-, Plasma-Pulver-Auftragschweissen - PPA). Eine geeignete Zusammensetzung der aufzutragenden Legierungen ermoeglicht es, die Gefuegeeigenschaften und damit die Schichteigenschaften des Schweissgutes zu kontrollieren. Gezielte Variationen der Legierungselemente erlauben die Realisierung einer nanostrukturierten Erstarrung der Karbide und Boride bei fuer Lichtbogen-Auftragschweissprozessen ueblichen Abkuehlgeschwindigkeiten. In den so erzeugten Hartschichten werden Phasengroessen von ca. 100-300 nm erreicht. Auf Basis der gewonnenen Ergebnisse kann

  17. 75 FR 67100 - Superalloy Degassed Chromium From Japan

    Science.gov (United States)

    2010-11-01

    ... Chromium From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on superalloy degassed chromium from Japan. SUMMARY... order on superalloy degassed chromium from Japan would be likely to lead to continuation or recurrence...

  18. Electrochemistry of chromium(0)-aminocarbene complexes

    International Nuclear Information System (INIS)

    Hoskovcova, Irena; Rohacova, Jana; Meca, Ludek; Tobrman, Tomas; Dvorak, Dalimil; Ludvik, Jiri

    2005-01-01

    Two series of chromium(0)-(aryl)aminocarbene complexes substituted on the ligand phenyl ring were prepared and electrochemically investigated: pentacarbonyl((N,N-dimethylamino)(phenyl)carbene(chromium(0) (Ia-e) and chelated tetracarbonyl((η 2 -N-allyl-N-allylamino)(phenyl)carbene(chromium(0) (IIa, c-e). For comparison, a tungsten analogue of IIc (III) and a chromium chelate bearing a methyl substituent instead of the phenyl group IV were taken into the study. The intramolecular interactions of p-substituents on the ligand phenyl ring with the reduction and oxidation centres of the molecule of complex (followed electrochemically using LFER [P. Zuman, Substituent Effects in Organic Polarography, Plenum Press, New York, 1967]) enabled to localize the corresponding electron transfer. The influence of the type of coordination, the substituent on the ligand phenyl ring and the central metal atom on oxidation and reduction potentials is discussed

  19. Lipid peroxidation in workers exposed to hexavalent chromium.

    Science.gov (United States)

    Huang, Y L; Chen, C Y; Sheu, J Y; Chuang, I C; Pan, J H; Lin, T H

    1999-02-26

    The aim of this study was to investigate whether exposure to hexavalent chromium induces lipid peroxidation in human. This study involved 25 chrome-plating factory workers and a reference group of 28 control subjects. The whole-blood and urinary chromium concentrations were determined by graphite furnace atomic absorption spectrophotometry. Malondialdehyde (MDA), the product of lipid peroxidation, was determined by high-performance liquid chromatography, and the activities of protective enzymes were measured by ultraviolet-visible spectrophotometry. In the chrome-plating workers, the mean concentrations of chromium in blood and urine were 5.98 microg/L and 5.25 microg/g creatinine, respectively; the mean concentrations of MDA in blood and urine were 1.7 micromol/L and 2.24 micromol/g creatinine. The concentrations of both chromium and MDA in blood and urine were significantly higher in the chromium-exposed workers. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) were not markedly different between control and exposed workers. Data suggest that MDA may be used as a biomarker for occupational chromium exposure. Antioxidant enzymic activities are not a suitable marker for chromium exposure.

  20. The Chromium is an essential element in the human

    International Nuclear Information System (INIS)

    Alvarado Gamez, A.; Blanco Saenz, R.; Mora Morales, E.

    2002-01-01

    The Chromium is an essential element for human and animals, because it a preponderant function in the insulin metabolism as a glucose tolerance factor (GTF). The deficiency of chromium engenders a deterioration in the glucose metabolism due to bad efficiency of insulin. Because the importance of this element an exhaustive reference review was made and this presents some studies realized in laboratory animals and in human beings where it is prove with resuits the effect of chromium over the improvement of patients with non-insulin dependant diabetes. Three substances are presented as chromium active biological forms: a material rich in chromium known as glucose tolerance factor, chromium picolinate and a substance of low molecular weight LMWCr in its forms of apo and holo that contains chromium and it links the insulin receptor and improves its activity. Also this paper presents information about the condition of diabetes in Costa Rica. (Author) [es

  1. REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS ...

    African Journals Online (AJOL)

    a

    be used again to adsorb heavy metal ions. ... Among these heavy metals are chromium, copper and ... poisoning can result from high exposure to hexavalent chromium [2]. Most of the ..... At low pH, the sorbent is positively charged because of.

  2. Serum chromium levels in gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    P G Sundararaman

    2012-01-01

    Full Text Available Objective: To measure serum chromium level in women with gestational diabetes mellitus (GDM from Chennai, South India. Materials and Methods: Thirty women with gestational diabetes, 60 age matched controls. Inclusion criteria: Gestational age 22-28 weeks, age group 20-35 years. Exclusion Criteria: Gestational age beyond 28 weeks, malnutrition or presence of infection. Serum chromium was measured using inductive couple plasma emission spectrometer. Results: Serum chromium levels of women with GDM, 1.59+/-0.02 ng/ml (range: 0.16-4.0 ng/ml were lower than in controls (4.58+/-0.62 ng/ml; range 0.82-5.33 ng/ml (P < 0.001. However, there were no significant differences among cases and controls when subdivided by parity. Conclusions: Women with GDM from a South Indian city had lower levels of serum chromium compared to pregnant women without GDM. Studies may be done whether chromium supplementation is useful in this group of women.

  3. UV-LED Curing Efficiency of Wood Coatings

    Directory of Open Access Journals (Sweden)

    Véronic Landry

    2015-12-01

    Full Text Available Ultraviolet light emitting diodes (UV-LEDs have attracted great interest in recent years. They can be used to polymerize coatings, such as those used for prefinished wood flooring. In this project, two lamps were compared for their suitability to be used on a wood flooring finishing line: a UV-microwave and a UV-LED lamp. Low heat emission was found for the UV-LED lamp compared to the UV-microwave one. This study also reveals that the 4 W/cm2 UV-LED lamp used is not powerful enough to cure UV high solids acrylate coatings while satisfactory results can be obtained for UV water-based formulations. In fact, conversion percentages were found to be low for the high solids coatings, leaving the coatings tacky. Higher conversion percentages were obtained for the UV water-based formulations. As a result, mass loss, hardness, and scratch resistance found for the samples cured by UV-LED were closed to the ones found for the samples cured using the UV microwave lamp.

  4. Quantitative determination of chromium in some vegetables in ...

    African Journals Online (AJOL)

    Chromium has been known to be a micronutrient for mammals for more than four decades. Deficiency in the body results to diabetes, infertility and cardiovascular diseases. However, progress in elucidating the role of chromium has proceeded slowly. Recent studies have shown a potential role of chromium in maintaining ...

  5. Development & characterization of alumina coating by atmospheric plasma spraying

    Science.gov (United States)

    Sebastian, Jobin; Scaria, Abyson; Kurian, Don George

    2018-03-01

    Ceramic coatings are applied on metals to prevent them from oxidation and corrosion at room as well as elevated temperatures. The service environment, mechanisms of protection, chemical and mechanical compatibility, application method, control of coating quality and ability of the coating to be repaired are the factors that need to be considered while selecting the required coating. The coatings based on oxide materials provides high degree of thermal insulation and protection against oxidation at high temperatures for the underlying substrate materials. These coatings are usually applied by the flame or plasma spraying methods. The surface cleanliness needs to be ensured before spraying. Abrasive blasting can be used to provide the required surface roughness for good adhesion between the substrate and the coating. A pre bond coat like Nickel Chromium can be applied on to the substrate material before spraying the oxide coating to avoid chances of poor adhesion between the oxide coating and the metallic substrate. Plasma spraying produces oxide coatings of greater density, higher hardness, and smooth surface finish than that of the flame spraying process Inert gas is often used for generation of plasma gas so as to avoid the oxidation of the substrate material. The work focuses to develop, characterize and optimize the parameters used in Al2O3 coating on transition stainless steel substrate material for minimizing the wear rate and maximizing the leak tightness using plasma spray process. The experiment is designed using Taguchi’s L9 orthogonal array. The parameters that are to be optimized are plasma voltage, spraying distance and the cooling jet pressure. The characterization techniques includes micro-hardness and porosity tests followed by Grey relational analysis of the results.

  6. On the application of acoustic emission analysis to evaluate the integrity of protective oxide coatings

    International Nuclear Information System (INIS)

    Jonas, H.; Stover, D.; Hecker, R.

    1985-01-01

    Protective coatings extend the range of applications for materials. Surface properties can be selectively adapted for each problem. Thus bare high-temperature alloys for heat exchanging units e.g. in high-temperature systems for producing substitute natural gas do not have sufficient protection against undesirable tritium permeation from the helium primary gas into the substitute natural gas generated. A chromium oxid coating, on the other hand, of only a few μm in thickness ensures a barrier effect combines with an inhibitive factor H = 1000. Good adhesion is required for a successful application, in the same way as good temperature cycling resistance under start-up and shut-down conditions is of decisive significance for every type of coating

  7. Activation of bentonite to remove the chromium from waste water produced by panning industry, and studying the chromium recovery efficiency

    International Nuclear Information System (INIS)

    Abbasi, S.; Wahba, H.; AL-Masri, M.S.

    2010-01-01

    The fast development of tanning industry led to an increase in environmental problems resulting from discharging its wastes to the surrounding environment. Thus solving this problem became one of the most important aims that the researchers work on. The chromium content of the industrial water wastes of the tanning industry considered as the main pollutant for the environment. The Aleppo Bentonite is used in early research to remove the chromium from the industrial waste water.The current research aims to find a method to activate the Aleppo Bentonite in order to increase the effective removal of chromium from the industrial waste water which is produced by tanning industry, as well as to specify the optimal conditions for chromium recovery.This study used the Aleppo Bentonite, whose origin is Tal Ajar-Aleppo to study the activation aspects using Sulfuric Acid, Hydrochloric Acid and Nitric Acid, in addition to study the recovery aspects using the same acids and hydrogen peroxide and to specify the optimal conditions for chromium recovery through applying some experiments based on three main factors: concentration, settling time and temperature.It was observed from the applied experiments that it is possible to recover chromium from Bentonite efficiently up to (80% - 90%) by treating the Bentonite with hydrogen peroxide(33% concentration) at room temperature, or by treating it with hydrogen peroxide(8.25% concentration) at 75 o C, while the settling time factor proved that full recovery of chromium is obtained during the first hour, and increasing the time factor does not affect the efficiency of chromium recovery. (author)

  8. Uptake and transport of chromium in plants

    International Nuclear Information System (INIS)

    Ramachandran, V.; D'souza, T.J.; Mistry, K.B.

    1980-01-01

    The uptake of chromium, an important soil and water pollutant, by five different plant species was examined in nutrient culture experiments using chromium-51 as a tracer. The concentration in aerial tissues of both trivalent and hexavalent forms of chromium was the greatest in peas followed by beans, tomato and the cereals over identical uptake periods. The uptake of 51 Cr 3+ was, in general, greater than 51 CrO 4 2- . Studies with bean plants indicated that shoot uptake of both forms of chromium decreased with increasing pH and salt concentration of the external solution. Concentrations of 10 -4 M and 10 -5 M DNP inhibited 51 Cr uptake by bean shoots. (author)

  9. Ductile-brittle transition of thoriated chromium.

    Science.gov (United States)

    Wilcox, B. A.; Veigel, N. D.; Clauer, A. H.

    1972-01-01

    Unalloyed chromium and chromium containing approximately 3 wt % ThO2 were prepared from powder produced by a chemical vapor deposition process. When rolled to sheet and tested in tension, it was found that the thoriated material had a lower ductile-to-brittle transition temperature (DBTT) than unalloyed chromium. This ductilizing was evident both in the as-rolled condition and after the materials had been annealed for 1 hour at 1200 C. The improved ductility in thoriated chromium may be associated with several possible mechanisms: (1) particles may disperse slip, such that critical stress or strain concentrations for crack nucleation are more difficult to achieve; (2) particles may act as dislocation sources, thus providing mobile dislocations in this normally source-poor material, in a manner similar to prestraining; and (3) particles in grain boundaries may help to transmit slip across the boundaries, thus relieving stress concentrations and inhibiting crack nucleation.

  10. Thermodynamic properties of chromium bearing slags and minerals. A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yanping; Holappa, L.

    1996-12-31

    In this report, the thermodynamic properties of chromium bearing slags and minerals were reviewed based on the available information in the literature. It includes the analysing methods for oxidation state of chromium in slags, oxidation state of chromium and activities of chromium oxides in slags and minerals. The phase diagrams of chromium oxide systems and chromium distributions between slag and metal phases are also covered ill this review. Concerning the analysing methods, it was found that most of the available approaches are limited to iron free slag systems and the sample preparation is very sensitive to the analysing results. In silicate slags under reducing atmosphere, divalent and trivalent chromium co-exist in the slags. It is agreed that the fraction of divalent chromium to total chromium increases with higher temperature, lower slag basicity and oxygen potential. For the slags under oxidising atmosphere, trivalent, pentavalent and hexavalent states were reported to be stable. The activities of CrO and CrO{sub 1.5} were concluded to have positive deviation from ideal solution. Slag basicity has a positive effect and temperature has a negative effect on the activities of chromium oxides. The phase diagrams of the Cr-O, binary, and ternary chromium containing oxide systems have been examined systematically. The analysis shows that the data on the quaternary and quinary systems are insufficient, and require further investigation. The most important features of the chromium containing silicate slags are the large miscibility gaps and the stability of the chromite spinel. (orig.) (76 refs.)

  11. Thick boron carbide coatings for protection of tokamak first wall and divertor

    International Nuclear Information System (INIS)

    Buzhinskij, O.I.; Semenets, Yu.M.

    1999-01-01

    A review of characteristics of various types of boron carbide coatings considered as candidate materials for protection of tokamak inner surfaces against high energy heat fluxes is presented. Such coatings are produced by various methods: chemical vapor deposition by means of chloride and fluoride techniques, gas conversion, plasma spray and reaction-sintering. Contrary to pure carbon materials, B 4 C has much lower chemical and high-temperature sputtering, is capable to oxygen gettering and lower hydrogen recycling. In contrast to thin boronization films, the thick coatings can resist high heat fluxes such as in tokamak divertors. Comparative analysis shows that coatings produced by the diffusion methods, such as fluoride CVD and gas conversion, are more resistent to heat loads, and one of the most promising candidates are the fluoride CVD coatings. (orig.)

  12. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining a...

  13. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    Science.gov (United States)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  14. Tribological behaviour at high temperature of hard CrAlN coatings doped with Y or Zr

    International Nuclear Information System (INIS)

    Sánchez-López, J.C.; Contreras, A.; Domínguez-Meister, S.; García-Luis, A.; Brizuela, M.

    2014-01-01

    The tribological properties of CrAlN, CrAlYN and CrAlZrN coatings deposited by direct current reactive magnetron sputtering are studied by means of pin-on-disc experiments at room temperature, 300, 500 and 650 °C using alumina balls as counterparts. The influence of the metallic composition (Al, Y and Zr) on the friction, wear properties and oxidation resistance is studied by means of scanning electron microscopy, energy dispersive X-ray analysis and Raman analysis of the contact region after the friction tests. The results obtained allow us to classify the tribological behaviour of the CrAl(Y,Zr)N coatings into three groups according to the nature of the dopant and aluminium content. The sliding wear mechanism is characterized by the formation of an overcoat rich in chromium and aluminium oxides whose particular composition is determined by the initial chemical characteristics of the coating and the testing temperature. The fraction of Cr 2 O 3 becomes more significant as the Al content decreases and the temperature increases. The addition of Y, and particularly Zr, favours the preferential formation of Cr 2 O 3 versus CrO 2 leading to a reduction of friction and wear of the counterpart. Conversely, the tribological behaviour of pure CrAlN coatings is characterized by higher friction but lower film wear rates as a result of higher hardness and major presence of aluminium oxides on the coating surface. - Highlights: • Comparative tribological study at high temperature of CrAlN, CrAlYN and CrAlZrN films • Fraction of Cr 2 O 3 raises as the Al content decreases and the temperature increases. • Zr doping favours lower and steady friction coefficient due to higher Cr 2 O 3 formation. • Sliding wear mechanism becomes predominantly abrasive as the Al content increases. • Excellent tribological performance of CrAlN doped with low Y contents (≈ 2 at.%)

  15. Sodium compatibility of aluminide and chromium nitride coatings on austenitic stainless steel

    International Nuclear Information System (INIS)

    Schindler-Latge, P.; Ardellier, A.; Depierre, Y.

    1988-01-01

    The present study is a part of a more general research and development program which is presented in another session of this meeting. The main aim of this program was the selection of coatings or treatments able to improve the tribological behaviour of austenitic stainless steel intended to use as structural material for subassemblies and diagrid of a LMFBR in project. Among this environmental conditions imposed for that application, we can retain: in normal conditions of operation, a purified sodium flow at about 400 0 C with a certain number of accidental cold thermal shocks, during the 30 years period of life of the reactor, and also with some hot variations of the sodium temperature from 400 0 C to 550 0 C. Some coatings which had been preselected for that use having not yet been tested in compatibility with liquid sodium for a long period, it was necessary to proceed to corrosion resistance tests in sodium environment almost for the thinner of them, in order to see if they were able to bear the environment conditions required for the project. Consecutively of these tests, metallurgical examinations have been made on samples, firstly after a 4000 hours period of dwell in sodium flowing at 400 0 C, and secondly after an additional dwelling period in flowing sodium of 500 hours at 550 0 C. The main metallurgical observations relative to three coatings or treatments are related thereafter

  16. Ferrate treatment for removing chromium from high-level radioactive tank waste.

    Science.gov (United States)

    Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J

    2001-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.

  17. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery Furnaces XII Appendix XII to Part 266... FACILITIES Pt. 266, App. XII Appendix XII to Part 266—Nickel or Chromium-Bearing Materials that may be...

  18. Chemical Speciation of Chromium in Drilling Muds

    International Nuclear Information System (INIS)

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-01-01

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility

  19. Combination of synchrotron radiation X-ray microprobe and nuclear microprobe for chromium and chromium oxidation states quantitative mapping in single cells

    International Nuclear Information System (INIS)

    Ortega, Richard; Deves, Guillaume; Fayard, Barbara; Salome, Murielle; Susini, Jean

    2003-01-01

    Hexavalent chromium compounds are established carcinogens but their mechanism of cell transformation has not been elucidated yet. In this study, chromium oxidation state distribution maps in cells exposed to soluble (Na 2 CrO 4 ), or insoluble (PbCrO 4 ), Cr(VI) compounds have been obtained by use of the ESRF ID-21 X-ray microscope. In addition, the quantitative maps of element distributions in cells have been determined using the nuclear microprobe of Bordeaux-Gradignan. Nuclear microprobe quantitative analysis revealed interesting features on chromium, and lead, cellular uptake. It is suggested that cells can enhance PbCrO 4 solubility, resulting in chromium, but not lead uptake. The differential carcinogenic potential of soluble and insoluble Cr(VI) compounds is discussed with regard to chromium intracellular quantitative distribution

  20. Increased chromium uptake in polymorphonuclear leukocytes from burned patients

    International Nuclear Information System (INIS)

    Davis, J.M.; Illner, H.; Dineen, P.

    1984-01-01

    Following thermal injury neutrophil function is severely impaired and thought to be hypometabolic; however, the host is considered to be hypermetabolic. To further investigate the metabolism and the function of neutrophils following thermal injury, neutrophil migration and chromium uptake were studied using radio-labelled neutrophils. Random and directed migration were found to be significantly reduced compared to control values. Neutrophil lysozyme content was also reduced in these burn cells while serum lysozyme from the same patients was significantly elevated over control values. These data suggest lysozyme is released by the neutrophil into the circulatory system. The influx of chromium in cells from burned patients was much greater than the influx in normal cells used in studies for chemotaxis. Influx of chromium over time and over varying concentrations of chromium was linear in cells from burned patients and normals. Cells from burned patients, however, took up more chromium than normals. Influx velocity of chromium was also determined and found to be greater in burn cells than normal cells. Since it has been shown that chromium influx is an energy-dependent reaction it is suggested that cellular energy stores are being depleted by the influx of chromium. Whether this is a response to an intracellular deficit or uncoupling of metabolic pathways is not known at this time

  1. Microscopic analysis of the chromium content in the chromium-induced malignant and premalignant bronchial lesions of the rat

    International Nuclear Information System (INIS)

    Takahashi, Yuji; Kondo, Kazuya; Ishikawa, Sumiyo; Uchihara, Hiroshi; Fujino, Haruhiko; Sawada, Naruhiko; Miyoshi, Takanori; Sakiyama, Shoji; Izumi, Keisuke; Monden, Yasumasa

    2005-01-01

    Objective: Our previous studies demonstrated that the frequency of gene instability in lung cancer of chromate workers was very high, but the frequencies of the p53 and ras gene mutations were low. To clarify the carcinogenesis of chromate in the lung, we established a chromate-induced cancer model in the rat proximal airway and examined the relationship between chromium accumulations and the chromium-induced cancer and premalignant bronchial lesions of the rat. Methods: Fifteen male, bred, 12-week-old Jcl-Wister rats were used. A pellet of strontium chromate were inserted into the bronchus of the rats. The rats were sacrificed 9 months after the pellet was inserted. We pathologically examined the region of the bronchi to which the pellet was attached. We quantified the amount of chromium accumulation in the bronchial lesions using a microscopic X-ray fluorescence analyzer. Results: Of the 15 rats, 1 rat had a lesion of squamous cell carcinoma (SCC), 7 rats had carcinoma in situ (CIS) or dysplasia, 8 rats had squamous metaplasia, and 5 rats had goblet cell hyperplasia. The amounts of chromium accumulation in normal epithelium (n=24), goblet cell hyperplasia (n=14), squamous metaplasia (n=8), and dysplasia plus CIS plus SCC (n=9) were 500±1354, 713±1062, 941±1328, and 3511±4473 (mean±SD) counts/s/mA, respectively. The amount of chromium accumulation was significantly increased according to the progression of malignant change of the bronchial epithelium (Spearman's correlation coefficient by ranks, rs=0.454, P<0.01). Conclusions: The amount of chromium accumulation was significantly increased according to the progression of malignant change of the bronchial epithelium. Examining the genetic alterations of histologic changes in this model was helpful in elucidating the process of carcinogenesis of chromium in the lung

  2. Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Zhou, Mi; Gao, Hui-yang; Liu, Jia-yi; Xue, Xiang-xin

    2018-05-01

    Calcification roasting-acid leaching of high-chromium vanadium slag (HCVS) was conducted to elucidate the roasting and leaching behaviors of vanadium and chromium. The effects of the purity of CaO, molar ratio between CaO and V2O5 ( n(CaO)/ n(V2O5)), roasting temperature, holding time, and the heating rate used in the oxidation-calcification processes were investigated. The roasting process and mechanism were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetry-differential scanning calorimetry (TG-DSC). The results show that most of vanadium reacted with CaO to generate calcium vanadates and transferred into the leaching liquid, whereas almost all of the chromium remained in the leaching residue in the form of (Fe0.6Cr0.4)2O3. Variation trends of the vanadium and chromium leaching ratios were always opposite because of the competitive reactions of oxidation and calcification between vanadium and chromium with CaO. Moreover, CaO was more likely to combine with vanadium, as further confirmed by thermodynamic analysis. When the HCVS with CaO added in an n(CaO)/ n(V2O5) ratio of 0.5 was roasted in an air atmosphere at a heating rate of 10°C/min from room temperature to 950°C and maintained at this temperature for 60 min, the leaching ratios of vanadium and chromium reached 91.14% and 0.49%, respectively; thus, efficient extraction of vanadium from HCVS was achieved and the leaching residue could be used as a new raw material for the extraction of chromium. Furthermore, the oxidation and calcification reactions of the spinel phases occurred at 592 and 630°C for n(CaO)/ n(V2O5) ratios of 0.5 and 5, respectively.

  3. The effect of Al and Cr additions on pack cementation zinc coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Papazoglou, M.; Tsipas, S.; Pavlidou, E.; Skolianos, S.; Stergioudis, G.; Vourlias, G.

    2010-01-01

    Zinc is widely used as a protective coating material due to its corrosion resistant properties. The structure and oxidation resistance of Al and Cr mixed zinc coatings, deposited by pack cementation process, is thoroughly examined in this work. The morphology and chemical composition of the as-deposited and oxidized samples was accomplished by electron microscopy while the phase identification was performed by XRD diffraction analysis. The experimental results showed that the addition of aluminum or chromium in the pack mixture forms only Al and Cr rich phases on the surface of the specimens without affecting significantly the phase composition of the rest zinc coatings. In the case of Zn-Al coatings, the overlying layer contains high concentrations of Al together with lower amounts of zinc and iron and in Zn-Cr coatings this layer contains Cr, Fe and Zn atoms and has much smaller thickness. The presence of these additional layers promotes significantly the oxidation resistance of the zinc pack coatings and they preserve most of their initial thickness and chemical content when exposed to an aggressive environment while their oxidation mass gain was measured at low levels during the oxidation tests.

  4. Comparison of Ultrasound-Assisted and Regular Leaching of Vanadium and Chromium from Roasted High Chromium Vanadium Slag

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Gao, Huiyang; Liu, Yajing; Zheng, Xiaole; Xue, Xiangxin

    2018-02-01

    Ultrasound-assisted leaching (UAL) was used for vanadium and chromium leaching from roasted material obtained by the calcification roasting of high-chromium-vanadium slag. UAL was compared with regular leaching. The effect of the leaching time and temperature, acid concentration, and liquid-solid ratio on the vanadium and chromium leaching behaviors was investigated. The UAL mechanism was determined from particle-size-distribution and microstructure analyses. UAL decreased the reaction time and leaching temperature significantly. Furthermore, 96.67% vanadium and less than 1% chromium were leached at 60°C for 60 min with 20% H2SO4 at a liquid-solid ratio of 8, which was higher than the maximum vanadium leaching rate of 90.89% obtained using regular leaching at 80°C for 120 min. Ultrasonic waves broke and dispersed the solid sample because of ultrasonic cavitation, which increased the contact area of the roasted sample and the leaching medium, the solid-liquid mass transfer, and the vanadium leaching rate.

  5. Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings

    Czech Academy of Sciences Publication Activity Database

    Filová, Elena; Vandrovcová, Marta; Jelínek, Miroslav; Zemek, Josef; Houdková, Jana; Remsa, Jan; Kocourek, Tomáš; Staňková, Ľubica; Bačáková, Lucie

    2017-01-01

    Roč. 28, č. 1 (2017), č. článku 17. ISSN 0957-4530 R&D Projects: GA ČR(CZ) GA15-05864S; GA ČR(CZ) GA14-04790S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 ; RVO:68378271 Keywords : osteocalcin * osteogenic differentiation * hexavalent chromium * focal adhesion contact * cell spreading area Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Biomaterials (as related to medical implants, devices, sensors) Impact factor: 2.325, year: 2016

  6. Examination of Hybrid Metal Coatings for Mitigation of Fission Product Release and Corrosion Protection of LWR SiC/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Caen K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Joseph R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    There is a need to increase the safety margins of current and future light water reactors (LWRs) due to the unfortunate events at Fukushima Daiichi Nuclear Plant. Safety is crucial to restore public confidence in nuclear energy, acknowledged as an economical, high-­density energy solution to climate change. The development of accident-­tolerant fuel (ATF) concepts is crucial to this endeavor. The objective of ATF is to delay the consequences of accident progression, being inset in high temperature steam and maintaining high thermomechanical strength for radionuclide retention. The use of advanced SiCf-­SiC composite as a substitute for zircaloy-­based cladding is being considered. However, at normal operations, SiC is vulnerable to the reactor coolant and may corrode at an unacceptable rate. As a ceramic-­matrix composite material, it is likely to undergo microcracking operation, which may compromise the ability to contain gaseous fission products. A proposed solution to both issues is the application of mitigation coatings for use in normal operations. At Oak Ridge National Laboratory (ORNL), three coating technologies have been investigated with industry collaborators and vendors. These are electrochemical deposition, cathodic arc physical vapor deposition (PVD hereafter) and vacuum plasma spray (VPS). The objective of this document is to summarize these processing technologies, the resultant as-­processed microstructures and properties of the coatings. In all processes, substrate constraint resulted in substantial tensile stresses within the coating layer. Each technology must mitigate this tensile stress. Electrochemical coatings use chromium as the coolant facing material, and are deposited on a nickel or carbon “bond coat”. This is economical but suffers microcracking in the chromium layer. PVD-­based coatings use chromium and titanium in both metallic form and nitrides, and can be deposited defense-­in-­depth as multilayers. This vapor method

  7. Effects of chromium addition on microstructure and properties of TiC–VC reinforced Fe-based laser cladding coatings

    International Nuclear Information System (INIS)

    Zhang, Hui; Zou, Yong; Zou, Zengda; Shi, Chuanwei

    2014-01-01

    Highlights: • In situ TiC–VC reinforced Fe-based coatings with different Cr addition were obtained. • Some long strip Cr 3 C 2 synthesized while the Cr addition was 12.0% or more. • A moderate amount of Cr improved hardness and corrosion resistance significantly. • The cladding layer microhardness could reach as high as 1090HV 0.2 with 3.0% Cr. • The corrosion resistance could improve 4.5 times with 12.0% Cr. - Abstract: Effects of different addition of Cr on microstructure and properties (especially the corrosion resistance) of cladding layers were investigated by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), potentio-dynamic polarization and electrochemical impedance spectroscopy (EIS). Results showed that Fe–Ti–V–C alloy powders with different addition of Cr formed good cladding layers without defects such as cracking and porosity. Phases of the cladding layers were α-Fe, γ-Fe, TiC, VC and TiVC 2 . A certain amount of long strip Cr 3 C 2 synthesized while the addition of Cr was 12.0% or more. Microhardness and corrosion resistance of cladding layer both improved greatly with a moderate amount of Cr. The cladding layer with 3.0% Cr showed a highest microhardness 1090HV 0.2 , and the variation tendency of the hardness is not a linearly relationship with increasing the chromium addition. The cladding layer with 12.0% Cr addition showed the best corrosion resistance, which was about 4.5 times than that of the cladding layer without Cr. EIS spectrum of the cladding layer without Cr was composed of an inductive arc at low frequency and a capacitive arc at high frequency. However, the inductive arc at low frequency transformed into a capacitive arc gradually with the addition of Cr increasing

  8. Effects of chromium addition on microstructure and properties of TiC–VC reinforced Fe-based laser cladding coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui; Zou, Yong, E-mail: yzou@sdu.edu.cn; Zou, Zengda; Shi, Chuanwei

    2014-11-25

    Highlights: • In situ TiC–VC reinforced Fe-based coatings with different Cr addition were obtained. • Some long strip Cr{sub 3}C{sub 2} synthesized while the Cr addition was 12.0% or more. • A moderate amount of Cr improved hardness and corrosion resistance significantly. • The cladding layer microhardness could reach as high as 1090HV{sub 0.2} with 3.0% Cr. • The corrosion resistance could improve 4.5 times with 12.0% Cr. - Abstract: Effects of different addition of Cr on microstructure and properties (especially the corrosion resistance) of cladding layers were investigated by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), potentio-dynamic polarization and electrochemical impedance spectroscopy (EIS). Results showed that Fe–Ti–V–C alloy powders with different addition of Cr formed good cladding layers without defects such as cracking and porosity. Phases of the cladding layers were α-Fe, γ-Fe, TiC, VC and TiVC{sub 2}. A certain amount of long strip Cr{sub 3}C{sub 2} synthesized while the addition of Cr was 12.0% or more. Microhardness and corrosion resistance of cladding layer both improved greatly with a moderate amount of Cr. The cladding layer with 3.0% Cr showed a highest microhardness 1090HV{sub 0.2}, and the variation tendency of the hardness is not a linearly relationship with increasing the chromium addition. The cladding layer with 12.0% Cr addition showed the best corrosion resistance, which was about 4.5 times than that of the cladding layer without Cr. EIS spectrum of the cladding layer without Cr was composed of an inductive arc at low frequency and a capacitive arc at high frequency. However, the inductive arc at low frequency transformed into a capacitive arc gradually with the addition of Cr increasing.

  9. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  10. Reduction of metallosis in hip implant using thin film coating

    Science.gov (United States)

    Rajeshshyam, R.; Chockalingam, K.; Gayathri, V.; Prakash, T.

    2018-04-01

    Hip implant finds its emerging attraction due to it continuous demand over the years. The hip implants (femoral head) and acetabulum cup) mainly fabricated by metals such as stainless steel, cobalt chrome and titanium alloys, other than that ceramics and polyethylene have been used. The metal-on-metal hip implant was found to be best implant material for most of the surgeons due to its high surface finish, low wear rate and low chance of dislocation from its position after implanting. Where in metal based hip implant shows less wear rate of 0.01mm3/year. Metal-on-metal implant finds its advantage over other materials both in its mechanical and physical stability against human load. In M-O-M Cobalt- chromium alloys induce metal allergy. The metal allergy (particulate debris) that is generated by wear, fretting, fragmentation and which is unavoidable when a prosthesis is implanted, can induce an inflammatory reaction in some circumstances. The objectives of this research to evaluate thin film coating with Nano particle additives to reduce the wear leads to regarding metal ion release. Experimental results reveals that thin film Sol-Gel coating with 4wt. % of specimen reduced the cobalt and chromium ion release and reduces the wear rate. Wear rate reduced by 98% for 4wt. % graphene in 20N and 95% for 4wt. % graphene in 10N.

  11. Induced codeposition of nanocrystalline Co-W coatings and their mechanical properties

    International Nuclear Information System (INIS)

    Belevskij, Stanislav

    2012-01-01

    The aim of the research: the complex investigation of induced codeposition mechanism of Co-W coatings obtaining from citrate electrolyte and determining the conditions of electrodeposition that provide the coatings the properties that could compete with the hard chromium electroplating coatings. The scientific novelty and originality of the work: for the first time it is demonstrated that citrate electrolyte used for electrodeposition of Co-W alloy is a mixture of complex compounds, whose composition is determined by the pH. At high pH values, its main component is hetero polynuclear complex with a molecular weight over 1200 g / mol. The totality of the results obtained by different methods (gel-chromatography, voltammetry, the methods of physicochemical hydrodynamics, determination of the composition of coatings, the current efficiency, etc.), can conclude that the chemical composition of electrodeposited Co-W coatings is determined by the hetero polynuclear complex composition on the one hand and the pH near-electrode layer on the other. However, the pH near-electrode layer depends on the rate of the parallel hydrogen evolution reaction (defined by the potential of electrodeposition and the hydrodynamic conditions). The increasing of the pH near-electrode layer shifts the chemical equilibrium toward to the formation of complex products with high molecular weight. It was confirmed the existence of hetero polynuclear Co-W-citrate complex compound, where the atomic ratio of Co:W is equal to 1:1. Solved scientific problem: The experimental proof of the fact that the formation of cobalt-tungsten coatings from citric electrolyte is the result of electrochemical reduction of polynuclear heterometallic complex. The research object is the chemical composition of citrate electrolyte (identification of the contained complexes) and induced codeposition of Co-W coatings from citrate electrolyte. The determination of the influence of the degree of the electrodeposition

  12. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  13. Tribological study of hard coatings without cobalt intended to isolation components of PWR primary cooling system; Etude tribologique de revetements durs sans cobalt destines aux organes d`isolement du circuit primaire des REP

    Energy Technology Data Exchange (ETDEWEB)

    Cachon, L.

    1995-10-18

    The objective is to qualify coatings without cobalt to replace ``Stellites`` coatings in isolation valves of PWR primary cooling system, as Co is activated when passing in the reactor core and contaminated the cooling loop. Three families of coatings were tested: PVD thin films from 1 to 8 {mu}m monolayers of Cr/C{sub x} with x varying between 1.6 and 9.5 at% or multilayers of pure chromium and Cr/C{sub 1.6} at%, coatings with a thickness between 100 and 200 {mu}m of cermets NiCr{sub y} (y varying from 5 to 35 at%) matrix binding chromium or tungsten carbides, and thick coatings 2 mm thickness of cermets Nitronic 60 or Inconel 625 matrix binding 10, 20 or 30% titanium or niobium carbides. Stellite 6 (2 mm) is the reference coating for tribology. Coatings were qualified and selected by thermal shocks, corrosion and plane friction. The thin film and the thick families were disqualified by their destruction or by their high friction coefficient. Then coatings between 100 and 200 {mu}m were used in a valve mock-up working in PWR primary cooling system pressure and temperature conditions. Tests show that these coatings have better wear or tightness performances than stellite 6, except for a slightly higher friction coefficient. (A.B.).

  14. Corrosion behaviour of chemical conversion treatments on as-cast Mg-Al alloys: Electrochemical and non-electrochemical methods

    International Nuclear Information System (INIS)

    Rocca, E.; Juers, C.; Steinmetz, J.

    2010-01-01

    Magnesium alloys are often used in as-cast conditions. So, the aim of this work is to characterize the corrosion protection of as-cast AZ91D alloys coated with simple chemical conversion (phosphate-permanganate, and cerium-based coatings). With the two coatings, the electrochemical measurements show that the corrosion protection is due to both the inhibition of cathodic and anodic reactions, because of the presence of stable CeO 2 or manganese oxides in basic pH. Nevertheless, the non-electrochemical tests of corrosion are required to bring to light the healing effect of phosphate-permanganate coating compared to Ce-coating and to describe the corrosion behaviour completely. Finally phosphoric and soda pickling associated to phosphate-permanganate conversion treatment or cerium coating are ecologically efficient alternatives to fluoride-based pickling and the chromating treatment.

  15. Carcinogenicity of chromium and chemoprevention: a brief update

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-08-01

    Full Text Available Yafei Wang,1,* Hong Su,1,* Yuanliang Gu,1 Xin Song,1 Jinshun Zhao1,2 1Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People’s Republic of China; 2Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA *These authors contributed equally to this work Abstract: Chromium has two main valence states: hexavalent chromium (Cr[VI] and trivalent chromium (Cr[III]. Cr(VI, a well-established human carcinogen, can enter cells by way of a sulfate/phosphate anion-transport system, and then be reduced to lower-valence intermediates consisting of pentavalent chromium (Cr[V], tetravalent chromium (Cr[IV] or Cr(III via cellular reductants. These intermediates may directly or indirectly result in DNA damage or DNA–protein cross-links. Although Cr(III complexes cannot pass easily through cell membranes, they have the ability to accumulate around cells to induce cell-surface morphological alteration and result in cell-membrane lipid injuries via disruption of cellular functions and integrity, and finally to cause DNA damage. In recent years, more research, including in vitro, in vivo, and epidemiological studies, has been conducted to evaluate the genotoxicity/carcinogenicity induced by Cr(VI and/or Cr(III compounds. At the same time, various therapeutic agents, especially antioxidants, have been explored through in vitro and in vivo studies for preventing chromium-induced genotoxicity/carcinogenesis. This review aims to provide a brief update on the carcinogenicity of Cr(VI and Cr(III and chemoprevention with different antioxidants. Keywords: hexavalent chromium, Cr(VI, trivalent chromium, Cr(III, genotoxicity, carcinogenicity, chemoprevention, antioxidant 

  16. Crossover and valence band Kβ X-rays of chromium oxides

    International Nuclear Information System (INIS)

    Fazinic, Stjepko; Mandic, Luka; Kavcic, Matjaz; Bozicevic, Iva

    2011-01-01

    Kβ X-ray spectra of chromium metal and selected chromium oxides were measured twice using medium resolution flat crystal spectrometer and high resolution spectrometer employing Johansson geometry after excitation with 2 MeV proton beams. The positions and intensities of crossover (Kβ'') and valence (Kβ 2,5 ) band X-rays relative to the primary Kβ X-ray components were extracted in a consistent way. The results were compared with the existing data obtained by proton and photon induced ionization mechanisms and theoretical predictions. The obtained results in peak relative positions and intensities were analyzed in order to study dependence on the chromium oxidation states and chromium-oxygen bond lengths in selected chromium oxides. Our results obtained by both spectrometers confirm that the linear trend observed for the valence peak relative energy shift as a function of chromium oxidation number does not depend on the experimental resolution. Experimental results for normalized intensities (i.e. relative intensities divided with the number of chromium-oxygen pairs) of crossover and valence band X-rays obtained by both spectrometers are in very good agreement, and follow exponential relationship with the average Cr-O bond lengths in corresponding chromium oxides. The observed trends in crossover and valence X-rays normalized intensities could be used to measure the average chromium-oxygen bond length in various chromium oxides, with the sum of both crossover and valence X-ray normalized intensities being the most sensitive measure.

  17. Study of the Thermodynamics of Chromium(III) and Chromium(VI) Binding to Fe3O4 and MnFe2O4 nanoparticles

    Science.gov (United States)

    Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.

    2013-01-01

    Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081

  18. High-temperature air oxidation of E110 and Zr-1%Nb alloys claddings with coatings

    International Nuclear Information System (INIS)

    Kuprin, A.S.; Belous, V.A.; Voyevodin, V.N.; Bryk, V.V.; Vasilenko, R.L.; Ovcharenko, V.D.; Tolmachova, G.N.; V'yugov, P.N.

    2014-01-01

    Results of experimental study of the influence of protective vacuum-arc claddings on the base of compounds zirconium-chromium and of its nitrides on air oxidation resistance at temperatures 660, 770, 900, 1020, 1100 deg C during 3600 s. of tubes produced of zirconium alloys E110 and Zr-1%Nb (calcium-thermal alloy of Ukrainian production) are presented. Change of hardness, the width of oxide layer and depth of oxygen penetration into alloys from the side of coating and without coating are investigated by the methods of nanoindentation and by scanning electron microscopy. It is shown that the thickness of oxide layer in zirconium alloys at temperatures 1020 and 1100 deg C from the side of the coating doesn't exceed 5 μm, and from the unprotected side reaches the value of ≥ 120 μm with porous and rough structure. Tubes with coatings save their shape completely independently of the type of alloy; tubes without coatings deform with the production of through cracks

  19. Copper and CuNi alloys substrates for HTS coated conductor applications protected from oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Segarra, M; Diaz, J; Xuriguera, H; Chimenos, J M; Espiell, F [Dept. of Chemical Engineering and Metallurgy, Univ. of Barcelona, Barcelona (Spain); Miralles, L [Lab. d' Investigacio en Formacions Geologiques. Dept. of Petrology, Geochemistry and Geological Prospecting, Univ. of Barcelona, Barcelona (Spain); Pinol, S [Inst. de Ciencia de Materials de Barcelona, Bellaterra (Spain)

    2003-07-01

    Copper is an interesting substrate for HTS coated conductors for its low cost compared to other metallic substrates, and for its low resistivity. Nevertheless, mechanical properties and resistance to oxidation should be improved in order to use it as substrate for YBCO deposition by non-vacuum techniques. Therefore, different cube textured CuNi tapes were prepared by RABIT as possible substrates for deposition of high critical current density YBCO films. Under the optimised conditions of deformation and annealing, all the studied CuNi alloys (2%, 5%, and 10% Ni) presented (100) left angle 001 right angle cube texture which is compatible for YBCO deposition. Textured CuNi alloys present higher tensile strength than pure copper. Oxidation resistance of CuNi tapes under different oxygen atmospheres was also studied by thermogravimetric analysis and compared to pure copper tapes. Although the presence of nickel improves mechanical properties of annealed copper, it does not improve its oxidation resistance. However, when a chromium buffer layer is electrodeposited on the tape, oxygen diffusion is slowed down. Chromium is, therefore, useful for protecting copper and CuNi alloys from oxidation although its recrystallisation texture, (110), is not suitable for coated conductors. (orig.)

  20. Quantification of the toxic hexavalent chromium content in an organic matrix by X-ray photoelectron spectroscopy (XPS) and ultra-low-angle microtomy (ULAM)

    Science.gov (United States)

    Greunz, Theresia; Duchaczek, Hubert; Sagl, Raffaela; Duchoslav, Jiri; Steinberger, Roland; Strauß, Bernhard; Stifter, David

    2017-02-01

    Cr(VI) is known for its corrosion inhibitive properties and is, despite legal regulations, still a potential candidate to be added to thin (1-3 μm) protective coatings applied on, e.g., electrical steel as used for transformers, etc. However, Cr(VI) is harmful to the environment and to the human health. Hence, a reliable quantification of it is of decisive interest. Commonly, an alkaline extraction with a photometric endpoint detection of Cr(VI) is used for such material systems. However, this procedure requires an accurate knowledge on sample parameters such as dry film thickness and coating density that are occasionally associated with significant experimental errors. We present a comprehensive study of a coating system with a defined Cr(VI) pigment concentration applied on electrical steel. X-ray photoelectron spectroscopy (XPS) was employed to resolve the elemental chromium concentration and the chemical state. Turning to the fact that XPS is extremely surface sensitive (distribution inside the coating.

  1. Native Chromium Resistant Staphylococci Species from a Fly Ash ...

    African Journals Online (AJOL)

    Sixty-six chromium-resistant Staphylococci species belonging to S. epidermidis, S. aureus, S. saprophyticus and S. arlettae were previously isolated from a chromium-polluted Fly ash (FA) dumping site in South Africa. However the genetic mechanisms responsible for chromium resistance were not known. Polymerase chain ...

  2. 40 CFR 424.70 - Applicability; description of the electrolytic chromium subcategory.

    Science.gov (United States)

    2010-07-01

    ... electrolytic chromium subcategory. 424.70 Section 424.70 Protection of Environment ENVIRONMENTAL PROTECTION... Electrolytic Chromium Subcategory § 424.70 Applicability; description of the electrolytic chromium subcategory. The provisions of this subpart are applicable to discharges resulting from the manufacture of chromium...

  3. Determination of chromium in biological matrices by neutron activation

    International Nuclear Information System (INIS)

    McClendon, L.T.

    1978-01-01

    Chromium is recognized to be an essential trace element in several biological systems. It exists in many biological materials in a variety of chemical forms and very low concentration levels which cause problems for many analytical techniques. Both instrumental and destructive neutron activation analysis were used to determine the chromium concentration in Orchard Leaves, SRM 1571, Brewers Yeast, SRM 1569, and Bovine Liver, SRM 1577. Some of the problems inherent with determining chromium in certain biological matrices and the data obtained here at the National Bureau of Standards using this technique are discussed. The results obtained from dissolution of brewers yeast in a closed system as described in the DNAA procedure are in good agreement with the INAA results. The same phenomenon existed in the determination of chromium in bovine liver. The radiochemical procedure described for chromium (DNAA) provides the analyst with a simple, rapid and selective technique for chromium determination in a variety of matrices. (T.G.)

  4. REMOVAL OF HEXAVALENT CHROMIUM FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    A. R. Asgari ، F. Vaezi ، S. Nasseri ، O. Dördelmann ، A. H. Mahvi ، E. Dehghani Fard

    2008-10-01

    Full Text Available Removal of chromium can be accomplished by various methods but none of them is cost-effective in meeting drinking water standards. For this study, granular ferric hydroxide was used as adsorbent for removal of hexavalent chromium. Besides, the effects of changing contact time, pH and concentrations of competitive anions were determined for different amounts of granular ferric hydroxide. It was found that granular ferric hydroxide has a high capacity for adsorption of hexavalent chromium from water at pH≤7 and in 90 min contact time. Maximum adsorption capacity was determined to be 0.788 mg Cr+6/g granular ferric hydroxide. Although relatively good adsorption of sulfate and chloride had been specified in this study, the interfering effects of these two anions had not been detected in concentrations of 200 and 400 mg/L. The absorbability of hexavalent chromium by granular ferric hydroxide could be expressed by Freundlich isotherm with R2>0.968. However, the disadvantage was that the iron concentration in water was increased by the granular ferric hydroxide. Nevertheless, granular ferric hydroxide is a promising adsorbent for chromium removal, even in the presence of other interfering compounds, because granular ferric hydroxide treatment can easily be accomplished and removal of excess iron is a simple practice for conventional water treatment plants. Thus, this method could be regarded as a safe and convenient solution to the problem of chromium-polluted water resources.

  5. Determination of chromium in treated crayfish, Procambarus clarkii, by electrothermal ASS: study of chromium accumulation in different tissues

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, F.; Diaz, J.; Medina, J.; Del Ramo, J.; Pastor, A.

    1986-06-01

    In the present study, the authors investigated the accumulation of chromium in muscle, hepatopancreas, antennal glands, and gills of Procambarus clarkii (Girard) from Lake Albufera following Cr(VI)-exposure. Determinations of chromium were made by using Electrothermal Atomic Absorption Spectroscopy and the standard additions method.

  6. CrAlN coating to enhance the power loss and magnetostriction in grain oriented electrical steel

    Directory of Open Access Journals (Sweden)

    Vishu Goel

    2016-05-01

    Full Text Available Grain oriented electrical steels (GOES are coated with aluminium orthophosphate on top of a forsterite (Mg2SiO4 layer to provide stress and insulation resistance to reduce the power loss and magnetostriction. In this work Chromium Aluminium Nitride (CrAlN was coated on GOES samples with electron beam physical vapour deposition and was tested in the single strip and magnetostriction tester to measure the power loss and magnetostriction before and after coating. Power loss was reduced by 2% after coating and 6 % post annealing at 800 °C. For applied compressive stress of 6 MPa, the magnetostrictive strain was zero with the CrAlN coating as compared to 22 and 24 μϵ for fully finished GOES and GOES without phosphate coating. The thickness of the coating was found to be 1.9 ± 0.2 μm estimated with Glow Discharge Optical Emission Spectroscopy (GDOES. The magnetic domain imaging showed domain narrowing after coating. The reduction in power loss and magnetostriction was due to the large residual compressive stress and Young’s modulus (270 GPa of the coating.

  7. CrAlN coating to enhance the power loss and magnetostriction in grain oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Vishu; Anderson, Philip; Hall, Jeremy [Wolfson Centre for Magnetics, Cardiff University, Cardiff- CF243AA (United Kingdom); Robinson, Fiona [Cogent power Ltd., Newport-NP190RB (United Kingdom); Bohm, Siva [Dept. of metallurgical engineering & materials science, IIT Bombay, Mumbai-400076 (India)

    2016-05-15

    Grain oriented electrical steels (GOES) are coated with aluminium orthophosphate on top of a forsterite (Mg{sub 2}SiO{sub 4}) layer to provide stress and insulation resistance to reduce the power loss and magnetostriction. In this work Chromium Aluminium Nitride (CrAlN) was coated on GOES samples with electron beam physical vapour deposition and was tested in the single strip and magnetostriction tester to measure the power loss and magnetostriction before and after coating. Power loss was reduced by 2% after coating and 6 % post annealing at 800 °C. For applied compressive stress of 6 MPa, the magnetostrictive strain was zero with the CrAlN coating as compared to 22 and 24 μϵ for fully finished GOES and GOES without phosphate coating. The thickness of the coating was found to be 1.9 ± 0.2 μm estimated with Glow Discharge Optical Emission Spectroscopy (GDOES). The magnetic domain imaging showed domain narrowing after coating. The reduction in power loss and magnetostriction was due to the large residual compressive stress and Young’s modulus (270 GPa) of the coating.

  8. Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb,R (R=Er, Ho) phosphors

    Institute of Scientific and Technical Information of China (English)

    Yen-Chi Chen; Teng-Ming Chen

    2011-01-01

    The goal of this work was aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic cells by using the solar spectral conversion principle,which employs an up-conversion phosphor to convert a low energy infrared photon to the more energetic visible photons to improve the spectral response.In this study,the surface of multicrystalline silicon solar cells was coated with an up-conversion molybdate phosphor to improve the spectral response of the solar cell in the ncar-infiared spectral range.The short circuit current (Isc),open circuit voltage (Voc),and conversion efficiency (η) of spectral conversion cells were measured.Preliminary experimental results revealed that the light conversion efficiency of a 1.5%-2.7% increase in Si-based cell was achieved.

  9. Microstructure and Tribological Performance of TiB2-NiCr Composite Coating Deposited by APS

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2017-12-01

    Full Text Available Nickel chromium (NiCr powders with different titanium diboride (TiB2 additions (20, 40 and 60 wt % were prepared with a mechanical alloying method and then sprayed using an air plasma spraying technology. The microstructure and phase composite of the powders and the cross-sections of deposited coatings were analyzed with a scanning electronic microscope and X-ray diffraction. The tribological performance of the coatings was studied using a pin-on-disk tribometer at room temperature. The weight loss of the as-sprayed coating was measured by using a high accuracy weighing balance. Cr3C2-25NiCr coating was produced and tested for comparison. The morphologies of the worn surface were then investigated. Parts of debris with some scratches were found, presenting typical signs of abrasive wear and showing slight adhesive wear on the surface. The 20 wt % additive TiB2 coating demonstrated the highest microhardness and the lowest coefficient of friction. The wear resistance of the metal-ceramic composites coatings was enhanced with the addition of TiB2.

  10. Corrosion behaviour of chemical conversion treatments on as-cast Mg-Al alloys: Electrochemical and non-electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, E. [Institut Jean Lamour UMR CNRS 7198, Nancy Universite - Corrosion Group, B.P. 70239, 54506 Vandoeuvre-Les-Nancy (France)], E-mail: emmanuel.rocca@lcsm.uhp-nancy.fr; Juers, C.; Steinmetz, J. [Institut Jean Lamour UMR CNRS 7198, Nancy Universite - Corrosion Group, B.P. 70239, 54506 Vandoeuvre-Les-Nancy (France)

    2010-06-15

    Magnesium alloys are often used in as-cast conditions. So, the aim of this work is to characterize the corrosion protection of as-cast AZ91D alloys coated with simple chemical conversion (phosphate-permanganate, and cerium-based coatings). With the two coatings, the electrochemical measurements show that the corrosion protection is due to both the inhibition of cathodic and anodic reactions, because of the presence of stable CeO{sub 2} or manganese oxides in basic pH. Nevertheless, the non-electrochemical tests of corrosion are required to bring to light the healing effect of phosphate-permanganate coating compared to Ce-coating and to describe the corrosion behaviour completely. Finally phosphoric and soda pickling associated to phosphate-permanganate conversion treatment or cerium coating are ecologically efficient alternatives to fluoride-based pickling and the chromating treatment.

  11. Mode of occurrence of chromium in four US coals

    Science.gov (United States)

    Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Crowley, S.; Palmer, C.A.; Finkelman, R.B.

    2000-01-01

    The mode of occurrence of chromium in three US bituminous coals and one US subbituminous has been examined using both X-ray absorption fine structure (XAFS) spectroscopy and a selective leaching protocol supplemented by scanning electron microscopy (SEM) and electron microprobe measurements. A synthesis of results from both methods indicates that chromium occurs principally in two forms in the bituminous coals: the major occurrence of chromium is associated with the macerals and is not readily leached by any reagent, whereas a second, lesser occurrence, which is leachable in hydrofluoric acid (HF), is associated with the clay mineral, illite. The former occurrence is believed to be a small particle oxyhydroxide phase (CrO(OH)). One coal also contained a small fraction (<5%) of the chromium in the form of a chromian magnetite, and the leaching protocol indicated the possibility of a similar small fraction of chromium in sulfide form in all three coals. There was little agreement between the two techniques on the mode of occurrence of chromium in the subbituminous coal; however, only a limited number of subbituminous coals have been analyzed by either technique. The chromium in all four coals was trivalent as no evidence was found for the Cr6+ oxidation state in any coal.

  12. Chromium speciation in rainwater: temporal variability and atmospheric deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kieber, R.J.; Willey, J.D.; Zvalaren, S.D. [University of North Carolina at Wilmington, Wilmington, NC (United States). Dept. of Chemistry

    2002-12-15

    Chromium is released into the atmosphere by a variety of anthropogenic activities which include steel manufacturing, leather tanning, wood presentation and fossil fuel combustion. The concentrations of the various chromium species were determined in 89 rainwater samples collected in Wilmington, NC from October 1, 1999 to December 31, 2001. Volume weighted annual average concentrations of Cr{sub total}, particulate Cr, Cr(III)(aq), and Cr(VI)(aq) were 4.6, 2.2, 0.8 and 1.2 nM, respectively. There was distinct seasonal and diurnal variability in the concentrations of the various chromium species. Chromium emissions to the global atmosphere by both natural and anthropogenic sources are estimated to be 2.2 x 10{sup 9} mol/yr. Using rainwater concentration data along with other published rainwater Cr concentrations and an estimate for total global annual rain, the total global flux of chromium removed from the atmosphere via wet deposition is 2.1 x 10{sup 9} mol/yr. This represents complete removal of Cr and indicates that essentially all chromium released into the global atmosphere is removed via rain. About half this chromium is dissolved with roughly equal concentrations of toxic Cr(VI) and relatively harmless Cr(III) species. 48 refs., 4 figs., 3 tabs.

  13. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg. No...

  14. Sorption of chromium(VI) and chromium(III) on aluminium hydroxide

    International Nuclear Information System (INIS)

    Music, S.

    1986-01-01

    Factors that influence the sorption of Cr(VI) and Cr(III) on aluminium hydroxide were investigated. The sorption of chromates decreases as the pH of the suspension increases. The mechanism of CrOsub(4)sup(2-) sorption was interpreted in terms of reactions between chromates and -OH and/or Hsub(2)O groups at the hydroxide/liquid interface. It was shown that chromates are more tightly sorbed on aluminium hydroxide compared to other anions, e.g. chlorides. On the other hand, specifically absorbed anions, such as molybdates, compete strongly with chromates for the sorption sites. The sorption of chromium(III) increases with the pH of the suspension. Also, the sorption of chromium(III) is suppressed in the presence of citrate ions. The best conditions for the fixation of Cr(VI) and Cr(III) by aluminium hydroxide are presented. (author)

  15. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi Golru, S., E-mail: samanesharifi@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Attar, M.M., E-mail: attar@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Ramezanzadeh, B. [Department of Surface Coating and Corrosion, Institute for Color Science and Technology, No. 59,Vafamanesh St, Hosainabad Sq, Lavizan, Tehran (Iran, Islamic Republic of)

    2015-08-01

    Highlights: • Aluminium alloy 1050 was treated by zirconium-based (Zr) conversion coating. • The surface morphology and surface free energy of the samples were obtained. • The adhesion properties of the epoxy coating was studied on the treated samples. • The corrosion resistance of the epoxy coating was enhanced on treated samples. - Abstract: The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly.

  16. Use of thermogravimetry and thermodynamic calculations for specifying chromium diffusion occurring in alloys containing chromium carbides during high temperature oxidation

    International Nuclear Information System (INIS)

    Berthod, Patrice; Conrath, Elodie

    2015-01-01

    The chromium diffusion is of great importance for the high temperature oxidation behaviour of the chromium-rich carbides-strengthened superalloys. These ones contain high chromium quantities for allowing them well resisting hot corrosion by constituting and maintaining a continuous external scale of chromia. Knowing how chromium can diffuse in such alloys is thus very useful for predicting the sustainability of their chromia-forming behaviour. Since Cr diffusion occurs through the external part of the alloy already affected by the previous steps of oxidation (decarburized subsurface) it is more judicious to specify this diffusion during the oxidation process itself. This was successfully carried out in this work in the case of a model chromia-forming nickel-based alloy containing chromium carbides, Ni(bal.)–25Cr–0.5C (in wt.%). This was done by specifying, using real-time thermogravimetry, the mass gain kinetic due to oxidation, and by combining it with the post-mortem determination of the Cr concentration profiles in subsurface. The values of D Cr thus obtained for 1000, 1050 and 1100 °C in the alloy subsurface are consistent with the values obtained in earlier works for similar alloy's chemical compositions. - Highlights: • A Ni25Cr0.50C alloy was oxidized at high temperature in a thermo-balance. • The mass gain files were analysed to specify the Cr 2 O 3 volatilization constant K v . • Concentration profiles were acquired to specify the chromium gradient. • The diffusion coefficient of chromium through the subsurface was deduced. • The obtained diffusion coefficient is consistent with values previously obtained.

  17. Replacement of Chromium Electroplating on Gas Turbine Engine Components Using Thermal Spray Coatings

    National Research Council Canada - National Science Library

    Sartwell, Bruce D; Legg, Keith O; Schell, Jerry; Bondaruk, Bob; Alford, Charles; Natishan, Paul; Lawrence, Steven; Shubert, Gary; Bretz, Philip; Kaltenhauser, Anne

    2005-01-01

    .... This document constitutes the final report on a project to qualify high-velocity oxygen-fuel (HVOF) and plasma thermal spray coatings as a replacement for hard chrome plating on gas turbine engine components...

  18. FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE

    International Nuclear Information System (INIS)

    Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia; Kim, J.; Rapko, Brian M.; Lumetta, Gregg J.

    2000-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10. Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste

  19. Behaviour of glass and thermal protective coatings on stainless steels in the nitrogen tetroxide based coolant

    International Nuclear Information System (INIS)

    Bakalin, Yu.I.; Dobrunova, V.M.; Doroshkevich, V.N.; Nesterenko, V.B.; Trubnikov, V.P.

    1985-01-01

    The technology of application of glass and enamel protective coatings on stainless steel has been examined, their testing in the medium of nitrogen tetroxide based coolant with different content of nitric acid has been carried out, the basic characteristics of the coatings after testing have been defined. Chromium-nickel austenitic 12kh18n10t steel, widely used in the nuclear power, have been chosen as a basic object of examination. The coatings have been tested in nitrogen oxide at P=12.0 MPa, temperature 310 deg C and 0.1% HNO 3 , and also in the medium of vat residue of the rectifying tower with nitric acid content up to 25 mass %. Tests of the coatings have demonstrated their sufficiently high stability, especially of those based on enamels A-20 and BK-5. These coatings are characterised by satisfactory performance and can be used for corrosion protection of the materials used in nuclear power

  20. [Hexavalent chromium pollution and exposure level in electroplating workplace].

    Science.gov (United States)

    Zhang, Xu-hui; Zhang, Xuan; Yang, Zhang-ping; Jiang, Cai-xia; Ren, Xiao-bin; Wang, Qiang; Zhu, Yi-min

    2012-08-01

    To investigate the pollution of hexavalent chromium in the electroplating workplace and screen the biomarkers of chromium exposure. Field occupational health investigation was conducted in 25 electroplating workplaces. 157 electroplating workers and 93 healthy unexposed controls were recruited. The epidemiological information was collected with face to face interview. Chromium in erythrocytes was determined by graphite furnace atomic absorption spectrophotometer. The median of short-term exposure concentration of chromium in the air at electroplating workplace was 0.06 mg/m(3) (median) and ranging from 0.01 (detect limit) to 0.53 mg/m(3)). The median concentration of Cr (VI) in erythrocytes in electroplating workers was 4.41 (2.50 ∼ 5.29) µg/L, which was significantly higher than that in control subjects [1.54 (0.61 ∼ 2.98) µg/L, P electroplating workers and control subjects, except for the subjects of age less than 30 years old (P = 0.11). There was hexavalent chromium pollution in electroplating workplace. Occupational hazards prevention measures should be taken to control the chromium pollution hazards.