WorldWideScience

Sample records for chromium base alloys

  1. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys.

    Science.gov (United States)

    Chen, Bo; Xia, Gang; Cao, Xin-Ming; Wang, Jue; Xu, Bi-Yao; Huang, Pu; Chen, Yue; Jiang, Qing-Wu

    2013-03-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  2. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys

    Institute of Scientific and Technical Information of China (English)

    Bo Chen; Gang Xia; Xin-Ming Cao; Jue Wang; Bi-Yao Xu; Pu Huang; Yue Chen; Qing-Wu Jiang

    2013-01-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of 〈 1 month of the restoration duration, among which higher Ni excretions were found in those with either a higher number of teeth replaced by dental alloys or a higher index of metal crown not covered with the porcelain. Urinary levels of Cr were significantly higher in the three patient groups of 〈1, 1 to 〈3 and 3 to 〈6 months, especially in those with a higher metal crown exposure index. Linear curve estimations showed better relationships between urinary Ni and Cr in patients within 6-month groups. Our data suggested significant increased excretions of urinary Ni and Cr after dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  3. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  4. Chromium and iron contained half-Heusler MnNiGe-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Budzynski, M. [UMCS, Institute of Physics, 1 sq.M.Curie-Skłodowska, 20-031 Lublin (Poland); Valkov, V.I.; Golovchan, A.V.; Kamenev, V.I. [Donetsk Institute for Physics and Engineering, 72, R.Luxemburg str., 83114 Donetsk (Ukraine); Mitsiuk, V.I., E-mail: vmitsiuk@gmail.com [Scientific-Practical Materials Research Center of National Academy of Sciences of Belarus, 19 P.Brovky Str., 220072 Minsk (Belarus); Sivachenko, A.P. [Donetsk Institute for Physics and Engineering, 72, R.Luxemburg str., 83114 Donetsk (Ukraine); Surowiec, Z. [UMCS, Institute of Physics, 1 sq.M.Curie-Skłodowska, 20-031 Lublin (Poland); Tkachenka, T.M. [Scientific-Practical Materials Research Center of National Academy of Sciences of Belarus, 19 P.Brovky Str., 220072 Minsk (Belarus)

    2015-12-15

    The magnetic characteristics of chromium and iron containing MnNiGe-based alloys with several types of quenching and annealing were investigated. It was found that the quenched Mn{sub 0.89}Cr{sub 0.11}NiGe has a spontaneous and magnetic field induced magnetostructural first-order transitions at room temperature. These transitions might be accompanied by a large magnetocaloric effect. In general, Mn{sub 0.89}Cr{sub 0.11}NiGe can be classified as promising material for use in the magnetocaloric application at room temperatures. The first order magnetostructural phase transition from the ferromagnetic to paramagnetic state is not realized in MnNi0.90Fe0.10Ge. In contrast to Mn{sub 0.89}Cr{sub 0.11}NiGe, however, the FM state in quenched-on-wheel MnNi0.90Fe0.10Ge is preserved to the lowest temperatures. Based on the set of the magnetic properties, it has been concluded that the iron containing MnNiGe-based alloys are less promising for practical use.

  5. Development, processing and fabrication of a nickel based nickel-chromium-iron alloy

    Science.gov (United States)

    Akinlade, Dotun Adebayo

    An optimal powder metallurgy (P/M) approach to produce a nickel base Superalloy similar in composition to INCONEL(TM) 600 was carried out utilising a simple uniaxial pressing process. The efficiencies of a lubricant addition, binder, sintering times and temperatures were measured in terms of green and sintered densities as well as microstructural changes that occurred during processing. It was observed that with increasing % polyvinyl alcohol (PVA), an overall decrease in density of compact was obtained and that using 0.75wt % of lubricant (microwax) green densities in excess of 70% can be obtained. The samples were subsequently sintered in air at 1270°C for times ranging from 0.5h to 5h and also in vacuum (6 millitorr) with temperatures ranging from 1260 through to 1400°C. The air sintering was carried out to optimize sintering time, whereas the vacuum sintering was employed to optimize sintering temperature. On sintering for 5h in air, chromium enrichment occurred at the grain boundaries with subsequent depletion of nickel and iron; this was not noted for 2h sintering or for sintering under vacuum. The optimum sintering conditions were determined to be at 1300°C sintering for 2h in vacuum. The samples processed under the optimum conditions were successfully cold rolled to 40% of the original thickness without cracking. An investigation was also undertaken to determine the effect of Al concentration (1-12w/o) on the microstructure of the powder metallurgically (P/M) processed Ni-Cr-Fe ternary alloy, with a view to determine the concentration of aluminium that would yield a homogenously distributed and optimum volume fraction of the intermetallic-gamma'(Ni3Al) phase without the formation of topologically closed packed phases in the ternary alloy. The phases that were likely to form with the variation in concentration of Al were first simulated by JMatPro(TM) thermodynamic software package, and then Ni-Cr-Fe alloys with varying concentration of aluminum were

  6. Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar

  7. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shizhong

    2013-02-28

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  8. Mechanical properties of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2007-01-01

    Full Text Available Background/Aim. Metal-ceramic bond strength and alloys' elastic modulus clearly determine the potential of alloy application, because the ceramic integrity during mastication depends on these two characteristics. The aim of this study was to evaluate metal-ceramic bond strength and elastic modulus of cobalt-chromium alloys in making porcelainfused- to-metal restorations, regarding the application of the most frequent nickel-chromium alloy. Methods. The research was performed as an experimental study. Six metalceramic samples were made from nickel-chromium alloy (Wiron 99 and cobalt-chromium alloy (Wirobond C, according to the manufactures manuals and instructions from ISO 9693: 1996. Three-point bending test was performed up to the ceramic fracture. The fracture load was measured on an universal testing machine (Zwick, type 1464, with cross-head speed of 0,05mm/min. Results. The results of this study confirmed the significant differences between the metal-ceramic bond strength (p < 0.01 and elastic modulus (p < 0.001 of nickel-chromium and cobalt-chromium alloys, where cobalt-chromium alloys showed higher values for both tested parameters. Conclusion. Cobalt-chromium metal-ceramic alloys can successfully replace nickel-chromium alloys, especially for fabrication of long-span metal-ceramic bridges due to the great flexural strength.

  9. REINFORCEMENT OF NICKEL CHROMIUM ALLOYS WITH SAPPHIRE WHISKERS.

    Science.gov (United States)

    SAPPHIRE, COMPOSITE MATERIALS, CERAMIC FIBERS , CERAMIC FIBERS , TITANIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, HYDRIDES, ADDITIVES, CHROMIUM ALLOYS, FIBER METALLURGY, IRON COMPOUNDS, ENCAPSULATION, DENSITY, SURFACE TENSION.

  10. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Santa Coloma, P., E-mail: patricia.santacoloma@tecnalia.com [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J. [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Lapeña, N. [Boeing Research & Technology Europe, S.L.U., Avenida Sur del Aeropuerto de Barajas 38, Building 4 – 3rd Floor, E-28042 Madrid (Spain)

    2015-08-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  11. NICKEL-BASE ALLOY

    Science.gov (United States)

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  12. Hydrogen absorption behavior of multicomponent zirconium based AB{sub 2} alloys with different chromium-vanadium ratio

    Energy Technology Data Exchange (ETDEWEB)

    Peretti, H.A.; Visintin, A.; Mogni, L.V.; Corso, H.L.; Andrade Gamboa, J.; Serafini, D.; Triaca, W.E

    2003-05-12

    Recent developments on new electrode materials for nickel-metal hydride batteries include Laves phases based on ZrCr{sub 2} with multiple substitutions to improve the electrode performance. In this work, results on the hydrogen absorption behavior of the Zr{sub 0.9}Ti{sub 0.1}NiMn{sub 0.5}Cr{sub x}V{sub 0.5-x} alloy (with 0{<=}x{<=}0.5) obtained by volumetric and electrochemical techniques are presented. The structural and morphological characterization of the alloy is also studied by X-ray powder diffractometry (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The (PCT) curves show a high hydrogen storage capacity expressed as hydrogen atoms per formula unit (H/F.U.{approx}3.6), and a steep slope rather than a horizontal plateau corresponding to the two-phase equilibrium. Electrode activation was achieved by voltammetric cycling between preset potentials in alkaline solution. Discharge capacities of about 340 mAh/g are found for high Cr/V content ratios, whereas the high-rate dischargeability significantly decreases on increasing the Cr content in the alloy.

  13. Oxidation resistant, thoria-dispersed nickel-chromium-aluminum alloy

    Science.gov (United States)

    Baranow, S.; Klingler, L. J.

    1973-01-01

    Modified thoria-dispersed nickel-chromium alloy has been developed that exhibits greatly improved resistance to high-temperature oxidation. Additions of aluminum have been made to change nature of protective oxide scale entirely and to essentially inhibit oxidation at temperatures up to 1260 C.

  14. High temperature oxidation of iron-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Lars

    2003-06-15

    The high temperature oxidation of the ferritic alloy Fe78Cr22 has been investigated in the present work. The effect of small alloying additions of cerium and/or silicon was also investigated. The alloys were oxidized at 973, 1173 and 1373 K in either air or a hydrogen/argon mixture. The various reaction atmospheres contained between 0.02 and 50% water vapour. The oxide scales formed on the various alloys at 973 K consisted of thin chromia layers. The oxide scales grown on the alloys at 1173 K also consisted of a chromia layer. The microstructure of the chromia scales was found to depend on the reaction atmosphere. The chromia scales grown in hydrogen/argon atmospheres formed oxide whiskers and oxide ridges at the surface of the scales, while the chromia scales grown in air formed larger oxide grains near the surface. This difference in oxide microstructure was due to the vaporization of chromium species from the chromia scales grown in air. Two different growth mechanisms are proposed for the growth of oxide whiskers. The growth rate of the chromia scales was independent of the oxygen activity. This is explained by a growth mechanism of the chromia scales, where the growth is governed by the diffusion of interstitial chromium. The addition of silicon to the iron-chromium alloy resulted in the formation of silica particles beneath the chromia scale. The presence of silicon in the alloy was found to decrease the growth rate of the chromia scale. This is explained by a blocking mechanism, where the silica particles beneath the chromia scale partly block the outwards diffusion of chromium from the alloy to the chromia scale. The addition of cerium to the iron-chromium alloy improved the adhesion of the chromia scale to the alloy and decreased the growth rate of chromia. It was observed that the minimum concentration of cerium in the alloy should be 0.3 at.% in order to observe an effect of the cerium addition. The effect of cerium is explained by the &apos

  15. Effects of irradiation on chromium's behavior in ferritic/martensitic FeCr alloy

    Institute of Scientific and Technical Information of China (English)

    Xinfu HE; Wen YANG; Zhehao QU; Sheng FAN

    2009-01-01

    The effects of irradiation on chromium performance under different temperatures in Fe-20at%Cr were modeled by modified Marlowe code. Chromium precipitation was observed in FeCr alloy after irradiation; interstitial Chromium atoms are the preferred formation of mixed FeCr dumbbells in the direction ofand; interstitial chromium atoms congregated on {111} and {110} plane. The results are compared with experiment observations and are useful to understanding the irradiation performances of FeCr alloy.

  16. New alloys to conserve critical elements. [replacing chromium in steels

    Science.gov (United States)

    Stephens, J. R.

    1978-01-01

    Previous studies and surveys on availability of domestic reserves have shown that chromium is a most critical element within the U.S. metal industry. More precisely, the bulk of chromium is consumed in the production of stainless steels, specifically Type 304 stainless steel (304SS) which contains 18% Cr. The present paper deals with means of reducing chromium in commercial stainless steels by substituting more abundant or less expensive elements with the intent of maintaining the properties of 304SS. The discussion focuses on some of the oxidation and corrosion properties of new substitute stainless steels with only 12% Cr, which represents a potential saving of 33% of the chromium consumed in the production of 304SS. The alloying elements substituted for Cr in 304SS are selected according to their potential for protective oxide formation during high-temperature oxidation; these are Al, Si, Ti, Y, and misch metal which is 99.7% rare-earth metals containing 50 to 55% cerium. Other alloying elements to impart corrosion resistance are Mn, Mo, and V.

  17. TEM characterisation of stress corrosion cracks in nickel based alloys: effect of chromium content and chemistry of environment; Caracterisation par MET de fissures de corrosion sous contrainte d'alliages a base de nickel: influence de la teneur en chrome et de la chimie du milieu

    Energy Technology Data Exchange (ETDEWEB)

    Delabrouille, F

    2004-11-15

    Stress corrosion cracking (SCC) is a damaging mode of alloys used in pressurized water reactors, particularly of nickel based alloys constituting the vapour generator tubes. Cracks appear on both primary and secondary sides of the tubes, and more frequently in locations where the environment is not well defined. SCC sensitivity of nickel based alloys depends of their chromium content, which lead to the replacement of alloy 600 (15 % Cr) by alloy 690 (30 % Cr) but this phenomenon is not yet very well understood. The goal of this thesis is two fold: i) observe the effect of chromium content on corrosion and ii) characterize the effect of environment on the damaging process of GV tubes. For this purpose, one industrial tube and several synthetic alloys - with controlled chromium content - have been studied. Various characterisation techniques were used to study the corrosion products on the surface and within the SCC cracks: SIMS; TEM - FEG: thin foil preparation, HAADF, EELS, EDX. The effect of chromium content and surface preparation on the generalised corrosion was evidenced for synthetic alloys. Moreover, we observed the penetration of oxygen along triple junctions of grain boundaries few micrometers under the free surface. SCC tests show the positive effect of chromium for contents varying from 5 to 30 % wt. Plastic deformation induces a modification of the structure, and thus of the protective character, of the internal chromium rich oxide layer. SCC cracks which developed in different chemical environments were characterised by TEM. The oxides which are formed within the cracks are different from what is observed on the free surface, which reveals a modification of medium and electrochemical conditions in the crack. Finally we were able to evidence some structural characteristics of the corrosion products (in the cracks and on the surface) which turn to be a signature of the chemical environment. (author)

  18. Influence of Chemical Composition on Rupture Properties at 1200 Degrees F. of Forged Chromium-Cobalt-Nickel-Iron Base Alloys in Solution-Treated and Aged Condition

    Science.gov (United States)

    Reynolds, E E; Freeman, J W; White, A E

    1951-01-01

    The influence of systematic variations of chemical composition on rupture properties at 1200 degrees F. was determined for 62 modifications of a basic alloy containing 20 percent chromium, 20 percent nickel, 20 percent cobalt, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.15 percent carbon, 1.7 percent manganese, 0.5 percent silicon, 0.12 percent nitrogen and the balance iron. These modifications included individual variations of each of 10 elements present and simultaneous variations of molybdenum, tungsten, and columbium. Laboratory induction furnace heats were hot-forged to round bar stock, solution-treated at 2200 degrees F., and aged at 1400 degrees F. The melting and fabrication conditions were carefully controlled in order to minimize all variable effects on properties except chemical composition. Information is presented which indicates that melting and hot-working conditions play an important role in high-temperature properties of alloys of the type investigated.

  19. Standard Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel-Chromium-Molybdenum (UNS N08367), Nickel-Chromium-Molybdenum-Columbium (Nb) (UNS N06625), Nickel-Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Pressure Consolidated Powder Metallurgy Iron-Nickel-Chromium-Molybdenum (UNS N08367), Nickel-Chromium-Molybdenum-Columbium (Nb) (UNS N06625), Nickel-Chromium-Iron Alloys (UNS N06600 and N06690), and Nickel-Chromium-Iron-Columbium-Molybdenum (UNS N07718) Alloy Pipe Flanges, Fittings, Valves, and Parts

  20. Evaluation of effect of recasting of nickel-chromium alloy on its castability using different investment materials: An in vitro study

    OpenAIRE

    Abhinav Sharma; Shobha J Rodrigues; Thilak B Shetty; Vidya K Shenoy; Mahesh Mundathaje; Sharon Saldanha

    2016-01-01

    Context: Castability has been found to be affected by many aspects of the entire casting system. Very few references in dental literature are available regarding recasting of the base metal alloys. Aims: To evaluate and compare the castability of fresh and reused nickel-chromium alloy and to evaluate the effect of two brands of investment materials on castability of nickel-chromium alloy. Subjects and Methods: For the experimental purpose of evaluation of the effect of recasting of nick...

  1. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) so...

  2. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

  3. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

  4. PRODUCTION, STRUCTURE AND PROPERTIES OF CHROMIUM BRONZE ALLOYED MECHANICALLY WITH THE MELTING OF NANOCRYSTALLINE MODIFYING LIGATURES

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2016-01-01

    Full Text Available The reactive mechanical alloying is an effective technology for production of nanocrystalline modifying modifiers and ligatures. During smelting chromium bronzes use of mechanically alloyed modifying ligatures allow to exclude from the technology the environmentally hazardous high-temperature process of production of cast ligatures and to reduces reduce the optimum temperature of the melt alloying process copper at 50–100 °C by reducing its duration 2, 5–3,5 times This excluded process requires expensive furnace equipment. Mechanically alloyed modifying ligatures allow the formation of dispersion-strengthened heat-resistant materials with sub -,/ microcrystalline structure type bases, which are strength, hardness, conductivity and temperature of the onset of recrystallization about 15–20% superior to the base, which increases the resistance of the welding electrodes by 1.8–2.2 times. 

  5. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  6. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  7. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  8. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory

    Institute of Scientific and Technical Information of China (English)

    HUANG Shun-hong; PENG Bing; YANG Zhi-hui; CHAI Li-yuan; ZHOU Li-cheng

    2009-01-01

    The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by chromium. 45 soil samples obtained from different places of the slag heap in a steel alloy factory were analyzed for chromium contamination level and its effect on soil microorganisms and enzyme activities. The results show that the average concentrations of total Cr in the soil under the slag heap, adjacent to the slag heap and outside the factory exceed the threshold of Secondary Environmental Quality Standard for Soil in China by 354%, 540% and 184%, respectively, and are 15, 21 and 9 times higher than the local background value, respectively. Elevated chromium loadings result in changes in the activity of the soil microbe, as indicated by the negative correlations between soil microbial population and chromium contents. Dehydrogenase activity is greatly depressed by chromium in the soil. The results imply that dehydrogenase activity can be used as an indicator for the chromium pollution level in the area of the steel alloy factory.

  9. 21 CFR 872.3710 - Base metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  10. STUDY ON MORPHOLOGY OF CHROMIUM IN CHILLED Cu-0.14%-2.0%Cr ALLOYS

    Institute of Scientific and Technical Information of China (English)

    H.W.Yang; Z.K.Fan

    2004-01-01

    The morphology of chromium in chilled Cu-Cr alloys with 0.14%-2.0% Cr has been studied. The results showed that eutectic Cr phase takes a fibrous shape, and pre-eutectic Cr is dendritic in the studied chilled Cu-Cr alloy. During solute treatment of the eutectic and super-eutectic Cu-Cr alloys, only part of chromium particles dissolved in copper phase,some fiber and dendritic chromium still remained. Forging before solute treatment can reduce the size of primary Cr particles, which benefits the aging structure.

  11. Sodium corrosion behavior of austenitic alloys and selective dissolution of chromium and nickel

    Science.gov (United States)

    Suzuki, T.; Mutoh, I.; Yagi, T.; Ikenaga, Y.

    1986-06-01

    The corrosion behavior of six austenitic alloys and reference Type 316 stainless steel (SS) has been examined in a flowing sodium environment at 700°C for up to about 4000 h. The alloys with a range of nickel content between ~ 15 and 43 wt% were designed and manufactured with an expectation of improved swelling resistance during fast neutron irradiation, compared to reference Type 316 SS. The corrosion loss of the alloys at zero downstream position and the concentrations of chromium, nickel and iron in the surface region were determined as a function of corrosion time. The selective dissolution of nickel and chromium played an important role in sodium corrosion of the alloys. During the initial period, accelerated corrosion took place and selective dissolution of chromium and nickel proceeded at a rapid rate. During the subsequent period, the overall corrosion rate and depletion of chromium and nickel decreased with increasing time until the corrosion rate and the surface concentrations of chromium, nickel and iron, which depended on composition of the alloys, reached the steady-state after about 2000 h. Also, the corrosion rate increased with increasing original nickel content of the alloys. Microstructural examination revealed surface attack of the alloys with higher nickel contents, in particular for the two precipitation strengthened Fe-Ni alloys. The alloys showed a trend of increasing carbon and nitrogen contents.

  12. Investigations on the fracture toughness of austempered ductile iron alloyed with chromium

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P. Prasad; Putatunda, Susil K

    2003-04-15

    An investigation was carried out to examine the influence of chromium content on the plane strain fracture toughness of austempered ductile iron (ADI). ADIs containing 0, 0.3 and 0.5 wt.% chromium were austempered over a range of temperatures to produce different microstructures. The microstructures were characterized by optical microscopy and X-ray diffraction. Plane strain fracture toughness of all these materials was determined and correlated with microstructure and chromium content. The chromium content was found to influence the fracture toughness through its influence on the processing window. Since the chromium addition shifts the processing window to shorter durations, the higher chromium alloys at higher austempering temperatures tend to fall outside of the processing window, resulting in less than optimum microstructure and inferior fracture toughness. A small chromium addition of 0.3 wt.% was found to be beneficial for the fracture toughness of ADI.

  13. Effects of extrusion on chromium precipitation in Cu-Cr alloy

    Institute of Scientific and Technical Information of China (English)

    范志康; 杨红旺; 梁淑华; 肖鹏

    2003-01-01

    Cu-Cr alloys containing Cr from 0.14% to 2.0% in mass were prepared as foils for TEM observation before and after being extruded. The results show that before extrusion, the spheroid or short bar chromium disperse in copper matrix of the Cu-Cr alloy, and the relationship between Cu and Cr follows the Nishiyama-Wasserman (NW) relationship, I.e. [110]Cu∥[001]Cr. After the Cu-Cr alloy was extruded at 860℃, dark field image along (224)Cu clearly shows that there are precipitated chromium particles in copper matrix. However, the SADP comprises only (112)Cu zone.

  14. Comparative evaluation of effect of metal primer and sandblasting on the shear bond strength between heat cured acrylic denture base resin and cobalt-chromium alloy: An in vitrostudy

    Directory of Open Access Journals (Sweden)

    Sandeep Kalra

    2015-01-01

    Full Text Available Aims: The aim of this study was to evaluate the effect of metal primers and sandblasting on the shear bond strength (SBS of heat cured acrylic denture base resin to cobalt-chromium (Co-Cr alloy. Materials and Methods: A total number of 40 disk shaped wax patterns (10 mm in diameter and 2 mm in thickness were cast in Co-Cr alloy. Samples were divided into 4 groups depending on the surface treatment received. Group 1: No surface treatment was done and acts as control group. Group 2: Only sandblasting was done. Group 3: Only metal primer was applied. Group 4: Both metal primer and sandblasting were done. After surface treatment samples had been tested in Universal Testing Machine at crosshead speed of 0.5 mm/min in shear mode and scanning, electron microscope evaluation was done to observe the mode of failure. Statistical Analysis: All the observations obtained were analyzed statistically using software SPSS version 17; one-way analysis of variance (ANOVA and post-hoc Tukey test were applied. Results: The one-way ANOVA indicated that SBS values varied according to type of surface treatment done. The SBS was highest (18.70 ± 1.2 MPa when both sandblasting and metal primer was done when compared with no surface treatment (2.59 ± 0.32 MPa. Conclusions: It could be concluded that the use of metal primers along with sandblasting significantly improves the bonding of heat cured acrylic denture base resin with the Co-Cr alloy.

  15. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  16. Selective Ablation of thin Nickel-chromium-alloy Films Using Ultrashort Pulsed Laser

    Science.gov (United States)

    Pabst, Linda; Ebert, Robby; Exner, Horst

    The selective ablation of 100nm thin Nickel-Chromium-alloy films on glass substrate was investigated using femtosecond laser pulses (λ=1030nm, τp=170 fs, Ep,max=7μJ). The influence of the processing parameters such as fluence, pulse number and pulse repetition rate on the ablation process was examined. Single and multiple pulses ablation thresholds of the Nickel-Chromium-alloy film were determined and the incubation coefficient calculated. Optical and electron microscopy were employed to characterize the patterned area. As a result, different irradiation morphologies were observed, dependent from the processing parameters. A processing window for film side ablation of the Nickel-Chromium-alloy film without damaging the underlying glass substrate was found, however, the edge of the ablation craters were covered with laser induced periodic surface structures (LIPSS).

  17. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  18. Synthesis of chromium and ferrochromium alloy in molten salts by the electro-reduction method

    Directory of Open Access Journals (Sweden)

    Ge X.

    2015-01-01

    Full Text Available In this work, we successfully applied the Fray-Farthing-Chen Cambridge electro-reduction process on the preparation of chromium from chromium oxide, and for the first time, the synthesis of ferrochromium alloy from chromium oxide and iron oxide mixture and the chromite ore in molten calcium chloride. The present work systematically investigated the influences of sintered temperature of the solid precursor, electrochemical potential, electrolysis temperature and time on the products by using a set of advanced characterization techniques, including XRD and SEM/EDS analyses. In particular, our results show that this process is energy-friendly and technically-feasible for the direct extraction of ferrochromium alloy from chromite ore. Our findings thus provide useful insights for designing a novel green process to produce ferrochromium alloy from low-grade chromite ore or stainless steel slag.

  19. Wear behaviour of cobalt-chromium-molybdenum alloys used in metal-on-metal hip implants

    Science.gov (United States)

    Varano, Rocco

    The influence of carbon (C) content, microstructure, crystallography and mechanical properties on the wear behaviour of metal-on-metal (MM) hip implants made from commercially available cobalt-chromium-molybdenum (CoCrMo) alloys designated as American Society of Testing and Materials (ASTM) grade F1537, F75 and as-cast were studied in this work. The as-received bars of wrought CoCrMo alloys (ASTM F1537 of either about 0.05% or 0.26% C) were each subjected to various heat treatments to develop different microstructures. Pin and plate specimens were fabricated from each bar and were tested against each other using a linear reciprocating pin-on-plate apparatus in 25% by volume bovine serum solution. The applied normal load was 9.81 N and the reciprocating plate had a sinusoidal velocity with an average speed of 26 mm/s. The wear was measured gravimetrically and it was found to be most strongly affected by alloy C content, irrespective of grain size or carbide morphology. More precisely, the wear behaviour was directly correlated to the dissolved C content of the alloys. Increased C in solid-solution coincided with lower volumetric wear since C helps to stabilize the face-centred cubic (FCC) crystal structure thus limiting the amount of strain induced transformation (SIT) to the hexagonal close-packed crystal structure (HCP). Based on the observed surface twinning in and around the contact zone and the potentially detrimental effect of the HCP phase, it was postulated that the MM wear behaviour of CoCrMo alloys in the present study was controlled by a deformation mechanism, rather than corrosion or tribochemical reactions.

  20. Effect of recasting on the elastic modulus of metal-ceramic systems from nickel-chromium and cobalt-chromium alloys

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2007-01-01

    Full Text Available Background/Aim. Elastic modulus of metal-ceramic systems determines their flexural strength and prevents damages on ceramics during mastication. Recycling of basic alloys is often a clinical practice, despite the possible effects on the quality of the future metal-ceramic dentures. This research was done to establish recasting effects of nickel-chromium and cobalt-chromium alloys on the elastic modulus of metalceramic systems in making fixed partial dentures. Methods. The research was performed as an experimental study. Six metal-ceramic samples of nickel-chromium alloy (Wiron 99 and cobalt-chromium alloy (Wirobond C were made. Alloy residues were recycled through twelve casting generations with the addition of 50% of new alloy on the occasion of every recasting. Three- point bending test was used to determine elastic modulus, recommended by the standard ISO 9693:1999. Fracture load for damaging ceramic layer was recorded on the universal testing machine (Zwick, type 1464, with the speed of 0,05 mm/min. Results. The results of this research revealed significant differences between elasticity modules of metal-ceramic samples in every examined recycle generation. Recasting had negative effect on the elastic modulus of the examined alloys. This research showed the slight linear reduction of elastic modulus up to the 6th generation of recycling. After the 6th recycling there was a sudden fall of elastic modulus. Conclusion. Recasting of nickelchromium and cobalt-chromium alloys is not recommended because of the reduced elastic modulus of these alloys. Instead of reusing previously recasted alloys, the alloy residues should be returned to the manufacturer. .

  1. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-07-01

    To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers.

  2. Hot hardness of nickel-rich nickel-chromium-aluminum alloys

    Science.gov (United States)

    Levine, S. R.

    1976-01-01

    Rockwell A hardness of cast nickel-chromium-aluminum (NiCrAl) alloys was examined from ambient to 1150 K and compared to cast NiAl and IN-100. Alloy constitution was either gamma, gamma prime + gamma or gamma + beta + alpha + gamma prime. Below 1000 K beta containing NiCrAl alloys have hardnesses comparable to IN-100; above 1000 K they soften faster than IN-100. At 1150 K the hardness of beta-containing NiCrAl alloys decreases with increasing beta-content. The beta-containing NiCrAl alloys were harder than beta-NiAl. The ultimate tensile strengths of the NiCrAl alloys were estimated. The effects of NiCrAl coatings on strength and fatigue life of cooled turbine components were deduced.

  3. 齿科用镍铬合金材料的生物安全性能%Biological security of nickel-chromium alloys in the dentistry

    Institute of Scientific and Technical Information of China (English)

    郝钢

    2013-01-01

      背景:镍铬烤瓷合金在口腔修复中的应用广泛,合金中离子的释放对人体可能存在毒副作用或不良生物学反应。目的:从齿科用镍铬合金材料中镍金属的细胞毒性、合金中镍离子析出量、临床安全性等方面做一阐述。方法:检索2004至2009年 PubMed 数据库(http://www.ncbi.nlm.nih.gov/PubMed)及万方数据库(http://www.wanfangdata.com.cn)有关齿科用镍铬合金材料生物安全性能的文献。英文检索词为“Ni-Cr al oy,cytotoxicity,prosthodontics,security”,中文检索词为“镍铬合金,细胞毒性,口腔修复,安全性”。保留14篇文章归纳总结。结果与结论:镍铬合金临床应用时间长,由于其价格低廉,与金瓷结合效果较好,制作工艺相对容易,故在口腔修复中应用广泛。近年来镍铬合金的不良作用普遍受到关注,但尚无证据证明镍铬烤瓷有毒性离子释放析出于口腔唾液环境中,可能对口腔接触细胞及全身产生毒性反应;目前已知检测手段证明其在临床应用的许可范围内。在烤瓷全冠制作时应选用含铬质量系数高的镍铬合金。%BACKGROUND: Nickel-chromium alloys have been widely applied in the oral restoration. Ions released from the alloy, however, exert a side effect or result in adverse biological reactions. OBJECTIVE: To review the cytotoxicity of nickel metal used in nickel-chromium alloy, the amount of precipitation of nickel ions from the alloy, and clinical safety of nickel-chromium alloy materials. METHODS: A computer-based search of PubMed and Wanfang databases was performed for articles related to biological security of nickel-chromium alloys in the oral restoration published between 2004 and 2009. The key words were Ni-Cr alloy, cytotoxicity, prosthodontics, security in English and Chinese, respectively. Final y, 14 articles were included in result analysis. RESULTS AND CONCLUSION: Nickel-chromium alloy

  4. The effect of selective oxidation of chromium on the creep strength of alloy 617

    OpenAIRE

    Ennis, P.; Quadakkers, W.; H. Schuster

    1993-01-01

    In order to investigate the effect on creep strength of the selective oxidation of chromium which causes the formation of a carbide-fi-ee subsurface zone, specimens of Ni22Cr12Co9Mo1Al (Alloy 617) were subjected to heat treatments to simulate a long-term service exposure of a thin-walled heat exchanger tube operating at high temperatures. In creep tests carried out at 900°C, specimens with extensive chromium-depleted and carbide-free subsurface zones exhibited higher creep strength than speci...

  5. On the coexistence of the magnetic phases in chromium alloys

    DEFF Research Database (Denmark)

    Lebech, Bente; Mikke, K.

    1969-01-01

    Detailed neutron diffraction investigations have been performed on Cr-Re alloys in order to explain the several observations in Cr alloys of the coexistence of a commensurable and an oscillatory magnetic phase. It is concluded that the individual magnetic phases probably occur in separate domains....

  6. Chromium

    Science.gov (United States)

    ... Intern Med 1991;115:917-24. Abraham AS, Brooks BA, Eylath U. The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes. Metabolism 1992;41:768-71. Hermann J, Arquitt A. ...

  7. Characterization of Two ODS Alloys: Chromium-18 ODS and Chromium-9 ODS

    Science.gov (United States)

    Goddard, Julianne

    ODS alloys, or oxide dispersion strengthened alloys, are made from elemental or pre-alloyed metal powders mechanically alloyed with oxide powders in a high-energy attributor mill, and then consolidated by either hot isostatic pressing or hot extrusion causing the production of nanometer scale oxide and carbide particles within the alloy matrix; crystalline properties such as creep strength, ductility, corrosion resistance, tensile strength, swelling resistance, and resistance to embrittlement are all observed to be improved by the presence of nanoparticles in the matrix. The presented research uses various methods to observe and characterize the microstructural and microchemical properties of two experimental ODS alloys, 18Cr ODS and 9Cr ODS. The results found aid in assessing the influence of chemical and structural variations on the effectiveness of the alloy, and further aid in the optimization of these advanced alloys for future use in nuclear cladding and structural applications in Generation IV nuclear reactors. Characterization of these alloys has been conducted in order to identify the second-phase small precipitates through FESEM, TEM, EDS, Synchrotron X-ray diffraction analysis, and CuKalpha XRD analysis of bulk samples and of nanoparticles after extraction from the alloy matrix. Comparison of results from these methods allows further substantiation of the accuracy of observed nanoparticle composition and identification. Also, TEM samples of the two alloys have been irradiated in-situ with 1 MeV Kr and 300 keV Fe ions to various doses and temperatures at the IVEM-Tandem TEM at Argonne National Laboratory and post-irradiated characterization has been conducted and compared to the pre-irradiated characterization results in order to observe the microstructural and microchemical evolution of nanoparticles under irradiation. Overall in the as-received state, the initial Y2O3 is not found anymore and in addition to oxide particles the alloys contain carbides

  8. Compliance of a cobalt chromium coronary stent alloy – the COVIS trial

    Directory of Open Access Journals (Sweden)

    Schwinger Robert HG

    2005-10-01

    Full Text Available Abstract Background Cobalt chromium coronary stents are increasingly being used in percutaneous coronary interventions. There are, however, no reliable data about the characteristics of unfolding and visibility of this stent alloy in vivo. The aim of this study is to compare cobalt chromium coronary stents with conventional stainless steel stents using intracoronary ultrasound. Methods Twenty de novo native coronary stenoses ≤ 20 mm in length (target vessel reference diameter ≥ 2.5 and ≤ 4.0 mm received under sequential intracoronary ultrasound either a cobalt chromium stent (Multi-Link Vision®; n = 10 or a stainless steel stent (Multi-Link Zeta®; n = 10. Results For optimal unfolding, the cobalt chromium stent requires a higher balloon deployment pressure (13.90 ± 2.03 atm than the stainless steel stent (11.50 ± 2.12 atm. Furthermore, the achieved target vessel diameter of the cobalt chromium stent (Visibility-Index QCA/IVUS Multi-Link Vision®1.13 / Multi-Link Zeta® 1.04 is more easily overrated by Quantitative Coronary Analysis. Conclusion These data indicate that stent material-specific recommendations for optimal implantation pressure and different stent material with an equal design should both be considered in interpreting QCA-analysis.

  9. Surface modification of cobalt-chromium-tungsten-nickel alloy using octadecyltrichlorosilanes

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Gopinath [Department of Biomedical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Feldman, Marc D. [Department of Biomedical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Division of Cardiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); The Department of Veteran Affairs South Texas Health Care System, 7400 Merton Minter Blvd., San Antonio, TX 78229 (United States); Oh, Sunho [Department of Biomedical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Agrawal, C. Mauli [Department of Biomedical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States)], E-mail: Mauli.Agrawal@utsa.edu

    2009-03-15

    Cobalt-chromium (Co-Cr) alloys have been extensively used for medical implants because of their excellent mechanical properties, corrosion resistance, and biocompatibility. This first time study reports the formation and stability of self-assembled monolayers (SAMs) on a Co-Cr-W-Ni alloy. SAMs of octadecyltrichlorosilanes (OTS) were coated on sputtered Co-Cr-W-Ni alloy thin film and bulk Co-Cr-W-Ni alloy. OTS SAM coated alloy specimens were characterized using contact angle goniometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Contact angle analysis and FTIR suggested that ordered monolayers were coated on both sputtered and bulk alloy. XPS suggested the selective dissolution of cobalt from the alloy during the formation of OTS SAM. The bonding between the alloy and the OTS SAM was mainly attributed to Si-O-Cr and Si-O-W covalent bonds and a smaller contribution from Si-O-Co bonds. AFM images showed the distribution of islands of monolayers coated on the alloy. The height of monolayers in majority of the islands was closer to the theoretical length of fully extended OTS molecules oriented perpendicular to the surface. The stability of OTS SAM was investigated in tris-buffered saline at 37 {sup o}C for up to 7 days. Contact angle, FTIR, and XPS collectively confirmed that the monolayers remain ordered and bound to the alloy surface under this condition. This study shows that Co-Cr alloys can be surface modified using SAMs for potential biomedical applications.

  10. Electrodeposition of Tantalum and Tantalum-Chromium Alloys

    Science.gov (United States)

    1980-05-01

    authors wish to acknowledge Mrs. Theresa Brassard and Mr. Joe Barranco for preparing micrographs of the specimens and microhardness measure- ments, and...Ahmad, P. Greco, G. D’Andrea, J. Barranco , "Potential Erosion Resistant Refractory Metal (And/Or) Alloy Coatings for Gun Tubes," Proceedings 1978...U.S. Patent 344058 (1969), Canadian Patent 688546 (1963). 17 REFERENCES 1. I. Ahmad, P. Greco, G. D’Andrea, and J. Barranco , "Potential Erosion

  11. a Structural Investigation of the Passive Film on Iron and Iron/chromium Alloys.

    Science.gov (United States)

    Kerkar, Moussa

    Available from UMI in association with The British Library. Requires signed TDF. The Electrochemical Polarisation, Photocurrent Spectroscopy and Extended X-ray Absorption Fine Structure (EXAFS) techniques have been used to study the passive film on pure iron and iron alloy samples containing up to 25% chromium. The material used in this work was prepared both as bulk and thin films. The bulk samples were passivated electrochemically at various anodic potentials whereas the film ones were either fully converted into passive films by simple immersion in various solutions for one week or electrochemically at various anodic potentials. The Fe and Fe/Cr film samples used in the electrochemical passivation were deposited onto gold substrate and those passivated by immersion were deposited directly onto mylar. Polarisation curves for both the bulk and film materials were recorded. They suggest that the electrochemical behaviour of the two materials is similar. The wavelength and potential dependence of the photocurrent spectra were also recorded for the bulk and film samples of Fe and Fe/Cr alloys. The data were analysed to obtain the effective optical band gaps and flat band potentials of the passive films respectively. These results also show that the two materials are similar. Furthermore, the photocurrent data suggest that the passive film on Fe/Cr alloys consists of Fe(III) and Cr(III) phases. The fluorescence EXAFS above the Fe and Cr K-absorption edges of the passive film on Fe and Fe/Cr alloy films has been recorded both in-situ and ex-situ. The spectra obtained in these studies were analysed to obtain average Fe-O and Fe-Fe separations as well as Cr-O and Cr-Cr ones. These results together with a detailed examination of the XANES suggest that the passive film on iron in the absence of chromium is best described as a disordered gamma -FeOOH-like structure and that on Fe/Cr alloys as well as on pure Fe passivated in chromate solution contains two simultaneous

  12. Bonding evolution with sintering temperature in low alloyed steels with chromium

    Directory of Open Access Journals (Sweden)

    Fuentes-Pacheco L.

    2009-01-01

    Full Text Available At present, high performance PM steels for automotive applications follow a processing route that comprises die compaction of water-atomized powder, followed by sintering and secondary treatments, and finishing operations. This study examines Cr-alloyed sintered steels with two level of alloying. In chromium-alloyed steels, the surface oxide on the powder is of critical importance for developing the bonding between the particles during sintering. Reduction of this oxide depends mainly on three factors: temperature, dew point of the atmosphere, and carbothermic reduction provided by the added graphite. The transformation of the initial surface oxide evolves sequence as temperature increases during sintering, depending on the oxide composition. Carbothermic reduction is supposed to be the controlling mechanism, even when sintering in hydrogen-containing atmospheres. The effect of carbothermic reduction can be monitored by investigating the behavior of the specimens under tensile testing, and studying the resultant fracture surfaces.

  13. Microstructure and properties of Ti–Nb–V–Mo-alloyed high chromium cast iron

    Indian Academy of Sciences (India)

    Youping Ma; Xiulan Li; Yugao Liu; Shuyi Zhou; Xiaoming Dang

    2013-10-01

    The correlations of microstructure, hardness and fracture toughness of high chromium cast iron with the addition of alloys (titanium, vanadium, niobium and molybdenum) were investigated. The results indicated that the as-cast microstructure changed from hypereutectic, eutectic to hypoeutectic with the increase of alloy contents. Mo dissolved in austenite and increased the hardness by solid solution strengthening. TiC and NbC mainly existed in austenite and impeded the austenite dendrite development. V existed in multicomponent systems in forms of V alloy compounds (VCrFe8 and VCr2C2).With the increase of alloy additions, carbides size changed gradually from refinement to coarseness, hardness and impact toughness were increased and then decreased. Compared with the fracture toughness (6 J/cm2) and hardness (50.8HRC) without any alloy addition, the toughness and hardness at 0.60 V–0.60Ti–0.60Nb–0.35Mo (wt%) additions were improved and achieved to 11 J/cm2 and 58.9HRC, respectively. The synergistic roles of Ti, Nb, V and Mo influenced the solidification behaviour of alloy. The refinement of microstructure and improvement of carbides morphologies, size and distribution improved the impact toughness.

  14. MD simulation of atomic displacement cascades near chromium-rich clusters in FeCr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonchev, M., E-mail: tikhonchev@sv.ulsu.ru [Ulyanovsk State University, Research Institute of Technology, 42 Leo Tolstoy St., 432970 Ulyanovsk (Russian Federation); Svetukhin, V. [Ulyanovsk State University, Research Institute of Technology, 42 Leo Tolstoy St., 432970 Ulyanovsk (Russian Federation); Gaganidze, E. [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe (Germany)

    2013-11-15

    The paper reports simulation of cascades in Fe–9 at.%Cr binary alloy containing chromium-rich clusters. The simulation is performed by the molecular dynamics method at the initial temperature of 300 K and primary knock-on atom energy of 15 and 20 keV. Spherical clusters containing 95 at.% of Cr with diameter of 1–5 nm have been considered. The properties of cascade evolution in the presence of chromium-rich cluster are studied. It is shown that these clusters tend to dissolve in collision cascades. However, clusters with diameter of ⩾3 nm exhibit only slight modifications and can be considered stable. Parameters of small (1–2 nm) clusters can change significantly and, in some cases, a 1 nm cluster can be totally dissolved.

  15. A prospective follow-up study on the impact of urinary excretions of nickel and chromium after dental restoration by nickel-chromium based alloys%佩戴镍铬合金烤瓷冠对尿镍铬水平影响的前瞻性随访研究

    Institute of Scientific and Technical Information of China (English)

    曹新明; 王珏; 夏刚; 徐碧瑶; 沈庆平; 钟群; 姜庆五; 陈波

    2012-01-01

    Objective To explore whether the dental restoration of nickel-chromium (Ni-Cr) based alloys will lead to extra excretions of urinary Ni and Cr. Methods Urinary Ni and Cr were repeatedly measured in 33 patients before and 2 months after the dental restoration of Ni-Cr alloys. The associations between alloy restoration and urinary Ni or Cr were analyzed by paired t test and general linear model of repeated measures. Results A slightly higher urinary Ni was found in patients after 2 month of the alloy restoration, but the difference was not statistically significant (before: 46.4 ug·mol-1 crea; after: 67.6 ug·mol-1 crea; P=0.063). This difference was only in female subjects (before: 44.8 ug·mol-1 crea; after: 73.7 ug·mol-1 crea; P=0.068). A significant higher urinary Cr was found in patients after 2 month of the alloy restoration (before: 57.0 ug·mor-1 crea; after: 99.4 ug·mol-1 crea; P=0.024). This significant difference was only in female subjects (before: 59.8 ug·mol-1 crea; after: 124.4 ug·mol-1 crea; P=0.023). General linear models of repeated measurements showed that urinary excretions of Ni and Cr were associated with the number of restoration and the area of metal basis uncovered with porcelain. Conclusion Dental restoration of Ni-Cr alloy might lead to the enhanced excretions of urinary Ni and Cr.%目的 探讨镍铬合金烤瓷冠的佩戴是否会导致机体尿镍铬水平升高.方法 对33例镍铬合金烤瓷冠佩戴者进行佩戴前和佩戴2月后的尿镍和尿铬重复测量,并采用配对t检验和重复测量数据线性回归分析探讨尿镍铬水平的变化与镍铬合金烤瓷冠佩戴的关系.结果 镍铬合金烤瓷冠佩戴2月后,机体尿镍水平(67.6 μg·mol-1肌酐)略高于佩戴前(46.4 μg·mol-1肌酐),但差异无统计学意义(P=0.063);女性患者佩戴前为44.8 μg·mol-1肌酐,佩戴后为73.7μg·mol-1肌酐(P=0.068).佩戴2月后,机体尿铬水平(99.4 μg·Tol-1肌酐)明显高于佩戴前(57.0

  16. TUNGSTEN BASE ALLOYS

    Science.gov (United States)

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  17. Performance of chromium nitride based coatings under plastic processing conditions

    OpenAIRE

    Cunha, l.; Andritschky, M.; Pischow, K.; Wang, Z.(Institute of High Energy Physics, Beijing, China); Zarychta, A.; Miranda, A. S.; A.M. Cunha

    2000-01-01

    Chromium nitride based coatings were produced in the form of monolithic and multilayer coatings, by DC and RF reactive magnetron sputtering. These coatings were deposited onto stainless steel and tool steel substrates. Chromium nitride coatings have;proved to be wear and corrosion resistant. The combination of these characteristics was necessary to protect surfaces during plastic processing. In order to select the best coatings, some mechanical and tribological tests were performed. Har...

  18. Casting accuracy of a nickel and beryllium-free cobalt-chromium alloy for crown and bridge prostheses and resin-bonded bridges.

    Science.gov (United States)

    Hansson, O

    1985-01-01

    In the 1970's economic factors dictated the development of alternatives to gold alloys in dentistry in the USA and in Europe. A similar development has not occurred in Sweden because of different laws. Alloys that contain nickel and beryllium present a health hazard and are therefore of little interest to the Swedish market. A review of the literature shows that castings of base-metal alloys are less accurate than castings of conventional gold alloys and of low gold alloys. However, in long-span-bridges and in thin resin-bonded cast restorations, their physical and mechanical properties are superior to those of the gold alloys. In this study the casting accuracy of a nickel- and beryllium-free cobalt-chromium alloy, Neobond II Special, is investigated. Neobond II Special was found to be less accurate than Sjödings C-guld. The marginal discrepancies of the castings were small, however, when the castings were oversized. It also proved to be technique sensitive to conventional dental laboratory procedures. Thus, it seems difficult to get castings with an acceptable retention as well as small marginal discrepancies when using the base-metal alloy.

  19. Study of a New Chromium-Free Conversion Coating Formed on ZnAl Alloy

    Institute of Scientific and Technical Information of China (English)

    LONG Jin-ming; GUO Zhong-cheng; HAN Xia-yun; YANG Ning

    2004-01-01

    A new chromium-free conversion film was obtained on surface of a ZnAl alloy by chemical conversion process.Influence of the additives in treating solution containing cerium salt on the corrosion protection of the conversion film formed on zinc alloy was investigated. Corrosion tests and electrochemical measurements in sodium chloride solution were performed. The microstructure and composition of the coatings were examined by means of SEM, EDS and XRD. It was found that the corrosion protection capabilities of the conversion film are markedly increased with the cerium nitride plus additives (hydrogen fluoride acid and an organic inhibitor) treating process. The modified conversion film is an organic/inorganic composite coating and is much more corrosion resistant than the conventional chromate conversion coating and the single cerium conversion coating.

  20. Study of a New Chromium-Free Conversion Coating Formed on ZnAl Alloy

    Institute of Scientific and Technical Information of China (English)

    LONGJin-ming; GUOZhong-cheng; HANXia-yun; YANGNing

    2004-01-01

    A new chromium-free conversion film was obtained on surface of a ZnA1 alloy by chemical conversion process. Influence of the additives in treating solution containing cerium salt on the corrosion protection of the conversion film formed on zinc alloy was investigated. Corrosion tests and electrochemical measurements in sodium chloride solution were performed. The microstructure and composition of the coatings were examined by means of SEM, EDS and XRD. It was found that the corrosion protection capabilities of the conversion film are markedly increased with the cerium nitride plus additives (hydrogen fluoride acid and an organic inhibitor) treating process. The modified conversion film is an organic/inorganic composite coating and is much more corrosion resistant than the conventional chromate conversion coating and the single cerium conversion coating.

  1. New alloys to conserve critical elements

    Science.gov (United States)

    Stephens, J. R.

    1978-01-01

    Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.

  2. Evaluation of effect of recasting of nickel-chromium alloy on its castability using different investment materials: An in vitro study

    Directory of Open Access Journals (Sweden)

    Abhinav Sharma

    2016-01-01

    Conclusions: Within the limitations of the study, it was concluded that there was no significant difference found in castability of different percentage combinations of new and once casted alloy using two investment materials. The addition of new alloy during recasting to maintain the castability of nickel-chromium alloy may therefore not be required.

  3. Evaluation of roughness and micromorphology of epoxy paint on cobalt-chromium alloy before and after thermal cycling.

    Science.gov (United States)

    Nascimento, Alessandra Cardoso da Silva; Muzilli, Carlos Alberto; Miranda, Milton Edson; Flório, Flávia Martão; Basting, Roberta Tarkany

    2013-01-01

    It has been suggested that the epoxy paint used to coat metal substrates in industrial electrostatic painting applications could also be used to mask metal clasps in removable dental prostheses (RDP). The purpose of this study was to evaluate both the influence of thermal cycling and the in vitro roughness of a surface after application of epoxy paint, as well as to assess the micromorphology of a cobalt-chromium (CoCr) based metal structure. Sixty test specimens were fabricated from a CoCr alloy. The specimens were separated into three groups (n = 20) according to surface treatment: Group 1 (Pol) - polished with abrasive stone and rubbers; Group 2 (Pol+Epo) - polished and coated with epoxy paint; Group 3 (Epo) - air-abraded with aluminum oxide particles and coated with epoxy paint. The surface roughness was evaluated before and after 1000 thermal cycles (5°C and 50°C). The surface micromorphology was verified by scanning electron microscopy (SEM). The two-way repeated measures ANOVA showed significant differences among surface treatments (p < 0.0001), but no difference was found before and after thermal cycling (p = 0.6638). The CoCr-based metal alloy surfaces treated with epoxy paint (Groups 2 and 3) were rougher than the surfaces that were only polished (Group 1). Thermal cycling did not influence surface roughness, or lead to chipping or detachment of the epoxy paint.

  4. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  5. Analysis of thermoelectric properties of high-temperature complex alloys of nickel-base, iron-base and cobalt-base groups

    Science.gov (United States)

    Holanda, R.

    1984-01-01

    The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.

  6. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective

    Directory of Open Access Journals (Sweden)

    Hedberg Yolanda

    2010-09-01

    Full Text Available Abstract Background Production of ferrochromium alloys (FeCr, master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr, ferrosiliconchromium (FeSiCr, stainless steel (316L, iron (Fe, chromium (Cr, and chromium(IIIoxide (Cr2O3, in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549. Results The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death

  7. Preparation and corrosion resistance studies of nanometric sol-gel-based CeO{sub 2} film with a chromium-free pretreatment on AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shiyan [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li Qing, E-mail: liqingswu@yeah.ne [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen Bo [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China)

    2010-01-01

    Magnesium alloy, although valuable, is reactive and requires protection before it can be applied in many fields. In this study, a novel protective environmental-friendly gradient coating was performed on AZ91D magnesium alloy by non-chromate surface treatments, which consisted of phytic acid chemical conversion coating and the sol-gel-based CeO{sub 2} thin film. The surface morphologies, microstructure and composition of the coatings were investigated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. The effects of the concentration, layers, temperature of heat treatment of CeO{sub 2} sol on the anti-corrosion properties of the gradient coating for magnesium were also investigated. The results showed that the gradient coating was mainly composed of crystalline CeO{sub 2}. According to the results of electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environmental-friendly surface treatment.

  8. Macrophage responses to 316L stainless steel and cobalt chromium alloys with different surface topographies.

    Science.gov (United States)

    Anderson, Jordan A; Lamichhane, Sujan; Mani, Gopinath

    2016-11-01

    The surface topography of a biomaterial plays a vital role in determining macrophage interactions and influencing immune response. In this study, we investigated the effect of smooth and microrough topographies of commonly used metallic biomaterials such as 316 L stainless steel (SS) and cobalt-chromium (CoCr) alloys on macrophage interactions. The macrophage adhesion was greater on CoCr compared to SS, irrespective of their topographies. The macrophage activation and the secretion of most pro-inflammatory cytokines (TNF-α, IL-6, and IP-10) were greater on microrough surfaces than on smooth surfaces by day-1. However, by day-2, the macrophage activation on smooth surfaces was also significantly increased up to the same level as observed on the microrough surfaces, with more amount of cytokines secreted. The secretion of anti-inflammatory cytokine (IL-10) was significantly increased from day-1 to day-2 on all the alloy surfaces with the effect most prominently observed on microrough surfaces. The production of nitric oxide by the macrophages did not show any major substrate-dependent effect. The foreign body giant cells formed by macrophages were least observed on the microrough surfaces of CoCr. Thus, this study demonstrated that the nature of material (SS or CoCr) and their surface topographies (smooth or microrough) strongly influence the macrophage responses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2658-2672, 2016.

  9. SECM Study of Effect of Chromium Content on the Localized Corrosion Behavior of Low-Alloy Steels in Chloride Environment

    Science.gov (United States)

    Indira, K.; Nishimura, T.

    2016-10-01

    This paper investigates the effect of chromium (Cr) content (0, 1, 3 and 5% Cr) in epoxy-coated alloy steel against corrosion using in situ electrochemical techniques such as EIS and SECM in a 3% NaCl solution. The EIS results revealed that the epoxy-coated Cr steel exhibited higher impedance values than carbon steel, which is attributed to the greater resistance of Cr steel toward corrosion. Based on the cyclic voltammogram results, the tip potentials were set at -0.7, 0.04 and 0.60 V for determining the concentration of dissolved oxygen at cathodic region, and oxidation of Cr2+ and Fe2+ at anodic region, respectively. The SECM measurements showed that, the tip current in the anodic region has decreased with increase in Cr content of the sample, which indicates that the oxidation of Fe2+ and Cr2+ decreases (corrosion is reduced) with the increase in Cr content of the steel. Besides, 5% Cr steel can maintain the highest corrosion resistance, and 1 and 3% Cr steels have higher corrosion resistance than the 0% Cr steel. This higher corrosion resistance of Cr steel samples could be due to the formation of Cr-rich hydro-oxide layers [Cr(OH)3 as a corrosion product] on the surface of the samples. Thus, the epoxy-coated Cr alloy steel has greater corrosion resistance in a chloride-containing environment than the carbon steel. Hence, epoxy-coated Cr alloy steel can be successfully used as a construction material in structures.

  10. Adherence of Candida albicans in cobalto- chromium and titanium alloys, with different sandpapering

    Directory of Open Access Journals (Sweden)

    Sidnei MARCACCI

    2008-04-01

    Full Text Available Introduction: The capacity of Candida albicans adherence is one ofits main factors of virulence. Surfaces of different materials canpropitiate conditions for higher or lower adherence and greater virulence of the microorganisms. Objective: Evaluate the adherence of Candida albicans in cobalto-chromium and titanium alloys, with different sandpapering. Material and methods: Twenty-four cylindrical samples have been constructed, 12 of titanium and 12 of cobalt-chromium, divided in 4 groups of six. All have been polished in the habitual form by the same technician. Samples have been sandpapered at about high rotation for 15 seconds each sandpaper, on all its surface. A group of each metal was sandpapered only with sandpaper for metal number 80. The two other groups have been sandpapered in agreement with the sequence (decreasing granulation: 80, 150 and 220. Samples have been sterilized and located in plates of cells culture. In each well of the plate was added standardized amount of Sabouraud broth and suspension containing 106 cells per milliliter of C. albicans (ATCC 18804. After incubation, the number of adhered cells per mm2 was obtained by the method of sowing in plate of Petri. The obtained values have been tabulated and submitted to the tests of ANOVA and Tukey,with level of significance of 5%. Results: There was statistical difference for the granulation of sandpapers, what not occurred when considering metals.Conclusion: The bigger the final granulation of sandpaper, the greater the adherence and the type of metal did not influence in the result.

  11. Effects of TIG Surface Melting and Chromium Surface Alloying on Microstructure,Hardness and Wear Resistance of ADI

    Institute of Scientific and Technical Information of China (English)

    A Amirsadeghi; M Heydarzadeh Sohi; S F Kashani Bozorg

    2008-01-01

    Microhardness and wear resistance of different mierostruetures formed by TIG (tungsten inert gas) surface melting and chromium surface alloying (using ferrochromium) of ADI (austempered ductile iron) were studied.Surface melting resulted in the formation of a ledeburitic structure in the melted zone,and this structure has a hardness up to 896 HV as compared to 360 HV in that of ADI.Moreover,chromium surface alloying resulted in the formation of different structures including:(1) a hypereuteetic structure consisting of primary (Fe,Cr)7C3 carbides and a eutectie matrix of transformed austenite (into martensite and retained austenite),as also (Fe,Cr)7C3 carbides,with a hardness of 1 078 HV;(2) a hypoeutectic structure consisting of the same eutectic along with transformed primary austenite,with a hardness of 755 HV;and (3) a ledeburitic structure with an acieular morphology and a hardness of 896 HV.The results also indicated that surface melting reduced the wear rate of the ADI by approximately 37%.Also,chromium surface alloying yielded a superior wear behavior and reduced the wear rate of the treated specimens by about 38% and 70%,depending on the structures formed.

  12. Influence of cobalt and chromium additions on the precipitation processes in a Cu-4Ti alloys; Influencia de la adicion de cobalto y cromo en el proceso de precipitacion en una aleacion de Cu-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2010-07-01

    The influence of 0.5% atomic cobalt and 1% atomic chromium additions on the precipitation hardening of Cu-4Ti alloy was studied by differential scanning calorimetry (DSC) and microhardness measurements. The analysis of the calorimetric curves, for binary alloy, shows the presence of two overlapping exothermic reactions (stages 1 and 2) attributed to the formation of Cu{sub 4}Ti and Cu{sub 3}Ti particles in the copper matrix, respectively. DSC curves for Cu-4Ti-0.5Co alloy shows three exothermic effects (overlapping stages 3 and 4 and stage 5) associated to the formation of phases Ti{sub 2}Co, TiCo and Cu{sub 4}Ti, respectively. DSC curves for Cu-4Ti1Cr alloy shows three exothermic reactions (stages 6, 7 and 9) and one endothermic peak (stage 8). The exothermic reactions correspond to the formation of phases Cr{sub 2}Ti, Cu{sub 4}Ti and Cu{sub 3}Ti, respectively, and the endothermic reactions are attributed to the Cr{sub 2}Ti dissolution. The activation energies calculated using the modified Kissinger method were lower than the ones corresponding to diffusion of cobalt, chromium, and titanium in copper. Kinetic parameters were obtained by a convolution method based on the Johnson-Mehl-Avrami (JMA) formalism. Microhardness measurements confirmed the formation of the mentioned phases. Also, these measurements confirmed the effect of cobalt and chromium addition on the binary alloy hardness. (Author). 31 refs.

  13. The Mechanical properties and microstructural relationships in iron--manganese--chromium alloys. [14 to 20% Mn, 13 to 18% Cr, Al and Ti additions

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.D.

    1977-01-01

    The relationships between microstructure and mechanical properties were studied for a series of Fe--Mn--Cr alloys. A combination of optical and scanning electron microscopy, EDAX analysis, and x-ray diffractometry was used to characterize the microstructures. Tensile testing and Charpy V-notch impact testing were utilized to study the mechanical properties. Triplex structures of gamma (fcc), alpha (bcc), and epsilon (hcp) were obtained in air-cool and quench-and-refrigeration heat treatments. Increasing volume fractions of metastable austenite and epsilon-martensite phases, which transform during testing, were found to have beneficial effects on the toughness and ductility properties, without significant losses in strength properties. A chromium concentration of 13 percent led to a better combination of strength and ductility than a concentration of 18 percent. The mechanical properties and preliminary corrosion results for the air-cooled 18Mn--13Cr and 16Mn--13Cr alloys are comparable to those of AISI 300 series austenitic stainless steels. These alloys show promise, therefore, as base systems for replacement austenitic stainless alloys. In addition, the 18Mn--13Cr air-cooled alloy exhibits excellent cryogenic properties, i.e., a yield strength of 360 MPa (53 ksi), an ultimate strength of 1110 MPa (161 ksi) an elongation of 60 percent, and a reduction in area of 17 percent at -196/sup 0/C. 62 figures, 9 tables.

  14. Laser cladding of Ni-based alloy on stainless steel

    Institute of Scientific and Technical Information of China (English)

    XUE Chun-fang; TIAN Xin-li; TAN Yong-sheng; WU Zhi-yuan

    2004-01-01

    The coatings on a stainless steel substrate were conducted by laser cladding of Ni-based alloy, using a 5 kW continuous wave CO2 flow transverse laser. SEM, EDX and X-ray diffraction were used to analyze the microstructure and constituent phases of the obtained coatings by laser cladding with direct injection of the powder into the melt pool. Solidification planar, cellular and dendrite structures were observed in Ni-based alloy coating. There exists an optimum metallurgical bond between Ni-based laser cladding layer and the base material. The high hardness of the Ni-based alloy coating is attributed to the presence of M7C3-type carbides (essentially chromium-riched carbide) dispersed in the γ(Ni,Fe) phase matrix.

  15. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T. [VTT Manufacturing Technology, Espoo (Finland)

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  16. Growth and structural determination of He bubbles in iron/chromium alloys using molecular dynamics simulations

    Science.gov (United States)

    Abhishek, A.; Warrier, M.; Ganesh, R.; Caro, A.

    2016-04-01

    Helium(He) produced by transmutation process inside structural material due to neutron irradiation plays a vital role in the degradation of material properties. We have carried out Molecular dynamics(MD) simulations to study the growth of He bubble in Iron-Chromium alloy. Simulations are carried out at two different temperatures, viz. 0.1 K and 800 K, upto He bubble radius of 2.5 nm. An equation for variation of volume of He bubbles with the number of He atoms is obtained at both the temperatures. Bubble pressure and potential energy variation is obtained with increasing bubble radius. Dislocations are also found to be emitted after the bubble reaches a critical radius of 0.39 nm at 800 K. Separate MD simulations of He with pre-created voids are also carried out to study the binding energies of He and Vacancy (V) to Hem-Vn cluster. Binding energies are found to be in the range of 1-5.5 eV.

  17. Cobalt-chromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Danscher, Gorm; Stoltenberg, Meredin;

    2007-01-01

    Cobalt-chromium-molybdenum (CoCrMo) metal-on-metal hip prosthesis has had a revival due to their excellent wear properties. However, particulate wear debris and metal ions liberated from the CoCrMo alloys might cause carcinogenicity, hypersensitivity, local and general tissue toxicity, genotoxicity...... and inflammation-generating qualities. Nine months after implanting small pieces of CoCrMo alloy intramuscularly and intraperitoneally in rats, we analysed the accumulation of metals with a multi-element analysis, and the levels of metallothionein I/II with real-time reverse transcriptase-polymerase chain reaction...... in liver and kidney. We found that metal ions are liberated from CoCrMo alloys and suggest that they are released by dissolucytosis, a process where macrophages causes the metallic surface to release metal ions. Animals with intramuscular implants accumulated metal in liver and kidney and metallohionein I...

  18. Effect of chromium on the corrosion behaviour of powder-processed Fe–0·45 wt% P alloys

    Indian Academy of Sciences (India)

    Yashwant Mehta; Shefali Trivedi; K Chandra; P S Mishra

    2010-08-01

    The corrosion behaviour of Fe–0·45P with/without addition of chromium, prepared by powder forging route was studied in different environments. The corrosion studies in acidic (0·25 M H2SO4 solution of pH 0·6) and neutral/marine (3·5% NaCl solution of pH 6·8) solutions were conducted using Tafel Extrapolation method. The rate of corrosion in alkaline medium (0·5 M Na2CO3 + 1·0 M NaHCO3 solution of pH 9·4) was measured using linear polarization technique. The studies compare electrolytic Armco iron with Fe–P alloys. It was observed that, chromium improved the resistance to corrosion in acidic and marine environments. The corrosion rates were minimal in alkaline medium and low in neutral solution.

  19. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.

    1999-11-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods.

  20. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E. [KMI Energy Services, Livermore, CA (United States)

    1991-03-01

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H{sub 2}S and CO{sub 2}) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering.

  1. Electrochemical investigation of chromium oxide-coated Ti-6Al-4V and Co-Cr-Mo alloy substrates.

    Science.gov (United States)

    Swaminathan, Viswanathan; Zeng, Haitong; Lawrynowicz, Daniel; Zhang, Zongtao; Gilbert, Jeremy L

    2011-08-01

    Hard coatings for articulating surfaces of total joint replacements may improve the overall wear resistance. However, any coating approach must take account of changes in corrosion behavior. This preliminary assessment analyzes the corrosion kinetics, impedance and mechanical-electrochemical stability of 100 μm thick plasma sprayed chromium oxide (Cr₂O₃) coatings on bearing surfaces in comparison to the native alloy oxide films on Co-Cr-Mo and Ti-6Al-6V. Cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, and mechanical abrasion under potentiostatic conditions were performed on coated and substrate surfaces in physiological saline. SEM analysis characterized the coating morphology. The results showed that the corrosion current density values of chromium oxide coatings (0.4-1.2 μA/cm²) were of the same order of magnitude as Ti-6Al-4V alloy. Mechanical abrasion did not increase corrosion rates of chromium oxide coatings but did for uncoated Co-Cr-Mo and Ti-6Al-4V. The impedance response of chromium oxide coatings was very different than Co-Cr-Mo and Ti-6Al-4V native oxides characterized by a defected coating model. More of a frequency-independent purely resistive response was seen in mid-frequency range for the coatings (CPE(coat) : 40-280 nF/cm² (rad/s)(1-α) , α: 0.67-0.83) whereas a more capacitive character is seen for Co-Cr-Mo and Ti-6Al-4V (CPE(ox) around 20 μF/cm² (rad/s)(1-α) , α around 0.9). Pores, interparticle gaps and incomplete fusion typical for thermal spray coatings were present in these oxides which could have influenced corrosion resistance. The coating microstructure could have allowed some fluid penetration. Overall, these coatings appear to have suitable corrosion properties for wear surfaces.

  2. Pharmacokinetic Modeling of Trivalent and Hexavalent Chromium Based on Ingestion and Inhalation of Soluble Chromium Compounds.

    Science.gov (United States)

    1991-12-01

    be largely Cr(III) although some Cr(VI) exposure probably also occurs. Stainless-steel welders are exposed to nickel as well as to chromium compounds...welders are equivocal with respect to involvement of chromium, particularly since nickel in some chemical forms is an established lung carcinogen (Stern...microglobulin (Lindberg and Vesterberg, 1983), retinol-binding protein (Franchini and Mutti , 1988), B-glucuronidase ( Mutti et al., 1979), and kidney brush border

  3. The clinical effects of artificial teeth in nickel-chromium alloy containing titanium, cobalt chromium alloy, high-gold alloy porcelain%含钛镍铬合金、钴铬合金、高金合金烤瓷牙的临床应用比较

    Institute of Scientific and Technical Information of China (English)

    李鸿飞

    2011-01-01

    Objective To compare clinical effects of the artificial teeth in nickel-chromium alloy containing titanium, cobalt chromium alloy, high-gold alloy-porcelain restorations. Methods The patients treated with nickel-chromium alloy containing titanium (n = 189, 233units) , cobalt chromium alloy (n = 206,251 units) and porcelain high-gold alloy (n =97, 118units) were observed in 3 months, 1 year, 3 years, including the color of porcelain crowns, gingival inflammation, gingival margin discoloration, and the crack or fracture or collapse of porcelain situation. Results There was no significant difference( P > 0.05 ) in color, gingival margin inflammation (3 months) , the crack or fracture or collapse of porcelain between artificial teeth in nickel-chromium alloy containing titanium andte cobalt chromium alloy-porcelain crown; the rate of gingival margin color (1 year and 3 years) of nickel-chromium alloy containing titanium group was higher than that of cobalt-chromium alloy group, and it was significantly higher than that of the high-gold alloy porcelain group ( P 0.05) . Conclusions The technic of high-gold alloy porcelain teeth has obvious advantages in chemical stability, biocompatibility and color; the artificial teeth in nickel chrome grill porcelain has been gradually replaced by the teeth made of cobalt-chromium alloy in recent years; the long term effects of Ni-Cr alloy-porcelain crown needs further research.%目的 比较含钛镍铬合金、钴铬合金、高金合金烤瓷修复体的临床应用效果.方法 选择含钛镍铬合金、钴铬合金和高金合金烤瓷修复患者分别为189例(233单位冠)、206例(251单位冠)和97例(118单位冠)修复完成后分别于3个月、1年、3年复查,检查烤瓷冠的色泽、牙龈炎症、龈缘变色以及裂纹或折裂或崩瓷情况.结果 含钛镍铬合金、钴铬合金烤瓷冠在色泽、龈缘炎症(3个月时)、裂纹或折裂或崩瓷方面无显著性差异(P>0.05);龈缘变色(1年及3

  4. Comparative study between laser sintering and casting for retention of resin composite veneers to cobalt-chromium alloy.

    Science.gov (United States)

    Muratomi, Ryuta; Kamada, Kohji; Taira, Yohsuke; Higuchi, Shizuo; Watanabe, Ikuya; Sawase, Takashi

    2013-01-01

    The purpose of this study was to evaluate and compare the bond strengths between resin composite veneer and laser-sintered cobalt-chromium (Co-Cr) alloy with and without retention devices (Laser-R and Laser-N respectively). Cast Co-Cr alloy with and without retention devices (Cast-R and Cast-N respectively) were also prepared for fabrication technique comparison. Disk-shaped Co-Cr alloy specimens were air-abraded with alumina and veneered with a veneering system, Estenia C&B (ES) or Ceramage (CE). After 20,000 thermocycles, tensile testing was performed. Data were analyzed by ANOVA and multiple comparison test. When no retention devices were present, no significant differences were observed between Laser-N/ES and Cast-N/ES, or between Laser- N/CE and Cast-N/CE, but ES exhibited significantly higher bond strength than CE. With retention devices, Laser-R/ES, Cast- R/ES and Laser-R/CE showed no significant differences, and their retention strengths were significantly higher than that of Cast- R/CE. Compared to cast Co-Cr alloy, laser-sintered Co-Cr alloy with retention devices provided better retention durability for resin composite-veneered prostheses.

  5. Effect of chromium on the corrosion resistance of aluminide coatings on nickel and nickel-based substrates

    Energy Technology Data Exchange (ETDEWEB)

    Godlewski, K.; Godlewska, E.

    1987-04-01

    The aluminide and Cr-Al diffusion coatings on nickel and the nickel-based alloy EI 867 obtained by a two-step pack cementation technique were subjected to various corrosion tests consisting of oxidation under thermal cycling conditions as well as isothermal oxidation in the presence of fused Na/sub 2/SO/sub 4/. The presence of chromium in the surface layer of aluminide coatings had a beneficial effect on their resistance to oxidation in that the oxide layer formed was less prone to spallation. This type of coating microstructure also appeared to be advantageous with respect to hot corrosion since pitting, which is typical of the degradation of aluminide coatings, was not observed. It is postulated that the chromium-enriched zone acts as a barrier to the oxidation of refractory metals (molybdenum, tungsten and vanadium) present in somewhat deeper coating layers in the form of carbide or intermetallic phases, thus preventing the onset of catastrophic corrosion.

  6. Effect of cleanser solutions on the color of acrylic resins associated with titanium and nickel-chromium alloys

    Directory of Open Access Journals (Sweden)

    Helena de Freitas Oliveira Paranhos

    2014-06-01

    Full Text Available This study evaluated the effect of cleanser solutions on the color of heat-polymerized acrylic resin (HPAR and on the brightness of dental alloys with 180 immersion trials. Disk-shaped specimens were made with I commercially pure titanium, II nickel-chromium-molybdenum-titanium, III nickel-chromium molybdenum, and IV nickel-chromium-molybdenum beryllium. Each cast disk was invested in the flasks, incorporating the metal disk into the HPAR. The specimens (n = 5 were then immersed in solutions containing: 0.05% sodium hypochlorite, 0.12% chlorhexidine digluconate, 0.500 mg cetylpyridinium chloride, a citric acid tablet, one of two different sodium perborate/enzyme tablets, and water. The color measurements (∆E of the HPAR were determined by a colorimeter in accordance with the National Bureau of Standards. The surface brightness of the metal was visually examined for the presence of tarnish. The results (ANOVA; Tukey test-α = 0.05 show that there was a significant difference between the groups (p < 0.001 but not among the solutions (p = 0.273. The highest mean was obtained for group III (5.06, followed by group II (2.14. The lowest averages were obtained for groups I (1.33 and IV (1.35. The color changes in groups I, II and IV were slight but noticeable, and the color change was considerable for group III. The visual analysis showed that 0.05% sodium hypochlorite caused metallic brightness changes in groups II and IV. It can be concluded that the agents had the same effect on the color of the resin and that the metallic alloys are not resistant to the action of 0.05% sodium hypochlorite.

  7. Effect of cleanser solutions on the color of acrylic resins associated with titanium and nickel-chromium alloys.

    Science.gov (United States)

    Freitas Oliveira Paranhos, Helena de; Bezzon, Osvaldo Luiz; Davi, Letícia Resende; Felipucci, Daniela Nair Borges; Silva, Cláudia Helena Lovato da; Pagnano, Valéria Oliveira

    2014-01-01

    This study evaluated the effect of cleanser solutions on the color of heat-polymerized acrylic resin (HPAR) and on the brightness of dental alloys with 180 immersion trials. Disk-shaped specimens were made with I) commercially pure titanium, II) nickel-chromium-molybdenum-titanium, III) nickel-chromium molybdenum, and IV) nickel-chromium-molybdenum beryllium. Each cast disk was invested in the flasks, incorporating the metal disk into the HPAR. The specimens (n=5) were then immersed in solutions containing: 0.05% sodium hypochlorite, 0.12% chlorhexidine digluconate, 0.500 mg cetylpyridinium chloride, a citric acid tablet, one of two different sodium perborate/enzyme tablets, and water. The color measurements (∆E) of the HPAR were determined by a colorimeter in accordance with the National Bureau of Standards. The surface brightness of the metal was visually examined for the presence of tarnish. The results (ANOVA; Tukey test-α=0.05) show that there was a significant difference between the groups (p<0.001) but not among the solutions (p=0.273). The highest mean was obtained for group III (5.06), followed by group II (2.14). The lowest averages were obtained for groups I (1.33) and IV (1.35). The color changes in groups I, II and IV were slight but noticeable, and the color change was considerable for group III. The visual analysis showed that 0.05% sodium hypochlorite caused metallic brightness changes in groups II and IV. It can be concluded that the agents had the same effect on the color of the resin and that the metallic alloys are not resistant to the action of 0.05% sodium hypochlorite.

  8. THE INVESTIGATION ON PLASMA ARC TREATMENT OF CHROMIUM PLATED ALLOY STRUCTURE STEEL

    Institute of Scientific and Technical Information of China (English)

    X.M. Fan; J.W. Huang; K.H. Wang; Q. Liu

    2005-01-01

    The technology of plasma arc was used to modify the interface adhesion between chromium coating and steel substrate. The interface microstructure was studied as a function of plasma arc processing parameters. Microstructure analysis was performed by optical microscopy,scanning electron microscopy and electron probe. The microhardness distribution along the depth of a cross-section of the chromium coating and the substrate was measured. The results show the energy density of transferred plasma arc is obviously higher than plasma non-transferred arc. The molten interface was obtained by plasma transferred arc. Interfaces between chromium coating and steel substrate can be divided by plasma non-transferred arc into three classes: non-molten, a little molten and molten. Good interface bonding was obtained by proper process parameters. The microhardness of chromium coating decreases with increasing energy density of plasma arc.

  9. High temperature oxidation behavior of ODS iron-base alloys for nuclear energy application

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Zhou, Z.; Liao, L.; Chen, W.; Ge, C. [Univ. of Science and Technology Beijing, School of Materials Science and Engineering, Beijing (China)

    2010-07-01

    Oxide dispersion strengthened (ODS) iron based alloys are considered as promising high temperature structural material for advanced nuclear energy systems due to its higher creep strength and radiation damage resistance than conventional commercial steels. In this study, the oxidation behavior of ODS iron based alloys with different Cr content (12-18%) was investigated by exposing samples at high temperature of 700℃ and 1000℃ in atmosphere environment, the exposure time is up to 500 h. Results showed that 14Cr and 18Cr ODS alloys exhibited better oxidation resistance than 12Cr ODS alloys. For the same chromium content, the oxidation resistance of ODS alloys are better than that of non-ODS alloys. (author)

  10. An investigation of force components in orthogonal cutting of medical grade cobalt-chromium alloy (ASTM F1537).

    Science.gov (United States)

    Baron, Szymon; Ahearne, Eamonn

    2017-02-01

    An ageing population, increased physical activity and obesity are identified as lifestyle changes that are contributing to the ongoing growth in the use of in-vivo prosthetics for total hip and knee arthroplasty. Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, due to their mechanical properties and excellent biocompatibility, qualify as a class of materials that meet the stringent functional requirements of these devices. To cost effectively assure the required dimensional and geometric tolerances, manufacturers rely on high-precision machining. However, a comprehensive literature review has shown that there has been limited research into the fundamental mechanisms in mechanical cutting of these alloys. This article reports on the determination of the basic cutting-force coefficients in orthogonal cutting of medical grade Co-Cr-Mo alloy ASTM F1537 over an extended range of cutting speeds ([Formula: see text]) and levels of undeformed chip thickness ([Formula: see text]). A detailed characterisation of the segmented chip morphology over this range is also reported, allowing for an estimation of the shear plane angle and, overall, providing a basis for macro-mechanic modelling of more complex cutting processes. The results are compared with a baseline medical grade titanium alloy, Ti-6Al-4V ASTM F136, and it is shown that the tangential and thrust-force components generated were, respectively, ≈35% and ≈84% higher, depending primarily on undeformed chip thickness but with some influence of the cutting speed.

  11. Effect of alloying elements on the composition of carbide phases and mechanical properties of the matrix of high-carbon chromium-vanadium steel

    Science.gov (United States)

    Titov, V. I.; Tarasenko, L. V.; Utkina, A. N.

    2017-01-01

    Based on the results of phase physicochemical analysis of high-carbon chromium-vanadium steel, the predominant type of carbide that provides high wear resistance has been established, and its amount and amount of carbon in martensite have been determined. Data on the composition and the amount of carbide phase and on the chemical composition of the martensite of high-carbon steel have been obtained, which allows determination of the alloying-element concentration limits. The mechanical testing of heats of a chosen chemical composition has been carried out after quenching and low-temperature tempering. The tests have demonstrated benefits of new steel in wear resistance and bending strength with the fatigue strength being retained, compared to steels subjected to cementation. The mechanism of secondary strengthening of the steel upon high-temperature tempering has been revealed. High-temperature tempering can be applied to articles that are required to possess both high wear resistance and heat resistance.

  12. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p S. mutans-treated Ni-based dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  13. Mg based alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, S. [Univ. de Santiago de Chile (Chile). Fac. de Ingenieria; Garcia, G.; Serafini, D.; San Martin, A.

    1999-07-01

    In the present work, we studied the production of magnesium alloys, of stoichiometry 2Mg + Ni, by mechanical alloying (MA) and the behavior of the alloys under hydrogen in a Sievert`s type apparatus. The elemental powders were milled under argon atmosphere in a Spex 8000 high energy ball mill. The milled materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Only minimum amounts of the Mg{sub 2}Ni intermetallic compound was obtained after 22 h of milling time. Most of the material was sticked to the inner surface of the container as well as to the milling balls. Powders milled only for 12 hours transforms to the intermetallic at around 433 K. Effects of the MA on the hydrogen absorption kinetics were also studied. (orig.) 10 refs.

  14. Corrosion-resistant nickel-base alloys for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.W.; Hulsizer, W.R.

    1976-08-01

    Laboratory corrosion screening procedures used during the past ten years in developing nickel-base superalloys for gas turbine applications are described. Hot salt corrosion tests have included crucible and salt shower exposures. Reproducible techniques were established and alloy composition effects defined, leading to development of M313, IN-587, a IN-792. Correlations have been made with corrosion results in burner rigs, and engine experience confirming anticipated behavior is now becoming available. During this work a number of limitations of these accelerated laboratory tests were uncovered; these are discussed. Finally, brief descriptions of the states of development of alloy MA 755E (an oxide dispersion-strengthened superalloy) and IN-939 (a cast 23 percent chromium superalloy) are outlined as examples of advanced corrosion resistant, high strength materials of the future.

  15. Studies on the process aspects related to chemical decontamination of chromium-containing alloys with redox processes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.S.; Suresh, S.; Chandran, S.; Velmurugan, S.; Narasimhan, S.V. [Water and Steam Chemistry Lab. of Bhabha Atomic Research Centre (India); Rajesh, P. [Applied Chemistry Div. of Bhabha Atomic Research Centre (India)

    2004-08-01

    Presence of chromium in the oxide layer makes oxidative pre-treatment with oxidizing agents such as potassium permanganate (KMnO{sub 4}) a must for the decontamination of stainless steels and other chromium containing alloys. The effectiveness of pre-treatment with oxidizing reagent varies with the conditions of treatment such as temperature, concentration and whether the medium is acidic or alkaline. A comparative study of the two acidic oxidizing agents, i.e., nitric acid-permanganate and permanganic acid was made. The dissolution behavior of copper and its oxide in permanganic acid was found to be comparable to that of chromium oxide. Citric acid and ascorbic acid were investigated as alternatives to oxalic acid for the reduction/decomposition of permanganate left over after the oxidizing pre-treatment step. It has been established that the reduction of chromate by citric acid is instantaneous only in presence of Mn{sup 2+} ions. It has also been established that reduction of residual permanganate can be achieved with ascorbic acid and with minimum chemical requirement. The capabilities of nitrilotriacetic acid (NTA)-ascorbic acid mixture for the dissolution of hematite have been explored. This study would help to choose the suitable oxidizing agent, the reducing agent used for decomposition of permanganate and to optimize the concentration of reducing formulation so that the process of decontamination is achieved with a minimum requirement of chemicals. The generation of radioactive ion exchange resin as waste is therefore held at a minimum. Ion exchange studies with metal ion complexes of relevance to decontamination were carried out with a view to choose a suitable type of ion exchanger. It has been established that treatment of the ion exchange resin with brine solution can solve the problem of leaching out of non-ionic organics from the resin. (orig.)

  16. Health implication among occupational exposed workers in a chromium alloy factory,Thailand

    Institute of Scientific and Technical Information of China (English)

    S. Muttamara; Shing Tet Leong

    2004-01-01

    This study was conducted to assess the occupational exposure and its health impact on the chromium alloyworkers. Environmental and biological monitoring, noise and audiometry measurements were done to evaluate theexposure levels in the factory. A total of 112 non-smoking workers were monitored from July 2001 to August 2002.The results showed that most of the chromium and lead exposures in the factory were below the ACGIH-TWA of 50μg/m3 for chromium( Ⅵ ) and OSHA-PEL of 50 μg/m3 for lead. The highest chromium(7.25 ± 0. 16 μg/m3 ) and lead(14.50 ± 0.29 μg/m3) concentrations were measured in the vibro room. The results indicated that elevatedconcentrations of chromium and lead were found in both blood and urine samples especially in those areas whichwere characterized by poor ventilation. The metal contents in blood and urine samples were significantly correlatedwith airborne metal concentrations in the factory. The result demonstrated that blood and urinary levels amongworkers were associated with increasing age and duration of exposure.The background noise level of the factory ranged from 67.6 to 89.2 dBA and was frequently higher than thethreshold limit value for noise(90 dBA). According to the audiometric test, the exposed workers showed signs ofnoise-induced hearing loss. Noise at work continued to be an important factor to hearing loss among exposedworkers. In our statistical analysis, a significant hearing loss was established on age effect and year of exposureamong the workforce.

  17. Effect of selective laser melting deposition cobalt chromium alloy porcelain crown restoration on related molecule contents in serum and gingival crevicular fluid

    Institute of Scientific and Technical Information of China (English)

    Yu-Hua Wei; Lei Yang

    2015-01-01

    Objective:To study the effect of selective laser melting deposition cobalt chromium alloy porcelain crown restoration on contents of inflammatory cytokines and adhesion molecules in serum and gingival tissue.Methods:80 cases of patients who received cobalt chromium alloy porcelain crown restoration in our hospital from May 2013 to August 2014 were enrolled and randomly divided into two groups. Observation group received selective laser melting deposition cobalt chromium alloy porcelain crown restoration and control group received casting cobalt chromium metal porcelain crown restoration. Then contents of inflammatory cytokines and adhesion molecules in serum and gingival crevicular fluid of both groups were detected.Results: (1) Inflammatory cytokines: compared with serum inflammatory cytokine contents of control group, serum NF-κB, IL-6, IL-8, IL-1β, TNF-α and NO contents of observation group trended to decrease; (2) Adhesion molecules in gingival crevicular fluid: compared with adhesion molecule contents in gingival crevicular fluid of control group, mRNA contents of CD11a, CD18, LFA-1, E-selectin and P-selectin in gingival crevicular fluid of observation group trended to decrease; (3) Adhesion molecules in serum: compared with adhesion molecule contents in serum of control group, sICAM-1 and sVCAM-1 contents in serum of observation group were lower.Conclusion: Selective laser melting deposition cobalt chromium alloy porcelain crown restoration is helpful to relieve inflammatory response of gingival tissue, with expression of decreased generation of inflammatory cytokines and adhesion molecules; it’s an ideal material for crown restoration.

  18. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio and...

  19. The Effect of Artificial Aging on The Bond Strength of Heat-activated Acrylic Resin to Surface-treated Nickel-chromium-beryllium Alloy

    Science.gov (United States)

    Al Jabbari, Youssef S.; Zinelis, Spiros; Al Taweel, Sara M.; Nagy, William W.

    2016-01-01

    Purpose The debonding load of heat-activated polymethylmethacrylate (PMMA) denture base resin material to a nickel-chromium-beryllium (Ni-Cr-Be) alloy conditioned by three different surface treatments and utilizing two different commercial bonding systems was investigated. Materials and Methods Denture resin (Lucitone-199) was bonded to Ni-Cr-Be alloy specimens treated with Metal Primer II, the Rocatec system with opaquer and the Rocatec system without opaquer. Denture base resin specimens bonded to non-treated sandblasted Ni-Cr-Be alloy were used as controls. Twenty samples for each treatment condition (80 specimens) were tested. The 80 specimens were divided into two categories, thermocycled and non-thermocycled, containing four groups of ten specimens each. The non-thermocycled specimens were tested after 48 hours’ storage in room temperature water. The thermocycled specimens were tested after 2,000 cycles in 4°C and 55°C water baths. The debonding load was calculated in Newtons (N), and collected data were subjected by non parametric test Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn’s post hoc test at the α = 0.05. Results The Metal Primer II and Rocatec system without opaquer groups produced significantly higher bond strengths (119.9 and 67.6 N), respectively, than did the sandblasted and Rocatec system with opaquer groups, where the bond strengths were 2.6 N and 0 N, respectively. The Metal Primer II was significantly different from all other groups (P<0.05). The bond strengths of all groups were significantly decreased (P<0.05) after thermocycling. Conclusions Although thermocycling had a detrimental effect on the debonding load of all surface treatments tested, the Metal Primer II system provided higher values among all bonding systems tested, before and after thermocycling. PMID:27335613

  20. Theoretical study of the correlation between magnetism and the properties of defects in iron, chromium and their alloys; Etude theorique de la correlation entre le magnetisme et les proprietes des defauts dans le fer, le chrome et leurs alliages

    Energy Technology Data Exchange (ETDEWEB)

    Soulairol, R.

    2011-09-15

    This PhD thesis is devoted to the study of the correlation between the magnetism and the properties of defects in 3d metals, mainly iron- and chromium-based systems, which are used in many technological applications, such as the new-generation nuclear reactors. This work is based on two complementary approaches: the Density Functional Theory (DFT) and a Tight Binding model (TB). We begin this study by the properties of pure materials such as chromium and {alpha}-iron. For the first one, we observe that the presence of a spin density wave (SDW) induces an anisotropy in the formation of point defects as well as the migration of vacancies. For the second, the solution energy of various 3d impurities depends on two terms: a chemical contribution mainly linked to the difference between the number of d electrons of iron and solute, and a magnetic contribution that reveals to be predominant in Fe-Cr. In the following parts, we tackle the correlation between magnetism and extended defects. We show in particular that the existence of magnetic frustrations near Fe/Cr interfaces can lead to the creation of non collinear magnetic structures. It also influences the energetic stability of these interfaces. We have noticed, in agreement with experimental findings, the presence of SDW near Fe/Cr interfaces, which is able to decrease those magnetic frustrations at the interface. We have also studied the magnetic structure of iron or chromium clusters embedded in an Fe-Cr alloy. We have finally shown, in the last part of this work, how the TB approach was able to account for the energetic and magnetic properties of defects not only in pure iron or chromium, but also in Fe-Cr alloys. (author)

  1. Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates

    Science.gov (United States)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Egorova, L. Yu.; Suaridze, T. R.

    2015-03-01

    A sharp cubic texture is formed in a number of copper alloys subjected to cold deformation by rolling by 98.6-99% followed by recrystallization annealing, which opens up fresh opportunities for long thin ribbons made of these alloys to be used as substrates in the production of second-generation high- T c superconductor (2G HTSC) cables. The possibility of creating ternary alloys based on a binary Cu-30 at % Ni alloy with additional elements that harden its fcc matrix (iron, chromium) is shown. The measurements of the mechanical properties of textured ribbons made of these alloys demonstrate that their yield strength is higher than that of a textured ribbon made of pure copper by a factor of 2.5-4.5.

  2. The three dimensional distribution of chromium and nickel alloy welding fumes.

    Directory of Open Access Journals (Sweden)

    Takeoka,Kiyoshi

    1991-08-01

    Full Text Available In the present study, the fumes generated from manual metal arc (MMA and submerged metal arc (SMA welding of low temperature service steel, and the chromium and nickel percentages in these fumes, were measured at various horizontal distances and vertical heights from the arc in order to obtain a three dimensional distribution. The MMA welding fume concentrations were significantly higher than the SMA welding fume concentrations. The highest fume concentration on the horizontal was shown in the fumes collected directly above the arc. The fume concentration vertically was highest at 50 cm height and reduced by half at 150 cm height. The fume concentration at 250 cm height was scarcely different from that at 150 cm height. The distribution of the chromium concentration vertically was analogous to the fume concentration, and a statistically significant difference in the chromium percentages was not found at the different heights. The nickel concentrations were not statistically significant within the welding processes, but the nickel percentages in the SMA welding fumes were statistically higher than in the MMA welding fumes. The highest nickel concentration on the horizontal was found in the fumes collected directly above the arc. The highest nickel concentration vertically showed in the fume samples collected at 50 cm height, but the greater the height the larger the nickel percentage in the fumes.

  3. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    Science.gov (United States)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  4. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Michelic, S.K., E-mail: susanne.michelic@unileoben.ac.at [Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Loder, D. [Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Reip, T.; Ardehali Barani, A. [Outokumpu Nirosta GmbH, Essener Straße 244, 44793 Bochum (Germany); Bernhard, C. [Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2015-02-15

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an early process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information

  5. Properties of laser alloyed surface layers on magnesium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Galun, R.; Weisheit, A.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Werkstoffkunde und Werkstofftechnik)

    1998-01-01

    The investigations have shown that laser surface alloying is a promising process to improve the wear and corrosion properties of magnesium base alloys without affecting the initial bulk properties like the low density. With an alloying element combination of aluminium and nickel the wear rate in the scratch test was reduced by 90% compared to untreated pure magnesium. Additionally the corrosion resistance was improved by laser alloying with this element combination. Because of distortion or crack formation in the case of large area treatments, the laser alloying should be limited to the treatment of smaller areas. In the near future this process could be an interesting alternative to surface coating or to a partially reinforcement with ceramic fibres or particles. (orig.)

  6. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy

    Science.gov (United States)

    Musani, Smita; Musani, Iqbal; Dugal, Ramandeep; Habbu, Nitin; Madanshetty, Pallavi; Virani, Danish

    2013-01-01

    Background: The purpose of this study was to evaluate and compare the micro tensile bond strength of two metal bonding resin cements to sandblasted cobalt chromium alloy. Materials & Methods: Eight, Cobalt chromium alloy blocks of dimensions 10x5x5 mm were cast, finished and polished. One of the faces of each alloy block measuring 5x5mm was sandblasted with 50 μm grit alumina particles. The alloy blocks were then cleaned in an ultrasonic cleaner for 1 min and then air dried with an air stream. The Sandblasted surfaces of the two alloy blocks were bonded together with 2 different metal bonding resin systems (Panavia F Kuraray and DTK Kleber – Bredent). The samples were divided into 2 groups (n=4). Group 1- Two Co-Cr blocks were luted with Panavia cement. Group 2- Two Co-Cr blocks were luted with DTK Kleber-Bredent cement. The bonded samples were cut with a diamond saw to prepare Microtensile bars of approximately 1mm x 1mm x 6mm. Thirty bars from each group were randomly separated into 2 subgroups (n=15) and left for 3hrs (baseline) as per manufacturer's instructions while the other group was aged for 24hrs in 370C water, prior to loading to failure under tension at a cross head speed of 1mm/min. Failure modes were determined by means of stereomicroscopy (sm). Statistical analysis was performed through one way – ANOVA. Results: Significant variation in micro-tensile bond strength was observed between the two metal bonding resin systems. Conclusion: DTK showed higher mean bond strength values than Panavia F cement both at baseline and after aging. How to cite this article: Musani S, Musani I, Dugal R, Habbu N, Madanshetty P, Virani D. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy. J Int Oral Health 2013;5(5):73-8. PMID:24324308

  7. 选择性激光熔化钴铬合金基底冠与铸造钴铬合金基底冠边缘适合性比较%Evaluation of marginal fit in vitro between selective laser melting deposition basal crowns and cobalt chromium alloy base crowns

    Institute of Scientific and Technical Information of China (English)

    李靖敏; 王维倩; 马婧媛

    2014-01-01

    Objective To evaluate the marginal fit in vitro between selective laser melting deposition basal crowns and cobalt chromi-um alloy casting base crowns.Methods Twenty working dies were created from a single master die and were used to fabricate twenty copings in each as the following groups:A(selective laser melting deposition basal crowns,n=1 0),B(cobalt-chrome alloy basal crown, n=1 0).All the metal copings were fabricated according to manufacturers.The restorations were seated on the master die,and high-reso-lution digital photographs were taken of the marginal area on all four sides.The vertical marginal gap was then measured using a calibra-ted digital software program.Analysis of Variance was used to determine the differences using SPSS 20.0 software package.Results The mean marginal gaps were:group A:(48.20 ±4.61 )μm;group B:(77.90 ±6.26)μm .There was significant difference between two groups.Conclusions The marginal gaps of two different metal copings are clinically acceptable.The selective laser melting deposi-tion copings resulted in smaller marginal gaps than cobalt-chrome copings,which shows that the marginal fit of elective laser melting deposition copings is better than cobalt-chrome copings.%目的:评价选择性激光熔化钴铬合金烤瓷冠和传统铸造钴铬合金烤瓷冠的边缘适合性。方法制作下颌第一磨牙全冠牙体制备标准金属代型1个,复制并灌注石膏模型后,制作选择性激光熔化钴铬合金基底冠和铸造钴铬合金基底冠各10个,依次将其就位于金属标准代型上。在体式显微镜下,对基底冠边缘与金属代型肩台之间的适合度进行观察,用 CCD 数字图像捕捉系统进行成像,并用专业测量软件测量边缘缝隙宽度。最后计算各组10个样本的平均值,采用 SPSS 20.0软件包对数据进行统计学处理。结果选择性激光熔化钴铬合金基底冠和传统铸造钴铬合金基底冠平均

  8. OPTIMIZATION OF TECHNOLOGY PERTAINING TO PROCESSING OF MECHANICALLY ALLOYED AND DISPERSIVELY HARDENED NICKEL-CHROMIUM COMPOSITIONS IN SEMI-FINISHED PRODUCTS

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2010-01-01

    Full Text Available The paper investigates an influence of main technological factors pertaining to processing operations (annealing and hot-tempered  compaction of nano-structural mechanically alloyed granulated nickel-chromium compositions on the properties of highly strong compact semi-products with inter-metallide and oxide hardening. Optimization of the process, phase composition and structure of semi-products have been executed and investigated in the paper.

  9. Electronic structure of liquid iron alloys with manganese, chromium, and vanadium

    Science.gov (United States)

    Kudryavtseva, E. D.; Singer, V. V.; Radovskii, I. Z.; Dovgopol, S. P.; Vorontsov, B. S.; Gel'D, P. V.

    1983-01-01

    Electrical resistivity of liquid FeCr, FeV, and FeMn alloys has been measured in the concentration range between 0 and 70% (by weight) of the dopping element, and over the temperature interval from tmelting to 1750°C. Using the Faber-Ziman-Evans method, concentration dependences of the electrical resistivity of liquid FeCr, FeV, and FeMn alloys have been calculated. Concentration dependences of the number of electrons per atom have been estimated.

  10. Cobalt-Base Alloy Gun Barrel Study

    Science.gov (United States)

    2014-07-01

    are presented in Section 5. 2. Materials and methods The composition of the cobalt -base alloy (CBA) is presented in Table 1. The production of this... Cobalt -Base Alloy Gun Barrel Study by William S. de Rosset and Jonathan S. Montgomery ARL-RP-0491 July 2014 A reprint...21005-5069 ARL-RP-0491 July 2014 Cobalt -Base Alloy Gun Barrel Study William S. de Rosset and Jonathan S. Montgomery Weapons and Materials

  11. XPS and electrochemical impedance spectroscopy studies on effects of the porcelain firing process on surface and corrosion properties of two nickel-chromium dental alloys.

    Science.gov (United States)

    Qiu, Jing; Tang, Chun-bo; Zhu, Zhi-jun; Zhou, Guo-xing; Wang, Jie; Yang, Yi; Wang, Guo-ping

    2013-11-01

    The aim of this study was to evaluate the effects of a simulated porcelain firing process on the surface, corrosion behavior and cell culture response of two nickel-chromium (Ni-Cr) dental alloys. A Be-free alloy and a Be-containing alloy were tested. Before porcelain firing, as-cast specimens were examined for surface composition using X-ray photoelectron spectroscopy and metallurgical phases using X-ray diffraction. Corrosion behaviors were evaluated using electrochemical impedance spectroscopy. 3T3 fibroblasts were cultured and exposed indirectly to specimens. MTT assays were counted after 3 and 6 days. The cell culture mediums exposed to specimens were analyzed for metal ion release. After porcelain firing, similar specimens were examined for the same properties. In both as-cast and fired conditions, the Be-free Ni-Cr alloy showed significantly more resistance to corrosion than the Be-containing Ni-Cr alloy, which exhibited BeNi phase. After porcelain firing, the corrosion resistance of the Be-free Ni-Cr alloy decreased statistically, corresponding with evident decreases of Cr and Ni oxides on the alloy surface. Also, the alloy's MTT assay decreased significantly corresponding with an obvious increase of Ni-ion release after the firing. For the Be-containing Ni-Cr alloy, the firing process led to increases of surface oxides and metallic Be, while its corrosion resistance and cell culture response were not significantly changed after porcelain firing. The results suggested that the corrosion resistance and biocompatibility of the Be-free Ni-Cr alloy decreased after porcelain firing, whereas the firing process had little effect on the same properties of the Be-containing Ni-Cr alloy.

  12. Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel.

    Science.gov (United States)

    Midander, Klara; de Frutos, Alfredo; Hedberg, Yolanda; Darrie, Grant; Wallinder, Inger Odnevall

    2010-07-01

    research effort was therefore conducted to generate quantitative bioaccessibility data for particles of ferro-chromium alloys compared with particles of the pure metals and stainless steel exposed at in vitro conditions in synthetic biological media of relevance for particle inhalation and ingestion. All results are presented combining bioaccessibility data with aspects of particle characteristics, surface composition, and barrier properties of surface oxides. Iron and chromium were the main elements released from ferro-chromium alloys upon exposure in synthetic biological media. Both elements revealed time-dependent release processes. One week exposures resulted in very small released particle fractions being less than 0.3% of the particle mass at acidic conditions and less than 0.001% in near pH-neutral media. The extent of Fe released from ferro-chromium alloy particles was significantly lower compared with particles of pure Fe, whereas Cr was released to a very low and similar extent as from particles of pure Cr and stainless steel. Low release rates are a result of a surface oxide with passive properties predominantly composed of chromium(III)-rich oxides and silica and, to a lesser extent, of iron(II,III)oxides. Neither the relative bulk alloy composition nor the surface composition can be used to predict or assess the extent of metals released in different synthetic biological media. Ferro-chromium alloys cannot be assessed from the behavior of their pure metal constituents.

  13. Black and green pigments based on chromium-cobalt spinels

    Energy Technology Data Exchange (ETDEWEB)

    Eliziario, Sayonara A., E-mail: sayonaraea@iq.unesp.br [Departamento de Fisico-Quimica, Instituto de Quimica, UNESP - Univ Estadual Paulista, Araraquara, SP (Brazil); Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Andrade, Jeferson M. de [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Lima, Severino J.G. [Departamento de Engenharia Mecanica, CT, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Paskocimas, Carlos A. [Universidade Federal do Rio Grande do Norte, CT, Natal, RN (Brazil); Soledade, Luiz E.B. [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil); Hammer, P.; Longo, E. [Departamento de Fisico-Quimica, Instituto de Quimica, UNESP - Univ Estadual Paulista, Araraquara, SP (Brazil); Souza, Antonio G.; Santos, Ieda M.G. [Departamento de Quimica, CCEN, Universidade Federal da Paraiba, Campus I, Joao Pessoa, PB (Brazil)

    2011-09-15

    Highlights: {yields} Co(Co{sub 2-x}Cr{sub x})O{sub 4} powders with different chromium concentrations (x = 0, 0.25 and 1) were prepared by the polymeric precursor method. {yields} Co(CoCr)O{sub 4} and Co(Co{sub 1.75}Cr{sub 0.25})O{sub 4} displayed a dark color and CoCr{sub 2}O{sub 4} was green. {yields} The colors were related to the different oxidation states of Cr and Co. {yields} Cobalt enrichment result in an increasing presence of Co(III) and a decrease amount of Cr(VI). - Abstract: Chromium and cobalt oxides are widely used in the manufacture of industrial pigments. In this work, the Co(Co{sub 2-x}Cr{sub x})O{sub 4} powders with different chromium concentrations (x = 0, 0.25 and 1) were synthesized by the polymeric precursor method, heat treatment between 600 and 1000 deg. C. These powders were characterized by X-ray diffraction, infrared spectroscopy, colorimetry, UV-vis absorption and X-ray photoelectron spectroscopies. Even with the addition of chromium, the XRD patterns revealed that all powders crystallize in a single spinel cubic structure. The spinels with higher cobalt amount, Co(CoCr)O{sub 4} and Co(Co{sub 1.75}Cr{sub 0.25})O{sub 4}, displayed a dark color, without the Co{sup 3+} reduction observed in Co{sub 3}O{sub 4} between 900 and 950 deg. C. The spinel with higher chromium amount, CoCr{sub 2}O{sub 4}, was green. The colors were directly related to the occupation of tetrahedral and octahedral sites by the chromophores, as well as to the different oxidation states of chromium and cobalt. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels within the band gap. X-ray photoelectron spectroscopy confirmed an increasing presence of Co(III) and a decreasing amount of Cr(VI) with cobalt enrichment.

  14. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    Directory of Open Access Journals (Sweden)

    Christian Schröder

    2015-01-01

    Full Text Available Retropatellar complications after total knee arthroplasty (TKA such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics.

  15. Material composition and nuclear data libraries' influence on nickel-chromium alloys activation evaluation: a comparison with decay heat experiments

    CERN Document Server

    Cepraga, D G

    2000-01-01

    The paper presents the activation analyses on Inconel-600 nickel-chromium alloy. Three activation data libraries, namely the EAF-4.1, the EAF-97 and the FENDL/A-2, and the FENDL/D-2 decay data library, have been used to perform the calculation with the European activation code ANITA-4/M. The neutron flux distribution into the material samples was provided by JAERI as results of 3D Monte-Carlo MCNP transport code experiment simulation. A comparison with integral decay heat measurement performed at the Fusion Neutronics Source (FNS), JAERI, Tokai, Japan, is used to validate the computational approach. The calculation results are given and discussed. The impact of the material composition, including impurities, on the decay heat of samples irradiated in fusion-like neutron spectra is assessed and discussed. The discrepancies calculations-experiments are within the experimental errors, that is between 6% and 10%, except for the short cooling times (less than 40 min after the end of irradiation). To improve calcul...

  16. Electrical conductivity and phase diagram of binary alloys. 21: The system palladium-chromium

    Science.gov (United States)

    Grube, G.; Knabe, R.

    1985-01-01

    Pd-Cr alloys were investigated by thermal analysis, hardness measurements, X-ray analysis, microscopic examination of etched pieces, and temperature-resistance curves of the solid alloys. Only one compound, Pd2Cr3, m, 1389 deg, is formed. It possesses a cubic face centered lattice and forms with excess Pd a series of solid solutions with a minimum m.p. at 45 atoms% Pd. Hardness maximum appears at the Pd2Cr3 point. Pd2Cr3 forms no solid solutions with Cr but eutectic point appears at 25 atoms% Pd, m. 1320 deg. The sp. resistance of pure Cr in an atom of H, indicates no allotropic forms. Cr2O3 is solid in molten Cr. Pure Cr melts at 1890 plus or minus 10 deg but Cr contg. Cr2O3 starts to melt at 1770 to 1790 deg.

  17. Gallium suboxide vapor attack on chromium, cobalt, molybdenum, tungsten and their alloys at 1200 [degrees] C

    Energy Technology Data Exchange (ETDEWEB)

    Kolman, D. G. (David G.); Taylor, T. N. (Thomas N.); Park, Y. (Youngsoo); Stan, M. (Marius); Butt, D. P. (Darryl P.); Maggiore, C. J. (Carl J.); Tesmer, Joseph R.; Havrilla, G. J. (George J.)

    2004-01-01

    Our prior work elucidated the failure mechanism of furnace materi als (304 SS, 316 SS, and Hastelloy C-276) exposed to gallium suboxide (Ga{sub 2}O) and/or gallium oxide (Ga{sub 2}O{sub 3}) during plutonium - gallium compound processing. Failure was hypothesized to result from concurrent alloy oxidation/Ga compound reduction followed by Ga uptake. The aim of the current work is to screen candidate replacement materials. Alloys Haynes 25 (49 Co - 20 Cr - 15 W - 10 Ni - 3 Fe - 2 Mn - 0.4 Si, wt%), 52 Mo - 48 Re (wt%), 62 W - 38 Cu (wt%), and commercially pure Cr, Co, Mo, W, and alumina were examined. Preliminary assessments of commercially pure W and Mo - Re suggest that these materials may be suitable for furnace construction. Thermodynamics calculations indicating that materials containing Al, Cr, Mn, Si, and V would be susceptible to oxidation in the presence of Ga{sub 2}O were validated by experimental results. In contrast to that reported previously, an alternate reaction mechanism for Ga uptake, which does not require concurrent alloy oxidation, controls Ga uptake for certain materials. A correlation between Ga solubility and uptake was noted.

  18. The chromium doping of Ni{sub 3}Fe alloy and restructuring of grain boundary ensemble at the phase transition A1→L1{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Perevalova, Olga [Institute of Strength Physics and Material Science, Siberian Division of the Russian Academy of Sciences, Akademicheskii Av., 2/4, Tomsk, 634021 (Russian Federation); Konovalova, Elena, E-mail: knv123@yandex.ru [Surgut State University, Lenina Av., 1, Surgut, 628400 (Russian Federation); Koneva, Nina; Kozlov, Eduard [Tomsk State University of Architecture and Building, Solyanaya Sq., 2, Tomsk, 634003 (Russian Federation)

    2016-01-15

    The grain boundary structure of the Ni{sub 3}(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L1{sub 2}. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L1{sub 2} in the Ni{sub 3}(Fe,Cr) alloy are determined by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.

  19. Heterogeneous chromium catalysts

    NARCIS (Netherlands)

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based silica-c

  20. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  1. Synchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Mallory Ann; Hofstetter, Jasmin; Morishige, Ashley E.; Coletti, Gianluca; Lai, Barry; Fenning, David P.; Buonassisi, Tonio

    2015-05-18

    Chromium (Cr) can degrade silicon wafer-based solar cell efficiencies at concentrations as low as 10(10) cm(-3). In this contribution, we employ synchrotron-based X-ray fluorescence microscopy to study chromium distributions in multicrystalline silicon in as-grown material and after phosphorous diffusion. We complement quantified precipitate size and spatial distribution with interstitial Cr concentration and minority carrier lifetime measurements to provide insight into chromium gettering kinetics and offer suggestions for minimizing the device impacts of chromium. We observe that Cr-rich precipitates in as-grown material are generally smaller than iron-rich precipitates and that Cri point defects account for only one-half of the total Cr in the as-grown material. This observation is consistent with previous hypotheses that Cr transport and CrSi2 growth are more strongly diffusion-limited during ingot cooling. We apply two phosphorous diffusion gettering profiles that both increase minority carrier lifetime by two orders of magnitude and reduce [Cr-i] by three orders of magnitude to approximate to 10(10) cm(-3). Some Cr-rich precipitates persist after both processes, and locally high [Cri] after the high-temperature process indicates that further optimization of the chromium gettering profile is possible. (C) 2015 AIP Publishing LLC.

  2. Influence of alloying on phase precipitation of high chromium cast iron%合金化对高铬铸铁相析出的影响

    Institute of Scientific and Technical Information of China (English)

    李秀兰; 周新军; 谢文玲; 马幼平

    2015-01-01

    The chromium alloy was prepared from 2.8wt%carbon and 31.0wt%chromium by the additions of trace multi-alloying elements ( Ti, Nb, V, Mo) .The existence forms of Ti , Nb, V in multicomponent system were studied by calculation from the alloy thermodynamic consideration .The effect of additions of alloy elements on carbides precipitation behavior of high chromium cast iron was investigated .The results show that Ti and Nb exist in the multi-alloying system in forms of TiC and NbC during solidification .V element exists mainly in alloy compounds ( VCr2 C2 ,VCrFe8 ) .The first precipitated high melted point particles ( TiC, NbC) during cooling can act as the heterogeneous nuclei of M7C3 carbides, As a result, the increase of nucleation rate results in refined M 7C3 carbides morphology.However,the addition of excess alloy elements weakens the roles of M 7 C3 carbides refinement .%添加多元微量合金元素V、Ti、Nb和Mo到2.8C-31Cr合金中制备多元铬系合金,从合金热力学析出角度,通过计算分析Ti、V、Nb在多元体系中的存在方式,探讨添加的合金元素对高铬铸铁凝固组织中碳化物析出的影响。结果表明,Ti和Nb在高铬铸铁凝固过程中主要形成TiC和NbC,V主要存在于合金化合物VCr2 C2和VCrFe8中。先析出的TiC和NbC能充当碳化物异质形核基底,增加形核率使组织细化。但添加过量的合金元素却削弱了对碳化物的细化作用。

  3. Redox Equilibria of Chromium in Calcium Silicate Base Melts

    Science.gov (United States)

    Mirzayousef-Jadid, A.-M.; Schwerdtfeger, Klaus

    2009-08-01

    The oxidation state of chromium has been determined at 1600 °C in CaO-SiO2-CrO x melts with CaO/SiO2 ratios (mass pct) of 0.66, 0.93, and 1.10, and 0.15 to 3.00 pct Cr2O3 (initial). A few experiments were also carried out with CaO-SiO2-Al2O3-CrO x melts at 1430 °C. The slag samples were equilibrated with gas phases of controlled oxygen pressure. Two techniques were applied to determine the oxidation state: thermogravimetry and quenching of the samples with subsequent wet chemical analysis. In the low-oxygen pressure range, the chromium is mainly divalent. In the high-oxygen pressure range, it is trivalent and hexavalent. It was found that the Cr3+/Cr2+ and Cr6+/Cr3+ ratios depend on oxygen pressure at a constant CaO/SiO2 ratio and a constant content of total chromium, according to the ideal law of mass action. According to the respective chemical reactions, these ratios change proportional to p_{{{text{O}}2 }}{}^{1/4} or p_{{{text{O}}_{ 2} }}{}^{3/4}, respectively. They also increase with increasing basicity. The data are used to compute the fractions of the different ions in the melt. There is a certain range of oxygen pressure in which all three valence states, Cr2+, Cr3+, and Cr6+, coexist. The color of the solidified slag samples is described and is explained with the help of transmission spectra.

  4. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    S V Sharma; M M Nayak; N S Dinesh

    2008-10-01

    Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150 mm square, 20 mm thick and uses SMA wire of 0·4 mm diameter and 125 mm of length in each phase.

  5. Corrosion of ferritic-martensitic steels and nickel-based alloys in supercritical water

    Science.gov (United States)

    Ren, Xiaowei

    The corrosion behavior of ferritic/martensitic (F/M) steels and Ni-based alloys in supercritical water (SCW) has been studied due to their potential applications in future nuclear reactor systems, fossil fuel power plants and waste treatment processes. 9˜12% chromium ferritic/martensitic steels exhibit good radiation resistance and stress corrosion cracking resistance. Ni-based alloys with an austenitic face-centered cubic (FCC) structure are designed to retain good mechanical strength and corrosion/oxidation resistance at elevated temperatures. Corrosion tests were carried out at three temperatures, 360°C, 500°C and 600°C, with two dissolved oxygen contents, 25 ppb and 2 ppm for up to 3000 hours. Alloys modified by grain refinement and reactive element addition were also investigated to determine their ability to improve the corrosion resistance in SCW. A duplex oxide structure was observed in the F/M steels after exposure to 25 ppb oxygen SCW, including an outer oxide layer with columnar magnetite grains and an inner oxide layer constituted of a mixture of spinel and ferrite phases in an equiaxed grain structure. An additional outermost hematite layer formed in the SCW-exposed samples when the oxygen content was increased to 2 ppm. Weight gain in the F/M steels increased with exposure temperatures and times, and followed parabolic growth kinetics in most of the samples. In Ni-based alloys after exposure to SCW, general corrosion and pitting corrosion were observed, and intergranular corrosion was found when exposed at 600°C due to formation of a local healing layer. The general oxide structure on the Ni-based alloys was characterized as NiO/Spinel/(CrxFe 1-x)2O3/(Fe,Ni). No change in oxidation mechanism was observed in crossing the critical point despite the large change in water properties. Corrosion resistance of the F/M steels was significantly improved by plasma-based yttrium surface treatment because of restrained outward diffusion of iron by the

  6. Solid state welding processes for an oxide dispersion strengthened nickel-chromium-aluminum alloy

    Science.gov (United States)

    Moore, T. J.

    1975-01-01

    Solid-state welding processes were evaluated for joining TD-NiCrAl (Ni-16Cr-4Al-2ThO2) alloy sheet. Both hot-press and resistance spot welding techniques were successfully applied in terms of achieving grain growth across the bond line. Less success was achieved with a resistance seam welding process. In stress-rupture shear and tensile shear tests of lap joints at 1100 C, most failures occurred in the parent material, which indicates that the weld quality was good and that the welds were not a plane of weakness. The overall weld quality was not as good as previously attained with TD-NiCr, probably because the presence of alumina at the faying surfaces and the developmental TD-NiCrAl sheet, which was not of the quality of the TD-NiCr sheet in terms of surface flatness and dimensional control.

  7. Oxidation-induced phase transformations and lifetime limits of chromia-forming nickel-base alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton

    2011-12-05

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of δ-Ni{sub 3}Nb and (Ni,Mo,Si){sub 6}C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900-1000 C in oxidation-induced chromium depletion in the subsurface zone of the alloy. Microstructural analyses of the cross-sectioned specimens revealed that this process results in formation of a wide subsurface zone in which the mentioned strengthening phases are dissolved, in spite of the fact that both phases do not contain substantial amounts of the scale-forming element chromium. The cross-sectional analyses revealed that, in parallel to the formation of a precipitate depleted zone, a thin, continuous layer of niobium-rich intermetallic precipitates formed in the immediate vicinity of the scale/alloy interface. The Subsurface Phase Enrichment (abbreviated as SPE) was shown to be the result of an uphill-diffusion of niobium, i.e. the element stabilizing the strengthening precipitates δ-Ni{sub 3}Nb, in the chromium activity gradient and is thus a natural consequence of the oxidation-induced chromium depletion beneath the chromia scale. The thermodynamic calculations carried out using the Thermo-Calc/DICTRA software packages revealed that in alloy 625 the chemical activity of niobium decreases with decreasing chromium content. As chromium is being continuously removed from the alloy as the result of the chromia scale growth, the zone of lowest Nb-activity is formed in the location with the lowest chromium concentration, i.e. the scale/alloy interface. This creates a driving force for Nb to diffuse towards the scale/alloy interface against its own concentration gradient, which is known

  8. Synthesis and characterization of chromium(III) Schiff base complexes: Antimicrobial activity and its electrocatalytic sensing ability of catechol

    Science.gov (United States)

    Praveen Kumar, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Munusamy, S.; Muthamizh, S.; Narayanan, V.

    2015-03-01

    A series of acyclic Schiff base chromium(III) complexes were synthesized with the aid of microwave irradiation method. The complexes were characterized on the basis of elemental analysis, spectral analysis such as UV-Visible, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) spectroscopies and electrospray ionization (ESI) mass spectrometry. Electrochemical analysis of the complexes indicates the presence of chromium ion in +3 oxidation state. Cr (III) ion is stabilized by the tetradentate Schiff base ligand through its nitrogen and phenolic oxygen. From the spectral studies it is understood that the synthesized chromium(III) complexes exhibits octahedral geometry. Antimicrobial activity of chromium complexes was investigated towards the Gram positive and Gram negative bacteria. In the present work, an attempt was made to fabricate a new kind of modified electrode based on chromium Schiff base complexes for the detection of catechol at nanomolar level.

  9. Base-metal dental casting alloy biocompatibility assessment using a human-derived three-dimensional oral mucosal model.

    LENUS (Irish Health Repository)

    McGinley, E L

    2012-01-01

    Nickel-chromium (Ni-Cr) alloys used in fixed prosthodontics have been associated with type IV Ni-induced hypersensitivity. We hypothesised that the full-thickness human-derived oral mucosa model employed for biocompatibility testing of base-metal dental alloys would provide insights into the mechanisms of Ni-induced toxicity. Primary oral keratinocytes and gingival fibroblasts were seeded onto Alloderm™ and maintained until full thickness was achieved prior to Ni-Cr and cobalt-chromium (Co-Cr) alloy disc exposure (2-72 h). Biocompatibility assessment involved histological analyses with cell viability measurements, oxidative stress responses, inflammatory cytokine expression and cellular toxicity analyses. Inductively coupled plasma mass spectrometry analysis determined elemental ion release levels. We detected adverse morphology with significant reductions in cell viability, significant increases in oxidative stress, inflammatory cytokine expression and cellular toxicity for the Ni-Cr alloy-treated oral mucosal models compared with untreated oral mucosal models, and adverse effects were increased for the Ni-Cr alloy that leached the most Ni. Co-Cr demonstrated significantly enhanced biocompatibility compared with Ni-Cr alloy-treated oral mucosal models. The human-derived full-thickness oral mucosal model discriminated between dental alloys and provided insights into the mechanisms of Ni-induced toxicity, highlighting potential clinical relevance.

  10. F-Alloy: An Alloy Based Model Transformation Language

    OpenAIRE

    Gammaitoni, Loïc; Kelsen, Pierre

    2015-01-01

    Model transformations are one of the core artifacts of a model-driven engineering approach. The relational logic language Alloy has been used in the past to verify properties of model transformations. In this paper we introduce the concept of functional Alloy modules. In essence a functional Alloy module can be viewed as an Alloy module representing a model transformation. We describe a sublanguage of Alloy called F-Alloy that allows the specification of functional Alloy modules. Module...

  11. Oxidation-induced phase transformations and lifetime limits of chromia-forming nickel-base alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton

    2011-12-05

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of δ-Ni{sub 3}Nb and (Ni,Mo,Si){sub 6}C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900-1000 C in oxidation-induced chromium depletion in the subsurface zone of the alloy. Microstructural analyses of the cross-sectioned specimens revealed that this process results in formation of a wide subsurface zone in which the mentioned strengthening phases are dissolved, in spite of the fact that both phases do not contain substantial amounts of the scale-forming element chromium. The cross-sectional analyses revealed that, in parallel to the formation of a precipitate depleted zone, a thin, continuous layer of niobium-rich intermetallic precipitates formed in the immediate vicinity of the scale/alloy interface. The Subsurface Phase Enrichment (abbreviated as SPE) was shown to be the result of an uphill-diffusion of niobium, i.e. the element stabilizing the strengthening precipitates δ-Ni{sub 3}Nb, in the chromium activity gradient and is thus a natural consequence of the oxidation-induced chromium depletion beneath the chromia scale. The thermodynamic calculations carried out using the Thermo-Calc/DICTRA software packages revealed that in alloy 625 the chemical activity of niobium decreases with decreasing chromium content. As chromium is being continuously removed from the alloy as the result of the chromia scale growth, the zone of lowest Nb-activity is formed in the location with the lowest chromium concentration, i.e. the scale/alloy interface. This creates a driving force for Nb to diffuse towards the scale/alloy interface against its own concentration gradient, which is known

  12. Effects of Cerium on Reduction of Non-Chromium Iron Based CO Shift Catalyst

    Institute of Scientific and Technical Information of China (English)

    苏运来; 胡捷; 马卓娜; 杜宝石; 郭益群

    2001-01-01

    The effects of Ce on reduction of non-chromium iron based CO shift catalyst were studied by XRD, TPR, SEM and XPS. The results show that Ce refines Fe2O3 grains and riches on the surface of catalyst in the process of reduction, which leads to decrease of the initial reductive temperature and increase of the final reductive temperature.

  13. Stability of Chromium Carbide/Chromium Oxide Based Porous Ceramics in Supercritical Water

    Science.gov (United States)

    Dong, Ziqiang

    This research was aimed at developing porous ceramics as well as ceramic-metal composites that can be potentially used in Gen-IV supercritical water reactors (SCWR). The research mainly includes two parts: 1) fabricating and engineering the porous ceramics and porous ceramic-metal composite; 2) Evaluating the stability of the porous ceramics in SCW environments. Reactive sintering in carbonaceous environments was used to fabricate porous Cr3C2/Cr2O3-based ceramic. A new process consisting of freeze casting and reactive sintering has also been successfully developed to fabricate highly porous Cr3C 2 ceramics with multiple interconnected pores. Various amounts of cobalt powders were mixed with ceramic oxides in order to modify the porous structure and property of the porous carbide obtained by reactive sintering. The hardness of the M(Cr,Co)7C3-Co composite has been evaluated and rationalized based on the solid solution of cobalt in the ceramic phase, the composite effect of soft Co metal and the porous structure of the ceramic materials. Efforts have also been made in fabricating and evaluating interpenetrating Cr3C2-Cu composites formed by infiltrating liquid copper into porous Cr3C2. The corrosion evaluation mainly focused on assessing the stability of porous Cr3C2 and Cr2O3 under various SCW conditions. The corrosion tests showed that the porous Cr3C 2 is stable in SCW at temperatures below 425°C. However, cracking and disintegrating of the porous Cr3C2 occurred when the SCW temperature increased above 425°C. Mechanisms of the corrosion attack were also investigated. The porous Cr2O3 obtained by oxidizing the porous Cr3C2 was exposed to various SCW environments. It was found that the stability of Cr 2O 3 was dependent on its morphology and the SCW testing conditions. Increasing SCW temperature increased the dissociation rate of the Cr2O 3. Adding proper amount of Y2O3 can increase the stability of the porous Cr2O3 in SCW. It was also concluded that decreasing

  14. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    Science.gov (United States)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  15. The Study of Heat Treatment Effects on Chromium Carbide Precipitation of 35Cr-45Ni-Nb Alloy for Repairing Furnace Tubes

    Directory of Open Access Journals (Sweden)

    Nakarin Srisuwan

    2016-01-01

    Full Text Available This paper presents a specific kind of failure in ethylene pyrolysis furnace tubes. It considers the case in which the tubes made of 35Cr-45Ni-Nb high temperature alloy failed to carburization, causing creep damage. The investigation found that used tubes became difficult to weld repair due to internal carburized layers of the tube. The microstructure and geochemical component of crystallized carbide at grain boundary of tube specimens were characterized by X-ray diffractometer (XRD, scanning electron microscopy (SEM with back-scattered electrons mode (BSE, and energy dispersive X-ray spectroscopy (EDS. Micro-hardness tests was performed to determine the hardness of the matrix and the compounds of new and used tube material. The testing result indicated that used tubes exhibited a higher hardness and higher degree of carburization compared to those of new tubes. The microstructure of used tubes also revealed coarse chromium carbide precipitation and a continuous carbide lattice at austenite grain boundaries. However, thermal heat treatment applied for developing tube weld repair could result in dissolving or breaking up chromium carbide with a decrease in hardness value. This procedure is recommended to improve the weldability of the 35Cr-45Ni-Nb used tubes alloy.

  16. The prospects of biodegradable magnesium-based alloys in osteosynthesis

    Directory of Open Access Journals (Sweden)

    V. N. Chorny

    2013-12-01

    Full Text Available In the analytical review of the literature the main stages of development of biodegradable magnesium alloys in surgery and traumatology were discussed. The analysis revealed the main problems: there is no way to control the speed of the biological resorption alloys, the effects of products of magnesium degradation on the tissues and the organism in general are not studied, there is no information on the characteristics of the regeneration of bone tissue when implanted magnesium implanted magnesium alloys Materials for osteosynthesis with metal clamps made of steel X18H9T are used in 25,0-52,2% of cases, the corrosion of fasteners reaches 18-21%. Corrosion of the metal clips leads to the increase of the concentration of iron, chromium, nickel and titanium in the surrounding tissue. Electrochemical processes in metallic implants occurs due to their structural and chemical inhomogeneous. The microstructure of stainless steel is presented by differently oriented grains. Therefore, the question remains relevant to finding biodegradable materials suitable for implants for osteosynthesis, which could be completely metabolized by the organism, without causing of the pathological effects on the surrounding tissue and the body. The property of magnesium metal dissolved in the tissues of a living organism is known since the 19th century. Payr suggested the use of magnesium metal needles for the treatment of angiomas, in order to achieve thrombosis surrounding the tumor. In 1937 Lambotte made a post in the French Surgical Academy on the application of the osteosynthesis of the shin bone clamps with alloy Dow-metal (magnesium - 92% Aluminum - 8% + traces of manganese, made in the form of loops and screws. In 1938, Earl D. Mc.Braid and published their positive experience with plates and screws made of material similar in composition to the Dow-metal for osteosynthesis of fractures of the arm and forearm bones. Magnesium alloys may be used as a material for

  17. Microstructure and property characterization of a modified zinc-base alloy and comparison with bearing alloys

    Science.gov (United States)

    Prasad, B. K.; Patwardhan, A. K.; Yegneswaran, A. H.

    1998-02-01

    The microstructure and physical, mechanical, and tribological properties of a modified zinc-base alloy have been characterized. In order to assess its utility as a bearing alloy, its properties have also been compared with those of a similarly processed conventional zinc-base alloy and a leaded-tin bronze (conforming to ZA27 and SAE 660 specifications, respectively) used for bearing applications. The modified zinc-base alloy shows promise in terms of better elevated-temperature strength and wear response at higher sliding speeds relative to the conventional zinc-base alloy. Interestingly, the wear behavior (especially the seizure pressure) of the modified alloy was also comparable to that of the bronze specimens at the maximum sliding speed, and was superior at the minimum sliding speed. The modified alloy also attained lower density and better hardness. Alloy behavior has been linked to the nature and type of the alloy microconstituents.

  18. Comparison of Repairing Effect Between Cobalt Chromium Alloy Porcelain Teeth and Zirconium Dioxide Porcelain Teeth%钴铬合金烤瓷牙和二氧化锆烤瓷牙修复效果对比

    Institute of Scientific and Technical Information of China (English)

    肖银蓉

    2015-01-01

    Objective To compare repairing effect of cobalt chromium alloy porcelain teeth and zirconium dioxide porcelain teeth. Methods To retrospective analyze 96 cases (172 tooth)clinical data of porcelain teeth prosthesis in our department from January 2010 to December 2013, the patients of zirconium dioxide porcelain teeth were 38 cases (70 tooth),which was zirconium dioxide porcelain teeth group,the patients of cobalt chromium alloy porcelain teeth were 58 cases(102 tooth), which was cobalt chromium alloy porcelain teeth group,the clinical result of two groups were compared. Results The effective rate 34 cases (94.73%)of zirco-nium dioxide porcelain teeth and effective rate 53 cases (91.37%)of cobalt chromium alloy porcelain teeth were compared, which was no difference (χ2=0.87,P>0.05). But after treatment of two groups,incidence of complications of cobalt chromium alloy porce-lain teeth group were higher than those of zirconium dioxide porcelain teeth group(χ2=3.95,P0.05)。但是两组患者治疗后,钴铬合金组并发症发生率高于二氧化锆组,差异有统计学意义(χ2=3.95,P<0.05)。结论二氧化锆烤瓷牙的疗效优于钴铬合金烤瓷牙,若患者经济条件允许,应该优先考虑二氧化锆烤瓷牙。

  19. Investigation of the fatigue and short-term mechanical properties of 13% chromium steel and titanium alloys after welding or treatment with high-frequency currents as applied to steam-turbine blades

    Science.gov (United States)

    Gonserovskii, F. G.; Nikitin, V. I.; Silevich, V. M.; Simin, O. N.

    2008-02-01

    We present the results of a study on comparing the structural strength of rotor blades made of stainless 13% chromium steels for their design versions in which wear-resistant straps made of cast VZK stellite are soldered or welded on the blade inlet edges. It is shown that treatment of VT6 alloy with high-frequency currents increases the endurance limit of the zone subjected to strengthening and makes the alloy more resistant to erosion. The worn blades of a 48-T4 titanium alloy repaired with the use of welding technologies have operational characteristics at least as good as those of newly manufactured ones.

  20. Influence of nickel-chromium alloy and gold-platinum alloy PFM on canine gingival tissues%镍铬合金与金铂合金烤瓷熔附金属全冠对犬牙龈组织的形态学影响

    Institute of Scientific and Technical Information of China (English)

    李新; 巴彩凤; 周蕊; 王稚英

    2009-01-01

    cell apoptosis and neuclear condensation were observed in these tissues,and apoptotic index was 58.63% ±11. 12%. While under light microscope, inflammatory cell infiltration and partial bleeding were not seen in the gold-platinum metal PFM full crown repaired canine gingival tissues. Under transmission electron microscope, only small amount of cell apoptosis was detected in these tissues,and apoptotic index was 26. 90% ± 17. 35%. Statistical significance was found in both nickel-chromium alloy group and gold-platinum metal group compared to control group. There was also statistical significance between nickel-chromium alloy group and gold-platinum metal group in cell apoptosis numbers (P <0. 05). Cell apoptosis number in nickel-chromium alloy group was much higher than that in gold-platinum metal group. Conclusion; The negtive effects on ultramicrostructure of gingival tissue using nickel-chromium alloy PFM are more evident than using gold-platinum metal. When select PFM to repair defect teeth, it is better to select the inactive gold-platinum metal PFM as base crown.

  1. Corrosion of high temperature alloys in solar salt at 400, 500, and 680ÀC.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-09-01

    Corrosion tests at 400, 500, and 680ÀC were performed using four high temperature alloys; 347SS, 321SS In625, and HA230. Molten salt chemistry was monitored over time through analysis of nitrite, carbonate, and dissolved metals. Metallography was performed on alloys at 500 and 680ÀC, due to the relatively thin oxide scale observed at 400ÀC. At 500ÀC, corrosion of iron based alloys took the form of chromium depletion and iron oxides, while nickel based alloys also had chromium depletion and formation of NiO. Chromium was detected in relatively low concentrations at this temperature. At 680ÀC, significant surface corrosion occurred with metal losses greater than 450microns/year after 1025hours of exposure. Iron based alloys formed complex iron, sodium, and chromium oxides. Some data suggests grain boundary chromium depletion of 321SS. Nickel alloys formed NiO and metallic nickel corrosion morphologies, with HA230 displaying significant internal oxidation in the form of chromia. Nickel alloys both exhibited worse corrosion than iron based alloys likely due to preferential dissolution of chromium, molybdenum, and tungsten.

  2. Irradiation creep of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  3. Electrochemical characterisation of nickel-based alloys in sulphate solutions at 320 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Le Canut, J.-M.; Maximovitch, S. E-mail: suzanne.maximovitch@lepmi.inpg.fr; Dalard, F

    2004-08-15

    Nickel alloy steam generator tubes of pressurized water reactors (PWR) are sensitive to stress corrosion cracking (SCC) and the possibility of predicting SCC from electrochemical measurements is of considerable interest for nuclear industry. The electrochemical properties of several nickel-based alloys were studied at 320 deg. C in sulphate solutions at neutral or slightly alkaline pH from corrosion potential measurements, polarisation curves and polarisation resistance (R{sub p}) measurements by linear voltammetry and electrochemical impedance spectroscopy (EIS). The passive layers were much more stable in neutral conditions, due to the presence of chromium oxide, and alloys 600TT and 690 showed the best passivity. R{sub p} measurements confirmed that alloys 600TT and 690 have the lowest corrosion rates. At alkaline pH, the passivation currents were higher than those obtained at neutral pH, and the alloys showed a close behaviour. Reduction of sulphates to sulphides seemed to be possible. Results are in agreement with thermodynamic and surface analysis data of literature. The electrochemical stability did not appear to be directly related to SCC susceptibility since it varied inversely with the pH dependance of SCC in sulphate medium.

  4. An Alternate to Cobalt-Base Hardfacing Alloys

    Science.gov (United States)

    Hickl, Anthony J.

    1980-03-01

    The price of cobalt has risen dramatically in the last few years, and supply has often been uncertain. The most popular hardfacing alloys contain substantial amounts of cobalt, and have thus been especially affected by these factors. The present study has developed a new hardfacing alloy, HAYNES Alloy No. 716, with lower cobalt content, to replace the most popular alloy, HAYNES STELLITE Alloy No. 6 which is cobalt based. The alloy design which led to the development of the new alloy is discussed, and properties are compared with Alloy No. 6. Hardness at room temperature and elevated temperatures, weldability, and corrosion and abrasion resistance of the new alloy compare favorably with Alloy No. 6.

  5. Chromium speciation in hazardous, cement-based waste forms

    Science.gov (United States)

    Lee, J. F.; Bajt, S.; Clark, S. B.; Lamble, G. M.; Langton, C. A.; Oji, L.

    1995-02-01

    XANES and EXAFS techniques were used to determine the oxidation states and local structural environment of Cr in cement-based waste forms. Results show that Cr in untreated Portland cement formulations remains as toxic Cr 6+, while slag additives to the cement reduce Cr 6+ to the less toxic, less mobile Cr 3+ species. EXAFS analysis suggests that the Cr 6+ species is surrounded by four nearest oxygen atoms, while the reduced Cr 3+ sp ecies is surrounded by six oxygen atoms. The fitted CrO bond lengths for Cr 6+ and Cr 3+ species are around 1.66 and 1.98 Å, respectively.

  6. Carburization of W- and Re-rich Ni-based alloys in impure helium at 1000 {sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Adharapurapu, Raghavendra R., E-mail: araghav@gmail.co [Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Kumar, Deepak; Zhu Jun [Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Pollock, Tresa M. [Materials Department, University of California, Santa Barbara, CA 93106 (United States)

    2011-01-15

    Research highlights: This work investigates the surface and bulk stability of W- and Re-rich Ni-based alloys under carburizing/oxidizing conditions (1000 {sup o}C) in order to understand the fundamental mechanisms of material degradation due to impurities in helium environment of the very high temperature helium-cooled reactor (VHTR). Depending on the alloy composition, carbides of type M{sub 6}C, M{sub 7}C{sub 3} or M{sub 23}C{sub 6} were observed, with a maximum carbon pickup between 0.06 and 0.12 wt.%. Alloys with high W content exhibited M{sub 6}C type carbides, whereas high Cr and low W alloys formed Cr-rich M{sub 23}C{sub 6} carbides. High additions of Re stabilized the M{sub 23}C{sub 6} phase due to its high solubility in these chromium-rich carbides. A continuous film of contiguous carbides (M{sub 6}C and M{sub 23}C{sub 6}) was observed in the grain boundaries; this is likely to be detrimental to the ductility and creep properties. During the first 50 h exposure, carbides were observed on the alloy surface as well as in the bulk with carbides precipitating in the grain interior and on the grain boundary. The (transient) surface carbides oxidized after prolonged exposure (100-225 h) forming stable Cr{sub 2}O{sub 3} oxide on the alloy surface. The work is particularly relevant to the development of strategies towards improvement of Ni-based alloys for intermediate heat exchangers (IHX) for service at 1000 {sup o}C in impure-He environment of the Next Generation Nuclear Plant (NGNP). - Abstract: The surface and microstructure stability of experimental W- and Re-rich Ni-based alloys in an impure-helium environment containing only CO and CO{sub 2} as impurities (ppm level) have been investigated at 1000 {sup o}C. All the alloys carburized during 50 h of exposure, and, depending on the alloy composition, different carbides of the type M{sub 6}C, M{sub 7}C{sub 3} and M{sub 23}C{sub 6} formed on the alloy surface, in grain interiors and at grain boundaries

  7. Speciation of chromium using chronoamperometric biosensors based on screen-printed electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Calvo-Pérez, Ana, E-mail: anacp@ubu.es; Domínguez-Renedo, Olga, E-mail: olgado@ubu.es; Alonso-Lomillo, MAsunción, E-mail: malomillo@ubu.es; Arcos-Martínez, MJulia, E-mail: jarcos@ubu.es

    2014-06-23

    Highlights: • Chronoamperometric determination of Cr(III) on tyrosinase based biosensors using SPCEs. • Chronoamperometric determination of Cr(VI) on GOx based biosensors using SPCEs. • High degree of sensitivity and selectivity in the analysis of both chromium species. • Bipotentiostatic chronoamperometric determination of both chromium species in the same sample. - Abstract: Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPC{sub TTF}E response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0 ± 0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPC{sub Pt}Es) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5 ± 7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPC{sub TTF}E and a GOx/SPC{sub Pt}E connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples.

  8. Hot Corrosion of Cobalt-Base Alloys

    Science.gov (United States)

    1975-06-01

    scale is similar to that which has already been proposed for cobalt . The oxide ions would react with the Al203 to form aluminate ions in the Na2S04...resistance of cobalt -base and nickel-base alloys. The contract was accomplished under the technical direction of Dr. H. C. Graham of the Aerospace Research...Oxidized Specimens RESULTS AND DISCUSSION 1. INTRODUCfiON 2. SODIUM SULFATE INDUCED HOT CORROSION OF COBALT a. Introduction b. Experimental c

  9. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  10. Effects of alloying side B on Ti-based AB2 hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    王家淳; 于荣海; 刘庆

    2004-01-01

    Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickelmetal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2 -type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS) , and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.

  11. Fabric cutting application of FeAl-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Blue, C.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Sklad, S.P. [Univ. of Virginia, Charlottesville, VA (United States); Deevi, S.C. [Philip Morris U.S.A., Richmond, VA (United States); Shih, H.R. [Jackson State Univ., MS (United States)

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  12. Effects of Cerium on Alloy Elements Distribution in Ferrous Matrix Material

    Institute of Scientific and Technical Information of China (English)

    刘英才; 刘俊友; 尹衍生; 刘国权

    2001-01-01

    The effect of the addition of rare earths in Fe-based high chromium alloy powders on elements distribution in matrix materials and mechanical properties were studied. The results show that the addition of cerium can increase the chromium amount in carbonides and increase the micro-hardness after carbonization and the wear-resistant property of materials.

  13. COMPARISON OF BOND STRENGTH OF COMMERCIALLY PURE TITANIUM AND NICKEL CHROMIUM ALLOY WITH THREE DIFFERENT LUTING CEMENTS: AN IN-VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Lakshmi

    2016-06-01

    Full Text Available BACKGROUND Metal ceramic fixed dental prosthesis remains widely used for oral rehabilitation. The type of alloy used to fabricate the metal substructure of the crown also affects its retention. The aim of this study is to compare the bond strength of commercially pure titanium and nickel chromium plates cemented with three different cements and to comparatively evaluate the bond strength of each luting cement. METHODS Specimens of each metal were divided into three groups, which received one of the following luting techniques: Group 1 (CPTi and Group 2 (NiCr with resin cement; Group 3 (CPTi and Group 4 (NiCr with Glass Ionomer Cement; Group 5 (CPTi and Group 6 (NiCr with Zinc phosphate cement. The bonded specimens were submitted for the bond strength tests conducted with a Universal Testing Machine with a shear mode under a crosshead speed of 0.5 mm/min. Debonded specimens were examined under electron microscope. RESULT The results indicate that Group 1 and 2 have significantly higher values than Group 3, 4, 5 and 6. Also, Group 3 and 4 have significantly higher values when compared to Group 5 and 6. Whereas, there was no significant difference between Group 1 and 2, Group 3 and 4 as well as Group 5 and 6. The scanning electron microscope illustrated the different modes of fracture that occurred at the metal cement interface. Resin cement showed predominantly cohesive failure. Glass ionomer cement showed a mixed mode of both cohesive and adhesive fracture and Zinc phosphate cement also showed mixed mode of fracture with predominantly adhesive failure. CONCLUSIONS Resin cements showed the most superior bond with both commercially pure titanium and nickel chromium metal. Zinc phosphate cement showed the lowest bond strength with both the metals. There was no significant difference observed between the cement bond with different metals.

  14. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    K T Kashyap

    2009-08-01

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is observed. This criterion points to diffusional coherency strain theory to be the operative mechanism for DP.

  15. New Developments of Ti-Based Alloys for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yuhua Li

    2014-03-01

    Full Text Available Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications.

  16. The Effect of Slag on the Effectiveness of Phosphorus Removal from Ferrous Alloys Containing Carbon, Chromium and Nickel

    Directory of Open Access Journals (Sweden)

    Kawecka-Cebula E.

    2016-03-01

    Full Text Available The aim of this study was to determine the impact of slag composition on phosphorus removal from ferrous solutions containing carbon, chromium and nickel. Additions of cryolite, Na3AlF6, were applied for better fluxing and higher phosphate capacity of the slag. An X-ray analysis of final slags formed during dephosphorization of ferrous solutions containing chromium and nickel with CaO-CaF2 or CaO-CaF2-Na3AlF6 mixtures of different chemical compositions was carried out. The equilibrium composition of the liquid and the solid phase while cooling the slags from 1673K to 298K was computed using FactSage 6.2 software. The performed equilibrium computations indicated that the slags were not entirely liquid at those temperatures. The addition of cryolite causes a substantial increase of the liquid phase of the slag. It also has a favourable effect on the dephosphorization grade of hot metal. The obtained results were statistically processed and presented in the form of regression equations.

  17. Analysis of chromium and sulphate origins in construction recycled materials based on leaching test results.

    Science.gov (United States)

    Del Rey, I; Ayuso, J; Galvín, A P; Jiménez, J R; López, M; García-Garrido, M L

    2015-12-01

    Twenty samples of recycled aggregates from construction and demolition waste (CDW) with different compositions collected at six recycling plants in the Andalusia region (south of Spain) were characterised according to the Landfill Directive criteria. Chromium and sulphate were identified as the most critical compounds in the leachates. To detect the sources of these two pollutant constituents in recycled aggregate, environmental assessments were performed on eight construction materials (five unused ceramic materials, two old crushed concretes and one new mortar manufactured in the laboratory). The results confirmed that leached sulphate and Cr were mainly released by the ceramic materials (bricks and tiles). To predict the toxicological consequences, the oxidation states of Cr (III) and Cr (VI) were measured in the leachates of recycled aggregates and ceramic materials classified as non-hazardous. The bricks and tiles mainly released total Cr as Cr (III). However, the recycled aggregates classified as non-hazardous according to the Landfill Directive criteria mainly released Cr (VI), which is highly leachable and extremely toxic. The obtained results highlight the need for legislation that distinguishes the oxidative state in which chromium is released into the environment. Leaching level regulations must not be based solely on total Cr, which can lead to inaccurate predictions.

  18. Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques

    Directory of Open Access Journals (Sweden)

    Hae Ri Kim

    2016-07-01

    Full Text Available The microstructures and mechanical properties of cobalt-chromium (Co-Cr alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures or dumbbell- (mechanical properties specimens made of Co-Cr alloys were prepared using casting (CS, milling (ML, selective laser melting (SLM, and milling/post-sintering (ML/PS. For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6. The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process.

  19. Indentation toughness of Mo5Si3-based alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The indentation toughness of Mo5Si3 -based phases was studied with regard to different alloying elements, amount of alloying addition as well as the presence of secondary phases. Cr, Ti, Nb, Ni and Co were added as alloying elements. The results show that the indentation fracture toughness of Mo5Si3 increases with the alloying additions, from 2.4 Mpa *m1/2 for mon olithic to just over 3 Mpa*m1/2 for highly alloyed Mo5Si3. Small volume fractions of brittle secondary phases may have a positive impact on the inde ntation toughness; while larger fractions seems to lower the toughness.

  20. Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jøns, O; Nielsen, B

    1992-01-01

    A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both...

  1. Study on electrodeposition of copper-chromium alloy%铜-铬合金电沉积的研究

    Institute of Scientific and Technical Information of China (English)

    滕莹雪; 郭菁

    2013-01-01

    Cu-Cr alloy was prepared by electrodeposition respectively from 4 kinds of electrolytes containing different complexing agents i.e. glycine, ascorbic acid, thiourea, and trisodium citrate. The electrochemical behaviors of different electrolytes were studied by cyclic voltammetry and linear scanning voltammetry. The electrolyte with glycine as complexing agent is most suitable for electrodeposition of Cu-Cr alloy. The Cu-Cr alloy coating obtained therefrom at 10 A/dm2 for 10 min features Cr content up to 18.63%, thickness 25μm, smooth and bright golden yellow surface, strong adhesion, and relative conductivity 68.2%. The conductivity of the Cu-Cr alloy coating basically meets the demand of contact materials.%采用氨基乙酸、抗坏血酸、硫脲和柠檬酸三钠4种配位体系镀液电沉积制备Cu-Cr合金。通过测定循环伏安曲线和线性扫描伏安曲线,研究了不同镀液的电化学行为。氨基乙酸体系镀液最适用于制备Cu-Cr合金,采用该配方制得的Cu-Cr合金中Cr含量高达18.63%,10 A/dm2下电镀10 min所得镀层厚度为25μm,表面平整,呈光亮的金黄色,结合力好,相对导电率达68.2%,导电性基本满足触头材料要求。

  2. Environmentally Assisted Cracking of Nickel Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  3. Durability and degradation of HT9 based alloy waste forms with variable Ni and Cr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-31

    Short-term electrochemical and long-term hybrid electrochemical corrosion tests were performed on alloy waste forms in reference aqueous solutions that bound postulated repository conditions. The alloy waste forms investigated represent candidate formulations that can be produced with advanced electrochemical treatment of used nuclear fuel. The studies helped to better understand the alloy waste form durability with differing concentrations of nickel and chromium, species that can be added to alloy waste forms to potentially increase their durability and decrease radionuclide release into the environment.

  4. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...

  5. Effect of rhenium on short term oxidation of niobium based alloys for high temperature applications

    Science.gov (United States)

    Sierra, Ruth M.

    The effect of adding Re to Nb-based alloys and is intended to analyze in depth the microstructures of Nb based alloys with Re, Si and Cr additions, in atomic percentages. The binary alloys (Nb-5Re, Nb-5Si and Nb-5Cr) reveal the formation of a single phase, NbSS, NbSS + Nb3Si and NbSS+NbCr2 respectively. The formation of the single phase was confirmed by TEM studies for the Nb-5Re alloy. Addition of Re to form ternary alloys, has helped in the formation of Nb5Si 3 and (Nb, Re) Cr2, in Nb-5Re- 5Si and Nb-5Re-5Cr respectively. Quaternary alloy Nb-5Re-5Si-5Cr has Nb5Si3, NbCr2 and NbSS. The oxidation behavior has been studied and the formation of the oxides has been characterized using XRD, SEM, EDS. Nb-Re-Si-Cr-X (Al, B, W) alloy system has been examined at temperatures between 700 and 1400°C in air. The continued work was to develop and discover a new materials system capable of replacing nickel based super alloys. Additions of aluminum were found to provide limited oxidation resistance. A discontinuous layer of Al2O3 and SiO2 was observed to form at all temperatures adapted for this study. Alloy containing aluminum additions were observed to suffer from pest oxidation at intermediate temperatures due to the development of Nb2O5. Poor oxidation resistance at intermediate temperatures for alloys with aluminum additions was attributed to a transformation in the structure of Nb2O5 formed. Pesting was observed at 900°C, consuming the metal completely. Additions of chromium were observed to increase oxidation resistance through the development of a layered oxide structure containing SiO2 and CrNbO4. Internal oxidation layer was observed to develop oxides in the midst of the phases formed. Boron addition has helped in the formation of the 3, 5 silicides, NbSS, and Laves phase. The combination of oxides of Nb2O5, CrNbO4 and SiO2 has helped improve the oxidation resistance of the alloy. Rhenium in this alloy has been a major element in terms of forming Re-oxides which has

  6. Density of liquid NiCoAlCr quarternary alloys measured by modified sessile drop method

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; ZHANG Shu-fang; XIAO Feng; YANG Ling-chuan; DONG Jian-xin; CAO Chun-lan; TAO Zai-nan; K. MUKAI

    2006-01-01

    The densities of liquid NiCoAlCr quaternary alloys with a fixed molar ratio of Ni to Co to Al (x(Ni)-x(Co)-x(Al)≈73-12-15) which is close to the average value of the commercial Ni-based superalloys TMS75, INCO713, CM247LC and CMSX-4, and the mass fraction of chromium changes from 0 to 9% were measured by a modified sessile drop method. It is found that with increasing temperature and chromium concentration in the alloys, the densities of the liquid NiCoAlCr quaternary alloys decrease, whereas the molar volume of the liquid NiCoAlCr quaternary alloys increases. And the liquid densities of NiCoAlCr quaternary alloys calculated from the partial molar volumes of nickel, cobalt, aluminum and chromium in the corresponding Ni-bases binary alloys are in good agreement with the experimental ones, i.e. within the error tolerance range the densities of the liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state. The molar volume of liquid NiCoAlCr binary alloy shows a negative deviation from the ideal linear mixing and the deviation changes small with the increase of chromium concentration at the same temperature.

  7. Oxidation and surface segregation of chromium in Fe–Cr alloys studied by Mössbauer and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Idczak, R., E-mail: ridczak@ifd.uni.wroc.pl; Idczak, K.; Konieczny, R.

    2014-09-15

    The room temperature {sup 57}Fe Mössbauer and XPS spectra were measured for polycrystalline iron-based Fe–Cr alloys. The spectra were collected using three techniques: the transmission Mössbauer spectroscopy (TMS), the conversion electron Mössbauer spectroscopy (CEMS) and the X-ray photoelectron spectroscopy (XPS). The combination of these experimental techniques allows to determine changes in Cr concentration and the presence of oxygen in bulk, in the 300 nm pre-surface layer and on the surface of the studied alloys.

  8. A new approach to the hazard classification of alloys based on transformation/dissolution.

    Science.gov (United States)

    Skeaff, James M; Hardy, David J; King, Pierrette

    2008-01-01

    Most of the metals produced for commercial application enter into service as alloys which, together with metals and all other chemicals in commerce, are subject to a hazard identification and classification initiative now being implemented in a number of jurisdictions worldwide, including the European Union Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) initiative, effective 1 June 2007. This initiative has considerable implications for environmental protection and market access. While a method for the hazard identification and classification of metals is available in the recently developed United Nations (UN) guidance document on the Globally Harmonized System of Hazard Classification and Labelling (GHS), an approach for alloys has yet to be formulated. Within the GHS, a transformation/dissolution protocol (T/ DP) for metals and sparingly soluble metal compounds is provided as a standard laboratory method for measuring the rate and extent of the release of metals into aqueous media from metal-bearing substances. By comparison with ecotoxicity reference data, T/D data can be used to derive UN GHS classification proposals. In this study we applied the T/DP for the 1st time to several economically important metals and alloys: iron powder, nickel powder, copper powder, and the alloys Fe-2Cu-0.6C (copper = 2%, carbon = 0.6%), Fe-2Ni-0.6C, Stainless Steel 304, Monel, brass, Inconel, and nickel-silver. The iron and copper powders and the iron and nickel powders had been sintered to produce the Fe-2Me-0.6C (Me = copper or nickel) alloys which made them essentially resistant to reaction with the aqueous media, so they would not classify under the GHS, although their component copper and nickel metal powders would. Forming a protective passivating film, chromium in the Stainless Steel 304 and Inconel alloys protected them from reaction with the aqueous media, so that their metal releases were minimal and would not result in GHS classification

  9. Cast iron-base alloy for cylinder/regenerator housing

    Science.gov (United States)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  10. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600ÀC with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  11. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    Science.gov (United States)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Ramazani, Mazaher

    2017-03-01

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe80-xCrxCo20 (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110-200 Oe and 150-220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe55Cr25Co20 magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5.

  12. Hydrogen solubility in rare earth based hydrogen storage alloys

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Hirohisa [Tokai Univ., Kanagawa (Japan). School of Engineering; Kuji, Toshiro [Mitsui Mining and Smelting Co. Ltd., Saitama (Japan)

    1999-09-01

    This paper reviews significant results of recent studies on the hydrogen storage properties of rare earth based AB{sub 5} (A: rare earth element, B: transition element) alloys The hydrogen solubility and the hydride formation, typically appeared in pressure-composition isotherms (PCT), are strongly dependent upon alloy composition, structure, morphology and even alloy particle size. Typical experimental results are shown to describe how these factors affect the hydrogen solubility and storage properties.

  13. Non-alloyed Ni3Al based alloys – preparation and evaluation of mechanical properties

    Directory of Open Access Journals (Sweden)

    J. Malcharcziková

    2013-07-01

    Full Text Available The paper reports on the fabrication and mechanical properties of Ni3Al based alloy, which represents the most frequently used basic composition of nickel based intermetallic alloys for high temperature applications. The structure of the alloy was controlled through directional solidification. The samples had a multi-phase microstructure. The directionally solidified specimens were subjected to tensile tests with concurrent measurement of acoustic emission (AE. The specimens exhibited considerable room temperature ductility before fracture. During tensile testing an intensive AE was observed.

  14. Wear Characteristics of Ni-Based Hardfacing Alloy Deposited on Stainless Steel Substrate by Laser Cladding

    Science.gov (United States)

    Awasthi, Reena; Limaye, P. K.; Kumar, Santosh; Kushwaha, Ram P.; Viswanadham, C. S.; Srivastava, Dinesh; Soni, N. L.; Patel, R. J.; Dey, G. K.

    2015-03-01

    In this study, dry sliding wear characteristics of the Ni-based hardfacing alloy (Ni-Mo-Cr-Si) deposited on stainless steel SS316L substrate by laser cladding have been presented. Dry sliding wear behavior of the laser clad layer was evaluated against two different counter bodies, AISI 52100 chromium steel (~850 VHN) and tungsten carbide ball (~2200 VHN) to study both adhesive and abrasive wear characteristics, in comparison with the substrate SS316L using ball on plate reciprocating wear tester. The wear resistance was evaluated as a function of load and sliding speed for a constant sliding amplitude and sliding distance. The wear mechanisms were studied on the basis of wear surface morphology and microchemical analysis of the wear track using SEM-EDS. Laser clad layer of Ni-Mo-Cr-Si on SS316L exhibited much higher hardness (~700 VHN) than that of substrate SS316L (~200 VHN). The laser clad layer exhibited higher wear resistance as compared to SS316L substrate while sliding against both the counterparts. However, the improvement in the wear resistance of the clad layer as compared to the substrate was much higher while sliding against AISI 52100 chromium steel than that while sliding against WC, at the same contact stress intensity.

  15. HIGH CYCLE FATIGUE PROPERTIES OF NICKEL-BASE ALLOY 718

    Institute of Scientific and Technical Information of China (English)

    K.Kobayashi; K.Yamaguchi; M.Hayakawa; M.Kimura

    2004-01-01

    The fatigue properties of nickel-base Alloy 718 with fine- and grain-coarse grains were investigated. In the fine-grain alloy, the fatigue strength normalized by the tensile strengtn was 0.51 at 107 cycles. In contrast, the fatigue strength of the coarse-grain alloy was 0.32 at the same cycles, although the fatigue strengths in the range from 103to 105 cycles are the same for both alloys. The fracture appearances fatigued at around 106 cycles showed internal fractures originating from the flat facets of austenite grains for both alloys. The difference in fatigue strength at 107 cycles between the fine- and coarse-grain alloys could be explained in terms of the sizes of the facets from which the fractures originated.

  16. Properties of thermally stable PM Al-Cr based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Vojtech, D. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)], E-mail: Dalibor.Vojtech@vscht.cz; Verner, J. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Serak, J. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Simancik, F. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Balog, M. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Nagy, J. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia)

    2007-06-15

    The presented paper describes properties of Al-6.0 wt.%Cr-2.3 wt.%Fe-0.4 wt.%Ti-0.7 wt.%Si alloy produced by powder metallurgy (PM). The powder alloy was prepared by the pressure nitrogen melt atomization. The granulometric powder fraction of less than 45 {mu}m was then hot-extruded at 450 deg. C to produce a rod of 6 mm in diameter. Microstructure of the as-extruded material was composed of recrystallized {alpha}(Al) grains (the average grain size of 640 nm) and Al{sub 13}Cr{sub 2} spheroids (the average particle diameter of 130 nm and interparticle spacing of 290 nm). Metastable phases were not observed due to their decomposition on the hot extrusion. Hardness of the as-extruded material was 108 HV1, ultimate tensile strength, 327 MPa, yield strength, 258 MPa and elongation, 14%. Mechanical properties resulted mainly from Hall-Petch strengthening. The room-temperature mechanical properties were also measured after a long-term annealing at 400 deg. C. The investigated PM material was compared with the commercial Al-11.8 wt.%Si-0.9 wt.%Ni-1.2 wt.%Cu-1.2 wt.%Mg casting alloy generally applied at elevated temperatures. The PM alloy showed much higher thermal stability, since its room temperature hardness and tensile properties did not degradate significantly even after annealing at 400 deg. C/200 h. In contrast, the hardness and strength of the casting alloy reduced rapidly already after a 30 min annealing. The excellent thermal stability of the investigated PM material was a consequence of very slow diffusivities and low equilibrium solubilities of chromium and iron in solid aluminium.

  17. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  18. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Science.gov (United States)

    2010-07-01

    ... proprietorship, association, or any other business entity; any State or political subdivision thereof; any municipality; any interstate body; and any department, agency, or instrumentality of the Federal Government... the following language: WARNING: This product contains hexavalent chromium. Inhalation of...

  19. The impact on renal function by dental restoration of nickel-chromium alloys%佩戴镍铬烤瓷冠对肾功能的影响

    Institute of Scientific and Technical Information of China (English)

    王珏; 曹新明; 夏刚; 黄埔; 李国强; 陈霜; 姜庆五; 陈波

    2012-01-01

    目的 探讨镍铬合金烤瓷冠的佩戴是否会造成机体肾功能的损伤.方法 对33例镍铬合金烤瓷冠佩戴者进行佩戴前和佩戴2月后的肾功能重复测量,并采用配对t捡验和重复测量数据线性回归分析探讨肾功能的变化与镍铬合金冠佩戴的关系.结果 配对t检验未观察到镍铬合金烤瓷冠的佩戴对各血尿肾功能生化指标(血:总蛋白、白蛋白、血肌酐、血尿素氮、血尿酸、肾小球滤过率的估计值;尿:白蛋白、N-乙酰-β-D-氨基葡糖苷酶、视黄醇结合蛋白、β2-微球蛋白)实测值和异常率的明显改变.重复测量数据的广义线性模型仅发现年龄和肾功能的异常有关,但与镍铬合金烤瓷冠的佩戴时间、数量和金属裸露水平无关.结论 镍铬合金烤瓷冠的佩戴与机体的肾功能损伤无明确相关性.%Objective To explore whether the dental restoration of nickel-chromium (Ni-Cr) will lead to renal dysfunction. Methods A prospective follow-up study was conducted in 33 patients undergoing dental restoration of Ni-Cr alloy, and the associations of alloy restoration with biological parameters of renal function were analyzed by paired t test and general linear model of repeated measures. Results Paired t test did not show any significant change in both of the measurement values and the prevalence of abnormal serum or urine parameters of renal function (Serum: total protein, albumin, urea nitrogen, urea acid and estimated glomerular filtration rate (eGFR); urine: albumin, N -acetyl-β-D - glucosaminidase, retinol-binding protein and β2- microglobulin) (P>0.05). General linear models of repeated measures of renal dysfunction only showed a positive association with age, but with the time and number of alloy restoration, and the level of metal basis uncovered with porcelain. Conclusion Dental restoration of Ni-Cr alloy might not lead to the renal dysfunction in this prospective follow-up study.

  20. Influence of finishing on the electrochemical properties of dental alloys.

    Science.gov (United States)

    Kaneko, T; Hattori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y

    2000-05-01

    Dental alloy surface finishing procedures of may influence their electrochemical behavior, which is used to evaluate their corrosion resistance. We examined the polarization resistance and potentiodynamic polarization profile of the precious-metal alloys, Type 4 gold alloy and silver-palladium alloy, and the base-metal alloys, nickel-chromium alloy, cobalt-chromium alloy, and CP-titanium. Three types of finishing procedure were examined: mirror-finishing using 0.05 micron alumina particles, polishing using #600 abrasive paper and sandblasting. Dissolution of the alloy elements in 0.9% NaCl solution was also measured and compared with the electrochemical evaluation. The corrosion resistance of the dental alloys was found to relate to finishing as follows: The polarization resistance and potentiodynamic polarization behavior revealed that the corrosion resistance improved in the order of sandblasting, #600-abrasive-paper polishing, and mirror-finishing. While the corrosion potential, critical current density and passive current density varied depending on the type of finishing, the transpassive potential remained unchanged. The influence of finishing on the corrosion resistance of precious-metal alloys was less significant than on that of base-metal alloys. A mirror-finishing specimen was recommended for use in evaluation of the corrosion resistance of various dental alloys.

  1. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  2. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, M.; He, Y.R.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  3. INFLUENCE OF ALLOY COMPOSITION ON WORK HARDENING BEHAVIOR OF ZIRCONIUM-BASED ALLOYS

    Directory of Open Access Journals (Sweden)

    HYUN-GIL KIM

    2013-08-01

    Full Text Available Three types of zirconium base alloy were evaluated to study how their work hardening behavior is affected by alloy composition. Repeated-tensile tests (5% elongation at each test were performed at room temperature at a strain rate of 1.7 × 10−3 s−1 for the alloys, which were initially controlled for their microstructure and texture. After considering the yield strength and work hardening exponent (n variations, it was found that the work hardening behavior of the zirconium base alloys was affected more by the Nb content than the Sn content. The facture mode during the repeated tensile test was followed by the slip deformation of the zirconium structure from the texture and microstructural analysis.

  4. Corrosion resistance improvement of titanium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Mihai V.; Vasilescu, Ecaterina; Drob, Paula; Vasilescu, Cora; Drob, Silviu I., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' , Bucharest (Romania); Mareci, Daniel [Technical University ' Gh. Asachi' , Iasi (Romania); Rosca, Julia C. Mirza [Las Palmas de Gran Canaria University, Tafira (Spain). Mechanical Engineering Dept.

    2010-07-01

    The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy. (author)

  5. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  6. Fabric cutting application of FeAl-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Blue, C.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Sklad, S.P. [University of Virginia, Charlottesville, VA 22905 (United States); Deevi, S.C. [Research, Development, and Engineering Center, Philip Morris USA, Richmond, VA 23234 (United States); Shih, H.-R. [Jackson State University, 1400 J.R. Lynch Street, Jackson, MS 39217 (United States)

    1998-12-31

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60) and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel. (orig.) 18 refs.

  7. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    Science.gov (United States)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  8. Analysis of wear properties of aluminium based journal bearing alloys with and without lubrication.

    Science.gov (United States)

    Mathavan, J. Joy; Patnaik, Amar

    2016-09-01

    Apart from classical bearing materials, Aluminium alloys are used as bearing materials these days because of their superior quality. In this analysis, new Aluminium based bearing materials, with filler metals Si, Ni, and Cr are prepared by metal mould casting in burnout furnace machine, and tribological properties of these alloys with and without lubrication were tested. The experiments for wear with lubrication are conducted on multiple specimen tester and experiments without lubrication is conducted on Pin on disk tribometer. The disc material used was SAE 1050 steel. Wear tests were conducted at a sliding speed of 0.785 m/s and at a normal load of 20 N. Coefficient of friction values, temperature changes and wear of the specimens were plotted on graph according to the above mentioned working conditions. Hardness and weight losses of the specimens were calculated. The obtained results demonstrate how the friction and wear properties of these samples have changed with the % addition of Silicon, Chromium and Nickel to the base metal aluminium.

  9. Synthesis, structure and antidiabetic activity of chromium(III) complexes of metformin Schiff-bases

    Science.gov (United States)

    Mahmoud, M. A.; Zaitone, S. A.; Ammar, A. M.; Sallam, S. A.

    2016-03-01

    A series of Cr3+ complexes with Schiff-bases of metformin with each of salicylaldehyde (HL1); 2,3-dihydroxybenzaldehyde (H2L2); 2,4-dihydroxybenzaldehyde (H2L3); 2,5-dihydroxybenzaldehyde (H2L4); 3,4-dihydroxybenzaldehyde (H2L5) and 2-hydroxynaphthaldehyde (HL6) were synthesized by template reaction. The new compounds were characterized through elemental analysis, conductivity and magnetic moment measurements, IR, UV-Vis., NMR and mass spectroscopy. The complexes have octahedral structure with μ value of hexacoordinated chromium ion. TGA, DTG and DTA analysis confirm the proposed stereochemistry and a mechanism for thermal decomposition was proposed. Thermodynamic parameters are calculated for the second and third decomposition steps. [CrL4Cl(H2O)2].3H2O and [CrL5Cl(H2O)2].2½H2O were able to produce significant decreases in the blood glucose level.

  10. Ab initio modeling of decomposition in iron based alloys

    Science.gov (United States)

    Gorbatov, O. I.; Gornostyrev, Yu. N.; Korzhavyi, P. A.; Ruban, A. V.

    2016-12-01

    This paper reviews recent progress in the field of ab initio based simulations of structure and properties of Fe-based alloys. We focus on thermodynamics of these alloys, their decomposition kinetics, and microstructure formation taking into account disorder of magnetic moments with temperature. We review modern theoretical tools which allow a consistent description of the electronic structure and energetics of random alloys with local magnetic moments that become totally or partially disordered when temperature increases. This approach gives a basis for an accurate finite-temperature description of alloys by calculating all the relevant contributions to the Gibbs energy from first-principles, including a configurational part as well as terms due to electronic, vibrational, and magnetic excitations. Applications of these theoretical approaches to the calculations of thermodynamics parameters at elevated temperatures (solution energies and effective interatomic interactions) are discussed including atomistic modeling of decomposition/clustering in Fe-based alloys. It provides a solid basis for understanding experimental data and for developing new steels for modern applications. The precipitation in Fe-Cu based alloys, the decomposition in Fe-Cr, and the short-range order formation in iron alloys with s-p elements are considered as examples.

  11. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    Alloys of Cr-Cr{sub 2}Nb with exceptionally high strength at 1200{degrees}C have been developed. However, these compositions suffer from limited ductility and toughness at room temperature. Despite improvements from processing modifications, as-fabricated defects still limit room temperature mechanical behavior. In contrast, an alloy system with only a small mismatch of the coefficients of thermal expansion of the two phases, Cr-Cr{sub 2}Zr, showed good fabricability. However, these alloys are weaker than Cr-Cr{sub 2}Nb compositions at high temperatures and have poor oxidation resistance. Silicide coatings can provide high-temperature oxidation and sulfidation protection of these alloys. Improvements in room temperature mechanical properties of Laves-phase-strengthened alloys will rely on further development based on increasing the ductility of the matrix phase by impurity control and compositional modifications.

  12. Synthesis of aluminum-based scandium-yttrium master alloys

    Science.gov (United States)

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.

    2015-07-01

    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  13. On the mechanical properties of TiNb based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France); Georgarakis, K. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France); Yokoyama, Y. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Yavari, A.R., E-mail: euronano@minatec.inpg.fr [SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France)

    2013-09-15

    Highlights: •Systematic study of compressive behaviors of TiNb based alloys in different states. •Comparison between X-ray diffraction results in reflection and transmission mode. •High melting temperature TiNb based alloys were fabricated by copper mold casting. •Textures of studied alloys are analyzed through synchrotron radiation data. -- Abstract: A series of TiNb(Sn) alloys were synthesized by copper mold suction casting and subjected to different heat treatments (furnace cooling or water quenching). The microstructure, thermal and mechanical properties of the as-cast and heat treated samples were investigated. For the Ti–8.34 at.% Nb alloy, the as-cast and water quenched samples possess martensitic α′′ phase at room temperature and compression tests of these samples show occurrence of shape memory effect. For β phase Ti–25.57 at.% Nb alloys, stress-induced martensitic transformation was found during compression in the as-cast and water quenched samples. For the ternary Ti–25.05 at.%Nb–2.04 at.%Sn alloy, conventional linear elastic behavior was observed. It is shown that the addition of Sn increases the stability of the β phase. The Young’s moduli of these alloys were also measured by ultrasonic measurements. Water-quenched Ti–25.57 at.%Nb alloy was found to exhibit the lowest Young’s modulus value. Sn addition has small impact on the Young’s moduli of the TiNb alloys.

  14. Development of Mg-based Hydrogen Storage Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mg-based hydrogen storage alloys are considered as a promising candidate for hydrogen system because of its lightweight, high storage capacity, low price and rich mineral resources. In detail,we reviewed the preparation and properties of Mg-Ni-based hydrogen storage alloys. All kinds of attempts have been done to improve the hydriding and dehydriding behaviors. It is found that the partial substitution of foreign elements can decrease the hydrogen absorption temperature,especially the substitution of a more electronegative element, such as Al and Mn. Mechanical alloying (MA) and mechanical grinding (MG) are the most effective methods to improve the hydriding/dehydriding kinetics and electrochemical capacity, and decrease the desorption temperature, but the corrosion resistance is so poor that the 80% of maximum capacity is lost within ten cycles. Microencapsulation is a useful measurement for improving the corrosion resistance and electrocatalytic activity. In order to improve the properties of the alloys for practical application, the alloys should have a large number of defects, which give activated sites, subsequently,MA, MG and electroless plating should be used to improve the hydriding/dehydriding kinetics and protect the surface of alloys, respectively. The new composite Mg-based alloys give a new way for the hydrogen storage material to practical application. Furthermore we put forward several problems which will be discussed in future.

  15. Fracture toughness of copper-base alloys for ITER applications: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J.; Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Oxide-dispersion strengthened copper alloys and a precipitation-hardened copper-nickel-beryllium alloy showed a significant reduction in toughness at elevated temperature (250{degrees}C). This decrease in toughness was much larger than would be expected from the relatively modest changes in the tensile properties over the same temperature range. However, a copper-chromium-zirconium alloy strengthened by precipitation showed only a small decrease in toughness at the higher temperatures. The embrittled alloys showed a transition in fracture mode, from transgranular microvoid coalescence at room temperature to intergranular with localized ductility at high temperatures. The Cu-Cr-Zr alloy maintained the ductile microvoid coalescence failure mode at all test temperatures.

  16. Effects of micro-alloying with Sc and Mn on microstructure and mechanical properties of Al-Mg based alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-ming; LUO Cheng-ping; PAN Qing-lin; YIN Zhi-ming

    2005-01-01

    An extensive investigation was made on the effects of micro-alloying with small amounts of Sc and Mn on the microstructure and mechanical properties of the Al-Mg based alloys. It is found that the micro-alloying can significantly enhance the tensile strength of the alloys, and eliminate the dendritic cast structure in it. Many fine,spherical and dispersive Al3Sc particles are found in the annealed Al-Mg-Mn-Sc alloys, which can strongly pin up dislocations and subgrain boundaries, thus strongly retarding the recrystallization of the alloys. The strengthening of the micro-alloyed Al-Mg alloys is attributed to the precipitation strengthening by the Al3Sc particles and to the substructure strengthening.

  17. Wear resistant steels and casting alloys containing niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, W.; Siebert, S.; Huth, S. [Lehrstuhl Werkstofftechnik, Ruhr-Univ. Bochum (Germany)

    2007-12-15

    Niobium, like titanium and vanadium, forms superhard MC carbides that remain relatively pure in technical alloys on account of their low solubility for other metallic alloying elements. However, because they have a greater hardness than the precipitated chromium carbides commonly used in wear-resistant alloys, they are suitable as alternative hard phases. This contribution deals with new wear-resistant steels and casting alloys containing niobium carbide. These include a secondary hardening hardfacing alloy, a composite casting alloy for wear applications at elevated temperatures, a white cast iron as well as two variants of a corrosion-resistant cold-work tool steel produced by melt metallurgy and by powder metallurgy. A heat-resistant casting alloy is also discussed. Based on equilibrium calculations the microstructures developing during production of the alloys are analysed, and the results are discussed with respect to important properties such as abrasive wear and corrosion resistance. (orig.)

  18. Surface segregations in platinum-based alloy nanoparticles

    Science.gov (United States)

    Yamakawa, Shunsuke; Asahi, Ryoji; Koyama, Toshiyuki

    2014-04-01

    A phase-field model that describes the radial distributions of the ordered-disordered phase and surface segregation in a single-alloy nanoparticle is introduced to clarify the overall behavior of surface segregation of various Pt-based alloy nanoparticles. One of the obstacles to apply a platinum-transition metal alloy as a cathode electro-catalyst of a polymer electrolyte fuel cell is the need to ensure the retention of the designed surface composition in an alloy nanoparticle against the alloy combinations, a particle size, and heat treatment. From the results of calculations for CrPt, FePt, CoPt, NiPt, CuPt, PdPt, IrPt, and AuPt binary nanoparticles with diameters below 10 nm at 973.15 K, the compositional variation within a single particle was found to depend on the balance between the atomic interaction within particles and the surface free energy. In addition, the obtained specific steady-state composition of the surface varied significantly with alloy combination and particle diameter. Based on the general tendencies of a binary system to exhibit segregation, attempts to control the amount of platinum segregation on the surface using a ternary-alloy system were examined.

  19. Microstructures and oxidation behavior of some Molybdenum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Pratik Kumar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  20. Corrosion evaluation of gold-based dental alloys.

    Science.gov (United States)

    Corso, P P; German, R M; Simmons, H D

    1985-05-01

    Three commercial gold-based dental alloys and three constant-nobility ternary alloys (Au-Ag-Cu) were evaluated for corrosion using a quantitative test battery. Integration of the current density, in a de-aerated solution of 1% NaCl along the approximate potential range found in the mouth (-300 mV to +300 mV vs. SCE), yields a quantitative rank ordering of the test alloys. The results are combined with prior findings on other commercial alloys to demonstrate the interaction of nobility and microstructure. Nobility determines the overall corrosion resistance for gold-based alloys. However, because of mutual insolubility, alloying with copper induces silver segregation, resulting in a higher corrosion rate at a given nobility. Thus, microstructure has an influence on corrosion, but heat treatments are largely ineffective in altering the basic corrosion characteristics. The test techniques, in combination with tarnish evaluations, provide a quantitative battery for alloy evaluation. The results indicate the combinations of nobility, microstructure, and environment most likely to avoid corrosion difficulties.

  1. Avaliação da fundibilidade de uma liga de cobalto-cromo Castability evaluation of a cobalt-chromium alloy

    Directory of Open Access Journals (Sweden)

    Adriana da Fonte Porto CARREIRO

    1999-04-01

    Full Text Available Neste trabalho propusemo-nos a avaliar a fundibilidade de uma liga de cobalto-cromo (VERA-PDI em função da utilização de três revestimentos: Knebel (aglutinado por sílica, Termocast e Wirovest (aglutinados por fosfato e duas temperaturas de aquecimento para o molde (900°C e 950°C. Para a execução do teste foi utilizado o método descrito por HINMAN et al.9 (1985. O método de fundição foi o de cera perdida sob chama de gás-oxigênio. Os dados obtidos foram submetidos a análise estatística e demonstraram não haver diferença estatisticamente significante para os revestimentos Knebel e Wirovest, e diferença estatisticamente significante ao nível de 0,1% para o revestimento Termocast quando da variação da temperatura de aquecimento do molde. Quando analisamos os revestimentos sob temperatura do molde de 900°C verificamos diferença estatisticamente significante entre Knebel e Termocast e Knebel e Wirovest ao nível de 0,1%, e diferença entre Termocast e Wirovest ao nível de 5%. Para a temperatura de 950°C houve diferença estatisticamente significante ao nível de 0,1% entre todos os revestimentos. Dentro dos parâmetros utilizados neste estudo pudemos concluir que, para a liga VERA-PDI, a utilização do revestimento Knebel e temperatura de aquecimento do molde de 950°C proporcionaram melhores resultados quanto à fundibilidade.The purpose of this study was to evaluate the castability of a cobalt-chromium alloy (Vera-PDI using three investments: Knebel (agglutinated by silica, Termocast and Wirovest (both agglutinated by phosphate at two molding temperatures (900°C and 950°C; using HINMAN et al.9 (1985; methodology. The casting method of using a wax and gas-oxygen flame was used. There was no significant statistical difference between the Knebel and Wirovest investments; however, there was a statistically significant difference for Termocast investment (P < 0.1 at the different temperatures. When analyzing the

  2. Synthesis and characterization of binder-free Cr{sub 3}C{sub 2} coatings on nickel-based alloys for molten fluoride salt corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Brupbacher, Michael C.; Zhang, Dajie [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Buchta, William M. [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Graybeal, Mark L. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Rhim, Yo-Rhin [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Nagle, Dennis C. [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Spicer, James B., E-mail: spicer@jhu.edu [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2015-06-15

    Under various conditions, chromium carbides appear to be relatively stable in the presence of molten fluoride salts and this suggests that their use in corrosion resistant coatings for fluoride salt environments could be beneficial. One method for producing these coatings is the carburization of sprayed Cr coatings using methane-containing gaseous precursors. This process has been investigated for the synthesis of binder-free chromium carbide coatings on nickel-based alloy substrates for molten fluoride salt corrosion resistance. The effects of the carburization process on coating microstructure have been characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) in conjunction with energy dispersive spectroscopy (EDS). Both plasma-sprayed and cold-sprayed Cr coatings have been successfully converted to Cr{sub 3}C{sub 2}, with the mechanism of conversion being strongly influenced by the initial porosity in the as-deposited coatings.

  3. A Computationally Based Approach to Homogenizing Advanced Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, P D; Cowen, C J

    2011-02-27

    We have developed a computationally based approach to optimizing the homogenization heat treatment of complex alloys. The Scheil module within the Thermo-Calc software is used to predict the as-cast segregation present within alloys, and DICTRA (Diffusion Controlled TRAnsformations) is used to model the homogenization kinetics as a function of time, temperature and microstructural scale. We will discuss this approach as it is applied to both Ni based superalloys as well as the more complex (computationally) case of alloys that solidify with more than one matrix phase as a result of segregation. Such is the case typically observed in martensitic steels. With these alloys it is doubly important to homogenize them correctly, especially at the laboratory scale, since they are austenitic at high temperature and thus constituent elements will diffuse slowly. The computationally designed heat treatment and the subsequent verification real castings are presented.

  4. Electrochemical properties of TiV-based hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    朱云峰; 李锐; 高明霞; 刘永锋; 潘洪革; 王启东

    2003-01-01

    The electrochemical properties of the super-stoichiometric TiV-based hydrogen storage electrode alloys(Ti0.8Zr0.2)(V0.533Mn0.107Cr0.16Ni0.2)x(x=2, 3, 4, 5, 6) were studied. It is found by XRD analysis that all the al-loys mainly consist of a C14 Laves phase with hexagonal structure and a V-based solid solution phase with BCCstructure. The lattice parameters and the unit cell volumes of the two phases decrease with increasing x. The cyclelife, the linear polarization, the anode polarization and the electrochemical impedance spectra of the alloy electrodeswere investigated systematically. The overall electrochemical properties of the alloy electrode are found improvedgreatly as the result of super-stoichiometry and get to the best when x= 5.

  5. Microbial Diversity of Chromium-Contaminated Soils and Characterization of Six Chromium-Removing Bacteria

    Science.gov (United States)

    He, Zhiguo; Hu, Yuting; Yin, Zhen; Hu, Yuehua; Zhong, Hui

    2016-06-01

    Three soil samples obtained from different sites adjacent to a chromium slag heap in a steel alloy factory were taken to examine the effect of chromium contamination on soil bacterial diversity as determined by construction of 16S rDNA clone libraries and sequencing of selected clones based on restriction fragment length polymorphism (RFLP) analysis. Results revealed that Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Alphaproteobacteria occurred in all three soil samples, although the three samples differed in their total diversity. Sample 1 had the highest microbial diversity covering 12 different classes, while Sample 3 had the lowest microbial diversity. Strains of six different species were successfully isolated, one of which was identified as Zobellella denitrificans. To our knowledge, this is the first report of a strain belonging to the genus Zobellella able to resist and reduce chromium. Among all isolates studied, Bacillus odysseyi YH2 exhibited the highest Cr(VI)-reducing capability, with a total removal of 23.5 % of an initial Cr(VI) concentration of 350 mg L-1.

  6. Effect of Annealing on Rare Earth Based Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    Li Jinhua

    2004-01-01

    Rare earth-based hydrogen storage alloy used as negative electrode materials for nickel-metal hydride (Ni-MH) batteries are used commercially.The effect of annealing treatment with different annealing temperature and time on the MLNi3.68 Co0.78 Mn0.35 Al0.27 and MMNi3.55 Co0.75 Mn0.40 Al0.30 alloys were investigated.The crystal microstructure,pressure-composition-isotherms (p-C-T) and electrochemical properties of alloys were examined by X-ray diffraction (XRD), automatic PCI monitoring system and electrical performance testing instruments.The optimum annealing treatment conditions of two kinds of alloys were determined.

  7. Relación entre factores micro- estructurales e impacto repetido en aleaciones de alto cromo para bolas de molino. // Relationship among factors micro - structural and impact repeated in alloys of high chromium for mill balls.

    Directory of Open Access Journals (Sweden)

    E. Albertin

    2008-01-01

    Full Text Available Las aleaciones de alto cromo son empleadas para la fabricación de bolas de molino en industrias de procesamiento deminerales. Los usuarios y fabricantes requieren lograr mejores resultados técnicos-económicos en sus aplicaciones, por loque necesitan aumentar los conocimientos relacionados con los aspectos estructurales de estos materiales. En este trabajo serealiza una investigación con vistas a establecer relaciones entre la estructura de las aleaciones y su comportamiento ante elimpacto repetido que es un fenómeno característico en estos procesos.Se funden bolas con varias aleaciones hipo eutécticas, eutécticas, e hipereutécticas; se prueban en un equipo que simula elimpacto repetido. Los resultados permiten comprobar los buenos resultados de aleaciones hipo eutécticas con relaciones deCr/C altas y a su vez altos contenidos de Cr y de aleaciones eutécticas para menores relaciones de Cr/C y menorescontenidos de Cr, en ambos casos los carburos eutécticos son de forma simétrica, regulares y no forman redes continuas decarburos asimétricos bordeando los granos, que presentan peores comportamiento en el impacto repetido y que son el casode las hipoeutécticas con bajas relaciones Cr/C y las hipereutécticas donde aparecen también grandes carburos primariosPalabras claves: Alto-cromo, bolas de molino, impacto repetido, desgaste.____________________________________________________________________________Abstract.High Chromium alloys are used to manufacture grinding balls for the Industry of Construction Materials. Customers andusers need to improve their knowledge about the relationships between microstructure and the parts damage in these alloysto obtain better technical-economics results. In this paper the results of a research to obtain different microstructures ofeutectics, hipoeutectics and hipereutectics alloys are presented, searching for the lesser damage in these alloys. These alloysare tested in a repeated impact testing

  8. Laser multi-layer cladding of Mg-based alloys

    Institute of Scientific and Technical Information of China (English)

    陈长军; 王东生; 王茂才

    2003-01-01

    By laser multi-layer cladding using a pulsed Nd-YAG irradiation the thickness of the cladding zone Mg-based alloys(ZM2 and ZM5) can reach about 1. 0 mm. The microstructure of the substrate and the cladding zone wasstudied using optical microscope, scanning electron microscopy(SEM), X-ray diffractometry(XRD) and micro hard-ness analysis. It is observed that constituent of ZM5 alloy is δ+Mg17 Al12, that of ZM2 alloy is α+MgZn+Mg9Ce.That of cladding layer ZM2 alloy(L-ZM2) is Mg+ Mg2 Zn11 +MgCe; while that of the cladding layer ZM5 alloy(L-ZM5) is Mg+Mg32 (Al, Zn)49. The hardness of the cladding area can be increased to values above HV127. Veryfine uniform microstructure and the produced new phases of nanometer/sub-micrometer order were obtained. Now,many repaired Mg-based alloy components have been passed by flying test in outside field.

  9. Study on hemocompatibility and corrosion behavior of ion implanted TiNi shape memory alloy and Co-based alloys.

    Science.gov (United States)

    Liang, Chenghao; Huang, Naibao

    2007-10-01

    Biomedical TiNi shape memory alloy and Co-based alloys were ion implanted, and corrosion resistance and hemocompatibility of these had been investigated with electrochemical method, dynamic clotting time, and hemolysis rate tests. The results indicated that the electrochemical stability and anodic polarization behavior of the materials were improved significantly after ion implantation. When TiNi, Co-based alloys were implanted Mo + C and Ti + C, respectively, the corrosion potentials were enhanced more than 200 mV, passive current densities decreased, and passive ranges were broadened. Dynamic clotting time of the ion implanted substances was prolonged and hemolysis rate decreased. All the results pointed out that corrosion resistance and hemocompatibility of the alloys were improved by ion implantation, and effects of dual implantation was better than that of C single implantation. X-ray diffraction analysis of the alloys after dual implantation revealed that TiC, Mo(2)C, Mo(9)Ti(4), and Mo appeared on the surface of TiNi alloy, and CoC(x), Co(3)Ti, TiC, and TiO on the surface of Co-based alloys. These phases dispersing on the alloy surface formed amorphous film, prevented dissolving of alloy elements and improved the corrosion resistance and hemocompatibility of the alloys.

  10. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Maksin, Danijela D., E-mail: dmaksin@vinca.rs [University of Belgrade, Vinca Institute of Nuclear Sciences, P.O. Box 522, Belgrade (Serbia); Nastasovic, Aleksandra B., E-mail: anastaso@chem.bg.ac.rs [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, Belgrade (Serbia); Milutinovic-Nikolic, Aleksandra D., E-mail: snikolic@nanosys.ihtm.bg.ac.rs [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, Belgrade (Serbia); Surucic, Ljiljana T., E-mail: ljilja_m@yahoo.com [University of Belgrade, Faculty of Forestry, Kneza Viseslava 1, Belgrade (Serbia); Sandic, Zvjezdana P., E-mail: zvjezdana.sandic@gmail.com [Faculty of Science, Mladena Stojanovica 2, Banja Luka, Bosnia and Herzegovina (Bosnia and Herzegowina); Hercigonja, Radmila V., E-mail: radah@ffh.bg.ac.rs [University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11001 Belgrade (Serbia); Onjia, Antonije E., E-mail: onjia@vinca.rs [University of Belgrade, Vinca Institute of Nuclear Sciences, P.O. Box 522, Belgrade (Serbia)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Methacrylate based copolymers grafted with diethylene triamine as Cr(VI) sorbents. Black-Right-Pointing-Pointer Chemisorption and pore diffusion are characteristics of this sorption system. Black-Right-Pointing-Pointer Langmuir isotherm provided best fit and maximum adsorption capacity was 143 mg g{sup -1}. Black-Right-Pointing-Pointer Cr(VI) sorption onto amino-functionalized copolymer was endothermic and spontaneous. Black-Right-Pointing-Pointer A simple, efficient and cost-effective hexavalent chromium removal method. - Abstract: Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25-70 Degree-Sign C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q{sub max}, at pH 1.8 and 25 Degree-Sign C was 143 mg g{sup -1} for PGME2-deta (sample with the highest amino group concentration) while at 70 Degree-Sign C Q{sub max} reached the high value of 198

  11. Chromium related degradation of solid oxide fuel cells; Chrom-bezogene Degradation von Festoxid-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Anita

    2011-05-04

    Solid Oxide Fuel Cells (SOFCs) offer a high potential for application as an auxiliary power unit (APU) for heavy goods vehicles as well as combined heat and power (CHP) systems. SOFCs are especially attractive due to their high efficiencies and the use of different fuel types. However, optimization in terms of long term stability and costs are still necessary. This work characterized the degradation of SOFCs with lanthanum strontium manganite (LSM) cathodes under chromium influence. Galvanostatic cell tests were carried out at 800 C with operation times from 250 - 3000 h and variation of the chromium source and current density. The current densities of j = 0 (A)/(cm{sup 2}), j = 0,3 (A)/(cm{sup 2}) and j = 0,5 (A)/(cm{sup 2}) were applied. The high temperature ferritic alloy Crofer22APU was used as a chromium source. Variation of the chromium source was realized by coating the Crofer22APU insert with the chromium retention layer Mn{sub 3}O{sub 4} and the cathode contact layer LCC10. Cell degradation was analyzed with regard to cell voltage, current density and area specific resistance (ASR). Microstructural alterations of the cathode as well as chromium content and distribution across the cell were investigated after completion of the cell tests. For cells with a chromium source present and operation with a nonzero current density, the course of cell degradation was divided into three phases: a run-in, weak linear degradation and strong linear degradation. A decrease of the chromium release rate by means of different coatings stretched the course of degradation along the timescale. Strong degradation, which is characterized by a significant increase in ASR as well as a decrease of current density at the operating point, was only observed when a chromium source in the setup was comb ined with operation of the cell with a non-zero current density. Operation of the cell with a chromium source but no current density caused a degradation of current density at the

  12. Characterization of the microstructure in Mg based alloy

    KAUST Repository

    Kutbee, Arwa T

    2013-06-01

    The cast products Mg–Sn based alloys are promising candidates for automobile industries, since they provide a cheap yet thermally stable alternative to existing alloys. One drawback of the Mg–Sn based alloys is their insufficient hardness. The hardenability can be improved by engineering the microstructure through additions of Zn to the base alloy and selective aging conditions. Therefore, detailed knowledge about the microstructural characteristics and the role of Zn to promote precipitation hardening is essential for age hardenable Mg-based alloys. In this work, microstructural investigation of the Mg–1.4Sn–1.3Zn–0.1Mn (at.%) precipitation system was performed using TEM. The chemical composition of the precipitates was analyzed using EDS. APT was employed to obtain precise chemical information on the distribution of Zn in the microstructure. It was found from microstructural studies that different precipitates with varying sizes and phases were present; lath-shaped precipitates of the Mg2Sn phase have an incoherent interface with the matrix, unlike the lath-shaped MgZn2 precipitates. Furthermore, nano-sized precipitates dispersed in the microstructure with short-lath morphology can either be enriched with Sn or Zn. On the other hand, APT analysis revealed the strong repulsion between Sn and Zn atoms in a portion of the analysis volume. However, larger reconstruction volume required to identify the role of Zn is still limited to the optimization of specimen preparation.

  13. Preliminary Analysis of the General Performance and Mechanical Behavior of Irradiated FeCrAl Base Alloys and Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Briggs, Samuel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    The iron-based, iron-chromium-aluminum (FeCrAl) alloys are promising, robust materials for deployment in current and future nuclear power plants. This class of alloys demonstrates excellent performance in a range of environments and conditions, including high-temperature steam (>1000°C). Furthermore, these alloys have the potential to have prolonged survival under loss-of-coolant accident (LOCA) conditions compared to the more traditional cladding materials that are either Zr-based alloys or austenitic steels. However, one of the issues associated with FeCrAl alloys is cracking during welding. The present project investigates the possibility of mitigating welding-induced cracking via alloying and precise structure control of the weldments; in the frame work of the project, several advanced alloys were developed and are being investigated prior to and after neutron irradiation to provide insight into the radiation tolerance and mechanical performance of the weldments. The present report provides preliminary results on the post-irradiation characterization and mechanical tests performed during United States Fiscal Year (FY) 2016. Chapter 1 provides a general introduction, and Chapter 2 describes the alloy compositions, welding procedure, specimen geometry and manufacturing parameters. Also, a brief discussion of the irradiation at the High Flux Isotope Reactor (HFIR) is provided. Chapter 3 is devoted to the analysis of mechanical tests performed at the hot cell facility; tensile curves and mechanical properties are discussed in detail focusing on the irradiation temperature. Limited fractography results are also presented and analyzed. The discussion highlights the limitations of the testing within a hot cell. Chapter 4 underlines the advantages of in-situ testing and discusses the preliminary results obtained with newly developed miniature specimens. Specimens were moved to the Low Activation Materials Development and Analysis (LAMDA) laboratory and prepared for

  14. The effects of microstructural control on the mechanical behavior of Cr{sub 2}Nb-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.A.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States); Liu, C.T. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    Microstructural evaluations and mechanical testing of Laves-phase alloys based on Cr{sub 2}Nb were examined in order to optimize microstructural and mechanical properties by thermomechanical treatment at temperatures up to 1600{degrees}C. At ambient temperatures, single-phase Cr{sub 2}Nb alloys are very hard and brittle due to the complicated crystal structure (C-15). The following results were revealed through examination of the Cr-Cr{sub 2}Nb two-phase region: (a) with increasing amounts of the soft chromium-rich phase, the compression strength and hardness decrease; (b) the annealing treatments studied thus far provided the best break-up of the coarse/brittle Laves-containing eutectic phase in the 94 at.% Cr - 6 at.% Nb (CN-7) alloy; (c) two different anneals, 1 hour at 1600{degrees}C + 4 hours at 1200{degrees}C and 4 hours at 1550{degrees}C + 2 days at 1200{degrees}C, lead to a substantial improvement in the room temperature strength and compressive ductility over previous annealing treatments. Hot Isostatic Pressing has led to only a marginal reduction in casting defects and refinement of the eutectic structure. A combination of hot forging and annealing has been initially promising in refining the brittle eutectic structure.

  15. Durable pd-based alloy and hydrogen generation membrane thereof

    Science.gov (United States)

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  16. Improvement of hydrogen sorption properties of compounds based on Vanadium “bcc” alloys by mean of intergranular phase development

    Energy Technology Data Exchange (ETDEWEB)

    Planté, D., E-mail: damien.plante@grenoble.cnrs.fr [Institut Néel CNRS et Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France); Raufast, C.; Miraglia, S. [Institut Néel CNRS et Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France); Rango, P. de [Institut Néel CNRS et Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France); CRETA, CNRS, BP166, 38042 Grenoble Cedex 9 (France); Fruchart, D. [Institut Néel CNRS et Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •Decrease of “bcc” pseudo cell with the increase of amount of additive. •Additive phase improve activation kinetics. •Chromium in the “bcc” matrix decreases the lattice parameter and destabilizes hydride formation/dissociation. •Lower working temperatures could be obtain. -- Abstract: Body centered cubic structure (“bcc”) type alloys based on Vanadium [1] reveal promising characteristics for mobile applications. These disordered solid solutions have particular metal/hydride equilibrium and some regulation aspects have leaded us to pay special attention to this type of material [2]. Compounds based on Vanadium-rich solid solution have been elaborated in order to destabilize γ hydride phase (corresponding to the face centered cubic (“fcc”) structure of VH{sub 2}). Addition of Ni and Zr-rich Laves phase as a secondary phase results in the development of a particular microstructure composed of a principal “bcc” matrix rounded by intergranular activating phase. This results in a facilitated and faster activation of these compounds. The present study shows that some constituting species of the secondary phase have diffused in the main matrix and therefore have modified the thermodynamic of hydride. In fact, chromium diffusion into the “bcc” matrix destabilizes hydride. It is correlated to the lower stability of chromium hydride compared to Vanadium hydride. The enthalpic terms of each sample have been measured (assuming standard entropy of 130 J mol{sup −1} K{sup −1}). The equilibrium metal/hydride can be easily switched in order to adapt it to a mobile hydride tank and obtain low working temperature in regard to the potential use.

  17. 高铬铸铁及低合金钢与高锰钢的磨损试验对比研究%Comparing Investigation on Abrasive Wear of High Chromium Cast Iron, Low Alloy Steel and High Manganese Steel

    Institute of Scientific and Technical Information of China (English)

    张鲲鹏; 陈培友; 唐建新

    2013-01-01

    在模拟实际破碎机工况条件下,对高铬铸铁、低合金钢与高锰钢进行磨料磨损性能试验与对比,以得到在试验对应的实际工作条件下性能较优的抗磨材料.试验结果表明,在低应力冲击载荷条件下,高铬铸铁的抗磨性能最好,低合金钢次之,高锰钢最差;在低冲击载荷条件下高锰钢的性能潜力不能得到充分发挥,而高铬铸铁更适用于低冲击载荷条件下的抗磨件.%Under the condition of simulating actual working of broken machine,the impact abrasive wear resistances of high-Cr cast iron,low alloy steel and high-Mn steel were studied,and the better material in wear-resistant performance was obtained under the test conditions of corresponding actual operating conditions.The results show that the anti-wear properties of high chromium cast iron is best in low-stress impact load conditions,followed by low-alloy steel,highmanganese steel is worst; the potential of high manganese steel in performance can not be given full in low-impact load conditions,high chromium cast iron is more suitable.

  18. Influence of diffusion annealing on residual resistivity of Nb3Sn-based chromium-plated strands obtained by a bronze process

    Science.gov (United States)

    Novosilova, D. S.; Abdyukhanov, I. M.; Vorob'eva, A. E.; Dergunova, E. A.; Polikarpova, M. V.; Mareev, K. A.; Traktirnikova, N. V.; Popova, E. N.; Deryagina, I. L.; Sudareva, S. V.

    2012-10-01

    The residual resistivity ratio, R273/R20, is an important parameter for multifilament superconductors (strands) based on Nb3Sn that are used to manufature cables of magnetic systems. High values of RRR impart stability to the cable with regard to thermal excitations. Nb3Sn strands for magnetic system of the International Thermonuclear Experimental Reactor are manufactured from high purity oxygen-free copper with RRR > 250 units; however, after extended diffusion annealing intended to form superconducting phase Nb3Sn, the residual resistivity ratio values of the strands decrease. This work investigates the influence of diffusion annealing for 55-200 h during the final stage at 650°C on the residual resistivity ratio of chromium-plated Nb3Sn strands. The contents of chromium and oxygen have been analyzed using X-ray spectral microanalysis of the strand surface and peripheral copper layers. Mass spectrometry with inductively coupled plasma (ICP mass spectrometry) has been used to determine the total chromium content in the copper shell. The influence of chromium and oxygen diffusion from coating during annealing at 650°C on the residual resistivity ratio has been demonstrated. Based on the data of ICP mass spectrometry, the depth of the penetration of chromium in a copper shell has been assessed.

  19. Several Issues in the Development of Ti-Nb-Based Shape Memory Alloys

    Science.gov (United States)

    Kim, Hee Young; Miyazaki, Shuichi

    2016-12-01

    Ni-free Ti-based shape memory alloys, particularly Ti-Nb-based alloys, have attracted increasing attraction since the early 2000s due to their wide application potentials in biomedical fields. Recently, there has been significant progress in understanding the martensitic transformation behavior of Ti-Nb-based alloys and many novel superelastic alloys have been developed. The superelastic properties of Ti-Nb-based alloys have been remarkably improved through the optimization of alloying elements and microstructure control. In this paper, in order to explore and establish the alloy design strategy, several important issues in the development of Ti-Nb-based shape memory alloys are reviewed. Particularly, the effects of alloying elements on the martensitic transformation temperature and the transformation strain are analyzed. The effects of omega phase and texture on the superelastic properties are also discussed.

  20. The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review

    Science.gov (United States)

    Zhang, Li-Nan; Hou, Zeng-Tao; Ye, Xin; Xu, Zhao-Bin; Bai, Xue-Ling; Shang, Peng

    2013-09-01

    This review investigates the current application limitations of Mg and Mg alloys. The key issues hindering the application of biodegradable Mg alloys as implants are their fast degradation rate and biological consideration. We have discussed the effect of some selected alloying element additions on the properties of the Mg-based alloy, especially the nutrient elements in human (Zn, Mn, Ca, Sr). Different grain sizes, phase constituents and distributions consequently influence the mechanical properties of the Mg alloys. Solution strengthening and precipitation strengthening are enhanced by the addition of alloying elements, generally improving the mechanical properties. Besides, the hot working process can also improve the mechanical properties. Combination of different processing steps is suggested to be adopted in the fabrication of Mg-based alloys. Corrosion properties of these Mg-based alloys have been measured in vitro and in vivo. The degradation mechanism is also discussed in terms of corrosion types, rates, byproducts and response of the surrounding tissues. Moreover, the clinical response and requirements of degradable implants are presented, especially for the nutrient elements (Ca, Mn, Zn, Sr). This review provides information related to different Mg alloying elements and presents the promising candidates for an ideal implant.

  1. Corrosion Resistance of Fe-Ni-Cr Alloy Coating Electroplated with Trivalent Chromium Sulphate Salt Containing Electrolyte%三价铬硫酸盐体系电镀Fe-Ni-Cr合金镀层的耐蚀性研究

    Institute of Scientific and Technical Information of China (English)

    史艳华; 陈吉

    2011-01-01

    The Fe-Ni-Cr alloy coating on carbon steel was electrodeposited on mild steel No.20 with trivalent chromium sulfate salt containing electrolyte, and the corrosion resistance in 3.5% NaCl solution of coatings deposited with different processes was investigated by means of potentiodynamical polarization and electrochemical impedance spectroscopy (EIS) measurements. The experimental results showed that the optimal deposition parameters were as following: FeSO4·7H2O 15 g/L, NiSO4·6H2O 8 g/L, Cr2(SO4)3·6H2O 200g/L, C6H8O·7H2O 70g/L, current density 4 A/dm2, temperature 55 ℃. The corrosion rate of the coating in 3.5% NaCl solution was 73.2 mg·m-2·h-1, which was 23.3% lower than that of base material.%采用三价铬硫酸盐体系在普通碳素钢基体上电镀Fe-Ni-Cr合金镀层,通过浸泡失重法研究不同工艺条件下制备的镀层在3.5% NaCl溶液中的耐蚀性能,并用电化学分析方法研究了镀层试样的耐蚀机理.结果表明,最佳电镀Fe-Ni-Cr合金工艺为:主盐浓度FeS04·7H2O 15 g/L、NiSO4·6H2O 8 g/L、Cr(SO4)3.6H2O 200g/L;络合剂柠檬酸浓度70 g/L;电流密度为4 A/dm2,电镀温度为55℃.该工艺制备的Fe-Ni-Cr 合金镀层在3.5% NaCl溶液中的腐蚀速率为73.2 mg-m-2·h-1,耐蚀性比基体提高23.3%.

  2. Recrystallization characteristics of oxide dispersion strengthened nickel-base alloys

    Science.gov (United States)

    Hotzler, R. K.; Glasgow, T. K.

    1980-01-01

    Electron microscopy was employed to study the process of recrystallization in two oxide dispersion strengthened (ODS) mechanically alloyed nickel-base alloys, MA 754 and MA 6000E. MA 754 contained both fine, uniformly dispersed particles and coarser oxides aligned along the working direction. Hot rolled MA 754 had a grain size of 0.5 microns and high dislocation densities. After partial primary recrystallization, the fine grains transformed to large elongated grains via secondary (or abnormal) grain growth. Extruded and rolled MA 6000E contained equiaxed grains of 0.2 micron diameter. Primary recrystallization occurring during working eliminated virtually all dislocations. Conversion from fine to coarse grains was triggered by gamma prime dissolution; this was also a process of secondary or abnormal grain growth. Comparisons were made to conventional and oxide dispersion strengthened nickel-base alloys.

  3. Weldability and Microstructure of Nickel-Silicon Based Alloys

    Institute of Scientific and Technical Information of China (English)

    LIU Qing-cai; LIU Yi; YANG Jian; J.W.Newkirk; ZHANG Shan-hong

    2006-01-01

    The NiSix based alloy typically has poor weldability due to its lower ductility. A limited amount of work has been performed on the weldability of NiSix based alloys. Therefore, the effect of heat treatment and welding parameters on weldability of the alloys, and the relationship between the weldability and microstructure were studied. The results show that the as-cast Ni-Si-Nb-B alloy (Ni 76.5%, Si 20%, Nb 3%, and B 0.5%) could be successfully welded after preheating at 600 ℃. The welding procedure should be performed on the alloys before any heat treatment and a preheating at 600 ℃ should be used. The fusion zone is harder than the matrix due to a large amount of γ phase and a finer microstructure. The cracks are predominantly intergranular in heat affected zone and associated with the needle-like γ phase. The heat treatment before welding increases the tendency of cracking in the fusion zone.

  4. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A.; Easton, D.S.; Heatherly, L.

    1996-06-01

    The objective of this work is to develop a new generation of structural materials based on intermetallic alloys for use at high temperatures in advanced fossil energy conversion systems. Target applications of such ultrahigh strength alloys include hot components (for example, air heat exchangers) in advanced energy conversion systems and heat engines. However, these materials may also find use as wear-resistant parts in coal handling systems (for example, nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. One potential class of such alloys is that based on Cr-Cr{sub 2}Nb alloys. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for initial development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), and excellent high-temperature strength (at 1000 to 1250{degrees}C). This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions.

  5. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  6. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Wilkening, D. [Columbia Falls Aluminum Co., 2000 Aluminum Dr., Columbia Falls, MT 59912 (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., P.O. Box 1071, Anaconda, MT 59711 (United States)

    1998-12-31

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{sup TM} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast. (orig.) 18 refs.

  7. Kinetics of chromium evaporation from heat-resisting steel under reduced pressure

    Directory of Open Access Journals (Sweden)

    C. Kolmasiak

    2012-07-01

    Full Text Available This paper describes a kinetic analysis of the process of chromium evaporation from ferrous alloys smelted under reduced pressure. The study discussed comprised determination of the liquid phase mass transfer coefficient as well as the value of the constant evaporation rate. By applying these values as well as the values of the overall mass transfer coefficient estimated based on the relevant experimental data, the fractions of resistance of the individual process stages were established.

  8. Use of synchrotron- and plasma-based spectroscopic techniques to determine the uptake and biotransformation of chromium(III) and chromium(VI) by Parkinsonia aculeata.

    Science.gov (United States)

    Zhao, Yong; Parsons, Jason G; Peralta-Videa, Jose R; Lopez-Moreno, Martha L; Gardea-Torresdey, Jorge L

    2009-01-01

    In this study, a combination of inductively coupled plasma optical emission spectroscopy and X-ray absorption spectroscopy (XAS) was used to study the uptake and speciation of chromium in Parkinsonia aculeata, commonly known as Mexican Palo Verde. Plants were treated for 14 days in a modified Hoagland solution containing chromium(III) or chromium(VI) at several concentrations. The results showed that plants treated with 70 mg Cr(III) L(-1) and 30 mg Cr(VI) L(-1) had similar Cr concentrations in leaves (∼200 mg kg(-1) dry weight, DW). The results also showed that neither Cr(III) nor Cr(VI) affected the uptake of phosphorus and sulfur. However, the concentration of calcium in the stems of plants treated with Cr(VI) at 40 mg L(-1) (about 6000 mg Ca kg(-1) DW) was significantly higher compared to the Ca concentration (about 3000 mg kg(-1) DW) found in the stems of plants treated with 150 mg Cr(III) L(-1). However, no differences were observed in potassium and magnesium concentrations. The iron concentration (about 1000 mg kg(-1) DW) in roots treated with 40 mg Cr(VI) L(-1) was similar to the iron concentration found in the roots of plants treated with 110 mg Cr(III) L(-1). The XAS data showed that Cr(VI) was reduced to Cr(III) in/on the plant roots and transported as Cr(III) to the stems and leaves. The XAS studies also showed that Cr(III) within plants was present as an octahedral complex.

  9. Corrosion behavior of nickel-containing alloys in artificial sweat.

    Science.gov (United States)

    Randin, J P

    1988-07-01

    The corrosion resistance of various nickel-containing alloys was measured in artificial sweat (perspiration) using the Tafel extrapolation method. It was found that Ni, CuNi 25 (coin alloy), NiAl (colored intermetallic compounds), WC + Ni (hard metal), white gold (jewelry alloy), FN42 and Nilo Alby K (controlled expansion alloys), and NiP (electroless nickel coating) are in an active state and dissolve readily in oxygenated artificial sweat. By contrast, austenitic stainless steels, TiC + Mo2C + Ni (hard metal), NiTi (shape-memory alloy), Hastelloy X (superalloy), Phydur (precipitation hardening alloy), PdNi and SnNi (nickel-containing coatings) are in a passive state but may pit under certain conditions. Cobalt, Cr, Ti, and some of their alloys were also investigated for the purpose of comparison. Cobalt and its alloys have poor corrosion resistance except for Stellite 20. Chromium and high-chromium ferritic stainless steels have a high pitting potential but the latter are susceptible to crevice corrosion. Ti has a pitting potential greater than 3 V. Comparison between the in vitro measurements of the corrosion rate of nickel-based alloys and the clinical observation of the occurrence of contact dermatitis is discussed.

  10. Grafted chromium 13-membered dioxo-macrocyclic complex into aminopropyl-based nanoporous SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Tarlani, Aliakbar, E-mail: Tarlani@ccerci.ac.ir [Inorganic Nanostructures and Catalysts Research Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Boulevard, km 17, Karaj Highway, Tehran 14968-13151 (Iran, Islamic Republic of); Joharian, Monika; Narimani, Khashayar [Inorganic Nanostructures and Catalysts Research Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Boulevard, km 17, Karaj Highway, Tehran 14968-13151 (Iran, Islamic Republic of); Muzart, Jacques [Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Fallah, Mahtab [Inorganic Nanostructures and Catalysts Research Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Boulevard, km 17, Karaj Highway, Tehran 14968-13151 (Iran, Islamic Republic of)

    2013-07-15

    In a new approach, chromium (III) tetraaza dioxo ligand was grafted onto functionalized SBA-15 after four step reactions by using coordinating ability of anchored amino functionalized SBA-15. After the termination of each step, the obtained product was characterized by FT-IR, low-angle X-ray diffraction (LA-XRD), N{sub 2} adsorption–desorption isotherms (Brunauer–Emmett–Teller (BET)–Barret–Joyner–Halenda (BJH)) and thermogravimetric analysis (TGA), and used as catalyst for the efficient and regioselective alcoholysis of styrene oxide to 2-alkoxy-1-phenylethanol product at ambient temperature. - Graphical abstract: Chromium (III) tetraaza dioxo ligand was grafted onto functionalized SBA-15 using coordinating ability of anchored amino functionalized SBA-15. Preparation of the catalyst is depicted in Scheme 1. - Highlights: • Dioxo tetraazachromium macrocyclic complex grafted into the SBA-15-NH{sub 2} channels. • The bond is created by coordinating ability of anchored amino functionalized SBA-15. • The prepared nanocatalyst has superior activity in the alcoholysis of styrene oxide. • The catalyst is reusable at ambient temperature for the mentioned reaction.

  11. Thermodynamic and structural properties of Bi-based liquid alloys

    Science.gov (United States)

    Yadav, S. K.; Jha, L. N.; Adhikari, D.

    2015-10-01

    Thermodynamic and microscopic structural properties of two Bi-based liquid alloys, such as In-Bi at 900 K and Tl-Bi at 750 K have been studied employing the regular associated solution model. We have estimated the mole fractions of the complexes and the free monomers assuming the existence of complexes In2 Bi in In-Bi melt and TlBi in Tl-Bi melt. The thermodynamic properties have been studied by computing the Gibbs free energy of mixing, enthalpy of mixing, entropy of mixing and activities of the monomers. The compositional contributions of the heat associated with the formation of complexes and the heat of mixing of the monomers to the net enthalpy change has also been studied. The structural properties of the liquid alloys have been studied by computing concentration fluctuation in the long-wavelength limit, chemical short-range order parameter and the ratio of mutual to intrinsic diffusion coefficients. For both of the alloy systems, the theoretical as well as the experimental values of SCC (0) are found to be lower than the corresponding ideal values over the whole composition range, indicating the hetero-coordinating nature of Bi-In and Bi-Tl alloy melts. All the interaction energy parameters are found to be negative and temperature dependent, and both the alloy systems are found to be weakly interacting.

  12. [Dimensional changes of silver and gallium-based alloy].

    Science.gov (United States)

    Ballester, R Y; Markarian, R A; Loguercio, A D

    2001-01-01

    Gallium-based dental alloys were created with the aim of solving the problem of toxicity of mercury. The material shows mechanical properties similar to those of dental amalgam, but researches point out two unfavorable characteristics: great corrosion and excessive post-setting expansion, and the latter is capable of cracking dental structures. The aim of this study was to evaluate, during 7 days, the in vitro dimensional alteration of a gallium dental alloy (Galloy, SDI, Australia), in comparison with a dental amalgam containing zinc (F400, SDI, Australia), as a function of the contact with saline solution (0.9% NaCl) during the setting period. The storage experimental conditions were: storage in dry environment, immersion in saline solution and contamination during condensation. Additionally, the effects of contamination during the trituration of dental amalgam and the effects of protecting the surface of the gallium alloy with a fluid resin were studied. Specimens were stored at 37 degrees C +/- 1 degree C, and measuring was carried out, sequentially, every 24 h during 7 days. When the gallium alloy was either contaminated or immersed, an expansion significantly greater than that observed in the other experimental conditions was noticed after 7 days. The application of a fluid resin to protect the surface of the cylinders was able to avoid the increase in expansion caused by superficial moisture. The amalgam alloy did not show significant dimensional alterations, except when it was contaminated during trituration.

  13. Effects of yttrium, aluminum and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers

    Science.gov (United States)

    Stecura, S.

    1980-01-01

    A cyclic furnace study was conducted on thermal barrier systems to evaluate the effects of yttrium, chromium and aluminum in nickel-base alloy bond coatings and the effect of bond coating thickness on yttria-stabilized zirconia thermal barrier coating life. Without yttrium in the bond coatings, the zirconia coatings failed very rapidly. Increasing chromium and aluminum in the Ni-Cr-Al-Y bond coatings increased total coating life. This effect was not as great as that due to yttrium. Increased bond coat thickness was also found to increase life.

  14. Improved Mg-based alloys for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.; Ming, L.; Stetson, N.T.; Evans, J. [Energy Conversion Devices, Inc., Troy, MI (United States)

    1998-08-01

    The overall objective of this on-going work is to develop low temperature alloys capable of reversibly storing at least 3 wt.% hydrogen, allowing greater than for 2 wt.% at the system level which is required by most applications. Surface modification of Mg can be used to improve its H-sorption kinetics. The authors show here that the same Mg-transition metal-based multi-component alloy when prepared by melt-spinning results in a more homogeneous materials with a higher plateau pressure as compared to preparing the material by mechanical grinding. They have also shown that mechanically alloyed Mg{sub 50}Al{sub 45}Zn{sub 5} results in a sample having a higher plateau pressure.

  15. Preliminary Analysis of the General Performance and Mechanical Behavior of Irradiated FeCrAl Base Alloys and Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N [ORNL; Field, Kevin G [ORNL; Yamamoto, Yukinori [ORNL

    2016-09-01

    The iron-based, iron-chromium-aluminum (FeCrAl) alloys are promising, robust materials for deployment in current and future nuclear power plants. This class of alloys demonstrates excellent performance in a range of environments and conditions, including high-temperature steam (>1000 C). Furthermore, these alloys have the potential to survive greater durations under lost-of-coolant incident (LOCA) conditions compared to the more traditional cladding materials that are Zr-based or austenitic steels. However, one of the issues associated with FeCrAl alloys is cracking during welding. The present project investigates the possibility to mitigate welding-induced cracking via alloying and precise structure control of the weldments; in the frame work of the project, several advanced alloys were developed and are being investigated prior to and after neutron irradiation to provide insight into the radiation tolerance and mechanical performance of the weldments. The present report provides preliminary, working results on the post-irradiation characterization and mechanical tests performed during United States Fiscal Year (FY) 2016. Chapter 1 provides a general introduction, and Chapter 2 describes the alloy compositions, welding procedure, specimen geometry and manufacturing. Also, a brief discussion of the irradiation at the High-Flux Isotope Reactor (HFIR) is provided. Chapter 3 is devoted to the analysis of mechanical tests performed at the hot cell facility; tensile curves and mechanical properties are discussed in details focusing on the irradiation temperature role. Limited fractography results are also given and analyzed. The discussion highlights the limitations of the testing at the hot cell. Chapter 4 underlines the advantages of in-situ testing and discusses the preliminary results obtained with newly developed miniature specimens. Specimens were moved to the Low Activation Materials Development Laboratory (LAMDA) and prepared for mechanical tests. Follow-on SEM

  16. Diffusion Bonding between TiAl Based Alloys and Steels

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The joint of 40Cr steel and TiAl based alloy has been studied by means of a high frequency induction diffusion welder. The experimental results show that, the higher the temperature and pressure, the higher the strength of the joints. The optimum parameters are: T=1123~1323 K,t=10~30 min, P=5~20 MPa.

  17. The effect of sprue design and alloy type on the fit of three-unit metal/ceramic bridges.

    Science.gov (United States)

    Johnson, A

    1995-12-01

    This study was designed to compare the effect of three sprue designs and three types of metal alloy/ceramic on the accuracy of fit of three unit bridges. A sprue design which has straight sprues attached directly to the pattern but does not have a button of excess metal connecting the sprues together after casting, produced the best marginal accuracy, irrespective of the alloy type used. Of the three alloys used (gold, palladium and nickel/chromium based alloys) the gold alloy produced better fitting bridges with each sprue design used.

  18. Novel alginate based coatings on Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K.; Roy, Abhijit [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Singh, Satish [Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Lee, Boeun [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2011-12-15

    Coatings on yttrium doped magnesium (Mg4Y) alloy substrates were prepared using alginate hydrogels by dip coating method to improve the surface bioactive properties of the substrate. Furthermore, composite coatings containing nano-sized calcium phosphate corresponding to hydroxyapatite (HA) phase entrapped within alginate hydrogel were also synthesized on the Mg4Y substrates. Surface characteristics of these coated substrates have been investigated using FTIR-ATR, SEM and EDS. The results show that the coatings with alginate alone are not stable in vitro; however, incorporation of NanoCaPs slightly improves the stability of these coatings. In addition, these composite coatings showed cell attachments with fibronectin incorporation. These results indicate that alginate hydrogels have the potential to be used as bioactive coating materials for different biofunctional applications.

  19. Effects of chromium and nitrogen content on the microstructures and mechanical properties of as-cast Co-Cr-Mo alloys for dental applications.

    Science.gov (United States)

    Yoda, Keita; Suyalatu; Takaichi, Atsushi; Nomura, Naoyuki; Tsutsumi, Yusuke; Doi, Hisashi; Kurosu, Shingo; Chiba, Akihiko; Igarashi, Yoshimasa; Hanawa, Takao

    2012-07-01

    The microstructure and mechanical properties of as-cast Co-(20-33)Cr-5Mo-N alloys were investigated to develop ductile Co-Cr-Mo alloys without Ni addition for dental applications that satisfy the requirements of the type 5 criteria in ISO 22674. The effects of the Cr and N contents on the microstructure and mechanical properties are discussed. The microstructures were evaluated using scanning electron microscopy with energy-dispersive X-ray spectroscopy (EDS), X-ray diffractometry (XRD), and electron back-scattered diffraction pattern analysis. The mechanical properties were evaluated using tensile testing. The proof strength and elongation of N-containing 33Cr satisfied the type 5 criteria in ISO 22674. ε-phase with striations was formed in the N-free (20-29)Cr alloys, while there was slight formation of ε-phase in the N-containing (20-29)Cr alloys, which disappeared in N-containing 33Cr. The lattice parameter of the γ-phase increased with increasing Cr content (i.e. N content) in the N-containing alloys, although the lattice parameter remained almost the same in the N-free alloys because of the small atomic radius difference between Co and Cr. Compositional analyses by EDS and XRD revealed that in the N-containing alloys Cr and Mo were concentrated in the cell boundary, which became enriched in N, stabilizing the γ-phase. The mechanical properties of the N-free alloys were independent of the Cr content and showed low strength and limited elongation. Strain-induced martensite was formed in all the N-free alloys after tensile testing. On the other hand, the proof strength, ultimate tensile strength, and elongation of the N-containing alloys increased with increasing Cr content (i.e. N content). Since formation of ε-phase after tensile testing was confirmed in the N-containing alloys the deformation mechanism may change from strain-induced martensite transformation to another form, such as twinning or dislocation slip, as the N content increases. Thus the N

  20. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    Science.gov (United States)

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  1. Alloy

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  2. NITRATE-SELECTIVE ELECTRODES BASED ON THE TRINUCLEAR CHROMIUM(III PIVALATES

    Directory of Open Access Journals (Sweden)

    Mihail Revenco

    2008-06-01

    Full Text Available The paper describes the analytical potentialities of the trinuclear chromium(III complexes as potentiometric ionophores for the construction of electrodes sensitive to the presence of nitrate anion. The electroactive material containing 4,4’-bipyridil was synthesized in situ. The membrane was prepared using dioctylphthalate as a solvent mediator and poly (vinyl chloride as a polymeric matrix. The electrodes presented a slope of 56 mV/decade, a low limit of detection (3,2.10-6 mol/l, an adequate lifetime (4 months, and suitable selectivity characteristics when compared with other nitrate electrodes. The good parameters of this electrode made possible its application to the determination of nitrate in different types of fertilizers.

  3. Replacement of Cobalt base alloys hardfacing by NOREM alloy; EDF experience and development, some metallurgical considerations. Valves application (CLAMA, RAMA)

    Energy Technology Data Exchange (ETDEWEB)

    Carnus, M. [EDF DPN UTO Direction Expertise Technique, Noisy le Grand (France); Confort, X. [VELAN SAS, Lyon (France)

    2011-07-01

    Cobalt base alloys, such as Stellite 6 and 21, are used extensively in applications where superior resistance to wear and corrosion are required. However the use of Cobalt alloys hardfacing materials, especially on valves, is a major contributor to the level of radioactive contamination of nuclear facilities. NOREM alloys, an iron base and cobalt free materials, have been developed through an Electric Power Research Institute (EPRI) long running program during the eighties as an alternative of Stellite. This alloy has relatively good weldability properties, it was developed initially for repairing Stellite hardfacing (deposit over existing hardfacing alloys). This alloy has good corrosion resistance properties associated with elevated hardness (HRC 36-42). Technological properties (such as galling resistance, wear resistance) have been evaluated through different testing programs led by EPRI, AECL(Atomic Energy of Canada Limited), Valves manufacturers, EDF and others during the nineties. More recently EDF (for replacement of globe valves) has carried out testing program focused on weld deposit chemistry and mechanical properties. NOREM is a candidate for replacement of stellite hardfacing on valves. However this alloy is not so versatile as stellite alloys regarding technological properties (such as wear resistance) at elevated temperature and under high contact pressure. As a consequence some limits have to be considered for application on valves operating at elevated temperature and under high contact pressure (> 20 Mpa). Examples of application on valves, from VELAN manufacturer, for EDF PWR equipment are given. The industrial feedback from installed equipment (CLAMA, RAMA) since 2006 on EDF PWR has been good

  4. Melt Protection of Mg-Al Based Alloys

    Directory of Open Access Journals (Sweden)

    María J. Balart

    2016-05-01

    Full Text Available This paper reports the current status of Mg melt protection in view to identify near-future challenges, but also opportunities, for Mg melt protection of Mg-Al based alloys. The goal is to design and manufacture sustainable Mg alloys for resource efficiency, recycling and minimising waste. Among alternative cover gas technologies for Mg melt protection other than SF6: commercially available technologies containing―HFC-134a, fluorinated ketone and dilute SO2―and developed technologies containing solid CO2, BF3 and SO2F2, can potentially produce toxic and/or corrosive by-products. On the other hand, additions of alkaline earth metal oxides to Mg and its alloys have developed a strong comparative advantage in the field of Mg melt protection. The near-future challenges and opportunities for Mg-Al based alloys include optimising and using CO2 gas as feedstock for both melt protection and grain refinement and TiO2 additions for melt protection.

  5. Corrosion resistance of Fe-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Botta, W.J., E-mail: wjbotta@ufscar.br [LEPMI, UMR5279 CNRS, Grenoble INP, Université de Savoie, Université Joseph Fourier, 1130, Rue de la piscine, BP 75, 38402 Saint Martin d’Hères (France); Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Berger, J.E.; Kiminami, C.S. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Roche, V.; Nogueira, R.P. [LEPMI, UMR5279 CNRS, Grenoble INP, Université de Savoie, Université Joseph Fourier, 1130, Rue de la piscine, BP 75, 38402 Saint Martin d’Hères (France); Bolfarini, C. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2014-02-15

    Highlights: ► We report corrosion properties of Fe-based amorphous alloys in different media. ► The Cr-containing alloys had corrosion resistance close to that of Pt in all media. ► The wide range of electrochemical stability is relevant in many industrial domains. -- Abstract: Fe-based amorphous alloys can be designed to present an attractive combination of properties with high corrosion resistance and high mechanical strength. Such properties are clearly adequate for their technological use as coatings, for example, in steel pipes. In this work, we studied the corrosion properties of amorphous ribbons of the following Fe-based compositions: Fe{sub 66}B{sub 30}Nb{sub 4}, [(Fe{sub 0.6}Co{sub 0.4}){sub 0.75}B{sub 0.2}Si{sub 0.05}]{sub 96}Nb{sub 4}, [(Fe{sub 0.7}Co{sub 0.3}){sub 0.75}B{sub 0.2}Si{sub 0.05}]{sub 96}Nb{sub 4}, Fe{sub 56}Cr{sub 23}Ni{sub 5.7}B{sub 16}, Fe{sub 53}Cr{sub 22}Ni{sub 5.6}B{sub 19} and Fe{sub 50}Cr{sub 22}Ni{sub 5.4}B{sub 23}. The ribbons were obtained by rapid solidification using the melt-spinning process, and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and optical (OM) and scanning electron microscopy (SEM). The corrosion properties were evaluated by corrosion potential survey and potentiodynamic polarization. The Cr containing alloys, that is the FeCrNiB type of alloys, showed the best corrosion resistance properties with the formation of a stable passive film that ensured a very large passivation plateau.

  6. Effects of surface treatments and storage times on the tensile bond strength of adhesive cements to noble and base metal alloys.

    Science.gov (United States)

    Burmann, Paulo Afonso; Santos, Jose Fortunato Ferreira; May, Liliana Gressler; Pereira, Joao Eduardo da Silva; Cardoso, Paulo Eduardo Capel

    2008-01-01

    This work evaluated two resin cements and a glass-ionomer cement and their bond strength to gold-palladium (Au-Pd), silver-palladium (Ag-Pd), and nickel-chromium-beryllium (Ni-Cr-Be) alloys, utilizing three surface treatments over a period of six months. Eight hundred ten pieces were cast (in a button shape flat surfaces) in one of three alloys. Each alloy group was assigned to three other groups, based on the surface treatment utilized. Specimens were fabricated by bonding similar buttons in using one of three adhesive cements. The 405 pairs were thermocycled and stored in saline solution (0.9% NaCl) at 37 degrees C. The tensile bond strengths were measured in a universal testing machine after storage times of 2, 90, or 180 days. The highest mean bond strength value was obtained with the base metal alloy (10.9 +/- 8.6 MPa). In terms of surface treatment, oxidation resulted in the highest mean bond strength (13.7 +/- 7.3 MPa), followed by sandblasting (10.3 +/- 5.5 MPa) and polishing (3.0 +/- 6.4 MPa). Panavia Ex (13.2 +/- 9.3 MPa) showed significantly higher bond strengths than the other two cements, although the storage time reduced all bond strengths significantly.

  7. Temperature of phase transformations in heat-resistant nickel-base alloys

    Science.gov (United States)

    Ivanov, A. D.; Ukhlinov, A. G.

    1997-11-01

    The study of phase transformations in heating and cooling of alloys is needed for choosing optimum regimes of their melting, plastic deformation, and heat treatment. In the present paper differential thermal analysis is used to determine the temperature of phase transformations in complexly alloyed nickel-base alloys. Industrial nickel alloys with intermetallic reinforcement manufactured by means of vacuum arc remelting (VAR) and hot deformation (HD) were studied. Alloy KhN56MBYuD was studied after different metallurgical processes, namely, electroslag remelting (ESR), centrifugal casting (CC), powder spraying (PS), and hot isostatic pressing (HIP). All the alloys were studied in the initial state and after heat treatment.

  8. Effect of Impurities and Cerium on Stress Concentration Sensitivity of Al-Li Based Alloys

    Institute of Scientific and Technical Information of China (English)

    孟亮; 田丽

    2002-01-01

    A notch sensitivity factor was derived in order to evaluate the stress concentration sensitivity of Al-Li based alloys. The factor values for the Al-Li alloy sheets containing various contents of impurities and cerium addition were evaluated by determining the mechanical properties. It is found that the impurities Fe, Si, Na and K significantly enhance the stress concentration sensitivity of the alloys 2090 and 8090, whereas cerium addition reduces the stress concentration sensitivity to a certain degree for the high strength alloys. However, an excess amount of cerium addition in the high ductility alloy 1420 can significantly increase the stress concentration sensitivity. As compared with conventional aluminum alloys, the Al-Li based alloys generally show high stress concentration sensitivity. Therefore, a special attention must be paid to this problem in the practical application of Al-Li based alloys.

  9. Mechanisms of oxide layer formation and destruction on a chromia former nickel base alloy in HTR environment; Mecanismes de formation et de destruction de la couche d'oxyde sur un alliage chrominoformeur en milieu HTR

    Energy Technology Data Exchange (ETDEWEB)

    Rouillard, F

    2007-10-15

    Haynes 230 alloy which contains 22 wt.% chromium could be a promising candidate material for structures and heat exchangers (maximum operating temperature: 850-950 C) in Very High Temperature Reactors (VHTR). The feasibility demonstration involves to valid its corrosion resistance in the reactor specific environment namely impure helium. The alloys surface reactivity was investigated at temperatures between 850 and 1000 C. We especially focused on the influence of different parameters such as concentrations of impurities in the gas phase (carbon monoxide and methane, water vapour/hydrogen ratio), alloy composition (activities of Cr and C, alloying element contents) and temperature. Two main behaviours have been revealed: the formation of a Cr/Mn rich oxide layer at 900 C and its following reduction at higher temperatures. At 900 C, the water vapour is the main oxidizing gas. However in the initial times, the carbon monoxide reacts at the metal/oxide interface which involves a gaseous transport through the scale; CO mainly oxidizes the minor alloying elements aluminium and silicon. Above a critical temperature TA, the carbon in solution in the alloy reduces chromia. To ascribe the scale destruction, a model is proposed based on thermodynamic interfacial data for the alloy, oxide layer morphology and carbon monoxide partial pressure in helium; the model is then validated regarding experimental results and observations. (author)

  10. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  11. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  12. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  13. Synthesis and characterization of nanostructured palladium-based alloy electrocatalysts

    Science.gov (United States)

    Sarkar, Arindam

    Low temperature fuel cells like proton exchange membrane fuel cells (PEMFC) are expected to play a crucial role in the future hydrogen economy, especially for transportation applications. These electrochemical devices offer significantly higher efficiency compared to conventional heat engines. However, use of exotic and expensive platinum as the electrocatalyst poses serious problems for commercial viability. In this regard, there is an urgent need to develop low-platinum or non-platinum electrocatalysts with electrocatalytic activity for the oxygen reduction reaction (ORR) superior or comparable to that of platinum. This dissertation first investigates non-platinum, palladium-based alloy electrocatalysts for ORR. Particularly, Pd-M (M = Mo and W) alloys are synthesized by a novel thermal decomposition of organo-metallic precursors. The carbon-supported Pd-M (M = Mo, W) electrocatalyts are then heat treated up to 900°C in H2 atmosphere and investigated for their phase behavior. Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements reveal that the alloying of Pd with Mo or W significantly enhances the catalytic activity for ORR as well as the stability (durability) of the electrocatalysts. Additionally, both the alloy systems exhibit high tolerance to methanol, which is particularly advantageous for direct methanol fuel cells (DMFC). The dissertation then focuses on one-pot synthesis of carbon-supported multi-metallic Pt-Pd-Co nanoalloys by a rapid microwave-assisted solvothermal (MW-ST) method. The multi-metallic alloy compositions synthesized by the MW-ST method show much higher catalytic activity for ORR compared to their counterparts synthesized by the conventional borohydride reduction method. Additionally, a series of Pt encapsulated Pd-Co nanoparticle electrocatalysts are synthesized by the MW-ST method and characterized to understand their phase behavior, surface composition, and electrocatalytic activity for ORR. Finally, the dissertation

  14. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A. [Oak Ridge National Lab., TN (United States)] [and others

    1995-06-01

    The objective of this task is to develop a new generation of structural materials based on intermetallic alloys for use as critical hot components in advanced fossil energy conversion systems. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for this development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), excellent high-temperature strength (at 1000 to 1250{degrees}C), and potential resistance to oxidation and corrosion. This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions. The major engineering concern with Cr{sub 2}Nb and other A{sub 2}B Laves phases is their poor fracture toughness and fracture resistance at ambient temperatures. The single-phase Cr{sub 2}Nb is very hard ({approximately}800 DPH) and brittle at room temperature. Because of this brittleness, the development effort has concentrated on two-phase structures containing the hard intermetallic phase Cr{sub 2}Nb and the softer Cr-rich solid solution phase. Potential applications of Cr-Cr{sub 2}Nb alloys include hot components (for example, air heat exchangers and turbine blades) in advanced energy conversion systems and heat engines, wear-resistant parts in coal handling systems (e.g., nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. Current studies are focuses on enhancement of fracture resistance in tension at ambient temperatures and oxidation resistance above 1000{degrees}C. This report summarizes recent progress on controlling microstructure and improving the mechanical and metallurgical properties and the high-temperature corrosion behavior of Cr-Cr{sub 2}Nb alloys through alloying conditions, material processing, and heat treatment.

  15. Synthesis of metastable aluminum-based intermetallics by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.B.; Srinivasan, S.; Desch, P.B.

    1991-01-01

    We have used mechanical alloying (MA) to prepare fine-grained powders of Al 25 at. % X (X = Ti, Zr, Hf) having the metastable cubic L1{sub 2} structure. Hexane (C{sub 6}H{sub 14}) is added to the milling media to avoid the agglomeration of the aluminum powder. Carbon from the decomposition of the hexane incorporates into the powder to form a fine dispersion of carbides. These carbides are beneficial because they limit grain growth during consolidation and add strength to the alloy. We have consolidated the mechanically alloyed powders using conventional hot-pressing and non-conventional dynamic pressing. We used hot pressing to consolidate mechanically alloyed L1{sub 2}-Al{sub 3}Ti powder in the presence of excess of Al. The compact has the DO{sub 22} structure. Its room-temperature compressive strength is 1.2 GPa (exceeding that of cast Al{sub 3}Ti by a factor of 10). At 400{degrees}C, the compressive strength decreases to 1 GPa. The ductility, which is negligible at room temperature, increases to 6% at 400{degrees}C. We used dynamic pressing to consolidate L1{sub 2}-Al{sub 5}CuZr{sub 2} powder. The compact, having the L1{sub 2} structure, has fine grains (44 nm) and a fine dispersion of ZrC precipitates (7 nm). Its hardness is in the range of 1030 kg mm{sup {minus}2}. Current efforts are to investigate ternary alloys based on fine-grained trialuminides which include a ductile second phase. 26 refs., 8 figs.

  16. Preparation and research on poisoning resistant Zr-Co based hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    LI Hualing; WANG Shumao; JIANG Lijun; ZHANG Lidong; LIU Xiaopeng; LI Zhinian

    2008-01-01

    At present,all hydrogen storage alloys are poisoned by hydrogen mixed with CO,CO2,etc,which decreases the hydrogen storage property sharply.Zr-Co based hydrogen storage alloys with good poisoning resistance were prepared by alloying,fluorinating,and electroless plating.The experiment results show that the poisoning resistance of the Zr-Co based alloy was improved remarkably after the treatments.The poisoning resistance mechanism of the Zr-Co based hydrogen storage alloys was analyzed.

  17. Microscopic study of the structure of the Steel Ni-based Alloy: Hastelloy G35 Alloy

    Science.gov (United States)

    Sabir, F.; Ben Lenda, O.; Saissi, S.; Marbouh, K.; Tyouke, B.; Zerrouk, L.; Ibnlfassi, A.; Ouzaouit, K.; Elmadani, S.

    2017-03-01

    The study of the influence of heat treatment on changes of mechanical and structural properties of Steel Ni-based Alloy is a highly interdisciplinary topic at the interface of the physical chemistry of metallic materials, which also helps in environmental and economic protection.After heat treatment, the structural and micro-structural studies for the different transformation temperature led to identify phases formed and the morphology. This work has been carried out using different techniques: X-ray diffraction, optical microscopy and scanning electron microscopy.

  18. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors

    Science.gov (United States)

    Rowcliffe, A. F.; Mansur, L. K.; Hoelzer, D. T.; Nanstad, R. K.

    2009-07-01

    Because of their superior high temperature strength and corrosion properties, a set of Ni-base alloys has been proposed for various in-core applications in Gen IV reactor systems. However, irradiation-performance data for these alloys is either limited or non-existent. A review is presented of the irradiation-performance of a group of Ni-base alloys based upon data from fast breeder reactor programs conducted in the 1975-1985 timeframe with emphasis on the mechanisms involved in the loss of high temperature ductility and the breakdown in swelling resistance with increasing neutron dose. The implications of these data for the performance of the Gen IV Ni-base alloys are discussed and possible pathways to mitigate the effects of irradiation on alloy performance are outlined. A radical approach to designing radiation damage-resistant Ni alloys based upon recent advances in mechanical alloying is also described.

  19. Polarization-corrosion behavior of commercial gold- and silver-base casting alloys in Fusayama solution.

    Science.gov (United States)

    Johnson, D L; Rinne, V W; Bleich, L L

    1983-12-01

    Based on polarization measurements, high Au alloys are highly corrosion-resistant and exhibit the lowest corrosion rates; intermediate Au, Ag, and Pd alloys with Cu are passive but exhibit higher corrosion rates. Twenty weight percent (w/o) In-Ag alloys exhibit active corrosion behavior at potentials only 100 mV noble to the corrosion potential.

  20. 氟离子对两种不同工艺制作的钴铬合金耐腐蚀性能的影响%Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes

    Institute of Scientific and Technical Information of China (English)

    杨秋霞; 杨瑛; 徐晗; 吴迪; 郭恪

    2016-01-01

    目的:   在模拟口腔环境下研究氟离子对采用选择性激光熔覆(SLM)技术和传统铸造技术两种工艺制作的钴铬合金耐腐蚀性的影响。方法   选择具有相同材料成分的钴铬合金金属粉末和金属块,分别采用SLM(SLM组)和铸造技术(Cast组)各制作15个试件,置于含不同氟离子质量分数(0、0.05%、0.20%)的酸性人工唾液(pH值为5.0)中浸泡24 h进行电化学试验,采用动电位极化曲线法测试合金的自腐蚀电位Ecor、自腐蚀电流密度Icor和极化电阻Rp,同时结合扫描电子显微镜(SEM)观察,分析两组试件的耐腐蚀性能。结果   铸造工艺制作的钴铬合金在酸性人工唾液中的Ecor随着氟离子质量分数的升高而减小。当氟离子质量分数为0.20%时,两种工艺制作的钴铬合金的Ecor、Icor、Rp均有明显改变(P<0.05),SEM结果也显示合金表面均出现腐蚀现象。当氟离子质量分数为0.20%时,Cast组钴铬合金的Icor高于SLM组,而Ecor和Rp低于SLM组(P<0.05)。结论   氟离子可降低两种工艺制作的钴铬合金的耐腐蚀性,在氟离子质量分数较高(0.20%)时,SLM技术制作的钴铬合金的耐腐蚀性优于铸造工艺制作的钴铬合金。%Objective This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobaltchromium alloy fabricated by two different technology processes in a simulated oral environment. Methods A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH=5.0). The specimens were soaked in

  1. Resistance of a directionally solidified gamma/gamma prime-delta eutectic alloy to recrystallization. [Ni-base alloy

    Science.gov (United States)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1976-01-01

    A lamellar nickel-base directionally-solidified eutectic gamma/gamma prime-delta alloy has potential as an advanced gas turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 750 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability may not be a serious problem in the use of this alloy.

  2. Chromium in diet

    Science.gov (United States)

    The best source of chromium is brewer's yeast. However, many people do not use brewer's yeast because it causes bloating ( abdominal distention ) and nausea . Other good sources of chromium include ...

  3. Development of Fe-based nanocrystalline materials by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Suñol, J. J.

    2008-06-01

    Full Text Available Two alloys, Fe80NbB10 and Fe70Ni14Zr6B10, were produced by mechanical alloying. The formation of the nanocrystallites (about 7-8 nm at 80h MA was detected by X-ray diffraction. After milling for 80 h, differential scanning calorimetry scans show low-temperature recovery processes and several crystallization processes related with crystal growth and reordering of crystalline phases. The apparent activation energy values are 315 ± 40 kJ mol–1 for alloy A, and 295 ± 20 kJ mol–1 and 320 ± 25 kJ mol–1 for alloy B. Furthermore, a melt-spun Fe-based ribbon was mechanically alloyed to obtain a powdered-like alloy. The increase of the rotation speed and the ball-to-powder weight ratio reduces the necessary time to obtain the powdered form.

    Dos aleaciones, Fe80Nb10B10 (A y Fe70Ni14Zr6B10 (B, han sido producidas por aleado mecánico. Mediante difracción de rayos X se ha detectado la formación de nanocristales (7-8 nm a las 80 h de aleado. Tras molturar 80 h, las curvas calorimétricas muestran procesos exotérmicos asociados a la relajación estructural y al crecimiento cristalino y reordenación de la fase cristalina. Los valores de la energía aparente de activación de las cristalizaciones son 315 ± 40 kJ mol–1 para la aleación A, y 295 ± 20 kJ mol–1 y 320 ± 25 kJ mol–1 para la aleación B. Por otra parte, se ha procedido a la molturación de una cinta de una aleación de base hierro hasta obtener un material en forma de polvo. El incremento de la velocidad de rotación y de la relación en peso bolas polvo reduce el tiempo necesario para obtener este material.

  4. Distribution of soluble and precipitated iron and chromium products generated by anodic dissolution of 316L stainless steel and alloy C-22: final report

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J; Farmer, J; Gordon, S; King, K; Logotetta, L; Silberman, D

    1999-08-11

    At near neutral pH and at applied potentials above the threshold potential for localized breakdown of the passive film, virtually all of the dissolved chromium appeared to be in the hexavalent oxidation state (Cr(VI)). In acidic environments, such as crevice solutions formed during the crevice corrosion of 316L and C-22 samples in 4 M NaCl, virtually all of the dissolved chromium appeared to be in the trivalent oxidation state (Cr(III)). These general observations appear to be consistent with the Pourbaix diagram for chromium (Pourbaix 1974), pp. 307-321. At high pH and high anodic polarization (pH {approximately} 8 and 800 mV vs. SHE), the predominate species is believed to be the soluble chromate anion (CrO{sub 4}{sup 2{minus}}). At the same pH, but lower polarization (pH {approximately} 8 and 0 mV vs. SHE), the predominate species are believed to be precipitates such as trivalent Cr(OH){sub 3} {center_dot} n(H{sub 2}O) and hexavalent Cr{sub 2}O{sub 3}. In acidified environments such as those found in crevices (pH < 3), soluble Cr{sup 3+} is expected to form over a wide range of potential extending from 400 mV vs. SHE to approximately 1200 mV vs. SHE. Again, this is consistent with the observations from the creviced samples. In earlier studies by the principal investigator, it has been found that low-level chromium contamination in ground water is usually in the hexavalent oxidation state (Farmer et al. 1996). In general, dissolved iron measured during the crevice experiments appears to be Fe(II) in acidic media and Fe(III) in near-neutral and alkaline solutions (table 3). In the case of cyclic polarization measurements, the dissolved iron measured at the end of some cyclic polarization measurements with C-22 appeared to be in the Fe(III) state. This is probably due to the high electrochemical potential at which these species were generated during the potential scan. Note that the reversal potential was approximately 1200 mV vs. Ag/AgCl during these scans. These

  5. Wear resistant zirconium base alloy article for water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, J.E.; Shockling, L.A.; Sherwood, D.G.

    1988-03-01

    In a water reactor operating environment, the combination having improved fretting wear resistance is described comprising: an elongated tubular water displacer rod; having a low neutron absorption cross section guide support plates distributed along the length of the water displacer rod; the water displacer rod intersecting the guide support plates through apertures in the guide support plates; the water displacer rod having a plurality of spaced apart annular electrospark deposited coatings, each coating facing the wall of a respective aperture, the electrospark deposited coatings comprising Cr/sub 2/C/sub 3/; wherein the water displacer rod has a tube wall composed of a zirconium base alloy; and wherein the guide support plates are composed of a stainless steel alloy.

  6. Age-hardening in a commercial Mg-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, C.E. [IFIMAT, UNCentro and CONICET, Pinto 399, B7000GHG Tandil (Argentina); Somoza, A. [IFIMAT, UNCentro and CICPBA, Pinto 399, B7000GHG Tandil (Argentina); Nie, J.F. [School of Physics and Materials Engineering, PO Box 69M, Monash University, Victoria 3800 (Australia)

    2007-07-01

    Age-hardening phenomena induced by thermal and thermo-mechanical treatments in the commercial Mg-based alloy WE54 were studied by positron annihilation lifetime spectroscopy and Vickers microhardness. To this aim, samples were plastically deformed and subsequently aged at 250 C for times ranging from 0 to 1000 hours. The results obtained are discussed in terms of the role of vacancies in the solute transport and therefore they contribute to the discussion on the vacancy-solute clusters (and/or intermediate precipitates) interactions during the precipitation sequence of the WE54. Besides, we show that cold work previous aging not only accelerates but increases the hardening response of the alloy. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. The Effect of Silicon and Aluminum Additions on the Oxidation Resistance of Lean Chromium Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, J.S.; Alman, D.E.; Rawers, J.C.

    2001-09-01

    The effect of Si and Al additions on the oxidation of lean chromium austenitic stainless steels has been studied. A baseline composition of Fe-16Cr-16Ni-2Mn-1Mo was selected to allow combined Si and Al additions of up to 5 wt. pct. in a fully austenitic alloy. The baseline composition was selected using a net Cr equivalent equation to predict the onset of G-ferrite formation in austenite. Cyclic oxidation tests in air for 1000 hours were carried out on alloys with Si only or combined Si and Al additions in the temperature range 700 C to 800 C. Oxidation resistance of alloys with Si only additions were outstanding, particularly at 800 C. It was evident that different rate controlling mechanisms for oxidation were operative at 700 C and 800 C in the Si alloys. In addition, Si alloys pre-oxidized at 800 C, showed a zero weight gain in subsequent testing for 1000 hours at 700 C. The rate controlling mechanism in alloys with combined Si and Al addition for oxidation at 800 C was also different than alloys with Si only. SEM and ESCA analysis of the oxide films and base material at the oxide/base metal interface were conducted to study potential rate controlling mechanisms.

  8. Alloy 690 in PWR type reactors; Aleaciones base niquel en condiciones de primario de los reactores tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Briceno, D.; Serrano, M.

    2005-07-01

    Alloy 690, used as replacement of Alloy 600 for vessel head penetration (VHP) nozzles in PWR, coexists in the primary loop with other components of Alloy 600. Alloy 690 shows an excellent resistance to primary water stress corrosion cracking, while Alloy 600 is very susceptible to this degradation mechanisms. This article analyse comparatively the PWSCC behaviour of both Ni-based alloys and associated weld metals 52/152 and 82/182. (Author)

  9. Metal-on-metal bearings in total hip arthroplasties : Influence of cobalt chromium ions on bacterial growth and biofilm formation

    NARCIS (Netherlands)

    Hosman, Anton H.; van der Mei, Henny C.; Bulstra, Sjoerd K.; Busscher, Henk J.; Neut, Danielle

    2009-01-01

    Metal-on-metal (MOM) bearings involving cobalt-chromium (Co-Cr) alloys in total hip arthroplasties are becoming more and more popular due to their low wear. Consequences of corrosion products of Co-Cr alloys are for the most part unclear, and the influence of cobalt and chromium ions on biofilm form

  10. Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test

    DEFF Research Database (Denmark)

    Bregnbak, David; Johansen, Jeanne D.; Jellesen, Morten Stendahl

    2015-01-01

    Along with chromium, nickel and cobalt are the clinically most important metal allergens. However, unlike for nickel and cobalt, there is no validated colorimetric spot test that detects chromium. Such a test could help both clinicians and their patients with chromium dermatitis to identify culprit...... at 0.5 ppm without interference from other pure metals, alloys, or leather. A market survey using the test showed no chromium(VI) release from work tools (0/100). However, chromium(VI) release from metal screws (7/60), one earring (1/50), leather shoes (4/100) and leather gloves (6/11) was observed. We...

  11. Corrosion Behavior of Alloy 22 in Chloride Solutions Containing Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Rebak, R B

    2005-11-04

    Alloy 22 (N06022) is a nickel based alloy containing alloying elements such as chromium, molybdenum and tungsten. It is highly corrosion resistant both under reducing and under oxidizing conditions. Electrochemical studies such as electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. Tests were also carried out in NaCl solutions containing oxalic acid or acetic acid. It is shown that the corrosion rate of Alloy 22 was higher in a solution containing oxalic acid than in a solution of the same pH acidified with HCl. Acetic acid was not corrosive to Alloy 22. The corrosivity of oxalic acid was attributed to its capacity to form stable complex species with metallic cations from Alloy 22.

  12. Thermophysical properties of the Ni-based alloy Nimonic 80A up to 2400 K

    Institute of Scientific and Technical Information of China (English)

    B. Wilthan; R. Tanzer; W. Schiitzenh(o)fer; G. Pottlacher

    2006-01-01

    Nimonic 80A is a nickel-chromium alloy which is strengthened by additions of titanium and aluminium. The alloy is used for high temperature, high strength applications. Wire shaped Nimonic 80A samples are resistively volume heated as part of a fast capacitor discharge circuit. Time resolved measurements with sub-μs resolution of current through the specimen are performed with a Pearson probe, voltage drop across the specimen is measured with knife-edge contacts and ohmic voltage dividers and the radiance temperature of the sample with a pyrometer. These measurements allow to determine heat of fusion as well as heat capacity and electrical resistivity at initial geometry of Nimonic 80A as a function of temperature in the solid and in the liquid phase up to 2400 K.

  13. A resistivity study of crystallization of some FeNiB-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Riontino, G.; Baricco, M.; Marino, F.

    1986-07-01

    The amorphous-to-crystalline transformations has been studied extensively since the discovery of glassy alloys. Many physical and chemical properties vary drastically in the course of thermal treatments leading to crystallization, and this seems to be a limit to the applications of these materials. Nevertheless, the intermediate metastable crystallization products, in some cases, or the final crystalline phases show, in several cases, interesting properties. Among the very large number of amorphous systems up to now investigated, Metglas 2826 and 2826A (from Allied Chemical) have received particular attention, because of their magnetic and anticorrosive properties. In the present paper the authors discuss some results on amorphous alloys having compositions similar to the commercial ones and, in particular, they discuss the influence of phosphorus and chromium content on the electrical resistivity variations during thermal treatments up to crystallization.

  14. The Production of Nickel-Chromium-Molybdenum Alloy with Open Pore Structure as an Implant and the Investigation of Its Biocompatibility In Vivo

    Directory of Open Access Journals (Sweden)

    Yusuf Er

    2013-01-01

    Full Text Available A dental crown material, Nickel-Chrome-Molybdenum alloy, is manufactured using precision casting method from a polyurethane foam model in a regular and open-pore form, as a hard tissue implant for orthopedic applications. The samples produced have 10, 20, and 30 (±3 pores per inch of pore densities and 0.0008, 0.0017, and 0.0027 g/mm3 densities, respectively. Samples were implanted in six dogs and observed for a period of two, four, and six months for the histopathological examinations. The dogs were examined radiologically in 15-day intervals and clinically in certain intervals. The implants were taken out with surrounding tissue at the end of these periods. Implants and surrounding tissues were examined histopathologically in terms of biocompatibility. As a result, it is seen that new bone tissue was formed, in pores of the porous implant at the head of the tibia in dogs implanted. Any pathology, inflammation, and reaction in old and new tissues were not observed. It was concluded that a dental alloy (Ni-Cr-Mo alloy could also be used as a biocompatible hard tissue implant material for orthopedics.

  15. Investigation of solidification dynamics of Zr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kobold, Raphael; Herlach, Dieter [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, 51170 Koeln (Germany); Ruhr-Universitaet Bochum, 44780 Bochum (Germany)

    2013-07-01

    In contrast to experiments with most undercooled binary alloys the velocity of dendritic growth of a Cu50Zr50 alloy does not increase monotonically with undercooling but passes through a maximum and then decreases. To study this behaviour we investigate Zr-based alloys such as CuZr, NiZr and NiZrAl with Zirconium concentrations ranging from 36 to 64 at.% including eutectic and intermetallic phases. We use electrostatic levitation technique to melt and undercool samples with a diameter of 2-3 mm under ultra-high-vacuum conditions. Containerless processing is an effective tool for undercooling metallic melts far below their equilibrium melting temperatures since heterogeneous nucleation on container walls is completely avoided. During crystallisation of the undercooled melt the heat of crystallisation is released. The rapid increase of the temperature at the solid-liquid interface makes the solidification front visible. The velocities of the solidification front are recorded by using a high-speed camera with a maximum rate of 50.000 frames per second and are analyzed with a software for optical ray tracing. Furthermore, we try to model the growth velocity vs. the undercooling temperature and perform sample EBSD analysis with a scanning electron microscope.

  16. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  17. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  18. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  19. Structural characteristics of Ni3Al based alloys depending on the preparation conditions

    Directory of Open Access Journals (Sweden)

    J. Malcharcziková

    2015-10-01

    Full Text Available The paper presents an evaluation of the influence of the composition of alloys based on Ni3Al on their mechanical characteristics. The structure of the alloy was controlled through directional solidification. The achieved values of mechanical characteristics are in good agreement with the material structure. The alloys with sub-stoichiometric contents of aluminium have a multiphase structure. These alloys contain network with high values of tensile strain. The microstructure of the samples was investigated and behaviour of dislocations in the alloys was analysed by Transmission electron microscopy methods (TEM.

  20. Nobilium 钴铬钼合金铸造卡环固位力的研究%Retention force of casting clasps for Nobilium 2000 cobalt-chromium-mo-lybdenum alloy removable partial dentures

    Institute of Scientific and Technical Information of China (English)

    唐婉容; 李丽华; 米方林; 吴艳; 刘英

    2016-01-01

    Objective:To compare the trend of the retention change during the circulation of the clasp dislodging and inserting between Cobalt-Chromium-Molybdenum alloy and pure titanium casting clasps,it can provide theoretical reference for the design of clasps in Nobilium casting framework dentures.Methods:Fabricating standard metal abutment of the second mandibular premolar,and then 36 RPT clasps was cast from Cobalt-Chromium-Molybdenum alloy (n =18)and pure titanium(n =18)with lost-wax casting craft. Each group was subdivided in three parts,corresponding to 0.25 mm,0.50 mm and 0.75 mm undercuts,respectively,and every part contains 6 clasps.The specimens were subjected to an insertion /removal circulation test.The chatillon force measuring instrument was used to record the retention force at different circulation times(0,1 200,2 400,3 600,4 800,6 000,7 000 times).Results:(1 )Under the 0.50 mm undercut,the retention force of Nobilium Co-Cr-Mo alloy T clasps is better than the pure titanium clasps,the difference has statistical significance (P =0.017 5).In the other conditions,although Co-Cr-Mo consistently showed greater rentention compared to pure titanium,no significant differences were observed (P >0.05 ).(2)Comparing retention force for the three undercuts between the pure titanium and Co-Cr-Mo,no statistically significant differences(P >0.05).(3)Analyzing the Co-Cr-Mo alloy during the test,it had a slight increase in retention force from the beginning to the end of the simulation test.Conclusion:Nobilium Cobalt-Chromium-Mo-lybdenum alloy casting T clasps have good retention force and greater ability to resist permanent deformation,and can keep effective re-tention force during the circulation of the clasp dislodging and inserting.The best undercut depth is 0.5 mm.%目的:比较钴铬钼合金和纯钛铸造卡环在反复脱位循环过程中固位力的变化趋势,为 Nobilium 整铸支架义齿的卡环设计提供理论参考。方法:制作下颌第二前

  1. Performance of a base isolator with shape memory alloy bars

    Institute of Scientific and Technical Information of China (English)

    Fabio Casciati; Lucia Faravelli; Karim Hamdaoui

    2007-01-01

    A new and innovative base isolation device is introduced in this paper based on extensive research carried out by the authors and their co-workers.A prototype of the device was built and experimentally tested on the shaking table.The new base isolation device consists of two disks,one vertical cylinder with an upper enlargement sustained by three horizontal cantilevers,and at least three inclined shape memory alloy(SMA) bars.The role of the SMA bars is to limit the relative motion between the base and the superstructure,to dissipate energy by their super-elastic constitutive law and to guarantee the re-centring of the device.To verify the expected performance,a prototype was built and tested under sinusoidal waves of displacement of increasing frequency with different amplitudes.It is shown that the main feature of the proposed base isolation device is that for cyclic loading,the super-elastic behavior of the alloy results in wide load-displacement loops,where a large amount of energy is dissipated.

  2. Characteristics on Bi-Pb Based Alloys Quenched from Melt

    Institute of Scientific and Technical Information of China (English)

    Rizk Mostafa Shalaby

    2009-01-01

    Three different bismuth-lead systems namely, Wood's alloy (Bi50Pb25Sn12.5Cd12.5), Newton's alloy (Bi50Pb31.2Sn18.8) and Rose's alloy (Bi50Pb28Sn22), with one used as fusible alloys were quenched from melt by melt spinning technique. Thermal analysis, structure and mechanical properties of all alloys have been studied and analyzed. From X-ray diffraction analysis, an intermetallic compound phase, designated Pb7Bi3 is detected. The formation of an intermetallic compound phase causes a pronounced increase in the electrical resistivity. The Wood's alloy containing-cadmium exhibits mechanical properties superior to both the Newton's and Rose's alloys. The presence of cadmium in Wood's alloy decreases its melting point. Wood's alloy has better properties, which make it useful in various applications such as in protection shields for radiotherapy, locking of mechanical devices and welding at low temperature.

  3. On the corrosion behavior and biocompatibility of palladium-based dental alloys

    Science.gov (United States)

    Sun, Desheng

    Palladium-based alloys have been used as dental restorative materials for about two decades with good clinical history. But there have been clinical case reports showing possible allergy effects from these alloys. The aim of this study was to characterize the corrosion behavior and mechanisms of several palladium-based dental alloys by potentiodynamic polarization methods, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe force microscopy/atomic force microscopy (SKPFM/AFM), and to evaluate their biocompatibility by a cell culture technique and an animal model. Using SKPFM/AFM and scanning electron microscopy, the Ru-enriched phase from the use of ruthenium as a grain-refining element was identified as being slightly more noble than the palladium solid solution matrix in a high-palladium alloy. Other secondary precipitates that exist in the microstructures of these high-palladium alloys have minimal differences in Volta potential compared to the matrix. For high-palladium alloys, corrosion is generally uniform due to the predominant palladium content in the different phases. Potentiodynamic polarization and EIS have shown that representative palladium-silver alloys have low corrosion tendency and high corrosion resistance, which are equivalent to a well-known high-noble gold-palladium alloy in simulated body fluid and oral environments. The palladium-silver alloys tested are resistant to chloride ion corrosion. Passivation and dealloying have been identified for all of the tested palladium-silver alloys. The great similarity in corrosion behavior among the palladium-silver alloys is attributed to their similar chemical compositions. The variation in microstructures of palladium-silver alloys tested does not cause significant difference in corrosion behavior. The corrosion resistance of these palladium-silver alloys at elevated potentials relevant to oral environment is still satisfactory. The release of elements from representative dental

  4. Design of Zr-based AB2 type hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    文明芬; 王秋萍; 王兴海; 翟玉春; 陈廉

    2003-01-01

    The influences of the ratio of the radius of atom A(rA)to radius of atom B(rB),electronegativity and electron number were discussed on the Laves phase formation and the characteristics of Zr-based AB2 type hydrogen storage alloy.An enthalpy model of Zr-based AB2 alloy was obtained from known data and twelve Zr-based alloys were designed to test the model.The results show that the predicted values are in good agreement with the experimental values.The model can be used for predicting enthalpy values of Zr-based hydrogen storage alloys and settles a foundation for experiments.

  5. Development of environmentally friendly cast alloys and composites. High zinc Al-base cast alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2010-01-01

    Full Text Available This work is devoted to grain refinement of the foundry Al-20 wt% Zn (AlZn20 alloy, aiming at improving ductility of the sand-cast alloy The melted alloy was inoculated using traditional AlTi5B1 (TiBAl and AlTi3C0.15 (TiCAl master alloys and newly introduced (Zn,Al-Ti3 one. The performed structural examinations showed out significant increasing of the grain population of the inoculated alloy and plas-ticity increase represented by elongation. The high damping properties of the initial alloy, measured using an ultrasonic Olympus Epoch XT device, are basicly preserved after inoculation. Also tensile strength preserves its good values, while elongation shows an increase – which are beneficials of the employed grain-refining process.

  6. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    Science.gov (United States)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.

    2016-03-01

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  7. Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory, China.

    Science.gov (United States)

    Wang, Zhen-xing; Chen, Jian-qun; Chai, Li-yuan; Yang, Zhi-hui; Huang, Shun-hong; Zheng, Yu

    2011-06-15

    Previous studies often neglected the direct exposure to soil heavy metals in human health risk assessment. The purpose of this study was to assess the environmental impact and site-specific health risks of chromium (Cr) by both direct and indirect exposure assessment method. Results suggested that total Cr was shown a substantial buildup with a significant increase in the industrial and cultivated soils (averaged 1910 and 986 mg kg(-1), respectively). The Cr contents of vegetables exceeded the maximum permissible concentration by more than four times in every case. Human exposure to Cr was mainly due to dietary food intake in farming locations and due to soil ingestion in both industrial and residential sites. Soil ingestion was the main contributor pathway for direct exposure, followed by inhalation, and then dermal contact. The highest risks of vegetable ingestion were associated with consumption of Chinese cabbage. The results also indicated that plant tissues are able to convert the potentially toxic Cr (VI) species into the non-toxic Cr (III) species. The analyses of human health risks indicated that an important portion of the population is at risk, especially in the industrial site.

  8. Characterization of complex (B + C) diffusion layers formed on chromium and nickel-based low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Pertek, A.; Kulka, M

    2002-12-30

    Combined surface hardening with boron and carbon was used for low-carbon chromium and nickel-based steels. The microstructure, boron contents, carbon profiles and chosen properties of borided layers produced on the carburized steels have been examined. These complex (B+C) layers are termed borburized layers. The microhardness profiles and wear resistance of these layers have been studied. In the microstructure of the borocarburized layer two zones have been observed: iron borides (FeB+Fe{sub 2}B) and a carburized layer. The depth (70-125 {mu}m) and microhardness (1500-1800 HV) of iron borides zone have been found. The carbon content (1.2-1.94 wt.%) and microhardness (700-950 HV) beneath iron borides zone have been determined. The microhardness gradient in borocarburized layer has been reduced in comparison with the only borided layer. An increase of distance from the surface is accompanied by a decrease of carbon content and microhardness in the carburized zone. The carbon and microhardness profiles of borided, carburized and borocarburized layers have been presented. A positive influence of complex layers (B+C) on the wear resistance was determined. The wear resistance of the borocarburized layer was determined to be greater in comparison with that for only borided or only carburized layers.

  9. The surface spin polarization of Co-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Roman; Wuestenberg, Jan-Peter; Neuschwander, Sabine; Aeschlimann, Martin; Cinchetti, Mirko [University of Kaiserslautern (Germany). Department of Physics and Research Center OPTIMAS; Jourdan, Martin; Herbort, Christian; Vilanova Vidal, Enrique; Jakob, Gerhard [University of Mainz (Germany). Institute of Physics

    2010-07-01

    Co-based Heusler alloys belong mainly to the family of half-metallic ferromagnets (HMFs). The predicted full spin polarization at the Fermi level due to the minority spin band gap makes this class of materials highly interesting for application in the field of spintronics. Thus, the characterization of the surface of Co-based Heusler compounds is extremely relevant for understanding and improving the performance of Heusler-based spintronics devices, like tunnel-magnetoresistance (TMR) junctions. Using Auger electron spectroscopy (AES) and low energy spin polarized electron photoemission, we systematically studied the correlation between chemical composition and spin polarisation of the surface. For various Co-based Heusler alloys, e.g. Co{sub 2}CrAl, Co{sub 2}MnAl and Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}, we found different degrees of spin-polarization at the very surface region. Reasons for the distinct deviation from the predicted 100% spin polarization and the dependence on the specific surface preparation procedure are discussed.

  10. The effect of environment on the creep deformation of ultra-high purity nickel-chromium-iron alloys at 360 degrees Celcius

    Science.gov (United States)

    Paraventi, Denise Jean

    2000-10-01

    Steam generators in pressurized water nuclear power plants have experienced significant problems with intergranular stress corrosion cracking (IGSCC) on the inner diameter of steam generator tubing for over 25 years. In the course of research to understand IGSCC, it has been shown that creep deformation may play a significant role in the cracking of commercial Alloy 600 (Ni-16Cr-9Fe-0.03C). The primary water environment can cause decreases in creep resistance (i.e., faster creep rates, shorter time to failure, and higher creep strains). During corrosion under the conditions of interest, both hydrogen reduction and metal dissolution occur. One or both may contribute to the enhancement of creep. The purpose of this work was to isolate the mechanism by which the water environment causes the creep deformation to increase. Activation area and activation enthalpy for glide were measured in argon and primary water on high purity Ni-16Cr-9Fe alloys. The results indicated that the activation area was reduced by primary water, consistent with a hydrogen enhanced plasticity mechanism for enhanced creep. The stress dependence of creep was also examined in argon and primary water. The results indicated that the internal stress of the alloy is reduced by the primary water environment. Lower internal stress is consistent with both a hydrogen model as well as a vacancy-aided climb model for enhanced creep. To isolate the effect of hydrogen on the creep of the alloy, experiments were conducted in a dissociated hydrogen environment. The results indicated that hydrogen would only increase the steady state creep rate if present before loading of the samples. However, if the sample was already in steady state creep and hydrogen introduced, a transient in the creep strain was observed. The creep rate returned to the original steady state rate in a short time. The results indicate that while hydrogen does affect the steady state creep to an extent, hydrogen cannot completely account for

  11. Replacement of Co-base alloy for radiation exposure reduction in the primary system of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Ho; Nyo, Kye Ho; Lee, Deok Hyun; Lim, Deok Jae; Ahn, Jin Keun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Sun Jin [Hanyang Univ., Seoul (Korea, Republic of)

    1996-01-01

    Of numerous Co-free alloys developed to replace Co-base stellite used in valve hardfacing material, two iron-base alloys of Armacor M and Tristelle 5183 and one nickel-base alloy of Nucalloy 488 were selected as candidate Co-free alloys, and Stellite 6 was also selected as a standard hardfacing material. These four alloys were welded on 316SS substrate using TIG welding method. The first corrosion test loop of KAERI simulating the water chemistry and operation condition of the primary system of PWR was designed and fabricated. Corrosion behaviors of the above four kinds of alloys were evaluated using this test loop under the condition of 300 deg C, 1500 psi. Microstructures of weldment of these alloys were observed to identify both matrix and secondary phase in each weldment. Hardnesses of weld deposit layer including HAZ and substrate were measured using micro-Vickers hardness tester. The status on the technology of Co-base alloy replacement in valve components was reviewed with respect to the classification of valves to be replaced, the development of Co-free alloys, the application of Co-free alloys and its experiences in foreign NPPs, and the Co reduction program in domestic NPPs and industries. 18 tabs., 20 figs., 22 refs. (Author).

  12. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  13. Materials Properties of Modifeied Ni-Based Alloy

    Directory of Open Access Journals (Sweden)

    Kraus, L.

    2007-01-01

    Full Text Available The thermomechanical processing of NiMoCr solid solution nickel base superalloy is the way to considerably influence the grain size. As uniform coarse grain size increases the creep strength and crack growth resistance. In the work, the processing to achieve uniform recrystallized grain structure with variation of thermomechanical parameters is investigated. The creep behavior of the alloy after various hot working conditions is determined. The results of creep tests showed that creep characteristics such as strain rate and lifetime were greatly dependent on the initial hot working conditions and annealing parameters.

  14. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses

    NARCIS (Netherlands)

    Muris, J.; Scheper, R.J.; Kleverlaan, C.J.; Rustemeyer, T.; van Hoogstraten, I.M.W.; von Blomberg, M.E.; Feilzer, A.J.

    2014-01-01

    Background Palladium (Pd) and gold (Au) based dental alloys have been associated with oral disease. Objectives This study was designed to explore possible associations between the presence of Au-based and Pd-based dental alloys, and oral lesions, systemic complaints, and specific in vivo and in vitr

  15. Mechanochemical method for producing iron-based nitrogen-containing nanocrystalline alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Iron-based products account the main volume of powder metallurgy production. Nevertheless its strength and reliability are not enough in comparison with classical cast materials. So that is why making nanostructural powder materials allows to increase strength and extend the range of products. A principally new way of nanostructure production is possible by means of iron mechanical alloying with nitride-forming and nitrogen both at the same time.Unlike classical technology of internal nitrogenation, nitrogen saturation, in our case, occurs by whole volume at plastic deformation conditions. A review of experimental results of phase forming alloys in the Fe-Ni, Fe-Ni-Cr, Fe-Ni-N, Fe-Ni-Cr-N, Fe-Cr-Ni systems prepared by mechanical alloying are given. The influence of the technological parameters of mechanical alloying, atmosphere of mechanical activation on nitrogen content and phase composition of examined alloys has been studied. Experimental results of the influence of mechanical alloying technological parameters on degree of ammonia dissociation and nitrogen content in examined alloys are presented. Heat treatment influence of mechanically alloyed, nitrogen-containing alloys on theirphase composition and structure are investigated.It was shown that using mechanical alloying, it's possible to prepare high-alloyed iron-based alloys containing more than 1% of nitrogen. It was established that technology of mechanical alloying in ammonia atmosphere allows to prepare austenitic steels with nanocrystalline structure, which affords high value of yield stress. Physico-chemical patterns of interaction between the nitrogen-containing atmosphere and nitride-forming elements under their mutual mechanical activation conditions were established in consequence of theoretical and experimental researches. Some scientific principles of nanocrystalline materials were gained by quantitative description of correlation between the mechanical dose, nitrogen potertial, nitrogen content

  16. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    Science.gov (United States)

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  17. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    Science.gov (United States)

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  18. 铸造钴铬合金含银抗菌涂层表面性能及体外细胞毒性研究%Study of Ag-containing on casting cobalt chromium alloy on the surface structure and the cell toxicity in vitro

    Institute of Scientific and Technical Information of China (English)

    赵敏; 梁锐英; 孟贺; 徐艳丽; 李敬东; 吴文慧

    2012-01-01

    目的 检测钴铬合金含银抗菌涂层的表面性能及细胞毒性,为其临床应用提供依据.方法 于钴铬合金表面应用等离子喷涂技术制备含银抗菌涂层(涂层组),通过扫描电镜、能谱分析及X射线衍射分析表面性能.以常规铸造的钴铬合金试件为合金对照组,利用甲基噻唑基四唑法测试涂层组合金浸提液(分为25%、50%、75%和100%亚组)和合金对照组浸提液以及阴性对照组(新鲜培养液)对小鼠成纤维细胞L929增殖的影响(培养1、2、3d);用流式细胞术测试阴性对照组、涂层组和合金对照组培养48 h后L929细胞周期的差异.结果 涂层表面均匀致密,与基底材料未见明显间隙,表层主要物相为Ag、Cr和少量的Ag2O、Cr2O3.细胞培养1、2、3d后,阴性对照组、各涂层亚组和合金对照组A值差异无统计学意义(P>0.05);阴性对照组各时间点毒性评级均为0级,各涂层亚组和合金对照组各时间点毒性评级均为1级.涂层组G2期细胞周期比例为(8.23±0.39)%,合金对照组G2期细胞周期比例为(8.70±0.46)%,两组间差异无统计学意义(P>0.05),显著低于阴性对照组[(24.15±0.71)%].结论 钴铬合金含银涂层结构稳定,与临床常用钴铬合金相比,对L929细胞的增殖及细胞周期影响无明显差异,细胞相容性良好.%Objective To detect cobalt chromium alloy antimicrobial coating silver of the surface structure and the cell toxicity in order to provide a theoretical basis for clinical application.Methods Plasma spraying technique was adopted to prepare cobalt chromium alloy antimicrobial coating silver. Scanning electron microscopy,energy dispersive analysis and X-ray diffraction analysis were used to evaluate the surface properties.The methyl thiazolyl tetrazolium and flow cytometry method was adopted to test the L929 cell proliferation and the influence of the cell cycle. Results The surface of the coating was uniform and compact

  19. Highly integrated flow assembly for automated dynamic extraction and determination of readily bioaccessible chromium(VI) in soils exploiting carbon nanoparticle-based solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Rosende, Maria; Miro, Manuel; Cerda, Victor [University of the Balearic Islands, Department of Chemistry, Palma de Mallorca (Spain); Segundo, Marcela A.; Lima, Jose L.F.C. [University of Porto, REQUIMTE, Department of Chemistry, Faculty of Pharmacy, Porto (Portugal)

    2011-06-15

    An automated dynamic leaching test integrated in a portable flow-based setup is herein proposed for reliable determination of readily bioaccessible Cr(VI) under worst-case scenarios in soils containing varying levels of contamination. The manifold is devised to accommodate bi-directional flow extraction followed by processing of extracts via either in-line clean-up/preconcentration using multi-walled carbon nanotubes or automatic dilution at will, along with Cr(VI) derivatization and flow-through spectrophotometric detection. The magnitude of readily mobilizable Cr(VI) pools was ascertained by resorting to water extraction as promulgated by current standard leaching tests. The role of carbon nanomaterials for the uptake of Cr(VI) in soil leachates and the configuration of the packed column integrated in the flow manifold were investigated in detail. The analytical performance of the proposed system for in vitro bioaccessibility tests was evaluated in chromium-enriched soils at environmentally relevant levels and in a standard reference soil material (SRM 2701) with a certified value of total hexavalent chromium. The automated method was proven to afford unbiased assessment of water-soluble Cr(VI) in soils as a result of the minimization of the chromium species transformation. By combination of the kinetic leaching profile and a first-order leaching model, the water-soluble Cr(VI) fraction in soils was determined in merely 6 h against >24 h taken in batchwise steady-state standard methods. (orig.)

  20. Method for producing La/Ce/MM/Y base alloys, resulting alloys and battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, Jr., Karl A.; Schmidt, Frederick A.

    2016-12-20

    A carbothermic reduction method is provided for reducing a La-, Ce-, MM-, and/or Y-containing oxide in the presence of carbon and a source of a reactant element comprising Si, Ge, Sn, Pb, As, Sb, Bi, and/or P to form an intermediate alloy material including a majority of La, Ce, MM, and/or Y and a minor amount of the reactant element. The intermediate material is useful as a master alloy for in making negative electrode materials for a metal hydride battery, as hydrogen storage alloys, as master alloy additive for addition to a melt of commercial Mg and Al alloys, steels, cast irons, and superalloys; or in reducing Sm.sub.2O.sub.3 to Sm metal for use in Sm--Co permanent magnets.

  1. DEGRADATION BEHAVIORS OF NEW TYPE TiV-BASED HYDROGEN STORAGE ELECTRODE ALLOYS

    Institute of Scientific and Technical Information of China (English)

    X.Z. Sun; Y.F. Zhu; Y. Lin; R. Li; M.X. Gao; H.G. Pan

    2006-01-01

    The degradation behaviors of the TiV-based multiphase hydrogen storage alloy Ti0.8Zr0.2V3.2Mn0.64-Cr0.96Ni1.2 during electrochemical cycling in alkaline electrolyte have been studied by XRD, SEM,EIS and AES measurements. XRD analysis indicates that the alloy consists of a C14-type Laves phase and a V-based solid solution. The lattice parameters of both phases are increased after discharged with cycling, which indicates that more irreversible hydrogen remains not discharged in the alloy. It should be responsible for the decrease of discharge capacity. SEM micrographs show that after 10 electrochemical cycles, a large number of cracks can be observed in the alloy, existing mainly in the V-based solid solution phase. Moreover, after 30 cycles, the alloy particles are obviously pulverized due to the larger expansion and shrinkage of cell volumes during hydrogen absorption and desorption, which induces the fast degradation of the TiV-based hydrogen storage alloys. EIS and AES measurements indicate that some passive oxide film has been formed on the surface of alloy electrode, which has higher charge-transfer resistance, lower hydrogen diffusivity, and less electro-catalytic activity. Therefore it can be concluded that the pulverization and oxidation of the alloy are the main factors responsible for the fast degradation of the TiV-based hydrogen storage alloys.

  2. A Kinetic Model of Chromium in a Flame

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chromium has been identified as a carcinogenic metal.Incineration is the useful method for disposal of toxic chromium hazard waste and a chromium kinetic model in a flame is very important to study chromium oxidation.Chromium chemical kinetics over a range of temperatures of a hydrogen/air flame is proposed.Nine chromium compounds and fifty-eight reversible chemical reactions were considered The forward reaction rates are calculated based on the molecular collision approach for unknown ones and Arrhenius's Law for known ones.The backward reaction rates were calculated according to forward reaction rates, the equilibrium constants and chemical thermodynamics.It is verified by several equilibrium cases and is tested by a hydrogen/air diffusion flame.The results show that the kinetic model could be used in cases in which the chromium kinetics play an important role in a flame

  3. Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2009-01-01

    A density functional theory (DFT)-based, combinatorial search for improved oxygen reduction reaction (ORR) catalysts is presented. A descriptor-based approach to estimate the ORR activity of binary surface alloys, wherein alloying occurs only in the surface layer, is described, and rigorous...... for the ORR but, with few exceptions, they are found to be thermodynamically unstable in the acidic environments typical of low-temperature fuel cells. The results suggest that, absent other thermodynamic or kinetic mechanisms to stabilize the alloys, surface alloys are unlikely to serve as useful ORR...

  4. Co-based alloys design based on first-principles calculations: Influence of transition metal and rare-earth alloying element on stacking fault energy

    Science.gov (United States)

    Achmad, Tria Laksana; Fu, Wenxiang; Chen, Hao; Zhang, Chi; Yang, Zhi-Gang

    2017-01-01

    The main idea of alloy design is to reduce costs and time required by the traditional (trial and error) method, then finding a new way to develop the efficiency of the alloy design is necessary. In this study, we proposed a new approach to the design of Co-based alloys. It is based on the concept that lowering the ratio of stable and unstable stacking fault energy (SFE) could bring a significant increase in the tendency of partial dislocation accumulation and FCC to HCP phase transformation then enhance mechanical properties. Through the advance development of the computing techniques, first-principles density-functional-theory (DFT) calculations are capable of providing highly accurate structural modeling at the atomic scale without any experimental data. The first-principles calculated results show that the addition of some transition metal (Cr, Mo, W, Re, Os, Ir) and rare-earth (Sc, Y, La, Sm) alloying elements would decrease both stable and unstable SFE of pure Co. The dominant deformation mechanism of binary Co-4.5 at.% X (X = alloying element) is extended partial dislocation. Our study reveals Re, W, Mo and La as the most promising alloying additions for the Co-based alloys design with superior performances. Furthermore, the underlying mechanisms for the SFE reduction can be explained regarding the electronic structure.

  5. Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations

    Science.gov (United States)

    Gorbatov, O. I.; Lomaev, I. L.; Gornostyrev, Yu. N.; Ruban, A. V.; Furrer, D.; Venkatesh, V.; Novikov, D. L.; Burlatsky, S. F.

    2016-06-01

    The effect of composition on the antiphase boundary (APB) energy of Ni-based L 12-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric γ' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3 d row. The elements from the left side of the 3 d row increase the APB energy of the Ni-based L 12-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.

  6. Relationship between phase composition and corrosion resistanceof Ni-Ti-Nb based shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The stability and microstructure of Ni-Ti-Nb based shape memory alloys were investigated after alloyed with elements Zr, Cr and V. In artificial seawater (3.5%NaCl) and physiological solution (5%NaCl+0.1%H2O2), the results show that the alloying elements influence the corrosion behavior of Ni-Ti-Nb alloys. Generally, Zr improves the corrosion resistance of Ni-Ti-Nb alloy, Cr reduces its corrosion resistance and V does not change the property. In order to investigate the reason of the difference,the relation of the phase components and corrosion resistance of Ni-Ti-Nb based shape memory alloys were studied by element analysis and SEM.

  7. Effects of Multi-Alloying on Carbide of Eutectic High Chromium Cast Iron Containing 31%Cr%多元合金化对共晶31Cr高铬铸铁碳化物的影响

    Institute of Scientific and Technical Information of China (English)

    马幼平; 宋绍峰; 李秀兰; 党晓明

    2011-01-01

    The eutectic high chromium cast iron containing 31%Cr was deal with multi-alloying,the microstructure,composition,carbide size and morphology were investigated through metallurgical microscope,scanning electron microscope(SEM),AXIOS(PW4400) X fluorescence and Leica image analyzer.The results show that,the size is refined and the morphology was improved of carbide through multi-alloying,the morphology factor K of carbide increases and then decreases,while the grain factor D of carbide is contrary to the morphology factor K.The optimum composition is selected,which the morphology factor K is 0.83 and the grain factor D is 0.66 micron of the carbide.Recombination action between nucleation and growth mechanisms of eutectic composition phase improves the size of carbide.The reasons of carbide morphology evolved are the interaction among which the activity of carbon atoms and the interfacial tension of carbide are changed,and produce divorced eutectic.%采用多元合金化处理共晶31Cr高铬铸铁,借助金相显微镜、扫描电镜、AXIOS(PW4400)型X荧光及Leica图像分析仪对金相组织、成分、碳化物尺寸及形貌进行分析。结果表明,经多元合金化后,碳化物尺寸细化、形貌改善,碳化物形状因子K先增大后减小,粒度因子D先减小后增大;确定了最佳成分,其碳化物的形状因子K=0.83,粒度因子D=0.66μm;共晶组成相形核及长大机制转变的复合作用改善了碳化物尺寸;溶液中碳原子活度、碳化物界面张力的改变和产生离异共晶的共同作用导致了碳化物形貌的演变。

  8. 佩戴镍铬合金烤瓷冠对肾功能影响的横断面研究%A cross-sectional study of impact of dental restoration of nickel-chromium alloy on renal function

    Institute of Scientific and Technical Information of China (English)

    王珏; 曹新明; 夏刚; 徐碧瑶; 邓汉龙; 王德芳; 姜庆五; 陈波

    2012-01-01

    Objective To explore whether the dental restoration of nickel-chromium (Ni-Cr) will lead to the renal dysfunction. Methods Seven hundred and ninety-five (795) Ni-Cr alloy consumers and 85 controls were investigated by the questionnaire and the biological examination of renal function. Independent t test, one-way ANOVA, linear regression models and logistic regression models were used to analyze the impact of alloy restoration (time, number and metal exposure level) on renal function parameters. Results There was no significant change between Ni-Cr alloy consumers and the controls regarding to both of the measurement values and the abnormality of the biological indexes from either serum examination [total protein, albumin, urea nitrogen, urea acid and estimated glomerular filtration rate (eGFR)] and urine examination (albumin, Nacetyl-β-D-glucosaminidase, retinol-binding protein and β2- microglobulin) (P>0. 05). Logistic analyses of both estimated eGFR and urinary indexes of renal dysfunction showed that the independent factors of renal dysfunction were age and body mass index, but not the parameters of dental restoration including wearing time, number and the level of metal basis uncovered with porcelain (P>0. 05). Conclusions Dental restoration of Ni-Cr alloy is not associated with renal dysfunction in human in this cross-sectional study.%目的 探讨镍铬合金烤瓷冠的佩戴是否会造成机体的肾功能损伤.方法 对795例镍铬合金烤瓷冠佩戴者(接触组)和85例口腔门诊非镍铬合金修复者(对照组)进行烤瓷冠修复的问卷调查和血尿肾功能生化指标的测定,采用两独立样本t检验,单因素方差分析,线性回归模型和logistic回归模型分析佩戴时间、数量和金属裸露水平对肾功能生化指标的影响,P<0.05为差异有统计学意义.结果 各血生化指标(血清总蛋白、白蛋白、血肌酐、血尿素氮、血尿酸和肾小球滤过率的估计值)和尿生化指标(尿白

  9. Effect of processing parameters on hardness of selective laser melting cobalt-chromium alloy%加工参数设置对选择性激光熔积钴铬合金硬度的影响

    Institute of Scientific and Technical Information of China (English)

    张碧楚; 曾丽; 忻贤贞; 魏斌

    2015-01-01

    目的:观测几种加工参数设置对选择性激光熔积(SLM)钴铬合金的表面形貌和表面维氏硬度的影响。方法使用正交实验设计9组不同的加工参数,即激光功率为2500W、2750W、3000W,扫描速度为5mm/s、10mm/s、15mm/s,送粉速率为3r/min、4.5r/min、6r/min,制备9组选择性激光熔积钴铬合金试件,每组5个(直径10mm,厚度3mm),经抛光处理后分别进行扫描电镜观察和表面维氏硬度测试,采用SPSS16.0软件包进行数据处理。结果9组不同加工参数制备下SLM钴铬合金试件的扫描电镜图像均呈现均匀而规则的细胞样结构;其平均表面维氏硬度均在345HV以上。结论当加工参数设置在激光功率2500~3000W,扫描速度5~15mm/s,送粉速率3~6r/min范围内时,SLM钴铬合金具有较为理想的表面形貌和表面硬度,能适合临床应用需求。%Objective To investigate the effects of several processing parameters on surface morphol-ogy and surface hardness of cobalt-chromium(Co-Cr) alloy fabricated by selective laser melting (SLM). Methods Nine groups of selective laser melting Co-Cr alloy were fabricated by different processing parameters (laser power:2500W, 2750W, 3000W;scanning speed:5mm/s, 10mm/s, 15mm/s;power feeding rate:3r/min, 4.5r/min, 6r/min) by orthogonal experiment design, each group has five specimens (10mm diameter and 3mm thickness). The speci-mens’ surface morphology was observed by a scanning electron microscope and their Vickers hardness was mea-sured by micro-hardness tester. The data was analyzed with SPSS16.0 software package. Results The SEM im-ages showed all selective laser melting Co-Cr alloy had a homogeneous and regular cellular structure and the mean surface Vickers hardness were all above 345HV. Conclusion When laser power is set at 2500-3000W, scanning speed is set by 5-15mm/s and power feeding rate is set by 3-6r/min, SLM Co-Cr alloy has both ideal surface prop-erty and surface

  10. Kinetics of propane dehydrogenation in CO{sub 2} presence over chromium and gallium oxide catalysts based on MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Gaidai, N.A.; Nekrasov, N.V.; Agafonov, A.Yu.; Botavina, M.A. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry

    2012-07-01

    Chromium and gallium catalysts based on MCM-41 with different contents of active metals were prepared and tested for propane dehydrogenation in the presence and absence of CO{sub 2}. It was shown that CO{sub 2} increased the yield of propene and decreased considerably the rate of deactivation of Cr/MCM-41 and decreased propene yield and slightly improved the stability of Ga/MCM-41. The study of kinetics in unstationary and stationary fields showed that the decrease of propene yield was connected with strong competitive adsorption of CO{sub 2} over Ga-catalysts what presented difficulties for propane adsorption. The formation of cracking products was decreased in CO{sub 2} presence over both catalysts. The catalysts were differed by the adsorption capacity of the reaction components: C{sub 3}H{sub 6} was tied more strongly than CO{sub 2} over Cr-catalysts, CO{sub 2} was tied more firmly than C{sub 3}H{sub 6} over Ga-catalysts. Kinetic data showed that of H{sub 2} was bounded with the surface of Ga-catalysts very firmly, reverse watergas shift reaction proceeded in considerably more extent over Cr-catalysts than over Gaones. CO{sub 2} took active participation in oxidation of coke and surface of Cr-catalysts. The positive role of CO{sub 2} in propane dehydrogenation over Ga-catalysts consisted in a decrease of coke and cracking products. Kinetic equations and step-schemes for propene and cracking products formation were proposed. (orig.)

  11. Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Paul, Mukul C. [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Kir' yanov, Alexander V. [Centro de Investigaciones en Optica, Guanajuato (Mexico); Bysakh, Sandip [Electron Microscopic Section, Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2015-08-15

    The basic material and optical properties of chromium-doped nanophase-separated yttria-alumina-silica (YAS) glass based optical preforms and fibers, fabricated through the modified chemical vapor deposition process in conjunction with solution doping technique under suitable thermal annealing conditions are reported. The size of the phase-separated particles within the core of the annealed preform is around 20-30 nm which is significantly reduced to around 5.0 nm in the drawn fiber. The absorption spectra of fibers drawn from the annealed and non-annealed preform samples revealed the presence of Cr{sup 4+}, Cr{sup 3+}, and Cr{sup 6+} specie. Numerically, extinction of absorption drops ∝3-3.5 times for the annealed sample as a result of nano-phase restructuration during annealing process. Intense broadband emission (within 500-800 nm) in case of the annealed preform sample is observed as compared to the non-annealed one and is associated with the presence of Cr{sup 3+} ions in nanostructured environment inside the YAS core glass. The final fibers show broadband emission ranging from 900 to 1400 nm under pumping at 1064 nm which is attributed mainly to the presence of Cr{sup 3+}/Cr{sup 4+} ions. The fabricated fibers seem to be a potential candidate for the development of fiber laser sources for the visible and near-infra ranges and for effective Q-switching units for ∝1-1.1 μm all-fiber ytterbium lasers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Evaluation of different finish line designs in base metal alloys

    Directory of Open Access Journals (Sweden)

    Aghandeh R

    1999-06-01

    Full Text Available This investigation was performed according to the widespread application of base metal alloys"nand few articles published about the marginal integrity of restorations fabricated by these metals."nThree standard dies of a maxillary first premolar were prepared with a flat shoulder finish line in buccal"naspect and chamfer in palatal. One of them left with no change. On the buccal aspect of the second and"nthird dies 135?and 1607 bevel were added respectively"nUsing dual wax technique, nine wax patterns were formed on each die and casting procedure of selected"nnon precious alloy was performed by centrifugal method. Marginal gaps of each copping seated on dies"nwere measured by scanning electron microscope (SEM with X500 magnification. Measurements were"ndone on three areas of marked dies on buccal aspect. Measurement son palatal aspect was done on"nmarked midpalatal point as control."nResults and statistical analysis showed no significant difference among marginal gaps in lingual aspect."nBut on the buccal aspect there were statistically significant differences among the groups (P<0.001. Flat"nshoulder had the best marginal integrity (mean 4 micron. Shoulder with 160' bevel had the most marginal"ngap (mean 26.5 micron and shoulder with 1357 bevel was between two other groups (mean 15.7 micron.

  13. The wettability of Fe based alloy on TiO

    Institute of Scientific and Technical Information of China (English)

    李庆奎; 钟海云; 钟晖; 戴艳阳

    2002-01-01

    For developing TiO based imitated gold materials, the wettabilities of Fe and Fe-Cr-Ni-Ti on TiO were studied. The results indicated that the wettabilities of Fe and Fe-Cr on TiO were poor, and their wetting angles were about 90° at melting point. The wetting angles reduced with the increase of wetting temperature, but the influence of temperature was small. Fe and Fe-Cr containing Cr 50% or less could react with TiO on the interface to form Fe2Ti and Ti2O3, but this did not improve the wettability effectively. When Ni-Ti was added into Fe-Cr alloy, Ni3Ti was formed on the interface, which can reduce the interface energy, improve the wettability, and prevent the formation of Fe2Ti and Ti2O3. The wetting angles could go down to about 40° when 3% Ni-Ti was added to Fe-Cr alloy.

  14. Laser cladding of Ni-based alloy on copper substrate

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Changsheng Liu; Xingqi Tao; Suiyuan Chen

    2006-01-01

    The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The average microhardness of the cladding coating was Hv 280, which was almost three times of that of the Cu substrate (Hv 85). OM and SEM observations showed that the obtained coating had a smooth and uniform surface, as well as a metallurgical combination with the Cu substrate without cracks and pores at the interface. With the addition of copper into the nickel-based alloy, the differences of thermal expansion coefficient and melting point between the interlayer and cladding were reduced, which resulted in low stresses during rapid cooling. Moreover, large amount of (Cu, Ni) solid solution formed a metallurgical bonding between the cladding coating and the substrate, which also relaxed the stresses, leading to the reduction of interfacial cracks and pores after laser cladding.

  15. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    Science.gov (United States)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  16. Void and precipitate structure in ion- and electron-irradiated ferritic alloys

    Science.gov (United States)

    Ohnuki, Soumei; Takahashi, Heishichiro; Takeyama, Taro

    1984-05-01

    Void formation and precipitation were investigated in Fe10Cr and Fe13Cr base alloys by 200 keV C + ion and 1 MeV electron irradiation. The ferritic alloys exhibited significant resistance to void swelling. In FeCr and FeCr-Si alloys, ion-irradiation produced the precipitates of M 23C 6 type. In the FeCrTi alloy, Ti-rich precipitates were formed with high number density on {100} plane. During electron-irradiation Fe-10Cr alloy, complex dislocation loops were produced with high number density, of which Burgers vector was mostly . EDX analysis showed slightly enrichment of chromium on dislocation loops. These results suggested that the stability of type dislocation structure at high dose is an important factor on good swelling resistance in the ferritic alloys, moreover, titanium addition will intensify the stability of the doslocations through the fine precipitation on dislocations.

  17. Effect of Artificial Saliva and Intraoral Fluoride on the Fatigue Strength and Roughness Values of Chromium- cobalt Alloy Clasp.%人工唾液和氟化物对钴铬合金卡环疲劳强度及粗糙度影响的研究

    Institute of Scientific and Technical Information of China (English)

    刘杰; 赵笺龄; 商维荣

    2011-01-01

    目的:探讨人工唾液和氟化物对钴铬合金卡环疲劳强度及粗糙度的影响.方法:用成品卡环蜡型制作钴铬合金卡环60个,分为6组,分别在空气中、人工唾液和氟化物中进行测试,初始载荷强度和疲劳失效前的载荷循环次数被自动记录;疲劳裂纹和表面形貌进行扫描电镜分析.用精密粗糙度测量仪检测各组表面粗糙度.结果:钴铬合金卡环在不同测试条件下的疲劳强度及粗糙度有差异.统计分析表明,pH5.6NaF处理组与对照组的循环载荷次数有显著性差异(P<0.01).pH5.6NaF处理组在处理前后的粗糙度有显著性差异(P<0.01).结论:人工唾液和氟化物会使钴铬合金卡环的疲劳强度下降,而表面粗糙度升高.%Objective: To study the effect of artificial saliva and intraoral fluoride on the fatigue strength and roughness values of cobalt-chromium alloy clasp. Methods: Sixty casting clasp specimens of cobalt-chromium alloys made from prefabricated wax were divided into 6 groups. Specimens were tested in air, artificial saliva and intraoral fluoride. Initial loading force and loading cycle before fracture were registered automatically. The fatigue corrosion cracks and surface corrosion situation were observed by scanning electron microscopy (SEM). Surface roughness values in different groups were measured by precision topographer. Results.. The fatigue strength and roughness values of chromium-cobalt alloy were not different among six test conditions. StatistiCal analysis showed that there was significant difference between pH5.6NaF group and control group in loading cycle(P<0.01) pH5,6 NaF group had significant difference before and after processing the surface roughness (P<0. 01) Conclusion: Both artificial saliva and intraoral fluoride reduced the fatigue strength of chromium-cobalt alloy, whereas, improved the roughness values.

  18. Corrosion Mechanisms in Brazed Al-Base Alloy Sandwich Structures as a Function of Braze Alloy and Process Variables

    Science.gov (United States)

    2013-02-01

    produce results on precipitation hardened Al alloys which provide a good indicator of long term field exposure performance in natural environments [15...I \\ I I i i I i i i I 750 ZOO AI-0.15Cu-0.9Mg-0.6Si (wt%) J50 m 100 10000 1000 10000 100000 1000000 i 10o Time, min Time...for good corrosion resistance and simultaneous weld penetration to achieve bonding vi. Designed New Braze alloy based on combined metallurgical

  19. 反复熔铸影响新旧钴铬烤瓷合金的机械性能%Mechanical properties of cobalt-chromium alloys containing different proportion of once-used alloys after recasts

    Institute of Scientific and Technical Information of China (English)

    肖月; 任丹丹; 王丹

    2013-01-01

    背景:目前关于反复铸造后钴铬烤瓷合金机械性能改变的研究已有较多研究报道,而对于将回收旧料再利用于新料中后再铸造钴铬烤瓷合金机械性能的研究则少有报道。  目的:研究反复熔铸对不同比例新旧钴铬烤瓷合金拉伸强度、屈服强度、延伸率及显微硬度等机械性能的影响。  方法:由新钴铬烤瓷合金熔铸成Ⅰ代铸件,40%Ⅰ代废旧料添加60%新钴铬烤瓷合金熔铸成Ⅱ代铸件,40%Ⅱ代废旧料添加60%新钴铬烤瓷合金熔铸成Ⅲ代铸件,40%Ⅲ代废旧料添加60%新钴铬烤瓷合金熔铸成第Ⅳ代铸件。采用拉伸实验测试各代试件的拉伸强度、0.2%屈服强度、延伸率;采用弯曲实验测试各代试件的弯曲强度;采用硬度实验测试各代试件的维氏硬度值;并进行显微金相观察。  结果与结论:Ⅱ,Ⅲ,Ⅳ代铸件拉伸强度、0.2%屈服强度、延伸率、弯曲强度及维氏硬度值与Ⅰ代铸件比较,差异均无显著性意义。Ⅰ代试样晶粒的大小均匀一致,直径较小,沿晶界分布的碳化物大小也较均匀细小,主要呈球形和不规则的蠕虫状两种形态;Ⅱ代和Ⅲ代试样组织形态尚均匀,只是晶粒有些粗化;Ⅳ代试样显微组织中的碳化物开始粗化,不规则蠕虫状的碳化物含量增多,可发现晶粒内存在少量非金属夹杂物。表明新旧比例为3∶2的钴铬烤瓷合金至少可以反复熔铸3次而不引起机械性能下降。%BACKGROUND:There are numerous studies about mechanical changes of recast cobalt-chromium ceramic al oys. However, little is reported on the mechanical properties of cobalt-chromium ceramic al oys containing once-used al oys after recasts. OBJECTIVE:To study the effects of different proportion of once-used al oys to recasting cobalt-chromium al oys on their mechanical properties, including tensile strength, yield strength, elongation and

  20. Low-chromium reduced-activation chromium-tungsten steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J.; Maziasz, P.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Bainitic microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of non-classical bainite were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was found to be considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2 1/4Cr-2W and 2 1/4Cr-2WV steel compositions to increase their hardenability, and the microstructures and mechanical properties were examined.

  1. Effects of Ti and Co on the Electrochemical Characteristics of MgNi-Based Alloy Electrodes

    Institute of Scientific and Technical Information of China (English)

    FENG,Yan; JIAO,Li-Fang; YUAN,Hua-Tang; ZHAO,Ming

    2007-01-01

    Mg-based hydrogen storage alloys MgNi, Mg0.9Ti0.1Ni and Mg0.9Ti0.1Ni0.9Co0.1 were successfully prepared by means of mechanical alloying (MA). The structure and the electrochemical characteristics of these Mg-based materials were also studied. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the main phases of the alloys exhibit amorphous structures, and trace of Ni co-exists. The charge-discharge cycle tests indicate these alloys have good electrochemical active characteristics. And the cycle stability of Ti and Co doped alloy was better than that of MgNi alloy. After 50 cycle charge-discharge, the discharge capacity of the Mg0.9Ti0.1Ni0.9Co0.1 alloy was much better than that of MgNi and Mg0.9Ti0.1Ni alloys. The discharge capacity of Mg0.9Ti0.1Ni0.9Co0.1 was 102.8% higher than that of MgNi alloy, and 45.49% higher than that of the Mg0.9Ti0.1Ni alloy. During the process of charge-discharge cycle test, the main reason for the electrode capacity fading is the corrosion of Mg to Mg(OH)2 on the surface of alloys. The Tafel polarization test indicates Ti and Co improve the anticorrosion in an alkaline solution. The EIS results suggest that proper amount of Ti and Co doping improve the electrochemical catalytical activity on the Mg-based alloy surface significantly.

  2. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bingtao Li

    2003-08-05

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  3. Standard practice for determining the susceptibility of stainless steels and related Nickel-Chromium-Iron Alloys to stress-corrosion cracking in polythionic acids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for preparing and conducting the polythionic acid test at room temperature, 22 to 25°C (72 to 77°F), to determine the relative susceptibility of stainless steels or other related materials (nickel-chromiumiron alloys) to intergranular stress corrosion cracking. 1.2 This practice can be used to evaluate stainless steels or other materials in the “as received” condition or after being subjected to high-temperature service, 482 to 815°C (900 to 1500°F), for prolonged periods of time. 1.3 This practice can be applied to wrought products, castings, and weld metal of stainless steels or other related materials to be used in environments containing sulfur or sulfides. Other materials capable of being sensitized can also be tested in accordance with this test. 1.4 This practice may be used with a variety of stress corrosion test specimens, surface finishes, and methods of applying stress. 1.5 This standard does not purport to address all of the safety concerns, if any, ...

  4. Evaluation of Nb-base alloys for the divertor structure in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, I.M. [Argonne National Laboratory, Upton, IL (United States)

    1996-04-01

    Niobium-base alloys are candidate materials for the divertor structure in fusion reactors. For this application, an alloy should resist aqueous corrosion, hydrogen embrittlement, and radiation damage and should have high thermal conductivity and low thermal expansion. Results of corrosion and embrittlement screening tests of several binary and ternary Nb alloys in high-temperature water indicated the Mb-1Zr, Nb-5MO-1Zr, and Nb-5V-1Z4 (wt %) showed sufficient promise for further investigation. These alloys, together with pure Nb and Zircaloy-4 have been exposed to high purity water containing a low concentration of dissolved oxygen (<12 ppb) at 170, 230, and 300{degrees}C for up to {approx}3200 h. Weight-change data, microstructural observations, and qualitative mechanical-property evaluation reveal that Nb-5V-1Zr is the most promising alloy at higher temperatures. Below {approx}200{degrees}C, the alloys exhibit similiar corrosion behavior.

  5. Thermodynamics-Based Computational Design of Al-Mg-Sc-Zr Alloys

    Science.gov (United States)

    Haidemenopoulos, G. N.; Katsamas, A. I.; Kamoutsi, H.

    2010-04-01

    Alloying additions of Sc and Zr raise the yield strength of Al-Mg alloys significantly. We have studied the effects of Sc and Zr on the grain refinement and recrystallization resistance of Al-Mg alloys with the aid of computational alloy thermodynamics. The grain refinement potential has been assessed by Scheil-Gulliver simulations of solidification paths, while the recrystallization resistance (Zener drag) has been assessed by calculation of the precipitation driving forces of the Al3Sc and Al3Zr intermetallics. Microstructural performance indices have been derived, used to rank several alloy composition variants, and finally select the variant with the best combination of grain refinement and recrystallization resistance. The method can be used, with certain limitations, for a thermodynamics-based design of Al-Mg and other alloy compositions.

  6. A comparison and assessment on various color dimensions from two base metal alloys in ceramometal disks

    Directory of Open Access Journals (Sweden)

    Nokar S

    2004-02-01

    Full Text Available Color matching and accurate shade selection are the challenging problems common"nto restorative dentistry. In ceramometal restorations, the type of substructure alloy affects the final color of"nbonded porcelain. Nickel- chromium alloy is the most commonly used one that its Iranian product, namely"nMinalux, is similar to Verabond2."nPurpose: The aim of this study was to assess and compare various color dimensions resulting from Minalux"nand Verabond2 alloys."nMaterials and Methods: Nine disks, approximately 16 mm in diameter and 0.5 mm thickness, were cast"nfrom each alloy. Then, porcelain Vita VMK68 A2 was baked onto the entire test disks, following the"nmanufacturer's instruction. Color samples, at the same time and under the same conditions, was measured by"nData color spectrophotometer in CIE Lab System and Munsel system under four light sources (A, C, D65 and"nTL81. Then MATLAB TOOL BOX Statistic 5.2 was used to determine mean and bilateral variance analysis."nResults: It was indicated that the F value on hue, value and chroma was less than of the table value stated"nwith 99% coefficient confidence, confirming Ho theory. In other words, there were not any significant"ndifferences between ceramometal disks made of Minalux and Verabond2 in the three dimensions of color."nConclusion: Having desirable physical, mechanical and biological properties, Verabond2 can be replaced by"nMinalux alloy.

  7. Development and Making of New Jewellery Palladium Based Alloys at JSC "Krastsvetmet"

    Institute of Scientific and Technical Information of China (English)

    YEFIMOV V. N.; MAMONOV S. N.; SHULGIN D. R.; YELTSIN S. I.

    2012-01-01

    Complex of research and development work aimed at implementation of jewellery palladium based alloys technology has been carried out at JSC Krastsvetmet.A range of palladium alloys jewellery fabrication has been organized.Compositions of a number of jewellery palladium alloys grade 850,900,950 and 990 have been proposed,their production and application in jewellery manufacture has been organized.To produce palladium alloys induction melting in inert atmosphere and melt pouring into a copper mould has been used.The ingots heat treatment conditions,as well as semi-finished jewelry plastic deformation parameters have been determined.

  8. A Palladium-Based Alloy for Prosthetic Dentistry:Structure and Properties

    Institute of Scientific and Technical Information of China (English)

    STEPANOVA Galina; PARUNOV Vitaly; VASEKIN Vasily; KAREVA Maria; SINAGEJKINA Julia

    2012-01-01

    Abstract.Using the results of physical and chemical researches and mechanical tests of the Pd-Au-Cu-Sn system alloys,a new palladium-based alloy has been chosen and studied in detail.It has a higher plasticity and a lower hardness than the Palladent alloy,widely used in prosthetic dentistry:its hardness is lower than 300 MPa,and its specific elongation is 10%~14 %.At the same time,such important practical characteristics of the alloys as the strength of adhesion to ceramics and thermal expansion coefficient are almost similar.

  9. Characteristics of multi-component MI-based hydrogen storage alloys and their hydride electrodes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of multi-component MI-based hydrogen storage alloys with a cobalt atomic ratio of 0.40-0.75 w ere prepared. The electrochemical properties under different charge-discharge conditions and PCT characteristics measured by electrochemical method were investigated. The addition of other alloying elements for partial substitution of Co lowers the hydrogen equilibrium pressure and discharge capacity, but improves the cycling stability and makes the alloys keep nearly the same rate discharge capability and high-temperature discharge capability as those of the compared alloy.The reasons were discussed.

  10. Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys

    Science.gov (United States)

    Maltsev, Dmitry S.; Volkovich, Vladimir A.; Yamshchikov, Leonid F.; Chukin, Andrey V.

    2016-09-01

    Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys were studied. Temperature dependences of gadolinium activity in the studied alloys were determined at 573-1073 K employing the EMF method. Solubility of gadolinium in the Ga-Sn and Ga-Zn alloys was measured at 462-1073 K using IMCs sedimentation method. Activity coefficients as well as partial and excess thermodynamic functions of gadolinium in the studied alloys were calculated on the basis of the obtained experimental data.

  11. Nanocrystalline Al-based alloys - lightweight materials with attractive mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Latuch, J; Cieslak, G; Dimitrov, H; Krasnowski, M; Kulik, T, E-mail: takulik@rekt.pw.edu.p [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland)

    2009-01-01

    In this study, several ways of bulk nanocrystalline Al-based alloys' production by high-pressure compaction of powders were explored. The effect of chemical composition and compaction parameters on the structure, quality and mechanical properties of the bulk samples was studied. Bulk nanocrystalline Al-Mm-Ni-(Fe,Co) alloys were prepared by ball-milling of amorphous ribbons followed by consolidation. The maximum microhardness (540 HV0.1) was achieved for the samples compacted at 275 deg. C under 7.7 GPa (which resulted in an amorphous bulk) and nanocrystallised at 235 deg. C for 20 min. Another group of the produced materials were bulk nanocrystalline Al-Si-(Ni,Fe)-Mm alloys obtained by ball-milling of nanocrystalline ribbons and consolidation. The hardness of these samples achieved the value five times higher (350HV) than that of commercial 4xxx series Al alloys. Nanocrystalline Al-based alloys were also prepared by mechanical alloying followed by hot-pressing. In this group of materials, there were Al-Fe alloys containing 50-85 at.% of Al and ternary or quaternary Al-Fe-(Ti, Si, Ni, Mg, B) alloys. Microhardness of these alloys was in the range of 613 - 1235 HV0.2, depending on the composition.

  12. High temperature corrosion of nickel-base alloys in environments containing alkali sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Rachel; Flyg, Jesper; Caddeo, Sophie [Corrosion and Metals Research Institute, KIMAB, Stockholm (Sweden); Karlsson, Fredrik [Siemens Industrial Turbomachinery, Finspong (Sweden)

    2007-02-15

    This work is directed towards producing data to assist in lifetime assessment of components in gas turbines run in severely polluted industrial environments where the main corrosive species is SO{sub 2}, which can condense to form alkali sulphates. Corrosion rates have been measured for the base materials, in order to assess the worst-case scenario, in which cracks or other damage has occurred to the protective coating. The information is expected to be of value to manufacturers, owners and inspectors of gas turbines. Six nickel-base superalloys were subject to thermal cycles of 160 hours duration, and 0.8mg/cm{sup 2} of 20 mol % Na{sub 2}SO{sub 4} + 80mol% K{sub 2}SO{sub 4} was applied before each cycle. The test temperatures were 850 deg C and 900 deg C, with maximum test durations of 24 cycles and 12 cycles respectively. The metal loss was assessed by metallography of cross sections and the sulphidation attack was found to be very uneven. Mass change data indicated that the corrosion process was largely linear in character, and probability plots and estimations of the propagation rate of corrosion based on the linear growth assumption were produced. The performance of the alloys increased with increasing chromium content. The single crystal materials CMSX4 and MD2 showed such high corrosion rates that their use in severely contaminated industrial environments is considered inadvisable. The best performance was shown by Inconel 939 and Inconel 6203, so that even if cracks occur in the protective coating, a reasonable remaining lifetime can be expected for these materials. Sulphide formation occurred at the reaction front in all cases and mixed sulphides such as Ta-Ni or Ti-Nb sulphides were often present. The work has news value since very little long-term data is currently available for materials performance in severely sulphidising environments. The project goals in terms of exposures and metrology have been fully realised. Contributions have been made to the

  13. Thermophysical Properties of Liquid AlTi-Based Alloys

    Science.gov (United States)

    Egry, I.; Holland-Moritz, D.; Novakovic, R.; Ricci, E.; Wunderlich, R.; Sobczak, N.

    2010-05-01

    The surface tension and density of three liquid AlTi-based alloys (AlTiV, AlTiNb, and AlTiTa) have been measured using electromagnetic levitation as a tool for containerless processing. Surface tension has been determined by the oscillating-drop method, while the density was measured using a shadowgraph technique. Both quantities were determined over a wide temperature range, including the undercooled regime. In addition, sessile-drop and pendant-drop experiments to determine the surface tension were performed in a recently built high-temperature furnace. The measured data were compared to thermodynamic calculations using phenomenological models and the Butler equation. Generally, good agreement was found.

  14. Laser vision sensing based on adaptive welding for aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhixiang; SONG Yonglun; ZHANG Jun; ZHANG Wanchun; JIANG Li; XIA Xuxin

    2007-01-01

    A laser vision sensing based on the adaptive tungsten inert gas(TIG)welding system for large-scale aluminum alloy components was established to fit various weld groove conditions.A new type of laser vision sensor was used to precisely measure the weld groove.The joint geometry data,such as the bevel angle,the gap,the area,and the mismatch,etc.,aided in assembling large-scale aerospace components before welding.They were also applied for automatic seam tracking,such as automatic torch transverse alignment and torch height adjustment in welding.An adaptive welding process was realized by automatically adjusting the wire feeding speed and the welding current according to the groove conditions.The process results in a good weld formation and high welding quality,which meet the requirements of related standards.

  15. Laser welding of AZ61 magnesium-based alloys

    Institute of Scientific and Technical Information of China (English)

    Wang Hongying; Li Zhijun; Zhang Yihui

    2006-01-01

    Laser welding of AZ61 magnesium alloys was carried out asing a CO2 laser weldingexperimental system.The welding properties of AZ61 sheets with different thickness were investigated.The effect of processing parameters including laser power, welding speed and protection gas flow was researched.The results show that laser power and welding speed have large effect on the weld width and joint dimensions.Protection gas flow has relatively slight effect on the weld width.The property test of three typical joints indicates that microhardness and tensile strength in weld zone are higher than that of AZ61 base metal.Joints with good appearance and excellent mechanical properties can be produced using CO2 laser welding method.The microstructure with small grains in weld zone is believed to be responsible for the excellent mechanical properties of AZ61 joints.

  16. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  17. Electron-ion plasma modification of Al-based alloys

    Science.gov (United States)

    Ivanov, Yurii; Rygina, Mariya; Petrikova, Elizaveta; Krysina, Olga; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina

    2016-01-01

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN-AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film-substrate system were estimated by numerical simulation in a wide range of electron energy densities (5-30 J/cm2) and pulse durations (50-200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young's modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu-Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN-AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ˜14 GPa.

  18. Precipitation hardening in Fe--Ni base austenitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chang, K.M.

    1979-05-01

    The precipitation of metastable Ni/sub 3/X phases in the austenitic Fe--Ni-base alloys has been investigated by using various combinations of hardening elements, including Ti, Ta, Al, and Nb. The theoretical background on the formation of transition precipitates has been summarized based on: atomic size, compressibility, and electron/atom ratio. A model is proposed from an analysis of static concentration waves ordering the fcc lattice. Ordered structure of metastable precipitates will change from the triangularly ordered ..gamma..', to the rectangularly ordered ..gamma..'', as the atomic ratio (Ti + Al)/(Ta + Nb) decreases. The concurrent precipitation of ..gamma..' and ..gamma..'' occurs at 750/sup 0/C when the ratio is between 1.5 and 1.9. Aging behavior was studied over the temperature range of 500/sup 0/C to 900/sup 0/C. Typical hardness curves show a substantial hardening effect due to precipitation. A combination of strength and fracture toughness can be developed by employing double aging techniques. The growth of these coherent intermediate precipitates follows the power law with the aging time t : t/sup 1/3/ for the spherical ..gamma..' particles; and t/sup 1/2/ for the disc-shaped ..gamma..''. The equilibrium ..beta.. phase is observed to be able to nucleate on the surface of imbedded carbides. The addition of 5 wt % Cr to the age-hardened alloys provides a non-magnetic austenite which is stable against the formation of mechanically induced martensite.Cr addition retards aging kinetics of the precipitation reactions, and suppresses intergranular embrittlement caused by the high temperature solution anneal. The aging kinetics are also found to be influenced by solution annealing treatments.

  19. Processing of New Materials by Additive Manufacturing: Iron-Based Alloys Containing Silver for Biomedical Applications

    Science.gov (United States)

    Niendorf, Thomas; Brenne, Florian; Hoyer, Peter; Schwarze, Dieter; Schaper, Mirko; Grothe, Richard; Wiesener, Markus; Grundmeier, Guido; Maier, Hans Jürgen

    2015-07-01

    In the biomedical sector, production of bioresorbable implants remains challenging due to improper dissolution rates or deficient strength of many candidate alloys. Promising materials for overcoming the prevalent drawbacks are iron-based alloys containing silver. However, due to immiscibility of iron and silver these alloys cannot be manufactured based on conventional processing routes. In this study, iron-manganese-silver alloys were for the first time synthesized by means of additive manufacturing. Based on combined mechanical, microscopic, and electrochemical studies, it is shown that silver particles well distributed in the matrix can be obtained, leading to cathodic sites in the composite material. Eventually, this results in an increased dissolution rate of the alloy. Stress-strain curves showed that the incorporation of silver barely affects the mechanical properties.

  20. Microstructure and nano-mechanical property of cold spray Co-base refractory alloy coating

    Institute of Scientific and Technical Information of China (English)

    Yongli LIANG; Bi SHI; Xiaoping YANG; Junbao ZHANG; Xianming MENG

    2011-01-01

    Co-base refractory alloy coating was prepared on carbon steel substrate by cold spray technology; microstructure and nano-mechenical property were examined by scanning electron microscope (SEM) and nano indenter individually. The results showed that about 250 μm Co-base refractory alloy coating could be deposited on steel substrate by cold spray technique, interface between coating and substrate was combined well, and the refractory alloy particle had a significant plastic deformation during deposition process; mixing Ni powders into Co-base refractory alloy powders could increase the density and decrease the nano-hardness of coating, the nano-hardness and elastic modulus of refractory alloy coating was higher than 6 GPa and 160 GPa, respectively.

  1. Determination of the Silicon, Vanadium, Iron, Aluminum, Nickel, Molybdenum and Chromium in Titanium Alloy by ICP-AES%ICP-AES测定钛合金中硅钒铁铝镍钼铬

    Institute of Scientific and Technical Information of China (English)

    成勇

    2012-01-01

    This paper has built an analysis method of inductively coupled plasma atomic emission spectrometry (ICP-AES) for direct and simultaneous determination of alloying elements or trace impurities of silicon, vanadium, iron, aluminum, nickel, molybdenum and chromium in the titanium alloy. The titanium alloy samples were digested completely by hydrofluoric acid and nitric acid mixed reagents and the heating conditions of the digestion reaction were controlled at room temperature or 70 ℃ water bath to avoid the volatilization loss of the element and ensure that the hydrolysis reaction of high-concentration titanium in the low acidity medium did not occur. The effect of titanium matrix and coexisting elements on the determination of the spectral interference was tested. The internal standard correction method using the yttrium as internal standard element was employed, and elemental analysis of spectral lines, internal calibration spectrum, the synchronous background correction positions and ICP spectrometer working conditions were selected preferably to effectively eliminate the physical interference resulting from titanium substrate and improve the detection precision and detection limit level. The test results of the practical application show that the detection limit is 10~27 μg/L, the background equivalent density is 5~38 μg/L, the correlation coefficient r≥0.9992, the recovery rate is 95.0%~105.0% and the RSD≤2.27%.%建立了电感耦合等离子体原子发射光谱法(ICP-AES)直接同时测定钛合金中合金元素或微量杂质硅钒铁铝镍钼铬的分析方法.采用氢氟酸和硝酸混合试剂并且在室温或70℃水浴控制加热条件下消解样品,从而避免了待测元素的挥发损失以及确保了高浓度钛基体在低酸度介质中也不会发生水解反应.试验了钛基体和共存元素对测定的光谱干扰影响,采取以钇作为内标元素的内标校正法,并且优选了待测元素分析谱线、内标校正谱

  2. Development of new metallic alloys for biomedical applications.

    Science.gov (United States)

    Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko

    2012-11-01

    New low modulus β-type titanium alloys for biomedical applications are still currently being developed. Strong and enduring β-type titanium alloy with a low Young's modulus are being investigated. A low modulus has been proved to be effective in inhibiting bone atrophy, leading to good bone remodeling in a bone fracture model in the rabbit tibia. Very recently β-type titanium alloys with a self-tunable modulus have been proposed for the construction of removable implants. Nickel-free low modulus β-type titanium alloys showing shape memory and super elastic behavior are also currently being developed. Nickel-free stainless steel and cobalt-chromium alloys for biomedical applications are receiving attention as well. Newly developed zirconium-based alloys for biomedical applications are proving very interesting. Magnesium-based or iron-based biodegradable biomaterials are under development. Further, tantalum, and niobium and its alloys are being investigated for biomedical applications. The development of new metallic alloys for biomedical applications is described in this paper.

  3. Improvement of stability of trivalent chromium electroplating of Ti based IrO2+Ta2O5 coating anodes

    Institute of Scientific and Technical Information of China (English)

    LI Baosong; LIN An; GAN Fuxing

    2006-01-01

    The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electrochemical properties were studied by polarization curve and cyclic voltammetry. Trivalent chromium electroplating using Ti/IrO2+Ta2O5 anodes is carried out and the results were analyzed. Results show that this anode exhibits excellentelectrochemical activity and stability in sulfate electrolysis. The electrocatalytic activity is determined not only by the content of IrO2 but also the structure and morphology of the anode coatings. The electroplating results indicats that Ti/IrO2+Ta2O5 anodes have excellent capabilities and merits in improving the stability of trivalent chromium electroplating in sulfate system.

  4. Skin deposition of nickel, cobalt, and chromium in production of gas turbines and space propulsion components.

    Science.gov (United States)

    Julander, Anneli; Skare, Lizbet; Mulder, Marie; Grandér, Margaretha; Vahter, Marie; Lidén, Carola

    2010-04-01

    Skin exposure to nickel, cobalt, and chromium may cause sensitization and allergic contact dermatitis and it is known that many alloys and platings may release significant amounts of the metals upon contact with skin. Occupational exposure to these sensitizing metals has been studied in different settings with regards to airborne dust and different biological end points, but little is known about deposition on skin from airborne dust and direct contact with materials containing the metals. In this study, skin deposition was studied in 24 workers in an industry for development and manufacturing of gas turbines and space propulsion components. The workers were employed in three departments, representing different exposure scenarios: tools sharpening of hard metal items, production of space propulsion structures, and thermal application of different metal-containing powders. A novel acid wipe sampling technique was used to sample metals from specific skin surfaces on the hands and the forehead of the workers. Total amounts of nickel, cobalt, and chromium were measured by inductively coupled plasma mass spectrometry. The result showed that nickel, cobalt, and chromium could be detected on all skin surfaces sampled. The highest level of nickel was 15 microg cm(-2) h(-1), the highest for cobalt was 4.5 microg cm(-2) h(-1), and for chromium 0.6 microg cm(-2) h(-1). The three departments had different exposures regarding the metals. The highest levels of nickel on the skin of the workers were found in the thermal applications department, cobalt in the tools sharpening department, and chromium in the space propulsion components department. In conclusion, the workers' exposure to the metals was more likely to come from direct skin contact with items, rather than from airborne dust, based on the fact that the levels of metals were much higher on the fingers than on the back side of the hands and the forehead. The skin exposure levels of nickel and cobalt detected are judged

  5. Chromium speciation in human blood samples based on acetyl cysteine by dispersive liquid-liquid biomicroextraction and in-vitro evaluation of acetyl cysteine/cysteine for decreasing of hexavalent chromium concentration.

    Science.gov (United States)

    Shirkhanloo, Hamid; Ghazaghi, Mehri; Mousavi, Hassan Z

    2016-01-25

    A rapid and efficient method based on ionic liquid dispersive liquid-liquid biomicroextraction (IL-DLLBME) was used for speciation and preconcentration of Chromium (III, VI) in human blood samples before determination by electro-thermal atomic absorption spectrometer (ET-AAS). In this method, 1-hexyl-3-methylimidazolium hexafluorophosphate as a ionic liquid was dissolved in acetone as a dispersant solvent and then the binary solution was rapidly injected by a syringe into the blood samples containing Cr(III), which have already complexed by acetyl cysteine (NAC) at optimized pH. Under the optimal conditions, the linear range (LR), limit of detection (LOD) and preconcentration factor (PF) were obtained 0.03-4.4 μg L(-1), 0.005 μg L(-1) and 10 respectively (RSD cysteine (Cys) as a prodrug of NAC can decrease the concentration of Cr(VI) in blood samples and human body. Validation of methodology was confirmed by standard reference material (SRM).

  6. Infection free titanium alloys by stabile thiol based nanocoating.

    Science.gov (United States)

    Cökeliler, Dilek; Göktaş, Hilal; Tosun, Pinar Deniz; Mutlu, Selma

    2010-04-01

    As biomedical materials, titanium and titanium alloys (Ti-6Al-4V) are superior to many materials in terms of mechanical properties and biocompatibility. However, they are still not sufficient for prolonged clinical use because the biocompatibility of these materials must be improved. In this study, the prevention of the attachment of test microorganism on the Ti alloy surfaces by thiol (-SH) and hydroxyl (-OH) functional group containing monomer in plasma based electron beam generator was reported in order to prepare anti-fouling surfaces. The precursor, 11-mercaptoundecanoic acid is used as plasma source to create nano-film with 30-60 nm approximately. The surface chemistry and topology of uncoated and coated samples are characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Atomic Force Microscopy (AFM). Static contact angle measurements are performed to state the change of surface hydrophilicity. All coated samples are tested in-vitro environment with Staphylococcus epidermidis that is chosen as the test bacteria strain in view of its significance for the pathogenesis of medical-device-related infections. This test is repeated after certain period of times and samples are waited in dynamic fluid media in order to investigate the stability of nano-coating. Plasma polymerized 11-mercaptoundecanoic acid film (PP MUA) with 42 +/- 4 nm is found alternative, stabile and simple method to create bacterial anti-fouling surfaces. The static contact angle of the coated surface is 34 +/- 80 whereas the uncoated surface is 57 +/- 50. For the coated surface, the presence of C-OH and C==O groups in infrared spectra defining the PP MUA is achieved by the plasma polymerization. The attachment of the model microorganism on the biomaterial surface prepared by PP MUA is reduced 85.3% if compared to unmodified control surface.

  7. Cerium-based conversion coatings on magnesium alloys

    Science.gov (United States)

    Castano Londono, Carlos Eduardo

    This research is primarily focused on gaining a better understanding of the deposition and corrosion behavior of cerium-based conversion coatings (CeCCs) on AZ31B and AZ91D Mg alloys. Deposition of homogenous and protective CeCCs was highly dependent on the surface preparation steps. The best results were obtained when Mg samples underwent grinding, acid cleaning, and alkaline cleaning processes. This reduced the number of active cathodic sites and promoted the formation of a protective Al-rich Mg oxide/hydroxide layer. Electrochemical properties of the CeCCs were also strongly correlated with morphological, microstructural, and chemical characteristics. Protective CeCCs were deposited on both AZ31 and AZ91 Mg alloys using a range of deposition times (5 to 180 s) and temperatures (10 to 80 °C). However, shorter deposition times (5 s) and lower deposition temperatures (~10 °C) showed higher impedance and longer bath stability than other deposition conditions. The increase in impedance was related with fewer cracks and smaller nodule sizes. Additional investigations of post-treated CeCCs exposed to NaCl environments showed an increased in the total impedance. The increase in corrosion protection of the CeCCs was associated with an overall increase in coating thickness from 400 to 800 nm. A microstructural evolution from ~3 nm nodular nanocrystals of CeO2/CePO4*H2O embedded in an amorphous matrix to >50 nm CePO4*H2O nanocrystals was responsible for the electrochemically active corrosion protection. Exposure of CeCCs to sunlight in humid environments promoted the reduction of Ce(IV) into Ce(III) species compared to unexposed coatings. This reduction process was related with photocatalytic water oxidation reaction.

  8. Electronic-Structure-Based Design of Ordered Alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Andersson, M.P.; Jacobsen, Karsten Wedel

    2006-01-01

    We describe some recent advances in the methodology of using electronic structure calculations for materials design. The methods have been developed for the design of ordered metallic alloys and metal alloy catalysts, but the considerations we present are relevant for the atomic-scale computation...

  9. A Novel Surface Treatment for Titanium Alloys

    Science.gov (United States)

    Lowther, S. E.; Park, C.; SaintClair, T. L.

    2004-01-01

    High-speed commercial aircraft require a surface treatment for titanium (Ti) alloy that is both environmentally safe and durable under the conditions of supersonic flight. A number of pretreatment procedures for Ti alloy requiring multi-stages have been developed to produce a stable surface. Among the stages are, degreasing, mechanical abrasion, chemical etching, and electrochemical anodizing. These treatments exhibit significant variations in their long-term stability, and the benefits of each step in these processes still remain unclear. In addition, chromium compounds are often used in many chemical treatments and these materials are detrimental to the environment. Recently, a chromium-free surface treatment for Ti alloy has been reported, though not designed for high temperature applications. In the present study, a simple surface treatment process developed at NASA/LaRC is reported, offering a high performance surface for a variety of applications. This novel surface treatment for Ti alloy is conventionally achieved by forming oxides on the surface with a two-step chemical process without mechanical abrasion. This acid-followed-by-base treatment was designed to be cost effective and relatively safe to use in a commercial application. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond after exposure to hot-wet environments. Phenylethynyl containing adhesives were used to evaluate this surface treatment with sol-gel solutions made of novel imide silanes developed at NASA/LaRC. Oxide layers developed by this process were controlled by immersion time and temperature and solution concentration. The morphology and chemical composition of the oxide layers were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Bond strengths made with this new treatment were evaluated using single lap shear tests.

  10. Thermal analysis of selected tin-based lead-free solder alloys

    DEFF Research Database (Denmark)

    Palcut, Marián; Sopoušek, J.; Trnková, L.

    2009-01-01

    The Sn-Ag-Cu alloys have favourable solderability and wetting properties and are, therefore, being considered as potential lead-free solder materials. In the present study, tin-based Sn-Ag-Cu and Sn-Ag-Cu-Bi alloys were studied in detail by a differential scanning calorimetry (DSC) and thermodyna......The Sn-Ag-Cu alloys have favourable solderability and wetting properties and are, therefore, being considered as potential lead-free solder materials. In the present study, tin-based Sn-Ag-Cu and Sn-Ag-Cu-Bi alloys were studied in detail by a differential scanning calorimetry (DSC...... was simulated using the Thermo-Calc software package. This approach enabled us to obtain the enthalpy of cooling for each alloy and to compare its temperature derivative with the experimental DSC curves....

  11. Microstructure and tensile properties of magnesium alloy modified by Si/Ca based refiner

    Institute of Scientific and Technical Information of China (English)

    DUAN Zhi-chao; SUN Yang-shan; WEI Yu; DU Wen-wen; XUE Feng; ZHU Tian-bai

    2005-01-01

    Microstructure and mechanical properties of pure magnesium and AZ31 alloy with Ca/Si based refiner addition were investigated. The results indicate that addition of Ca/Si based refiners to pure magnesium and AZ31 alloy results in remarkable microstructure refinement. With proper amount of refiner addition, the grain size in as cast ingots can be one order of magnitude lower than that without refiner addition. Small amount of refiner addition to AZ31 alloy increases both ultimate strength and yield strength significantly, while the ductility of the alloy with refiner addition is similar to that without refiner addition. Addition of refiner improves the deformability of AZ31 alloy and extruded or hot rolled specimens (rods or sheets) with refiner addition exhibit higher surface quality and mechanical properties than those without refiner addition.

  12. Scale formation on Ni-based alloys in simulated solid oxide fuel cell interconnect environments

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, Margaret; Cramer, Stephen D.; Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Singh, P. (PNNL); Windisch, C.F. (PNNL); Johnson, C.D. (NETL); Schaeffer, C. (National Energy Research Laboratory, Morgantown, WV)

    2004-11-01

    Recent publications suggest that the environment on the fuel side of the bi-polar stainless steel SOFC interconnects changes the oxidation behavior and morphology of the scale formed on the air side. The U.S. Department of Energy Albany Research Center (ARC), has examined the role of such exposure conditions on advanced nickel base alloys. Alloy formulations developed at ARC and commercial alloys were studied using X-ray diffraction (XRD) and Raman spectroscopy. The electrical property of oxide scales formed on selected alloys was determined in terms of areaspecific resistance (ASR). The corrosion behavior of ARC nickel-based alloys exposed to a dual environment of air/ H2 were compared to those of Crofer 22APU and Haynes 230.

  13. Strengthening mechanisms of indirect-extruded Mg–Sn based alloys at room temperature

    Directory of Open Access Journals (Sweden)

    Wei Li Cheng

    2014-12-01

    Full Text Available The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated. These dislocations create stress fields within the material depending on their intrinsic character. Generally, the following strengthening mechanisms are relevant in wrought magnesium materials tested at room temperature: fine-grain strengthening, precipitate strengthening and solid solution strengthening as well as texture strengthening. The indirect-extruded Mg–8Sn (T8 and Mg–8Sn–1Al–1Zn (TAZ811 alloys present superior tensile properties compared to the commercial AZ31 alloy extruded in the same condition. The contributions to the strengthen of Mg–Sn based alloys made by four strengthening mechanisms were calculated quantitatively based on the microstructure characteristics, physical characteristics, thermomechanical analysis and interactions of alloying elements using AZ31 alloy as benchmark.

  14. Cobalt chromium stents versus stainless steel stents in diabetic patients

    Directory of Open Access Journals (Sweden)

    Mahmoud Ahmed Tantawy

    2014-03-01

    Conclusions: We concluded that no significant statistical difference was found between the two stents (cobalt-chromium alloy bare metal stent versus conventional bare metal stainless steel stent in diabetic patients regarding (initial procedural success, in-hospital complications, the incidence of ISR at follow up, event-free survival at follow up.

  15. Spin-wave and critical neutron scattering from chromium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Axe, J.D.; Shirane, G.

    1971-01-01

    Chromium and its dilute alloys are unique examples of magnetism caused by itinerant electrons. The magnetic excitations have been studied by inelastic neutron scattering using a high-resolution triple-axis spectrometer. Spin-wave peaks in q scans at constant energy transfer ℏω could, in general, ...

  16. Properties and Application of Iron-based Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jian-chen; Jiang Qing; Dai Jun

    2005-01-01

    The properties of FeMnSiCrNi shape memory alloy were investigated. The results show that the best shape memory effect of Fel4Mn6Si9Cr5Ni alloy is 85%. The transformation amount of the ε→γ transformation is not complete after heating the alloy to 1000 K, As and Af points drop with increased transformation enthalpy ( △Hγ→ε) by thermal cycling and increased prestrain. The alloy shows also good creep and stress relaxation resistance. In addition, the alloy having a tensile force of 20 kN and a sealing pressure of 6 MPa can satisfy requirements for possible industrial application on pipe joints.

  17. Perpendicular Magnetic Anisotropy in Co-Based Full Heusler Alloy Thin Films

    Science.gov (United States)

    Wu, Y.; Xu, X. G.; Miao, J.; Jiang, Y.

    2015-12-01

    Half-metallic Co-based full Heusler alloys have been qualified as promising functional materials in spintronic devices due to their high spin polarization. The lack of perpendicular magnetic anisotropy (PMA) is one of the biggest obstacles restricting their application in next generation ultrahigh density storage such as magnetic random access memory (MARM). How to induce the PMA in Co-based full Heusler alloy thin films has attracted much research interest of scientists. This paper presents an overview of recent progress in this research area. We hope that this paper would provide some guidance and ideas to develop highly spin-polarized Co-based Heusler alloy thin films with PMA.

  18. Influences of Alloying Elements W, Mo, Cr and Nb on Retained Beta Phase in 47Al Based near γ-TiAl Alloys

    Institute of Scientific and Technical Information of China (English)

    Limin DONG; Rui YANG

    2003-01-01

    The influences of alloying elements W, Mo, Cr, and Nb on retainedβ phase in 47Al based near γ-TiAl alloys have been studied.The results reveal that the amount of retained β phase is increased by the addition of Cr, Mo, W in rising rank, although the distribution of β phase in Cr-bearing alloys is different from that of Mo- or W-bearing alloys. For Nb-doped alloys, no retained β was found even when 5 at. pct Nb was added. The as-cast microstructural features and the distribution of theβ phase in the different alloy families were compared and interpreted in terms of the different segregation behaviour of these elements in Ti.

  19. Recent progress in high B{sub s} Fe-based nanocrystalline soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, M; Yoshizawa, Y, E-mail: motoki_ohta@hitachi-metals.co.jp [Hitachi Metals Ltd., 2-15-17 Egawa, Shimamoto Osaka, 961-0013 (Japan)

    2011-02-16

    High saturation magnetic flux density (high-B{sub s}) alloy has been developed in an Fe-based nanocrystalline alloy system. A nanocrystalline phase with an average grain size of about 20 nm is obtained by annealing Cu-substituted and/or Cu-and-Si-complex-substituted Fe-B amorphous alloys. The alloy exhibits low coercivity of less than 7 A m{sup -1} and a high B{sub s} of more than 1.8 T. The iron loss at 50 Hz and 1.6 T for a toroidal core made of Fe{sub 80.5}Cu{sub 1.5}Si{sub 4}B{sub 14} nanocrystalline alloy is 0.46 W kg{sup -1}, which is about 2/3 of that of grain-oriented Si steel. Moreover, the iron loss at 10 kHz and 0.2 T for a wound core made of this alloy is 7.5 W kg{sup -1}, which is about 25% of that of non-grain-oriented Si steel and about 60% of that of an Fe-based amorphous alloy. In addition, the cut cores made of the alloy show good superimposed dc-current characteristics and appear promising in applications such as power choke coils (at the high-frequency region).

  20. Imprecise knowledge based design and development of titanium alloys for prosthetic applications.

    Science.gov (United States)

    Datta, S; Mahfouf, M; Zhang, Q; Chattopadhyay, P P; Sultana, N

    2016-01-01

    Imprecise knowledge on the composition-processing-microstructure-property correlation of titanium alloys combined with experimental data are used for developing rule based models for predicting the strength and elastic modulus of titanium alloys. The developed models are used for designing alloys suitable for orthopedic and dental applications. Reduced Space Searching Algorithm is employed for the multi-objective optimization to find composition, processing and microstructure of titanium alloys suitable for orthopedic applications. The conflicting requirements attributes of the alloys for this particular purpose are high strength with low elastic modulus, along with adequate biocompatibility and low costs. The 'Pareto' solutions developed through multi-objective optimization show that the preferred compositions for the fulfilling the above objectives lead to β or near β-alloys. The concept of decision making employed on the solutions leads to some compositions, which should provide better combination of the required attributes. The experimental development of some of the alloys has been carried out as guided by the model-based design methodology presented in this research. Primary characterizations of the alloys show encouraging results in terms of the mechanical properties.

  1. [Chromium content in foods and dietary intake estimation in the Northwest of Mexico].

    Science.gov (United States)

    Grijalva Haro, M I; Ballesteros Vázquez, M N; Cabrera Pacheco, R M

    2001-03-01

    Chromium is an indispensable nutrient for the carbohydrates and lipids metabolism. In this study the chromium content in the twenty main foods of the diet from Northwestern Mexico was determined, as well as the daily mean intake which was estimated based on the food intake basket of this region. Chromium content was analyzed by atomic absorption spectrophotometry using the graphite furnace technique and previous digestion of foods in microwave oven. The chromium mean intake was estimated considering the chromium daily mean intake for person per day and the chromium content of the foods analyzed in this study. The range chromium content in the foods analyzed was between 0.0004 and 0.1641 microgram/g dry weight. White cheese showed the highest chromium content followed by pasta soup, wheat tortilla, bread and meat. The main foods chromium contributors in the diet were: wheat tortilla (20%), white cheese (11%), corn tortilla (11%), pasta soup (10%), milk (10%), meat (9%) and white bread (8%). The daily chromium intake was 30.43 +/- 1.6 micrograms/d. Chromium values obtained in the food analyzed are considered low. Moreover, chromium intake obtained from the diet is not enough to meet the safety and adequate daily chromium intake. Therefore, the population from the Northwestern Mexico has a suboptimal dietary chromium intake.

  2. Phase Transformations and Microstructural Evolution in Aged Mn-Cu-Based Alloys

    Science.gov (United States)

    1990-06-01

    Sakhno, V. M. and Udovenko, V. A., "Fine Crystal Structure of MnCuGe Alloys", Physical Metalurgy and Metallography, Vol. 51, No. 4, pp. 93-97, 1981. 36...93 vi I. INTRODUCTION The physical metallurgy of alloys based on the Cu-Mn system has been a subject of research for more than 40 years [Ref. 1-4...separation within it [Ref. 24-30]. The most thorough and revealing body of research on the metal physics of Cu-Mn-based alloys has been reported in the

  3. Experimental Study on Machining Shape Hole of Ni-based Super-heat-resistant Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Inconel 718 and Waspaloy, Nickel-based super-heat-resistant alloy, are high-strength, thermal-resistant and corrosion-resistant alloy that are widely used in parts of gas turbines and airplane engines. Due to their extremely tough and thermal-resistant nature, they are well known as materials that are difficult to cut. Shape holes on a disc of an aircraft engine, made of Ni-based super-heat-resistant alloy, are required with good surface integrity and geometric accuracy. This kind of shape hole is produced ...

  4. Martensitic transformation and related magnetic effects in Ni-Mn-based ferromagnetic shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    Wang Dun-Hui; Han Zhi-Da; Xuan Hai-Cheng; Ma Sheng-Can; Chen Shui-Yuan; Zhang Cheng-Liang; Du You-Wei

    2013-01-01

    Ferromagnetic shape memory alloys,which undergo the martensitic transformation,are famous multifunctional materials.They exhibit many interesting magnetic properties around the martensitic transformation temperature due to the strong coupling between magnetism and structure.Tuning magnetic phase transition and optimizing the magnetic effects in these alloys are of great importance.In this paper,the regulation of martensitic transformation and the investigation of some related magnetic effects in Ni-Mn-based alloys are reviewed based on our recent research results.

  5. Study on DC welding parameters of Al-alloy shaping based on arc-welding robot

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates that the metal transfer type of DC GMAW, heat input and the initial temperature of the workpiece greatly affect the Al-alloy shaping based on arc welding robot. On the penetration, the weld width and the reinforcement, the influence of welding parameters is analyzed by generalized regression neural network (GRNN) fitting.

  6. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  7. Oxidation behaviour of experimental Co-Re-base alloys in laboratory air at 1000 C

    Energy Technology Data Exchange (ETDEWEB)

    Klauke, Michael; Mukherji, Debashis; Roesler, Joachim [Technische Universitaet Braunschweig, Institut fuer Werkstoffe (Germany); Gorr, Bronislava; Christ, Hans-Juergen [Universitaet Siegen, Institut fuer Werkstofftechnik (Germany); Braz da Trindade Filho, Vicente [Vallourec und Mannesmann Tubes, Duesseldorf (Germany)

    2009-01-15

    The oxidation behaviour of experimental Co-Re-based alloy at 1000 C was studied. A set of binary, ternary and quaternary alloys from the Co-Re-Cr-C system was used as model alloys to understand the role each alloying element plays on oxidation. The morphology and composition of the oxide scale that formed was analysed by X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. It was found that the present Co-Re alloys with 23 at.% and 30 at.% Cr additions behaved very similarly to Co-Cr binary alloys with equivalent Cr content. The oxide scale was multilayered, consisting of a dense CoO outer layer, a porous mixed oxide layer containing Co-oxide and Co-Cr spinel, and a discontinuous and non-protective Cr{sub 3}O{sub 2} layer. The binary Co-Re alloy behaved differently in oxidation, and it formed only a monolithic CoO scale. However, Re in combination with Cr promotes Cr-Re-rich {sigma} phase formation, which oxidises preferentially compared to the Co matrix. Carbon ties up part of the Cr to form Cr{sub 23}C{sub 6} type carbides. However, these carbides are not stable at 1000 C and dissolved with time, therefore C had only a minor role in the oxidation behaviour. In general, increasing Cr content in the alloy improved oxidation resistance. (orig.)

  8. Electron-ion plasma modification of Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yurii, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Rygina, Mariya, E-mail: l-7755me@mail.ru [National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com; Krysina, Olga, E-mail: krysina-82@mail.ru; Teresov, Anton, E-mail: tad514@sibmail.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irina-ikonnikova@yandex.ru [Tomsk State University of Architecture and Building, Tomsk, 634002, Russia, Tomsk, 2 Solyanaya Sq (Russian Federation)

    2016-01-15

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm{sup 2}) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa.

  9. Effect of Fe base alloy content in Ti-C-Fe base alloy powder mixtures on the SHS products structure

    Science.gov (United States)

    Pribytkov, Gennadii A.; Krinitcyn, Maxim G.; Korzhova, Victoria V.; Baranovskii, Anton V.; Korosteleva, Elena N.

    2016-11-01

    The paper investigates the morphology, phase composition, and internal structure of "TiC-high chromium cast iron binder" and "TiC-high speed steel binder" composite powders. The powders were produced by self-propagating high temperature synthesis of Ti-C-Me powder mixtures in the layer by layer burning mode. X-ray diffractometry, optical and scanning electron microscopy methods were used for the powders characterization.

  10. Rapid iodometric determination of copper in some copper-base alloys

    NARCIS (Netherlands)

    Agterdenbos, J.; Eelberse, P.A.

    1966-01-01

    Copper-base alloys, especially those containing tin, are readily dissolved in a mixture of hydrofluoric and nitric acids. In the resulting solution copper can be titrated iodometrically in the conventional manner.

  11. Investigation on low activated materials on the base of V-Ti-Cr alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Low activated materials on the base of vanadium are among the key materials for future fusion reactors. In the Russian Federation the long term National Program on the development of such vanadium alloys is under the way.

  12. Investigation on low activated materials on the base of V-Ti-Cr alloys

    Institute of Scientific and Technical Information of China (English)

    Potapenko; M.; Shikov; A.; Chernov; V.; Drobishev; V.; Gubkin; I.

    2005-01-01

    Low activated materials on the base of vanadium are among the key materials for future fusion reactors. In the Russian Federation the long term National Program on the development of such vanadium alloys is under the way.……

  13. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  14. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  15. AZ91 D镁合金Mo-Mn无铬转化膜的制备与耐蚀性%Preparation and Corrosion Resistance of Mo-Mn Chromium-free Conversion Coating Formed on AZ91 D Magnesium Alloys

    Institute of Scientific and Technical Information of China (English)

    朱青; 朱明; 余勇; 张路路

    2015-01-01

    ABSTRACT:Objective To improve the surface corrosion resistance of AZ91D magnesium alloy by Mo-Mn chromium-free conver-sion coating. Methods Effects of different concentrations of NaMoO4 and KMnO4 and temperature on the transformed sample film were studied by orthogonal experimental method. After optimizing experiment parameters, the effects of the time on the conversion film was also studied. The morphology and component of conversion coatings were researched by SEM and EDS. Moreover, the po-larization curves and electrochemical impedance spectroscopy of conversion coating were tested in 3. 5%NaCl aqueous solution. Results The results showed that when the condition was 10 g/L NaMoO4 , 6 g/L KMnO4 at 50 ℃ and pH 5 for 40 min, where the morphology of the sample was relatively even and the amount of cracks was relatively low. Compared to the corrosion resistance of magnesium substrate, the corrosion potential of conversion film was increased by about 0. 075 V ,and the corrosion current density decreased by nearly 1 order of magnitude. When the condition was 20 g/L NaMoO4 , 8 g/L KMnO4 at 50 ℃ and pH 5 for 40 min, the morphology of the sample was the most even and the amount of cracks was the least. Compared to the corrosion resistance of magnesium substrate, the corrosion potential of conversion film was increased by about 0. 047 V ,and the corrosion current density decreased by nearly 2 orders of magnitude. EIS showed that the polarization resistance of the latter conversion film sample was 1450. 2 Ω, while the polarization resistance of magnesium matrix was 806. 4 Ω. Conclusion Mo-Mn chromium-free conversion coating could obviously improve the surface corrosion resistance of AZ91D magnesium alloy.%目的:通过Mo-Mn无铬转化膜提高AZ91 D镁合金的表面耐蚀性。方法采用正交实验法,研究不同浓度的NaMoO4和KMnO4以及温度对转化膜的影响。优选实验参数后,考察时间对转化膜的影响。利用SEM及EDS研究转化膜

  16. Pacific Northwest National Laboratory Investigation of the Stress Corrosion Cracking in Nickel-Base Alloys, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.

    2012-03-01

    The objective of this program is to evaluate the primary water stress corrosion cracking (PWSCC) susceptibility of high chromium alloy 690 and its weld metals, establish quantitative measurements of crack-growth rates and determine relationships among cracking susceptibility, environmental conditions and metallurgical characteristics. Stress-corrosion, crack-growth rates have been determined for 12 alloy 690 specimens, 11 alloy 152/52/52M weld metal specimens, 4 alloy 52M/182 overlay specimens and 2 alloy 52M/82 inlay specimens in simulated PWR primary water environments. The alloy 690 test materials included three different heats of extruded control-rod-drive mechanism (CRDM) tubing with variations in the initial material condition and degree of cold work for one heat. Two cold-rolled (CR) alloy 690 plate heats were also obtained and evaluated enabling comparisons to the CR CRDM materials. Weld metal, overlay and inlay specimens were machined from industry mock ups to provide plant-representative materials for testing. Specimens have been tested for one alloy 152 weld, two alloy 52 welds and three alloy 52M welds. The overlay and inlay specimens were prepared to propagate stress-corrosion cracks from the alloy 182 or 82 material into the more resistant alloy 52M. In all cases, crack extension was monitored in situ by direct current potential drop (DCPD) with length resolution of about +1 µm making it possible to measure extremely low growth rates approaching 5x10-10 mm/s. Most SCC tests were performed at 325-360°C with hydrogen concentrations from 11-29 cc/kg; however, environmental conditions were modified during a few experiments to evaluate the influence of temperature, water chemistry or electrochemical potential on propagation rates. In addition, low-temperature (~50°C) cracking behavior was examined for selected alloy 690 and weld metal specimens. Extensive characterizations have been performed on material microstructures and stress-corrosion cracks by

  17. Thermal Fatigue Behaviour of Co-Based Alloy Coating Obtained by Laser Surface Melt-Casting on High Temperature Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A thermal fatigue behaviour of C o-based alloy coating obtained by laser surface melt-casting on the high tempe rature alloy GH33 was studied. The results show that after each time of thermal cycling, the final residual stress was formed in the melt-casting layer which is attributed to the thermal stress and structural stress. Through the first 50 times of thermal cycling, the morphology of coating still inherits the laser casting one, but the dendrites get bigger; After the second 50 times of thermal cycling, corrosion pits emerge from coating, and mostly in the places where coating and substrate meet. The fatigue damage type of coating belongs to stress corrosi on.

  18. MACHINING OF NICKEL BASED ALLOYS USING DIFFERENT CEMENTED CARBIDE TOOLS

    Directory of Open Access Journals (Sweden)

    BASIM A. KHIDHIR

    2010-09-01

    Full Text Available This paper presents the results of experimental work in dry turning of nickel based alloys (Haynes – 276 using Deferent tool geometer of cemented carbide tools. The turning tests were conducted at three different cutting speeds (112, 152, 201and 269 m/min while feed rate and depth of cut were kept constant at 0.2 mm/rev and 1.5 mm, respectively. The tool holders used were SCLCR with insert CCMT-12 and CCLNR – M12-4 with insert CNGN-12. The influence of cutting speed, tool inserts type and workpiece material was investigated on the machined surface roughness. The worn parts of the cutting tools were also examined under scanning electron microscope (SEM. The results showed that cutting speed significantly affected the machined surface finish values in related with the tool insert geometry. Insert type CCMT-12 showed better surface finish for cutting speed to 201 m/min, while insert type CNGN-12 surface roughness increased dramatically with increasing of speed to a limit completely damage of insert geometer beyond 152 m/min.

  19. Shape Memory Alloy (SMA)-Based Launch Lock

    Science.gov (United States)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  20. Shape-Memory-Alloy-Based Deicing System Developed

    Science.gov (United States)

    1996-01-01

    Ice buildup on aircraft leading edge surfaces has historically been a problem. Most conventional deicing systems rely either on surface heating to melt the accreted ice or pneumatic surface inflation to mechanically debond the ice. Deicers that rely solely on surface heating require large amounts of power. Pneumatic deicers usually cannot remove thin layers of ice and lack durability. Thus, there is a need for an advanced, low-power ice protection system. As part of the NASA Small Business and Innovation Research (SBIR) program, Innovative Dynamics, Inc., developed an aircraft deicing system that utilizes the properties of Shape Memory Alloys (SMA). The SMA-based system has achieved promising improvements in energy efficiency and durability over more conventional deicers. When they are thermally activated, SMA materials change shape; this is analogous to a conventional thermal expansion. The thermal input is currently applied via conventional technology, but there are plans to implement a passive thermal input that is supplied from the energy transfer due to the formation of the ice itself. The actively powered deicer was tested in the NASA Lewis Icing Research Tunnel on a powered rotating rig in early 1995. The system showed promise, deicing both rime and glaze ice shapes as thin as 1/8 in. The first prototype SMA deicer reduced power usage by 45 percent over existing electrothermal systems. This prototype system was targeted for rotorcraft system development. However, there are current plans underway to develop a fixed-wing version of the deicer.

  1. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  2. Survey of BGFA Criteria for the Cu-Based Bulk Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    D. Janovszky

    2011-01-01

    Full Text Available To verify the effect of composition on the bulk glass forming ability (BGFA of Cu-based alloys, properties have been collected from the literature (~100 papers, more than 200 alloys. Surveying the BGFA criteria published so far, it has been found that the atomic mismatch condition of Egami-Waseda is fulfilled for all the Cu-based BGFAs, the value being above 0,3. The Zhang Bangwei criterion could be applied for the binary Cu-based alloys. The Miracle and Senkov criteria do not necessarily apply for Cu based bulk amorphous alloys. The critical thickness versus =/(+ plot of Lu and Liu extrapolates to =0.36, somewhat higher than the 0.33 value found in other BGFA alloys. The Park and Kim parameter correlates rather poorly with the critical thickness for Cu based alloys. The Cheney and Vecchino parameter is a good indicator to find the best glass former if it is possible to calculate the exact liquids projection. In 2009 Xiu-lin and Pan defined a new parameter which correlates a bit better with the critical thickness. Based on this survey it is still very difficult to find one parameter in order to characterize the real GFA without an unrealized mechanism of crystallization.

  3. Ternary Magnesium-Lithium Base Constitution Diagrams and Magnesium Alloys of Low Alloy Additions

    Science.gov (United States)

    1951-03-01

    testing machine using Templin Grips. Strain was measured with a Peters Ex- tensometer in conjunction with a Southwark-Emery stress- strain recorder. The...press. Originally, the equipment was mounted in a South- wark-Emery testing machine having a maximum available force of 50 tons. The equipment was...this development was described in the last Summary Report(l). Experimental work on the original holder machined from a block of aluminum alloy 20 was

  4. Rational design of Nb-based alloys for hydrogen separation: A first principles study

    Directory of Open Access Journals (Sweden)

    Byungki Ryu

    2013-02-01

    Full Text Available We have investigated the effect of alloying metal elements on hydrogen solubility and mechanical integrity of Nb-based alloys, Nb15M1 (where M = Ca–Zn, Ge, using first principles-based calculations. In general, the chemical interaction between the interstitial H and metal is weakened as the alloying element is changed from an early to a late transition metal, leading to lower H solubility and higher resistance to H embrittlement. This effect becomes more pronounced when a smaller alloying element is used due to stronger elastic interaction between interstitial H and metal atoms. These finding may provide scientific basis for rational design of Nb-based hydrogen separation membranes with tailored H solubility to effectively suppress H embrittlement while maintaining excellent hydrogen permeation rate.

  5. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    Institute of Scientific and Technical Information of China (English)

    ZHUO Long-Chao; PANG Shu-Jie; WANG Hui; ZHANG Tao

    2009-01-01

    Based on a new approach for designing glassy alloy compositions,bulk Al-based alloys with good glass-forming ability (GFA) are synthesized.The cast Al86Si0.5Ni4.06Co2.94 Y6Sc0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod.The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 Gpa and maximum strength of 1.27 Gpa as well as an obvious plastic strain of about 2.4% during compressive deformation.This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability.

  6. Commercialization status of Ni{sub 3}Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-31

    The Ni{sub 3}Al-based alloys have been under development at the Oak Ridge National Laboratory (ORNL) and other research institutions in the United States and around the world for the last ten years. The incremental developments of composition, melting process, casting methods, property data, corrosion data, weldability development, and prototype component testing under production-like operating conditions have pushed the ORNL-developed Ni{sub 3}Al-based alloys closer to commercialization. This paper will present the highlights of incremental technical developments along with the approach and current status of commercialization. It is concluded that cast components are the primary applications of Ni{sub 3}Al-based alloys, and applications range from heat-treating fixtures of forging dies. It is also concluded that the commercialization process is accelerated when technology is licensed to an organization that can produce the alloy, has component manufacturing capability, and is also a user.

  7. Effect of Repeated Firings of Porcelain on Bond Strength of Two Base Metal Alloys

    Directory of Open Access Journals (Sweden)

    Gerami Panah F

    2001-05-01

    Full Text Available The formation of oxides on the surface of the metal are proven to contribute to the formation of strong bonding. However, The base metal alloys are expected to exhibit more oxidation than high gold alloys, increase in oxide layer thickness due to repeated firing in them can reduce the bond strength. The aim of this study was to compare the effect of repeated porcelain firing on the bond strength of two base metal alloys (Minalux and Verabond II. Sixteen metal plates (20x5x0.5 from each alloy were cast and prepared according to the manufacturers' instruction. Porcelain with uniform thickness (Imm was applied on the middle one third of metal plates. After this stage, each alloy group divided to three subgroups. Group I was fired for the second time to form the final glaze, group II and III were fired two and four more times respectively. Specimens were subjected to 3-point flexural test in a digital tritest machine. Results showed no significant differences between bond strength of two alloys. Also results showed repeated firing had no significant effect on bond strength. Due to these findings, this study support similarity of two alloys (Minalux and Verabond II in their bond strength with porcelain.

  8. X-ray elastic constant determination and residual stress of two phase TiAl-based intermetallic alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To evaluate the residual stress in TiAl-based alloys by X-ray diffraction, X-ray elastic constants (REC) of a γ-TiAl alloy were determined. From these results, the stress state of a given phase in a duplex TiAl-based alloy under a uniaxial tensile loading has been characterized by X-ray diffraction. The results show that the X-ray elastic constants and the microscopic stresses of the given phase are different from the apparent elastic constants and the macroscopic stresses of the alloy. The reason of the different distribution of the alloy was also discussed.

  9. Effects of solute atoms on evolution of vacancy defects in electron-irradiated Fe-Cr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Druzhkov, A.P., E-mail: druzhkov@imp.uran.r [Institute of Metal Physics, Ural Branch RAS, 18 Kovalevskaya St., 620041 Ekaterinburg (Russian Federation); Nikolaev, A.L. [Institute of Metal Physics, Ural Branch RAS, 18 Kovalevskaya St., 620041 Ekaterinburg (Russian Federation)

    2011-01-15

    The evolution of vacancy-type defects in Fe-Cr alloys (13-16 at.% Cr) undoped and doped with C, N, Au, or Sb and in conventional ferritic-martensitic steel ({approx}13% Cr) has been investigated using positron annihilation spectroscopy under electron irradiation at room temperature and subsequent stepwise annealing. Small vacancy clusters are formed in the undoped Fe-16Cr alloy, which anneal out between 320 and 550 K. It is shown that oversized substitutional solute atoms (Sb, Au) in the Fe-Cr alloy interact with vacancies and form complexes, which are stable up to 600 and 420 K, respectively. It is found that the accumulation of vacancy defects considerably increases in the alloys and the steel with an enhanced content of interstitial impurities. It is shown that this effect is related to the formation of vacancy-carbon complexes. It is known that chromium in iron decreases the diffusion mobility of carbon. Therefore, the structure of vacancy-carbon complexes and the kinetics of their annealing in Fe-Cr alloys differ from those in the Fe-C system.

  10. Choice of copper-based alloys for ribbon substrates with a sharp cube texture

    Science.gov (United States)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Suaridze, T. R.; Akshentsev, Yu. N.; Kazantsev, V. A.

    2014-12-01

    It has been shown that, in some copper-based alloys subjected to cold deformation by rolling to 98.6-99% followed by recrystallization annealing, a sharp cube texture can be produced. Optimum conditions of annealing have been determined, which make it possible to produce a sharp biaxial texture in Cu-Ni, Cu-Fe, and Cu-Cr alloys with the fraction of cube grains of more than 95%; this opens a possibility of using thin ribbons made of these alloys as substrates for multilayer film compositions, in particular when developing second-generation high-temperature superconductors.

  11. Abrasive Performance of Chromium Carbide Reinforced Ni3Al Matrix Composite Cladding

    Institute of Scientific and Technical Information of China (English)

    LI Shang-ping; LUO He-li; FENG Di; CAO Xu; ZHANG Xi-e

    2009-01-01

    The Microstructure and room temperature abrasive wear resistance of chromium carbide reinforced NiM3Al matrix composite cladding at different depth on nickel base alloy were investigated. The results showed that there is a great difference in microstructure and wear resistance of the Ni3 Al matrix composite at different depth. Three kinds of tests, designed for different load and abrasive size, were used to understand the wear behaviour of this material. Under all three wear conditions, the abrasion resistance of the composite cladding at the depth of 6 mm, namely NC-M2, was much higher than that of the composite cladding at the depth of 2 mm, namely NC-M1. In addition, the wear-resistant advantage of NC-M2 was more obvious when the size of the abrasive was small. The relative wear resistance of NC-M2 increased from 1.63 times to 2.05 times when the size of the abrasive decreased from 180 μm to 50μm. The mierostructure of the composite cladding showed that the size of chromium carbide particles, which was mainly influenced by cooling rate of melting pool, was a function of distance from the interface between the coating and substrate varied gradually. The chromium carbide particles near the interface were finer than that far from inter-face, which was the main reason for the different wear resistance of the composite cladding at different depth.

  12. Biocompatibility of new Ti-Nb-Ta base alloys.

    Science.gov (United States)

    Hussein, Abdelrahman H; Gepreel, Mohamed A-H; Gouda, Mohamed K; Hefnawy, Ahmad M; Kandil, Sherif H

    2016-04-01

    β-type titanium alloys are promising materials in the field of medical implants. The effect of β-phase stability on the mechanical properties, corrosion resistance and cytotoxicity of a newly designed β-type (Ti77Nb17Ta6) biocompatible alloys are studied. The β-phase stability was controlled by the addition of small quantities of Fe and O. X-ray diffraction and microstructural analysis showed that the addition of O and Fe stabilized the β-phase in the treated solution condition. The strength and hardness have increased with the increase in β-phase stability while ductility and Young's modulus have decreased. The potentio-dynamic polarization tests showed that the corrosion resistance of the new alloys is better than Ti-6Al-4V alloy by at least ten times. Neutral red uptake assay cytotoxicity test showed cell viability of at least 95%. The new alloys are promising candidates for biomedical applications due to their high mechanical properties, corrosion resistance, and reduced cytotoxicity.

  13. Characterization of the wear response of a modified zinc-based alloy vis-à-vis a conventional zinc-based alloy and a bearing bronze at a high sliding speed

    Science.gov (United States)

    Prasad, B. K.; Yegneswaran, A. H.; Patwardhan, A. K.

    1996-11-01

    In this investigation, an attempt has been made to examine the wear response of a modified zinc-based alloy at a high speed (4.60 m/s) of sliding over a range of applied pressures. A conventional zinc-based alloy and a bearing bronze have also been subjected to identical tests with a view to assess the working capability of the modified alloy with respect to the existing ones. The wear characteristics of the alloys have been correlated with their microstructural features, while operating wear mechanisms have been studied through analyses of wear surfaces, subsurfaces, and debris particles. The conventional zinc-based alloy attained most inferior wear behavior when compared with that of the modified (zinc-based) alloy and the bronze. Interestingly, the modified alloy exhibited its wear response to be much better than that of the conventional zinc-based alloy due to the presence of nickel/silicon containing (hard and thermally stable) microconstituents. Moreover, the modified alloy also seized at a pressure similar to that of the bronze, although its wear rate prior to seizure was more than that of the latter. The study clearly indicates that it is possible to develop modified versions of zinc-based alloys having much improved wear characteristics over the conventional variety; the information gains special attention in view of the high speed of sliding selected in this study.

  14. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    Science.gov (United States)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  15. Positron lifetimes in Cu-based {beta}-phase alloys

    Energy Technology Data Exchange (ETDEWEB)

    Plazaola, F. [Bilbo, Euskal Herrilo Unibertsitatea (Spain). Elektrika eta Elektronika Saila; Romero, R.; Somoza, A. [Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires (Argentina). IFIMAT

    1997-05-01

    Experimental and theoretical characterization of the positron lifetimes for bulk and vacancy-type defects are considered in the ordered {beta}-phase Cu-Zn-Al alloys. The general trend exhibits the same behaviour in both cases, in which the bulk positron lifetimes vary very little with alloy`s composition. The ordered structure can be described as two interpenetrating sublattices: however, within the theoretical approach, there is no preferential positron trapping at the mono vacancies of one of the two sublattices. The calculated lifetimes of positrons trapped at mono vacancies depend mainly on the Al content in the next near-neighbourhood. The lifetimes of positrons trapped at divacancies are 10-25 ps larger than the ones at mono vacancies. The experimental vacancy-type defect lifetimes are in good agreement with the ones calculated for mono vacancies.

  16. Microstructure of Ni-Based Self-Fluxing Alloy Coating (PartⅠ)

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-hua; Milan Friesel; Magnus Willander; Richard Warren

    2005-01-01

    The microstructure of a Ni-based self-fluxing alloy coating produced by an oxygen-acetylene flame spraying Ni-16.5Cr-3.3B-4.7Si-4. 4Fe-0. 8C system alloy powder onto a common steel substrate was investigated by microanalysis methods. The phases in the coating were observed by SEM and determined by XEDS X-Ray energy spectrum and X-Ray diffraction patterns. Meanwhile, some molecular formulas were calculated.

  17. Formation Mechanism of Curved Martensite Structures in Cu-based Shape Memory Alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The curved martensite structures have been observed in CuZnAl-based shape memory alloys by both transmission electron microscope and optical microscope. It was found that the curved martensite structures observed in as-solution treated, as-aged and as-trained alloys usually occurred around dislocation tangles or precipitate, at the plate boundary or grain boundary, and when the growing plates collided with each other or alternate mutually.

  18. Basic research for alloy design of Nb-base alloys as ultra high temperature structural materials; Chokoon kozoyo niobuki gokin no gokin sekkei no tame no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, E. [Tohoku University, Sendai (Japan); Yoshimi, K.; Hanada, S. [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1997-02-01

    This paper describes an influence of additional elements on the high temperature deformation behavior of Nb-base solid solution alloys. Highly concentrated solid solution single crystals of Nb-Ta and Nb-Mo alloys were prepared. Compression test and strain rate sudden change test were conducted in the vacuum at temperatures ranging from 77 to 1773 K, to determine the strain rate sensitivity index. Yield stress of the Nb-Ta alloy was similar to that of Nb alloy at temperatures over 0.3{times}T{sub M}, where T{sub M} is fusing point of Nb. While, the yield stress increased with increasing the impurity oxygen concentration at temperatures below 0.3{times}T{sub M}. The yield stress became much higher than that of Nb alloy. The strain rate sensitivity index showed positive values in the whole temperature range. On the other hand, the yield stress of Nb-Mo alloy was higher than that of Nb alloy in the whole temperature range, and increased with increasing the Mo concentration. The strain rate sensitivity index showed negative values at the temperature range from 0.3{times}T{sub M} to 0.4{times}T{sub M}. It was found that serration occurred often for Nb-40Mo alloys. 1 ref., 4 figs., 1 tab.

  19. A cross-sectional survey on immunological function after dental restoration of nickel-chromium alloy%戴用镍铬合金烤瓷冠对免疫功能影响的横断面研究

    Institute of Scientific and Technical Information of China (English)

    夏刚; 陈波; 徐碧瑶; 曹新明; 王珏; 姜庆五

    2012-01-01

    目的 探讨口内戴用镍铬合金烤瓷冠是否导致机体免疫功能学指标改变.方法 对镍铬合金烤瓷冠戴用者795例和对照组198人进行问卷调查、测定尿镍铬和血免疫功能指标,并分析镍铬烤瓷冠戴用时间、尿镍铬与免疫功能指标间的关系.结果 将镍铬合金烤瓷冠戴用者和对照组的所有样本合并,根据尿镍和尿铬水平分为尿镍低水平组(< 37.28 μg/mol肌酐)、中水平组(37.28~ 115.73 μg/mol肌酐)和高水平组(>115.73 μg/mol肌酐);尿铬低水平组(<34.72 μg/mol肌酐)、中水平组(34.72 ~79.81 μg/mol肌酐)和高水平组(>79.81 μg/mol肌酐).结果 仅发现尿镍高水平组的血清白细胞介素( interleukin,IL)1β水平[(1.50±0.84) μg/L]显著低于尿镍低水平组[(1.63±0.82)μg/L](P<0.05),未发现尿镍中水平组与低水平组间、尿铬各水平组间在血清肿瘤坏死因子α(tumor necrosis factor-alpha,TNF-α)、IL-1β和IL-6间的差异有统计学意义.单因素方差分析和各影响因素的线性回归分析仅发现年龄与TNF-α的升高有关,未发现戴用时间、数量和金属裸露水平,以及尿镍和尿铬对TNF-α、IL-1β和IL-6等免疫学指标的显著影响.结论 本研究未观察 到戴用镍铬合金烤瓷冠与机体免疫功能指标TNF-α、IL-1β和IL-6的升高具有相关关系.%Objective To investigate the immunological function parameters in patients undergoing dental restoration of nickel-chromium (Ni-Cr).Methods Seven hundred and ninety-five Ni-Cr alloy consumers as exposure group,together with 198 controls,were surveyed by the questionnaire and the biological examination of immunological function.Results After splitting all subjects into three groups of equal sample size by urinary Ni or urinary Cr,serum interleukin-1 beta( IL-1 β) was found to be significantly higher in the group of urinary Ni > 115.73 μg/mol creatinine comparing to the group of urinary Ni < 37.28

  20. Preparation of Ti-based amorphous brazing alloy

    Institute of Scientific and Technical Information of China (English)

    ZOU Jia-sheng; JIANG Zhi-guo; XU Zhi-rong; CHEN Guang

    2006-01-01

    A new kind of amorphous active brazing alloy foil with the composition of Ti40Zr25Ni15Cu20 was successfully synthesized using melt spinning in roll forging machine in argon atmosphere. The amorphous structure and composition were examined by X-ray diffraction, differential thermal analysis and energy dispersive X-ray detector. The results show that the Ti40Zr25Ni15Cu20 amorphous alloy foil has excellent wettability on Si3N4 ceramic and demonstrate a strong glass forming ability. The reduced glass transition temperature (Trg) and the temperature interval of supercooled liquid region before crystallization are 0.76 and 78 K, respectively.

  1. Subtask 12D5: Thermal creep properties of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-03-01

    The objective of this work is to provide baseline data on the thermal creep properties of candidate vanadium base alloys. Vanadium-base alloys are promising candidate materials for application in fusion reactor structural components because of several important advantages. V-4Cr-4Ti has been identified as one of the most promising candidate alloys and was selected for comprehensive tests and examination. In the present investigation, thermal creep rates and stress-rupture life of V-4Cr-4Ti and V-10Cr-5Ti alloys were determined at 600{degrees}C. The impurity composition and microstructural characteristics of creep-tested specimens were analyzed and correlated with the measured creep properties. The results of these tests show that V-4Cr-4Ti, which contains impurity compositions typical of a commercially fabricated vanadium-based alloy, exhibits creep strength substantially superior to that of V-20Ti, HT-9, or Type 316 stainless steel. The V-10Cr-5Ti alloy exhibits creep strength somewhat higher than that of V-4Cr-4Ti. 9 refs., 7 figs., 2 tabs.

  2. Microstructure and mechanical properties of Ni and Fe-base boride-dispersion-strengthened microcrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C.S.; Park, H.G.; Hoagland, R.G. (Ohio State Univ., Columbus (USA))

    This paper considers the relation between microstructure and mechanical properties of two Ni-base and two Fe-base Boride-Dispersion-Strengthened Microcrystalline (BDSM) alloys. In these very fine grained materials the borides were primarily Cr, Mo, and MoFe in a fcc matrix in three of the alloys, and a bcc in one of the Fe-base alloys. Strength data and resistance to stress corrosion cracking are reported and, in the latter case, extraordinary resistance to SCC in NaCl, Na{sub 2}S{sub 2}O{sub 3} and boiling MgCl{sub 2} environments was observed in every case. The fcc BDSM alloys also demonstrated excellent thermal stability in terms of strength and fracture roughness up to 1000 C. The bcc alloy suffered severe loss of toughness. The fracture mode involved ductile rupture in all alloys and they display a reasonably linear correlation between K{sub Ic} and the square root of particle spacing.

  3. Elastic anharmonicity of bcc Fe and Fe-based random alloys from first-principles calculations

    Science.gov (United States)

    Li, Xiaoqing; Schönecker, Stephan; Zhao, Jijun; Vitos, Levente; Johansson, Börje

    2017-01-01

    We systematically investigate elastic anharmonic behavior in ferromagnetic body-centered cubic (bcc) Fe and Fe1 -xMx (M =Al , V, Cr, Co, or Ni) random alloys by means of density-functional simulations. To benchmark computational accuracy, three ab initio codes are used to obtain the complete set of second- and third-order elastic constants (TOECs) for bcc Fe. The TOECs of Fe1 -xMx alloys are studied employing the first-principles alloy theory formulated within the exact muffin-tin orbital method in combination with the coherent-potential approximation. It is found that the alloying effects on C111,C112 , and C123, which are governed by normal strains only, are more pronounced than those on C144,C166 , and C456, which involve shear strains. Remarkably, the magnitudes of all TOECs but C123 decrease upon alloying with Al, V, Cr, Co, or Ni. Using the computed TOECs, we study compositional effects on the pressure derivatives of the effective elastic constants (d Bi j/d P ), bulk (d K /d P ), and shear moduli (d G /d P ) and derive longitudinal acoustic nonlinearity parameters (β ). Our predictions show that the pressure derivatives of K and G decrease with x for all solute elements and reveal a strong correlation between the compositional trends on d K /d P and d G /d P arising from the fact that alloying predominantly alters d B11/d P . The sensitivity of d B11/d P to composition is attributed to intrinsic alloying effects as opposed to lattice parameter changes accompanying solute addition. For Fe and the considered Fe-based alloys, β along high-symmetry directions orders as β [111 ]>β [100 ]>β [110 ] , and alloying increases the directional anisotropy of β but reduces its magnitude.

  4. Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Matkovic, Tanja; Matkovic, Prosper; Malina, Jadranka

    2004-03-10

    Influences of adding Ni and Mo on the microstructure and properties of as-cast Co-Cr base alloys have been investigated in order to determine the region of their optimal characteristics for biomedical application. The alloys were produced by arc-melting technique under argon atmosphere. Using optical metallography and scanning electron micro analyser it has been established that among 10 samples of Co-Cr-Ni alloys only samples 5 and 9 with the composition Co{sub 55}Cr{sub 40}Ni{sub 5} and Co{sub 60}Cr{sub 30}Ni{sub 10} have appropriate dendritic solidification microstructure. This microstructure, typical for commercial dental alloys, appears and beside greater number of as-cast Co-Cr-Mo alloys. The results of hardness and corrosion resistance measurements revealed the strong influence of different alloy chemistry and of as-cast microstructure. Hardness of alloys decreases with nickel content, but increases with chromium content. Therefore all Co-Cr-Ni alloys have significantly lower hardness than Co-Cr-Mo alloys. Corrosion resistance of alloys in artificial saliva was evaluated on the base of pitting potential. Superior corrosion characteristics have the samples with typical dendritic microstructure and higher chromium content, until nickel content have not significant effect. According to this, in ternary Co-Cr-Ni phase diagram was located the small concentration region (about samples 5 and 9) in them alloy properties can satisfied the high requirements for biomedical applications. This region is considerably larger in Co-Cr-Mo phase diagram.

  5. Development of a coprecipitation system for the speciation/preconcentration of chromium in tap waters

    Energy Technology Data Exchange (ETDEWEB)

    Karatepe, Aslihan, E-mail: karatepea@gmail.com [Nevsehir University, Faculty of Science and Arts, Department of Chemistry, 50000 Nevsehir (Turkey); Korkmaz, Esra [Bozok University, Faculty of Science and Arts, Department of Chemistry, Yozgat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey); Elci, Latif [Pamukkale University, Faculty of Science and Arts, Department of Chemistry, 20020 Denizli (Turkey)

    2010-01-15

    A method for the speciation of chromium(III), chromium(VI) and determination of total chromium based on coprecipitation of chromium(III) with dysprosium hydroxide has been investigated and applied to tap water samples. Chromium(III) was quantitatively recovered by the presented method, while the recovery values for chromium(VI) was below 10%. The influences of analytical parameters including amount of dysprosium(III), pH, centrifugation speed and sample volume for the quantitative precipitation were examined. No interferic effects were observed from alkali, earth alkali and some transition metals for the analyte ions. The detection limits (k = 3, N = 15) were 0.65 {mu}g/L for chromium(III) and 0.78 {mu}g/L for chromium(VI). The validation of the presented method was checked by the analysis of certified reference materials.

  6. Effect of pre-oxidation on high temperature sulfidation behavior of FeCr and FeCrAl alloys

    Directory of Open Access Journals (Sweden)

    Pillis Marina Fuser

    2004-01-01

    Full Text Available High temperature corrosion of structural alloys in sulfur bearing environments is many orders of magnitude higher than in oxidizing environments. Efforts to increase sulfidation resistance of these alloys include addition of alloying elements. Aluminum additions to iron-chromium alloys bring about increase in sulfidation resistance. This paper reports the effect of pre-oxidation on the sulfidation behavior of Fe-20Cr and Fe-20Cr-5Al alloys in H2-2% H2S environment at 800 °C. The surfaces of sulfidized specimens were also examined. Pre-oxidation of the two alloys results in an incubation period during subsequent sulfidation. After this incubation period, the Fe-20Cr alloy showed sulfidation behavior similar to that when the alloy was not pre-oxidized. The incubation period during sulfidation of the Fe-20Cr-5Al alloy was significantly longer, over 45 h, compared to 2 h for the Al free alloy. Based on the microscopic and gravimetric data a mechanism for sulfidation of these alloys with pre-oxidation has been proposed.

  7. Microstructure evolution model based on deformation mechanism of titanium alloy in hot forming

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-li; LI Miao-quan

    2005-01-01

    The microstructure evolution in hot forming will affect the mechanical properties of the formed product.However, the microstructure is sensitive to the process variables in deformation process of metals and alloys. A microstructure evolution model of a titanium alloy in hot forming, which included dislocation density rate and primary α phase grain size, was presented according to the deformation mechanism and driving forces, in which the effect of the dislocation density rate on the grain growth was studied firstly. Applying the model to the high temperature deformation process of a TC6 alloy with deformation temperature of 1 133 - 1 223 K, strain rate of 0.01 -50 s-1 and height reduction of 30%, 40% and 50%, the material constants in the present model were calculated by the genetic algorithm(GA) based objective optimization techniques. The calculated results of a TC6 alloy are in good agreement with the experimental ones.

  8. Structural transformations in wear resistance of iron- and cobalt-based amorphous alloys during abrasive wear

    Science.gov (United States)

    Korshunov, L. G.; Shabashov, V. A.; Chernenko, N. L.

    2010-04-01

    The wear resistance and structural changes in a number of amorphous alloys based on iron and cobalt and in high-carbon tool steels are studied during wear by a fixed abrasive (crondum, Carborundum) at room temperature and -196°C. The abrasive wear resistance of the amorphous alloys is shown to be 1.6-3.1 lower than that of the high-carbon tool steels having a similar hardness. The relatively low level of the abrasive wear resistance of the amorphous alloys is assumed to be caused by strain softening of their surface during wear. A nanocrystalline structure is found to form in local microvolumes in a thin deformed surface layer of the alloys.

  9. Improvement on Hot Workability of γ-TiAl Base Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    γ-TiAl base alloys have potential usage in aerospace engine fortheir high specific strength. In order to improve their poor hot workability, a new approach of hot deformation processing was investigated. The starting microstructure of Ti-46.5Al-2.5V-1.0Cr (atom percent, %) alloy is fully lamellar (FL) microstructure. The near gamma (NG) microstructure can be obtained through Nickel microalloying and heat treatment at 1 150 ℃. The isothermal compression tests were conducted on both materials using MTS machine at temperatures of 950 ℃, 1 000 ℃, and 1 050 ℃, and the strain rates of 0.01, 0.1 and 1 s-1. Compared with the γ-TiAl alloy with FL microstructure, the Ni-bearing alloy with NG microstructure has better hot workability, such as enlarged hot workable region, decreased flow stresses, more uniform and finer deformed microstructure.

  10. Research on fabricating Fe base amorphous alloy by bar plasma spraying

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Since amorphous alloys have wider application, they can not be fabricated using the conventional cooling velocity. The bar material plasma spraying is adopted to fabricate Fe base amorphous alloy in this investigation. The crystallization degree, microstructure, micro-hardness, composition, crystallization temperature of the amorphous alloy and the flying rules of the atomized particles in the process of the plasma spray are tested. The results show that the alloy prepared has the high amorphous degree and homogeneous microstructure, micro-hardness and the crystallization temperature can reach 1187HV and 531℃ respectively. The atomization is very well during the process of plasma spraying; and there is high thermal gradient, the cooling velocity reaches 6.07×107K/s.

  11. Undercooling and demixing of copper-based alloys

    DEFF Research Database (Denmark)

    Kolbe, M.; Brillo, J.; Egry, I.

    2006-01-01

    Since the beginning of materials science research under microgravity conditions immiscible alloys have been an interesting subject. New possibilities to investigate such systems are offered by containerless processing techniques. Of particular interest is the ternary system Cu-Fe-Co, and its limi...

  12. Injectable liquid alkali alloy based-tumor thermal ablation therapy.

    Science.gov (United States)

    Rao, Wei; Liu, Jing

    2009-01-01

    The alkali metal was recently found to be a very useful agent for inducing minimally invasive tumor hyperthermia therapy. However, the solid-like metal makes it somewhat inconvenient to perform the surgery. Here, to overcome this drawback, the NaK alloy in liquid state at room temperature was proposed as a highly efficient thermal ablative agent for tumor treatment. For illustration purposes, the functionalized liquid NaK alloy at a mass ratio 1:1 was obtained and an amount of 0.35 ml was injected into in vitro pork. The sizes of the damage region and temperature response were measured. It was found that significant temperature increase by a magnitude of > 80 degrees C can easily be obtained. This produced a large coagulation and necrotic area within selected areas for in vitro tests and the necrotic region volume is three times that of the NaK injection quantity. Furthermore, for the in vivo experiment, breast EMT6 tumor in mouse was subjected to treatment by NaK alloy. Tumor was harvested after the experiment to assess its viability. Histological section showed complete necrosis at the target site. These conceptual results demonstrate that using injectable liquid alkali alloy to ablate tumor is rather promising. This study also raised interesting issues waiting for clarification in future technical and animal studies aiming to assess efficacy, side effects and safety of the new therapy.

  13. Corrosion Performance of Fe-Based Alloys in Simulated Oxy-Fuel Environment

    Science.gov (United States)

    Zeng, Zuotao; Natesan, Ken; Cai, Zhonghou; Rink, David L.

    2017-02-01

    The long-term corrosion of Fe-based alloys in simulated oxy-fuel environment at 1023 K (750 °C) was studied. Detailed results are presented on weight change, scale thickness, internal penetration, microstructural characteristics of the corrosion products, and the cracking of scales for the alloys after exposure at 1023 K (750 °C) for up to 3600 hours. An incubation period during which the corrosion rate was low was observed for the alloys. After the incubation period, the corrosion accelerated, and the corrosion process followed linear kinetics. Effects of alloy, CaO-containing ash, and gas composition on the corrosion rate were also studied. In addition, synchrotron nanobeam X-ray analysis was employed to determine the phase and chemical composition of the oxide layers on the alloy surface. Results from these studies are being used to address the long-term corrosion performance of Fe-based alloys in various coal-ash combustion environments and to develop methods to mitigate high-temperature ash corrosion.

  14. MRI compatibility of several early transition metal based alloys and its influencing factors.

    Science.gov (United States)

    Zhou, Da-Bo; Wang, Shao-Gang; Wang, Shao-Ping; Ai, Hong-Jun; Xu, Jian

    2017-02-03

    Magnetic resonance imaging (MRI) compatibility of three early transition metal (ETM) based alloys was assessed in vitro with agarose gel as a phantom, including Zr-20Nb, near-equiatomic (TiZrNbTa)90 Mo10 and Nb-60Ta-2Zr, together with pure tantalum and L605 Co-Cr alloy for comparison. The artifact extent in the MR image was quantitatively characterized according to the maximum area of 2D images and the total volume in reconstructed 3D images with a series of slices under acquisition by fast spin echo (FSE) sequence and gradient echo (GRE) sequence. It was indicated that the artifacts extent of L605 Co-Cr alloy with a higher magnetic susceptibility (χv ) was approximately 3-fold greater than that of the ETM-based alloys with χv in the range of 160-250 ppm. In the ETM group, the MRI compatibility of the materials can be ranked in a sequence of Zr-20Nb, pure tantalum, (TiZrNbTa)90 Mo10 and Nb-60Ta-2Zr. In addition, using a rabbit cadaver with the implanted tube specimens as a model for ex vivo assessment, it was confirmed that the artifact severity of Nb-60Ta-2Zr alloy is significantly reduced in comparison with the L605 alloy. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  15. Physical Simulation of Friction Stir Welding and Processing of Nickel-Base Alloys Using Hot Torsion

    Science.gov (United States)

    Rule, James R.; Lippold, John C.

    2013-08-01

    The Gleeble hot torsion test was utilized in an attempt to simulate the friction stir-processed microstructure of three Ni-base alloys: Hastelloy X, Alloy 625, and Alloy 718. The simulation temperatures were based on actual thermal cycles measured by embedded thermocouples during friction stir processing of these alloys. Peak process temperatures were determined to be approximately 1423 K (1150 °C) for Hastelloy X and Alloy 625 K and 1373 K (352 °C and 1100 °C) for Alloy 718. The peak temperature and cooling rates were programed into the Gleeble™ 3800 thermo-mechanical simulator to reproduce the stir zone and thermo-mechanically affected zone (TMAZ) microstructures. The TMAZ was successfully simulated using this technique, but the stir zone microstructure could not be accurately reproduced, with hot torsion samples exhibiting larger grain size than actual friction stir processing trials. Shear stress and strain rates as a function of temperature were determined for each material using hot torsion simulation.

  16. Potentiality of the “Gum Metal” titanium-based alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gordin, D.M. [Institut des Sciences Chimiques de Rennes (UMR CNRS 6226), INSA Rennes, 20 Avenue des Buttes de Coësmes, F-35043 Rennes Cedex (France); Ion, R. [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vasilescu, C.; Drob, S.I. [Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Cimpean, A. [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Gloriant, T., E-mail: Thierry.Gloriant@insa-rennes.fr [Institut des Sciences Chimiques de Rennes (UMR CNRS 6226), INSA Rennes, 20 Avenue des Buttes de Coësmes, F-35043 Rennes Cedex (France)

    2014-11-01

    In this study, the “Gum Metal” titanium-based alloy (Ti–23Nb–0.7Ta–2Zr–1.2O) was synthesized by melting and then characterized in order to evaluate its potential for biomedical applications. Thus, the mechanical properties, the corrosion resistance in simulated body fluid and the in vitro cell response were investigated. It was shown that this alloy presents a very high strength, a low Young's modulus and a high recoverable strain by comparison with the titanium alloys currently used in medicine. On the other hand, all electrochemical and corrosion parameters exhibited more favorable values showing a nobler behavior and negligible toxicity in comparison with the commercially pure Ti taken as reference. Furthermore, the biocompatibility tests showed that this alloy induced an excellent response of MC3T3-E1 pre-osteoblasts in terms of attachment, spreading, viability, proliferation and differentiation. Consequently, the “Gum Metal” titanium-based alloy processes useful characteristics for the manufacturing of highly biocompatible medical devices. - Highlights: • The Gum Metal alloy composition was synthesized by melting in this study. • Appropriate mechanical properties for biomedical applications were obtained. • High corrosion resistance in simulated body fluids was observed. • Excellent in-vitro cell response was evidenced.

  17. Effect of solution hardening on the shape memory effect of Fe-Mn based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzaki, K.; Natsume, Y.; Maki, T. [Kyoto Univ. (Japan). Dept. of Materials Science and Engineering; Tomota, Y. [Ibaraki Univ., Hitachi (Japan)

    1995-10-01

    Fe-high Mn-Si alloys, which undergo {gamma} (fcc) to {var_epsilon} (hcp) martensitic transformation, exhibit a pronounced shape memory effect. The origin of shape memory effect of these alloys is the reversion of stress-induced {var_epsilon} martensite. A shape change must hence be accomplish3ed by stress-induced martensitic transformation without permanent slip in austenite ({gamma}) in order to obtain a good shape memory effect. It is clear that the intrusion of permanent slip can be suppressed by increasing the strength of austenite and by decreasing the applied stress required for a shape change due to stress-induced martensitic transformation. It has been reported that the addition of the interstitial elements of C and N as well as the substitutional elements of Mo and V increases the 0.2% proof stress of austenite in Fe-high Mn alloys. However, there have been few studies on the effect of these alloying elements on the shape memory effect of Fe-high Mn based alloys. In the present study, it was aimed to improve the shape memory effect of Fe-high Mn based alloys by the strengthening of austenite through solution hardening due to C and Mo.

  18. Correlation Between Superheated Liquid Fragility And Onset Temperature Of Crystallization For Al-Based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Guo J.

    2015-06-01

    Full Text Available Amorphous alloys or metallic glasses have attracted significant interest in the materials science and engineering communities due to their unique physical, mechanical, and chemical properties. The viscous flow of amorphous alloys exhibiting high strain rate sensitivity and homogeneous deformation is considered to be an important characteristic in thermoplastic forming processes performed within the supercooled liquid region because it allows superplastic-like deformation behavior. Here, the correlation between the superheated liquid fragility, and the onset temperature of crystallization for Al-based alloys, is investigated. The activation energy for viscous flow of the liquid is also investigated. There is a negative correlation between the parameter of superheated liquid fragility and the onset temperature of crystallization in the same Al-based alloy system. The activation energy decreases as the onset temperature of crystallization increases. This indicates that the stability of a superheated liquid can affect the thermal stability of the amorphous alloy. It also means that a liquid with a large superheated liquid fragility, when rapidly solidified, forms an amorphous alloy with a low thermal stability.

  19. Pack cementation diffusion coatings for Fe-base and refractory alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1998-03-10

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels and refractory metal alloys. A new comprehensive theory to treat the multi-component thermodynamic equilibria in the gas phase for several coexisting solid phases was developed and used. Many different processes to deposit various types of coatings on several types of steels were developed: Cr-Si codeposition for low- or medium-carbon steels, Cr-Al codeposition on low-carbon steels to yield either a Kanthal-type composition (Fe-25Cr-4Al in wt.%) or else a (Fe, Cr){sub 3}Al surface composition. An Fe{sub 3}Al substrate was aluminized to achieve an FeAl surface composition, and boron was also added to ductilize the coating. The developmental Cr-lean ORNL alloys with exceptional creep resistance were Cr-Al coated to achieve excellent oxidation resistance. Alloy wires of Ni-base were aluminized to provide an average composition of Ni{sub 3}Al for use as welding rods. Several different refractory metal alloys based on Cr-Cr{sub 2}Nb have been silicided, also with germanium additions, to provide excellent oxidation resistance. A couple of developmental Cr-Zr alloys were similarly coated and tested.

  20. Control of equiaxed grains in a complicated Cu-Ni based alloy prepared by centrifugal casting

    Directory of Open Access Journals (Sweden)

    Luo Zongqiang

    2011-02-01

    Full Text Available A complicated Cu-Ni based alloy was developed to fabricate wear-resisting bush for high temperature application. The concern focuses on the control of equiaxed grains in the developed alloy ingot prepared by centrifugal casting. The results show that the equiaxed grains are determined by the pouring temperature of the melt, the cooling rate and the rotation speed of the mold. With the decrease in pouring temperature, the fraction of the equiaxed grains in the transverse section of the ingot increases and the average length of columnar grain decreases. When the pouring temperature is confined below 1,250℃, complete equiaxed grains can be obtained. Based on the optimal centrifugal casting processing, the tensile strength of the developed alloy ingot with complete equiaxed grains reaches to 810 MPa and 435 MPa at room temperature and 500℃, respectively, which is 14% and 110% higher than that of common commercial QAl10-4-4 alloy. The wear rate of the developed alloy is 7.0 × 10-8 and 3.8 × 10-7 mm3•N-1•mm-1 at room temperature and 500℃, respectively, which is 5 times and 39 times lower than that of QAl10-4-4 alloy.

  1. Subtask 12F1: Effect of neutron irradiation on swelling of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-03-01

    The objective of this work is to determine the effects of neutron irradiation on the density change, void distribution, and microstructural evolution of vanadium-base alloys. Swelling behavior and microstructural evolution of V-Ti, V-Cr-Ti, and V-Ti-Si alloys were investigated after irradiation at 420-600{degrees}C up to 114 dpa. The alloys exhibited swelling maxima between 30 and 80 dpa and swelling decreased on irradiation to higher dpa. This is in contrast to the monotonically increasing swelling of binary alloys that contain Fe, Ni, Cr, Mo, W, and Si. Precipitation of dense Ti{sub 5}Si{sub 3} promotes good resistance to swelling of the Ti-containing alloys, and it was concluded that Ti of >3 wt.% and 400-1000 wppm Si are necessary to effectively suppress swelling. Swelling was minimal in V-4Cr-4Ti, identified as the most promising alloy based on good mechanical properties and superior resistance to irradiation embrittlement. 18 refs., 6 figs., 1 tab.

  2. Subtask 12F3: Effects of neutron irradiation on tensile properties of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, B.A.; Chung, H.M.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-03-01

    The objective of this work is to determine the effects of neutron irradiation on the tensile properties of candidate vanadium-base alloys. Vanadium-base alloys of the V-Cr-Ti system are attractive candidates for use as structural materials in fusion reactors. The current focus of the U.S. program of research on these alloys is on the V-(4-6)Cr-(3-6)Ti-(0.05-0.1)Si (in wt.%) alloys. In this paper, we present experimental results on the effects of neutron irradiation on tensile properties of selected candidate alloys after irradiation at 400{degrees}C-600{degrees}C in lithium in fast fission reactors to displacement damages of up to {approx}120 displacement per atom (dpa). Effects of irradiation temperature and dose on yield and ultimate tensile strengths and uniform and total elongations are given for tensile test temperatures of 25{degrees}C, 420{degrees}C, 500{degrees}, and 600{degrees}C. Effects of neutron damage on tensile properties of the U.S. reference alloy V-4Cr-4Ti are examined in detail. 7 refs., 10 figs., 1 tab.

  3. Corrosion Performance of Fe-Based Alloys in Simulated Oxy-Fuel Environment

    Science.gov (United States)

    Zeng, Zuotao; Natesan, Ken; Cai, Zhonghou; Rink, David L.

    2016-09-01

    The long-term corrosion of Fe-based alloys in simulated oxy-fuel environment at 1023 K (750 °C) was studied. Detailed results are presented on weight change, scale thickness, internal penetration, microstructural characteristics of the corrosion products, and the cracking of scales for the alloys after exposure at 1023 K (750 °C) for up to 3600 hours. An incubation period during which the corrosion rate was low was observed for the alloys. After the incubation period, the corrosion accelerated, and the corrosion process followed linear kinetics. Effects of alloy, CaO-containing ash, and gas composition on the corrosion rate were also studied. In addition, synchrotron nanobeam X-ray analysis was employed to determine the phase and chemical composition of the oxide layers on the alloy surface. Results from these studies are being used to address the long-term corrosion performance of Fe-based alloys in various coal-ash combustion environments and to develop methods to mitigate high-temperature ash corrosion.

  4. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  5. Filler metal alloy for welding cast nickel aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  6. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    Science.gov (United States)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  7. Computer-Aided Design of Manufacturing Chain Based on Closed Die Forging for Hardly Deformable Cu-Based Alloys

    Science.gov (United States)

    Pietrzyk, Maciej; Kuziak, Roman; Pidvysots'kyy, Valeriy; Nowak, Jarosław; Węglarczyk, Stanisław; Drozdowski, Krzysztof

    2013-07-01

    Two copper-based alloys were considered, Cu-1 pct Cr and Cu-0.7 pct Cr-1 pct Si-2 pct Ni. The thermal, electrical, and mechanical properties of these alloys are given in the paper and compared to pure copper and steel. The role of aging and precipitation kinetics in hardening of the alloys is discussed based upon the developed model. Results of plastometric tests performed at various temperatures and various strain rates are presented. The effect of the initial microstructure on the flow stress was investigated. Rheologic models for the alloys were developed. A finite element (FE) model based on the Norton-Hoff visco-plastic flow rule was applied to the simulation of forging of the alloys. Analysis of the die wear for various processes of hot and cold forging is presented as well. A microstructure evolution model was implemented into the FE code, and the microstructure and mechanical properties of final products were predicted. Various variants of the manufacturing cycles were considered. These include different preheating schedules, hot forging, cold forging, and aging. All variants were simulated using the FE method and loads, die filling, tool wear, and mechanical properties of products were predicted. Three variants giving the best combination of forging parameters were selected and industrial trials were performed. The best manufacturing technology for the copper-based alloys is proposed.

  8. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, Alejandra, E-mail: aleja311@berkeley.edu [University of California Berkeley, Berkeley, CA 94706 (United States); Kramer, Kevin [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA (United States); Meier, Wayne; DeMuth, James; Reyes, Susana [TerraPower, Bellevue, WA 98005 (United States); Fratoni, Massimiliano [University of California Berkeley, Berkeley, CA 94706 (United States)

    2016-06-15

    Highlights: • Monte Carlo calculations were performed on numerous lithium ternary alloys. • Elements with high neutron multiplication performed well with low absorbers. • Enriching lithium decreases minimum lithium concentration of alloys by 60% or more. • Alloys that performed well neutronically were selected for activation calculations. • Alloys activated, except LiBaBi, do not pose major environmental or safety concerns. - Abstract: An attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based ternary alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys in the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as Pb, Sn, and Sr, perform well with those that have high neutron multiplication such as Pb and Bi. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium with {sup 6}Li significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR

  9. RESEARCH AND APPLICATION OF AS-CAST WEAR RESISTANCE HIGH CHROMIUM CAST IRON

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The influence of alloy elements, such as boron and silicon, on the microstructure and properties of as-cast high chromium cast iron is studied. The results show that boron and silicon have a great effect on the mechanical properties and the wear resistance. Through proper addition of boron and silicon, the properties of as-cast high chromium cast iron can be improved effectively. Through analyzing the distribution of elements by scanning electron microscope, it has been shown that the addition of boron and silicon lowers the mass fraction of chromium saturated in as-cast austenite, and makes it unstable and liable to be transformed into martensite. The as-cast high chromium cast iron with proper content of boron and silicon is suitable for the manufacture of lining for asphalt concrete mixer and its wear resistance is 14 times that of lining made of low alloy white cast iron.

  10. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Min Zhu

    2013-10-01

    Full Text Available Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-based alloys. At present, the main strategies to alter the thermodynamics of Mg/MgH2 are alloying, nanostructuring, and changing the reaction pathway. Using these approaches, thermodynamic tuning has been achieved to some extent, but it is still far from that required for practical application. In this article, we summarize the advantages and disadvantages of these strategies. Based on the current progress, finding reversible systems with high hydrogen capacity and effectively tailored reaction enthalpy offers a promising route for tuning the thermodynamics of Mg-based hydrogen storage alloys.

  11. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  12. Computational studies of physical properties of Nb-Si based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Lizhi [Middle Tennessee State Univ., Murfreesboro, TN (United States)

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered lattices including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.

  13. 贵金属、镍铬合金烤瓷修复体与中国人牙周组织健康关系的系统评价%Effect of gold alloy restorations and nickel-chromium restorations to the periodontal tissue of the Chinese: A systematic review

    Institute of Scientific and Technical Information of China (English)

    李菁文; 李春洁; 吕俊; 刘雯雯; 梁星

    2011-01-01

    BACKGROUND: Chinese researchers have done many corresponding clinical trials and mostly agree that, compared with nickel-chromium restorations, gold alloy restorations are better to the Chinese periodontal tissue in the long term. However, there is still no relevant systematic review analyzing and evaluating those results in a more rigorous and convincing way.OBJECTIVE: To assess the effect of nickel-chromium restorations and gold alloy restorations to the periodontal tissue of the Chinese.METHODS: Electronic searches were conducted in China Biology Medicine disc (CBMdisc, 1978-01/2011-03) and China National Knowledge Infrastructure (CNKI, 1979-01/2011-03). Hand-searching covered 10 Chinese dental journals. Randomized controlled trials satisfying the eligible criteria were selected and the risks of bias were assessed. With the data extracted by two well-trained investigators independently, Meta-analysis was processed by Revman 5.0.RESULTS AND CONCLUSION: Six studies with moderate risk of bias were included. The results indicated gold alloy restorations could reduce 79% of the risk of post -restorative gingivitis in nickel-chromium restorations (P < 0.05), and gold alloy restorations could also reduce the risk of gingival coloration by 94% of nickel-chromium restorations (P < 0.05). The results on the restoration fitness with four studies pooled indicated better restoration fitness in gold alloy restorations than nickel-chromium restorations (P < 0.05). Present evidences indicated that gold alloy rest orations have lower risk in inducing gingivitis and gingival coloration compared to nickel-chromium. But more high quality studies are still needed to confirm the conclusion.%背景:国内许多学者认为贵金属烤瓷修复体较镍铬合金更有利于保持牙周组织的长期健康,但国内外尚无相关的系统评价.目的:评价贵金属与镍铬合金烤瓷修复体对中国人牙周组织健康的影响.方法:计算机检索中

  14. Ballistic Impact Properties of Zr-Based Amorphous Alloy Composites Reinforced with Woven Continuous Fibers

    Science.gov (United States)

    Kim, Gyeong Su; Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Song, Young Buem; Lee, Sunghak

    2012-03-01

    This study aims at investigating ballistic impact properties of Zr-based amorphous alloy (LM1 alloy) matrix composites reinforced with woven stainless steel or glass continuous fibers. The fiber-reinforced composites with excellent fiber/matrix interfaces were fabricated without pores and misinfiltration by liquid pressing process, and contained 35 to 41 vol pct of woven continuous fibers homogeneously distributed in the amorphous matrix. The woven-STS-continuous-fiber-reinforced composite consisted of the LM1 alloy layer of 1.0 mm in thickness in the upper region and the fiber-reinforced composite layer in the lower region. The hard LM1 alloy layer absorbed the ballistic impact energy by forming many cracks, and the fiber-reinforced composite layer interrupted the crack propagation and blocked the impact and traveling of the projectile, thereby resulting in the improvement of ballistic performance by about 20 pct over the LM1 alloy. According to the ballistic impact test data of the woven-glass-continuous-fiber-reinforced composite, glass fibers were preferentially fragmented to form a number of cracks, and the amorphous matrix accelerated the fragmentation of glass fibers and the initiation of cracks. Because of the absorption process of ballistic impact energy by forming very large amounts of cracks, fragments, and debris, the glass-fiber-reinforced composite showed better ballistic performance than the LM1 alloy.

  15. Nanostructure Characterization of Bismuth Telluride-Based Powders and Extruded Alloys by Various Experimental Methods

    Science.gov (United States)

    Vasilevskiy, D.; Bourbia, O.; Gosselin, S.; Turenne, S.; Masut, R. A.

    2011-05-01

    High-resolution transmission electron microscopy (HRTEM) observations of mechanically alloyed powders and bulk extruded alloys give experimental evidence of nanosized grains in bismuth telluride-based materials. In this study we combine HRTEM observations and x-ray diffraction (XRD) measurements, of both mechanically alloyed powders and extruded samples, with mechanical spectroscopy (MS) of extruded rods. Both HRTEM and XRD show that nanostructures with an average grain size near 25 nm can be achieved within 2 h of mechanical alloying from pure elements in an attritor-type milling machine. Residual strain orthogonal to the c-axis of powder nanoparticles has been evaluated at about 1.2% by XRD peak broadening. In contrast, XRD has been found unreliable for evaluation of grain size in highly textured extruded materials for which diffraction conditions are similar to those of single crystals, while MS appears promising for study of bulk extruded samples. Nanostructured extruded alloys at room temperature exhibit an internal friction (IF) background that is one order of magnitude higher than that of conventional zone-melted material with a grain size of several millimeters. IF as a function of sample temperature gives activation energies that are also different between bulk materials having nano- and millimeter-size grains, a result that is attributed to different creep mechanisms. Nanograin size, as well as orientation and volumetric proportion, provide valuable information for optimization of technological parameters of thermoelectric alloys and should be carefully cross-examined by various independent methods.

  16. Structure and mechanical properties of Ti-5Cr based alloy with Mo addition

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wen-Fu [Department of Materials Science and Engineering, Da-Yeh University, Taiwan (China); Wu, Shih-Ching [Department of Dental Laboratory Technology, Central Taiwan University of Science and Technology, Taiwan (China); Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Taiwan (China); Chang, Hsiang-Hao [Department of Materials Science and Engineering, Da-Yeh University, Taiwan (China); Hsu, Hsueh-Chuan, E-mail: hchsu@ctust.edu.tw [Department of Dental Laboratory Technology, Central Taiwan University of Science and Technology, Taiwan (China); Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Taiwan (China)

    2010-07-20

    The effects of molybdenum (Mo) on the structure and mechanical properties of a Ti-5Cr-based alloy were studied with an emphasis on improving its strength/modulus ratio. Commercially pure titanium (c.p. Ti) was used as a control. As-cast Ti-5Cr and a series of Ti-5Cr-xMo (x = 1, 3, 5, 7, 9 and 11 wt.%) alloys were prepared by using a commercial arc-melting vacuum-pressure casting system, and investigated with X-ray diffraction (XRD) for phase analysis. Three-point bending tests were performed to evaluate the mechanical properties of all specimens and their fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that Ti-5Cr-7Mo, Ti-5Cr-9Mo and Ti-5Cr-11Mo alloys exhibited ductile properties, and the {beta}-phase Ti-5Cr-9Mo alloy exhibited the lowest bending modulus. However, the Ti-5Cr-3Mo and Ti-5Cr-5Mo alloys had much higher bending moduli due to the formation of the {omega} phase during quenching. It is noteworthy that the Ti-5Cr-9Mo alloy exhibited the highest bending strength/modulus ratios at 26.0, which is significantly higher than those of c.p. Ti (8.5) and Ti-5Cr (13.3). Furthermore, the elastically recoverable angle of the Ti-5Cr-9Mo alloy (30{sup o}) was greater than that of c.p. Ti (2.7{sup o}). The reasonably high strength (or high strength/modulus ratio) {beta}-phase Ti-5Cr-9Mo alloy exhibited a low modulus, ductile property, and excellent elastic recovery capability, which qualifies it as a novel implant materials.

  17. Thin-walled aluminum alloy tube NC precision bending based on finite element simulation

    Institute of Scientific and Technical Information of China (English)

    GU Rui-jie; YANG He; ZHAN Mei; LI Heng

    2006-01-01

    Elongation and springback are the bottleneck problems of thin-walled aluminum alloy tube NC precision bending. So thin-walled aluminum alloy tube NC precision bending based on finite element simulation is put forward. The finite element model of thin-walled aluminum alloy tube NC bending is established based on the DYNAFORM platform. The process of thin-walled aluminum alloy tube NC precision bending is simulated with the model and the elongation and springback of tube bending can be is put forward and the computing equations of bending angle, bending radius, blanking length and initial bending section based on elongation and springback angle are derived. The bending angle, bending radius, blanking length and initial bending section of tube bending can be gained with these equations based on the elongation and springback angle from the simulation. The study can be used to control the quality of thin-walled aluminum alloy tube NC bending so that precision bending without redundance can be realized.

  18. Interface structure and formation mechanism of diffusion-bonded joints of TiAl-based alloy to titanium alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Vacuum diffusion bonding of a TiAl-based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa. The kinds of the reaction products and the interface structures of the joints were investigated by SEM, EPMA and XRD. Based on this, a formation mechanism of the interface structure was elucidated. Experimental and analytical results show that two reaction layers have formed during the diffusion bonding of TAD to TC2. One is Al-rich α(Ti)layer adjacent to TC2,and the other is (Ti3Al+TiAl)layer adjacent to TAD,thus the interface structure of the TAD/TC2 joints is TAD/(Ti3Al+TiAl)/α(Ti)/TC2.This interface structure forms according to a three-stage mechanism,namely(a)the occurrence of a single-phase α(Ti)layer;(b)the occurrence of a duplex-phase(Ti3Al+TiAl)layer;and(c)the growth of the α(Ti)and (Ti3Al+TiAl)layers.

  19. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  20. Guinier-Preston Zone, Quasicrystal and Long-period Stacking Ordered Structure in Mg-based Alloys, A Review

    Institute of Scientific and Technical Information of China (English)

    Yongbo XU; Daokui XU; Xiaohong SHAO; En-hou HAN

    2013-01-01

    Both the solid solution and precipitation are mainly strengthening mechanism for the magnesium-based alloys.A great number of alloying elements can be dissolved into the Mg matrix to form the solutes and precipitates.Moreover,the type of precipitates varies with different alloying elements and heat treatments,which makes it quite difficult to understand the formation mechanism of the precipitates in Mg-based alloys in depth.Thus,it is very hard to give a systematical regularity in precipitation process for the Mg-based alloys.This review is mainly focused on the formation and microstructural evolution of the precipitates,as a hot topic for the past few years,including Guinier-Preston Zones,quasicrystals and long-period stacking ordered phases formed in a number of Mg-TM-RE alloy systems,where TM =AI,Zn,Zr and RE =Y,Gd,Hd,Ce and La.

  1. Crystallization in Fe- and Co-Based Amorphous Alloys Studied by In-Situ X-Ray Diffraction

    Science.gov (United States)

    Zhang, L. J.; Yu, P. F.; Cheng, H.; Zhang, M. D.; Liu, D. J.; Zhou, Z.; Jin, Q.; Liaw, P. K.; Li, G.; Liu, R. P.

    2016-12-01

    The amorphous alloys, Fe80Si20, Fe78Si9B13, and Fe4Co67Mo1.5Si16.5B11, were prepared by the spinning method in pure argon. The crystallization behaviors of the three amorphous alloys were researched by in-situ X-ray diffraction (XRD), and the crystallization activation energy was calculated, based on the results of differential scanning calorimetry. The crystallization mechanism of the Fe- and Co-based alloys was analyzed, based on the experimental data. The transformation kinetics was described in terms of Johnson-Mehl-Avrami kinetics, except that the Avrami exponent of the Fe78Si9B13 amorphous alloy annealed at 753 K (480 °C) was 4.12; the obtained values for the overall Avrami exponents of the other three amorphous alloys were below 1, as usually found for the Fe-Si amorphous alloys.

  2. Effects of can parameters on canned-forging process of TiAl base alloy(Ⅰ)--Microstructural analyses

    Institute of Scientific and Technical Information of China (English)

    刘咏; 韦伟峰; 黄伯云; 何双珍; 周科朝; 贺跃辉

    2002-01-01

    By using thermal simulation technique, the conventional canned-forging process of TiAl based alloy was studied. The effect of can parameters on the microstruct ures of TiAl alloy was analyzed in this process. The results show that, the defo rmation microstructure of TiAl based alloy without canning is inhomogeneous. In lateral area, crack and shearing lines can be found; while in central area, fine -grained shearing zone can be found. The effect of can is to reduce the seconda ry tensile stress. However, only when the deformation of the steel can is coinci dental with that of TiAl alloy ingot, can this effect be effective. Moreover, a thick can would enhance the microstructural homogeneity in TiAl based alloy. With the H/D ratio of the ingot increasing, the deformation of TiAl alloy would be more unsteady, therefore, a thicker can should be needed.

  3. Oxygen Behavior in Bulk Amorphous Zr-base Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Bulk Zr55Al10Ni5Cu30 metallic glass plates with a dimension of 85 mm×35mm×4 mm and a complicated plate werefabricated by injecting casting method using spongy zirconium and industrial purity aluminum, nickel and copper asraw materials. It was shown that the holding time of liquid metals at elevated temperatures had a great influence onthe oxygen content of the plates due to the contamination resulting from the atmosphere. Increasing holding timeresulted in the increase of oxygen content in the injected alloy. The glass transition temperatures of the bulk metallicglass plates are higher than that reported in the literature and crystallization temperature is lower for the one withhigher oxygen content at the same heating rate. The extension of the undercooled liquid region △Tx reaching about87 K is 3 K higher than that previously reported and 26 K higher than that with oxygen content of 0.076 wt pct forthe one with oxygen content as high as 0.065 wt pct. Therefore the oxygen content of the alloy has a significantinfluence on the glass forming ability and thermal stability of bulk metal glass. It is suggested that direct correlationbetween high glass forming ability and large △Tx is only valid for a well-defined Iow oxygen concentration or has tobe reconsidered by incorporating oxygen as an additional alloying element.

  4. Tetragonal Heusler-Like Mn-Ga Alloys Based Perpendicular Magnetic Tunnel Junctions

    Science.gov (United States)

    Ma, Qinli; Sugihara, Atsushi; Suzuki, Kazuya; Zhang, Xianmin; Miyazaki, Terunobu; Mizukami, Shigemi

    2014-10-01

    Films of the Mn-based tetragonal Heusler-like alloys, such as Mn-Ga, exhibit a large perpendicular magnetic anisotropy (PMA), small damping constant, small saturation magnetization and large spin polarizations. These properties are attractive for the application to the next generation high density spin-transfer-torque (STT) magnetic random access memory (STT-MRAM). We reviewed the structure, magnetic properties and Gilbert damping of the alloy films with large PMA, and the current status of research on tunnel magnetoresistance (TMR) in perpendicular magnetic tunnel junctions (p-MTJs) based on Mn-based tetragonal Heusler-like alloy electrode, and also discuss the issues for the application of those to STT-MRAM.

  5. Influence of Cumulative Plastic Deformation on Microstructure of the Fe-Al Intermetallic Phase Base Alloy

    Directory of Open Access Journals (Sweden)

    Bednarczyk I.

    2014-10-01

    Full Text Available This article is part of the research on the microstructural phenomena that take place during hot deformation of intermetallic phase-based alloy. The research aims at design an effective thermo - mechanical processing technology for the investigated intermetallic alloy. The iron aluminides FeAl have been among the most widely studied intermetallics because their low cost, low density, good wear resistance, easy of fabrication and resistance to oxidation and corrosion. There advantages create wide prospects for their industrial applications for components of machines working at a high temperature and in corrosive environment. The problem restricting their application is their low plasticity and their brittle cracking susceptibility, hampers their development as construction materials. Consequently, the research of intermetallic-phase-based alloys focuses on improvement their plasticity by hot working proceses. The study addresses the influence of deformation parameters on the structure of an Fe-38% at. Al alloy with Zr, B Mo and C microadditions, using multi – axis deformation simulator. The influence of deformation parameters on microstructure and substructure was determined. It was revealed that application of cumulative plastic deformation method causes intensive reduction of grain size in FeAl phase base alloy.

  6. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures

    Directory of Open Access Journals (Sweden)

    Yinghong Li, Liucheng Zhou, Weifeng He, Guangyu He, Xuede Wang, Xiangfan Nie, Bo Wang, Sihai Luo and Yuqin Li

    2013-01-01

    Full Text Available We investigated the strengthening mechanism of laser shock processing (LSP at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30–200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa; the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation.

  7. Effects of AI Addition on the Thermoelectric Properties of Zn-Sb Based Alloys

    Institute of Scientific and Technical Information of China (English)

    CUI Jiaolin; LIU Xianglian; YANG Wei; CHEN Dongyong; MAO Liding; QIAN Xin

    2009-01-01

    The β-Zn4Sb3, emerged as a compelling p-type thermoelectric material, is widely used in heat-electricity conversion in the 400-650 K range. In order to probe the effects of slight doping on the crystal structure and physical properties, we prepared the samples of Al-added Zn-Sb based alloys by spark plasma sintering and evaluated their microstructures and thermoelectric properties. After a limited Al addition into the Zn-Sb based alloys we observed many phases in the alloys, which include a major phase β-Zn4Sb3,intermetallic phases ZnSb and AISb. The major β-Zn4Sb3 phase plays a fundamental role in controlling the thermoelectric performance, the precipitated phases ZnSb and AISb are of great importance to tailor the transport properties, such as the gradual enhancement of lattice thermal conductivity, in spite of an increased phonon scattering in additional grain boundaries. The highest thermoelectric figure of merit of 0.55 is obtained for the alloy with a limited AI addition at 653 K, which is 0.08 higher than that of un-doped β-Zn4Sb3 at the corresponding temperature. Physical property experiments indicate that there is a potentiality for the improvement of thermoelectric properties if a proper elemental doping is carried out into the Zn-Sb based alloys, which was confirmed by AI addition in the present work.

  8. Influence of aluminium content on the physical, mechanical and sliding wear properties of zinc-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, B.K. [CSIR, Bhopal (India). Regional Res. Lab.; Patwardhan, A.K. [Roorkee Univ. (India). Dept. of Metallurgical Engineering; Yegneswaran, A.H. [CSIR, Bhopal (India). Regional Res. Lab.

    1997-04-01

    Attention has been focussed on the influence of Al content on the physical, mechanical and sliding wear properties of Zn-based alloys. Aspects studied include microstructure, density, electrical conductivity, hardness, tensile strength and elongation as well as sliding wear response of the alloys. Microstructural features of the alloys showed the presence of primary {alpha}, eutectic/eutectoid {alpha} + {eta} (depending on whether the alloy was hypereutectic/hypereutectoid with regard to the concentration of Al) along with the meta stable {epsilon} phase. The study suggests that it is possible to design and develop Zn-based alloys with a wide range of concentration of Al. The alloys in turn attain different combinations of physical, mechanical and wear properties which could suit a variety of engineering applications. Increasing the Al content in the alloy system proves beneficial within limits. In other words, there exists an optimum quantity of Al which could reap its advantage to the maximum extent. This of course varies with reference to a specific property of the alloy(s). The changing response of the alloys has been explained in terms of their microstructural features and the effects produced as a result of the test conditions maintained while characterizing the specimens. (orig.)

  9. Growth of magnetic cobalt/chromium nano-arrays by atom-optical lithography

    Energy Technology Data Exchange (ETDEWEB)

    Atoneche, F; Malik, D; Kirilyuk, A; Toonen, A J; Etteger, A F van; Rasing, Th, E-mail: f.atoneche@science.ru.nl [Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands)

    2011-07-06

    Arrays of magnetic cobalt/chromium (Co-Cr) nanolines are grown by depositing an atomic beam of Co-Cr alloy through a laser standing wave (SW) at {lambda}/2 = 212.8 nm onto a substrate. During deposition, only the chromium atoms are resonantly affected by the optical potential created by the SW, causing a periodic modulation of the chromium concentration and consequently of the magnetic properties. Magnetic force microscopy and magneto-optical Kerr effect studies reveal a patterned magnetic structure on the substrate surface.

  10. Growth of magnetic cobalt/chromium nano-arrays by atom-optical lithography

    Science.gov (United States)

    Atoneche, F.; Malik, D.; Kirilyuk, A.; Toonen, A. J.; van Etteger, A. F.; Rasing, Th

    2011-07-01

    Arrays of magnetic cobalt/chromium (Co-Cr) nanolines are grown by depositing an atomic beam of Co-Cr alloy through a laser standing wave (SW) at λ/2 = 212.8 nm onto a substrate. During deposition, only the chromium atoms are resonantly affected by the optical potential created by the SW, causing a periodic modulation of the chromium concentration and consequently of the magnetic properties. Magnetic force microscopy and magneto-optical Kerr effect studies reveal a patterned magnetic structure on the substrate surface.

  11. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    Science.gov (United States)

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications.

  12. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  13. The fluidity and molding ability of glass-forming Zr-based alloy melt

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The fluidity and filling ability of glass-forming Zr-based alloy melt in copper mould were investigated both theoretically and experimentally. The major factors which affected the flowing behavior of the metallic melt in the mold were determined,which provides the foundation for overcoming the contradiction between the filling and formation of amorphous alloy during the rapid cooling process of the metallic melts. The casting factors to prepare a metallic ring were discussed and selected. As a result,a Zr-based bulk metallic glass ring was prepared successfully.

  14. Ultrahigh performance of Ti-based glassy alloy tube sensor for Coriolis mass flowmeter

    Institute of Scientific and Technical Information of China (English)

    MA Chao-li; A. INOUE; ZHANG Tao

    2006-01-01

    Bulk metallic glasses (BMGs) have potential applications for both structural and functional components owing to their good mechanical properties. With the aim of demonstrating great engineering value of BMGs, a direct melt-forming technique based on suction casting for the production of glassy alloy tubes was developed. The fabrication, structure, geometry, properties and sensor performance of the tubes were examined. The results show that the Coriolis mass flowmeters using the Ti-based glassy alloy sensor tube exhibit excellent measurement sensitivity, viz. 28.5 times higher than that of the conventional flowmeter manufactured using stainless steel (SUS316) tube.

  15. AFM research on the mechanism of Fe-based alloy stress annealed inducing magnetic anisotropy

    Institute of Scientific and Technical Information of China (English)

    FANG YunZhang; ZHENG JinJu; SHI FangYe; WU FengMin; SUN HuaiJun; LIN GenJin; YANG XiaoHong; MAN QiKui; YE FangMin

    2008-01-01

    The cross-section of the Fe-based alloy (Fe73.5Cu1Nb3Si13.5B9) ribbon annealed at 540℃ under various tensile stress was investigated with atomic force microscope (AFM). The stress effect mechanism in Fe-based alloy ribbon tensile stress an- nealed inducing transverse magnetic anisotropy field was studied using the X-ray diffraction spectra and longitudinal drive giant magneto-impedance effect curves, and the model of direction dominant in encapsulated grain agglomeration was es- tablished. The relationship between the direction dominant in encapsulated grain agglomeration and magnetic anisotropy field was disclosed.

  16. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    Science.gov (United States)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  17. Morphology and Magnetic Properties of Electrodeposited Iron and Nickel Based Alloy Foils

    Institute of Scientific and Technical Information of China (English)

    GUO Zhan-cheng; LIU Mei-feng; SUN Chun-wen; LIU Yu-xing; LU Wei-chang

    2004-01-01

    An alternative to conventional process for the preparation of soft magnetic metal foils of Fe, Fe-Ni, Fe-Co and Fe-Ni-Co by electroforming was described. The microstructure and magnetic properties were observed. The results showed that the crystal size of the iron-based alloy foil is less than 10 μm, while that of nickel-based alloy foil is about 2 μm. Moreover, the electroformed Fe-Ni foil has better magnetic properties than the conventional milled permalloy 1J79 foil.

  18. AFM research on the mechanism of Fe-based alloy stress annealed inducing magnetic anisotropy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The cross-section of the Fe-based alloy (Fe73.5Cu1Nb3Si13.5B9) ribbon annealed at 540℃ under various tensile stress was investigated with atomic force microscope (AFM). The stress effect mechanism in Fe-based alloy ribbon tensile stress an-nealed inducing transverse magnetic anisotropy field was studied using the X-ray diffraction spectra and longitudinal drive giant magneto-impedance effect curves, and the model of direction dominant in encapsulated grain agglomeration was es-tablished. The relationship between the direction dominant in encapsulated grain agglomeration and magnetic anisotropy field was disclosed.

  19. Assessment Of Usability Of Molten Salt Mixtures In Metallurgy Of Aluminum Alloys And Recycling Of Composite Materials Based On The Matrix Of Al Alloys

    Directory of Open Access Journals (Sweden)

    Jackowski J.

    2015-09-01

    Full Text Available Effectiveness of the slags used in metallurgy of aluminum alloys and in recycling of composite materials containing these alloys depends on their surface properties at the phase boundaries they are in contact with. An index of surface properties of molten mixtures of slag-forming salts has been formulated. Its calculated values are compared with measured results of surface tension (liquid – atmosphere and interfacial tension (liquid – liquid in the considered systems. It was found that the index can be helpful for purposes of proper choice of the mixtures of slag-forming salts used both in Al alloys metallurgy and in recycling of composite materials based on the matrix of Al alloys.

  20. Effects of Er:YAG laser treatments on surface roughness of base metal alloys.

    Science.gov (United States)

    Kunt, Göknil Ergün; Güler, Ahmet Umut; Ceylan, Gözlem; Duran, Ibrahim; Ozkan, Pelin; Kirtiloğlu, Tuğrul

    2012-01-01

    We investigated the effects of different Er:YAG laser treatments on the surface roughness of base metal alloys. A total of 36 specimens were prepared of two base metal alloys (Wiron 99, Bellabond plus). The surfaces of the specimens were standardized by gradual wet grinding with 320-, 600-, 800- and 1,000-grit silicon carbide paper for 10 s each on a grinding machine at 300 rpm. Specimens of each alloy were randomly divided into six groups (n = 6) comprising a control group (group C), a group sandblasted with Al(2)O(3) powder at 60 psi for 10 s through a nozzle at a distance of 10 mm (group S), and four Er:YAG laser (Fotona AT) treatment groups. The laser treatment groups were as follows: 500 mJ, 10 Hz, 100 μs (group 500MSP); 500 mJ, 10 Hz, 300 μs (group 500SP); 400 mJ, 10 Hz, 100 μs (group 400MSP); and 400 mJ, 10 Hz, 300 μs (group 400SP). Surface roughness measurements (Ra) were performed using a profilometer. The data were analysed by two-way ANOVA, and mean values were compared using Tukey's HSD test (α = 0.05). According to the two-way ANOVA results, the base metal alloys and interaction between base metal alloy and surface treatment were not statistically significant different (p > 0.05), the surface treatments were significantly different (p Er:YAG laser treatment at 400 and 500 mJ/10 Hz is not an alternative method for surface roughening of base metal alloys.

  1. Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore

    Institute of Scientific and Technical Information of China (English)

    Song-tao Yang; Mi Zhou; Tao Jiang; Shan-fei Guan; Wei-jun Zhang; and Xiang-xin Xue

    2016-01-01

    A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V–Ti–Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio (η), S removal ratio (RS), and P removal ratio (RP) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350°C were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved theη,RS, and RP in the coal-based reduction of V–Ti–Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70μm at 1350°C, which is substantially larger than the minimum particle size required (20μm) for mag-netic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V–Ti–Cr iron ore followed by magnetic separation.

  2. Experimental research of optical fiber hydrogen gas sensing system based on palladium-silver alloy

    Science.gov (United States)

    Cui, Lu-jun; Zhou, Gao-feng; Li, Zheng-feng; Cao, Yan-long

    2016-11-01

    A novel optical fiber hydrogen sensing system based on palladium (Pd) and sliver (Ag) is proposed. By direct current (DC) magnetron process, Pd/Ag alloy ultra-thin films were deposited on the substrate to eliminate the hydrogen embrittlement of sensor based on pure Pd. Several samples with different thin film thicknesses were fabricated at different substrate temperatures and tested in the optical fiber hydrogen sensor setup. We do a series of experiments for obtaining optimum sputtering parameters, such as optimum sputtering temperature and thickness of Pd/Ag alloy film. The humidity effect and reliability experiment for the optical fiber hydrogen gas sensor are reported in detail. The testing results demonstrate the Pd/Ag alloy is a promising material for optical fiber hydrogen gas sensor.

  3. Tensile properties of a nickel-base alloy subjected to surface severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, J.W. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Dai, K. [Quality Engineering and Software Technology, East Hartford, CT 06108 (United States); Villegas, J.C. [Intel Corporation, Chandler, AZ (United States); Shaw, L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT (United States)], E-mail: leon.shaw@uconn.edu; Liaw, P.K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Klarstrom, D.L. [Haynes International, Inc., Kokomo, IN (United States); Ortiz, A.L. [Departamento de Ingenieria Mecanica, Energetica y de los Materiales, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-10-15

    A surface severe plastic deformation (S{sup 2}PD) method has been applied to bulk specimens of HASTELLOY C-2000 alloy, a nickel-base alloy. The mechanical properties of the processed C-2000 alloy were determined via tensile tests and Vickers hardness measurements, whereas the microstructure was characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. The improved tensile strength was related to the nanostructure at the surface region, the residual compressive stresses, and the work-hardened surface layer, all of which resulted from the S{sup 2}PD process. To understand the contributions of these three factors, finite element modeling was performed. It was found that the improved tensile strength could be interpreted based on the contributions of nano-grains, residual stresses, and work hardening.

  4. Hydrogen absorption in uranium-based alloys with cubic γ -U structure

    Science.gov (United States)

    Havela, L.; Kim-Ngan, N.-T. H.

    2017-03-01

    UH3-type hydrides were formed by hydrogenation of splat-cooled U-based alloys upon applying high H2 pressures (>2.5 bar). Hydrogenation of U1‑x Mo x alloys (with x  ⩾  0.12 (12 at.% Mo) containing the cubic γ-U phase leads to a formation of nanocrystalline β-UH3, why those of U1‑x Zr x alloys (with x  ⩾15 at.% Zr) implies a pure α-UH3. The Curie temperature of hydride (UH3)0.85Mo0.15 reaches 200 K it may be the first U-based ferromagnet with such high T C. The results reflect the dominant U–H interaction. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8–12 November 2016, Ha Long City, Vietnam.

  5. Hydrogen gas sensor based on palladium and yttrium alloy ultrathin film

    Science.gov (United States)

    Yi, Liu; You-ping, Chen; Han, Song; Gang, Zhang

    2012-12-01

    Compared with the other hydrogen sensors, optical fiber hydrogen sensors based on thin films exhibits inherent safety, small volume, immunity to electromagnetic interference, and distributed remote sensing capability, but slower response characteristics. To improve response and recovery rate of the sensors, a novel reflection-type optical fiber hydrogen gas sensor with a 10 nm palladium and yttrium alloy thin film is fabricated. The alloy thin film shows a good hydrogen sensing property for hydrogen-containing atmosphere and a complete restorability for dry air at room temperature. The variation in response value of the sensor linearly increases with increased natural logarithm of hydrogen concentration (ln[H2]). The shortest response time and recovery response time to 4% hydrogen are 6 and 8 s, respectively. The hydrogen sensors based on Pd0.91Y0.09 alloy ultrathin film have potential applications in hydrogen detection and measurement.

  6. Progress in research on cold crucible directional solidification of titanium based alloys

    Directory of Open Access Journals (Sweden)

    Chen Ruirun

    2014-07-01

    Full Text Available Cold crucible directional solidification (CCDS is a newly developed technique, which combines the advantages of the cold crucible and continuous melting. It can be applied to directionally solidify reactive, high purity and refractory materials. This paper describes the principle of CCDS and its characteristics; development of the measurement and numerical calculation of the magnetic field, flow field and temperature field in CCDS; and the CCDS of Ti based alloys. The paper also reviews original data obtained by some scholars, including the present authors, reported in separate publications in recent years. In Ti based alloys, Ti6Al4V, TiAl alloys and high Nb-containing TiAl alloys, have been directionally solidified in different cold crucibles. The crosssections of the cold crucibles include round, near rectangular and square with different sizes. Tensile testing results show that the elongation of directionally solidified Ti6Al4V can be improved to 12.7% from as cast 5.4%. The strength and the elongation of the directionally solidified Ti47Al2Cr2Nb and Ti44Al6Nb1.0Cr2.0V are 650 MPa/3% and 602.5 MPa/1.20%, respectively. The ingots after CCDS can be used to prepare turbine or engine blades, and are candidates to replace Ni super-alloy at temperatures of 700 to 900 °C.

  7. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    Science.gov (United States)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium-indium binary alloy (EGaIn) and gallium-indium-tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  8. Potentiality of the "Gum Metal" titanium-based alloy for biomedical applications.

    Science.gov (United States)

    Gordin, D M; Ion, R; Vasilescu, C; Drob, S I; Cimpean, A; Gloriant, T

    2014-11-01

    In this study, the "Gum Metal" titanium-based alloy (Ti-23Nb-0.7Ta-2Zr-1.2O) was synthesized by melting and then characterized in order to evaluate its potential for biomedical applications. Thus, the mechanical properties, the corrosion resistance in simulated body fluid and the in vitro cell response were investigated. It was shown that this alloy presents a very high strength, a low Young's modulus and a high recoverable strain by comparison with the titanium alloys currently used in medicine. On the other hand, all electrochemical and corrosion parameters exhibited more favorable values showing a nobler behavior and negligible toxicity in comparison with the commercially pure Ti taken as reference. Furthermore, the biocompatibility tests showed that this alloy induced an excellent response of MC3T3-E1 pre-osteoblasts in terms of attachment, spreading, viability, proliferation and differentiation. Consequently, the "Gum Metal" titanium-based alloy processes useful characteristics for the manufacturing of highly biocompatible medical devices.

  9. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  10. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    Science.gov (United States)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  11. Indoor environmental corrosion of Ag-based alloys in the Egyptian Museum (Cairo, Egypt)

    Science.gov (United States)

    Ingo, G. M.; Angelini, E.; Riccucci, C.; de Caro, T.; Mezzi, A.; Faraldi, F.; Caschera, D.; Giuliani, C.; Di Carlo, G.

    2015-01-01

    In this study, we have investigated the indoor environmental corrosion of Ag-based alloys after long-term exposure in a showcase of an exhibition room and in the open atmosphere at the Egyptian Museum of Cairo (Egypt). In order to simulate the corrosion processes that occur at the surface of archaeological artefacts, Ag-based alloys with chemical composition, metallurgical features and micro-chemical structure similar to those of ancient alloys have been purposely produced as sacrificial reference samples. Our findings show that corrosion phenomena on alloy surface are mainly caused by environmental sulphur and chlorine containing species that react in different ways depending on the exhibition conditions and on the alloy composition. This approach allows to identify the degradation agents and mechanisms that really take place at the surface of objects similar to ancient artefacts without the necessity of sampling them. Moreover, it is possible to get useful indications for the safe storage or exhibition of silver archaeological artefacts, their cleaning and conservation.

  12. THE WEAR RESISTANCE INCREASE OF CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. M. Ilyushenko

    2016-01-01

    Full Text Available The article presents the results of the tests on the wear resistance of chromium cast irons of different compositions obtained in sand forms. It has been shown that increase of the wear resistance and mechanical properties of the cast iron is possible to obtain using the casting in metal molds. A further increase in wear resistance of parts produced in metal molds is possible by changing the technological parameters of casting and alloying by titanium.

  13. 镍基合金碳化铬复合涂层材料的界面分析%Interfacial Analysis of Ni-based Alloy—Chromium Carbide Composite Coating

    Institute of Scientific and Technical Information of China (English)

    黄新波; 林化春

    2001-01-01

    This paper generates a concentration function combinin g A.Ficks second law of diffusion by means of polynomial curve,and develops an efficient solver to calculate the diffusion coefficient of every component prec isely.It states that interfacial diffusion which causes metallurgical bondage ha ppens between the Alloy Chromium Carbide Composite coating and the steel substrate.%利用多项式曲线拟合浓度函数,结合菲克扩散第二定律, 编制FORTRAN程序,快速准确地计算出各组元的扩散系数。证实真空熔烧所得镍基合金—— 碳化铬复合涂层与钢基体之间发生界面扩散,形成牢固的冶金结合。

  14. Identification of a cast iron alloy containing nonstrategic elements

    Science.gov (United States)

    Cooper, C. V.; Anton, D. L.; Lemkey, F. D.; Nowotny, H.; Bailey, R. S.; Favrow, L. H.; Smeggil, J. G.; Snow, D. B.

    1989-01-01

    A program was performed to address the mechanical and environmental needs of Stirling engine heater head and regenerator housing components, while reducing the dependence on strategic materials. An alloy was developed which contained no strategic elemental additions per se. The base is iron with additions of manganese, molybdenum, carbon, silicon, niobium, and ferro-chromium. Such an alloy should be producible on a large scale at very low cost. The resulting alloy, designated as NASAUT 4G-Al, contained 15 Mn, 15 Cr, 2 Mo, 1.5 C, 1.0 Si, 1.0 Nb (in weight percent) with a balance of Fe. This alloy was optimized for chemistry, based upon tensile strength, creep-rupture strength, fracture behavior, and fatigue resistance up to 800 C. Alloys were also tested for environmental compatibility. The microstructure and mechanic properties (including hardness) were assessed in the as-cast condition and following several heat treatments, including one designed to simulate a required braze cycle. The alloy was fabricated and characterized in the form of both equiaxed and columnar-grained castings. The columnar grains were produced by directional solidification, and the properties were characterized in both the longitudinal and transverse orientations. The NASAUT 4G-Al alloy was found to be good in cyclic-oxidation resistance and excellent in both hydrogen and hot-corrosion resistance, especially in comparison to the baseline XF-818 alloy. The mechanical properties of yield strength, stress-rupture life, high-cycle-fatigue resistance, and low-cycle-fatigue resistance were good to excellent in comparison to the current alloy for this application, HS-31 (X-40), with precise results depending in a complex manner on grain orientation and temperature. If required, the ductility could be improved by lowering the carbon content.

  15. Duct and cladding alloy

    Science.gov (United States)

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  16. Influence of tungsten and titanium on the structure of chromium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available The paper analyses the as-cast state structure of chromium cast iron designed for operation under harsh impact-abrasive conditions. In the process of chromium iron castings manufacture, very strong influence on the structure of this material have the parameters of the technological process. Among others, adding to the Fe-Cr-C alloy the alloying elements like tungsten and titanium leads to the formation of additional carbides in the structure of this cast iron, which may favourably affect the casting properties, including the resistance to abrasive wear.

  17. Semi-solid metal processing of aluminum alloy A356 and magnesium alloy AZ91: Comparison based on metallurgical consideration

    Energy Technology Data Exchange (ETDEWEB)

    Kleiner, S.; Beffort, O. [Swiss Federal Laboratories for Materials Testing and Research, EMPA Thun, CH-3602 Thun (Switzerland); Ogris, E.; Uggowitzer, P.J. [Institute of Metallurgy, ETH Swiss Federal Institute of Technology, CH-8092 Zuerich (Switzerland)

    2003-09-01

    Thixocasting or rheocasting of AZ and AM magnesium alloys continues to be a problematic case in semi-solid processing. The comparison with the aluminum thixo alloy A356 shows that the metallurgical and physical properties of the Mg alloy AZ91 are little compatible with this technology: The conclusions from this study are of fundamental importance for future developments in this field of research. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  18. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.

    Science.gov (United States)

    Mun, Hyeona; Choi, Soon-Mok; Lee, Kyu Hyoung; Kim, Sung Wng

    2015-07-20

    Thermoelectrics, which transports heat for refrigeration or converts heat into electricity directly, is a key technology for renewable energy harvesting and solid-state refrigeration. Despite its importance, the widespread use of thermoelectric devices is constrained because of the low efficiency of thermoelectric bulk alloys. However, boundary engineering has been demonstrated as one of the most effective ways to enhance the thermoelectric performance of conventional thermoelectric materials such as Bi2 Te3 , PbTe, and SiGe alloys because their thermal and electronic transport properties can be manipulated separately by this approach. We review our recent progress on the enhancement of the thermoelectric figure of merit through boundary engineering together with the processing technologies for boundary engineering developed most recently using Bi2 Te3 -based bulk alloys. A brief discussion of the principles and current status of boundary-engineered bulk alloys for the enhancement of the thermoelectric figure of merit is presented. We focus mainly on (1) the reduction of the thermal conductivity by grain boundary engineering and (2) the reduction of thermal conductivity without deterioration of the electrical conductivity by phase boundary engineering. We also discuss the next potential approach using two boundary engineering strategies for a breakthrough in the area of bulk thermoelectric alloys.

  19. Experimental and Theoretical Investigation of Three Alloy 690 Mockup Components: Base Metal and Welding Induced Changes

    Directory of Open Access Journals (Sweden)

    Rickard R. Shen

    2014-01-01

    Full Text Available The stress corrosion cracking (SCC resistance of cold deformed thermally treated (TT Alloy 690 has been questioned in recent years. As a step towards understanding its relevancy for weld deformed Alloy 690 in operating plants, Alloy 690 base metal and heat affected zone (HAZ microstructures of three mockup components have been studied. All mockups were manufactured using commercial heats and welding procedures in order to attain results relevant to the materials in the field. Thermodynamic calculations were performed to add confidence in phase identification as well as understanding of the evolution of the microstructure with temperature. Ti(C,N banding was found in all materials. Bands with few large Ti(C,N precipitates had negligible effect on the microstructure, whereas bands consisting of numerous small precipitates were associated with locally finer grains and coarser M23C6 grain boundary carbides. The Ti(C,N remained unaffected in the HAZ while the M23C6 carbides were fully dissolved close to the fusion line. Cold deformed solution annealed Alloy 690 is believed to be a better representation of this region than cold deformed TT Alloy 690.

  20. The Microstructure and Capacitance Characterizations of Anodic Titanium Based Alloy Oxide Nanotube

    Directory of Open Access Journals (Sweden)

    Po Chun Chen

    2013-01-01

    Full Text Available This paper presents a simple anodization process to fabricate ordered nanotubes (NTs of titanium and its alloys (Ti-Mo and Ti-Ta. TiO2, MoO3, and Ta2O5 are high dielectric constant materials for ultracapacitor application. The anodic titanium oxide contains a compact layer on the NT film and a barrier layer under the NT film. However, the microstructure of oxide films formed by anodic Ti-Mo and Ti-Ta alloys contains six layers, including a continuous compact layer, a continuous partial porous layer, a porous layer, a net layer, an ordering NT film, and an ordering compact barrier layer. There are extra layers, which are a partial porous layer and a porous layer, not presented on the TiO2 NT film. In this paper, we fabricated very high surface area ordered nanotubes from Ti and its alloys. Based on the differences of alloys elements and compositions, we investigated and calculated the specific capacitance of these alloys oxide nanotubes.

  1. High-strength Zr-based bulk amorphous alloys containing nanocrystalline and nanoquasicrystalline particles

    Directory of Open Access Journals (Sweden)

    A Inoue, C Fan, J Saida and T Zhang

    2000-01-01

    Full Text Available It was recently found that the addition of special elements leading to the deviation from the three empirical rules for the achievement of high glass-forming ability causes new mixed structures consisting of the amorphous phase containing nanoscale compound or quasicrystal particles in Zr–Al–Ni–Cu–M (M=Ag, Pd, Au, Pt or Nb bulk alloys prepared by the copper mold casting and squeeze casting methods. In addition, the mechanical strength and ductility of the nonequilibrium phase bulk alloys are significantly improved by the formation of the nanostructures as compared with the corresponding amorphous single phase alloys. The composition ranges, formation factors, preparation processes, unique microstructures and improved mechanical properties of the nanocrystalline and nanoquasicrystalline Zr-based bulk alloys are reviewed on the basis of our recent results reported over the last two years. The success of synthesizing the novel nonequilibrium, high-strength bulk alloys with good mechanical properties is significant for the future progress of basic science and engineering.

  2. Creep-rupture behavior of a developmental cast-iron-base alloy for use up to 800 deg C

    Science.gov (United States)

    Titran, Robert H.; Scheuermann, Coulson M.

    1987-01-01

    A promising iron-base cast alloy is being developed as part of the DOE/NASA Stirling Engine Systems Project under contract DEN 3-282 with the United Technologies Research Center. This report presents the results of a study at the Lewis Research Center of the alloy's creep-rupture properties. The alloy was tested under a variety of conditions and was found to exhibit the normal 3-stage creep response. The alloy compared favorably with others being used or under consideration for the automotive Stirling engine cylinder/regenerator housing.

  3. Fundamentals of Manufacturing Technologies for Aircraft Engine Parts Made of TiAl Based Alloys

    Directory of Open Access Journals (Sweden)

    Szkliniarz W.

    2016-09-01

    Full Text Available The study presents fundamentals of manufacturing technologies for aircraft engine construction elements, made of light, intermetallic TiAl based alloy, which is characterized by high relative strength and good creep and oxidation resistance. For smelting of alloy, the vacuum metallurgy methods were used, including application of induction furnace equipped with special crucibles made of isostatic-pressed, high-density graphite. To produce good quality construction element for aircraft engine, such as low-pressure turbine blade, there were methods of gravity casting from a very high temperature to the preheated shell moulds applied.

  4. Chemical durability and degradation mechanisms of HT9 based alloy waste forms with variable Zr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-30

    In Corrosion studies were undertaken on alloy waste forms that can result from advanced electrometallurgical processing techniques to better classify their durability and degradation mechanisms. The waste forms were based on the RAW3-(URe) composition, consisting primarily of HT9 steel and other elemental additions to simulate nuclear fuel reprocessing byproducts. The solution conditions of the corrosion studies were taken from an electrochemical testing protocol, and meant to simulate conditions in a repository. The alloys durability was examined in alkaline and acidic brines.

  5. Evolution of precipitate in nickel-base alloy 718 irradiated with argon ions at elevated temperature

    Science.gov (United States)

    Jin, Shuoxue; Luo, Fengfeng; Ma, Shuli; Chen, Jihong; Li, Tiecheng; Tang, Rui; Guo, Liping

    2013-07-01

    Alloy 718 is a nickel-base superalloy whose strength derives from γ'(Ni3(Al,Ti)) and γ″(Ni3Nb) precipitates. The evolution of the precipitates in alloy 718 irradiated with argon ions at elevated temperature were examined via transmission electron microscopy. Selected-area electron diffraction indicated superlattice spots disappeared after argon ion irradiation, which showing that the ordered structure of the γ' and γ″ precipitates became disordered. The size of the precipitates became smaller with the irradiation dose increasing at 290 °C.

  6. An X-ray diffraction study of defect parameters in a Ti-base alloy

    Indian Academy of Sciences (India)

    G Karmaker; P Mukherjee; A K Meikap; S K Chattopadhyay; S K Chatterjee

    2001-12-01

    Detailed studies based on the well established method of Fourier line shape analysis have been made on the X-ray diffraction profile of hexagonal titanium alloy of nominal composition Ti–6.58% Al–3.16% Mo–1.81% Zr–0.08% Fe–0.012% N–0.0078% C. While deformation fault probability, , has been found to be quite high compared to that of pure titanium, the deformation growth fault parameter, , shows a negative value ruling out the presence of growth fault in this alloy in the deformed state.

  7. Emeraldine base as corrosion protective layer on aluminium alloy AA5182, effect of the surface microstructure

    DEFF Research Database (Denmark)

    Cecchetto, L; Ambat, Rajan; Davenport, A.J.

    2007-01-01

    AA5182 aluminium alloy cold rolled samples were coated by thin Wlms of emeraldine base (EB) obtained from a 5% solution in N-methylpyrrolidinone. Accelerated corrosion tests prove this coating very eVective for corrosion protection of aluminium alloys in neutral environment. This study underlines......: • a weak redox activity of the polymer which passivate the metal, • a proton involving self-healing process taking place at the polymer–metal interface, which contributes to delay local acidiWcation in Wrst steps of corrosion on EB coated aluminium surfaces....

  8. Study on Nanocrystalline Rare Earth Mg-Based System Hydrogen Storage Alloys with AB3-Type

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A sort of rare earth Mg-based system hydrogen storage alloys with AB3-type was prepared by double-roller rapid quenching method. The alloys were nanocrystalline multi-phase structures composed of LaNi3 phase and LaNi5 phase by X-ray diffraction and scanning electron microscopy analyses, and the suitable absorption/desorption plateau was revealed by the measurement of P-C-I curve. Electrochemical studies indicate that the alloys exhibit good electrochemical properties such as high capacity and stable cycle life, and the discharge capacity is 369 mAh·g-1 at 0.2 C (72 mA·g-1), after 460 cycles, the capacity decay was only 19.4% at 2 C (720 mA·g-1).

  9. Nitridation of Ni-based alloys: thermodynamics, kinetics, and deformation phenomena accompanying internal precipitation

    Institute of Scientific and Technical Information of China (English)

    Alexander A. Kodentsov; Jorma K. Kivilahti; Frans J.J. van Loo

    2006-01-01

    When a moderately stable phase is precipitated out during an internal reaction, the behaviour of the penetrating atoms within the diffusion zone can be interpreted based on thermodynamic considerations. Evidence for "up-hill" diffusion of the penetrating species through the matrix towards the precipitation front during the internal nitridation of Ni-Cr alloys at 1125℃ and 6000 bar of N2-pressure was predicted. Such behaviour of nitrogen is opposite to the boundary conditions in Wagner's description of internal reactions. A volume change associated with the precipitation reaction resulted in a stress gradient between the alloys surface and the internal nitridation front. Stress relief occurred mainly by transport of nickel to the gas/metal interface. Pipe diffusion-controlled creep is the dominant stress accommodation mechanism during nitriding of dilute Ni-Cr alloys at 700℃ under a flowing NH3 + H2 gas mixture.

  10. EFFECT OF TESTING ENVIRONMENT ON FRACTURING BEHAVIOR OF Fe3Si BASED ALLOY

    Institute of Scientific and Technical Information of China (English)

    J.H. Peng; G.L. Chen

    2003-01-01

    The mechanical behavior of Fe3Si based alloy with B2 structure was studied by tensionand fracture toughness test in various testing media. The fracture strength σb ofFe3Si alloy decreased in the following order: oxygen, air and hydrogen respectively.The fracture toughness in different testing environment showed that KiC in oxygenis 11.5±0.3MPa. m1/2, and is 8.6±0.4MPa. m1/2 in distilled water. The reductionof fracture toughness is contributed to the environmental reaction of Si with water.Addition of Al element in Fe3Si is not beneficial to improve the intrinsic ductility ofFe-14Si-3Al alloy. The scattering phenomenon of fracture strength was found, andexplained by fracture mechanics. It was found by means of SEM that the fracture modechanged from transgranular in oxygen to intergranular in hydrogen gas and distilledwater.

  11. Void growth in high strength aluminium alloy single crystals: a CPFEM based study

    Science.gov (United States)

    Asim, Umair; Siddiq, M. Amir; Demiral, Murat

    2017-04-01

    High strength aluminium alloys that are produced through forming and joining processes are widely used in aerospace components. The ductile failure in these metals occurs due to the evolution and accumulation of microscopic defects, such as microvoids and shear bands. The present work investigates the underlying physical mechanisms during ductile failure by performing a rigorous, fully-validated, three-dimensional crystal plasticity, finite element study with aluminium alloy single crystals. Representative volume element (RVE) based simulations of single crystalline aluminium alloys (AA-5xxx) with different void geometries and orientations have been performed. Both local and nonlocal crystal plasticity constitutive models have been implemented in a finite element framework and are used to seek new insights into the interrelationships among void growth, initial porosity, initial void size, plastic anisotropy, and local/nonlocal size effects.

  12. Cr5系堆焊合金碳、铬过渡形式对高温磨损性能影响的研究%Research on Influence of Transition Way of Carbon and Chromium of Cr5 Series Hardfacing Alloy on High-temperature Wear Property

    Institute of Scientific and Technical Information of China (English)

    王清宝; 史耀武; 栗卓新; 王立志; 李侠; 肖静

    2012-01-01

    In the roll welding composite manufacture, in order to save precious carbon, improve cost-effective of hardfacing material, the submerged arc welding of flux-cored wires is used while the deposited metal remained unchanged in order to research the influence of different carbon, chromium adding ways to deposited metal microstructure and properties. Through the abrasion hardness, high tensile, high room temperature toughness and quantifying the amount of wear of the sample before and after, the relationship between microstructure, adding ways and wear resistance is analyzed combining the microstructure before and after wear, scanning electron microscopy and other aids. When Cr5 series hardfacing alloys are used, on the basis of keeping the compositions of hardfacing deposited metal unchanged basically, it is researched about the influence of different addition ways of carbon and chromium on microstructure and properties of hardfacing alloy. The results show that the high-temperature wear resistance of hardfacing metal is proportional to the high-temperature strength and hardness of the alloy at the temperature of 600 °C, and improved along with the increase of alloy toughness; for the flux-cored wire with direct addition of graphite and chromium powder, the wear resistance of hardfacing deposited metal is much better than that with direct addition of chromium carbide. High-temperature wear results from multiple factors including alloy oxidation, cutting, fatigue cracking and stripping, etc. Ideal high-temperature wear-resistant hardfacing material depends on not only the alloying system adopted by hardfacing metal, but also other factors such as microstructure, anti-oxidation property, high-temperature strength and toughness. Therefore, changing the addition way of alloys may strengthen deposited metal without need of modifying agents and external field excitation.%在轧辊堆焊复合制造中,为节约贵重碳化物及提高堆焊材料的性价比,在堆焊熔

  13. INTERFACIAL INTERACTION IN CASTING ALUMINA MATRIX COMPOSITE ALLOYS BASED ON THE SYSTEM AL-SIO2

    Directory of Open Access Journals (Sweden)

    A. V. Arabey

    2012-01-01

    Full Text Available The results of the analysis of the processes of interfacial interaction in casting alloys, based on the system Al- SiO2, obtained using heterophase (liquid-solid mixing technology components-silica sand and aluminum are presented.

  14. Moessbauer study of the orientation of the magnetic moments in Fe—based nanocrystalline alloys

    Institute of Scientific and Technical Information of China (English)

    HuBing-Yuan; ZhangGui-Lin; 等

    1997-01-01

    Magneto-impedance(MI) effect in Fe-based nanocrystalline Fe73 Cu1Nb1.5Mo2Si13.5B alloys has been observed by Moessbauer spectroscopy.The results show that the field dependence of the MI ratio is strongly influenced by the transverse magnetic structure in samples.

  15. ZnO-based semiconductors studied by Raman spectroscopy. Semimagnetic alloying, doping, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schumm, Marcel

    2009-07-01

    ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles). (orig.)

  16. Au-Ge based Candidate Alloys for High-Temperature Lead-Free Solder Alternatives

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure and microhard...

  17. Corrosion behaviour, microstructure and phase transitions of Zn-based alloys

    Indian Academy of Sciences (India)

    A K Yildiz; M Kaplan

    2004-08-01

    This paper is aimed at investigating the corrosion behaviour, microstructure and phase transitions of Zn-based alloys with different compositions. The corrosion tests are carried out both in acidic medium using 1 N HCl solution and in temperature dependence of thermogravimetric analysis (TGA). In the two different media, in particular, the corrosion behaviour of Zn-based alloys with respect to Al and Si contents is examined, and microstructure in acidic and TGA and phase transformations in TGA are also studied. Corrosion mechanism in TGA is also examined in terms of oxidation parameters and activation energies. The study reveals that corrosion behaviour of Zn-based alloys in acidic medium shows sometimes an increase and sometimes a decrease with time due to Al content which assists in delaying the corrosion by forming a oxide layer on the surface of Zn-based alloys. This property does not appear in temperature dependence of TGA. Further, Si content appears to remain in main matrix without being affected by acidic solution. On the other hand, it is observed that in microstructure, AlO(Al2O3), ZnO oxides and Zn–Cu phase precipitations are formed in main matrix, grain boundaries and partially inside the grains.

  18. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept.

  19. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: zhouyumei@mail.xjtu.edu.cn [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2