WorldWideScience

Sample records for chromatophores

  1. Sensitive-cell-based fish chromatophore biosensor

    Science.gov (United States)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  2. Colour gamuts in polychromatic dielectric elastomer artificial chromatophores

    Science.gov (United States)

    Rossiter, Jonathan; Conn, Andrew; Cerruto, Antonio; Winters, Amy; Roke, Calum

    2014-03-01

    Chromatophores are the colour changing organelles in the skins of animals including fish and cephalopods. The ability of cephalopods in particular to rapidly change their colouration in response to environmental changes, for example to camouflage against a new background, and in social situations, for example to attract a mate or repel a rival, is extremely attractive for engineering, medical, active clothing and biomimetic robotic applications. The rapid response of these chromatophores is possible by the direct coupling of fast acting muscle and pigmented saccules. In artificial chromatophores we are able to mimic this structure using electroactive polymer artificial muscles. In contrast to prior research which has demonstrated monochromatic artificial chromatophores, here we consider a novel multi-colour, multi-layer, artificial chromatophore structure inspired by the complex dermal chromatophore unit in nature and which exploits dielectric elastomer artificial muscles as the electroactive actuation mechanism. We investigate the optical properties of this chromatophore unit and explore the range of colours and effects that a single unit and a matrix of chromatophores can produce. The colour gamut of the multi-colour chromatophore is analysed and shows its suitability for practical display and camouflage applications. It is demonstrated how, by varying actuator strain and chromatophore base colour, the gamut can be shifted through colour space, thereby tuning the artificial chromatophore to a specific environment or application.

  3. The structure–function relationships of a natural nanoscale photonic device in cuttlefish chromatophores

    OpenAIRE

    Deravi, Leila F.; Magyar, Andrew P.; Sheehy, Sean P.; Bell, George R. R.; Mäthger, Lydia M.; Senft, Stephen L.; Trevor J Wardill; Lane, William S.; Kuzirian, Alan M.; Hanlon, Roger T.; Hu, Evelyn L.; Parker, Kevin Kit

    2014-01-01

    Cuttlefish, Sepia officinalis, possess neurally controlled, pigmented chromatophore organs that allow rapid changes in skin patterning and coloration in response to visual cues. This process of adaptive coloration is enabled by the 500% change in chromatophore surface area during actuation. We report two adaptations that help to explain how colour intensity is maintained in a fully expanded chromatophore when the pigment granules are distributed maximally: (i) pigment layers as thin as three ...

  4. Melanocortin systems on pigment dispersion in fish chromatophores

    OpenAIRE

    AkiyoshiTakahashi; YumikoSaito

    2012-01-01

    Alpha-Melanocyte-stimulating hormone (alpha-MSH) is responsible for pigment dispersion in the chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently, we discovered that alpha-MSH did not always stimulate pigment dispersion because this hormonal peptide exerted no effects on the melanophores of flounders. We assumed that the reduction of alpha-MSH activity was related to the co-expression of different alpha-MSH receptor subtypes—termed melanocortin receptors (MC...

  5. The structure-function relationships of a natural nanoscale photonic device in cuttlefish chromatophores.

    Science.gov (United States)

    Deravi, Leila F; Magyar, Andrew P; Sheehy, Sean P; Bell, George R R; Mäthger, Lydia M; Senft, Stephen L; Wardill, Trevor J; Lane, William S; Kuzirian, Alan M; Hanlon, Roger T; Hu, Evelyn L; Parker, Kevin Kit

    2014-04-01

    Cuttlefish, Sepia officinalis, possess neurally controlled, pigmented chromatophore organs that allow rapid changes in skin patterning and coloration in response to visual cues. This process of adaptive coloration is enabled by the 500% change in chromatophore surface area during actuation. We report two adaptations that help to explain how colour intensity is maintained in a fully expanded chromatophore when the pigment granules are distributed maximally: (i) pigment layers as thin as three granules that maintain optical effectiveness and (ii) the presence of high-refractive-index proteins-reflectin and crystallin-in granules. The latter discovery, combined with our finding that isolated chromatophore pigment granules fluoresce between 650 and 720 nm, refutes the prevailing hypothesis that cephalopod chromatophores are exclusively pigmentary organs composed solely of ommochromes. Perturbations to granular architecture alter optical properties, illustrating a role for nanostructure in the agile, optical responses of chromatophores. Our results suggest that cephalopod chromatophore pigment granules are more complex than homogeneous clusters of chromogenic pigments. They are luminescent protein nanostructures that facilitate the rapid and sophisticated changes exhibited in dermal pigmentation. PMID:24478280

  6. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum

    DEFF Research Database (Denmark)

    Selao, Tiago Toscano; Branca, Rui; Chae, Pil Seok;

    2011-01-01

    The chromatophore membrane of the photosynthetic diazotroph Rhodospirillum rubrum is of vital importance for a number of central processes, including nitrogen fixation. Using a novel amphiphile, we have identified protein complexes present under different nitrogen availability conditions by the u...

  7. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides

    OpenAIRE

    Ramirez, M. Desmond; Oakley, Todd H.

    2015-01-01

    Cephalopods are renowned for changing the color and pattern of their skin for both camouflage and communication. Yet, we do not fully understand how cephalopods control the pigmented chromatophore organs in their skin and change their body pattern. Although these changes primarily rely on eyesight, we found that light causes chromatophores to expand in excised pieces of Octopus bimaculoides skin. We call this behavior light-activated chromatophore expansion (or LACE). To uncover how octopus s...

  8. Chromatophoromas and chromatophore hyperplasia in Pacific rockfish (Sebastes spp.).

    Science.gov (United States)

    Okihiro, M S; Whipple, J A; Groff, J M; Hinton, D E

    1993-04-15

    Pacific rockfish from Cordell Bank, off central California (United States), were collected and histologically examined from 1985 to 1990. Hyperplastic and neoplastic cutaneous lesions, involving dermal chromatophores, were observed in five species; yellowtail rockfish (Sebastes flavidus), bocaccio (S. paucispinis), olive rockfish (S. serranoides), widow rockfish (S. entomelas), and chilipepper rockfish (S. goodei). Yearly prevalences were highest in S. paucispinis (29-38%). Prevalence was initially low in S. flavidus, but increased more than 3-fold from 1985 (7.5%) to 1990 (25%). The majority of lesions were black, but white, yellow, orange, red, and mixed-color variants were also seen. Lesions were found in skin, fins, lips, gingiva, tongue, urogenital papilla, conjunctiva, and cornea of the eye. Flat lesions were consistent with melanophore (black), xanthophore (yellow or orange), and erythrophore (red) hyperplasia. Neoplastic lesions included melanophoromas, amelanotic melanophoromas, xanthophoromas, erythrophoromas, and mixed chromatophoromas. Although etiology has not been determined, interest is currently focused on potential exposure to chemical and radioactive carcinogens from the Farallon Island Radioactive Waste Dump, 30 km to the south.

  9. A Fluorescent Chromatophore Changes the Level of Fluorescence in a Reef Fish

    OpenAIRE

    Wucherer, Matthias F; Michiels, Nico K.

    2012-01-01

    Body coloration plays a major role in fish ecology and is predominantly generated using two principles: a) absorbance combined with reflection of the incoming light in pigment colors and b) scatter, refraction, diffraction and interference in structural colors. Poikilotherms, and especially fishes possess several cell types, so-called chromatophores, which employ either of these principles. Together, they generate the dynamic, multi-color patterns used in communication and camouflage. Several...

  10. A fluorescent chromatophore changes the level of fluorescence in a reef fish.

    Science.gov (United States)

    Wucherer, Matthias F; Michiels, Nico K

    2012-01-01

    Body coloration plays a major role in fish ecology and is predominantly generated using two principles: a) absorbance combined with reflection of the incoming light in pigment colors and b) scatter, refraction, diffraction and interference in structural colors. Poikilotherms, and especially fishes possess several cell types, so-called chromatophores, which employ either of these principles. Together, they generate the dynamic, multi-color patterns used in communication and camouflage. Several chromatophore types possess motile organelles, which enable rapid changes in coloration. Recently, we described red fluorescence in a number of marine fish and argued that it may be used for private communication in an environment devoid of red. Here, we describe the discovery of a chromatophore in fishes that regulates the distribution of fluorescent pigments in parts of the skin. These cells have a dendritic shape and contain motile fluorescent particles. We show experimentally that the fluorescent particles can be aggregated or dispersed through hormonal and nervous control. This is the first description of a stable and natural cytoskeleton-related fluorescence control mechanism in vertebrate cells. Its nervous control supports suggestions that fluorescence could act as a context-dependent signal in some marine fish species and encourages further research in this field. The fluorescent substance is stable under different chemical conditions and shows no discernible bleaching under strong, constant illumination. PMID:22701587

  11. A fluorescent chromatophore changes the level of fluorescence in a reef fish.

    Directory of Open Access Journals (Sweden)

    Matthias F Wucherer

    Full Text Available Body coloration plays a major role in fish ecology and is predominantly generated using two principles: a absorbance combined with reflection of the incoming light in pigment colors and b scatter, refraction, diffraction and interference in structural colors. Poikilotherms, and especially fishes possess several cell types, so-called chromatophores, which employ either of these principles. Together, they generate the dynamic, multi-color patterns used in communication and camouflage. Several chromatophore types possess motile organelles, which enable rapid changes in coloration. Recently, we described red fluorescence in a number of marine fish and argued that it may be used for private communication in an environment devoid of red. Here, we describe the discovery of a chromatophore in fishes that regulates the distribution of fluorescent pigments in parts of the skin. These cells have a dendritic shape and contain motile fluorescent particles. We show experimentally that the fluorescent particles can be aggregated or dispersed through hormonal and nervous control. This is the first description of a stable and natural cytoskeleton-related fluorescence control mechanism in vertebrate cells. Its nervous control supports suggestions that fluorescence could act as a context-dependent signal in some marine fish species and encourages further research in this field. The fluorescent substance is stable under different chemical conditions and shows no discernible bleaching under strong, constant illumination.

  12. Synchronous changes in coral chromatophore tissue density and skeletal banding as an adaptive response to environmental change

    Science.gov (United States)

    Ardisana, R. N.; Miller, C. A.; Sivaguru, M.; Fouke, B. W.

    2013-12-01

    Corals are a key reservoir of biodiversity in coastal, shallow water tropical marine environments, and density banding in their aragonite skeletons is used as a sensitive record of paleoclimate. Therefore, the cellular response of corals to environmental change and its expression in skeletal structure is of significant importance. Chromatophores, pigment-bearing cells within the ectoderm of hermatypic corals, serve to both enhance the photosynthetic activity of zooxanthellae symbionts, as well as protect the coral animal from harmful UV radiation. Yet connections have not previously been drawn between chromatophore tissue density and the development of skeletal density bands. A histological analysis of the coral Montastrea faveolata has therefore been conducted across a bathymetric gradient of 1-20 m on the southern Caribbean island of Curaçao. A combination of field and laboratory photography, serial block face imaging (SBFI), two-photon laser scanning microscopy (TPLSM), and 3D image analysis has been applied to test whether M. faveolata adapts to increasing water depth and decreasing photosynthetically active radiation by shifting toward a more heterotrophic lifestyle (decreasing zooxanthellae tissue density, increasing mucocyte tissue density, and decreasing chromatophores density). This study is among the first to collect and evaluate histological data in the spatial context of an entire unprocessed coral polyp. TPLSM was used to optically thin section unprocessed tissue biopsies with quantitative image analysis to yield a nanometer-scale three-dimensional map of the quantity and distribution of the symbionts (zooxanthellae) and a host fluorescent pigments (chromatophores), which is thought to have photoprotective properties, within the context of an entire coral polyp. Preliminary results have offered new insight regarding the three-dimensional distribution and abundance of chromatophores and have identified: (1) M. faveolata tissue collected from 8M SWD do

  13. The first see-through frog created by breeding: description, inheritance patterns, and dermal chromatophore structure.

    Science.gov (United States)

    Sumida, Masayuki; Islam, Mohammed Mafizul; Igawa, Takeshi; Kurabayashi, Atsushi; Furukawa, Yukari; Sano, Naomi; Fujii, Tamotsu; Yoshizaki, Norio

    2016-01-01

    We have succeeded in creating see-through frogs from natural color mutants of the Japanese brown frog Rana japonica, which usually possesses an ochre or brown back; this coloration enables the organs, blood vessels, and eggs to be observed through the skin without performing dissection. We crossed two kinds of recessive color mutant (black-eyed and gray-eyed) frogs through artificial insemination, and F2 offspring produced frogs whose skin is translucent throughout the life cycle. Three kinds of dermal chromatophores-xanthophores, iridophores, and melanophores-are observed in a layered arrangement in the skin of wild-type frogs, but few chromatophores were present in the skin of the see-through frogs. The translucent skin enables observation of organ growth and cancer formation and progression in the animal, which can be monitored over its entire life without the need for dissection. See-through frogs thus provide a useful animal model for environmental, medical, and biological research. PMID:27080918

  14. Possible involvement of cone opsins in distinct photoresponses of intrinsically photosensitive dermal chromatophores in tilapia Oreochromis niloticus.

    Directory of Open Access Journals (Sweden)

    Shyh-Chi Chen

    Full Text Available Dermal specialized pigment cells (chromatophores are thought to be one type of extraretinal photoreceptors responsible for a wide variety of sensory tasks, including adjusting body coloration. Unlike the well-studied image-forming function in retinal photoreceptors, direct evidence characterizing the mechanism of chromatophore photoresponses is less understood, particularly at the molecular and cellular levels. In the present study, cone opsin expression was detected in tilapia caudal fin where photosensitive chromatophores exist. Single-cell RT-PCR revealed co-existence of different cone opsins within melanophores and erythrophores. By stimulating cells with six wavelengths ranging from 380 to 580 nm, we found melanophores and erythrophores showed distinct photoresponses. After exposed to light, regardless of wavelength presentation, melanophores dispersed and maintained cell shape in an expansion stage by shuttling pigment granules. Conversely, erythrophores aggregated or dispersed pigment granules when exposed to short- or middle/long-wavelength light, respectively. These results suggest that diverse molecular mechanisms and light-detecting strategies may be employed by different types of tilapia chromatophores, which are instrumental in pigment pattern formation.

  15. Energy transfer properties of Rhodobacter sphaeroides chromatophores during adaptation to low light intensity.

    Science.gov (United States)

    Driscoll, B; Lunceford, C; Lin, S; Woronowicz, K; Niederman, R A; Woodbury, N W

    2014-08-28

    Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1-RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed. PMID:25008288

  16. Functional interfacing of Rhodospirillum rubrum chromatophores to a conducting support for capture and conversion of solar energy.

    Science.gov (United States)

    Harrold, John W; Woronowicz, Kamil; Lamptey, Joana L; Awong, John; Baird, James; Moshar, Amir; Vittadello, Michele; Falkowski, Paul G; Niederman, Robert A

    2013-09-26

    Owing to the considerable current interest in replacing fossil fuels with solar radiation as a clean, renewable, and secure energy source, light-driven electron transport in natural photosynthetic systems offers a valuable blueprint for conversion of sunlight to useful energy forms. In particular, intracytoplasmic membrane vesicles (chromatophores) from the purple bacterium Rhodospirillum rubrum provide a fully functional and robust photosynthetic apparatus, ideal for biophysical investigations of energy transduction and incorporation into biohybrid photoelectrochemical devices. These vesicular organelles, which arise by invagination of the cytoplasmic membrane, are the sites of the photochemical reaction centers and the light harvesting 1 (LH1) complex. The LH1 protein is responsible for collecting visible and near-IR radiant energy and funneling these excitations to the reaction center for conversion into a transmembrane charge separation. Here, we have investigated the morphology, fluorescence kinetics and photocurrent generation of chromatophores from Rsp. rubrum deposited directly onto gold surfaces in the absence of chemical surface modifications. Atomic force microscopy showed a significant coverage of the gold electrode surface by Rsp. rubrum chromatophores. By in situ fluorescence induction/relaxation measurements, a high retention of the quantum yield of photochemistry was demonstrated in the photoactive films. Chronoamperometric measurements showed that the assembled bioelectrodes were capable of generating sustained photocurrent under white light illumination at 220 mW/cm(2) with a maximum current of 1.5 μA/cm(2), which slowly declines in about 1 week. This study demonstrates the possibility of photoelectrochemical control of robust chromatophore preparations from Rsp. rubrum that paves the way for future incorporation into functional solar cells. PMID:23789750

  17. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides.

    Science.gov (United States)

    Ramirez, M Desmond; Oakley, Todd H

    2015-05-15

    Cephalopods are renowned for changing the color and pattern of their skin for both camouflage and communication. Yet, we do not fully understand how cephalopods control the pigmented chromatophore organs in their skin and change their body pattern. Although these changes primarily rely on eyesight, we found that light causes chromatophores to expand in excised pieces of Octopus bimaculoides skin. We call this behavior light-activated chromatophore expansion (or LACE). To uncover how octopus skin senses light, we used antibodies against r-opsin phototransduction proteins to identify sensory neurons that express r-opsin in the skin. We hypothesized that octopus LACE relies on the same r-opsin phototransduction cascade found in octopus eyes. By creating an action spectrum for the latency to LACE, we found that LACE occurred most quickly in response to blue light. We fit our action spectrum data to a standard opsin curve template and estimated the λmax of LACE to be 480 nm. Consistent with our hypothesis, the maximum sensitivity of the light sensors underlying LACE closely matches the known spectral sensitivity of opsin from octopus eyes. LACE in isolated preparations suggests that octopus skin is intrinsically light sensitive and that this dispersed light sense might contribute to their unique and novel patterning abilities. Finally, our data suggest that a common molecular mechanism for light detection in eyes may have been co-opted for light sensing in octopus skin and then used for LACE.

  18. Early ontogeny of chromatophores and body color changes of Acanthopagrus schlegelii%黑棘鲷早期色素细胞发育与体色变化

    Institute of Scientific and Technical Information of China (English)

    于道德; 刘洪军; 关健; 王其翔; 官曙光; 周健

    2012-01-01

    对黑棘鲷早期发育过程中体色和色素细胞的分布及形态变化进行了连续观察.结果表明,黑棘鲷幼体黑色素在原口关闭前期开始出现,黄色素在嗅囊期出现,彩虹色素出现较晚,孵化后6d(Day post hatching,dph)在眼球上端出现,而后密集于腹腔(28 dph)以及鳃盖骨附近(32 dph).黑色素细胞在发育过程中,不仅数量增多,而且形状也由点状逐渐变成以树枝状和雪花状为主,为幼体黑色素的发育过程;28 dph幼体黑色素完全被成体黑色素替代,形态上再次变为小点状.黄色素几乎伴随着黑色素的分布,色素细胞几乎无形态变化,最终被黑色素覆盖而不明显.初孵仔鱼,尾端6~8体节躯干部具有黑色素丛,构成了该鱼的种属特征.在28 dph,体色发育进入到模式形成期,首先在躯干部形成相互间隔的3个色素带,至40 dph共7条色素带形成,完成体色的模式发育.%The morphological characteristics and distribution of chromatophores, as well as body color changes during early life history(0~40dph) of Acanthopagrus schlegelii were observed and photographed. The larval melanophores occurred firstly at blastopore colsure stage. Larval xanthophores occurred at olfactory vesicle stage, and iridophores at 6dph on the upper side of eye, then on the abdominal cavity (28dph) and around the opercle (32dph). Melanophores appeared as spots, then formed dendrites, and the number of cells with dendrites increased during the ontogenetic process. At 28dph, the larval melanophores were substituted by adult spotted melanophores. Xanthophores coocurred with the melanophores during the early ontogeny, then obscured due to the overlapping by melanophores with no obvious morphological changes during the en-tire study. Melanin aggregation at 6~8 segements from the tail in newly-hatched larvae became a special characteristics of this species. At 28dph, the larval body color developed into the pattern formation stage, and

  19. 月光鱼色素细胞分布及特征的显微观察%Observation of the Distribution and Microstructure of Chromatophores in Xiphophorus maculatus

    Institute of Scientific and Technical Information of China (English)

    郑曙明; 吴青; 李小兵; 魏夕铭; 张铁岩

    2014-01-01

    The chromatophores of the skin ,the scale ,the dorsal fin ,the caudal fin ,the ventral fin ,the pectoral fin and the anal fin in Xiphophorus maculatus was observed by the microscope .Four kinds of pig‐ment cells ,namely melanophore ,xanthophore ,erythrophore and iridophore ,were detected on the surface of the skin and the scale ,and melanophore ,xanthophore and erythrophore on the fins .The melanophores were relatively big in size and black in color ,with round pigment granules in them .They were of two types :dendritic and non‐dendritic .The xanthophores ,with round yellow pigment granules ,were yellow or orange .The cells were mostly oval in shape ,but some were of irregular shape .Some yellow pigment particles were found to cluster in diffuse distribution .The erythrophores ,with round red pigment gran‐ules ,were orange‐red or dark‐red in color and mostly oval in shape .Some cells and red pigment particles clustered into cestiform or in diffuse distribution .Some cells were yellow or orange at the center ,with dense red pigment particles distributed around it ,thus forming composite pigment cells .The iridophores , with short rod‐like light‐blue pigment granules ,were very small in size ,oval in shape and blue‐gray in col‐or .A large number of the pigment particles were dispersed on the skin and the scale .%在显微镜下对月光鱼皮肤、鳞片、背鳍、尾鳍、腹鳍、胸鳍和臀鳍上的色素细胞进行了详细观察。结果表明,皮肤和鳞片上有黑色素细胞、黄色素细胞、红色素细胞和虹彩细胞4种色素细胞,各鳍有除虹彩细胞外的其余3种色素细胞。黑色素细胞较大,黑色,产生圆形黑色素颗粒,细胞有树突状分支和无分支2种类型;黄色素细胞为黄色或桔黄色,产生圆形黄色素颗粒,细胞多为卵圆形、有的呈不规则形,也有黄色素颗粒聚集成弥散状;红色素细胞为橙红色或深红色,产生圆形红色素颗粒,

  20. Application of immuno-rotary biosensor based on F0F1 -ATPase in chromatophores for detecting HIV-1 P24%免疫旋转生物传感器高灵敏检测HIV-1 P24抗原方法的研究

    Institute of Scientific and Technical Information of China (English)

    桑云虎; 张晓梅; 张晓光; 马晶; 李学仁; 乐家昌; 曾毅

    2010-01-01

    目的 通过构建免疫旋转生物传感器,建立一种高灵敏度的HIV-1 P24定量检测方法.方法 将生物素标记的HIV-1 P24单克隆抗体通过亲和素-生物素-β亚基抗体(Streptavidin-biotin-β antibody)的方式连接到光合作用复合体(Chromatophores)的β亚基上,同时用pH敏感的荧光索F1300标记到Chromatophores上,构建了用于检测P24的免疫旋转生物传感器,并用原核表达的P24抗原对该传感器进行了灵敏度、特异性实验.结果 构建的免疫旋转生物传感器可以将P24抗原结合ATPase造成的旋转速率变化转变为光强度的变化,可以高灵敏的检测HIV-1P24抗原,最低检出度可达0.1 fg/ml.结论 成功建立了基于免疫生物传感器(Immuno-rotary Biosensor,IRB)系统的HIV-1 P24检测方法,该方法操作简单,灵敏度高,为建立基于分子马达HIV-1 P24定量检测方法打下基础.%Objective To build a high sensitive method to detect HIV-1 P24 antigen quantitatively by Immuno-rotary Biosensor (IRB) based on F0F1-ATPase. Methods The immuno-rotary biosensor based on F0F1-ATPase in chromatophores for detecting HIV-1 P24 was assembled by label F0F1-ATPase chromatophores with the biotin-labled HIV-1 P24 antibody through the streptavidin-biotin-β antibody and the pH sensitivity of fluorescence F1300. Then it's sensitivity and specificity was tested by the prokaryotic expressed HIV-1 P24 antigen. Results Immuno-rotary biosensor based on F0F1-ATPase in chromatophores can detect P24 antigen sensitivily, the lowest level that could be detected was 0.1 fg/ml. Conclusion IRBbased system was successfully assembled and used for the detection of P24 antigen, the rapid and sensitive technique will be useful for detecting HIV-1 P24 antigen quantitatively.

  1. The first see-through frog created by breeding: description, inheritance patterns, and dermal chromatophore structure

    OpenAIRE

    Masayuki Sumida; Mohammed Mafizul Islam; Takeshi Igawa; Atsushi Kurabayashi; Yukari Furukawa; Naomi Sano; Tamotsu Fujii; Norio Yoshizaki

    2016-01-01

    We have succeeded in creating see-through frogs from natural color mutants of the Japanese brown frog Rana japonica, which usually possesses an ochre or brown back; this coloration enables the organs, blood vessels, and eggs to be observed through the skin without performing dissection. We crossed two kinds of recessive color mutant (black-eyed and gray-eyed) frogs through artificial insemination, and F2 offspring produced frogs whose skin is translucent throughout the life cycle. Three kinds...

  2. Role of catecholamines and nitric oxide on pigment displacement of the chromatophores of freshwater snakehead teleost fish, Channa punctatus.

    Science.gov (United States)

    Biswas, Saikat P; Jadhao, Arun G; Palande, Nikhil V

    2014-04-01

    We are reporting for the first time that the catecholamines (adrenaline and noradrenaline) inhibit the effect of nitric oxide (NO) on melanosome dispersion in freshly isolated scales of the freshwater snakehead fish, Channa punctatus. We studied the effect of NO and catecholamines on the pigment displacement by observing the changes in the melanophore index. The scales when treated with solution containing NO donor sodium nitroprusside (SNP) showed dispersion of melanosomes, whereas NO synthase blocker N-omega-Nitro-L-arginine suppresses this action of SNP. Treatment with adrenaline and noradrenaline on the isolated scales caused aggregation of melanosomes. Scales treated with solution containing catecholamines and SNP resulted in aggregation of melanosomes suggesting that catecholamines mask the effect of SNP. These results suggest that the catecholamines are inhibiting the effect of NO and causing the aggregation of the melanosomes may be via surface receptors.

  3. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids.

    Science.gov (United States)

    Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona

    2015-11-01

    Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern

  4. Protein translocons in photosynthetic organelles of Paulinella chromatophora

    Directory of Open Access Journals (Sweden)

    Przemysław Gagat

    2014-12-01

    Full Text Available The rhizarian amoeba Paulinella chromatophora harbors two photosynthetic cyanobacterial endosymbionts (chromatophores, acquired independently of primary plastids of glaucophytes, red algae and green plants. These endosymbionts have lost many essential genes, and transferred substantial number of genes to the host nuclear genome via endosymbiotic gene transfer (EGT, including those involved in photosynthesis. This indicates that, similar to primary plastids, Paulinella endosymbionts must have evolved a transport system to import their EGT-derived proteins. This system involves vesicular trafficking to the outer chromatophore membrane and presumably a simplified Tic-like complex at the inner chromatophore membrane. Since both sequenced Paulinella strains have been shown to undergo differential plastid gene losses, they do not have to possess the same set of Toc and Tic homologs. We searched the genome of Paulinella FK01 strain for potential Toc and Tic homologs, and compared the results with the data obtained for Paulinella CCAC 0185 strain, and 72 cyanobacteria, eight Archaeplastida as well as some other bacteria. Our studies revealed that chromatophore genomes from both Paulinella strains encode the same set of translocons that could potentially create a simplified but fully-functional Tic-like complex at the inner chromatophore membranes. The common maintenance of the same set of translocon proteins in two Paulinella strains suggests a similar import mechanism and/or supports the proposed model of protein import. Moreover, we have discovered a new putative Tic component, Tic62, a redox sensor protein not identified in previous comparative studies of Paulinella translocons.

  5. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus

    International Nuclear Information System (INIS)

    This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin–streptavidin–biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses. (paper)

  6. Improvement of Bioactive Compound Classification through Integration of Orthogonal Cell-Based Biosensing Methods

    Directory of Open Access Journals (Sweden)

    Goran N. Jovanovic

    2007-01-01

    Full Text Available Lack of specificity for different classes of chemical and biological agents, and false positives and negatives, can limit the range of applications for cell-based biosensors. This study suggests that the integration of results from algal cells (Mesotaenium caldariorum and fish chromatophores (Betta splendens improves classification efficiency and detection reliability. Cells were challenged with paraquat, mercuric chloride, sodium arsenite and clonidine. The two detection systems were independently investigated for classification of the toxin set by performing discriminant analysis. The algal system correctly classified 72% of the bioactive compounds, whereas the fish chromatophore system correctly classified 68%. The combined classification efficiency was 95%. The algal sensor readout is based on fluorescence measurements of changes in the energy producing pathways of photosynthetic cells, whereas the response from fish chromatophores was quantified using optical density. Change in optical density reflects interference with the functioning of cellular signal transduction networks. Thus, algal cells and fish chromatophores respond to the challenge agents through sufficiently different mechanisms of action to be considered orthogonal.

  7. Advances in comparative and environmental physiology. Vol. 20

    Energy Technology Data Exchange (ETDEWEB)

    Arpigny, J.L.; Coyette, J.; Davail, S.; Feller, G.; Fonze, E.; Foulkes, E.C.; Frere, J.M.; Fujii, R.; Genicot, S.; Gerday, C.; Joris, B.; Lamotte-Brasseur, J.; Maina, J.N.; Narinx, E.; Nguyen-Disteche, M.; Oshima, N.; Viarengo, A.; Zekhnini, Z.

    1994-12-31

    The present volume contains six reviews on : 1. Motile Activities of Fish Chromatophores; 2. Epithelial Transport of Heavy Metals; 3. Heavy Metal Cytotoxicity in Marine Organisms; 4. Comparative Pulmonary Morphology and Morphometry; 5. Molecular Adaptations in Resistance to Penicillins; 6. Molecular Adaptations of Enzymes from Thermophilic and Psychrophilic Organisms. (orig.). 56 figs.

  8. Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach.

    Science.gov (United States)

    Verméglio, André; Lavergne, Jérôme; Rappaport, Fabrice

    2016-01-01

    The photosynthetic apparatus in the bacterium Rhodobacter sphaeroides is mostly present in intracytoplasmic membrane invaginations. It has long been debated whether these invaginations remain in topological continuity with the cytoplasmic membrane, or form isolated chromatophore vesicles. This issue is revisited here by functional approaches. The ionophore gramicidin was used as a probe of the relative size of the electro-osmotic units in isolated chromatophores, spheroplasts, or intact cells. The decay of the membrane potential was monitored from the electrochromic shift of carotenoids. The half-time of the decay induced by a single channel in intact cells was about 6 ms, thus three orders of magnitude slower than in isolated chromatophores. In spheroplasts obtained by lysis of the cell wall, the single channel decay was still slower (~23 ms) and the sensitivity toward the gramicidin concentration was enhanced 1,000-fold with respect to isolated chromatophores. These results indicate that the area of the functional membrane in cells or spheroplasts is about three orders of magnitude larger than that of isolated chromatophores. Intracytoplasmic vesicles, if present, could contribute to at most 10% of the photosynthetic apparatus in intact cells of Rba. sphaeroides. Similar conclusions were obtained from the effect of a ∆pH-induced diffusion potential in intact cells. This caused a large electrochromic response of carotenoids, of similar amplitude as the light-induced change, indicating that most of the system is sensitive to a pH change of the external medium. A single internal membrane and periplasmic space may offer significant advantages concerning renewal of the photosynthetic apparatus and reallocation of the components shared with other bioenergetic pathways. PMID:25512104

  9. Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme.

    Science.gov (United States)

    Baykov, A A; Dubnova, E B; Bakuleva, N P; Evtushenko, O A; Zhen, R G; Rea, P A

    1993-07-26

    1,1-Diphosphonate analogs of pyrophosphate, containing an amino or a hydroxyl group on the bridge carbon atom, are potent inhibitors of the H(+)-translocating pyrophosphatases of chromatophores prepared from the bacterium Rhodospirillum rubrum and vacuolar membrane vesicles prepared from the plant Vigna radiata. The inhibition constant for aminomethylenediphosphonate, which binds competitively with respect to substrate, is below 2 microM. Rat liver mitochondrial pyrophosphatase is two orders of magnitude less sensitive to this compound but extremely sensitive to imidodiphosphate. By contrast, fluoride is highly effective only against the mitochondrial pyrophosphatase. It is concluded that the mitochondrial pyrophosphatase and the H(+)-pyrophosphatases of chromatophores and vacuolar membranes belong to two different classes of enzyme. PMID:8392953

  10. The lantern shark's light switch: turning shallow water crypsis into midwater camouflage.

    Science.gov (United States)

    Claes, Julien M; Mallefet, Jérôme

    2010-10-23

    Bioluminescence is a common feature in the permanent darkness of the deep-sea. In fishes, light is emitted by organs containing either photogenic cells (intrinsic photophores), which are under direct nervous control, or symbiotic luminous bacteria (symbiotic photophores), whose light is controlled by secondary means such as mechanical occlusion or physiological suppression. The intrinsic photophores of the lantern shark Etmopterus spinax were recently shown as an exception to this rule since they appear to be under hormonal control. Here, we show that hormones operate what amounts to a unique light switch, by acting on a chromatophore iris, which regulates light emission by pigment translocation. This result strongly suggests that this shark's luminescence control originates from the mechanism for physiological colour change found in shallow water sharks that also involves hormonally controlled chromatophores: the lantern shark would have turned the initial shallow water crypsis mechanism into a midwater luminous camouflage, more efficient in the deep-sea environment.

  11. LIGHT MICROSCOPE OBSERVATIONS ON CYTOLOGICAL MANIFESTATIONS OF NITRATE, PHOSPHATE, AND SILICATE DEFICIENCY IN FOUR MARINE CENTRIC DIATOMS.

    Science.gov (United States)

    Holmes, R W

    1966-12-01

    Cytological changes induced by nitrate or phosphate limitation were reproducible and readily visible by phase contrast microscopy in Coscinodiscus wailesii, Ditylum brightwellii, Rhizosolenia hebetata f. semi-spina, Skeletonema costatum, and Stephanopyxis turris. These effects included changes in chromatophore number and shape, pyrenoid location, and mitochondrial abundance and appearance. In S. costatum, a diatom containing only 1 chromatophore, only nitrogen-deficient cells could be recognized. Silicate deficiency prevented cell division almost entirely. When a few cells did divide in the presence of low silicate, abnormalities in valve structure occurred in some cells. Cytological differences with N and P deficiency may permit a rough assessment of the physiological condition of the same or similar species in natural diatom communities. PMID:27053480

  12. Recollections.

    Science.gov (United States)

    Frenkel, A W

    1993-02-01

    About 1939, Sam Ruben and Martin Kamen introduced me to the emergent application of artificial radio-isotopes in the study of photosynthesis. While my own experiments on CO2 fixation by isolated chloroplasts turned out to be negative, their laboratory provided me with an informative and exciting experience. Also, there were many stimulating contacts with Cornelis van Niel, Robert Emerson, Don DeVault and many other outstanding scientists. Efforts on my part to obtain a better understanding of intermediary metabolism, eventually led me to Fritz Lipmann's laboratory. There I was encouraged to study the metabolic activities of cell-free preparations of photosynthetic purple bacteria. Investigations of oxidative phosphorylation by isolated bacterial chromatophores in the dark raised questions about the possible effects of light on the phosphorylation activities of such preparations. Surprisingly, high rates of phosphorylation were observed in the light in the absence of molecular oxygen ('light-induced phosphorylation'). In this process, adenosine diphosphate (ADP) and inorganic phosphate (Pi) could be converted quantitatively into adenosine triphosphate (ATP). It was postulated that this process was 'cyclic' in nature, as only catalytic concentrations of added electron donors were required. Later, at Minnesota, it could be shown that similar chromatophore preparations, in the presence of suitable electron donors, could reduce nicotinamide-adenine dinucleotide (NAD(+)) to NADH in the light. It was then demonstrated that the chromatophores of Rhodospirilum rubrum, as well as the smaller membrane components derived from them, must contain the active metabolic components for these photosynthetic reactions.These observations, and studies on the kinetics of the formation and decay of light-induced free radicals, appeared to demonstrate the usefulness of bacterial chromatophores and of their membrane fragments in the study of partial reactions of bacterial photosynthesis

  13. A highly distributed Bragg stack with unique geometry provides effective camouflage for Loliginid squid eyes

    OpenAIRE

    Holt, Amanda L.; Alison M. Sweeney; Johnsen, Sönke; Morse, Daniel E.

    2011-01-01

    Cephalopods possess a sophisticated array of mechanisms to achieve camouflage in dynamic underwater environments. While active mechanisms such as chromatophore patterning and body posturing are well known, passive mechanisms such as manipulating light with highly evolved reflectors may also play an important role. To explore the contribution of passive mechanisms to cephalopod camouflage, we investigated the optical and biochemical properties of the silver layer covering the eye of the Califo...

  14. Physiological response of the Caribbean Coral O. annularis to Pollution Gradients

    Science.gov (United States)

    Murphy, E. L.; Sivaguru, M.; Fouke, B. W.

    2014-12-01

    Orbicella annularis is an abundant ecological cornerstone framework-building Scleractinian coral throughout the Caribbean Sea. The O. annularis holobiont (biotic and abiotic components of the coral) is negatively impacted by increased exposure to anthropogenic pollution. This is consistently evidenced by altered tissue cellular composition, and skeletal structure. The O. annularis' holobiont is weakened by increased exposure to sewage and ship bilge pollution. Pollution exposure is characterized by decreased skeletal growth, as well as decreased zooxanthellae and chromatophore tissue cell densities. Healthy colonies studied at five sites on the leeward coast of Curacao, along a systematically decreasing pollution concentration, were sampled from the back-reef depositional facies of a protected fringing reef tract. A unidirectional oceanographic current flows to the NW past the city of Willemstad, a large point source of human sewage and ship bilge. This setting creates an ideal natural laboratory for in situ experimentation that quantitatively tracks the impact to coral physiology along a gradient from unimpacted to polluted seawater. Our lab has established laser scanning microscopy for three-dimensional (3D) quantification of zooxanthellae, and chromatophore cellular tissue density. X-ray computed tomography (BioCT) was used for analysis of skeletal density. Zooxanthellae density decreased as pollution concentration increased. Chromatophore density showed no significant relationship with pollution concentration but varied dramatically within each site. This suggests zooxanthellae density is highly impacted by environmental stress while variation in chromatophore density is driven by genetic variation. These results will be used to create a new model for environmental impacts on coral physiology and skeletal growth.

  15. Mechanisms and behavioural functions of structural coloration in cephalopods

    OpenAIRE

    Mäthger, Lydia M.; Denton, Eric J.; Marshall, N. Justin; Hanlon, Roger T.

    2008-01-01

    Octopus, squid and cuttlefish are renowned for rapid adaptive coloration that is used for a wide range of communication and camouflage. Structural coloration plays a key role in augmenting the skin patterning that is produced largely by neurally controlled pigmented chromatophore organs. While most iridescence and white scattering is produced by passive reflectance or diffusion, some iridophores in squid are actively controlled via a unique cholinergic, non-synaptic neural system. We review t...

  16. ChromaPhy - A Living Wearable Connecting Humans and Their Environment

    OpenAIRE

    Schubert, Theresa

    2014-01-01

    This research presents an artistic project aiming to make cyberfiction become reality and exemplifying a current trend in art and science collaborations. Chroma+Phy is a speculative design for a living wearable that combines the protoplasmic structure of the amoeboid acellular organism Physarum polycephalum and the chromatophores of the reptile Chameleon. The underpin-ning idea is that in a future far away or close, on planet earth or in outer space, humans will need some tools to help them i...

  17. How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings?

    Science.gov (United States)

    Mäthger, Lydia M; Bell, George R R; Kuzirian, Alan M; Allen, Justine J; Hanlon, Roger T

    2012-11-01

    The blue-ringed octopus (Hapalochlaena lunulata), one of the world's most venomous animals, has long captivated and endangered a large audience: children playing at the beach, divers turning over rocks, and biologists researching neurotoxins. These small animals spend much of their time in hiding, showing effective camouflage patterns. When disturbed, the octopus will flash around 60 iridescent blue rings and, when strongly harassed, bite and deliver a neurotoxin that can kill a human. Here, we describe the flashing mechanism and optical properties of these rings. The rings contain physiologically inert multilayer reflectors, arranged to reflect blue-green light in a broad viewing direction. Dark pigmented chromatophores are found beneath and around each ring to enhance contrast. No chromatophores are above the ring; this is unusual for cephalopods, which typically use chromatophores to cover or spectrally modify iridescence. The fast flashes are achieved using muscles under direct neural control. The ring is hidden by contraction of muscles above the iridophores; relaxation of these muscles and contraction of muscles outside the ring expose the iridescence. This mechanism of producing iridescent signals has not previously been reported in cephalopods and we suggest that it is an exceptionally effective way to create a fast and conspicuous warning display.

  18. The influence of chromatic background on the photosensitivity of tilapia erythrophores

    Directory of Open Access Journals (Sweden)

    Shyh-Chi Chen

    2014-01-01

    Non-mammalian vertebrates and invertebrates use extraretinal photoreceptors to detect light and perform diverse non-image-forming functions. Compared to well-studied visual systems, the effect of ambient light conditions on photosensory systems of extraretinal photoreceptors is poorly understood. Chromatophores are photosensitive dermal pigment cells that play an important role in the formation of body color patterns to fit the surrounding environment. Here, we used tilapia erythrophores to investigate the relationship between environmental light and chromatophore photoresponses. All erythrophores from three spectral conditions aggregated their pigment granules in UV/short wavelengths and dispersed in middle/long wavelengths. Unlike retinal visual systems, environmental light did not change the usage of the primary opsins responsible for aggregation and dispersion. In addition, short wavelength-rich and red-shifted background conditions led to an inhibitory effect on erythrophore photoresponses. We suggest that, as extraretinal photoreceptors for non-image-forming functions, chromatophores directly adjust their photoresponse sensitivity via changes in opsin expression levels rather than opsin types when environmental light changes.

  19. Ionic liquids effects on the permeability of photosynthetic membranes probed by the electrochromic shift of endogenous carotenoids.

    Science.gov (United States)

    Malferrari, Marco; Malferrari, Danilo; Francia, Francesco; Galletti, Paola; Tagliavini, Emilio; Venturoli, Giovanni

    2015-11-01

    Ionic liquids (ILs) are promising materials exploited as solvents and media in many innovative applications, some already used at the industrial scale. The chemical structure and physicochemical properties of ILs can differ significantly according to the specific applications for which they have been synthesized. As a consequence, their interaction with biological entities and toxicity can vary substantially. To select highly effective and minimally harmful ILs, these properties need to be investigated. Here we use the so called chromatophores--protein-phospholipid membrane vesicles obtained from the photosynthetic bacterium Rhodobacter sphaeroides--to assess the effects of imidazolinium and pyrrolidinium ILs, with chloride or dicyanamide as counter anions, on the ionic permeability of a native biological membrane. The extent and modalities by which these ILs affect the ionic conductivity can be studied in chromatophores by analyzing the electrochromic response of endogenous carotenoids, acting as an intramembrane voltmeter at the molecular level. We show that chromatophores represent an in vitro experimental model suitable to probe permeability changes induced in cell membranes by ILs differing in chemical nature, degree of oxygenation of the cationic moiety and counter anion.

  20. Morphological and molecular characterization of dietary-induced pseudo-albinism during post-embryonic development of Solea senegalensis (Kaup, 1858.

    Directory of Open Access Journals (Sweden)

    Maria J Darias

    Full Text Available The appearance of the pseudo-albino phenotype was investigated in developing Senegalese sole (Solea senegalensis, Kaup 1858 larvae at morphological and molecular levels. In order to induce the development of pseudo-albinos, Senegalese sole larvae were fed Artemia enriched with high levels of arachidonic acid (ARA. The development of their skin pigmentation was compared to that of a control group fed Artemia enriched with a reference commercial product. The relative amount of skin melanophores, xanthophores and iridophores revealed that larval pigmentation developed similarly in both groups. However, results from different relative proportions, allocation patterns, shapes and sizes of skin chromatophores revealed changes in the pigmentation pattern between ARA and control groups from 33 days post hatching onwards. The new populations of chromatophores that should appear at post-metamorphosis were not formed in the ARA group. Further, spatial patterns of distribution between the already present larval xanthophores and melanophores were suggestive of short-range interaction that seemed to be implicated in the degradation of these chromatophores, leading to the appearance of the pseudo-albino phenotype. The expression profile of several key pigmentation-related genes revealed that melanophore development was promoted in pseudo-albinos without a sufficient degree of terminal differentiation, thus preventing melanogenesis. Present results suggest the potential roles of asip1 and slc24a5 genes on the down-regulation of trp1 expression, leading to defects in melanin production. Moreover, gene expression data supports the involvement of pax3, mitf and asip1 genes in the developmental disruption of the new post-metamorphic populations of melanophores, xanthophores and iridophores.

  1. Morphological and molecular characterization of dietary-induced pseudo-albinism during post-embryonic development of Solea senegalensis (Kaup, 1858).

    Science.gov (United States)

    Darias, Maria J; Andree, Karl B; Boglino, Anaïs; Rotllant, Josep; Cerdá-Reverter, José Miguel; Estévez, Alicia; Gisbert, Enric

    2013-01-01

    The appearance of the pseudo-albino phenotype was investigated in developing Senegalese sole (Solea senegalensis, Kaup 1858) larvae at morphological and molecular levels. In order to induce the development of pseudo-albinos, Senegalese sole larvae were fed Artemia enriched with high levels of arachidonic acid (ARA). The development of their skin pigmentation was compared to that of a control group fed Artemia enriched with a reference commercial product. The relative amount of skin melanophores, xanthophores and iridophores revealed that larval pigmentation developed similarly in both groups. However, results from different relative proportions, allocation patterns, shapes and sizes of skin chromatophores revealed changes in the pigmentation pattern between ARA and control groups from 33 days post hatching onwards. The new populations of chromatophores that should appear at post-metamorphosis were not formed in the ARA group. Further, spatial patterns of distribution between the already present larval xanthophores and melanophores were suggestive of short-range interaction that seemed to be implicated in the degradation of these chromatophores, leading to the appearance of the pseudo-albino phenotype. The expression profile of several key pigmentation-related genes revealed that melanophore development was promoted in pseudo-albinos without a sufficient degree of terminal differentiation, thus preventing melanogenesis. Present results suggest the potential roles of asip1 and slc24a5 genes on the down-regulation of trp1 expression, leading to defects in melanin production. Moreover, gene expression data supports the involvement of pax3, mitf and asip1 genes in the developmental disruption of the new post-metamorphic populations of melanophores, xanthophores and iridophores.

  2. Behavior and Body Patterns of the Larger Pacific Striped Octopus.

    Directory of Open Access Journals (Sweden)

    Roy L Caldwell

    Full Text Available Over thirty years ago anecdotal accounts of the undescribed Larger Pacific Striped Octopus suggested behaviors previously unknown for octopuses. Beak-to-beak mating, dens shared by mating pairs, inking during mating and extended spawning were mentioned in publications, and enticed generations of cephalopod biologists. In 2012-2014 we were able to obtain several live specimens of this species, which remains without a formal description. All of the unique behaviors listed above were observed for animals in aquaria and are discussed here. We describe the behavior, body color patterns, and postures of 24 adults maintained in captivity. Chromatophore patterns of hatchlings are also shown.

  3. Behavior and Body Patterns of the Larger Pacific Striped Octopus.

    Science.gov (United States)

    Caldwell, Roy L; Ross, Richard; Rodaniche, Arcadio; Huffard, Christine L

    2015-01-01

    Over thirty years ago anecdotal accounts of the undescribed Larger Pacific Striped Octopus suggested behaviors previously unknown for octopuses. Beak-to-beak mating, dens shared by mating pairs, inking during mating and extended spawning were mentioned in publications, and enticed generations of cephalopod biologists. In 2012-2014 we were able to obtain several live specimens of this species, which remains without a formal description. All of the unique behaviors listed above were observed for animals in aquaria and are discussed here. We describe the behavior, body color patterns, and postures of 24 adults maintained in captivity. Chromatophore patterns of hatchlings are also shown.

  4. F F1-ATPase as biosensor to detect single virus

    International Nuclear Information System (INIS)

    F F1-ATPase within chromatophore was constructed as a biosensor (immuno-rotary biosensor) for the purpose of capturing single virus. Capture of virus was based on antibody-antigen reaction. The detection of virus based on proton flux change driven by ATP-synthesis of F F1-ATPase, which was indicated by F1300, was directly observed by a fluorescence microscope. The results demonstrate that the biosensor loading of virus particles has remarkable signal-to-noise ratio (3.8:1) compared to its control at single molecular level, and will be convenient, quick, and even super-sensitive for detecting virus particles

  5. Tools for investigating functional interactions between ligands and G-protein-coupled receptors.

    Science.gov (United States)

    Lerner, M R

    1994-04-01

    A general assay for evaluating functional interactions between ligands and G-protein-coupled receptors within minutes has been developed. The system uses the principles employed by animals such as reptiles, amphibians and fish to control their colors. In nature, activation of G-protein-coupled receptors expressed by skin cells called chromatophores effects pigment redistribution within the cells to change an animal's coloration. The in vitro 'chameleon in a dish' equivalent can use essentially any cloned G-protein-coupled receptor. PMID:7517590

  6. Morphological Characters and Transcriptome Profiles Associated with Black Skin and Red Skin in Crimson Snapper (Lutjanus erythropterus

    Directory of Open Access Journals (Sweden)

    Yan-Ping Zhang

    2015-11-01

    Full Text Available In this study, morphology observation and illumina sequencing were performed on two different coloration skins of crimson snapper (Lutjanus erythropterus, the black zone and the red zone. Three types of chromatophores, melanophores, iridophores and xanthophores, were organized in the skins. The main differences between the two colorations were in the amount and distribution of the three chromatophores. After comparing the two transcriptomes, 9200 unigenes with significantly different expressions (ratio change ≥ 2 and q-value ≤ 0.05 were found, of which 5972 were up-regulated in black skin and 3228 were up-regulated in red skin. Through the function annotation, Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis of the differentially transcribed genes, we excavated a number of uncharacterized candidate pigment genes as well as found the conserved genes affecting pigmentation in crimson snapper. The patterns of expression of 14 pigment genes were confirmed by the Quantitative real-time PCR analysis between the two color skins. Overall, this study shows a global survey of the morphological characters and transcriptome analysis of the different coloration skins in crimson snapper, and provides valuable cellular and genetic information to uncover the mechanism of the formation of pigment patterns in snappers.

  7. The biological mechanisms and behavioral functions of opsin-based light detection by the skin

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    2016-08-01

    Full Text Available Light detection not only forms the basis of vision (via visual retinal photoreceptors, but can also occur in other parts of the body, including many non-rod/non-cone ocular cells, the pineal complex, the deep brain, and the skin. Indeed, many of the photopigments (an opsin linked to a light-sensitive 11-cis retinal chromophore that mediate color vision in the eyes of vertebrates are also present in the skin of animals such as reptiles, amphibians, crustaceans and fishes (with related photoreceptive molecules present in cephalopods, providing a localized mechanism for light detection across the surface of the body. This form of non-visual photosensitivity may be particularly important for animals that can change their coloration by altering the dispersion of pigments within the chromatophores (pigment containing cells of the skin. Thus, skin coloration may be directly color matched or tuned to both the luminance and spectral properties of the local background environment, thereby facilitating behavioral functions such as camouflage, thermoregulation, and social signaling. This review examines the diversity and sensitivity of opsin-based photopigments present in the skin and considers their putative functional roles in mediating animal behavior. Furthermore, it discusses the potential underlying biochemical and molecular pathways that link shifts in environmental light to both photopigment expression and chromatophore photoresponses. Although photoreception that occurs independently of image formation remains poorly understood, this review highlights the important role of non-visual light detection in facilitating the multiple functions of animal coloration.

  8. Overall energy conversion efficiency of a photosynthetic vesicle.

    Science.gov (United States)

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%-5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  9. Morphological Characters and Transcriptome Profiles Associated with Black Skin and Red Skin in Crimson Snapper (Lutjanus erythropterus).

    Science.gov (United States)

    Zhang, Yan-Ping; Wang, Zhong-Duo; Guo, Yu-Song; Liu, Li; Yu, Juan; Zhang, Shun; Liu, Shao-Jun; Liu, Chu-Wu

    2015-11-12

    In this study, morphology observation and illumina sequencing were performed on two different coloration skins of crimson snapper (Lutjanus erythropterus), the black zone and the red zone. Three types of chromatophores, melanophores, iridophores and xanthophores, were organized in the skins. The main differences between the two colorations were in the amount and distribution of the three chromatophores. After comparing the two transcriptomes, 9200 unigenes with significantly different expressions (ratio change ≥ 2 and q-value ≤ 0.05) were found, of which 5972 were up-regulated in black skin and 3228 were up-regulated in red skin. Through the function annotation, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially transcribed genes, we excavated a number of uncharacterized candidate pigment genes as well as found the conserved genes affecting pigmentation in crimson snapper. The patterns of expression of 14 pigment genes were confirmed by the Quantitative real-time PCR analysis between the two color skins. Overall, this study shows a global survey of the morphological characters and transcriptome analysis of the different coloration skins in crimson snapper, and provides valuable cellular and genetic information to uncover the mechanism of the formation of pigment patterns in snappers.

  10. Reconstructing Carotenoid-Based and Structural Coloration in Fossil Skin.

    Science.gov (United States)

    McNamara, Maria E; Orr, Patrick J; Kearns, Stuart L; Alcalá, Luis; Anadón, Pere; Peñalver, Enrique

    2016-04-25

    Evidence of original coloration in fossils provides insights into the visual communication strategies used by ancient animals and the functional evolution of coloration over time [1-7]. Hitherto, all reconstructions of the colors of reptile integument and the plumage of fossil birds and feathered dinosaurs have been of melanin-based coloration [1-6]. Extant animals also use other mechanisms for producing color [8], but these have not been identified in fossils. Here we report the first examples of carotenoid-based coloration in the fossil record, and of structural coloration in fossil integument. The fossil skin, from a 10 million-year-old colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain) [9, 10], preserves dermal pigment cells (chromatophores)-xanthophores, iridophores, and melanophores-in calcium phosphate. Comparison with chromatophore abundance and position in extant reptiles [11-15] indicates that the fossil snake was pale-colored in ventral regions; dorsal and lateral regions were green with brown-black and yellow-green transverse blotches. Such coloration most likely functioned in substrate matching and intraspecific signaling. Skin replicated in authigenic minerals is not uncommon in exceptionally preserved fossils [16, 17], and dermal pigment cells generate coloration in numerous reptile, amphibian, and fish taxa today [18]. Our discovery thus represents a new means by which to reconstruct the original coloration of exceptionally preserved fossil vertebrates.

  11. CdTe quantum dots for an application in the life sciences

    International Nuclear Information System (INIS)

    This report highlights the results of the preparation of semiconductor CdTe quantum dots (QDs) in the aqueous phase. The small size of a few nm and a very high luminescence quantum yield exceeding 60% of these materials make them promisingly applicable to bio-medicine labeling. Their strong, two-photon excitation luminescence is also a good characteristic for biolabeling without interference with the cell fluorescence. The primary results for the pH-sensitive CdTe QDs are presented in that fluorescence of CdTe QDs was used as a proton sensor to detect proton flux driven by adenosine triphosphate (ATP) synthesis in chromatophores. In other words, these QDs could work as pH-sensitive detectors. Therefore, the system of CdTe QDs on chromatophores prepared from the cells of Rhodospirillum rubrum and the antibodies against the beta-subunit of F0F1–ATPase could be a sensitive detector for the avian influenza virus subtype A/H5N1

  12. An ethogram for Benthic Octopods (Cephalopoda: Octopodidae).

    Science.gov (United States)

    Mather, Jennifer A; Alupay, Jean S

    2016-05-01

    The present paper constructs a general ethogram for the actions of the flexible body as well as the skin displays of octopuses in the family Octopodidae. The actions of 6 sets of structures (mantle-funnel, arms, sucker-stalk, skin-web, head, and mouth) combine to produce behavioral units that involve positioning of parts leading to postures such as the flamboyant, movements of parts of the animal with relation to itself including head bob and grooming, and movements of the whole animal by both jetting in the water and crawling along the substrate. Muscular actions result in 4 key changes in skin display: (a) chromatophore expansion, (b) chromatophore contraction resulting in appearance of reflective colors such as iridophores and leucophores, (c) erection of papillae on the skin, and (d) overall postures of arms and mantle controlled by actions of the octopus muscular hydrostat. They produce appearances, including excellent camouflage, moving passing cloud and iridescent blue rings, with only a few known species-specific male visual sexual displays. Commonalities across the family suggest that, despite having flexible muscular hydrostat movement systems producing several behavioral units, simplicity of production may underlie the complexity of movement and appearance. This systematic framework allows researchers to take the next step in modeling how such diversity can be a combination of just a few variables. (PsycINFO Database Record PMID:27078075

  13. Overall energy conversion efficiency of a photosynthetic vesicle

    Science.gov (United States)

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-01-01

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI: http://dx.doi.org/10.7554/eLife.09541.001 PMID:27564854

  14. Computational Methodologies for Real-Space Structural Refinement of Large Macromolecular Complexes.

    Science.gov (United States)

    Goh, Boon Chong; Hadden, Jodi A; Bernardi, Rafael C; Singharoy, Abhishek; McGreevy, Ryan; Rudack, Till; Cassidy, C Keith; Schulten, Klaus

    2016-07-01

    The rise of the computer as a powerful tool for model building and refinement has revolutionized the field of structure determination for large biomolecular systems. Despite the wide availability of robust experimental methods capable of resolving structural details across a range of spatiotemporal resolutions, computational hybrid methods have the unique ability to integrate the diverse data from multimodal techniques such as X-ray crystallography and electron microscopy into consistent, fully atomistic structures. Here, commonly employed strategies for computational real-space structural refinement are reviewed, and their specific applications are illustrated for several large macromolecular complexes: ribosome, virus capsids, chemosensory array, and photosynthetic chromatophore. The increasingly important role of computational methods in large-scale structural refinement, along with current and future challenges, is discussed. PMID:27145875

  15. Toxic exposure to ethylene dibromide and mercuric chloride: effects on laboratory-reared octopuses.

    Science.gov (United States)

    Adams, P M; Hanlon, R T; Forsythe, J W

    1988-01-01

    The effects of acute and chronic exposure to either ethylene dibromide (EDB) or mercuric chloride (MC) were studied in laboratory-reared Octopus joubini, O. maya and O. bimaculoides. The advantages of using octopuses were that the responses were immediate, highly visible and sensitive. All species demonstrated signs of toxicity to acute and chronic exposure to EDB and to MC. A dosage-sensitive relationship for the loss and subsequent recovery of locomotor response and of chromatophore expansion was found for each species after acute exposure. For each species the LC50 for chronic exposure occurred within 12 hr at 100 mg/l for EDB and within 3 hr at 1,000 mg/l for MC. This study demonstrated the potential usefulness of laboratory-reared octopuses in evaluating the toxicity of marine environmental pollutants. PMID:3072470

  16. Embryology of the spider crabs Leurocyclus tuberculosus (H. Milne-Edwards & Lucas 1842) and Libinia spinosa (H. Milne-Edwards 1834) (Brachyura, Majoidea).

    Science.gov (United States)

    González-Pisani, Ximena; Gaspar Dellatorre, Fernando; López-Greco, Laura

    2013-01-01

    The embryonic development of the spider crabs Leurocyclus tuberculosus and Libinia spinosa was divided into five periods based on the differentiation of: (I) cleavage, (II) embryonic primordium, III) optic lobes, (IV) optic lobes pigmented and (V) chromatophores presence. Different traits such as spines, setae and telson morphology distinguish the two species from period III until hatching. Egg volume was greater in Leurocyclus tuberculosus than in Libinia spinosa. The duration of each period was different during development. Whereas in Leurocyclus tuberculosus period II (morphogenesis) is the longest, in Libinia spinosa the period IV is the longest. Complete embryonic development at 14'C lasted 36.7 +/- 3.1 days in Leurocyclus tuberculosus and 57.4 +/- 4.4 days in Libinia spinosa.

  17. Photonic crystals cause active colour change in chameleons

    Science.gov (United States)

    Teyssier, Jérémie; Saenko, Suzanne V.; van der Marel, Dirk; Milinkovitch, Michel C.

    2015-01-01

    Many chameleons, and panther chameleons in particular, have the remarkable ability to exhibit complex and rapid colour changes during social interactions such as male contests or courtship. It is generally interpreted that these changes are due to dispersion/aggregation of pigment-containing organelles within dermal chromatophores. Here, combining microscopy, photometric videography and photonic band-gap modelling, we show that chameleons shift colour through active tuning of a lattice of guanine nanocrystals within a superficial thick layer of dermal iridophores. In addition, we show that a deeper population of iridophores with larger crystals reflects a substantial proportion of sunlight especially in the near-infrared range. The organization of iridophores into two superposed layers constitutes an evolutionary novelty for chameleons, which allows some species to combine efficient camouflage with spectacular display, while potentially providing passive thermal protection. PMID:25757068

  18. An Evaluation of Sensor Performance for Harmful Compounds by Using Photo-Induced Electron Transfer from Photosynthetic Membranes to Electrodes

    Science.gov (United States)

    Kasuno, Megumi; Kimura, Hiroki; Yasutomo, Hisataka; Torimura, Masaki; Murakami, Daisuke; Tsukatani, Yusuke; Hanada, Satoshi; Matsushita, Takayuki; Tao, Hiroaki

    2016-01-01

    Rapid, simple, and low-cost screening procedures are necessary for the detection of harmful compounds in the effluent that flows out of point sources such as industrial outfall. The present study investigated the effects on a novel sensor of harmful compounds such as KCN, phenol, and herbicides such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine (atrazine), and 2-N-tert-butyl-4-N-ethyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine (terbutryn). The sensor employed an electrode system that incorporated the photocurrent of intra-cytoplasmic membranes (so-called chromatophores) prepared from photosynthetic bacteria and linked using carbon paste electrodes. The amperometric curve (photocurrent-time curve) of photo-induced electron transfer from chromatophores of the purple photosynthetic bacterium Rhodobacter sphaeroides to the electrode via an exogenous electron acceptor was composed of two characteristic phases: an abrupt increase in current immediately after illumination (I0), and constant current over time (Ic). Compared with other redox compounds, 2,5-dichloro-1,4-benzoquinone (DCBQ) was the most useful exogenous electron acceptor in this system. Photo-reduction of DCBQ exhibited Michaelis-Menten-like kinetics, and reduction rates were dependent on the amount of DCBQ and the photon flux intensity. The Ic decreased in the presence of KCN at concentrations over 0.05 μM (=μmol·dm−3). The I0 decreased following the addition of phenol at concentrations over 20 μM. The Ic was affected by terbutryn at concentrations over 10 μM. In contrast, DCMU and atrazine had no effect on either I0 or Ic. The utility of this electrode system for the detection of harmful compounds is discussed. PMID:27023553

  19. Reflector cells in the skin of Octopus dofleini.

    Science.gov (United States)

    Brocco, S L; Cloney, R A

    1980-01-01

    The cells that form the reflecting layer beneath the chromatophore organs of the octopus are conspicuous elements of its dermal chromatic system. Each flattened, ellipsoidal reflector cell in this layer bears thousands of peripherally radiating, discoidal, reflecting lamellae. Each lamella consists of a proteinaceous reflecting platelet enveloped by the plasmalemma. The lamellae average 90 nm in thickness and have variable diameters with a maximum of about 1.7 micrometer. Sets of reflecting lamellae are organized into functional units called reflectosomes. The lamellae in each reflectosome form a parallel array - similar to a stack of coins. The average number of lamellae in a reflectosome is 11. Adjacent lamellae are uniformly separated by an extracellular gap of about 60 nm in embedded specimens. The reflectosomes are randomly disposed over the surface of the reflector cell. The observed organization of the reflectosomes is compatible with its role as a quarter-wave thin-film interference device. The alternating reflecting lamellae and intelamellar spaces constitute layers of high and low refractive indices. Using measurements of the thicknesses and refractive indices of the platelets and interlamellar spaces, we have calculated that the color of reflected light should be blue - green, as seen in vivo. The sequence of events leading to the definitive arrangement of the reflectosomes is uncertain. The reflector cells of O. dofleini are compared and contrasted with the iridophores of squid.

  20. Elastic scattering spectroscopy in vivo: optical biopsies of cancers of the breast and GI tract

    Science.gov (United States)

    Pickard, David C. O.; Briggs, Gavin M.; Saunders, Christobel; Lakhani, Sunil; Ripley, Paul M.; Bigio, Irving J.; Bown, Stephen G.

    2000-04-01

    Elastic scattering or diffuse reflectance spectroscopy offers the possibility of distinguishing between normal and neoplastic tissue with a relatively simple optical measurement. The measurement of the reflection of light has previously been shown to be sensitive to the size and distribution of both intra and inter-cellular structures as well as absorption from chromatophores which are present in the tissue. By coupling a white light source and spectrometer to optic fibers it is possible to construct probes which can be inserted precutaneously or intra- operatively into breast tissue or which can pass down the channel of an endoscope and take in-vivo spectra of diseased and normal tissue in the Gastro-Intestinal tract. Spectra are reported from a large number of patients with a variety of benign, metaplastic, dysplastic and cancerous conditions. Some differences that have been observed in these spectra are discussed and the merits and disadvantages of 'optical biopsy' as an in-vivo diagnostic tool are examined. It is shown that to a relatively high degree of sensitivity and specificity it is possible to distinguish cancerous from normal tissue in a number of cases. The methods of distinguishing spectra and some possible modalities for their improvement are discussed.

  1. An Unexpected Diversity of Photoreceptor Classes in the Longfin Squid, Doryteuthis pealeii.

    Directory of Open Access Journals (Sweden)

    Alexandra C N Kingston

    Full Text Available Cephalopods are famous for their ability to change color and pattern rapidly for signaling and camouflage. They have keen eyes and remarkable vision, made possible by photoreceptors in their retinas. External to the eyes, photoreceptors also exist in parolfactory vesicles and some light organs, where they function using a rhodopsin protein that is identical to that expressed in the retina. Furthermore, dermal chromatophore organs contain rhodopsin and other components of phototransduction (including retinochrome, a photoisomerase first found in the retina, suggesting that they are photoreceptive. In this study, we used a modified whole-mount immunohistochemical technique to explore rhodopsin and retinochrome expression in a number of tissues and organs in the longfin squid, Doryteuthis pealeii. We found that fin central muscles, hair cells (epithelial primary sensory neurons, arm axial ganglia, and sucker peduncle nerves all express rhodopsin and retinochrome proteins. Our findings indicate that these animals possess an unexpected diversity of extraocular photoreceptors and suggest that extraocular photoreception using visual opsins and visual phototransduction machinery is far more widespread throughout cephalopod tissues than previously recognized.

  2. Induction Effect and Genetic Analysis of NG to Thallus of Porphyra

    Institute of Scientific and Technical Information of China (English)

    Xu Pu; Shen Songdong; Fei Xiugeng; Zhang Xuecheng; Zhu Jianyi

    2002-01-01

    The young thalli of Porphyra yezoensis and P. haitanensis are induced by N-Methy-N'-Nitro-N-Nitrosoguanidine (NG), a strong mutagen to induce the mutant of chromatophore. It is showed that no mutants have been investigated in all control groups,while in the induced groups, it is easy to find mutant cells or mutant cell masses in the thallus.The pigmentation mutants may be the result of NG inducement. The mutant rate increases obviously with the mutagen concentration or by prolonging the induction time. Within the scope of experiment, the inducement effects of Porphyra yezoensis are raised from 11.2% to 28.7%, and those of P. haitanensis from 10.1% to 20.2%. According to our experiments, the amount of mutant cells in the same area does not increase with the induction intensity The amount of mutant cells in every group of inducement of both species of Porphyra changes very little with the fixed fields check method. The lowest dose (25μg/mL) of this experiment has a high mutant rate. The mutant rate shows the percentage of mutant cells in all the survived cells, while the amount of mutant cells reflects the effect of inducement. Thus the optimum induction concentration of NG is 25μg/mL, and the optimum induction time is 30minutes.

  3. Squids old and young: Scale-free design for a simple billboard

    Science.gov (United States)

    Packard, Andrew

    2011-03-01

    Squids employ a large range of brightness-contrast spatial frequencies in their camouflage and signalling displays. The 'billboard' of coloured elements ('spots'=chromatophore organs) in the skin is built autopoietically-probably by lateral inhibitory processes-and enlarges as much as 10,000-fold during development. The resulting two-dimensional array is a fractal-like colour/size hierarchy lying in several layers of a multilayered network. Dynamic control of the array by muscles and nerves produces patterns that recall 'half-tone' processing (cf. ink-jet printer). In the more sophisticated (loliginid) squids, patterns also combine 'continuous tones' (cf. dye-sublimation printer). Physiologists and engineers can exploit the natural colour-coding of the integument to understand nerve and muscle system dynamics, examined here at the level of the ensemble. Integrative functions of the whole (H) are analysed in terms of the power spectrum within and between ensembles and of spontaneous waves travelling through the billboard. Video material may be obtained from the author at the above address.

  4. The influence of hypoxia on the thermal sensitivity of skin colouration in the bearded dragon, Pogona vitticeps.

    Science.gov (United States)

    de Velasco, Jesus Barraza; Tattersall, Glenn J

    2008-09-01

    One physiological mechanism used by reptiles to remain within thermal optima is their ability to reversibly alter skin colour, imparting changes in overall reflectance, and influencing the rate of heat gain from incident radiation. The ability to lighten or darken their skin is caused by the movement of pigment within the dermal chromatophore cells. Additionally, lizards, as ectotherms, significantly lower their preferred body temperatures when experiencing stressors such as hypoxia. This decrease in preferred temperature has been proposed to be the result of a downward adjustment of the thermal set-point, the temperature around which the body temperature is typically defended. We tested the hypothesis that lightening of the skin in lizards would be modified by hypoxia in a manner consistent with the known reduction in preferred temperatures. Skin colouration values of the dorsal skin of bearded dragons were analysed at three different levels of oxygen (20.8, 9.9 and 4.9 kPa) and at temperatures spanning the preferred temperature range (30, 32, 34, 36, 38 and 40 C). Hypoxic lizards lightened their skin at lower ambient temperatures more than normoxic ones, and in an oxygen-dependent fashion. The orchestrated adjustment of skin reflectance suggests that this physiological trait is being regulated at a new and lower set-point. Evidence from this study demonstrates that skin colouration plays a role in body temperature regulation and that the reduction in temperature set-point so prevalent in hypoxia is also manifested in this physiological trait. PMID:18491114

  5. Patterns of diatom treatment in two coexisting species of filter-feeding freshwater gastropods

    Directory of Open Access Journals (Sweden)

    Sitnikova T.Ya.

    2014-03-01

    Full Text Available To assess trophic partitioning among sympatric gastropod species in ancient lakes, we quantified diatoms in the guts of two coexistent Baikal gastropod species and tested for differences in species, size, and fracturing of large and small diatoms by taenioglossan radulae. In May 2010, the diatom Synedra acus dominated the littoral phytoplankton and gut contents of Baicalia turriformis and Teratobaikalia ciliata (Baicaliidae, both inhabiting the rocky Baikal littoral. In laboratory experiments, both ctenidial filter-feeding gastropods were fed with two diets of cultivated Synedra acus of different cell sizes: >150 μm and <100 μm. Field and laboratory studies revealed intact diatom cells (often with green chromatophores and fragmented frustules of diatoms <60 μm in the guts of both species. The two baicaliids varied in the number of ingested microalgae. In addition, they exhibited significantly different efficiencies for breaking large diatoms; B. turriformis broke large diatoms into more fragments than T. ciliata. The differences in the utilization of large and small diatoms by gastropods are discussed in terms of the relationships among coexisting species. Small diatom survival is considered from the view of interactions between producers and their consumers in the freshwater food web.

  6. Effects of dietary supplementation of golden apple snail (Pomacea canaliculata) egg on survival, pigmentation and antioxidant activity of Blood parrot.

    Science.gov (United States)

    Yang, Song; Liu, Qiao; Wang, Yue; Zhao, Liu-Lan; Wang, Yan; Yang, Shi-Yong; Du, Zong-Jun; Zhang, Jia-En

    2016-01-01

    This study aims to evaluate the effects of supplementing golden apple snail (Pomacea canaliculata) eggs powder (EP) in the diet as a source of natural carotenoids on survival, pigmentation and antioxidant activity of Blood parrot. A total of 90 fish were divided into three treatment groups with three replicates per treatment. Blood parrot were fed with diets containing 0 (control), 5 % (EP 5 %), and 15 % (EP 15 %) dry powder of golden apple snail egg for 60 days, and nine fish per group were sampled at 20, 40, and 60 days. No differences in survival of the fish among treatments were found throughout the experiment. The body coloration of Blood parrot was enhanced in the skin and caudal fin with increasing content of golden apple snail egg powder in the diet. At the end of the experiment, the carotenoid content in the caudal fin and the number of scale chromatophores of the fish fed dietary with EP were higher (P  0.05) in CAT activities. Results demonstrated that golden apple snail eggs can be used as a colorant to promote the pigmentation efficacy of Blood parrot. PMID:27652129

  7. A Novel Biosensor to Detect MicroRNAs Rapidly

    Directory of Open Access Journals (Sweden)

    Jie-Ying Liao

    2009-01-01

    Full Text Available δ-free F0F1-ATPase within chromatophore was constructed as a novel biosensor to detect miRNA targets. Specific miRNA probes were linked to each rotary β subunits of F0F1-ATPase. Detection of miRNAs was based on the proton flux change induced by light-driven rotation of δ-free F0F1-ATPase. The hybridization reaction was indicated by changes in the fluorescent intensity of pH-sensitive CdTe quantum dots. Our results showed that the assay was attomole sensitivities (1.2×10−18 mol to target miRNAs and capable of distinguishing among miRNA family members. Moreover, the method could be used to monitor real-time hybridization without any complicated fabrication before hybridization. Thus, the rotary biosensor is not only sensitive and specific to detect miRNA target but also easy to perform. The δ-free F0F1-ATPase-based rotary biosensor may be a promising tool for the basic research and clinical application of miRNAs.

  8. Visible Thrombolysis Acceleration of a Nanomachine Powered by Light-Driving F0F1-ATPase Motor

    Science.gov (United States)

    Duan, Xiaoxia; Liu, Lifeng; Jiang, Weijian; Yue, Jiachang

    2015-05-01

    We report on thrombolysis acceleration of a nanomachine powered by light-driving δ-subunit-free F0F1-ATPase motor. It is composed of a mechanical device, locating device, energy storage device, and propeller. The rotory δ-subunit-free F0F1-ATPase motor acts as a mechanical device, which was obtained by reconstructing an original chromatophore extracted from Rhodospirillum rubrum. We found that the bioactivity of the F0F1-ATPase motor improved greatly after reconstruction. The zeta potential of the nanomachine is about -23.4 mV. Cytotoxicity induced by the nanomachine was measured using cell counting kit (CCK)-8 assay. The A549 cells incubated with different fractional concentrations of the nanomachine within 48 h did not show obvious cytotoxicity. The locating device helps the nanomachine bind to the thrombi. Energy was easily stored by exposing the nanomachine to 600-nm-wavelength irradiation, which promoted activity of the motor. The rotation of the long propeller accelerated thrombolysis of a blood clot in vitro in the presence of urokinase (UK). This result was based on visual inspection and confirmed by a series of tests.

  9. Chromogenic behaviors of the Humboldt squid (Dosidicus gigas) studied in situ with an animal-borne video package.

    Science.gov (United States)

    Rosen, Hannah; Gilly, William; Bell, Lauren; Abernathy, Kyler; Marshall, Greg

    2015-01-15

    Dosidicus gigas (Humboldt or jumbo flying squid) is an economically and ecologically influential species, yet little is known about its natural behaviors because of difficulties in studying this active predator in its oceanic environment. By using an animal-borne video package, National Geographic's Crittercam, we were able to observe natural behaviors in free-swimming D. gigas in the Gulf of California with a focus on color-generating (chromogenic) behaviors. We documented two dynamic displays without artificial lighting at depths of up to 70 m. One dynamic pattern, termed 'flashing' is characterized by a global oscillation (2-4 Hz) of body color between white and red. Flashing was almost always observed when other squid were visible in the video frame, and this behavior presumably represents intraspecific signaling. Amplitude and frequency of flashing can be modulated, and the phase relationship with another squid can also be rapidly altered. Another dynamic display termed 'flickering' was observed whenever flashing was not occurring. This behavior is characterized by irregular wave-like activity in neighboring patches of chromatophores, and the resulting patterns mimic reflections of down-welled light in the water column, suggesting that this behavior may provide a dynamic type of camouflage. Rapid and global pauses in flickering, often before a flashing episode, indicate that flickering is under inhibitory neural control. Although flashing and flickering have not been described in other squid, functional similarities are evident with other species. PMID:25609785

  10. Mass spectrometric survey of peptides in cephalopods with an emphasis on the FMRFamide-related peptides.

    Science.gov (United States)

    Sweedler, J V; Li, L; Floyd, P; Gilly, W

    2000-12-01

    A matrix-assisted laser desorption/ionization (MALDI) mass spectrometric (MS) survey of the major peptides in the stellar, fin and pallial nerves and the posterior chromatophore lobe of the cephalopods Sepia officinalis, Loligo opalescens and Dosidicus gigas has been performed. Although a large number of putative peptides are distinct among the three species, several molecular masses are conserved. In addition to peptides, characterization of the lipid content of the nerves is reported, and these lipid peaks account for many of the lower molecular masses observed. One conserved set of peaks corresponds to the FMRFamide-related peptides (FRPs). The Loligo opalescens FMRFa gene has been sequenced. It encodes a 331 amino acid residue prohormone that is processed into 14 FRPs, which are both predicted by the nucleotide sequence and confirmed by MALDI MS. The FRPs predicted by this gene (FMRFa, FLRFa/FIRFa and ALSGDAFLRFa) are observed in all three species, indicating that members of this peptide family are highly conserved across cephalopods. PMID:11060217

  11. Ex-vivo cytotoxic, antibacterial and DPPH free radical scavenging assay with ethanolic leaf extract of Glycosmis pentaphylla to justify its traditional use

    Directory of Open Access Journals (Sweden)

    Prawej Ansari1,2

    2015-07-01

    Full Text Available Aim: Glycosmis pentaphylla belongs to the family Rutaceae. It is a shrub and locally common in the treatment of hepatic impairment. We have designed this study to provide a scientific basis with the traditional use of leaf of G. pentaphylla in the treatment of hepatitis.Methods: The well-established DPPH free radical scavenging activity was tested for antioxidant property evaluation. On the other hand, disk diffusion and brine shrimp method was respecti-velyused to determine antibacterial and cytotoxic activity. Results and Discussion: In the evaluation of antioxidant property IC50 found 204.91+/- 2.223 and micro;g/ml, in cytotoxicity testing, it is found that the plant part shows 30.49 +/- 1.976 and micro;g/ml of LC50. The ethanolic extract of G. pentaphylla leaves also have efficiency in bacterial growth inhibition; this extract is effective against for both gram, negative and positive. The zone of inhibition at 500 and micro;g/ml dose in E. coli and C. albican culture was 18 mm and 15 mm, respectively. In thin layer chromatography analysis, we found presence of couple of non-polar and polar component, presence of three non-chromatophoric component are also evident.Conclusion: Appropriate isolation and identification of mechanism is suggested in further study. [Biomed Res Ther 2015; 2(7.000: 324-332

  12. Reflector cells in the skin of Octopus dofleini.

    Science.gov (United States)

    Brocco, S L; Cloney, R A

    1980-01-01

    The cells that form the reflecting layer beneath the chromatophore organs of the octopus are conspicuous elements of its dermal chromatic system. Each flattened, ellipsoidal reflector cell in this layer bears thousands of peripherally radiating, discoidal, reflecting lamellae. Each lamella consists of a proteinaceous reflecting platelet enveloped by the plasmalemma. The lamellae average 90 nm in thickness and have variable diameters with a maximum of about 1.7 micrometer. Sets of reflecting lamellae are organized into functional units called reflectosomes. The lamellae in each reflectosome form a parallel array - similar to a stack of coins. The average number of lamellae in a reflectosome is 11. Adjacent lamellae are uniformly separated by an extracellular gap of about 60 nm in embedded specimens. The reflectosomes are randomly disposed over the surface of the reflector cell. The observed organization of the reflectosomes is compatible with its role as a quarter-wave thin-film interference device. The alternating reflecting lamellae and intelamellar spaces constitute layers of high and low refractive indices. Using measurements of the thicknesses and refractive indices of the platelets and interlamellar spaces, we have calculated that the color of reflected light should be blue - green, as seen in vivo. The sequence of events leading to the definitive arrangement of the reflectosomes is uncertain. The reflector cells of O. dofleini are compared and contrasted with the iridophores of squid. PMID:6244094

  13. Light-Induced Infrared Difference Spectroscopy in the Investigation of Light Harvesting Complexes

    Directory of Open Access Journals (Sweden)

    Alberto Mezzetti

    2015-07-01

    Full Text Available Light-induced infrared difference spectroscopy (IR-DS has been used, especially in the last decade, to investigate early photophysics, energy transfer and photoprotection mechanisms in isolated and membrane-bound light harvesting complexes (LHCs. The technique has the definite advantage to give information on how the pigments and the other constituents of the biological system (proteins, membranes, etc. evolve during a given photoreaction. Different static and time-resolved approaches have been used. Compared to the application of IR-DS to photosynthetic Reaction Centers (RCs, however, IR-DS applied to LHCs is still in an almost pioneering age: very often sophisticated techniques (step-scan FTIR, ultrafast IR or data analysis strategies (global analysis, target analysis, multivariate curve resolution are needed. In addition, band assignment is usually more complicated than in RCs. The results obtained on the studied systems (chromatophores and RC-LHC supercomplexes from purple bacteria; Peridinin-Chlorophyll-a-Proteins from dinoflagellates; isolated LHCII from plants; thylakoids; Orange Carotenoid Protein from cyanobacteria are summarized. A description of the different IR-DS techniques used is also provided, and the most stimulating perspectives are also described. Especially if used synergically with other biophysical techniques, light-induced IR-DS represents an important tool in the investigation of photophysical/photochemical reactions in LHCs and LHC-containing systems.

  14. Photoconductive properties of annealed ZnO/PMMA dispersion composites. Netsushorishita ZnO/PMMA bunsan fukugotai no hikaridodensei

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Y.; Yosomiya, R. (Chiba Inst. of Technology, Chiba (Japan))

    1992-05-15

    In order to enhance the photoconductive properties of dispersion composite materials, chromatophoric sensitigation and chemical sensitigation, etc. are done. In this report, the heat treatment effect on the photoconductive properties of the dispersion composites which were made by dispersing ZnO into polymethylmethacrylate (PMMA) and its photoconductive mechanism were studied. In other words, the photoconductive properties, the temperature dependecy of the dark current, the dark current-voltage properties and the photointensity dependency of the photocurrent of the annealed ZnO/PMMA dispersion composites were measured. As a result, the relative sensitivity of the ZnO/PMMA dispersion composites which were heat-treated at 160 {degree} C for 5 hours was increased considerably. The cause of this increase of photoconductivity was considered to be the formation of a carrier trap in the interface polymer due to the formation of special interfacial solidification tissue of PMMA on the surface of ZnO and the increase of interaction between PMMA and its interface with ZnO, and the increase of the carrier transportation. Furthermore, from the damping characteristics of the photo current, it was considered that desorption of oxygen from the surface, etc. contributed to the photoelectric current. 15 refs., 9 figs., 2 tabs.

  15. High Dynamic Range Image rendering of color in chameleons' camouflage using optical thin films

    Science.gov (United States)

    Prusten, Mark

    2008-08-01

    High Dynamic Range Image (HDRI) rendering and animation of color in the camouflage of chameleons is developed utilizing thin film optics. Chameleons are a lizard species, and have the ability to change their skin color. This change in color is an expression of the physical and physiological conditions of the lizard, and plays a part in communication. The different colors that can be produced depending on the species include pink, blue, red, orange, green, black, brown and yellow. The modeling, simulation, and rendering of the color, which their skin incorporates, thin film optical stacks. The skin of a chameleon has four layers, which together produce various colors. The outside transparent layer has chromatophores cells, of two kinds of color, yellow and red. Next there are two more layers that reflect light: one blue and the other white. The innermost layer contains dark pigment granules or melanophore cells that influences the amount of reflected light. All of these pigment cells can rapidly relocate their pigments, thereby influencing the color of the chameleon. Techniques like subsurface scattering, the simulation of volumetric scattering of light underneath the objects surface, and final gathering are defined in custom shaders and material phenomena for the renderer. The workflow developed to model the chameleon's skin is also applied to simulation and rendering of hair and fur camouflage, which does not exist in nature.

  16. Dose-dependent effects of the clinical anesthetic isoflurane on Octopus vulgaris: a contribution to cephalopod welfare.

    Science.gov (United States)

    Polese, Gianluca; Winlow, William; Di Cosmo, Anna

    2014-12-01

    Recent progress in animal welfare legislation relating to invertebrates has provoked interest in methods for the anesthesia of cephalopods, for which different approaches to anesthesia have been tried but in most cases without truly anesthetizing the animals. For example, several workers have used muscle relaxants or hypothermia as forms of "anesthesia." Several inhalational anesthetics are known to act in a dose-dependent manner on the great pond snail Lymnaea stagnalis, a pulmonate mollusk. Here we report, for the first time, on the effects of clinical doses of the well-known inhalational clinical anesthetic isoflurane on the behavioral responses of the common octopus Octopus vulgaris. In each experiment, isoflurane was equilibrated into a well-aerated seawater bath containing a single adult O. vulgaris. Using a web camera, we recorded each animal's response to touch stimuli eliciting withdrawal of the arms and siphon and observed changes in the respiratory rate and the chromatophore pattern over time (before, during, and after application of the anesthetic). We found that different animals of the same size responded with similar behavioral changes as the isoflurane concentration was gradually increased. After gradual application of 2% isoflurane for a maximum of 5 min (at which time all the responses indicated deep anesthesia), the animals recovered within 45-60 min in fresh aerated seawater. Based on previous findings in gastropods, we believe that the process of anesthesia induced by isoflurane is similar to that previously observed in Lymnaea. In this study we showed that isoflurane is a good, reversible anesthetic for O. vulgaris, and we developed a method for its use.

  17. Aminomethylenediphosphonate: A Potent Type-Specific Inhibitor of Both Plant and Phototrophic Bacterial H+-Pyrophosphatases.

    Science.gov (United States)

    Zhen, R. G.; Baykov, A. A.; Bakuleva, N. P.; Rea, P. A.

    1994-01-01

    The suitability of different pyrophosphate (PPi) analogs as inhibitors of the vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) of tonoplast vesicles isolated from etiolated hypocotyls of Vigna radiata was investigated. Five 1,1-diphosphonates and imidodiphosphate were tested for their effects on substrate hydrolysis by the V-PPase at a substrate concentration corresponding to the Km of the enzyme. The order of inhibitory potency (apparent inhibition constants, Kiapp values, [mu]M, in parentheses) of the compounds examined was aminomethylenediphosphonate (1.8) > hydroxymethylenediphosphonate (5.7) [almost equal to] ethane-1-hydroxy-1,1-diphosphonate (6.5) > imidodiphosphate (12) > methylenediphosphonate (68) > dichloromethylenediphosphonate (>500). The specificity of three of these compounds, aminomethylenediphosphonate, imidodiphosphate, and methylenediphosphonate, was determined by comparing their effects on the V-PPase and vacuolar H+-ATPase from Vigna, plasma membrane H+-ATPase from Beta vulgaris, H+-PPi synthase of chromatophores prepared from Rhodospirillum rubrum, soluble PPase from Saccharomyces cerevisiae, alkaline phosphatase from bovine intestinal mucosa, and nonspecific monophosphoesterase from Vigna at a PPi concentration equivalent to 10 times the Km of the V-PPase. Although all three PPi analogs inhibited the plant V-PPase and bacterial H+-PPi synthase with qualitatively similar kinetics, whether substrate hydrolysis or PPi-dependent H+-translocation was measured, neither the vacuolar H+-ATPase nor plasma membrane H+-ATPase nor any of the non-V-PPase-related PPi hydrolases were markedly inhibited under these conditions. It is concluded that 1, 1-diphosphonates, in general, and aminomethylenediphosphonate, in particular, are potent type-specific inhibitors of the V-PPase and its putative bacterial homolog, the H+-PPi synthase of Rhodospirillum. PMID:12232069

  18. Transient ectopic overexpression of agouti-signalling protein 1 (asip1 induces pigment anomalies in flatfish.

    Directory of Open Access Journals (Sweden)

    Raúl Guillot

    Full Text Available While flatfish in the wild exhibit a pronounced countershading of the dorso-ventral pigment pattern, malpigmentation is commonly observed in reared animals. In fish, the dorso-ventral pigment polarity is achieved because a melanization inhibition factor (MIF inhibits melanoblast differentiation and encourages iridophore proliferation in the ventrum. A previous work of our group suggested that asip1 is the uncharacterized MIF concerned. In order to further support this hypothesis, we have characterized asip1 mRNAs in both turbot and sole and used deduced peptide alignments to analyze the evolutionary history of the agouti-family of peptides. The putative asip precursors have the characteristics of a secreted protein, displaying a putative hydrophobic signal. Processing of the potential signal peptide produces mature proteins that include an N-terminal region, a basic central domain with a high proportion of lysine residues as well as a proline-rich region that immediately precedes the C-terminal poly-cysteine domain. The expression of asip1 mRNA in the ventral area was significantly higher than in the dorsal region. Similarly, the expression of asip1 within the unpigmented patches in the dorsal skin of pseudoalbino fish was higher than in the pigmented dorsal regions but similar to those levels observed in the ventral skin. In addition, the injection/electroporation of asip1 capped mRNA in both species induced long term dorsal skin paling, suggesting the inhibition of the melanogenic pathways. The data suggest that fish asip1 is involved in the dorsal-ventral pigment patterning in adult fish, where it induces the regulatory asymmetry involved in precursor differentiation into mature chromatophore. Adult dorsal pseudoalbinism seems to be the consequence of the expression of normal developmental pathways in an inaccurate position that results in unbalanced asip1 production levels. This, in turn, generates a ventral-like differentiation environment

  19. BIO-ORGANIC CHEMISTRY QUARTERLY REPORT. June through August1963

    Energy Technology Data Exchange (ETDEWEB)

    Various

    1963-10-02

    This report covers the following titles: (1) The Effects of 8-Methyl Lipoic Acid on the Evolution of Oxygen and Reduction of Carbon Dioxide during Photosynthesis; (2) Further {sup 14}C and {sup 15}N Tracer Studies of Amino Acid Synthesis during Photosynthesis by Chlorella Pyrenoidosa; (3) Two-Dimensional High Voltage, Low-Temperature Paper Electrophoresis of {sup 14}C-Labeled Products of Photosynthesis with {sup 14}CO{sub 2}; (4) A Search for Enzymic and Nonenzymic Reactions Between Thiamine Derivatives and Sugar Phosphates; (5) The Cytochrome Content of Purified Spinach Chloroplast Lamellae; (6) The Osmium Tetroxide Fixation of Chloroplast Lamellae; (7) Kinetics of Exoenzymes and Applications to the Determination of the Sequence of Nucleic Acids; (8) Brain Biochemistry and Behavior in Rats; (9) Experiments on Classical Conditioning and Light Habituation in Planarians; (10) Operant Conditioning in Planarians; (11) Manganese Porphyrin Complexes; (12) EPR Studies of Some Complex Organic Solutions; (13) Transient Response of Light-induced Photosynthetic Electron Paramagnetic Resonance Signals: Rhodospirillum rubrum Chromatophores; (14) Studies of the Tautomerism of Amides; (15) Structure and Mechanism of Hydrolysis of the Product of Reaction of PZ05 and Ethyl Ether; (16) A Study of the Irradiation Products of Several Nitrones; (17) Biosynthesis of the Opium Alkaloids; (18) Synthesis of methyl-{beta}-D-thiogalactoside-{sup 35}S; (19) Effect of Acridine Orange and Visible Light on Thymine Dimer Formation and Disruption; (20) Some Aspects of the Radiation Chemistry of DNA; (21) Nuclear Magnetic Resonance; and (22) Studies on the Inhibition of the Photoreduction of FMN.

  20. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development.

    Science.gov (United States)

    Teslaa, Jessica J; Keller, Abigail N; Nyholm, Molly K; Grinblat, Yevgenya

    2013-08-01

    Holoprosencephaly (HPE), the most common malformation of the human forebrain, is associated with defects of the craniofacial skeleton. ZIC2, a zinc-finger transcription factor, is strongly linked to HPE and to a characteristic set of dysmorphic facial features in humans. We have previously identified important functions for zebrafish Zic2 in the developing forebrain. Here, we demonstrate that ZIC2 orthologs zic2a and zic2b also regulate the forming zebrafish craniofacial skeleton, including the jaw and neurocranial cartilages, and use the zebrafish to study Zic2-regulated processes that may contribute to the complex etiology of HPE. Using temporally controlled Zic2a overexpression, we show that the developing craniofacial cartilages are sensitive to Zic2 elevation prior to 24hpf. This window of sensitivity overlaps the critical expansion and migration of the neural crest (NC) cells, which migrate from the developing neural tube to populate vertebrate craniofacial structures. We demonstrate that zic2b influences the induction of NC at the neural plate border, while both zic2a and zic2b regulate NC migratory onset and strongly contribute to chromatophore development. Both Zic2 depletion and early ectopic Zic2 expression cause moderate, incompletely penetrant mispatterning of the NC-derived jaw precursors at 24hpf, yet by 2dpf these changes in Zic2 expression result in profoundly mispatterned chondrogenic condensations. We attribute this discrepancy to an additional role for Zic2a and Zic2b in patterning the forebrain primordium, an important signaling source during craniofacial development. This hypothesis is supported by evidence that transplanted Zic2-deficient cells can contribute to craniofacial cartilages in a wild-type background. Collectively, these data suggest that zebrafish Zic2 plays a dual role during craniofacial development, contributing to two disparate aspects of craniofacial morphogenesis: (1) neural crest induction and migration, and (2) early

  1. Progress in Systematics of Audouinella Bory%奥杜藻属Audouinella系统分类研究进展

    Institute of Scientific and Technical Information of China (English)

    韩晓静; 冯佳; 谢树莲

    2011-01-01

    奥杜藻属(Audouinella)是淡水红藻中一个比较重要的类群,主要特征是:藻体为单列细胞组成的分枝丝体,细胞具数个周生盘状色素体,有时边缘浅裂,无蛋白核.可产生单孢子囊进行无性生殖,具有有性生殖过程.已知的种类全部为淡水产.中国淡水奥杜藻属已报道的种类有10种2变种.利用分子生物学手段对我国淡水奥杜藻属进行深入系统的、多特征的分类研究,将是今后研究的主要发展方向.%Audouinella Boxy is quite a important group of freshwater red algae. Currently ,the main features of the genus are considered:the thalli are branched and consisted of single row of cells;a few chromatophores are discoid and parietal ,sometimes margin lobed ,pyrenoid absent ;asexual reproduction is by monospores and sexual reproduction is occured. A11 of known species live in freshwater. The genus is belonged to Acrochaetiaceae, Acrochaetiales. The complete life cycle of Audouinella includes three homomorphons plants, isogamete, tetrasporophyte and filament of asexual reproduction by monospores. Ten species and two varieties of freshwater Audouinella Bory are recorded in China. But the sexual reproduction has not been described. It will be focused on the systematics based on multi-characteristics for freshwater Audouinella Bory using molecular biological data. Furthermore,the phylogenetics will be reaearehed and the molecular phylogenetie tree will be constraeted about Audouinella Bory in China.

  2. Femtosecond and hole-burning studies of B800`s excitation energy relaxation dynamics in the LH2 antenna complex of Rhodopseudomonas acidophila (strain 10050)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.M.; Savikhin, S.; Reddy, N.R.S.; Jankowiak, R.; Struve, W.S.; Small, G.J. [Ames Lab., IA (United States)]|[Iowa State Univ., Ames, IA (United States); Cogdell, R.J. [Univ. of Glasgow (United Kingdom)

    1996-07-18

    One- and two-color pump/probe femtosecond and hole-burning data are reported for the isolated B800-850 (LH2) antenna complex of Rhodopseudomonas acidophila (strain 10050). The two-color profiles are interpretable in terms of essentially monophasic B800{yields}B850 energy transfer with kinetics ranging from 1.6 to 1.1 ps between 19 and 130 K for excitation at or to the red of the B800 absorption maximum. The B800 zero-phonon hole profiles obtained at 4.2 K with burn frequencies located near or to the red of this maximum yielded a transfer time of 1.8 ps. B800 hole-burning data (4.2 K) are also reported for chromatophores at ambient pressure and pressures of 270 and 375 MPa. At ambient pressure the B800-B850 energy gap is 950 cm{sup -1}, while at 270 and 375 MPa it is close to 1000 and 1050 cm{sup -1}, respectively. However, no dependence of the B800{yields}B850 transfer time on pressure was observed. The resilience of the transfer rate to pressure-induced changes in the energy gap and the weak temperature dependence of the rate are consistent with the model that has the spectral overlap (of Foerster theory) provided by the B800 fluorescence origin band and weak vibronic absorption bands of B850. However, both the time domain and hole-burning data establish that there is an additional relaxation channel for B800, which is observed when excitation is located to the blue of the B800 absorption maximum. 40 refs., 11 figs., 6 tabs.

  3. [Morphology of gametes in sea urchins from Peter the Great Bay, Sea of Japan].

    Science.gov (United States)

    Drozdov, A L; Vinnikova, V V

    2010-01-01

    The fine structure of the gametes in six sea urchin species of the Sea of Japan was studied. The spermatozoons in Strongylocentrotus nudus, S. intermedius, Echinocardium cordatum, Scaphechinus mirabilis, Sc. grizeus and Echinarachnius parma are species-specific. The conical head and symmetrically disposed ring-shape mitochondrion are common to regular sea urchin sperm cells. S. nudus is characterized by the bulb-shaped head of the zoosperm; S. intermedius, by a bullet-shaped one. The zoosperm spearhead and small amount of postacrosome material are common to irregular sea urchins; the sperm width: length ratio varies for different species, with the highest for Sc. mirabilis. The zoosperm of Sc. griseus is characterized by two lipid drops in the cell center. Asymmetrical mitochondrion disposal is usual for E. parma. Actin filaments are found in the postacrosome material in the zoosperm of cordiform sea urchins. The differences in the fine structure of zoosperm in eurybiont species Ech. cordatum inhabiting the Sea of Japan and coastal areas of the Northeast Atlantic may bear record to the complex existence of species Ech. cordatum. The fine structure of zoosperm is unique for each of the studied families, Strongylocentrotidae, Scutellidae, and Loveniidae. The eggs of all the species are characterized by vitelline and tremelloid membranes. The vitelline membrane is formed by cytoplasm protrusions; the area between them is filled with fubrillary material. The tremelloid membrane is formed by fubrillary material associated with apical parts of microvilli of the vitelline membrane. The irregular sea urchins Sc. griseus, Sc. mirabilis and E. parma are characterized by chromatophores situated in the tremelloid membrane, with the highest abundance in Sc. mirabilis. PMID:20184121

  4. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    Science.gov (United States)

    Dieu Thuy Ung, Thi; Tran, Thi Kim Chi; Nga Pham, Thu; Nghia Nguyen, Duc; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-12-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ∼500 and 700 nm with the luminescence quantum yield (LQY) of 30–85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml‑1. For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3–50 ng μl‑1 with a detection limit of 3 ng μL‑1 has been performed based on the antibody-antigen recognition.

  5. A single origin of the photosynthetic organelle in different Paulinella lineages

    Directory of Open Access Journals (Sweden)

    Ishida Ken-ichiro

    2009-05-01

    Full Text Available Abstract Background Gaining the ability to photosynthesize was a key event in eukaryotic evolution because algae and plants form the base of the food chain on our planet. The eukaryotic machines of photosynthesis are plastids (e.g., chloroplast in plants that evolved from cyanobacteria through primary endosymbiosis. Our knowledge of plastid evolution, however, remains limited because the primary endosymbiosis occurred more than a billion years ago. In this context, the thecate "green amoeba" Paulinella chromatophora is remarkable because it very recently (i.e., minimum age of ≈ 60 million years ago acquired a photosynthetic organelle (termed a "chromatophore"; i.e., plastid via an independent primary endosymbiosis involving a Prochlorococcus or Synechococcus-like cyanobacterium. All data regarding P. chromatophora stem from a single isolate from Germany (strain M0880/a. Here we brought into culture a novel photosynthetic Paulinella strain (FK01 and generated molecular sequence data from these cells and from four different cell samples, all isolated from freshwater habitats in Japan. Our study had two aims. The first was to compare and contrast cell ultrastructure of the M0880/a and FK01 strains using scanning electron microscopy. The second was to assess the phylogenetic diversity of photosynthetic Paulinella to test the hypothesis they share a vertically inherited plastid that originated in their common ancestor. Results Comparative morphological analyses show that Paulinella FK01 cells are smaller than M0880/a and differ with respect to the number of scales per column. There are more distinctive, multiple fine pores on the external surface of FK01 than in M0880/a. Molecular phylogenetic analyses using multiple gene markers demonstrate these strains are genetically distinct and likely comprise separate species. The well-supported monophyly of the Paulinella chromatophora strains analyzed here using plastid-encoded 16S rRNA suggests strongly

  6. Effects of environmental and artificial UV-B radiation on freshwater prawn Macrobrachium olfersi embryos

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Evelise Maria [Programa de Pos-Graduacao em Ciencias Morfologicas, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, 21949-902 Rio de Janeiro, RJ (Brazil); Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Ammar, Dib [Universidade do Oeste de Santa Catarina, Departamento de Biologia, Campus Universitario, 89600-000 Joacaba, SC (Brazil); Bem, Andreza Fabro de; Latini, Alexandra [Universidade Federal de Santa Catarina, Departamento de Bioquimica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Mueller, Yara Maria Rauh [Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Allodi, Silvana, E-mail: sallodi@histo.ufrj.br [Programa de Pos-Graduacao em Ciencias Morfologicas, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, 21949-902 Rio de Janeiro, RJ (Brazil)

    2010-06-01

    The recent decrease of the stratospheric ozone has resulted in an increase of ultraviolet-B (UV-B) radiation reaching the Earth's surface. In freshwater ecosystems with transparent water, UV-B rays easily penetrate and potentially cause harmful effects to organisms. In this study, embryos of the prawn Macrobrachium olfersi were used to evaluate the impact of UV-B rays in freshwater environments. We observed three groups of embryos: the first was to assess whether UV-B radiation produced morphological defects and/or biochemical impairments in the laboratory. The second was to check whether embryos with the same impairments as those observed in the laboratory were found in their environment, under natural solar radiation. The third group was the non-irradiated control. The embryos irradiated with 310 mW cm{sup -2} UV-B for 30 min showed morphological alterations similar to those observed in embryos from the environmental control group. The most important effects of the UV-B radiation observed in M. olfersi embryos were morphological (1.2% of the total number of embryos from the environment and 2.8% of the total number of irradiated embryos), pigmentation changes in the eyes (78.0% of the total number of embryos from the environment and 98.9% of the total number of irradiated embryos), and disruption of the chromatophores (46.9% of the total number of embryos from the environment and 95.5% of the total number of irradiated embryos). We also observed an increase in egg volume, which was accompanied by a significant increase in water content in UV-B irradiated groups when compared with aquaria control embryos. In addition, a significant decrease in the mitotic index in eggs exposed to UV-B radiation was detected (0.17 for the embryos from the aquaria control, 0.10 for the embryos of the environmental control, and 0.04 for the irradiated groups). The low levels of NPSH and high levels of TBARS indicated that UV-B rays directly compromised the antioxidant function of

  7. BIO-ORGANIC CHEMISTRY QUARTERLY REPORT. December 1961, January and February 1962

    Energy Technology Data Exchange (ETDEWEB)

    Various,

    1962-04-03

    Progress is reported in investigations on the polymerization of formaldehyde, ultraviolet irradiation of aqueous HC/sup 14/N, radiation chemistry of nucleic acid constituents, oxidation of free sugars and aldonic acid derivatives by Acetobacter suboxydans, preparation and isolation of C/sup 14/O/ sub 2/~ enzyme, metabolism of C/sup 14/-ribulose diphosphate by Nitrobacter agilis, C/sup 14/O/sub 2/ metabolism of Hordeum valgare seedlings during the development of the photosynthetic apparatus, location and chemical characterization of RNA in the chloroplasts of Spinacea oleracea, inhibition of dark bleaching by stroma extracts and by inert gases, ESR studies on chromatophores from Rhodospirillium rubrum and on quantasomes from spinach chloroplasts, and phthalocyanine manganese and etioporphyrin manganese complexes. (J.R.D.) It has been known for a hundred years that formaldehyde polymerizes to carbohydrate substances in alkaline media. Although the reaction has long attracted much attention, only recently has a detailed qualitative analysis of the products been carried out by chromatographic methods. We have started to re-examine this reaction by combining chromatography with radioactive tracer techniques in the hope of refining the quantitative aspects of the analysis. Our particular interest has been to develop methods for determining the relative proportions of ribose and ribulose in the mixtures of sugars formed in basic media, as well as under other polymerizing conditions. The finding of large amounts of these sugars might help to explain the occurrence of ribose as the only basic sugar in the fundamental replicating molecules--the nucleic acids. Formaldehyde is thought to have been present in the primitive reducing atmosphere which existed before life first appeared. The ribonucleic acids must have appeared in the constitution of reproducing systems at a very early stage in the development of living organisms. In this study, the polymerizations of formaldehyde

  8. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    International Nuclear Information System (INIS)

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ∼500 and 700 nm with the luminescence quantum yield (LQY) of 30–85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml−1. For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3–50 ng μl−1 with a detection limit of 3 ng μL−1 has been performed based on the antibody-antigen recognition. (review)

  9. 中间球海胆(意)与光棘球海胆(裔)种间杂交及自繁后代生长与表型特征比较%Growth and phenotypic characteristics of interspecific hybrids of sea urchin Strongylocentrotus intermedius (♀) × S. nudus (♂) and purebred offsprings

    Institute of Scientific and Technical Information of China (English)

    亓守冰; 张伟杰; 常亚青; 田晓飞; 王海峰; 赵帅; 经晨晨

    2015-01-01

    The survival, growth performance[specific growth rate(SGR) and coefficient of variation (CV)] and phenotypic characteristics ( count of chromatophore cells and ossicle shape on tube feet, and spine length and col-or) were compared in sea urchin hybrid juveniles of Strongylocentrotus intermedius (♀) ×S. nudus (♂) and the two purebred sea urchin offsprings to evaluate the heterosis. The 90 d feeding trial showed that both S. intermedius and S. nudus had survival rate of 100%, and the hybrids 97% at the end of the experiment, without significant difference (P>0. 05). However, there was significantly higher SGR (4. 00 %/d) in the hybrids than that in the parents (2.91 %/d in S. intermedius and 3. 15 %/d in S. nudus)(P0. 05). From 60 days to 90 days, there was no significant difference among the three sea urchins ( P>0 . 05 ) . The hybrids had significantly higher coefficient of variation for body weight of (76. 12%) than the S. intermedius(52. 05%) and S. nudus (63. 81%) at the end of the experiment(P0.05);在0~60 d的养殖范围内,杂交海胆具有最快的特定生长率(4.00%/d),且显著高于中间球海胆(2.91%/d)和光棘球海胆(3.15%/d)(P0.05),60~90 d时,3种海胆的特定生长率之间均无显著性差异( P>0.05);试验结束时,杂交海胆体质量的变异系数(76.12%)显著高于光棘球海胆(63.81%)和中间球海胆(52.05%)(P<0.05),表明种间杂交显著增加了后代的遗传变异;光棘球海胆管足中色素细胞数量最多,中间球海胆最少,杂交海胆的色素细胞数量介于父母本之间;杂交海胆棘刺为浅紫色,介于中间球海胆的白色和紫海胆的深紫色之间,而棘长较父母本细短;与棘色和管足颜色不同,杂交海胆骨片两端的突起产生了新的变异。研究表明,在幼胆期杂交海胆的表型特征明显区别于父母本,具有更快的生长速度和更高的变异水平,具有较高的育种价值。

  10. 虹鳉透明突变的遗传特征及其组织学观察%The Genetic Characteristics and Histological Defects in Transparent Mutant of Guppy Poecilia reticulate

    Institute of Scientific and Technical Information of China (English)

    李凯彬; 常藕琴; 刘春; 王芳; 马必勇; 梁慧丽; 吴淑勤

    2011-01-01

    摘要:采用杂交方法对虹鳉(Poecilia reticulate)透明性状的遗传规律进行了研究。从F1自交和回交后代的表型分析,该性状由1对等位基因控制,呈隐性遗传,其遗传特征符合孟德尔基因分离定律。采用体视镜观察比较不同表型虹鳉体表色素细胞的差异,并应用石蜡切片和电镜技术对不同表型鱼的皮肤、腹膜等结构进行研究,结果显示,与野生型虹鳝比较,透明个体没有虹彩色素细胞。组织学研究表明,透明虹鳉皮肤和腹膜的结构基本完整,但缺少了虹彩色素细胞层。由于突变个体虹彩色素细胞的缺失,导致光线可透过身体,因而变得透明。虹鳉的透明突变并不致死,也可育,且能稳定遗传。不论幼鱼或成鱼,透明突变体的心、肝、肾、肠、鳔、鳃、脊椎等内部器官可肉眼直接观察,为相关实验提供了极大便利,是进行体内实验研究的优良材料。%The transparent mutant of Poecilia reticulate was hybrid with wild type for genetic study. The analysis of offspring phenotype showed that the transparent characteristics was recessively inherent, controlled by an allele in line with Mendelism. Stereomicroscopy was used to examine the types and patterns of chromatophores for each phenotype, and it was found that the transparent mutant exhibited loss of iridophore. The paraffin section examination and electronic microscopy on the skin and peritoneum of guppy showed that the transparent mutant had an intact structure of skin and peritoneum, except for the absence of iridophore layer in contrast to wild-type individual. Reflective iridophore was absent in transparent mutant to the penetration of light, resulting in transparent appearance. The mutants were healthy and fertile, showing a stably genetic trait, and the main internal organs, such as heart, liver, gut, gonads, kidney, gills, and spinal cord, were naked-eye visible in living fish

  11. Molecular Breeding for Flower Colors Modification on Ornamental Plants Based on the Mechanism of Anthocyanins Biosynthesis and Coloration%基于花青素苷合成和呈色机理的观赏植物花色改良分子育种

    Institute of Scientific and Technical Information of China (English)

    戴思兰; 洪艳

    2016-01-01

    Flower color, one of the most important quality traits for ornamental plants, is of great adaptive significance during the natural evolution process of plants. Moreover, flower color is also an important content for epigenetic researches. Anthocyanins, the most important pigments for flower coloration, designate the flower colors of approximately 80% plant families in angiosperm. Up to date, more than 600 anthocyanins have been isolated and identified from the natural world, which are mainly derived from six anthocyanidins. The biosynthetic pathway of anthocyanins has been well studied, which starts from the flavonoid metabolic pathway. Different branch pathways result in the diversity of anthocyanins, mainly due to the differences of substituent groups that are located on the basic skeleton of various anthocyanidins. During the biosynthetic process of anthocyanins, the competition forces of enzymes which are located on the branch nodes and the substrate specificity of some key enzymes result in the genus and species specificity of anthocyanins and the corresponding flower color phenotypes. Anthocyanins are transferred to vacuole and are packaged as chromatophore after being biosynthesized. The accumulation and conserve abilities on the chromatophore of vacuole affect the coloration of anthocyanins to a large extent. Therefore, many intracellular factors, such as the pH value of vacuole, the content of co-pigments and the complexation of metal ion, jointly affect the final coloration of anthocyanins in the petals. At present, some structural and regulatory genes that are related to the anthocyanins biosynthesis and coloration have been isolated, whose functions also have been well revealed. Based on these genes, some transgenic flowers have been successfully bred out. However, the mechanisms of gene regulating expression, including the regulation mechanisms on the transcriptional and post-transcriptional levels, and the differences of DNA sequences and the DNA

  12. 三聚氰胺对藻类的毒性效应及其机理研究%Toxic mechanism study of melamine on phytoplankton

    Institute of Scientific and Technical Information of China (English)

    玉宁; 梁辉朝; 许俊峰; 裴国凤

    2011-01-01

    dismutase and catalase in them, along with the toxic effect on algae of melamine. The results of our tests and measurements show that melamine has an apparently inhibiting effect on the growth of these algae. Moreover, the higher the concentration of melamine is, and the longer the time that algae cultured, the lower the chla content and the greater the toxic effect. At the same time, melamine proves to be able to induce fast-growth in these algae even at lower dosages. When the concentration of melamine was over 1 500 mg/L, its chla content would be reduced with the treating time. For example, at the concentration of less than 750 mg/L, chla content tended to increase gradually, though the increasing rate was lower than that of the controls.However, the malonic dialdehyde' s content of the three algae was found to rise with the melamine concentration increased, whereas the superoxide dismutase and catalase were detected to rise during the entire testing period. It has no apparent changes in the protein content.These physiological changes indicate the toxic mechanism of melamine on the algae might be that the decrease of the protected enzyme active in algae cells made the lipid peroxidation of cell biomembrane increased, whereas the structure and function of the chromatophore were affected. Perhaps, the decrease of ehla content in algae cells may influence the photosynthesis process.

  13. A systematic revision of Tatia (Siluriformes: Auchenipteridae: Centromochlinae

    Directory of Open Access Journals (Sweden)

    Luisa Maria Sarmento-Soares

    2008-01-01

    Full Text Available The auchenipterid catfish genus Tatia is revised. Twelve species are recognized including three described as new. Tatia is diagnosed by the hyomandibula elongated anterodorsally, the anal-fin base of adult males reduced in length, and the caudal peduncle laterally compressed and deep with a middorsal keel. Tatia aulopygia occurs in the Madeira river drainage and is distinguished by the reduced cranial fontanel in adults and male modified anal fin with middle rays reduced in length. Tatia boemia, known from the upper Uruguay river drainage, is distinguished by its unique color pattern with dark chromatophores on the sides of body. Tatia brunnea from river basins in Suriname and French Guiana and the Negro river drainage, Amazon basin, is recognized by its wide head and mouth and by the male modified anal fin with sharply pointed tip. Tatia dunni, from the upper Amazon basin, is recognized by its narrow head, long postcleithral process in some specimens, and body coloration with irregular blotches or stripes. Tatia galaxias, endemic to the Orinoco river basin, is distinguished by its large eye and short snout. Tatia gyrina, distributed in the upper and central Amazon basin and in northern Suriname, has a uniquely reduced mesethmoid, slightly protruding lower jaw, second nuchal plate with slightly concave lateral borders, third nuchal plate reduced, small prevomer, low number of ribs, low number of vertebrae and sexual dimorphism regarding intumescent male genital papilla. Tatia intermedia, recorded from central and lower Amazon basin, Tocantins river, and coastal drainages in Guyana, Suriname, French Guiana, and eastern Pará State, Brazil, is distinguished by the short postcleithral process, small eye and long snout. Tatia neivai, from the upper Paraná river , Paraguay river and upper Paraíba do Sul river basin, is distinguished by its unique vertebral count and caudal-fin coloration consisting of transverse dark bars. Tatia strigata, from