WorldWideScience

Sample records for chromatin structure related

  1. Chromatin Structure and Function

    CERN Document Server

    Wolffe, Alan P

    1999-01-01

    The Third Edition of Chromatin: Structure and Function brings the reader up-to-date with the remarkable progress in chromatin research over the past three years. It has been extensively rewritten to cover new material on chromatin remodeling, histone modification, nuclear compartmentalization, DNA methylation, and transcriptional co-activators and co-repressors. The book is written in a clear and concise fashion, with 60 new illustrations. Chromatin: Structure and Function provides the reader with a concise and coherent account of the nature, structure, and assembly of chromatin and its active

  2. Effects of fast neutrons on chromatin: dependence on chromatin structure

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Dept. of Molecular Genetics, V. Babes National Inst., Bd. Timisoara, Bucharest (Romania); Constantinescu, B. [Dept. of Cyclotron, H. Hulubei National Inst., Bucharest (Romania); Gazdaru, D. [Dept. of Biophysics, Physics Faculty, Univ. of Bucharest (Romania)

    2002-07-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  3. Structure of chromatin in spermatozoa.

    Science.gov (United States)

    Björndahl, Lars; Kvist, Ulrik

    2014-01-01

    The specialized structure of the sperm chromatin has a dual function - first to protect the DNA from damage during storage and transport to the oocyte, and then to enable a rapid and complete unpacking of the undamaged paternal genome in the ooplasm. It is evident that zinc has a pivotal role in maintaining the structural stability and in enabling a rapid decondensation at the appropriate time. It is important for the sperm chromatin structure that the spermatozoa are ejaculated together with the zinc-rich prostatic secretion. Early exposure to zinc-binding seminal vesicular fluid can deplete the sperm chromatin of zinc and most likely induce surplus formation of disulfide bridges, likely to cause incomplete and delayed decondensation of the sperm chromatin in the oocyte. A premature decrease in sperm chromatin structure stability is likely to increase the risk for damage to the DNA due to increased access to the genome for DNA damaging compounds. The status of the sperm chromatin structure can vary in vitro depending on the exposure to zinc-depleting conditions when spermatozoa are stored in semen after ejaculation. When sperm DNA damage tests are evaluated and validated, it is therefore essential to also take into account the dynamics of zinc-dependent and zinc-independent sperm chromatin stability.

  4. Chromatin structure regulates gene conversion.

    Directory of Open Access Journals (Sweden)

    W Jason Cummings

    2007-10-01

    Full Text Available Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vlambda pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205, expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vlambda donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vlambda array, and altered the outcome of Vlambda diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences.

  5. Impact of chromatin structures on DNA processing for genomic analyses.

    Directory of Open Access Journals (Sweden)

    Leonid Teytelman

    Full Text Available Chromatin has an impact on recombination, repair, replication, and evolution of DNA. Here we report that chromatin structure also affects laboratory DNA manipulation in ways that distort the results of chromatin immunoprecipitation (ChIP experiments. We initially discovered this effect at the Saccharomyces cerevisiae HMR locus, where we found that silenced chromatin was refractory to shearing, relative to euchromatin. Using input samples from ChIP-Seq studies, we detected a similar bias throughout the heterochromatic portions of the yeast genome. We also observed significant chromatin-related effects at telomeres, protein binding sites, and genes, reflected in the variation of input-Seq coverage. Experimental tests of candidate regions showed that chromatin influenced shearing at some loci, and that chromatin could also lead to enriched or depleted DNA levels in prepared samples, independently of shearing effects. Our results suggested that assays relying on immunoprecipitation of chromatin will be biased by intrinsic differences between regions packaged into different chromatin structures - biases which have been largely ignored to date. These results established the pervasiveness of this bias genome-wide, and suggested that this bias can be used to detect differences in chromatin structures across the genome.

  6. Computational strategies to address chromatin structure problems

    Science.gov (United States)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  7. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  8. Impact of chromatin structure on PR signaling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Hager, Gordon L

    2012-01-01

    The progesterone receptor (PR) interacts with chromatin in a highly dynamic manner that requires ongoing chromatin remodeling, interaction with chaparones and activity of the proteasome. Here we discuss dynamic interaction of steroid receptor with chromatin, with special attention not only to PR...

  9. Biphasic Chromatin Structure and FISH Signals Reflect Intranuclear Order

    Directory of Open Access Journals (Sweden)

    Jyoti P. Chaudhuri

    2005-01-01

    Full Text Available Background and Aim: One of the two parental allelic genes may selectively be expressed, regulated by imprinting, X-inactivation or by other less known mechanisms. This study aims to reflect on such genetic mechanisms. Materials and Methods: Slides from short term cultures or direct smears of blood, bone marrow and amniotic fluids were hybridized with FISH probes singly, combined or sequentially. Two to three hundred cells were examined from each preparation. Results and Aignificance: A small number of cells (up to about 5%, more frequent in leukemia cases, showed the twin features: (1 nuclei with biphasic chromatin, one part decondensed and the other condensed; and (2 homologous FISH signals distributed equitably in those two regions. The biphasic chromatin structure with equitable distribution of the homologous FISH signals may correspond to the two sets of chromosomes, supporting observations on ploidywise intranuclear order. The decondensed chromatin may relate to enhanced transcriptions or advanced replications. Conclusions: Transcriptions of only one of the two parental genomes cause allelic exclusion. Genomes may switch with alternating monoallelic expression of biallelic genes as an efficient genetic mechanism. If genomes fail to switch, allelic exclusion may lead to malignancy. Similarly, a genome-wide monoallelic replication may tilt the balance of heterozygosity resulting in aneusomy, initiating early events in malignant transformation and in predicting cancer mortality.

  10. Effect of DNA groove binder distamycin A upon chromatin structure.

    Directory of Open Access Journals (Sweden)

    Parijat Majumder

    Full Text Available BACKGROUND: Distamycin A is a prototype minor groove binder, which binds to B-form DNA, preferentially at A/T rich sites. Extensive work in the past few decades has characterized the binding at the level of double stranded DNA. However, effect of the same on physiological DNA, i.e. DNA complexed in chromatin, has not been well studied. Here we elucidate from a structural perspective, the interaction of distamycin with soluble chromatin, isolated from Sprague-Dawley rat. METHODOLOGY/PRINCIPAL FINDINGS: Chromatin is a hierarchical assemblage of DNA and protein. Therefore, in order to characterize the interaction of the same with distamycin, we have classified the system into various levels, according to the requirements of the method adopted, and the information to be obtained. Isothermal titration calorimetry has been employed to characterize the binding at the levels of chromatin, chromatosome and chromosomal DNA. Thermodynamic parameters obtained thereof, identify enthalpy as the driving force for the association, with comparable binding affinity and free energy for chromatin and chromosomal DNA. Reaction enthalpies at different temperatures were utilized to evaluate the change in specific heat capacity (ΔCp, which, in turn, indicated a possible binding associated structural change. Ligand induced structural alterations have been monitored by two complementary methods--dynamic light scattering, and transmission electron microscopy. They indicate compaction of chromatin. Using transmission electron microscopy, we have visualized the effect of distamycin upon chromatin architecture at di- and trinucleosome levels. Our results elucidate the simultaneous involvement of linker bending and internucleosomal angle contraction in compaction process induced by distamycin. CONCLUSIONS/SIGNIFICANCE: We summarize here, for the first time, the thermodynamic parameters for the interaction of distamycin with soluble chromatin, and elucidate its effect on

  11. Sperm chromatin structure and male fertility: biological and clinical aspects

    Institute of Scientific and Technical Information of China (English)

    J. Erenpreiss; M. Spano; J. Erenpreisa; M. Bungum; A. Giwercman

    2006-01-01

    Aim: Sperm chromatin/DNA integrity is essential for the accurate transmission of paternal genetic information, and normal sperm chromatin structure is important for sperm fertilizing ability. The routine examination of semen, which includes sperm concentration, motility and morphology, does not identify defects in sperm chromatin structure. The origin of sperm DNA damage and a variety of methods for its assessment are described. Evaluation of sperm DNA damage appears to be a useful tool for assessing male fertility potential both in vivo and in vitro. The possible impact of sperm DNA defects on the offspring is also discussed.

  12. Neutron scattering studies on chromatin higher-order structure

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.

  13. Chromatin structure and DNA damage repair

    Directory of Open Access Journals (Sweden)

    Dinant Christoffel

    2008-11-01

    Full Text Available Abstract The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks, single strand breaks, oxidative lesions and pyrimidine dimers. The cell has evolved intricate DNA damage response mechanisms to counteract the genotoxic effects of these lesions. The two main features of the DNA damage response mechanisms are cell-cycle checkpoint activation and, at the heart of the response, DNA repair. For both damage signalling and repair, chromatin remodelling is most likely a prerequisite. Here, we discuss current knowledge on chromatin remodelling with respect to the cellular response to DNA damage, with emphasis on the response to lesions resolved by nucleotide excision repair. We will discuss the role of histone modifications as well as their displacement or exchange in nucleotide excision repair and make a comparison with their requirement in transcription and double strand break repair.

  14. Control of chromatin structure by long noncoding RNA

    Science.gov (United States)

    Böhmdorfer, Gudrun; Wierzbicki, Andrzej T.

    2015-01-01

    Long noncoding RNA (lncRNA) is a pivotal factor regulating various aspects of genome activity. Genome regulation via DNA methylation and posttranslational histone modifications is a well-documented function of lncRNA in plants, fungi, and animals. Here, we summarize evidence showing that lncRNA also controls chromatin structure including nucleosome positioning and chromosome looping. We focus on data from plant experimental systems, discussed in the context of other eukaryotes. We explain the mechanisms of lncRNA-controlled chromatin remodeling and the implications of the functional interplay between noncoding transcription and several different chromatin remodelers. We propose that the unique properties of RNA make it suitable for controlling chromatin modifications and structure. PMID:26410408

  15. SANS spectra of the fractal supernucleosomal chromatin structure models

    Science.gov (United States)

    Ilatovskiy, Andrey V.; Lebedev, Dmitry V.; Filatov, Michael V.; Petukhov, Michael G.; Isaev-Ivanov, Vladimir V.

    2012-03-01

    The eukaryotic genome consists of chromatin—a nucleoprotein complex with hierarchical architecture based on nucleosomes, the organization of higher-order chromatin structures still remains unknown. Available experimental data, including SANS spectra we had obtained for whole nuclei, suggested fractal nature of chromatin. Previously we had built random-walk supernucleosomal models (up to 106 nucleosomes) to interpret our SANS spectra. Here we report a new method to build fractal supernucleosomal structure of a given fractal dimension or two different dimensions. Agreement between calculated and experimental SANS spectra was significantly improved, especially for model with two fractal dimensions—3 and 2.

  16. Chromatin Structure of Epstein-Barr Virus Latent Episomes.

    Science.gov (United States)

    Lieberman, Paul M

    2015-01-01

    EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.

  17. Chromatin Structure in Cell Differentiation, Aging and Cancer

    NARCIS (Netherlands)

    S. Kheradmand Kia (Sima)

    2009-01-01

    textabstractChromatin is the structure that the eukaryotic genome is packaged into, allowing over a metre of DNA to fit into the small volume of the nucleus. It is composed of DNA and proteins, most of which are histones. This DNA-protein complex is the template for a number of essential cell proces

  18. Analysis of chromatin structure at meiotic DSB sites in yeasts.

    Science.gov (United States)

    Hirota, Kouji; Fukuda, Tomoyuki; Yamada, Takatomi; Ohta, Kunihiro

    2009-01-01

    One of the major features of meiosis is a high frequency of homologous recombination that not only confers genetic diversity to a successive generation but also ensures proper segregation of chromosomes. Meiotic recombination is initiated by DNA double-strand breaks that require many proteins including the catalytic core, Spo11. In this regard, like transcription and repair, etc., recombination is hindered by a compacted chromatin structure because trans-acting factors cannot easily access the DNA. Such inhibitory effects must be alleviated prior to recombination initiation. Indeed, a number of groups showed that chromatin around recombination hotspots is less condensed, by using nucleases as a probe to assess local DNA accessibility. Here we describe a method to analyze chromatin structure of a recombination hotspot in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This method, combining micrococcal nuclease (MNase) digestion ofchromatin DNA and subsequent Southern blotting, is expected to provide information as to chromatin context around a hotspot. Moreover, by virtue of MNase preferentially targeting linker DNA, positions of several nucleosomes surrounding a hotspot can also be determined. Our protocol is a very powerful way to analyze several-kb regions of interest and can be applied to other purposes.

  19. Telomere Chromatin Condensation Assay (TCCA): a novel approach to study structural telomere integrity.

    Science.gov (United States)

    Gonzalez-Vasconcellos, Iria; Alonso-Rodríguez, Silvia; López-Baltar, Isidoro; Fernández, José Luis

    2015-01-01

    Telomeres, the DNA-protein complexes located at the end of linear eukaryotic chromosomes are essential for genome stability. Improper higher-order chromatin organization at the chromosome ends can give rise to telomeric recombination and genomic instability. We report the development of an assay to quantify differences in the condensation of telomeric chromatin, thereby offering new opportunities to study telomere biology and stability. We have combined a DNA nuclease digestion with a quantitative PCR (qPCR) assay of telomeric DNA, which we term the Telomere Chromatin Condensation Assay (TCCA). By quantifying the relative quantities of telomeric DNA that are progressively digested with the exonuclease Bal 31 the method can discriminate between different levels of telomeric chromatin condensation. The structural chromatin packaging at telomeres shielded against exonuclease digestion delivered an estimate, which we term Chromatin Protection Factor (CPF) that ranged from 1.7 to 2.3 fold greater than that present in unpacked DNA. The CPF was significantly decreased when cell cultures were incubated with the DNA hypomethylating agent 5-azacytidine, demonstrating the ability of the TCCA assay to discriminate between packaging levels of telomeric DNA.

  20. Regulation of chromatin structure by poly(ADP-ribosylation

    Directory of Open Access Journals (Sweden)

    Sascha eBeneke

    2012-09-01

    Full Text Available The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose, the zinc-finger protein poly(ADP-ribose polymerase-1 (PARP1, was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.

  1. Light scattering measurements supporting helical structures for chromatin in solution.

    Science.gov (United States)

    Campbell, A M; Cotter, R I; Pardon, J F

    1978-05-01

    Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model.

  2. Repression and activation by multiprotein complexes that alter chromatin structure.

    Science.gov (United States)

    Kingston, R E; Bunker, C A; Imbalzano, A N

    1996-04-15

    Recent studies have provided strong evidence that macromolecular complexes are used in the cell to remodel chromatin structure during activation and to create an inaccessible structure during repression, Although there is not yet any rigorous demonstration that modification of chromatin structure plays a direct, causal role in either activation or repression, there is sufficient smoke to indicate the presence of a blazing inferno nearby. It is clear that complexes that remodel chromatin are tractable in vitro; hopefully this will allow the establishment of systems that provide a direct analysis of the role that remodeling might play in activation. These studies indicate that establishment of functional systems to corroborate the elegant genetic studies on repression might also be tractable. As the mechanistic effects of these complexes are sorted out, it will become important to understand how the complexes are regulated. In many of the instances discussed above, the genes whose products make up these complexes were identified in genetic screens for effects on developmental processes. This implies a regulation of the activity of these complexes in response to developmental cues and further implies that the work to fully understand these complexes will occupy a generation of scientists.

  3. Chromatin structure and ATRX function in mouse oocytes.

    Science.gov (United States)

    De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M

    2012-01-01

    Differentiation of chromatin structure and function during oogenesis is essential to confer the mammalian oocyte with meiotic and developmental potential. Errors in chromosome segregation during female meiosis and subsequent transmission of an abnormal chromosome complement (aneuploidy) to the early conceptus are one of the leading causes of pregnancy loss in women. The chromatin remodeling protein ATRX (α-thalassemia mental retardation X-linked) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres during meiosis. In mammalian oocytes, ATRX binds to centromeric heterochromatin domains where it is required for accurate chromosome segregation. Loss of ATRX function induces abnormal meiotic chromosome morphology, reduces histone H3 phosphorylation, and promotes a high incidence of aneuploidy associated with severely reduced fertility. The presence of centromeric breaks during the transition to the first mitosis in the early embryo indicates that the role of ATRX in chromosome segregation is mediated through an epigenetic mechanism involving the maintenance of chromatin modifications associated with pericentric heterochromatin (PCH) formation and chromosome condensation. This is consistent with the existence of a potential molecular link between centromeric and PCH in the epigenetic control of centromere function and maintenance of chromosome stability in mammalian oocytes. Dissecting the molecular mechanisms of ATRX function during meiosis will have important clinical implications towards uncovering the epigenetic factors contributing to the onset of aneuploidy in the human oocyte.

  4. Evaluation of sperm chromatin structure in boar semen

    Directory of Open Access Journals (Sweden)

    Banaszewska Dorota

    2015-06-01

    Full Text Available This study was an attempt to evaluate sperm chromatin structure in the semen of insemination boars. Preparations of semen were stained with acridine orange, aniline blue, and chromomycin A3. Abnormal protamination occurred more frequently in young individuals whose sexual development was not yet complete, but may also be an individual trait. This possibility is important to factor into the decision regarding further exploitation of insemination boars. Thus a precise assessment of abnormalities in the protamination process would seem to be expedient as a tool supplementing morphological and molecular evaluation of semen. Disruptions in nucleoprotein structure can be treated as indicators of the biological value of sperm cells.

  5. Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells.

    Science.gov (United States)

    Luciano, Alberto M; Franciosi, Federica; Dieci, Cecilia; Lodde, Valentina

    2014-09-01

    The mammalian oocyte nucleus or germinal vesicle (GV) exhibits characteristic chromatin configurations, which are subject to dynamic modifications through oogenesis. Aim of this review is to highlight how changes in chromatin configurations are related to both functional and structural modifications occurring in the oocyte nuclear and cytoplasmic compartments. During the long phase of meiotic arrest at the diplotene stage, the chromatin enclosed within the GV is subjected to several levels of regulation. Morphologically, the chromosomes lose their individuality and form a loose chromatin mass. The decondensed configuration of chromatin then undergoes profound rearrangements during the final stages of oocyte growth that are tightly associated with the acquisition of meiotic and developmental competence. Functionally, the discrete stages of chromatin condensation are characterized by different level of transcriptional activity, DNA methylation and covalent histone modifications. Interestingly, the program of chromatin rearrangement is not completely intrinsic to the oocyte, but follicular cells exert their regulatory actions through gap junction mediated communications and intracellular messenger dependent mechanism(s). With this in mind and since oocyte growth mostly relies on the bidirectional interaction with the follicular cells, a connection between cumulus cells gene expression profile and oocyte developmental competence, according to chromatin configuration is proposed. This analysis can help in identifying candidate genes involved in the process of oocyte developmental competence acquisition and in providing non-invasive biomarkers of oocyte health status that can have important implications in treating human infertility as well as managing breeding schemes in domestic mammals.

  6. RNA is an integral component of chromatin that contributes to its structural organization.

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez-Campos

    Full Text Available Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%-5% of total chromatin-associated nucleic acids, are polyA(- and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with alpha-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity.

  7. Assaying chromatin structure and remodeling by restriction enzyme accessibility

    OpenAIRE

    Trotter, Kevin W.; Archer, Trevor K.

    2012-01-01

    The packaging of eukaryotic DNA into nucleosomes, the fundamental unit of chromatin, creates a barrier to nuclear processes, such as transcription, DNA replication, recombination, and repair(1). This obstructive nature of chromatin can be overcome by the enzymatic activity of chromatin remodeling complexes which creates a more favorable environment for the association of essential factors and regulators to sequences within target genes. Here we describe a detailed approach for analyzing chrom...

  8. The shades of gray of the chromatin fiber: recent literature provides new insights into the structure of chromatin.

    Science.gov (United States)

    Ausió, Juan

    2015-01-01

    The chromatin fiber consists of a string of nucleosomes connected by linker DNA regions. The hierarchy of folding of this fiber within the cell has long been controversial, and the existence of an originally described 30 nm fiber has been debated and reviewed extensively. This review contextualizes two recent papers on this topic that suggest the 30 nm fiber to be an over-simplification. The idealized model from the first study provides good insight into the constraints and histone participation in the maintenance of the fiber structure. The second paper provides a theoretical description of a more realistic view of the highly heterogeneous and dynamic chromatin organization in the in vivo setting. It is now time to abandon the highly regular "one start" solenoidal 30 nm structure and replace it with a more realistic highly dynamic, polymorphic fiber.

  9. The Global Relationship between Chromatin Physical Topology, Fractal Structure, and Gene Expression

    Science.gov (United States)

    Almassalha, L. M.; Tiwari, A.; Ruhoff, P. T.; Stypula-Cyrus, Y.; Cherkezyan, L.; Matsuda, H.; Dela Cruz, M. A.; Chandler, J. E.; White, C.; Maneval, C.; Subramanian, H.; Szleifer, I.; Roy, H. K.; Backman, V.

    2017-01-01

    Most of what we know about gene transcription comes from the view of cells as molecular machines: focusing on the role of molecular modifications to the proteins carrying out transcriptional reactions at a loci-by-loci basis. This view ignores a critical reality: biological reactions do not happen in an empty space, but in a highly complex, interrelated, and dense nanoenvironment that profoundly influences chemical interactions. We explored the relationship between the physical nanoenvironment of chromatin and gene transcription in vitro. We analytically show that changes in the fractal dimension, D, of chromatin correspond to simultaneous increases in chromatin accessibility and compaction heterogeneity. Using these predictions, we demonstrate experimentally that nanoscopic changes to chromatin D within thirty minutes correlate with concomitant enhancement and suppression of transcription. Further, we show that the increased heterogeneity of physical structure of chromatin due to increase in fractal dimension correlates with increased heterogeneity of gene networks. These findings indicate that the higher order folding of chromatin topology may act as a molecular-pathway independent code regulating global patterns of gene expression. Since physical organization of chromatin is frequently altered in oncogenesis, this work provides evidence pairing molecular function to physical structure for processes frequently altered during tumorigenesis. PMID:28117353

  10. The Global Relationship between Chromatin Physical Topology, Fractal Structure, and Gene Expression.

    Science.gov (United States)

    Almassalha, L M; Tiwari, A; Ruhoff, P T; Stypula-Cyrus, Y; Cherkezyan, L; Matsuda, H; Dela Cruz, M A; Chandler, J E; White, C; Maneval, C; Subramanian, H; Szleifer, I; Roy, H K; Backman, V

    2017-01-24

    Most of what we know about gene transcription comes from the view of cells as molecular machines: focusing on the role of molecular modifications to the proteins carrying out transcriptional reactions at a loci-by-loci basis. This view ignores a critical reality: biological reactions do not happen in an empty space, but in a highly complex, interrelated, and dense nanoenvironment that profoundly influences chemical interactions. We explored the relationship between the physical nanoenvironment of chromatin and gene transcription in vitro. We analytically show that changes in the fractal dimension, D, of chromatin correspond to simultaneous increases in chromatin accessibility and compaction heterogeneity. Using these predictions, we demonstrate experimentally that nanoscopic changes to chromatin D within thirty minutes correlate with concomitant enhancement and suppression of transcription. Further, we show that the increased heterogeneity of physical structure of chromatin due to increase in fractal dimension correlates with increased heterogeneity of gene networks. These findings indicate that the higher order folding of chromatin topology may act as a molecular-pathway independent code regulating global patterns of gene expression. Since physical organization of chromatin is frequently altered in oncogenesis, this work provides evidence pairing molecular function to physical structure for processes frequently altered during tumorigenesis.

  11. The Global Relationship between Chromatin Physical Topology, Fractal Structure, and Gene Expression

    DEFF Research Database (Denmark)

    Almassalha, Luay M; Tiwari, A; Ruhoff, P T;

    2017-01-01

    in an empty space, but in a highly complex, interrelated, and dense nanoenvironment that profoundly influences chemical interactions. We explored the relationship between the physical nanoenvironment of chromatin and gene transcription in vitro. We analytically show that changes in the fractal dimension, D...... show that the increased heterogeneity of physical structure of chromatin due to increase in fractal dimension correlates with increased heterogeneity of gene networks. These findings indicate that the higher order folding of chromatin topology may act as a molecular-pathway independent code regulating...

  12. Data on force-dependent structural changes of chromatin fibers measured with magnetic tweezers

    Directory of Open Access Journals (Sweden)

    Fan-Tso Chien

    2014-12-01

    Full Text Available The compaction of chromatin fibers regulates the accessibility of embedded DNA, highly associated with transcriptional activities [1]. Single molecule force spectroscopy has revealed the great details of the structural changes of chromatin fibers in the presence of external exerted force [2–7]. However, most of the studies focus on a specific force regime [2,3,8,9]. The data here show force-extension (FE traces of chromatin fibers as measured with magnetic tweezers, covering the force regime from 0 pN to 27 pN. Those traces provide information for further studies at varied force regimes.

  13. Chromatin remodeling and stem cell theory of relativity.

    Science.gov (United States)

    Cerny, Jan; Quesenberry, Peter J

    2004-10-01

    The field of stem cell biology is currently being redefined. Stem cell (hematopoietic and non-hematopoietic) differentiation has been considered hierarchical in nature, but recent data suggest that there is no progenitor/stem cell hierarchy, but rather a reversible continuum. The stem cell (hematopoietic and non-hematopoietic) phenotype, the total differentiation capacity (hematopoietic and non-hematopoietic), gene expression as well as other stem cell functional characteristics (homing, receptor and adhesion molecule expression) vary throughout a cell-cycle transit widely. This seems to be dependent on shifting chromatin and gene expression with cell-cycle transit. The published data on DNA methylation, histone acetylation, and also RNAi, the major regulators of gene expression, conjoins very well and provides an explanation for the major issues of stem cell biology. Those features of stem cells mentioned above can be rather difficult to apprehend when a classical hierarchy biology view is applied, but they become clear and easier to understand once they are correlated with the underlining epigenetic changes. We are entering a new era of stem cell biology the era of "chromatinomics." We are one step closer to the practical use of cellular therapy for degenerative diseases.

  14. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo.

    Directory of Open Access Journals (Sweden)

    Davide F V Corona

    2007-09-01

    Full Text Available Imitation SWI (ISWI and other ATP-dependent chromatin-remodeling factors play key roles in transcription and other processes by altering the structure and positioning of nucleosomes. Recent studies have also implicated ISWI in the regulation of higher-order chromatin structure, but its role in this process remains poorly understood. To clarify the role of ISWI in vivo, we examined defects in chromosome structure and gene expression resulting from the loss of Iswi function in Drosophila. Consistent with a broad role in transcriptional regulation, the expression of a large number of genes is altered in Iswi mutant larvae. The expression of a dominant-negative form of ISWI leads to dramatic alterations in higher-order chromatin structure, including the apparent decondensation of both mitotic and polytene chromosomes. The loss of ISWI function does not cause obvious defects in nucleosome assembly, but results in a significant reduction in the level of histone H1 associated with chromatin in vivo. These findings suggest that ISWI plays a global role in chromatin compaction in vivo by promoting the association of the linker histone H1 with chromatin.

  15. Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility

    Institute of Scientific and Technical Information of China (English)

    Mona Bungum; Leif Bungum; Aleksander Giwercman

    2011-01-01

    Diagnosis of male infertility has mainly been based on the World Health Organization (WHO) manual-based semen parameter's concentration,motility and morphology.It has,however,become apparent that none of these parameters are reliable markers for evaluation of the fertility potential of a couple.A search for better markers has led to an increased focus on sperm chromatin integrity testing in fertility work-up and assisted reproductive techniques.During the last couple of decades,numerous sperm DNA integrity tests have been developed.These are claimed to be characterized by a lower intraindividual variation,less intralaboratory and interlaboratory variation and thus less subjective than the conventional sperm analysis.However,not all the sperm chromatin integrity tests have yet been shown to be of clinical value.So far,the test that has been found to have the most stable clinical threshold values in relation to fertility is the sperm chromatin structure assay (SCSA),a flow cytometric test that measures the susceptibility of sperm DNA to acid-induced DNA denaturation in situ.Sperm DNA fragmentation as measured by SCSA has shown to be an independent predictor of successful pregnancy in first pregnancy planners as well as in couples undergoing intrauterine insemination,and can be used as a tool in investigation,counseling and treatment of involuntary childlessness.More conflicting data exist regarding the role of sperm DNA fragmentation in relation to fertilization,pre-embryo development and pregnancy outcome in in vitrofertilization and intracytoplasmic sperm injection (ICSI).

  16. CTCF-cohesin complex: architect of chromatin structure regulates V(D)J rearrangement

    Institute of Scientific and Technical Information of China (English)

    Ann J Feeney; Jiyoti Verma-Gaur

    2012-01-01

    The CTCF/cohesin complex regulates higher order chromatin structure by creating long-range chromatin loops and by insulating neighboring genes from each other.The lymphocyte antigen receptor loci have large numbers of CTCF/cohesin binding sites,and recent studies demonstrate that the CTCF/cohesin complex plays several important roles in regulating the process of V(D)J recombination at these megabase-sized receptor loci.

  17. Synthetic CpG islands reveal DNA sequence determinants of chromatin structure

    Science.gov (United States)

    Wachter, Elisabeth; Quante, Timo; Merusi, Cara; Arczewska, Aleksandra; Stewart, Francis; Webb, Shaun; Bird, Adrian

    2014-01-01

    The mammalian genome is punctuated by CpG islands (CGIs), which differ sharply from the bulk genome by being rich in G + C and the dinucleotide CpG. CGIs often include transcription initiation sites and display ‘active’ histone marks, notably histone H3 lysine 4 methylation. In embryonic stem cells (ESCs) some CGIs adopt a ‘bivalent’ chromatin state bearing simultaneous ‘active’ and ‘inactive’ chromatin marks. To determine whether CGI chromatin is developmentally programmed at specific genes or is imposed by shared features of CGI DNA, we integrated artificial CGI-like DNA sequences into the ESC genome. We found that bivalency is the default chromatin structure for CpG-rich, G + C-rich DNA. A high CpG density alone is not sufficient for this effect, as A + T-rich sequence settings invariably provoke de novo DNA methylation leading to loss of CGI signature chromatin. We conclude that both CpG-richness and G + C-richness are required for induction of signature chromatin structures at CGIs. DOI: http://dx.doi.org/10.7554/eLife.03397.001 PMID:25259796

  18. Chromatin structure of repeating CTG/CAG and CGG/CCG sequences in human disease.

    Science.gov (United States)

    Wang, Yuh-Hwa

    2007-05-01

    In eukaryotic cells, chromatin structure organizes genomic DNA in a dynamic fashion, and results in regulation of many DNA metabolic processes. The CTG/CAG and CGG/CCG repeating sequences involved in several neuromuscular degenerative diseases display differential abilities for the binding of histone octamers. The effect of the repeating DNA on nucleosome assembly could be amplified as the number of repeats increases. Also, CpG methylation, and sequence interruptions within the triplet repeats exert an impact on the formation of nucleosomes along these repeating DNAs. The two most common triplet expansion human diseases, myotonic dystrophy 1 and fragile X syndrome, are caused by the expanded CTG/CAG and CGG/CCG repeats, respectively. In addition to the expanded repeats and CpG methylation, histone modifications, chromatin remodeling factors, and noncoding RNA have been shown to coordinate the chromatin structure at both myotonic dystrophy 1 and fragile X loci. Alterations in chromatin structure at these two loci can affect transcription of these disease-causing genes, leading to disease symptoms. These observations have brought a new appreciation that a full understanding of disease gene expression requires a knowledge of the structure of the chromatin domain within which the gene resides.

  19. Distributed probing of chromatin structure in vivo reveals pervasive chromatin accessibility for expressed and non-expressed genes during tissue differentiation in C. elegans

    Directory of Open Access Journals (Sweden)

    Sha Ky

    2010-08-01

    Full Text Available Abstract Background Tissue differentiation is accompanied by genome-wide changes in the underlying chromatin structure and dynamics, or epigenome. By controlling when, where, and what regulatory factors have access to the underlying genomic DNA, the epigenome influences the cell's transcriptome and ultimately its function. Existing genomic methods for analyzing cell-type-specific changes in chromatin generally involve two elements: (i a source for purified cells (or nuclei of distinct types, and (ii a specific treatment that partitions or degrades chromatin by activity or structural features. For many cell types of great interest, such assays are limited by our inability to isolate the relevant cell populations in an organism or complex tissue containing an intertwined mixture of other cells. This limitation has confined available knowledge of chromatin dynamics to a narrow range of biological systems (cell types that can be sorted/separated/dissected in large numbers and tissue culture models or to amalgamations of diverse cell types (tissue chunks, whole organisms. Results Transgene-driven expression of DNA/chromatin modifying enzymes provides one opportunity to query chromatin structures in expression-defined cell subsets. In this work we combine in vivo expression of a bacterial DNA adenine methyltransferase (DAM with high throughput sequencing to sample tissue-specific chromatin accessibility on a genome-wide scale. We have applied the method (DALEC: Direct Asymmetric Ligation End Capture towards mapping a cell-type-specific view of genome accessibility as a function of differentiated state. Taking advantage of C. elegans strains expressing the DAM enzyme in diverse tissues (body wall muscle, gut, and hypodermis, our efforts yield a genome-wide dataset measuring chromatin accessibility at each of 538,000 DAM target sites in the C. elegans (diploid genome. Conclusions Validating the DALEC mapping results, we observe a strong association

  20. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP

    DEFF Research Database (Denmark)

    Muratcioglu, Serena; Presman, Diego M; Pooley, John R

    2015-01-01

    The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow...... interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate...

  1. Salt and divalent cations affect the flexible nature of the natural beaded chromatin structure

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Griffith, J

    1977-01-01

    A natural chromatin containing simian virus 40 (SV40) DNA and histone has been used to examine changes in chromatin structure caused by various physical and chemical treatments. We find that histone H1 depleted chromatin is more compact in solutions of 0.15M NaCl or 2 mM MgCl2 than in 0.01 M Na......Cl or 0.6M NaCL, and is compact in 0.01 M NaCl solutions if histone H 1 is present. Even high concentrations of urea did not alter the fundamental beaded structure, consisting of 110A beads of 200 base pair content, each joined by thin DNA bridges of 50 base pairs. The physical bead observed by EM...... therefore contains more DNA than the 140 base pair "core particle". The natural variation in the bridge length is consistent with the broad bands observed after nuclease digestion of chromatin. Chromatin prepared for EM without fixation containing long 20A to 30A fibers possibly complexed with protein....

  2. Concerted Flexibility of Chromatin Structure, Methylome, and Histone Modifications along with Plant Stress Responses

    Directory of Open Access Journals (Sweden)

    Ana Paula Santos

    2017-01-01

    Full Text Available The spatial organization of chromosome structure within the interphase nucleus, as well as the patterns of methylome and histone modifications, represent intersecting layers that influence genome accessibility and function. This review is focused on the plastic nature of chromatin structure and epigenetic marks in association to stress situations. The use of chemical compounds (epigenetic drugs or T-DNA-mediated mutagenesis affecting epigenetic regulators (epi-mutants are discussed as being important tools for studying the impact of deregulated epigenetic backgrounds on gene function and phenotype. The inheritability of epigenetic marks and chromatin configurations along successive generations are interpreted as a way for plants to “communicate” past experiences of stress sensing. A mechanistic understanding of chromatin and epigenetics plasticity in plant response to stress, including tissue- and genotype-specific epigenetic patterns, may help to reveal the epigenetics contributions for genome and phenotype regulation.

  3. Structural studies of chromatin and chromosomes. Progress report, March 15--September 15, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, E.M.

    1997-11-01

    This study focused on the following: (1) the structure of chromatin and chromosomes by neutron and x-ray scatter and atomic force microscope; (2) the architecture of human sperm and the structure of sperm by atomic force microscopy (AFM); (3) genome-architecture and higher-order structures in human sperm nuclei; and (4) the effects of histone modifications on the structure of nucleosomes by protein DNA crosslinking method.

  4. Mass Spectrometry-Based Proteomics for the Analysis of Chromatin Structure and Dynamics

    Directory of Open Access Journals (Sweden)

    Monica Soldi

    2013-03-01

    Full Text Available Chromatin is a highly structured nucleoprotein complex made of histone proteins and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity is regulated by different associated proteins, post-translational modifications on histones (hPTMs and DNA methylation, which act in a concerted manner to enforce a specific “chromatin landscape”, with a regulatory effect on gene expression. Mass Spectrometry (MS has emerged as a powerful analytical strategy to detect histone PTMs, revealing interplays between neighbouring PTMs and enabling screens for their readers in a comprehensive and quantitative fashion. Here we provide an overview of the recent achievements of state-of-the-art mass spectrometry-based proteomics for the detailed qualitative and quantitative characterization of histone post-translational modifications, histone variants, and global interactomes at specific chromatin regions. This synopsis emphasizes how the advances in high resolution MS, from “Bottom Up” to “Top Down” analysis, together with the uptake of quantitative proteomics methods by chromatin biologists, have made MS a well-established method in the epigenetics field, enabling the acquisition of original information, highly complementary to that offered by more conventional, antibody-based, assays.

  5. Mathematical model of the chromatin structure of the nuclei of blood cells

    Science.gov (United States)

    Nikitaev, V. G.; Nagornov, O. V.; Pronichev, A. N.; Dmitrieva, V. V.; Polyakov, E. V.

    2017-01-01

    This paper describes the model of images of the nuclei of blood cells for research informative texture features in the diagnostics of acute leukemias on the basis of computer microscopy. The proposed model allows to simulate the structure of chromatin and factors distorting the signal in the formation of image.

  6. At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence

    Directory of Open Access Journals (Sweden)

    Ryosuke eOhsawa

    2013-07-01

    Full Text Available It is well accepted that non-coding RNAs play a critical role in regulating gene expression. Recent paradigm-setting studies are now revealing that non-coding RNAs, other than microRNAs, also play intriguing roles in the maintenance of chromatin structure, in the DNA damage response, and in adult human stem cell aging. In this review, we will discuss the complex inter-dependent relationships among non-coding RNA transcription, maintenance of genomic stability, chromatin structure and adult stem cell senescence. DNA damage-induced non-coding RNAs transcribed in the vicinity of the DNA break regulate recruitment of the DNA damage machinery and DNA repair efficiency. We will discuss the correlation between non-coding RNAs and DNA damage repair efficiency and the potential role of changing chromatin structures around double-strand break sites. On the other hand, induction of non-coding RNA transcription from the repetitive Alu elements occurs during human stem cell aging and hinders efficient DNA repair causing entry into senescence. We will discuss how this fine balance between transcription and genomic instability may be regulated by the dramatic changes to chromatin structure that accompany cellular senescence.

  7. Circulating chromatin-anti-chromatin antibody complexes bind with high affinity to dermo-epidermal structures in murine and human lupus nephritis

    DEFF Research Database (Denmark)

    Fismen, S; Hedberg, A; Fenton, K A;

    2009-01-01

    (NZBxNZW)F1 and MRL-lpr/lpr mice and from five patients with lupus nephritis were analysed by immunofluorescence, immune electron microscopy (IEM) and co-localization TUNEL IEM. Affinity of chromatin fragments for membrane structures was determined by surface plasmon resonance. Results demonstrated (i...

  8. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  9. Chromatin structure, epigenetic mechanisms and long-range interactions in the human insulin locus.

    Science.gov (United States)

    Xu, Z; Lefevre, G M; Felsenfeld, G

    2012-10-01

    Regulation of gene expression in eukaryotes is largely dependent on variations in chromatin structure. More recently, it has become clear that this may involve not only local chromatin organization but also distant regulatory elements that participate in large-scale chromatin architecture within the nucleus. We describe recent methods that make possible the detection of such structures and apply them to analysis of the human insulin (INS) locus in pancreatic islets. We show that the INS gene is part of an extended 'open' chromatin domain that includes adjacent genes as well. We also find that in islets, the INS promoter is in physical contact with distant sites on the same human chromosome and notably, with the SYT8 gene, located nearly 300 kb away. The strength of the contact between INS and SYT8 is increased by glucose, and this results in stimulation of SYT8 expression. Inhibition of INS transcription decreases SYT8 expression. Furthermore, downregulation of SYT8 results in decreased secretion of insulin. Our results thus establish the existence of a regulatory network between the INS gene and other distant genes through long-range physical interactions, and suggest that such networks may have general importance for insulin biology and diabetes.

  10. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Directory of Open Access Journals (Sweden)

    Edyta Marcon

    2014-07-01

    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  11. Human-chromatin-related protein interactions identify a demethylase complex required for chromosome segregation.

    Science.gov (United States)

    Marcon, Edyta; Ni, Zuyao; Pu, Shuye; Turinsky, Andrei L; Trimble, Sandra Smiley; Olsen, Jonathan B; Silverman-Gavrila, Rosalind; Silverman-Gavrila, Lorelei; Phanse, Sadhna; Guo, Hongbo; Zhong, Guoqing; Guo, Xinghua; Young, Peter; Bailey, Swneke; Roudeva, Denitza; Zhao, Dorothy; Hewel, Johannes; Li, Joyce; Gräslund, Susanne; Paduch, Marcin; Kossiakoff, Anthony A; Lupien, Mathieu; Emili, Andrew; Wodak, Shoshana J; Greenblatt, Jack

    2014-07-10

    Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision) network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  12. Structure and Function of SWI/SNF Chromatin Remodeling Complexes and Mechanistic Implications for Transcription

    OpenAIRE

    Tang, Liling; Nogales, Eva; Ciferri, Claudio

    2010-01-01

    ATP-dependent chromatin remodeling complexes are specialized protein machinery able to restructure the nucleosome to make its DNA accessible during transcription, replication and DNA repair. During the past few years structural biologists have defined the architecture and dynamics of some of these complexes using electron microscopy, shedding light on the mechanisms of action of these important complexes. In this paper we review the existing structural information on the SWI/SNF family of the...

  13. Estrogen induces global reorganization of chromatin structure in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Raphaël Mourad

    Full Text Available In the cell nucleus, each chromosome is confined to a chromosome territory. This spatial organization of chromosomes plays a crucial role in gene regulation and genome stability. An additional level of organization has been discovered at the chromosome scale: the spatial segregation into open and closed chromatins to form two genome-wide compartments. Although considerable progress has been made in our knowledge of chromatin organization, a fundamental issue remains the understanding of its dynamics, especially in cancer. To address this issue, we performed genome-wide mapping of chromatin interactions (Hi-C over the time after estrogen stimulation of breast cancer cells. To biologically interpret these interactions, we integrated with estrogen receptor α (ERα binding events, gene expression and epigenetic marks. We show that gene-rich chromosomes as well as areas of open and highly transcribed chromatins are rearranged to greater spatial proximity, thus enabling genes to share transcriptional machinery and regulatory elements. At a smaller scale, differentially interacting loci are enriched for cancer proliferation and estrogen-related genes. Moreover, these loci are correlated with higher ERα binding events and gene expression. Taken together these results reveal the role of a hormone--estrogen--on genome organization, and its effect on gene regulation in cancer.

  14. Estrogen induces global reorganization of chromatin structure in human breast cancer cells.

    Science.gov (United States)

    Mourad, Raphaël; Hsu, Pei-Yin; Juan, Liran; Shen, Changyu; Koneru, Prasad; Lin, Hai; Liu, Yunlong; Nephew, Kenneth; Huang, Tim H; Li, Lang

    2014-01-01

    In the cell nucleus, each chromosome is confined to a chromosome territory. This spatial organization of chromosomes plays a crucial role in gene regulation and genome stability. An additional level of organization has been discovered at the chromosome scale: the spatial segregation into open and closed chromatins to form two genome-wide compartments. Although considerable progress has been made in our knowledge of chromatin organization, a fundamental issue remains the understanding of its dynamics, especially in cancer. To address this issue, we performed genome-wide mapping of chromatin interactions (Hi-C) over the time after estrogen stimulation of breast cancer cells. To biologically interpret these interactions, we integrated with estrogen receptor α (ERα) binding events, gene expression and epigenetic marks. We show that gene-rich chromosomes as well as areas of open and highly transcribed chromatins are rearranged to greater spatial proximity, thus enabling genes to share transcriptional machinery and regulatory elements. At a smaller scale, differentially interacting loci are enriched for cancer proliferation and estrogen-related genes. Moreover, these loci are correlated with higher ERα binding events and gene expression. Taken together these results reveal the role of a hormone--estrogen--on genome organization, and its effect on gene regulation in cancer.

  15. Distinct differences in chromatin structure at subtelomeric X and Y' elements in budding yeast.

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhu

    Full Text Available In Saccharomyces cerevisiae, all ends of telomeric DNA contain telomeric repeats of (TG(1-3, but the number and position of subtelomeric X and Y' repeat elements vary. Using chromatin immunoprecipitation and genome-wide analyses, we here demonstrate that the subtelomeric X and Y' elements have distinct structural and functional properties. Y' elements are transcriptionally active and highly enriched in nucleosomes, whereas X elements are repressed and devoid of nucleosomes. In contrast to X elements, the Y' elements also lack the classical hallmarks of heterochromatin, such as high Sir3 and Rap1 occupancy as well as low levels of histone H4 lysine 16 acetylation. Our analyses suggest that the presence of X and Y' elements govern chromatin structure and transcription activity at individual chromosome ends.

  16. Higher-order chromatin structure in DSB induction, repair and misrepair.

    Science.gov (United States)

    Falk, Martin; Lukasova, Emilie; Kozubek, Stanislav

    2010-01-01

    Double-strand breaks (DSBs), continuously introduced into DNA by cell metabolism, ionizing radiation and some chemicals, are the biologically most deleterious type of genome damage, and must be accurately repaired to protect genomic integrity, ensure cell survival, and prevent carcinogenesis. Although a huge amount of information has been published on the molecular basis and biological significance of DSB repair, our understanding of DSB repair and its spatiotemporal arrangement is still incomplete. In particular, the role of higher-order chromatin structure in DSB induction and repair, movement of DSBs and the mechanism giving rise to chromatin exchanges, and many other currently disputed questions are discussed in this review. Finally, a model explaining the formation of chromosome translocations is proposed.

  17. Structure and function insights into the NuRD chromatin remodeling complex.

    Science.gov (United States)

    Torchy, Morgan P; Hamiche, Ali; Klaholz, Bruno P

    2015-07-01

    Transcription regulation through chromatin compaction and decompaction is regulated through various chromatin-remodeling complexes such as nucleosome remodeling and histone deacetylation (NuRD) complex. NuRD is a 1 MDa multi-subunit protein complex which comprises many different subunits, among which histone deacetylases HDAC1/2, ATP-dependent remodeling enzymes CHD3/4, histone chaperones RbAp46/48, CpG-binding proteins MBD2/3, the GATAD2a (p66α) and/or GATAD2b (p66β) and specific DNA-binding proteins MTA1/2/3. Here, we review the currently known crystal and NMR structures of these subunits, the functional data and their relevance for biomedical research considering the implication of NuRD subunits in cancer and various other diseases. The complexity of this macromolecular assembly, and its poorly understood mode of interaction with the nucleosome, the repeating unit of chromatin, illustrate that this complex is a major challenge for structure-function relationship studies which will be tackled best by an integrated biology approach.

  18. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin.

    Directory of Open Access Journals (Sweden)

    Anderly C Chueh

    2009-01-01

    Full Text Available We have previously identified and characterized the phenomenon of ectopic human centromeres, known as neocentromeres. Human neocentromeres form epigenetically at euchromatic chromosomal sites and are structurally and functionally similar to normal human centromeres. Recent studies have indicated that neocentromere formation provides a major mechanism for centromere repositioning, karyotype evolution, and speciation. Using a marker chromosome mardel(10 containing a neocentromere formed at the normal chromosomal 10q25 region, we have previously mapped a 330-kb CENP-A-binding domain and described an increased prevalence of L1 retrotransposons in the underlying DNA sequences of the CENP-A-binding clusters. Here, we investigated the potential role of the L1 retrotransposons in the regulation of neocentromere activity. Determination of the transcriptional activity of a panel of full-length L1s (FL-L1s across a 6-Mb region spanning the 10q25 neocentromere chromatin identified one of the FL-L1 retrotransposons, designated FL-L1b and residing centrally within the CENP-A-binding clusters, to be transcriptionally active. We demonstrated the direct incorporation of the FL-L1b RNA transcripts into the CENP-A-associated chromatin. RNAi-mediated knockdown of the FL-L1b RNA transcripts led to a reduction in CENP-A binding and an impaired mitotic function of the 10q25 neocentromere. These results indicate that LINE retrotransposon RNA is a previously undescribed essential structural and functional component of the neocentromeric chromatin and that retrotransposable elements may serve as a critical epigenetic determinant in the chromatin remodelling events leading to neocentromere formation.

  19. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.

    Science.gov (United States)

    Schep, Alicia N; Buenrostro, Jason D; Denny, Sarah K; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J

    2015-11-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal "fingerprint" as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding.

  20. Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging.

    Science.gov (United States)

    Cherstvy, A G; Teif, V B

    2013-06-01

    Chromatin domains formed in vivo are characterized by different types of 3D organization of interconnected nucleosomes and architectural proteins. Here, we quantitatively test a hypothesis that the similarities in the structure of chromatin fibers (which we call "structural homology") can affect their mutual electrostatic and protein-mediated bridging interactions. For example, highly repetitive DNA sequences in heterochromatic regions can position nucleosomes so that preferred inter-nucleosomal distances are preserved on the surfaces of neighboring fibers. On the contrary, the segments of chromatin fiber formed on unrelated DNA sequences have different geometrical parameters and lack structural complementarity pivotal for stable association and cohesion. Furthermore, specific functional elements such as insulator regions, transcription start and termination sites, and replication origins are characterized by strong nucleosome ordering that might induce structure-driven iterations of chromatin fibers. We propose that shape-specific protein-bridging interactions facilitate long-range pairing of chromatin fragments, while for closely-juxtaposed fibers electrostatic forces can in addition yield fine-tuned structure-specific recognition and pairing. These pairing effects can account for some features observed for mitotic and inter-phase chromatins.

  1. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication...... initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  2. ASSOCIATION OF PSL (p55),A S-PHASE-RELATED NUCLEAR ANTIGEN,WITH CHROMATIN IN HeLa CELLS

    Institute of Scientific and Technical Information of China (English)

    袁耀宗; Barque JP; Dellavalle V; Larsen CJ

    1993-01-01

    PSL is a S-phase-related 55 kDa antigen which has been previously located inchromatin areas of the nucleus by electron microscopic studies. In the present report, weshow that it is released from purified HeLa cell nuclei by micrococcal nuclease treatment,which relieves chromatin under the form of nucleosome. However, the antigen is not associ-ated with nucleosomes but is part of a structure that sediments through 5-20% sucrosegradient. Moreover, PSL is completely retained on single-stranded DNA (ss-DNA) affini-ty columns and binds more efficiently HeLa cell ss-DNA than double stranded DNA.Although no direct evidence could be obtained, these data suggest that PSL might bea ss-DNA-binding or a RNA-binding protein.

  3. Replication domains are self-interacting structural chromatin units of human chromosomes

    Science.gov (United States)

    Arneodo, Alain

    2011-03-01

    In higher eukaryotes, the absence of specific sequence motifs marking the origins of replication has been a serious hindrance to the understanding of the mechanisms that regulate the initiation and the maintenance of the replication program in different cell types. In silico analysis of nucleotide compositional skew has predicted the existence, in the germline, of replication N-domains bordered by putative replication origins and where the skew decreases rather linearly as the signature of a progressive inversion of the average fork polarity. Here, from the demonstration that the average fork polarity can be directly extracted from the derivative of replication timing profiles, we develop a wavelet-based pattern recognition methodology to delineate replication U-domains where the replication timing profile is shaped as a U and its derivative as a N. Replication U-domains are robustly found in seven cell lines as covering a significant portion (40-50%) of the human genome where the replication timing data actually displays some plasticity between cell lines. The early replication initiation zones at U-domains borders are found to be hypersensitive to DNase I cleavage, to be associated with transcriptional activity and to present a significant enrichment in insular-binding proteins CTCF, the hallmark of an open chromatin structure. A comparative analysis of genome-wide chromatin interaction (HiC) data shows that replication-U domains correspond to self-interacting structural high order chromatin units of megabase characteristic size. Taken together, these findings provide evidence that the epigenetic compartmentalization of the human genome into autonomous replication U-domains comes along with an extensive remodelling of the threedimensional chromosome architecture during development or in specific diseases. The observed cell specific conservation of the replication timing between the human and mouse genomes strongly suggests that this chromosome organization into

  4. Dynamic structures of intact chicken erythrocyte chromatins as studied by 1H-31P cross-polarization NMR.

    Science.gov (United States)

    Akutsu, H; Nishimoto, S; Kyogoku, Y

    1994-08-01

    The dynamic properties of DNA in intact chicken erythrocyte cells, nuclei, nondigested chromatins, digested soluble chromatins, H1, H5-depleted soluble chromatins and nucleosome cores were investigated by means of single-pulse and 1H-31P cross-polarization NMR. The temperature dependence of the phosphorus chemical shift anisotropy was identical for the former three in the presence of 3 mM MgCl2, suggesting that the local higher order structure is identical for these chromatins. The intrinsic phosphorus chemical shift anisotropy of the nucleosome cores was -159 ppm. The chemical shift anisotropy of DNA in the chromatins can be further averaged by the motion of the linker DNA. The spin-lattice relaxation time in the rotating frame of the proton spins (T1p) of the nondigested chromatins was measured at various locking fields. The result was analyzed on the assumption of the isotropic motion to get a rough value of the correlation time of the motion efficient for the relaxation, which was eventually ascribed to the segmental motion of the linker DNA with restricted amplitude. The 30 nm filament structure induced by NaCl was shown to be dynamically different from that induced by MgCl2. Side-by-side compaction of 30-nm filaments was suggested to be induced in the MgCl2 concentration range higher than 0.3 mM. Biological significance of the dynamic structure was discussed in connection with the results obtained.

  5. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Nicolas M Berbenetz

    2010-09-01

    Full Text Available Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers positions nucleosomes adjacent to the origin to promote replication origin function.

  6. Fine analysis of the chromatin structure of yeast RNA polymerase Ⅱ transcription teminators

    Institute of Scientific and Technical Information of China (English)

    HUGENGXI; YUNHUAYU; 等

    1992-01-01

    In order to study the functional structure of the transcription terminators and the mechanism of temination,a survey of the chromatin structure,including the location of DNase I hypersensitive sites and the nucleosome arrangement,of yeast ADH1 and FLP terminators was made.The results show that there is no relationship between the function of the terminators and the existence of DNase I hypersensitive sites.However,it is found that there is always a nucleosmoe at the immediate upstream of the transcriptional termination sites.As a control,the chromatin structures of the pBR322 DNA fragments on the yeast shutter vectors are also investigated at the same time.The random nucleosome arrangement on the bacterial DNA in yesast agrees with the published reports.A new hypothesis,about the mechanism of transcriptional termination is put forward and the reason of different nucleosome arrengement on the DNAs which are originally from different species in yeast is discussed.

  7. Exposure to Hycanthone alters chromatin structure around specific gene functions and specific repeats in Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    David eRoquis

    2014-07-01

    Full Text Available Schistosoma mansoni is a parasitic plathyhelminth responsible for intestinal schistosomiasis (or bilharziasis, a disease affecting 67 million people worldwide and causing an important economic burden. The schistosomicides hycanthone, and its later proxy oxamniquine, were widely used for treatments in endemic areas during the 20th century. Recently, the mechanism of action, as well as the genetic origin of a stably and Mendelian inherited resistance for both drugs was elucidated in two strains. However, several observations suggested early on that alternative mechanisms might exist, by which resistance could be induced for these two drugs in sensitive lines of schistosomes. This induced resistance appeared rapidly, within the first generation, but was metastable (not stably inherited. Epigenetic inheritance could explain such a phenomenon and we therefore re-analyzed the historical data with our current knowledge of epigenetics. In addition, we performed new experiments such as ChIP-seq on hycanthone treated worms. We found distinct chromatin structure changes between sensitive worms and induced resistant worms from the same strain. No specific pathway was discovered, but genes in which chromatin structure modification were observed are mostly associated with transport and catabolism, which makes sense in the context of the elimination of the drug. Specific differences were observed in the repetitive compartment of the genome. We finally describe what types of experiments are needed to understand the complexity of heritability that can be based on genetic and/or epigenetic mechanisms for drug resistance in schistosomes.

  8. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  9. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Yolanda Stypula-Cyrus

    Full Text Available Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC. However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  10. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Science.gov (United States)

    Stypula-Cyrus, Yolanda; Damania, Dhwanil; Kunte, Dhananjay P; Cruz, Mart Dela; Subramanian, Hariharan; Roy, Hemant K; Backman, Vadim

    2013-01-01

    Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC) family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC). However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs) interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA) targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS) to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  11. Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease.

    Science.gov (United States)

    De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M

    2011-08-01

    Functional differentiation of chromatin structure is essential for the control of gene expression, nuclear architecture, and chromosome stability. Compelling evidence indicates that alterations in chromatin remodeling proteins play an important role in the pathogenesis of human disease. Among these, α-thalassemia mental retardation X-linked protein (ATRX) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres and telomeres as well as facultative heterochromatin on the murine inactive X chromosome. Mutations in human ATRX result in an X-linked neurodevelopmental condition with various degrees of gonadal dysgenesis (ATRX syndrome). Patients with ATRX syndrome may exhibit skewed X chromosome inactivation (XCI) patterns, and ATRX-deficient mice exhibit abnormal imprinted XCI in the trophoblast cell line. Non-random or skewed XCI can potentially affect both the onset and severity of X-linked disease. Notably, failure to establish epigenetic modifications associated with the inactive X chromosome (Xi) results in several conditions that exhibit genomic and chromosome instability such as fragile X syndrome as well as cancer development. Insight into the molecular mechanisms of ATRX function and its interacting partners in different tissues will no doubt contribute to our understanding of the pathogenesis of ATRX syndrome as well as the epigenetic origins of aneuploidy. In turn, this knowledge will be essential for the identification of novel drug targets and diagnostic tools for cancer progression as well as the therapeutic management of global epigenetic changes commonly associated with malignant neoplastic transformation.

  12. Methods for Analyzing the Role of DNA Methylation and Chromatin Structure in Regulating T Lymphocyte Gene Expression

    Directory of Open Access Journals (Sweden)

    Lu Qianjin

    2004-01-01

    Full Text Available Chromatin structure, determined in part by DNA methylation, is established during differentiation and prevents expression of genes unnecessary for the function of a given cell type. We reported that DNA methylation and chromatin structure contributes to lymphoid-specific ITGAL (CD11a and PRF1 (perforin expression. We used bisulfite sequencing to compare methylation patterns in the ITGAL promoter and 5' flanking region of T cells and fibroblasts, and in the PRF1 promoter and upstream enhancer of CD4+ and CD8+ T cells with fibroblasts. The effects of methylation on promoter function were tested using regional methylation of reporter constructs, and confirmed by DNA methyltransferase inhibition. The relationship between DNA methylation and chromatin structure was analyzed by DNaseI hypersensitivity. Herein we described the methods and results in greater detail.

  13. Expression-dependent folding of interphase chromatin.

    Directory of Open Access Journals (Sweden)

    Hansjoerg Jerabek

    Full Text Available Multiple studies suggest that chromatin looping might play a crucial role in organizing eukaryotic genomes. To investigate the interplay between the conformation of interphase chromatin and its transcriptional activity, we include information from gene expression profiles into a polymer model for chromatin that incorporates genomic loops. By relating loop formation to transcriptional activity, we are able to generate chromosome conformations whose structural and topological properties are consistent with experimental data. The model particularly allows to reproduce the conformational variations that are known to occur between highly and lowly expressed chromatin regions. As previously observed in experiments, lowly expressed regions of the simulated polymers are much more compact. Due to the changes in loop formation, the distributions of chromatin loops are also expression-dependent and exhibit a steeper decay in highly active regions. As a results of entropic interaction between differently looped parts of the chromosome, we observe topological alterations leading to a preferential positioning of highly transcribed loci closer to the surface of the chromosome territory. Considering the diffusional behavior of the chromatin fibre, the simulations furthermore show that the higher the expression level of specific parts of the chromatin fibre is, the more dynamic they are. The results exhibit that variations of loop formation along the chromatin fibre, and the entropic changes that come along with it, do not only influence the structural parameters on the local scale, but also effect the global chromosome conformation and topology.

  14. Reprogramming chromatin

    DEFF Research Database (Denmark)

    Ehrensberger, Andreas Hasso; Svejstrup, Jesper Qualmann

    2012-01-01

    attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming...... and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors...

  15. Dose-related Increased Binding of Nickel to Chromatin Proteins; and Changes to DNA Concentration in the Liver of Guinea Pigs Treated with Nigerian Light Crude Oil

    Directory of Open Access Journals (Sweden)

    Lauretta Idabor

    2007-09-01

    Full Text Available The alteration in nuclear DNA concentration and the concomitant binding of xenobiotics (alkylating agents, heavy metals, etc. to chromatin constituents may adversely affect gene structure and/or function, and thus initiate carcinogenesis. Binding of nickel to chromatin DNA has been reported to cause DNA damage (cross-links, single-strand breaks, and although many soluble nickel compounds and complexes have been shown to bind to chromatin, porphyrin-complexed nickel (PCN in crude oils has not been studied. We have determined the doserelated increases in total and chromatin DNA concentrations, and the differential distribution (binding of PCN (crude oil nickel-CON to chromatin constituents in livers of adult male guinea pigs treated with 1.25, 2.50 and 5.0 ml/kg bw Nigerian Bonny light crude oil (BLCO by intraperitoneal injection. The results showed large BLCO-induced increases in total DNA concentrations of 424%, 632% and 436% at 1.25, 2.50 and 5.0 ml/kg bw BLCO respectively over the untreated controls; while it induced equally large increases in chromatin DNA concentrations of 585% and 200% at 2.50 and 5.0 ml/kg bw respectively. In both cases, maximum increases occurred at 2.50 ml/kg bw BLCO. The distribution of PCN in BLCO between chromatin DNA and chromatin proteins (histones and non-histones showed that at 2.50 and 5.0 ml/kg bw BLCO, nickel content in chromatin DNA reduced by 25% and 12.5% respectively over the controls; while its content in chromatin proteins also reduced by 26%; but increased by 166% at 2.50 and 5.0 ml/kg bw BLCO, respectively over the untreated controls. However, in intra-chromatin comparison, 38.8% more PCN bound to chromatin DNA than to chromatin proteins at 2.50 ml/kg bw; but at 5.0 ml/kg bw BLCO, 90.4% more PCN bound to chromatin proteins than to chromatin DNA. These results show a greater affinity of PCN in BLCO for chromatin proteins over chromatin DNA which may have played a role in the increased DNA concentrations

  16. Systematic determination of replication activity type highlights interconnections between replication, chromatin structure and nuclear localization.

    Directory of Open Access Journals (Sweden)

    Shlomit Farkash-Amar

    Full Text Available DNA replication is a highly regulated process, with each genomic locus replicating at a distinct time of replication (ToR. Advances in ToR measurement technology enabled several genome-wide profiling studies that revealed tight associations between ToR and general genomic features and a remarkable ToR conservation in mammals. Genome wide studies further showed that at the hundreds kb-to-megabase scale the genome can be divided into constant ToR regions (CTRs in which the replication process propagates at a faster pace due to the activation of multiple origins and temporal transition regions (TTRs in which the replication process propagates at a slower pace. We developed a computational tool that assigns a ToR to every measured locus and determines its replication activity type (CTR versus TTR. Our algorithm, ARTO (Analysis of Replication Timing and Organization, uses signal processing methods to fit a constant piece-wise linear curve to the measured raw data. We tested our algorithm and provide performance and usability results. A Matlab implementation of ARTO is available at http://bioinfo.cs.technion.ac.il/people/zohar/ARTO/. Applying our algorithm to ToR data measured in multiple mouse and human samples allowed precise genome-wide ToR determination and replication activity type characterization. Analysis of the results highlighted the plasticity of the replication program. For example, we observed significant ToR differences in 10-25% of the genome when comparing different tissue types. Our analyses also provide evidence for activity type differences in up to 30% of the probes. Integration of the ToR data with multiple aspects of chromosome organization characteristics suggests that ToR plays a role in shaping the regional chromatin structure. Namely, repressive chromatin marks, are associated with late ToR both in TTRs and CTRs. Finally, characterization of the differences between TTRs and CTRs, with matching ToR, revealed that TTRs are

  17. Using oocyte nuclei for studies on chromatin structure and gene expression.

    Science.gov (United States)

    Sommerville, John

    2010-05-01

    The giant nucleus of amphibian oocytes is generally referred to as the germinal vesicle (GV). Its size allows relatively easy manual isolation from the rest of the oocyte and also presents a large target in situ for microinjection of macromolecules including plasmid DNA, RNA species, antibodies and other proteins and even whole organelles, including somatic cell nuclei. Thus the use of GVs is excellent for two major types of study: the function of endogenous nuclear processes such as gene transcription, RNA processing and intra-nuclear dynamics; and the use of the nuclear components to effect processes such as chromatin assembly, expression of foreign genes and nucleocytoplasmic transport of injected biomolecules. This article outlines some basic techniques appropriate for GV studies, particularly the preparation of oocytes for microinjection and the isolation of germinal vesicles into an oil phase. As an aid to the targeting of the GV within the nucleus, descriptions are given of the use of oocytes from albino animals.

  18. Spectroscopic study of fast-neutron-irradiated chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [V. Babes National Inst., Dept. of Molecular Genetics, Bucharest (Romania)]. E-mail: serbanradu@pcnet.ro; Gazdaru, D. [Bucharest Univ., Dept. of Biophysics, Physics Faculty, Bucharest (Romania); Constantinescu, B. [H. Hulubei National Inst., Dept. of Cyclotron, Bucharest (Romania)

    2004-02-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [{sup 1}H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [{sup 1}H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  19. Chromatin Structure and Replication Origins: Determinants Of Chromosome Replication And Nuclear Organization

    OpenAIRE

    Smith, Owen K.; Aladjem, Mirit I.

    2014-01-01

    The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes ...

  20. Unusual chromatin structural organization in the sperm head of a murid rodent from southern Africa: the red veld rat, Aethomys chrysophilus type B.

    Science.gov (United States)

    Breed, W G

    1997-11-01

    The structural organization of the chromatin of cauda epididymal spermatozoa of the red veld rat Aethomys chrysophilus type B was investigated by fluorescence microscopy after staining with DNA specific dyes and by transmission electron microscopy after incubation with Triton X100, dithiothreitol, and SDS. Staining with DNA dyes showed variation in intensity of fluorescence of the sperm chromatin, with an anterior spherical region staining far more intensely than the surrounding chromatin. Transmission electron microscopy of these spermatozoa indicated that this region was composed of cords and fibres. This chromatin region dispersed more readily than the surrounding chromatin when spermatozoa were incubated with the detergents, and it is suggested that, unlike the rest of the sperm chromatin, it may be a histone-rich region, with protamine(s) being either scarce or absent.

  1. Chromatin assembly using Drosophila systems.

    Science.gov (United States)

    Fyodorov, Dmitry V; Levenstein, Mark E

    2002-05-01

    To successfully study chromatin structure and activity in vitro, it is essential to have a chromatin assembly system that will prepare extended nucleosome arrays with highly defined protein content that resemble bulk chromatin isolated from living cell nuclei in terms of periodicity and nucleosome positioning. The Drosophila ATP-dependent chromatin assembly system described in this unit meets these requirements. The end product of the reaction described here has highly periodic extended arrays with physiologic spacing and positioning of the nucleosomes.

  2. Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells

    Science.gov (United States)

    Shinkai, Soya; Nozaki, Tadasu; Maeshima, Kazuhiro

    2016-01-01

    The mammalian genome is organized into submegabase-sized chromatin domains (CDs) including topologically associating domains, which have been identified using chromosome conformation capture-based methods. Single-nucleosome imaging in living mammalian cells has revealed subdiffusively dynamic nucleosome movement. It is unclear how single nucleosomes within CDs fluctuate and how the CD structure reflects the nucleosome movement. Here, we present a polymer model wherein CDs are characterized by fractal dimensions and the nucleosome fibers fluctuate in a viscoelastic medium with memory. We analytically show that the mean-squared displacement (MSD) of nucleosome fluctuations within CDs is subdiffusive. The diffusion coefficient and the subdiffusive exponent depend on the structural information of CDs. This analytical result enabled us to extract information from the single-nucleosome imaging data for HeLa cells. Our observation that the MSD is lower at the nuclear periphery region than the interior region indicates that CDs in the heterochromatin-rich nuclear periphery region are more compact than those in the euchromatin-rich interior region with respect to the fractal dimensions as well as the size. Finally, we evaluated that the average size of CDs is in the range of 100–500 nm and that the relaxation time of nucleosome movement within CDs is a few seconds. Our results provide physical and dynamic insights into the genome architecture in living cells. PMID:27764097

  3. A model for the importance of zinc in the dynamics of human sperm chromatin stabilization after ejaculation in relation to sperm DNA vulnerability.

    Science.gov (United States)

    Björndahl, Lars; Kvist, Ulrik

    2011-02-01

    The focus of this review is the dual functions of the sperm chromatin stabilization and how external factors can interfere with these functions. Zinc depletion after ejaculation allows for rapid and total sperm chromatin decondensation without addition of exogenous disulfide cleaving agents. Zinc depletion without concomitant repulsion of chromatin fibers induces another type of stability that requires exogenous disulfide cleaving agents to allow decondensation. It is essential to extend the present concept, that the sperm chromatin stability is based on disulfide bridges only, to include also the functions of Zn(2+). It is suggested that the chromatin stability of the ejaculated human spermatozoon is rapidly reversible due to the dual function of Zn(2+) that stabilizes the structure and prevents the formation of excess disulfide bridges by a single mechanism: the formation of zinc bridges involving protamine thiols of cysteine and potentially also imidazole groups of histidine. Extraction of zinc from the freshly ejaculated spermatozoon allows two totally different biological results: (1) immediate decondensation if chromatin fibers concomitantly are induced to repel (e.g., through phosphorylation in the ooplasm) and (2) thiols freed from Zn(2+) are available to form disulfide bridges creating a superstabilized chromatin. Spermatozoa in the zinc rich prostatic fluid (in first ejaculated fraction) represent physiology. Extraction of chromatin zinc can be caused by unphysiological exposure of spermatozoa to the zinc chelating and oxidative seminal vesicular fluid, a situation common to most assisted reproductive techniques (ART) laboratories where the entire ejaculate is collected into a single container in which spermatozoa and secretions are mixed during at least 30 min. Some men in infertile couples have low content of sperm chromatin zinc due to loss of zinc during ejaculation and liquefaction. Tests for sperm DNA integrity may give false negative results due to

  4. Chromatin computation.

    Directory of Open Access Journals (Sweden)

    Barbara Bryant

    Full Text Available In living cells, DNA is packaged along with protein and RNA into chromatin. Chemical modifications to nucleotides and histone proteins are added, removed and recognized by multi-functional molecular complexes. Here I define a new computational model, in which chromatin modifications are information units that can be written onto a one-dimensional string of nucleosomes, analogous to the symbols written onto cells of a Turing machine tape, and chromatin-modifying complexes are modeled as read-write rules that operate on a finite set of adjacent nucleosomes. I illustrate the use of this "chromatin computer" to solve an instance of the Hamiltonian path problem. I prove that chromatin computers are computationally universal--and therefore more powerful than the logic circuits often used to model transcription factor control of gene expression. Features of biological chromatin provide a rich instruction set for efficient computation of nontrivial algorithms in biological time scales. Modeling chromatin as a computer shifts how we think about chromatin function, suggests new approaches to medical intervention, and lays the groundwork for the engineering of a new class of biological computing machines.

  5. Proteomic interrogation of human chromatin.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome" is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.

  6. Sequence information encoded in DNA that may influence long-range chromatin structure correlates with human chromosome functions.

    Directory of Open Access Journals (Sweden)

    Taichi E Takasuka

    Full Text Available Little is known about the possible function of the bulk of the human genome. We have recently shown that long-range regular oscillation in the motif non-T, A/T, G (VWG existing at ten-nucleotide multiples influences large-scale nucleosome array formation. In this work, we have determined the locations of all 100 kb regions that are predicted to form distinctive chromatin structures throughout each human chromosome (except Y. Using these data, we found that a significantly greater fraction of 300 kb sequences lacked annotated transcripts in genomic DNA regions > or = 300 kb that contained nearly continuous chromatin organizing signals than in control regions. We also found a relationship between the meiotic recombination frequency and the presence of strong VWG chromatin organizing signals. Large (> or = 300 kb genomic DNA regions having low average recombination frequency are enriched in chromatin organizing signals. As additional controls, we show using chromosome 1 that the VWG motif signals are not enriched in randomly selected DNA regions having the mean size of the recombination coldspots, and that non-VWG motif sets do not generate signals that are enriched in recombination coldspots. We also show that tandemly repeated alpha satellite DNA contains strong VWG signals for the formation of distinctive nucleosome arrays, consistent with the low recombination activity of centromeres. Our correlations cannot be explained simply by variations in the GC content. Our findings suggest that a specific set of periodic DNA motifs encoded in genomic DNA, which provide signals for chromatin organization, influence human chromosome function.

  7. Role of chromatin structure modulation by the histone deacetylase inhibitor trichostatin A on the radio-sensitivity of ataxia telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Meschini, Roberta, E-mail: meschini@unitus.it; Morucci, Elisa; Berni, Andrea; Lopez-Martinez, Wilner; Palitti, Fabrizio

    2015-07-15

    Highlights: • Role of chromatin compaction on chromosomal instability. • Reduced radiation-induced clastogenicity in Ataxia telangiectasia cell lines. • Histone tails hyperacetylation reduces heterochromatin content favouring DSBs repair. - Abstract: At present, a lot is known about biochemical aspects of double strand breaks (DBS) repair but how chromatin structure affects this process and the sensitivity of DNA to DSB induction is still an unresolved question. Ataxia telangiectasia (A-T) patients are characterised by very high sensitivity to DSB-inducing agents such as ionising radiation. This radiosensitivity is revealed with an enhancement of chromosomal instability as a consequence of defective DNA repair for a small fraction of breaks located in the heterochromatin, where they are less accessible. Besides, recently it has been reported that Ataxia Telangiectasia Mutated (ATM) mediated signalling modifies chromatin structure. In order to study the impact of chromatin compaction on the chromosomal instability of A-T cells, the response to trichostatin-A, an histone deacetylase inhibitor, in normal and A-T lymphoblastoid cell lines was investigated testing its effect on chromosomal aberrations, cell cycle progression, DNA damage and repair after exposure to X-rays. The results suggest that the response to both trichostatin-A pre- and continuous treatments is independent of the presence of either functional or mutated ATM protein, as the reduction of chromosomal damage was found also in the wild-type cell line. The presence of trichostatin-A before exposure to X-rays could give rise to prompt DNA repair functioning on chromatin structure already in an open conformation. Differently, trichostatin-A post-treatment causing hyperacetylation of histone tails and reducing the heterochromatic DNA content might diminish the requirement for ATM and favour DSBs repair reducing chromosomal damage only in A-T cells. This fact could suggest that trichostatin-A post

  8. The structure of the core NuRD repression complex provides insights into its interaction with chromatin.

    Science.gov (United States)

    Millard, Christopher J; Varma, Niranjan; Saleh, Almutasem; Morris, Kyle; Watson, Peter J; Bottrill, Andrew R; Fairall, Louise; Smith, Corinne J; Schwabe, John W R

    2016-04-21

    The NuRD complex is a multi-protein transcriptional corepressor that couples histone deacetylase and ATP-dependent chromatin remodelling activities. The complex regulates the higher-order structure of chromatin, and has important roles in the regulation of gene expression, DNA damage repair and cell differentiation. HDACs 1 and 2 are recruited by the MTA1 corepressor to form the catalytic core of the complex. The histone chaperone protein RBBP4, has previously been shown to bind to the carboxy-terminal tail of MTA1. We show that MTA1 recruits a second copy of RBBP4. The crystal structure reveals an extensive interface between MTA1 and RBBP4. An EM structure, supported by SAXS and crosslinking, reveals the architecture of the dimeric HDAC1:MTA1:RBBP4 assembly which forms the core of the NuRD complex. We find evidence that in this complex RBBP4 mediates interaction with histone H3 tails, but not histone H4, suggesting a mechanism for recruitment of the NuRD complex to chromatin.

  9. Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts.

    Science.gov (United States)

    Magistri, Marco; Faghihi, Mohammad Ali; St Laurent, Georges; Wahlestedt, Claes

    2012-08-01

    In the decade following the publication of the Human Genome, noncoding RNAs (ncRNAs) have reshaped our understanding of the broad landscape of genome regulation. During this period, natural antisense transcripts (NATs), which are transcribed from the opposite strand of either protein or non-protein coding genes, have vaulted to prominence. Recent findings have shown that NATs can exert their regulatory functions by acting as epigenetic regulators of gene expression and chromatin remodeling. Here, we review recent work on the mechanisms of epigenetic modifications by NATs and their emerging role as master regulators of chromatin states. Unlike other long ncRNAs, antisense RNAs usually regulate their counterpart sense mRNA in cis by bridging epigenetic effectors and regulatory complexes at specific genomic loci. Understanding the broad range of effects of NATs will shed light on the complex mechanisms that regulate chromatin remodeling and gene expression in development and disease.

  10. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization

    Energy Technology Data Exchange (ETDEWEB)

    Costes, Sylvain V; Chiolo, Irene; Pluth, Janice M.; Barcellos-Hoff, Mary Helen; Jakob, Burkhard

    2009-09-15

    DNA damage sensing proteins have been shown to localize to the sites of DSB within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatio-temporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and nuclear densities. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and ?H2AX (phosphorylated variant histone H2AX). Early post-IR, we propose that RIF mark chromatin reorganization, leading to a local nuclear scaffold rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. At later time post-IR, we propose that persistent RIF observed days following exposure to ionizing radiation are nuclear ?scars? marking permanent disruption of the chromatin architecture. When DNA damage is resolved, such chromatin modifications should not necessarily lead to growth arrest and it has been shown that persistent RIF can replicate during mitosis. Thus, heritable persistent RIF spanning over tens of Mbp may affect the transcriptome of a large progeny of cells. This opens the door for a non DNA mutation-based mechanism of radiation-induced phenotypes.

  11. The differential mobilization of histones H3.1 and H3.3 by herpes simplex virus 1 relates histone dynamics to the assembly of viral chromatin.

    Science.gov (United States)

    Conn, Kristen L; Hendzel, Michael J; Schang, Luis M

    2013-01-01

    During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly.

  12. Chromatin-related proteins in pluripotent mouse embryonic stem cells are downregulated after removal of leukemia inhibitory factor.

    Science.gov (United States)

    Kurisaki, Akira; Hamazaki, Tatsuo S; Okabayashi, Koji; Iida, Tetsuo; Nishine, Tsutomu; Chonan, Ritsu; Kido, Hiroshi; Tsunasawa, Susumu; Nishimura, Osamu; Asashima, Makoto; Sugino, Hiromu

    2005-09-30

    Embryonic stem (ES) cells have generated enormous interest due to their capacity to self-renew and the potential for growing many different cell types in vitro. Leukemia inhibitory factor (LIF), bone morphogenetic proteins, octamer-binding protein 3 or 4, and Nanog are important factors in the maintenance of pluripotency in mouse ES cells. However, the mechanisms by which these factors regulate the pluripotency remain poorly understood. To identify other proteins involved in this process, we did a proteomic analysis of mouse ES cells that were cultured in the presence or absence of LIF. More than 100 proteins were found to be involved specifically in either the differentiation process or the maintenance of undifferentiated state. Among these, chromatin-related proteins were identified as the major proteins in nuclear extracts of undifferentiated cells. Analysis with real-time RT-PCR revealed that enrichment of these proteins in pluripotent ES cells was regulated at the transcriptional levels. These results suggest that specific chromatin-related proteins may be involved in maintaining the unique properties of pluripotent ES cells.

  13. The structure of the nucleosome core particle of chromatin in chicken erythrocytes visualized by using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHAOHUI; YIZHANG; 等

    1999-01-01

    The structure of the nuclosome core particle of chromatin in chicken erythrocytes has been examined by using AFM.The 146 bp of DNA wrapped twice around the core histone octamer are clearly visualized.Both the ends of entry/exit of linker DNA are also demonstrated.The dimension of the nucleosome core particles is - 1-4 nm in height and - 13-22 nm in width.In addition,superbeads (width of - 48-57 nm,height of - 2-3 nm )are occasionally revealed,two turns of DNA around the core particles are also detected.

  14. Modulations of prolactin and growth hormone gene expression and chromatin structure in cultured rat pituitary cells.

    OpenAIRE

    Levy-Wilson, B

    1983-01-01

    I have measured the effect of hormones and other regulatory factors present in the serum component of the culture medium on the levels of growth hormone and prolactin mRNAs in rat pituitary (GH4) cells. Hybridization of cytoplasmic RNA with growth hormone or prolactin cDNA clones indicate that serum depletion reduces significantly the amount of these two mRNAs. The localization of these two genes in chromatin was also analysed using micrococcal nuclease as a probe. At intermediate levels of d...

  15. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications...

  16. Structural analysis of interphase X-chromatin based on statistical shape theory

    NARCIS (Netherlands)

    Yang, S.; Illner, D.; Teller, K.; Solovei, I.; van Driel, R.; Joffe, B.; Cremer, T.; Eils, R.; Rohr, K.

    2008-01-01

    The 3D folding structure formed by different genomic regions of a chromosome is still poorly understood. So far, only relatively simple geometric features, like distances and angles between different genomic regions, have been evaluated. This work is concerned with more complex geometric properties,

  17. Structural basis of H2A.Z recognition by SRCAP chromatin-remodeling subunit YL1.

    Science.gov (United States)

    Liang, Xiaoping; Shan, Shan; Pan, Lu; Zhao, Jicheng; Ranjan, Anand; Wang, Feng; Zhang, Zhuqiang; Huang, Yingzi; Feng, Hanqiao; Wei, Debbie; Huang, Li; Liu, Xuehui; Zhong, Qiang; Lou, Jizhong; Li, Guohong; Wu, Carl; Zhou, Zheng

    2016-04-01

    Histone variant H2A.Z, a universal mark of dynamic nucleosomes flanking gene promoters and enhancers, is incorporated into chromatin by SRCAP (SWR1), an ATP-dependent, multicomponent chromatin-remodeling complex. The YL1 (Swc2) subunit of SRCAP (SWR1) plays an essential role in H2A.Z recognition, but how it achieves this has been unclear. Here, we report the crystal structure of the H2A.Z-binding domain of Drosophila melanogaster YL1 (dYL1-Z) in complex with an H2A.Z-H2B dimer at 1.9-Å resolution. The dYL1-Z domain adopts a new whip-like structure that wraps over H2A.Z-H2B, and preferential recognition is largely conferred by three residues in loop 2, the hyperacidic patch and the extended αC helix of H2A.Z. Importantly, this domain is essential for deposition of budding yeast H2A.Z in vivo and SRCAP (SWR1)-catalyzed histone H2A.Z replacement in vitro. Our studies distinguish YL1-Z from known H2A.Z chaperones and suggest a hierarchical mechanism based on increasing binding affinity facilitating H2A.Z transfer from SRCAP (SWR1) to the nucleosome.

  18. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP.

    Science.gov (United States)

    Muratcioglu, Serena; Presman, Diego M; Pooley, John R; Grøntved, Lars; Hager, Gordon L; Nussinov, Ruth; Keskin, Ozlem; Gursoy, Attila

    2015-09-15

    The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate to regulate gene expression. This study suggests models for the assembly of the SWI/SNF-A (SWItch/Sucrose-NonFermentable) complex and its interaction with the GR. We used the PRISM algorithm (PRotein Interactions by Structural Matching) to predict the three-dimensional complex structures of the target proteins. The structural models indicate that BAF57 and/or BAF250 mediate the interaction between the GR and the SWI/SNF-A complex, corroborating experimental data. They further suggest that a BAF60a/BAF155 and/or BAF60a/BAF170 interaction is critical for association between the core and variant subunits. Further, we model the interaction between GR and CCAAT-enhancer-binding proteins (C/EBPs), since the GR can regulate gene expression indirectly by interacting with other transcription factors like C/EBPs. We observe that GR can bind to bZip domains of the C/EBPα homodimer as both a monomer and dimer of the DNA-binding domain. In silico mutagenesis of the predicted interface residues confirm the importance of these residues in binding. In vivo analysis of the computationally suggested mutations reveals that double mutations of the leucine residues (L317D+L335D) may disrupt the interaction between GR and C/EBPα. Determination of the complex structures of the GR is of fundamental relevance to understanding its interactions and functions, since the function of a protein or a

  19. Biophysical studies of cholesterol effects on chromatin.

    Science.gov (United States)

    Silva, Isabel T G; Fernandes, Vinicius; Souza, Caio; Treptow, Werner; Santos, Guilherme Martins

    2017-03-22

    Changes in chromatin structure regulate gene expression and genome maintenance. Molecules that bind to the nucleosome, the complex of DNA and histone proteins, are key modulators of chromatin structure. Previous work indicated that cholesterol, a ubiquitous cellular lipid, may bind to chromatin in vivo, suggesting a potential function for lipids in modulating chromatin architecture. However, the molecular mechanisms of cholesterol action on chromatin structure have remained unclear. Here, we explored the biophysical impact of cholesterol on nucleosome and chromatin fibers reconstituted in vitro and characterized in silico the cholesterol binding to nucleosome. Our findings support that cholesterol assists 10nm and 30nm chromatin formation and induces folding of long chromatin fibers as a result of direct interaction of the cholesterol to six nucleosomal binding sites.

  20. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation

    Science.gov (United States)

    Nguyen, Carvell T.; Gonzales, Felicidad A.; Jones, Peter A.

    2001-01-01

    Silencing of tumor-suppressor genes by hypermethylation of promoter CpG islands is well documented in human cancer and may be mediated by methyl-CpG-binding proteins, like MeCP2, that are associated in vivo with chromatin modifiers and transcriptional repressors. However, the exact dynamic between methylation and chromatin structure in the regulation of gene expression is not well understood. In this study, we have analyzed the methylation status and chromatin structure of three CpG islands in the p14(ARF)/p16(INK4A) locus in a series of normal and cancer cell lines using methylation-sensitive digestion, MspI accessibility in intact nuclei and chromatin immunoprecipitation (ChIP) assays. We demonstrate the existence of an altered chromatin structure associated with the silencing of tumor-suppressor genes in human cancer cell lines involving CpG island methylation, chromatin condensation, histone deacetylation and MeCP2 binding. The data showed that MeCP2 could bind to methylated CpG islands in both promoters and exons; MeCP2 does not interfere with transcription when bound at an exon, suggesting a more generalized role for the protein beyond transcriptional repression. In the absence of methylation, it is demonstrated that CpG islands located in promoters versus exons display marked differences in the levels of acetylation of associated histone H3, suggesting that chromatin remodeling can be achieved by methylation-independent processes and perhaps explaining why non-promoter CpG islands are more susceptible to de novo methylation than promoter islands. PMID:11713309

  1. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin).

    Science.gov (United States)

    Duan, Ming-Rui; Smerdon, Michael J

    2014-03-21

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.

  2. Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles of Condensin Complexes

    Directory of Open Access Journals (Sweden)

    David Llères

    2017-02-01

    Full Text Available How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer-based fluorescence lifetime imaging microscopy (FLIM approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1 and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.

  3. PU.1 Level-Directed Chromatin Structure Remodeling at the Irf8 Gene Drives Dendritic Cell Commitment

    Directory of Open Access Journals (Sweden)

    Jörg Schönheit

    2013-05-01

    Full Text Available Dendritic cells (DCs are essential regulators of immune responses; however, transcriptional mechanisms that establish DC lineage commitment are poorly defined. Here, we report that the PU.1 transcription factor induces specific remodeling of the higher-order chromatin structure at the interferon regulatory factor 8 (Irf8 gene to initiate DC fate choice. An Irf8 reporter mouse enabled us to pinpoint an initial progenitor stage at which DCs separate from other myeloid lineages in the bone marrow. In the absence of Irf8, this progenitor undergoes DC-to-neutrophil reprogramming, indicating that DC commitment requires an active, Irf8-dependent escape from alternative myeloid lineage potential. Mechanistically, myeloid Irf8 expression depends on high PU.1 levels, resulting in local chromosomal looping and activation of a lineage- and developmental-stage-specific cis-enhancer. These data delineate PU.1 as a concentration-dependent rheostat of myeloid lineage selection by controlling long-distance contacts between regulatory elements and suggest that specific higher-order chromatin remodeling at the Irf8 gene determines DC differentiation.

  4. Functions of the Proteasome on Chromatin

    Science.gov (United States)

    McCann, Tyler S.; Tansey, William P.

    2014-01-01

    The proteasome is a large self-compartmentalized protease complex that recognizes, unfolds, and destroys ubiquitylated substrates. Proteasome activities are required for a host of cellular functions, and it has become clear in recent years that one set of critical actions of the proteasome occur on chromatin. In this review, we discuss some of the ways in which proteasomes directly regulate the structure and function of chromatin and chromatin regulatory proteins, and how this influences gene transcription. We discuss lingering controversies in the field, the relative importance of proteolytic versus non-proteolytic proteasome activities in this process, and highlight areas that require further investigation. Our intention is to show that proteasomes are involved in major steps controlling the expression of the genetic information, that proteasomes use both proteolytic mechanisms and ATP-dependent protein remodeling to accomplish this task, and that much is yet to be learned about the full spectrum of ways that proteasomes influence the genome. PMID:25422899

  5. Functions of the Proteasome on Chromatin

    Directory of Open Access Journals (Sweden)

    Tyler S. McCann

    2014-11-01

    Full Text Available The proteasome is a large self-compartmentalized protease complex that recognizes, unfolds, and destroys ubiquitylated substrates. Proteasome activities are required for a host of cellular functions, and it has become clear in recent years that one set of critical actions of the proteasome occur on chromatin. In this review, we discuss some of the ways in which proteasomes directly regulate the structure and function of chromatin and chromatin regulatory proteins, and how this influences gene transcription. We discuss lingering controversies in the field, the relative importance of proteolytic versus non-proteolytic proteasome activities in this process, and highlight areas that require further investigation. Our intention is to show that proteasomes are involved in major steps controlling the expression of the genetic information, that proteasomes use both proteolytic mechanisms and ATP-dependent protein remodeling to accomplish this task, and that much is yet to be learned about the full spectrum of ways that proteasomes influence the genome.

  6. The Chd Family of Chromatin Remodelers

    OpenAIRE

    Marfella, Concetta G.A.; Imbalzano, Anthony N.

    2007-01-01

    Chromatin remodeling enzymes contribute to the dynamic changes that occur in chromatin structure during cellular processes such as transcription, recombination, repair, and replication. Members of the chromodomain helicase DNA-binding (Chd) family of enzymes belong to the SNF2 superfamily of ATP-dependent chromatin remodelers. The Chd proteins are distinguished by the presence of two N-terminal chromodomains that function as interaction surfaces for a variety of chromatin components. Genetic,...

  7. A Herpesviral Lytic Protein Regulates the Structure of Latent Viral Chromatin

    Directory of Open Access Journals (Sweden)

    Priya Raja

    2016-05-01

    Full Text Available Latent infections by viruses usually involve minimizing viral protein expression so that the host immune system cannot recognize the infected cell through the viral peptides presented on its cell surface. Herpes simplex virus (HSV, for example, is thought to express noncoding RNAs such as latency-associated transcripts (LATs and microRNAs (miRNAs as the only abundant viral gene products during latent infection. Here we describe analysis of HSV-1 mutant viruses, providing strong genetic evidence that HSV-infected cell protein 0 (ICP0 is expressed during establishment and/or maintenance of latent infection in murine sensory neurons in vivo. Studies of an ICP0 nonsense mutant virus showed that ICP0 promotes heterochromatin and latent and lytic transcription, arguing that ICP0 is expressed and functional. We propose that ICP0 promotes transcription of LATs during establishment or maintenance of HSV latent infection, much as it promotes lytic gene transcription. This report introduces the new concept that a lytic viral protein can be expressed during latent infection and can serve dual roles to regulate viral chromatin to optimize latent infection in addition to its role in epigenetic regulation during lytic infection. An additional implication of the results is that ICP0 might serve as a target for an antiviral therapeutic acting on lytic and latent infections.

  8. Structural Logical Relations

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Sarnat, Jeffrey

    2008-01-01

    , such as Twelf, and yet they are often straightforward in proof assistants with stronger meta-logics. In this paper, we propose structural logical relations as a technique for conducting these proofs in systems with limited meta-logical strength by explicitly representing and reasoning about an auxiliary logic......Tait's method (a.k.a. proof by logical relations) is a powerful proof technique frequently used for showing foundational properties of languages based on typed lambda-calculi. Historically, these proofs have been extremely difficult to formalize in proof assistants with weak meta-logics...

  9. Genes Related to Mitochondrial Functions, Protein Degradation, and Chromatin Folding Are Differentially Expressed in Lymphomonocytes of Rett Syndrome Patients

    Science.gov (United States)

    Leoni, Guido; Cervellati, Franco; Canali, Raffaella; Cortelazzo, Alessio; De Felice, Claudio; Ciccoli, Lucia; Hayek, Joussef

    2013-01-01

    Rett syndrome (RTT) is mainly caused by mutations in the X-linked methyl-CpG binding protein (MeCP2) gene. By binding to methylated promoters on CpG islands, MeCP2 protein is able to modulate several genes and important cellular pathways. Therefore, mutations in MeCP2 can seriously affect the cellular phenotype. Today, the pathways that MeCP2 mutations are able to affect in RTT are not clear yet. The aim of our study was to investigate the gene expression profiles in peripheral blood lymphomonocytes (PBMC) isolated from RTT patients to try to evidence new genes and new pathways that are involved in RTT pathophysiology. LIMMA (Linear Models for MicroArray) and SAM (Significance Analysis of Microarrays) analyses on microarray data from 12 RTT patients and 7 control subjects identified 482 genes modulated in RTT, of which 430 were upregulated and 52 were downregulated. Functional clustering of a total of 146 genes in RTT identified key biological pathways related to mitochondrial function and organization, cellular ubiquitination and proteosome degradation, RNA processing, and chromatin folding. Our microarray data reveal an overexpression of genes involved in ATP synthesis suggesting altered energy requirement that parallels with increased activities of protein degradation. In conclusion, these findings suggest that mitochondrial-ATP-proteasome functions are likely to be involved in RTT clinical features. PMID:24453408

  10. Genes Related to Mitochondrial Functions, Protein Degradation, and Chromatin Folding Are Differentially Expressed in Lymphomonocytes of Rett Syndrome Patients

    Directory of Open Access Journals (Sweden)

    Alessandra Pecorelli

    2013-01-01

    Full Text Available Rett syndrome (RTT is mainly caused by mutations in the X-linked methyl-CpG binding protein (MeCP2 gene. By binding to methylated promoters on CpG islands, MeCP2 protein is able to modulate several genes and important cellular pathways. Therefore, mutations in MeCP2 can seriously affect the cellular phenotype. Today, the pathways that MeCP2 mutations are able to affect in RTT are not clear yet. The aim of our study was to investigate the gene expression profiles in peripheral blood lymphomonocytes (PBMC isolated from RTT patients to try to evidence new genes and new pathways that are involved in RTT pathophysiology. LIMMA (Linear Models for MicroArray and SAM (Significance Analysis of Microarrays analyses on microarray data from 12 RTT patients and 7 control subjects identified 482 genes modulated in RTT, of which 430 were upregulated and 52 were downregulated. Functional clustering of a total of 146 genes in RTT identified key biological pathways related to mitochondrial function and organization, cellular ubiquitination and proteosome degradation, RNA processing, and chromatin folding. Our microarray data reveal an overexpression of genes involved in ATP synthesis suggesting altered energy requirement that parallels with increased activities of protein degradation. In conclusion, these findings suggest that mitochondrial-ATP-proteasome functions are likely to be involved in RTT clinical features.

  11. Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines.

    Science.gov (United States)

    Venkatesh, Priyanka; Panyutin, Irina V; Remeeva, Evgenia; Neumann, Ronald D; Panyutin, Igor G

    2016-01-02

    Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.

  12. Coactivators p300 and CBP maintain the identity of mouse embryonic stem cells by mediating long-range chromatin structure.

    Science.gov (United States)

    Fang, Fang; Xu, Yifeng; Chew, Kai-Khen; Chen, Xi; Ng, Huck-Hui; Matsudaira, Paul

    2014-07-01

    Master transcription factors Oct4, Sox2, and Nanog are required to maintain the pluripotency and self-renewal of embryonic stem cells (ESCs) by regulating a specific transcriptional network. A few other transcription factors have been shown to be important in ESCs by interacting with these master transcription factors; however, little is known about the transcriptional mechanisms regulated by coregulators (coactivators and corepressors). In this study, we examined the function of two highly homologous coactivators, p300 and CREB-binding protein (CBP), in ESCs. We find that these two coactivators play redundant roles in maintaining the undifferentiated state of ESCs. They are recruited by Nanog through physical interaction to Nanog binding loci, mediating the formation of long-range chromatin looping structures, which is essential to maintain ESC-specific gene expression. Further functional studies reveal that the p300/CBP binding looping fragments contain enhancer activities, suggesting that the formation of p300/CBP-mediated looping structures may recruit distal enhancers to create a concentration of factors for the transcription activation of genes that are involved in self-renewal and pluripotency. Overall, these results provide a total new insight into the transcriptional regulation mechanism of coactivators p300 and CBP in ESCs, which is important in maintaining self-renewal and pluripotency, by mediating the formation of higher order chromosome structures.

  13. Systems Biological Determination of the Epi-Genomic Structure Function Relation: : Nucleosomal Association Changes, Intra/Inter Chromosomal Architecture, Transcriptional Structure Relationship, Simulations of Nucleosomal/Chromatin Fiber/Chromosome Architecture and Dynamics, System Biological/Medical Result Integration via the GLOBE 3D Genome Platform.

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); P.R. Cook (Peter); K. Rippe (Karsten); Gernot Längst; G. Wedemann (Gero); F.G. Grosveld (Frank)

    2010-01-01

    textabstractDespite our knowledge of the sequence of the human genome, the relation of its three-dimensional dynamic architecture with its function – the storage and expression of genetic information – remains one of the central unresolved issues of our age. It became very clear meanwhile that this

  14. Sequential changes in chromatin structure during transcriptional activation in the beta globin LCR and its target gene.

    Science.gov (United States)

    Kim, Kihoon; Kim, AeRi

    2010-09-01

    Chromatin structure is modulated during transcriptional activation. The changes include the association of transcriptional activators, formation of hypersensitive sites and covalent modifications of histones. To understand the order of the various changes accompanying transcriptional activation, we analyzed the mouse beta globin gene, which is transcriptionally inducible in erythroid MEL cells over a time course of HMBA treatment. Transcription of the globin genes requires the locus control region (LCR) consisting of several hypersensitive sites (HSs). Erythroid specific transcriptional activators such as NF-E2, GATA-1, TAL1 and EKLF were associated with the LCR in the uninduced state before transcriptional activation. The HSs of the LCR were formed in this state as revealed by high sensitivity to DNase I and MNase attack. However the binding of transcriptional activators and the depletion of histones were observed in the promoter of the beta globin gene only after transcriptional activation. In addition, various covalent histone modifications were sequentially detected in lysine residues of histone H3 during the activation. Acetylation of K9, K36 and K27 was notable in both LCR HSs and gene after induction but before transcriptional initiation. Inactive histone marks such as K9me2, K36me2 and K27me2 were removed coincident with transcriptional initiation in the gene region. Taken together, these results indicate that LCR has a substantially active structure in the uninduced state while transcriptional activation serially adds active marks, including histone modifications, and removes inactive marks in the target gene of the LCR.

  15. Structural changes in single chromatin fibers induced by tension and torsion

    NARCIS (Netherlands)

    Meng, He

    2014-01-01

    Since the discovery of the right-handed helical structure of DNA, 61 years have passed. The DNA molecule, which encodes genetic information, is also found twisted into coils. This extra twist of the helical structure, called supercoiling, plays important roles in both DNA compaction and gene regul

  16. The 3D chromatin structure of the mouse β-haemoglobin gene cluster

    NARCIS (Netherlands)

    M.P.C. van de Corput (Mariëtte); T.A. Knoch (Tobias); E. de Boer (Ernie); W.A. van Cappellen (Gert); M. Lesnussa (Michael); H.J.F.M.M. Eussen (Bert)

    2010-01-01

    textabstractHere we show a 3D DNA-FISH method to visualizes the 3D structure of the β-globin locus. Geometric size and shape measurements of the 3D rendered signals (128Kb) show that the volume of the β-globin locus decreases almost two fold upon gene activation. A decrease in length and a distinc

  17. Single Molecule Studies of Chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  18. A Structural Basis for BRD2/4-Mediated Host Chromatin Interaction and Oligomer Assembly of Kaposi Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus LANA Proteins

    Science.gov (United States)

    Krausze, Joern; Richter, Ulrike; Adler, Heiko; Fedorov, Roman; Pietrek, Marcel; Rückert, Jessica; Ritter, Christiane; Schulz, Thomas F.; Lührs, Thorsten

    2013-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) establishes a lifelong latent infection and causes several malignancies in humans. Murine herpesvirus 68 (MHV-68) is a related γ2-herpesvirus frequently used as a model to study the biology of γ-herpesviruses in vivo. The KSHV latency-associated nuclear antigen (kLANA) and the MHV68 mLANA (orf73) protein are required for latent viral replication and persistence. Latent episomal KSHV genomes and kLANA form nuclear microdomains, termed ‘LANA speckles’, which also contain cellular chromatin proteins, including BRD2 and BRD4, members of the BRD/BET family of chromatin modulators. We solved the X-ray crystal structure of the C-terminal DNA binding domains (CTD) of kLANA and MHV-68 mLANA. While these structures share the overall fold with the EBNA1 protein of Epstein-Barr virus, they differ substantially in their surface characteristics. Opposite to the DNA binding site, both kLANA and mLANA CTD contain a characteristic lysine-rich positively charged surface patch, which appears to be a unique feature of γ2-herpesviral LANA proteins. Importantly, kLANA and mLANA CTD dimers undergo higher order oligomerization. Using NMR spectroscopy we identified a specific binding site for the ET domains of BRD2/4 on kLANA. Functional studies employing multiple kLANA mutants indicate that the oligomerization of native kLANA CTD dimers, the characteristic basic patch and the ET binding site on the kLANA surface are required for the formation of kLANA ‘nuclear speckles’ and latent replication. Similarly, the basic patch on mLANA contributes to the establishment of MHV-68 latency in spleen cells in vivo. In summary, our data provide a structural basis for the formation of higher order LANA oligomers, which is required for nuclear speckle formation, latent replication and viral persistence. PMID:24146614

  19. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin

    Directory of Open Access Journals (Sweden)

    Mora Xavier

    2007-05-01

    Full Text Available Abstract Background Histone H1 is involved in the formation and maintenance of chromatin higher order structure. H1 has multiple isoforms; the subtypes differ in timing of expression, extent of phosphorylation and turnover rate. In vertebrates, the amino acid substitution rates differ among subtypes by almost one order of magnitude, suggesting that each subtype might have acquired a unique function. We have devised a competitive assay to estimate the relative binding affinities of histone H1 mammalian somatic subtypes H1a-e and H1° for long chromatin fragments (30–35 nucleosomes in physiological salt (0.14 M NaCl at constant stoichiometry. Results The H1 complement of native chromatin was perturbed by adding an additional amount of one of the subtypes. A certain amount of SAR (scaffold-associated region DNA was present in the mixture to avoid precipitation of chromatin by excess H1. SAR DNA also provided a set of reference relative affinities, which were needed to estimate the relative affinities of the subtypes for chromatin from the distribution of the subtypes between the SAR and the chromatin. The amounts of chromatin, SAR and additional H1 were adjusted so as to keep the stoichiometry of perturbed chromatin similar to that of native chromatin. H1 molecules freely exchanged between the chromatin and SAR binding sites. In conditions of free exchange, H1a was the subtype of lowest affinity, H1b and H1c had intermediate affinities and H1d, H1e and H1° the highest affinities. Subtype affinities for chromatin differed by up to 19-fold. The relative affinities of the subtypes for chromatin were equivalent to those estimated for a SAR DNA fragment and a pUC19 fragment of similar length. Avian H5 had an affinity ~12-fold higher than H1e for both DNA and chromatin. Conclusion H1 subtypes freely exchange in vitro between chromatin binding sites in physiological salt (0.14 M NaCl. The large differences in relative affinity of the H1 subtypes for

  20. Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast.

    Science.gov (United States)

    Hirota, Kouji; Steiner, Walter W; Shibata, Takehiko; Ohta, Kunihiro

    2007-11-01

    The ade6-M26 meiotic recombination hot spot of fission yeast is defined by a cyclic AMP-responsive element (CRE)-like heptanucleotide sequence, 5'-ATGACGT-3', which acts as a binding site for the Atf1/Pcr1 heterodimeric transcription factor required for hot spot activation. We previously demonstrated that the local chromatin around the M26 sequence motif alters to exhibit higher sensitivity to micrococcal nuclease before the initiation of meiotic recombination. In this study, we have examined whether or not such alterations in chromatin occur at natural meiotic DNA double-strand break (DSB) sites in Schizosaccharomyces pombe. At one of the most prominent DSB sites, mbs1 (meiotic break site 1), the chromatin structure has a constitutively accessible configuration at or near the DSB sites. The establishment of the open chromatin state and DSB formation are independent of the CRE-binding transcription factor, Atf1. Analysis of the chromatin configuration at CRE-dependent DSB sites revealed both differences from and similarities to mbs1. For example, the tdh1+ locus, which harbors a CRE consensus sequence near the DSB site, shows a meiotically induced open chromatin configuration, similar to ade6-M26. In contrast, the cds1+ locus is similar to mbs1 in that it exhibits a constitutive open configuration. Importantly, Atf1 is required for the open chromatin formation in both tdh1+ and cds1+. These results suggest that CRE-dependent meiotic chromatin changes are intrinsic processes related to DSB formation in fission yeast meiosis. In addition, the results suggest that the chromatin configuration in natural meiotic recombination hot spots can be classified into at least three distinct categories: (i) an Atf1-CRE-independent constitutively open chromatin configuration, (ii) an Atf1-CRE-dependent meiotically induced open chromatin configuration, and (iii) an Atf1-CRE-dependent constitutively open chromatin configuration.

  1. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    Science.gov (United States)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  2. From virus structure to chromatin: X-ray diffraction to three-dimensional electron microscopy.

    Science.gov (United States)

    Klug, Aaron

    2010-01-01

    Early influences led me first to medical school with a view to microbiology, but I felt the lack of a deeper foundation and changed to chemistry, which in turn led me to physics and mathematics. I moved to the University of Cape Town to work on the X-ray crystallography of some small organic compounds. I developed a new method of using molecular structure factors to solve the crystal structure, which won me a research studentship to Trinity College Cambridge and the Cavendish Laboratory. There I worked on the austenite-pearlite transition in steel. This is governed by the dissipation of latent heat, and I ended up numerically solving partial differential equations. I used the idea of nucleation and growth during the phase change, which had its echo when I later tackled the assembly of Tobacco mosaic virus (TMV) from its constituent RNA and protein subunits. I wanted to move on to X-ray structure analysis of large biological molecules and obtained a Nuffield Fellowship to work in J.D. Bernal's department at Birkbeck College, London. There, I met Rosalind Franklin, who had taken up the study of TMV. I was able to interpret some of Franklin's beautiful X-ray diffraction patterns of the virus particle. From then on, my fate was sealed. After Franklin's untimely death in 1958, I moved in 1962 to the newly built MRC Laboratory of Molecular Biology in Cambridge, which, under Max Perutz, housed the original MRC unit from the Cavendish Laboratory. I was thus privileged to join the Laboratory at an early stage in its expansion and consequently able to take advantage of, and to help build up, its then unique environment of intellectual and technological sophistication. There I have remained ever since.

  3. [Changes in the chromatin structure of lymphoid cells under the influence of low-intensity extremely high-frequency electromagnetic radiation against the background of inflammatory process].

    Science.gov (United States)

    Gapeev, A B; Romanova, N A; Chemeris, N K

    2011-01-01

    Using the alkaline single cell gel electrophoresis technique (comet assay), changes in chromatin structure of peripheral blood leukocytes and peritoneal neutrophils have been studied in mice exposed to low-intensity extremely high-frequency electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20 min at 1 h after induction of inflammation) against the background of the systemic inflammatory process. It was revealed that the exposure of mice with the developing inflammation leads to a pronounced decrease in the level of DNA damage to peripheral blood leukocytes and peritoneal neutrophils. It is supposed that the changes in the chromatin structure of lymphoid cells have a genoprotective character in the inflammatory process and can underlie the mechanisms of realization of antiinflammatory effects of the electromagnetic radiation.

  4. Advances in chromatin remodeling and human disease.

    Science.gov (United States)

    Cho, Kyoung Sang; Elizondo, Leah I; Boerkoel, Cornelius F

    2004-06-01

    Epigenetic factors alter phenotype without changing genotype. A primary molecular mechanism underlying epigenetics is the alteration of chromatin structure by covalent DNA modifications, covalent histone modifications, and nucleosome reorganization. Remodeling of chromatin structure regulates DNA methylation, replication, recombination, and repair as well as gene expression. As these functions would predict, dysfunction of the proteins that remodel chromatin causes an array of multi-system disorders and neoplasias. Insights from these diseases suggest that during embryonic and fetal life, environmental distortions of chromatin remodeling encode a 'molecular memory' that predispose the individual to diseases in adulthood.

  5. The sequence-specific transcription factor c-Jun targets Cockayne syndrome protein B to regulate transcription and chromatin structure.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2014-04-01

    Full Text Available Cockayne syndrome is an inherited premature aging disease associated with numerous developmental and neurological defects, and mutations in the gene encoding the CSB protein account for the majority of Cockayne syndrome cases. Accumulating evidence suggests that CSB functions in transcription regulation, in addition to its roles in DNA repair, and those defects in this transcriptional activity might contribute to the clinical features of Cockayne syndrome. Transcription profiling studies have so far uncovered CSB-dependent effects on gene expression; however, the direct targets of CSB's transcriptional activity remain largely unknown. In this paper, we report the first comprehensive analysis of CSB genomic occupancy during replicative cell growth. We found that CSB occupancy sites display a high correlation to regions with epigenetic features of promoters and enhancers. Furthermore, we found that CSB occupancy is enriched at sites containing the TPA-response element. Consistent with this binding site preference, we show that CSB and the transcription factor c-Jun can be found in the same protein-DNA complex, suggesting that c-Jun can target CSB to specific genomic regions. In support of this notion, we observed decreased CSB occupancy of TPA-response elements when c-Jun levels were diminished. By modulating CSB abundance, we found that CSB can influence the expression of nearby genes and impact nucleosome positioning in the vicinity of its binding site. These results indicate that CSB can be targeted to specific genomic loci by sequence-specific transcription factors to regulate transcription and local chromatin structure. Additionally, comparison of CSB occupancy sites with the MSigDB Pathways database suggests that CSB might function in peroxisome proliferation, EGF receptor transactivation, G protein signaling and NF-κB activation, shedding new light on the possible causes and mechanisms of Cockayne syndrome.

  6. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure

    DEFF Research Database (Denmark)

    Luijsterburg, Martijn S; Acs, Klara; Ackermann, Leena;

    2012-01-01

    The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensatio...

  7. TM6, a novel nuclear matrix attachment region, enhances its flanking gene expression through influencing their chromatin structure.

    Science.gov (United States)

    Ji, Lusha; Xu, Rui; Lu, Longtao; Zhang, Jiedao; Yang, Guodong; Huang, Jinguang; Wu, Changai; Zheng, Chengchao

    2013-08-01

    Nuclear matrix attachment regions (MARs) regulate the higher-order organization of chromatin and affect the expression of their flanking genes. In this study, a tobacco MAR, TM6, was isolated and demonstrated to remarkably increase the expression of four different promoters that drive gusA gene and adjacent nptII gene. In turn, this expression enhanced the transformation frequency of transgenic tobacco. Deletion analysis of topoisomerase II-binding site, AT-rich element, and MAR recognition signature (MRS) showed that MRS has the highest contribution (61.7%) to the TM6 sequence-mediated transcription activation. Micrococcal nuclease (MNase) accessibility assay showed that 35S and NOS promoter regions with TM6 are more sensitive than those without TM6. The analysis also revealed that TM6 reduces promoter DNA methylation which can affect the gusA expression. In addition, two tobacco chromatin-associated proteins, NtMBP1 and NtHMGB, isolated using a yeast one-hybrid system, specifically bound to the TM6II-1 region (761 bp to 870 bp) and to the MRS element in the TM6II-2 (934 bp to 1,021 bp) region, respectively. We thus suggested that TM6 mediated its chromatin opening and chromatin accessibility of its flanking promoters with consequent enhancement of transcription.

  8. Changeability of sperm chromatin structure during liquid storage of ovine semen in milk-egg yolk- and soybean lecithin-based extenders and their relationships to field-fertility.

    Science.gov (United States)

    Khalifa, Tarek; Lymberopoulos, Aristotelis

    2013-12-01

    The aim of this experiment was to study the effect of semen extender on sperm chromatin structure and to correlate chromatin integrity with field-fertility of preserved ram semen. Ejaculates of at least 2 × 10(9) sperm/ml and 70 % progressive motility were collected using an artificial vagina from Chios rams (n = 11, 4-6 years old), split-diluted to 1 × 10(9) sperm/ml with milk-egg yolk- and soybean lecithin (Ovixcell®)-based extenders, packaged in 0.5-ml straws and examined after 6, 24 and 48 h of storage at 5 ± 1 °C. Evaluation endpoints were computer-assisted sperm motion analysis, fluorescence-based analysis of chromatin structure by chromomycin A3 and acridine orange assays, and 65-day pregnancy rate (PR) of 34- to 36-h preserved semen after intra-cervical insemination of ewes (n = 154) in progestagen-synchronized estrus. Neither extender nor storage time had any influence on incidence of decondensed chromatin. Unlike Ovixcell® extender, deterioration of sperm motility (P egg yolk extender. Sperm motility accounted for 14.4-18.5 % of variations in chromatin integrity (P egg yolk-stored semen. Nevertheless, PR differed between rams (14.3-71.4 %; P egg yolk extender in preserving chromatin stability and motility. Chromatin defects are negatively associated with sperm fertility.

  9. Chromatin is wonderful stuff.

    NARCIS (Netherlands)

    R. van Driel

    2007-01-01

    Chromatin molecules have properties that set them aside from all other biomacromolecules in the cell. (i) Chromosomes, which are single chromatin molecules, are the largest macromolecules in eukaryotic cells. (ii) Chromatin molecules carry the cell's genetic and epigenetic information and all contro

  10. Comparative structural biology of the genome: nano-scale imaging of single nucleus from different kingdoms reveals the common physicochemical property of chromatin with a 40 nm structural unit.

    Science.gov (United States)

    Kobori, Toshiro; Kodama, Mami; Hizume, Kohji; Yoshimura, Shige H; Ohtani, Toshio; Takeyasu, Kunio

    2006-01-01

    Genome function is closely linked to the higher-order chromatin structures. To reveal a structural basis for the interphase chromatin organization, the 'on-substrate' lysis procedure was applied to nuclei isolated from human HeLa cells, chicken erythrocyte cells and yeast Schizosaccharomyces pombe, which possessed different intrinsic properties of the genomes such as histone composition and inter-nucleosomal distance. The isolated nuclei on a coverslip were successively treated with a detergent and a high-salt solution to extract the nuclear membrane and the nucleoplasm, and therefore, atomic force microscopy (AFM) visualized the structural changes in response to the lysis procedure. After the nucleoplasm was extracted, AFM clarified that chromatin fibers, approximately 40 nm in width, were partially released out of the nuclei and that the other chromatin still remaining in the nuclei was composed of granular structures with diameter of 80-100 nm. Thus, these results suggest that the approximately 40 nm fiber would be a stable structural unit and fold the 80-100 nm granules into a one-step higher unit. A common mechanism could be implied regardless of the intrinsic properties of the eukaryotic genomes.

  11. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    Science.gov (United States)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  12. Reshaping chromatin after DNA damage: the choreography of histone proteins.

    Science.gov (United States)

    Polo, Sophie E

    2015-02-13

    DNA damage signaling and repair machineries operate in a nuclear environment where DNA is wrapped around histone proteins and packaged into chromatin. Understanding how chromatin structure is restored together with the DNA sequence during DNA damage repair has been a topic of intense research. Indeed, chromatin integrity is central to cell functions and identity. However, chromatin shows remarkable plasticity in response to DNA damage. This review presents our current knowledge of chromatin dynamics in the mammalian cell nucleus in response to DNA double strand breaks and UV lesions. I provide an overview of the key players involved in regulating histone dynamics in damaged chromatin regions, focusing on histone chaperones and their concerted action with histone modifiers, chromatin remodelers and repair factors. I also discuss how these dynamics contribute to reshaping chromatin and, by altering the chromatin landscape, may affect the maintenance of epigenetic information.

  13. Chromatin dynamics resolved with force spectroscopy

    NARCIS (Netherlands)

    Chien, Fan-Tso

    2011-01-01

    In eukaryotic cells, genomic DNA is organized in chromatin fibers composed of nucleosomes as structural units. A nucleosome contains 1.7 turns of DNA wrapped around a histone octamer and is connected to the adjacent nucleosomes with linker DNA. The folding of chromatin fibers effectively increases t

  14. Chromatin domain boundaries: insulators and beyond

    Institute of Scientific and Technical Information of China (English)

    Gong Hong WEI; De Pei LIU; Chih Chuan LIANG

    2005-01-01

    The eukaryotic genome is organized into functionally and structurally distinct domains, representing regulatory units for gene expression and chromosome behavior. DNA sequences that mark the border between adjacent domains are the insulators or boundary elements, which are required in maintenance of the function of different domains. Some insulators need others enable to play insulation activity. Chromatin domains are defined by distinct sets of post-translationally modified histones. Recent studies show that these histone modifications are also involved in establishment of sharp chromatin boundaries in order to prevent the spreading of distinct domains. Additionally, in some loci, the high-order chromatin structures for long-range looping interactions also have boundary activities, suggesting a correlation between insulators and chromatin loop domains. In this review, we will discuss recent progress in the field of chromatin domain boundaries.

  15. Chromatin Remodeling and Plant Immunity.

    Science.gov (United States)

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    2017-01-01

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

  16. Chromatin Dynamics of the mouse β-globin locus

    NARCIS (Netherlands)

    M.P.C. van de Corput (Mariëtte); E. de Boer (Ernie); T.A. Knoch (Tobias); W.A. van Cappellen (Gert); M. Lesnussa (Michael); H.J.F.M.M. Eussen (Bert)

    2010-01-01

    textabstractLately it has become more clear that (subtle) changes in 3D organization of chromatin can either trigger transcription or silence genes or gene clusters. It has also been postulated that due to changes in chromatin structure, a change in chromatin accessibility of transcription factors

  17. The many faces of plant chromatin: Meeting summary of the 4th European workshop on plant chromatin 2015, Uppsala, Sweden.

    Science.gov (United States)

    Mozgová, Iva; Köhler, Claudia; Gaudin, Valérie; Hennig, Lars

    2015-01-01

    In June 2015, the fourth European Workshop on Plant Chromatin took place in Uppsala, Sweden, bringing together 80 researchers studying various aspects of plant chromatin and epigenetics. The intricate relationships between plant chromatin dynamics and gene expression change, chromatin organization within the plant cell nucleus, and the impact of chromatin structure on plant development were discussed. Among the main highlights of the meeting were an ever-growing list of newly identified players in chromatin structure establishment and the development of novel tools and approaches to foster our understanding of chromatin-mediated gene regulation, taking into account the context of the plant cell nucleus and its architecture. In this report, we summarize some of the main advances and prospects of plant chromatin research presented at this meeting.

  18. H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast

    LENUS (Irish Health Repository)

    Shieh, Grace S.

    2011-12-22

    Abstract Background The packaging of DNA into chromatin regulates transcription from initiation through 3\\' end processing. One aspect of transcription in which chromatin plays a poorly understood role is the co-transcriptional splicing of pre-mRNA. Results Here we provide evidence that H2B monoubiquitylation (H2BK123ub1) marks introns in Saccharomyces cerevisiae. A genome-wide map of H2BK123ub1 in this organism reveals that this modification is enriched in coding regions and that its levels peak at the transcribed regions of two characteristic subgroups of genes. First, long genes are more likely to have higher levels of H2BK123ub1, correlating with the postulated role of this modification in preventing cryptic transcription initiation in ORFs. Second, genes that are highly transcribed also have high levels of H2BK123ub1, including the ribosomal protein genes, which comprise the majority of intron-containing genes in yeast. H2BK123ub1 is also a feature of introns in the yeast genome, and the disruption of this modification alters the intragenic distribution of H3 trimethylation on lysine 36 (H3K36me3), which functionally correlates with alternative RNA splicing in humans. In addition, the deletion of genes encoding the U2 snRNP subunits, Lea1 or Msl1, in combination with an htb-K123R mutation, leads to synthetic lethality. Conclusion These data suggest that H2BK123ub1 facilitates cross talk between chromatin and pre-mRNA splicing by modulating the distribution of intronic and exonic histone modifications.

  19. Epigenetic regulation and chromatin remodeling in learning and memory

    Science.gov (United States)

    Kim, Somi; Kaang, Bong-Kiun

    2017-01-01

    Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms. PMID:28082740

  20. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair.

    Science.gov (United States)

    Chambers, Anna L; Downs, Jessica A

    2012-01-01

    In eukaryotes, DNA is packaged into chromatin and is therefore relatively inaccessible to DNA repair enzymes. In order to perform efficient DNA repair, ATP-dependent chromatin-remodeling enzymes are required to alter the chromatin structure near the site of damage to facilitate processing and allow access to repair enzymes. Two of the best-studied remodeling complexes involved in repair are RSC (Remodels the Structure of Chromatin) and INO80 from Saccharomyces cerevisiae, which are both conserved in higher eukaryotes. RSC is very rapidly recruited to breaks and mobilizes nucleosomes to promote phosphorylation of H2A S129 and resection. INO80 enrichment at a break occurs later and is dependent on phospho-S129 H2A. INO80 activity at the break site also facilitates resection. Consequently, both homologous recombination and nonhomologous end-joining are defective in rsc mutants, while subsets of these repair pathways are affected in ino80 mutants.

  1. Chromatin Remodelers: From Function to Dysfunction

    Directory of Open Access Journals (Sweden)

    Gernot Längst

    2015-06-01

    Full Text Available Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development.

  2. Extracellular Matrix, Nuclear and Chromatin Structure and GeneExpression in Normal Tissues and Malignant Tumors: A Work inProgress

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Virginia A.; Xu, Ren; Bissell, Mina J.

    2006-08-01

    Almost three decades ago, we presented a model where theextracellular matrix (ECM) was postulated to influence gene expressionand tissue-specificity through the action of ECM receptors and thecytoskeleton. This hypothesis implied that ECM molecules could signal tothe nucleus and that the unit of function in higher organisms was not thecell alone, but the cell plus its microenvironment. We now know that ECMinvokes changes in tissue and organ architecture and that tissue, cell,nuclear, and chromatin structure are changed profoundly as a result ofand during malignant progression. Whereas some evidence has beengenerated for a link between ECM-induced alterations in tissuearchitecture and changes in both nuclear and chromatin organization, themanner by which these changes actively induce or repress gene expressionin normal and malignant cells is a topic in need of further attention.Here, we will discuss some key findings that may provide insights intomechanisms through which ECM could influence gene transcription and howtumor cells acquire the ability to overcome these levels ofcontrol.

  3. DNA breaks and repair in interstitial telomere sequences: Influence of chromatin structure; Etude des cassures de l'ADN et des mecanismes de reparation dans les sequences telomeriques interstitielles: Influence de la structure chromatinienne

    Energy Technology Data Exchange (ETDEWEB)

    Revaud, D.

    2009-06-15

    Interstitial Telomeric Sequences (ITS) are over-involved in spontaneous and radiationinduced chromosome aberrations in chinese hamster cells. We have performed a study to investigate the origin of their instability, spontaneously or after low doses irradiation. Our results demonstrate that ITS have a particular chromatin structure: short nucleotide repeat length, less compaction of the 30 nm chromatin fiber, presence of G-quadruplex structures. These features would modulate breaks production and would favour the recruitment of alternative DNA repair mechanisms, which are prone to produce chromosome aberrations. These pathways could be at the origin of chromosome aberrations in ITS whereas NHEJ and HR Double Strand Break repair pathways are rather required for a correct repair in these regions. (author)

  4. Chromatin Fiber Dynamics under Tension and Torsion

    Directory of Open Access Journals (Sweden)

    Christophe Lavelle

    2010-04-01

    Full Text Available Genetic and epigenetic information in eukaryotic cells is carried on chromosomes, basically consisting of large compact supercoiled chromatin fibers. Micromanipulations have recently led to great advances in the knowledge of the complex mechanisms underlying the regulation of DNA transaction events by nucleosome and chromatin structural changes. Indeed, magnetic and optical tweezers have allowed opportunities to handle single nucleosomal particles or nucleosomal arrays and measure their response to forces and torques, mimicking the molecular constraints imposed in vivo by various molecular motors acting on the DNA. These challenging technical approaches provide us with deeper understanding of the way chromatin dynamically packages our genome and participates in the regulation of cellular metabolism.

  5. Extensive Variation in Chromatin States Across Humans

    KAUST Repository

    Kasowski, M.

    2013-10-17

    The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.

  6. Etiology and Evaluation of Sperm Chromatin Anomalies

    Directory of Open Access Journals (Sweden)

    Marziyeh Tavalaee

    2008-01-01

    Full Text Available Evidence suggests that human sperm chromatin anomalies adversely affect reproductive outcomesand infertile men possess substantially amount of sperm with chromatin anomalies than fertilemen.Routine semen analysis evaluates parameters such as sperm motility and morphology, but doesnot examine the nuclear DNA integrity of spermatozoa. It has been suggested that altered nuclearchromatin structure or damaged DNA in spermatozoa could modify the special cellular functionsof human spermatozoa, and thereby affect the fertility potential. Intra-cytoplasmic sperm injection(ICSI bypass the barriers to fertilization for such a sperm, then the effect of chromatin anomalies onthe development remains a concern. Therefore, it is essential to develop and use accurate diagnostictests, which may provide better prognostic capabilities than the standard sperm assessments. Thisreview discusses our current understanding of the structure and organization of sperm DNA,the different procedures for assessment of sperm chromatin anomalies including comet assay,Chromomycin A3 (CMA3, sperm chromatin structure assay (SCSA, acridine orange test (AOT,terminal TdT-mediated dUTP-nick-end labelling (TUNEL assay, aniline blue and sperm chromatindispersion (SCD test and the impact of chromatin anomalies on reproductive outcome.

  7. Dynamic aspects of spermiogenic chromatin condensation patterning by phase separation during the histone-to-protamine transition in charalean algae and relation to bryophytes.

    Science.gov (United States)

    Kasinsky, H E; Ellis, S; Martens, G; Ausió, J

    2014-12-01

    During early-to-middle spermiogenesis in multicellular, internally fertilizing charalean green algae (Chara fibrosa, Chara vulgaris, Chara tomentosa, Nitella missouriensis), patterning of chromatin/nucleoplasm in developing spermatid nuclei changes from granules → fibers → contorted lamellae → condensed chromatin. Cytochemical, immunocytochemical, electrophoretic studies on C. vulgaris and C. tomentosa spermatids (Kwiatkowska, Poplonska) and amino acid analysis of protamines in Chara corallina sperm (Reynolds, Wolfe), indicate that more positively charged protamines replace histones directly during spermiogenesis, not indirectly through other intermediate transitional proteins as in internally fertilizing neogastropods and sharks with more ordered spermatid lamellae. We hypothesize that such lamellar-mediated patterning is due to liquid-liquid phase separation by spinodal decomposition. This is a spontaneous thermodynamic process that involves diffusive instability of a lamellar chromatin network, a dominant pattern repeat distance and bicontinuity of chromatin/nucleoplasm phases. C. vulgaris sperm show contorted lamellae in the posterior region, whereas C. corallina sperm display contorted peripheral lamellae and interior fibrils. Among internally fertilizing liverworts, which may have evolved from Zygnematales, mid-spermatid nuclei lack lamellae. Instead they display self-coiled chromatin rods in Blasia pusilla, contain short chromatin tubules in Haplomitrium hookeri resembling those in internally fertilizing mosses and a hornwort and indirectly replace histones with protamines in Marchantia polymorpha.

  8. Quantification of chromatin condensation level by image processing.

    Science.gov (United States)

    Irianto, Jerome; Lee, David A; Knight, Martin M

    2014-03-01

    The level of chromatin condensation is related to the silencing/activation of chromosomal territories and therefore impacts on gene expression. Chromatin condensation changes during cell cycle, progression and differentiation, and is influenced by various physicochemical and epigenetic factors. This study describes a validated experimental technique to quantify chromatin condensation. A novel image processing procedure is developed using Sobel edge detection to quantify the level of chromatin condensation from nuclei images taken by confocal microscopy. The algorithm was developed in MATLAB and used to quantify different levels of chromatin condensation in chondrocyte nuclei achieved through alteration in osmotic pressure. The resulting chromatin condensation parameter (CCP) is in good agreement with independent multi-observer qualitative visual assessment. This image processing technique thereby provides a validated unbiased parameter for rapid and highly reproducible quantification of the level of chromatin condensation.

  9. ATP-Dependent Chromatin Remodeling Factors and Their Roles in Affecting Nucleosome Fiber Composition

    Directory of Open Access Journals (Sweden)

    Alexandra Lusser

    2011-10-01

    Full Text Available ATP-dependent chromatin remodeling factors of the SNF2 family are key components of the cellular machineries that shape and regulate chromatin structure and function. Members of this group of proteins have broad and heterogeneous functions ranging from controlling gene activity, facilitating DNA damage repair, promoting homologous recombination to maintaining genomic stability. Several chromatin remodeling factors are critical components of nucleosome assembly processes, and recent reports have identified specific functions of distinct chromatin remodeling factors in the assembly of variant histones into chromatin. In this review we will discuss the specific roles of ATP-dependent chromatin remodeling factors in determining nucleosome composition and, thus, chromatin fiber properties.

  10. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes.

    Science.gov (United States)

    Thijssen, Peter E; Tobi, Elmar W; Balog, Judit; Schouten, Suzanne G; Kremer, Dennis; El Bouazzaoui, Fatiha; Henneman, Peter; Putter, Hein; Eline Slagboom, P; Heijmans, Bastiaan T; van der Maarel, Silvère M

    2013-05-01

    Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence.

  11. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence

    Science.gov (United States)

    Thijssen, Peter E.; Tobi, Elmar W.; Balog, Judit; Schouten, Suzanne G.; Kremer, Dennis; El Bouazzaoui, Fatiha; Henneman, Peter; Putter, Hein; Eline Slagboom, P.; Heijmans, Bastiaan T.; Van der Maarel, Silvère M.

    2013-01-01

    Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence. PMID:23644601

  12. RevSex duplication-induced and sex-related differences in the SOX9 regulatory region chromatin landscape in human fibroblasts.

    Science.gov (United States)

    Lybæk, Helle; de Bruijn, Diederik; den Engelsman-van Dijk, Anke H A; Vanichkina, Darya; Nepal, Chirag; Brendehaug, Atle; Houge, Gunnar

    2014-03-01

    It was recently shown that duplications of the RevSex element, located 0.5 Mb upstream of SOX9, cause XX-disorder of sex development (DSD), and that deletions cause XY-DSD. To explore how a 148 kb RevSex duplication could have turned on gonadal SOX9 expression in the absence of SRY in an XX-male, we examined the chromatin landscape in primary skin fibroblast cultures from the index, his RevSex duplication-carrier father and six controls. The ENCODE project supports the notion that chromatin state maps show overlap between different cell types, i.e., that our study of fibroblasts could be of biological relevance. We examined the SOX9 regulatory region by high-resolution ChIP-on-chip experiments (a kind of "chromatin-CGH") and DNA methylation investigations. The RevSex duplication was associated with chromatin changes predicting better accessibility of the SRY-responsive TESCO enhancer region 14-15 kb upstream of SOX9. Four kb downstream of the TESCO evolutionary conserved region, a peak of the enhancer/promoter-associated H3K4me3 mark was found together with a major dip of the repressive H3K9me3 chromatin mark. Similar differences were also found when three control males were compared with three control females. A marked male/female difference was a more open chromatin signature in males starting ~400 kb upstream of SOX9 and increasing toward the SOX9 promoter. In the RevSex duplication-carrier father, two positions of DNA hypomethylation were also found, one corresponding to the H3K4me3 peak mentioned above. Our results suggest that the RevSex duplication could operate by inducing long-range epigenetic changes. Furthermore, the differences in chromatin state maps between males and females suggest that the Y chromosome or X chromosome dosage may affect chromatin conformation, i.e., that sex-dependent gene regulation may take place by chromatin modification.

  13. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  14. N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi

    Science.gov (United States)

    Su, Chang; Lu, Yang; Liu, Haoping

    2016-01-01

    N-acetylglucosamine (GlcNAc) exists ubiquitously as a component of the surface on a wide range of cells, from bacteria to humans. Many fungi are able to utilize environmental GlcNAc to support growth and induce cellular development, a property important for their survival in various host niches. However, how the GlcNAc signal is sensed and subsequently transduced is largely unknown. Here, we identify a gene that is essential for GlcNAc signalling (NGS1) in Candida albicans, a commensal and pathogenic yeast of humans. Ngs1 can bind GlcNAc through the N-terminal β-N-acetylglucosaminidase homology domain. This binding activates N-acetyltransferase activity in the C-terminal GCN5-related N-acetyltransferase domain, which is required for GlcNAc-induced promoter histone acetylation and transcription. Ngs1 is targeted to the promoters of GlcNAc-inducible genes constitutively by the transcription factor Rep1. Ngs1 is conserved in diverse fungi that have GlcNAc catabolic genes. Thus, fungi use Ngs1 as a GlcNAc-sensor and transducer for GlcNAc-induced transcription. PMID:27694804

  15. Interaction of sulfur mustard with rat liver salt fractionated chromatin.

    Science.gov (United States)

    Jafari, Mahvash; Nateghi, M; Rabbani, A

    2010-01-01

    In this study, the interaction of an alkylating agent, sulfur mustard (SM) with rat liver active (S1 and S2) and inactive (P2) chromatin was investigated employing UV/vis spectroscopy and gel electrophoreses. The results show that SM affects the chromatin structure in a dose-dependent manner. The binding of SM to fractions is different. At lower concentrations (<500 microM), SM seems to unfold the structure and at higher concentrations, it induces aggregation and condensation of chromatin possibly via forming cross-links between the chromatin components. The extent of condensation in S2 is higher when compared to the P2 fraction.

  16. Chromatin architecture and gene expression in Escherichia coli

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2004-01-01

    Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli.......Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli....

  17. Chromatin remodeling regulated by steroid and nuclear receptors

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Coactivators and corepressors regulate transcription by controlling interactions between sequence-specific transcription factors,the basal transcriptional machinery and the chromatin environment,This review consider the access of nuclear and steroid receptors to chromatin,their use of corepressors and coactivators to modify chromatin structure and the implications for transcriptional control.The assembly of specific nucleoprotein architectures and targeted histone modification emerge as central controlling elements for gene expression.

  18. Reprogramming the chromatin landscape

    DEFF Research Database (Denmark)

    Miranda, Tina B; Voss, Ty C; Sung, Myong-Hee;

    2013-01-01

    , mechanistic details defining the cellular interactions between ER and GR are poorly understood. We investigated genome-wide binding profiles for ER and GR upon coactivation and characterized the status of the chromatin landscape. We describe a novel mechanism dictating the molecular interplay between ER...... and GR. Upon induction, GR modulates access of ER to specific sites in the genome by reorganization of the chromatin configuration for these elements. Binding to these newly accessible sites occurs either by direct recognition of ER response elements or indirectly through interactions with other factors...

  19. Chromatin ring formation at plant centromeres

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2016-02-01

    Full Text Available We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.

  20. Chromatin remodeling and human disease.

    Science.gov (United States)

    Huang, Cheng; Sloan, Emily A; Boerkoel, Cornelius F

    2003-06-01

    In the past few years, there has been a nascent convergence of scientific understanding of inherited human diseases with epigenetics. Identified epigenetic processes involved in human disease include covalent DNA modifications, covalent histone modifications, and histone relocation. Each of these processes influences chromatin structure and thereby regulates gene expression and DNA methylation, replication, recombination, and repair. The importance of these processes for nearly all aspects of normal growth and development is illustrated by the array of multi-system disorders and neoplasias caused by their dysregulation.

  1. The great repression: chromatin and cryptic transcription.

    Science.gov (United States)

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  2. The dynamics of individual nucleosomes controls the chromatin condensation pathway: direct AFM visualization of variant chromatin

    CERN Document Server

    Montel, Fabien; Castelnovo, Martin; Bednar, Jan; Dimitrov, Stefan; Angelov, Dimitar; Faivre-Moskalenko, Cendrine

    2009-01-01

    Chromatin organization and dynamics is studied in this work at scales ranging from single nucleosome to nucleosomal array by using a unique combination of biochemical assays, single molecule imaging technique and numerical modeling. We demonstrate that a subtle modification in the nucleosome structure induced by the histone variant H2A.Bbd drastically modifies the higher order organization of the nucleosomal arrays. Importantly, as directly visualized by AFM, conventional H2A nucleosomal arrays exhibit specific local organization, in contrast to H2A.Bbd arrays, which show ?beads on a string? structure. The combination of systematic image analysis and theoretical modeling allows a quantitative description relating the observed gross structural changes of the arrays to their local organization. Our results strongly suggest that higher-order organization of H1-free nucleosomal arrays is mainly determined by the fluctuation properties of individual nucleosomes. Moreover, numerical simulations suggest the existenc...

  3. Inverstigation of chromatin folding patterns by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANGYi; OUYANGZhenqian; 等

    1999-01-01

    The chromatin folding patterns in air and liquid were studied by atomic force microscopy(AFM),A gentle water-air interface method was adopted to spread chromatin from interphase nucleus of chicken erythrocyte.The chromatin was absorbed on APS-mica surface and studied with AFM,Beads-on a-string were observed and many higher-order structrues such as superbeads with dimensions 40-60nm in diameter and 4-7nm in height were found to string together to make chromation fibers.When sample spreading and absorbing time were shortened.higher-order chromatin fibers with 60-120nm in width were observed in air as well as under water environment.These chromatin structures may reflect chromatin folding patterns in the living cells.

  4. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...... framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures...... reassembly on nascent DNA strands. The aim of this review is to discuss how histones - new and old - are handled at the replication fork, highlighting new mechanistic insights and revisiting old paradigms....

  5. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  6. Chromatin dynamics in plants

    NARCIS (Netherlands)

    Fransz, P.F.; Jong, de J.H.

    2002-01-01

    Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large netwo

  7. Chromatin associations in Arabidopsis interphase nuclei

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2014-11-01

    Full Text Available The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analysed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fibre movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns.Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its ten centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.

  8. Predicting chromatin architecture from models of polymer physics.

    Science.gov (United States)

    Bianco, Simona; Chiariello, Andrea M; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario

    2017-01-09

    We review the picture of chromatin large-scale 3D organization emerging from the analysis of Hi-C data and polymer modeling. In higher mammals, Hi-C contact maps reveal a complex higher-order organization, extending from the sub-Mb to chromosomal scales, hierarchically folded in a structure of domains-within-domains (metaTADs). The domain folding hierarchy is partially conserved throughout differentiation, and deeply correlated to epigenomic features. Rearrangements in the metaTAD topology relate to gene expression modifications: in particular, in neuronal differentiation models, topologically associated domains (TADs) tend to have coherent expression changes within architecturally conserved metaTAD niches. To identify the nature of architectural domains and their molecular determinants within a principled approach, we discuss models based on polymer physics. We show that basic concepts of interacting polymer physics explain chromatin spatial organization across chromosomal scales and cell types. The 3D structure of genomic loci can be derived with high accuracy and its molecular determinants identified by crossing information with epigenomic databases. In particular, we illustrate the case of the Sox9 locus, linked to human congenital disorders. The model in-silico predictions on the effects of genomic rearrangements are confirmed by available 5C data. That can help establishing new diagnostic tools for diseases linked to chromatin mis-folding, such as congenital disorders and cancer.

  9. A study of the interaction between ethidium bromide and rye chromatin: comparison with calf thymus chromatin.

    Science.gov (United States)

    LaRue, H; Pallotta, D

    1976-09-01

    We studied the interaction of ethidium bromide with rye and calf thymus chromatin. Both types of chromatin have the same dye accessibility, which is about 50% of that of DNA. From this result we conclude that the molecular structure of these two chromatins is similar. For rye, the extraction of H1 produces no change in the binding of ethidium bromide. The subsequent extraction of H2A and H2B produces a 14% increase in the binding, and the removal of H3 and H4, another 54% increase. At this stage, the number of binding sites is still less than that of DNA. This is presumably due to the presence of some tightly bound non-histones. Thus, the arginine-rich histones and the tightly bound non-histones are most responsible for limiting the binding of ethidium bromide to rye chromatin.

  10. Global chromatin fibre compaction in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Charlotte [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Hayward, Richard L. [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Gilbert, Nick, E-mail: Nick.Gilbert@ed.ac.uk [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. Black-Right-Pointing-Pointer DNA repair foci are found in soluble chromatin. Black-Right-Pointing-Pointer Biophysical analysis reveals global chromatin fibre compaction after DNA damage. Black-Right-Pointing-Pointer DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation ({gamma}H2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and {gamma}H2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by

  11. NET23/STING promotes chromatin compaction from the nuclear envelope.

    Directory of Open Access Journals (Sweden)

    Poonam Malik

    Full Text Available Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173, strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture.

  12. CHD chromatin remodelers and the transcription cycle.

    Science.gov (United States)

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  13. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae.

    Science.gov (United States)

    Czaja, Wioletta; Mao, Peng; Smerdon, Michael J

    2014-04-01

    The base excision repair (BER) pathway is a conserved DNA repair system required to maintain genomic integrity and prevent mutagenesis in all eukaryotic cells. Nevertheless, how BER operates in vivo (i.e. in the context of chromatin) is poorly understood. We have investigated the role of an essential ATP-dependent chromatin remodelling (ACR) complex RSC (Remodels the Structure of Chromatin) in BER of intact yeast cells. We show that depletion of STH1, the ATPase subunit of RSC, causes enhanced sensitivity to the DNA alkylating agent methyl methanesulfonate (MMS) and results in a substantial inhibition of BER, at the GAL1 locus and in the genome overall. Consistent with this observation, the DNA in chromatin is less accessible to micrococcal nuclease digestion in the absence of RSC. Quantitative PCR results indicate that repair deficiency in STH1 depleted cells is not due to changes in the expression of BER genes. Collectively, our data indicates the RSC complex promotes efficient BER in chromatin. These results provide, for the first time, a link between ATP-dependent chromatin remodelling and BER in living cells.

  14. Human sperm chromatin stabilization: a proposed model including zinc bridges.

    Science.gov (United States)

    Björndahl, Lars; Kvist, Ulrik

    2010-01-01

    The primary focus of this review is to challenge the current concepts on sperm chromatin stability. The observations (i) that zinc depletion at ejaculation allows a rapid and total sperm chromatin decondensation without the addition of exogenous disulfide cleaving agents and (ii) that the human sperm chromatin contains one zinc for every protamine for every turn of the DNA helix suggest an alternative model for sperm chromatin structure may be plausible. An alternative model is therefore proposed, that the human spermatozoon could at ejaculation have a rapidly reversible zinc dependent chromatin stability: Zn(2+) stabilizes the structure and prevents the formation of excess disulfide bridges by a single mechanism, the formation of zinc bridges with protamine thiols of cysteine and potentially imidazole groups of histidine. Extraction of zinc enables two biologically totally different outcomes: immediate decondensation if chromatin fibers are concomitantly induced to repel (e.g. by phosphorylation in the ooplasm); otherwise freed thiols become committed into disulfide bridges creating a superstabilized chromatin. Spermatozoa in the zinc rich prostatic fluid (normally the first expelled ejaculate fraction) represent the physiological situation. Extraction of chromatin zinc can be accomplished by the seminal vesicular fluid. Collection of the ejaculate in one single container causes abnormal contact between spermatozoa and seminal vesicular fluid affecting the sperm chromatin stability. There are men in infertile couples with low content of sperm chromatin zinc due to loss of zinc during ejaculation and liquefaction. Tests for sperm DNA integrity may give false negative results due to decreased access for the assay to the DNA in superstabilized chromatin.

  15. Impact de l'organisation du noyau et de la structure de la chromatine sur la réparation de l'ADN et la stabilité du génome

    OpenAIRE

    Batté, Amandine

    2016-01-01

    The non-random organization of the eukaryotic cell nucleus and the folding of genome in chromatin more or less condensed can influence many functions related to DNA metabolism, including genome stability. Double-strand breaks (DSBs) are the most deleterious DNA damages for the cells. To preserve genome integrity, eukaryotic cells thus developed DSB repair mechanisms conserved from yeast to human, among which homologous recombination (HR) that uses an intact homologous sequence to repair a bro...

  16. Balancing chromatin remodeling and histone modifications in transcription.

    Science.gov (United States)

    Petty, Emily; Pillus, Lorraine

    2013-11-01

    Chromatin remodelers use the energy of ATP hydrolysis to reposition or evict nucleosomes or to replace canonical histones with histone variants. By regulating nucleosome dynamics, remodelers gate access to the underlying DNA for replication, repair, and transcription. Nucleosomes are subject to extensive post-translational modifications that can recruit regulatory proteins or alter the local chromatin structure. Just as extensive crosstalk has been observed between different histone post-translational modifications, there is growing evidence for both coordinated and antagonistic functional relations between nucleosome remodeling and modifying machineries. Defining the combined functions of the complexes that alter nucleosome interactions, position, and stability is key to understanding processes that require access to DNA, particularly with growing appreciation of their contributions to human health and disease. Here, we highlight recent advances in the interactions between histone modifications and the imitation-switch (ISWI) and chromodomain helicase DNA-binding protein 1 (CHD1) chromatin remodelers from studies in budding yeast, fission yeast, flies, and mammalian cells, with a focus on yeast.

  17. Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin

    Science.gov (United States)

    Yu, Shirong; Evans, Katie; Bennett, Mark; Webster, Richard M.; Leadbitter, Matthew; Teng, Yumin; Waters, Raymond

    2016-01-01

    The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome–NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome. PMID:27470111

  18. The linkage of chromatin remodeling to genome maintenance: contribution from a human disease gene BRIT1/MCPH1

    OpenAIRE

    Peng, Guang; Lin, Shiaw-Yih

    2009-01-01

    Genomic DNA is packed into a highly condensed chromatin structure, which acts as natural barrier preventing accessibility of DNA. In various processes to maintain genomic integrity such as DNA replication, DNA repair, telomere regulation, proteins need to overcome the barrier of condensed chromatin to gain access to DNA. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin. However, the chromatin remodeling complex does not contain intrinsic...

  19. Carbon Nanotubes and Related Structures

    Directory of Open Access Journals (Sweden)

    Kingsuk Mukhopadhyay

    2008-07-01

    Full Text Available Carbon nanotubes have attracted the fancy of many scientists world wide. The small dimensions,strength, and the remarkable physical properties of these structures make them a unique material with a whole range of promising applications. In this review, the structural aspects, the advantages and disadvantages of different for their procedures synthesis, the qualitative and quantitative estimation of carbon nanotubes by different analytical techniques, the present status on their applications as well as the current challenges faced in the application field, national, in particular DRDO, DMSRDE status, and interest in this field, have been discussed.Defence Science Journal, 2008, 58(4, pp.437-450, DOI:http://dx.doi.org/10.14429/dsj.58.1666

  20. Fractal Characterization of Chromatin Decompaction in Live Cells.

    Science.gov (United States)

    Yi, Ji; Stypula-Cyrus, Yolanda; Blaha, Catherine S; Roy, Hemant K; Backman, Vadim

    2015-12-01

    Chromatin organization has a fundamental impact on the whole spectrum of genomic functions. Quantitative characterization of the chromatin structure, particularly at submicron length scales where chromatin fractal globules are formed, is critical to understanding this structure-function relationship. Such analysis is currently challenging due to the diffraction-limited resolution of conventional light microscopy. We herein present an optical approach termed inverse spectroscopic optical coherence tomography to characterize the mass density fractality of chromatin, and we apply the technique to observe chromatin decompaction in live cells. The technique makes it possible for the first time, to our knowledge, to sense intracellular morphology with length-scale sensitivity from ∼30 to 450 nm, thus primarily probing the higher-order chromatin structure, without resolving the actual structures. We used chromatin decompaction due to inhibition of histone deacytelases and measured the subsequent changes in the fractal dimension of the intracellular structure. The results were confirmed by transmission electron microscopy and confocal fluorescence microscopy.

  1. Expression of p21WAF1 is related to acetylation of histone H3 in total chromatin in human colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Ying-Xuan Chen; Jing-Yuan Fang; Rong Lu; De-Kai Qiu

    2007-01-01

    AIM: To explore the relationship between acetylation of histone in total chromatin and p21WAF1 expression regulation in human colorectal carcinoma.METHODS: We analyzed the expression of tumor suppressor gene p21WAF1 mRNA by RT-PCR or realtime PCR in 33 samples of colorectal cancerous tissue,corresponding para-cancerous tissue and normal colorectal mucosa, and also examined the level of acetylated histone H3 in total chromatin using Western blotting.RESULTS: The expression level of p21WAF1 mRNA was significantly lower in colorectal cancerous tissue from 33 patients than in para-cancerous tissue and normal colorectal mucosa (2377.95 ± 865.80 vs 3216.58 ±1149.42 and 3541.61 ± 1433.17 respectively, P <0.01). In addition, when p21WAF1 mRNA expression was undectectable or at very low level (50% less than that in adjacent tissue and normal colorectal mucosa) in all tissues, the level of acetylated histone H3 in colorectal cancerous tissue was significantly lower than that in corresponding para-cancerous tissue and normal colorectal mucosa in five of seven (71.43%) cases. The transcriptional level of p21WAF1 in colorectal carcinoma might not be associated with its biological behaviors.CONCLUSION: The down-regulation of p21WAF1 transcription is involved in the tumorigenesis and development of colorectal carcinoma. The down-expression of p21WAF1 mRNA in colorectal carcinoma might be associated with histone hypoacetylation in chromatin but not with biological behaviors.

  2. Hybrid Tourism-Related Structures

    DEFF Research Database (Denmark)

    Pasgaard, Jens Christian

    2014-01-01

    This article is rooted in theories presented in the PhD dissertation Tourism and Strategic Planning (Pasgaard 2012) and features a number of much discussed concepts related to the complicated phenomenon of tourism and to the discipline of strategic urban planning. It is beyond the scope of this a...

  3. A symmetry-related sequence-structure relation of proteins

    Institute of Scientific and Technical Information of China (English)

    XU Ruizhen; LI Mingfen; CHEN Hanlin; HUANG Yanzhao; XIAO Yi

    2005-01-01

    Proteins have regular tertiary structures but irregular amino acid sequences. This made it very difficult to decode the structural information in the protein sequences. Here we demonstrate that many small αprotein domains have hidden sequence symmetries characteristic of their pseudo-symmetric tertiary structures. We also present a modified method of recurrent plot to reveal this kind of the hidden sequence symmetry. The results may enable us to understand part of the relations between protein sequences and their tertiary structures.

  4. Histone variants: key players of chromatin.

    Science.gov (United States)

    Biterge, Burcu; Schneider, Robert

    2014-06-01

    Histones are fundamental structural components of chromatin. Eukaryotic DNA is wound around an octamer of the core histones H2A, H2B, H3, and H4. Binding of linker histone H1 promotes higher order chromatin organization. In addition to their structural role, histones impact chromatin function and dynamics by, e.g., post-translational histone modifications or the presence of specific histone variants. Histone variants exhibit differential expression timings (DNA replication-independent) and mRNA characteristics compared to canonical histones. Replacement of canonical histones with histone variants can affect nucleosome stability and help to create functionally distinct chromatin domains. In line with this, several histone variants have been implicated in the regulation of cellular processes such as DNA repair and transcriptional activity. In this review, we focus on recent progress in the study of core histone variants H2A.X, H2A.Z, macroH2A, H3.3, and CENP-A, as well as linker histone H1 variants, their functions and their links to development and disease.

  5. Cas9 Functionally Opens Chromatin.

    Directory of Open Access Journals (Sweden)

    Amira A Barkal

    Full Text Available Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding.

  6. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    Science.gov (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  7. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation......Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  8. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging.

    Science.gov (United States)

    Tatavosian, Roubina; Zhen, Chao Yu; Duc, Huy Nguyen; Balas, Maggie M; Johnson, Aaron M; Ren, Xiaojun

    2015-11-20

    Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.

  9. Role of ND10 nuclear bodies in the chromatin repression of HSV-1.

    Science.gov (United States)

    Gu, Haidong; Zheng, Yi

    2016-04-05

    Herpes simplex virus (HSV) is a neurotropic virus that establishes lifelong latent infection in human ganglion sensory neurons. This unique life cycle necessitates an intimate relation between the host defenses and virus counteractions over the long course of infection. Two important aspects of host anti-viral defense, nuclear substructure restriction and epigenetic chromatin regulation, have been intensively studied in the recent years. Upon viral DNA entering the nucleus, components of discrete nuclear bodies termed nuclear domain 10 (ND10), converge at viral DNA and place restrictions on viral gene expression. Meanwhile the infected cell mobilizes its histones and histone-associated repressors to force the viral DNA into nucleosome-like structures and also represses viral transcription. Both anti-viral strategies are negated by various HSV countermeasures. One HSV gene transactivator, infected cell protein 0 (ICP0), is a key player in antagonizing both the ND10 restriction and chromatin repression. On one hand, ICP0 uses its E3 ubiquitin ligase activity to target major ND10 components for proteasome-dependent degradation and thereafter disrupts the ND10 nuclear bodies. On the other hand, ICP0 participates in de-repressing the HSV chromatin by changing histone composition or modification and therefore activates viral transcription. Involvement of a single viral protein in two seemingly different pathways suggests that there is coordination in host anti-viral defense mechanisms and also cooperation in viral counteraction strategies. In this review, we summarize recent advances in understanding the role of chromatin regulation and ND10 dynamics in both lytic and latent HSV infection. We focus on the new observations showing that ND10 nuclear bodies play a critical role in cellular chromatin regulation. We intend to find the connections between the two major anti-viral defense pathways, chromatin remodeling and ND10 structure, in order to achieve a better

  10. Chromatin Flavors: Chromatin composition and domain organization in Drosophila melanogaster

    NARCIS (Netherlands)

    J.G. van Bemmel (Joke)

    2012-01-01

    textabstractChromatin was originally identified by W. Flemming in 1882 as not much more than the stainable substance of the cell nucleus. Flemming named this substance according to the Greek word “chroma”, meaning color. In 1911 chromatin was characterized as proteins, named histones, that were atta

  11. FACT facilitates chromatin transcription by RNA polymerases I and III

    DEFF Research Database (Denmark)

    Birch, Joanna L; Tan, Bertrand C-M; Panov, Kostya I

    2009-01-01

    Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle. ...

  12. Influence of chromatin structure, antibiotics, and endogenous histone methylation on phosphorylation of histones H1 and H3 in the presence of protein kinase A in rat liver nuclei in vitro.

    Science.gov (United States)

    Prusov, A N; Smirnova, T A; Kolomijtseva, G Ya

    2013-02-01

    In vitro phosphorylation of histones H1 and H3 by cAMP-dependent protein kinase A and endogenous phosphokinases in the presence of [γ-³²P]ATP was studied in isolated rat liver nuclei with different variants of chromatin structural organization: condensed (diameter of fibrils 100-200 nm; N-1) and partly decondensed (diameter of fibrils ~30 nm; N-2). In the N-1 state histone, H1 is phosphorylated approximately twice as much than histone H3. Upon the decondensation of the chromatin in the N-2 state, 1.5-fold decrease of total phosphorylation of H1 is observed, while that of H3 does not change, although the endogenous phosphorylation of both histones is reduced by half. Changes in histone phosphorylation in the presence of low or high concentrations of distamycin and chromomycin differ for H1 and H3 in N-1 and N-2. It was found that distamycin (DM) stimulates the phosphorylation of tightly bound H1 fraction, which is not extractable by polyglutamic acid (PG), especially in N-1. Chromomycin (CM) increases the phosphorylation of both histones in PG extracts and in the nuclear pellets, particularly in N-2. At the same time, in N-1 one can detect phosphorylation of a tightly bound fraction of histones H1 whose N-termini are located on AT-rich sites that become inaccessible for protein kinase in the process of chromatin decondensation in N-2. At the same time, in N-2 the accessibility for protein kinase A of tightly bound H1 fractions, whose N-termini are located on GC-rich sites, increases dramatically. High concentrations of both CM and DM in N-1 and N-2 stimulated phosphorylation of the non-extractable by PG fraction of H1 whose N-termini are located on sites where AT ≈ GC. CM at high concentration stimulated 4-7 times the phosphorylation of a small fraction of H3, which is extracted by PG from both types of nuclei. We detected an effect of endogenous methylation of histones H1 and H3 in the nuclei on their subsequent phosphorylation depending on the chromatin

  13. The Emerging Roles of ATP-Dependent Chromatin Remodeling Enzymes in Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Wioletta Czaja

    2012-09-01

    Full Text Available DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo.

  14. Epigenetics & chromatin: Interactions and processes

    NARCIS (Netherlands)

    S. Henikoff (Steven); F.G. Grosveld (Frank)

    2013-01-01

    textabstractOn 11 to 13 March 2013, BioMed Central will be hosting its inaugural conference, Epigenetics & Chromatin: Interactions and Processes, at Harvard Medical School, Cambridge, MA, USA. Epigenetics & Chromatin has now launched a special article series based on the general themes of the confer

  15. Genome-Wide Association between Transcription Factor Expression and Chromatin Accessibility Reveals Regulators of Chromatin Accessibility

    Science.gov (United States)

    Rueedi, Rico

    2017-01-01

    To better understand genome regulation, it is important to uncover the role of transcription factors in the process of chromatin structure establishment and maintenance. Here we present a data-driven approach to systematically characterise transcription factors that are relevant for this process. Our method uses a linear mixed modelling approach to combine datasets of transcription factor binding motif enrichments in open chromatin and gene expression across the same set of cell lines. Applying this approach to the ENCODE dataset, we confirm already known and imply numerous novel transcription factors that play a role in the establishment or maintenance of open chromatin. In particular, our approach rediscovers many factors that have been annotated as pioneer factors. PMID:28118358

  16. Nucleosome positioning and composition modulate in silico chromatin flexibility.

    Science.gov (United States)

    Clauvelin, N; Lo, P; Kulaeva, O I; Nizovtseva, E V; Diaz-Montes, J; Zola, J; Parashar, M; Studitsky, V M; Olson, W K

    2015-02-18

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and

  17. R-loop: an emerging regulator of chromatin dynamics

    Institute of Scientific and Technical Information of China (English)

    Qais Al-Hadid; Yanzhong Yang

    2016-01-01

    The dynamic structure of chromatin,which exists in two conformational states:heterochromatin and euchromatin,alters the accessibility of the DNA to regulatory factors during transcription,replication,recombination,and DNA damage repair.Chemical modifications of histones and DNA,as well as adenosine triphospahate-dependent nucleosome remodeling,have been the major focus of research on chromatin dynamics over the past two decades.However,recent studies using a DNA-RNA hybrid-specific antibody and next-generation seque,ncing approaches have revealed that the formation of R-loops,one of the most common non-canonical DNA structures,is an emerging regulator of chromatin states.This review focuses on recent insights into the interplay between R-loop formation and the epigenetic modifications of chromatin in normal and disease states.

  18. PREDICTION OF CHROMATIN STATES USING DNA SEQUENCE PROPERTIES

    KAUST Repository

    Bahabri, Rihab R.

    2013-06-01

    Activities of DNA are to a great extent controlled epigenetically through the internal struc- ture of chromatin. This structure is dynamic and is influenced by different modifications of histone proteins. Various combinations of epigenetic modification of histones pinpoint to different functional regions of the DNA determining the so-called chromatin states. How- ever, the characterization of chromatin states by the DNA sequence properties remains largely unknown. In this study we aim to explore whether DNA sequence patterns in the human genome can characterize different chromatin states. Using DNA sequence motifs we built binary classifiers for each chromatic state to eval- uate whether a given genomic sequence is a good candidate for belonging to a particular chromatin state. Of four classification algorithms (C4.5, Naive Bayes, Random Forest, and SVM) used for this purpose, the decision tree based classifiers (C4.5 and Random Forest) yielded best results among those we evaluated. Our results suggest that in general these models lack sufficient predictive power, although for four chromatin states (insulators, het- erochromatin, and two types of copy number variation) we found that presence of certain motifs in DNA sequences does imply an increased probability that such a sequence is one of these chromatin states.

  19. Chromatinization of the KSHV Genome During the KSHV Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Uppal, Timsy [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Jha, Hem C. [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States); Verma, Subhash C. [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Robertson, Erle S., E-mail: erle@mail.med.upenn.edu [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)

    2015-01-14

    Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.

  20. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    2008-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on t

  1. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information.

    Science.gov (United States)

    Corpet, Armelle; Almouzni, Geneviève

    2009-01-01

    Understanding the basic mechanisms underlying chromatin dynamics during DNA replication in eukaryotic cells is of fundamental importance. Beyond DNA compaction, chromatin organization represents a means to regulate genome function. Thus, the inheritance and maintenance of the DNA sequence, along with its organization into chromatin, is central for eukaryotic life. To orchestrate DNA replication in the context of chromatin is a challenge, both in terms of accessibility to the compact structures and maintenance of chromatin organization. To meet the challenge of maintenance, cells have evolved efficient nucleosome dynamics involving assembly pathways and chromatin maturation mechanisms that restore chromatin organization in the wake of DNA replication. In this review, we describe our current knowledge concerning how these pathways operate at the nucleosomal level and highlight the key players, such as histone chaperones, chromatin remodelers or modifiers, involved in the process of chromatin duplication. Major advances have been made recently concerning de novo nucleosome assembly and our understanding of its coordination with recycling of parental histones is progressing. Insights into the transmission of chromatin-based information during replication have important implications in the field of epigenetics to fully comprehend how the epigenetic landscape might, or at times might not, be stably maintained in the face of dramatic changes in chromatin structure.

  2. Chromatin modifications and the DNA damage response to ionizing radiation

    Science.gov (United States)

    Kumar, Rakesh; Horikoshi, Nobuo; Singh, Mayank; Gupta, Arun; Misra, Hari S.; Albuquerque, Kevin; Hunt, Clayton R.; Pandita, Tej K.

    2013-01-01

    In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response. PMID:23346550

  3. Vernalization-mediated chromatin changes.

    Science.gov (United States)

    Zografos, Brett R; Sung, Sibum

    2012-07-01

    Proper flowering time is vital for reproductive fitness in flowering plants. In Arabidopsis, vernalization is mediated primarily through the repression of a MADS box transcription factor, FLOWERING LOCUS C (FLC). The induction of a plant homeodomain-containing protein, VERNALIZATION INSENSITIVE 3 (VIN3), by vernalizing cold is required for proper repression of FLC. One of a myriad of changes that occurs after VIN3 is induced is the establishment of FLC chromatin at a mitotically repressed state due to the enrichment of repressive histone modifications. VIN3 induction by cold is the earliest known event during the vernalization response and includes changes in histone modifications at its chromatin. Here, the current understanding of the vernalization-mediated chromatin changes in Arabidopsis is discussed, with a focus on the roles of shared chromatin-modifying machineries in regulating VIN3 and FLC gene family expression during the course of vernalization.

  4. Decoding chromatin goes high tech.

    Science.gov (United States)

    Levy, Dan; Gozani, Or

    2010-09-17

    Identifying proteins that recognize histone methylation is critical for understanding chromatin function. Vermeulen et al. (2010) now describe a cutting-edge strategy to identify and characterize several nuclear proteins and complexes that recognize five major histone trimethyl marks.

  5. Exploring the conformational space of chromatin fibers and their stability by numerical dynamic phase diagrams.

    Science.gov (United States)

    Stehr, René; Schöpflin, Robert; Ettig, Ramona; Kepper, Nick; Rippe, Karsten; Wedemann, Gero

    2010-03-17

    The three-dimensional structure of chromatin affects DNA accessibility and is therefore a key regulator of gene expression. However, the path of the DNA between consecutive nucleosomes, and the resulting chromatin fiber organization remain controversial. The conformational space available for the folding of the nucleosome chain has been analytically described by phase diagrams with a two-angle model, which describes the chain trajectory by a DNA entry-exit angle at the nucleosome and a torsion angle between consecutive nucleosomes. Here, a novel type of numerical phase diagrams is introduced that relates the geometric phase space to the energy associated with a given chromatin conformation. The resulting phase diagrams revealed differences in the energy landscape that reflect the probability of a given conformation to form in thermal equilibrium. Furthermore, we investigated the effects of entropy and additional degrees of freedom in the dynamic phase diagrams by performing Monte Carlo simulations of the initial chain trajectories. Using our approach, we were able to demonstrate that conformations that initially were geometrically impossible could evolve into energetically favorable states in thermal equilibrium due to DNA bending and torsion. In addition, dynamic phase diagrams were applied to identify chromatin fibers that reflect certain experimentally determined features.

  6. VIPERdb: a relational database for structural virology.

    Science.gov (United States)

    Shepherd, Craig M; Borelli, Ian A; Lander, Gabriel; Natarajan, Padmaja; Siddavanahalli, Vinay; Bajaj, Chandrajit; Johnson, John E; Brooks, Charles L; Reddy, Vijay S

    2006-01-01

    VIPERdb (http://viperdb.scripps.edu) is a database for icosahedral virus capsid structures. Our aim is to provide a comprehensive resource specific to the needs of the structural virology community, with an emphasis on the description and comparison of derived data from structural and energetic analyses of capsids. A relational database implementation based on a schema for macromolecular structure makes the data highly accessible to the user, allowing detailed queries at the atomic level. Together with curation practices that maintain data uniformity, this will facilitate structural bioinformatics studies of virus capsids. User friendly search, visualization and educational tools on the website allow both structural and derived data to be examined easily and extensively. Links to relevant literature, sequence and taxonomy databases are provided for each entry.

  7. Microplate-based platform for combined chromatin and DNA methylation immunoprecipitation assays

    Directory of Open Access Journals (Sweden)

    Yu Jingjing

    2011-11-01

    Full Text Available Abstract Background The processes that compose expression of a given gene are far more complex than previously thought presenting unprecedented conceptual and mechanistic challenges that require development of new tools. Chromatin structure, which is regulated by DNA methylation and histone modification, is at the center of gene regulation. Immunoprecipitations of chromatin (ChIP and methylated DNA (MeDIP represent a major achievement in this area that allow researchers to probe chromatin modifications as well as specific protein-DNA interactions in vivo and to estimate the density of proteins at specific sites genome-wide. Although a critical component of chromatin structure, DNA methylation has often been studied independently of other chromatin events and transcription. Results To allow simultaneous measurements of DNA methylation with other genomic processes, we developed and validated a simple and easy-to-use high throughput microplate-based platform for analysis of DNA methylation. Compared to the traditional beads-based MeDIP the microplate MeDIP was more sensitive and had lower non-specific binding. We integrated the MeDIP method with a microplate ChIP assay which allows measurements of both DNA methylation and histone marks at the same time, Matrix ChIP-MeDIP platform. We illustrated several applications of this platform to relate DNA methylation, with chromatin and transcription events at selected genes in cultured cells, human cancer and in a model of diabetic kidney disease. Conclusion The high throughput capacity of Matrix ChIP-MeDIP to profile tens and potentially hundreds of different genomic events at the same time as DNA methylation represents a powerful platform to explore complex genomic mechanism at selected genes in cultured cells and in whole tissues. In this regard, Matrix ChIP-MeDIP should be useful to complement genome-wide studies where the rich chromatin and transcription database resources provide fruitful foundation

  8. Spreading chromatin into chemical biology.

    Science.gov (United States)

    Allis, C David; Muir, Tom W

    2011-01-24

    Epigenetics, broadly defined as the inheritance of non-Mendelian phenotypic traits, can be more narrowly defined as heritable alterations in states of gene expression ("on" versus "off") that are not linked to changes in DNA sequence. Moreover, these alterations can persist in the absence of the signals that initiate them, thus suggesting some kind of "memory" to epigenetic forms of regulation. How, for example, during early female mammalian development, is one X chromosome selected to be kept in an active state, while the genetically identical sister X chromosome is "marked" to be inactive, even though they reside in the same nucleus, exposed to the same collection of shared trans-factors? Once X inactivation occurs, how are these contrasting chromatin states maintained and inherited faithfully through subsequent cell divisions? Chromatin states, whether active (euchromatic) or silent (heterochromatic) are established, maintained, and propagated with remarkable precision during normal development and differentiation. However, mistakes made in establishing and maintaining these chromatin states, often executed by a variety of chromatin-remodeling activities, can lead to mis-expression or mis-silencing of critical downstream gene targets with far-reaching implications for human biology and disease, notably cancer. Though chromatin biologists have identified many of the "inputs" that are important for controlling chromatin states, the detailed mechanisms by which these processes work remain largely opaque, in part due to the staggering complexity of the chromatin polymer, the physiologically relevant form of our genome. The primary objective of this article is to serve as a "call to arms" for chemists to contribute to the development of the precision tools needed to answer pressing molecular problems in this rapidly moving field.

  9. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation

    DEFF Research Database (Denmark)

    Düring, Louis; Thorsen, Michael; Petersen, Darima;

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6¿¿ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin....... Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309¿, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing....

  10. Chromatin as active matter

    Science.gov (United States)

    Agrawal, Ankit; Ganai, Nirmalendu; Sengupta, Surajit; Menon, Gautam I.

    2017-01-01

    Active matter models describe a number of biophysical phenomena at the cell and tissue scale. Such models explore the macroscopic consequences of driving specific soft condensed matter systems of biological relevance out of equilibrium through ‘active’ processes. Here, we describe how active matter models can be used to study the large-scale properties of chromosomes contained within the nuclei of human cells in interphase. We show that polymer models for chromosomes that incorporate inhomogeneous activity reproduce many general, yet little understood, features of large-scale nuclear architecture. These include: (i) the spatial separation of gene-rich, low-density euchromatin, predominantly found towards the centre of the nucleus, vis a vis. gene-poor, denser heterochromatin, typically enriched in proximity to the nuclear periphery, (ii) the differential positioning of individual gene-rich and gene-poor chromosomes, (iii) the formation of chromosome territories, as well as (iv), the weak size-dependence of the positions of individual chromosome centres-of-mass relative to the nuclear centre that is seen in some cell types. Such structuring is induced purely by the combination of activity and confinement and is absent in thermal equilibrium. We systematically explore active matter models for chromosomes, discussing how our model can be generalized to study variations in chromosome positioning across different cell types. The approach and model we outline here represent a preliminary attempt towards a quantitative, first-principles description of the large-scale architecture of the cell nucleus.

  11. Ectopically tethered CP190 induces large-scale chromatin decondensation

    Science.gov (United States)

    Ahanger, Sajad H.; Günther, Katharina; Weth, Oliver; Bartkuhn, Marek; Bhonde, Ramesh R.; Shouche, Yogesh S.; Renkawitz, Rainer

    2014-01-01

    Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF.

  12. Chromatin analysis of occluded genes

    Science.gov (United States)

    Lee, Jae Hyun; Gaetz, Jedidiah; Bugarija, Branimir; Fernandes, Croydon J.; Snyder, Gregory E.; Bush, Eliot C.; Lahn, Bruce T.

    2009-01-01

    We recently described two opposing states of transcriptional competency. One is termed ‘competent’ whereby a gene is capable of responding to trans-acting transcription factors of the cell, such that it is active if appropriate transcriptional activators are present, though it can also be silent if activators are absent or repressors are present. The other is termed ‘occluded’ whereby a gene is silenced by cis-acting, chromatin-based mechanisms in a manner that blocks it from responding to trans-acting factors, such that it is silent even when activators are present in the cellular milieu. We proposed that gene occlusion is a mechanism by which differentiated cells stably maintain their phenotypic identities. Here, we describe chromatin analysis of occluded genes. We found that DNA methylation plays a causal role in maintaining occlusion for a subset of occluded genes. We further examined a variety of other chromatin marks typically associated with transcriptional silencing, including histone variants, covalent histone modifications and chromatin-associated proteins. Surprisingly, we found that although many of these marks are robustly linked to silent genes (which include both occluded genes and genes that are competent but silent), none is linked specifically to occluded genes. Although the observation does not rule out a possible causal role of these chromatin marks in occlusion, it does suggest that these marks might be secondary effect rather than primary cause of the silent state in many genes. PMID:19380460

  13. The telomere binding protein TRF2 induces chromatin compaction.

    Directory of Open Access Journals (Sweden)

    Asmaa M Baker

    Full Text Available Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures.

  14. Structuring medication related activities for information management.

    Science.gov (United States)

    Luukkonen, Irmeli; Mykkänen, Juha; Kivekäs, Eija; Saranto, Kaija

    2014-01-01

    Medication treatment and the related information management are central parts of a patient's health care. As a cross-organizational and cooperative process, medication information management is a complex domain for development activities. We studied medication activities and related information management in a regional project in order to produce a shared broad picture of its processes and to understand the main issues and the needs for improvement. In this paper we provide a summary of the findings in a structured form, based on a six-dimensioned framework for design and analysis of activities and processes.

  15. Changes in DNA Methylation and Chromatin Structure of Pro-inflammatory Cytokines Stimulated by LPS in Broiler Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Shen, Jing; Liu, Yanli; Ren, Xiaochun; Gao, Kang; Li, Yulong; Li, Shizhao; Yao, Junhu; Yang, Xiaojun

    2016-07-01

    The pro-inflammatory cytokines IL-1β, IL-6, and tumor necrosis factor (TNF)-α mediate inflammation, which is a protective response by body to ensure removal of detrimental stimuli, as well as a healing process for repairing damaged tissue. The overproduction of pro-inflammatory cytokines can induce autoimmune diseases and can be fatal. The aim of this study was to investigate epigenetic mechanisms in the regulation of pro-inflammatory cytokines expression after lipopolysaccharide (LPS) stimulation of broiler peripheral blood mononuclear cells (PBMC). Gene expression, promoter DNA methylation, and chromatin accessibility of pro-inflammatory cytokines in untreated and LPS-treated PBMC were compared. The expression of epigenetic enzymes DNA methyltransferase (DNMT) 1, histone deacetylase (HDAC), and histone acetylase (HAT) were measured after LPS stimulation. The results showed the activated gene expression of pro-inflammatory cytokines in broiler PBMC stimulated 3 h by LPS. The demethylation of IL-6 gene - 302 and -264 cytosine-guanine (CpG) sites, as well as TNF-α gene -371 CpG site, occurred after LPS treatment (P pro-inflammatory cytokines.

  16. Structure-Property Relations in Nonferrous Metals

    Science.gov (United States)

    Russell, Alan; Loong Lee, Kok

    2005-05-01

    A long-awaited text that fills the void in non-ferrous metallurgy literature While most undergraduate metallurgy textbooks focus on iron, the most commercially important metallic element, Structure-Property Relations in Nonferrous Metals is a comprehensive textbook covering the remaining eighty-two nonferrous metals. Designed to be readily accessible to materials engineering students at all academic levels, the text describes the relationships between the atomic-, crystal-, and micro-structures of nonferrous metals, and such physical behaviors as strength, ductility, electrical conductivity, and corrosion. In order to capture and retain students' interest, the authors maintain a strong focus on practical application. Each chapter supplements fundamental concepts with engaging examples from actual engineering case studies and industrial projects, directly relating content to real-world application. Part One describes the general concepts of crystal- and micro-structures and the implications of these structures for the mechanical, thermal, and electronic properties of nonferrous metals, intermetallic compounds, and metal matrix composites. Chapters focus on such relevant topics as: Point, line, and planar defects and their effects on a material's properties Dislocations and strengthening mechanisms Fracture and fatigue Strain rate effects and creep Deviations from classic crystallinity Processing methods Composites and intermetallic compounds Part Two builds on Part One by exploring how the concepts presented define the properties of a particular metallic element and its alloys, and how these properties contribute to the engineering uses of each nonferrous metal. An accompanying ftp site contains homework problems, appendices, bibliographies, and tables of data indicating the nations producing metallic elements and the quantities produced. Structure-Property Relations in Nonferrous Metals is a valuable reference for both students in undergraduate metallurgy courses

  17. Structural relations between nested harmonic sums

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, J.

    2008-07-15

    We describe the structural relations between nested harmonic sums emerging in the description of physical single scale quantities up to the 3-loop level in renormalizable gauge field theories. These are weight w=6 harmonic sums. We identify universal basic functions which allow to describe a large class of physical quantities and derive their complex analysis. For the 3-loop QCD Wilson coefficients 35 basic functions are required, whereas a subset of 15 describes the 3-loop anomalous dimensions. (orig.)

  18. Chromatin Modifications and the DNA Damage Response to Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Tej K Pandita

    2013-01-01

    Full Text Available In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double strand breaks (DSBs, that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: 1 non-homologous end-joining (NHEJ, which re-ligates the broken ends of the DNA and 2 homologous recombination (HR, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but posttranslational modification (PTMs of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modification by t

  19. Correlation between male age, WHO sperm parameters, DNA fragmentation, chromatin packaging and outcome in assisted reproduction technology.

    Science.gov (United States)

    Nijs, M; De Jonge, C; Cox, A; Janssen, M; Bosmans, E; Ombelet, W

    2011-06-01

    In the human, male ageing results in reproductive hormonal and cellular changes that can influence semen quality (volume, motility, concentration and morphology) and ultimately result in a reduced fertilising capacity and a longer 'time to pregnancy' for ageing men as well as an increased risk for miscarriage. This prospective cohort study of 278 patients undergoing a first in vitro fertilisation or intracytoplasmic sperm injection treatment was undertaken to examine whether patient's age was reflected in sperm motility, concentration, morphology as well as in DNA fragmentation (DFI) and immature chromatin (unprocessed nuclear proteins and/or poorly condensed chromatin) as measured by the sperm chromatin structure assay. This study also investigated the possible influence of male age (after correcting for female age) on their fertilising capacity, on obtaining a pregnancy and a healthy baby at home. Logistic regression analysis did not reveal any male age-related influences on sperm parameters like concentration, motility or morphology. No significant male age-related increase in DFI or immature chromatin was demonstrable for these patients. Elevated male age, after correcting for female age, was not related to lower fertilisation rates or significant decreases in the chance for a healthy baby at home.

  20. Relationships between chromatin remodeling and DNA damage repair induced by 8-methoxypsoralen and UVA in yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Lavínia Almeida Cruz

    2012-01-01

    Full Text Available Eukaryotic cells have developed mechanisms to prevent genomic instability, such as DNA damage detection and repair, control of cell cycle progression and cell death induction. The bifunctional compound furocumarin 8-methoxy-psoralen (8-MOP is widely used in the treatment of various inflammatory skin diseases. In this review, we summarize recent data about the role of chromatin remodeling in the repair of DNA damage induced by treatment with 8-methoxypsoralen plus UVA (8-MOP+UVA, focusing on repair proteins in budding yeast Saccharomyces cerevisiae, an established model system for studying DNA repair pathways. The interstrand crosslinks (ICL formed by the 8-MOP+UVA treatment are detrimental lesions that can block transcription and replication, leading to cell death if not repaired. Current data show the involvement of different pathways in ICL processing, such as nucleotide excision repair (NER, base excision repair (BER, translesion repair (TLS and double-strand break repair. 8-MOP+UVA treatment in yeast enhances the expression of genes involved in the DNA damage response, double strand break repair by homologous replication, as well as genes related to cell cycle regulation. Moreover, alterations in the expression of subtelomeric genes and genes related to chromatin remodeling are consistent with structural modifications of chromatin relevant to DNA repair. Taken together, these findings indicate a specific profile in 8-MOP+UVA responses related to chromatin remodeling and DNA repair.

  1. Restoring chromatin after replication: How new and old histone marks come together

    DEFF Research Database (Denmark)

    Jasencakova, Zusana; Groth, Anja

    2010-01-01

    replication and chromatin assembly processes in time and space. Dynamic recycling and de novo deposition of histones are fundamental for chromatin restoration. Histone post-translational modifications (PTMs) are thought to have a causal role in establishing distinct chromatin structures. Here we discuss PTMs......In dividing cells genome stability and function rely on faithful transmission of both DNA sequence and its organization into chromatin. In the course of DNA replication chromatin undergoes transient genome-wide disruption followed by restoration on new DNA. This involves tight coordination of DNA...... present on new and parental histones and how they influence genome stability and restoration of epigenetically defined domains. Newly deposited histones must change their signature in the process of chromatin restoration, this may occur in a step-wise fashion involving replication-coupled processes...

  2. Guarding against Collateral Damage during Chromatin Transactions

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Lukas, Jiri

    2013-01-01

    Signal amplifications are vital for chromatin function, yet they also bear the risk of transforming into unrestrained, self-escalating, and potentially harmful responses. Examples of inbuilt limitations are emerging, revealing how chromatin transactions are confined within physiological boundaries....

  3. Polyamine analogs modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells.

    Science.gov (United States)

    Zhu, Qingsong; Huang, Yi; Marton, Laurence J; Woster, Patrick M; Davidson, Nancy E; Casero, Robert A

    2012-02-01

    Aberrant epigenetic repression of gene expression has been implicated in most cancers, including breast cancer. The nuclear amine oxidase, lysine-specific demethylase 1 (LSD1) has the ability to broadly repress gene expression by removing the activating mono- and di-methylation marks at the lysine 4 residue of histone 3 (H3K4me1 and me2). Additionally, LSD1 is highly expressed in estrogen receptor α negative (ER-) breast cancer cells. Since epigenetic marks are reversible, they make attractive therapeutic targets. Here we examine the effects of polyamine analog inhibitors of LSD1 on gene expression, with the goal of targeting LSD1 as a therapeutic modality in the treatment of breast cancer. Exposure of the ER-negative human breast cancer cells, MDA-MB-231 to the LSD1 inhibitors, 2d or PG11144, significantly increases global H3K4me1 and H3K4me2, and alters gene expression. Array analysis indicated that 98 (75 up and 23 down) and 477 (237 up and 240 down) genes changed expression by at least 1.5-fold or greater after treatment with 2d and PG11144, respectively. The expression of 12 up-regulated genes by 2d and 14 up-regulated genes by PG11144 was validated by quantitative RT-PCR. Quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated that up-regulated gene expression by polyamine analogs is associated with increase of the active histone marks H3K4me1, H3K4me2 and H3K9act, and decrease of the repressive histone marks H3K9me2 and H3K27me3, in the promoter regions of the relevant target genes. These data indicate that the pharmacologic inhibition of LSD1 can effectively alter gene expression and that this therapeutic strategy has potential.

  4. Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling.

    Directory of Open Access Journals (Sweden)

    Mariliis Tark-Dame

    2014-10-01

    Full Text Available Folding of the chromosomal fibre in interphase nuclei is an important element in the regulation of gene expression. For instance, physical contacts between promoters and enhancers are a key element in cell-type-specific transcription. We know remarkably little about the principles that control chromosome folding. Here we explore the view that intrachromosomal interactions, forming a complex pattern of loops, are a key element in chromosome folding. CTCF and cohesin are two abundant looping proteins of interphase chromosomes of higher eukaryotes. To investigate the role of looping in large-scale (supra Mb folding of human chromosomes, we knocked down the gene that codes for CTCF and the one coding for Rad21, an essential subunit of cohesin. We measured the effect on chromosome folding using systematic 3D fluorescent in situ hybridization (FISH. Results show that chromatin becomes more compact after reducing the concentration of these two looping proteins. The molecular basis for this counter-intuitive behaviour is explored by polymer modelling usingy the Dynamic Loop model (Bohn M, Heermann DW (2010 Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS ONE 5: e12218.. We show that compaction can be explained by selectively decreasing the number of short-range loops, leaving long-range looping unchanged. In support of this model prediction it has recently been shown by others that CTCF and cohesin indeed are responsible primarily for short-range looping. Our results suggest that the local and the overall changes in of chromosome structure are controlled by a delicate balance between short-range and long-range loops, allowing easy switching between, for instance, open and more compact chromatin states.

  5. Protein Structure Is Related to RNA Structural Reactivity In Vivo.

    Science.gov (United States)

    Tang, Yin; Assmann, Sarah M; Bevilacqua, Philip C

    2016-02-27

    We assessed whether in vivo mRNA structural reactivity and the structure of the encoded protein are related. This is the first investigation of such a relationship that utilizes information on RNA structure obtained in living cells. Based on our recent genome-wide Structure-seq analysis in Arabidopsis thaliana, we report that, as a meta property, regions of individual mRNAs that code for protein domains generally have higher reactivity to DMS (dimethyl sulfate), a chemical that covalently modifies accessible As and Cs, than regions that encode protein domain junctions. This relationship is prominent for proteins annotated for catalytic activity and reversed in proteins annotated for binding and transcription regulatory activity. Upon analyzing intrinsically disordered proteins, we found a similar pattern for disordered regions as compared to ordered regions: regions of individual mRNAs that code for ordered regions have significantly higher DMS reactivity than regions that code for intrinsically disordered regions. Based on these effects, we hypothesize that the decreased DMS reactivity of RNA regions that encode protein domain junctions or intrinsically disordered regions may reflect increased RNA structure that may slow translation, allowing time for the nascent protein domain or ordered region of the protein to fold, thereby reducing protein misfolding. In addition, a drop in DMS reactivity was observed on portions of mRNA sequences that correspond to the C-termini of protein domains, suggesting ribosome protection at these mRNA regions. Structural relationships between mRNAs and their encoded proteins may have evolved to allow efficient and accurate protein folding.

  6. Prediction of highly expressed genes in microbes based on chromatin accessibility

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2007-01-01

    BACKGROUND: It is well known that gene expression is dependent on chromatin structure in eukaryotes and it is likely that chromatin can play a role in bacterial gene expression as well. Here, we use a nucleosomal position preference measure of anisotropic DNA flexibility to predict highly expressed...

  7. The yeast chromatin remodeler Rsc1-RSC complex is required for transcriptional activation of autophagy-related genes and inhibition of the TORC1 pathway in response to nitrogen starvation.

    Science.gov (United States)

    Yu, Feifei; Imamura, Yuko; Ueno, Masaru; Suzuki, Sho W; Ohsumi, Yoshinori; Yukawa, Masashi; Tsuchiya, Eiko

    2015-09-01

    The yeast RSC, an ATP-dependent chromatin-remodeling complex, is essential for mitotic and meiotic growth. There are two distinct isoforms of this complex defined by the presence of either Rsc1 or Rsc2; however, the functional differences between these complexes are unclear. Here we show that the RSC complex containing Rsc1, but not Rsc2, functions in autophagy induction. Rsc1 was required not only for full expression of ATG8 mRNA but also for maintenance of Atg8 protein stability. Interestingly, decreased autophagic activity and Atg8 protein stability in rsc1Δ cells, but not the defect in ATG8 mRNA expression, were partially suppressed by deletion of TOR1. In addition, we found that rsc1Δ impaired the binding between the Rho GTPase Rho1 and the TORC1-specific component Kog1, which is required for down-regulation of TORC1 activity. These results suggest that the Rsc1-containing RSC complex plays dual roles in the proper induction of autophagy: 1) the transcriptional activation of autophagy-related genes independent of the TORC1 pathway and 2) the inactivation of TORC1, possibly through enhancement of Rho1-Kog1 binding.

  8. The chromatin landscape of Drosophila: comparisons between species, sexes, and chromosomes.

    Science.gov (United States)

    Brown, Emily J; Bachtrog, Doris

    2014-07-01

    The chromatin landscape is key for gene regulation, but little is known about how it differs between sexes or between species. Here, we study the sex-specific chromatin landscape of Drosophila miranda, a species with young sex chromosomes, and compare it with Drosophila melanogaster. We analyze six histone modifications in male and female larvae of D. miranda (H3K4me1, H3K4me3, H3K36me3, H4K16ac, H3K27me3, and H3K9me2), and define seven biologically meaningful chromatin states that show different enrichments for transcribed and silent genes, repetitive elements, housekeeping, and tissue-specific genes. The genome-wide distribution of both active and repressive chromatin states differs between males and females. In males, active chromatin is enriched on the X, relative to females, due to dosage compensation of the hemizygous X. Furthermore, a smaller fraction of the euchromatic portion of the genome is in a repressive chromatin state in males relative to females. However, sex-specific chromatin states appear not to explain sex-biased expression of genes. Overall, conservation of chromatin states between male and female D. miranda is comparable to conservation between D. miranda and D. melanogaster, which diverged >30 MY ago. Active chromatin states are more highly conserved across species, while heterochromatin shows very low levels of conservation. Divergence in chromatin profiles contributes to expression divergence between species, with ∼26% of genes in different chromatin states in the two species showing species-specific or species-biased expression, an enrichment of approximately threefold over null expectation. Our data suggest that heteromorphic sex chromosomes in males (that is, a hypertranscribed X and an inactivated Y) may contribute to global redistribution of active and repressive chromatin marks between chromosomes and sexes.

  9. Defining the multivalent functions of CTCF from chromatin state and three-dimensional chromatin interactions.

    Science.gov (United States)

    Lu, Yiming; Shan, Guangyu; Xue, Jiguo; Chen, Changsheng; Zhang, Chenggang

    2016-07-27

    CCCTC-binding factor (CTCF) is a multi-functional protein that is assigned various, even contradictory roles in the genome. High-throughput sequencing-based technologies such as ChIP-seq and Hi-C provided us the opportunity to assess the multivalent functions of CTCF in the human genome. The location of CTCF-binding sites with respect to genomic features provides insights into the possible roles of this protein. Here we present the first genome-wide survey and characterization of three important functions of CTCF: enhancer insulator, chromatin barrier and enhancer linker. We developed a novel computational framework to discover the multivalent functions of CTCF based on chromatin state and three-dimensional chromatin architecture. We applied our method to five human cell lines and identified ∼46 000 non-redundant CTCF sites related to the three functions. Disparate effects of these functions on gene expression were found and distinct genomic features of these CTCF sites were characterized in GM12878 cells. Finally, we investigated the cell-type specificities of CTCF sites related to these functions across five cell types. Our study provides new insights into the multivalent functions of CTCF in the human genome.

  10. Long Noncoding RNAs, Chromatin, and Development

    Directory of Open Access Journals (Sweden)

    Daniel P. Caley

    2010-01-01

    Full Text Available The way in which the genome of a multicellular organism can orchestrate the differentiation of trillions of cells and many organs, all from a single fertilized egg, is the subject of intense study. Different cell types can be defined by the networks of genes they express. This differential expression is regulated at the epigenetic level by chromatin modifications, such as DNA and histone methylation, which interact with structural and enzymatic proteins, resulting in the activation or silencing of any given gene. While detailed mechanisms are emerging on the role of different chromatin modifications and how these functions are effected at the molecular level, it is still unclear how their deposition across the epigenomic landscape is regulated in different cells. A raft of recent evidence is accumulating that implicates long noncoding RNAs (lncRNAs in these processes. Most genomes studied to date undergo widespread transcription, the majority of which is not translated into proteins. In this review, we will describe recent work suggesting that lncRNAs are more than transcriptional "noise", but instead play a functional role by acting as tethers and guides to bind proteins responsible for modifying chromatin and mediating their deposition at specific genomic locations. We suggest that lncRNAs are at the heart of developmental regulation, determining the epigenetic status and transcriptional network in any given cell type, and that they provide a means to integrate external differentiation cues with dynamic nuclear responses through the regulation of a metastable epigenome. Better characterization of the lncRNA-protein "interactome" may eventually lead to a new molecular toolkit, allowing researchers and clinicians to modulate the genome at the epigenetic level to treat conditions such as cancer.

  11. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain;

    2007-01-01

    Inheritance and maintenance of the DNA sequence and its organization into chromatin are central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the context of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin organization. To meet...... the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...

  12. Metabolomics reveals a role for the chromatin-binding protein HMGN5 in glutathione metabolism.

    Directory of Open Access Journals (Sweden)

    Eric D Ciappio

    Full Text Available High mobility group nucleosome-binding protein 5 (HMGN5 is a chromatin architectural protein that binds specifically to nucleosomes and reduces the compaction of the chromatin fiber. The protein is present in most vertebrate tissues however the physiological function of this protein is unknown. To examine the function of HMGN5 in vivo, mice lacking the nucleosome-binding domain of HMGN5 were generated and characterized. Serological analysis revealed that compared to wild-type littermates (Hmgn5(+/Y, mice with a targeted mutation in the HMGN5 gene (Hmgn5(tm1/Y, had elevated serum albumin, non-HDL cholesterol, triglycerides, and alanine transaminase, suggesting mild hepatic abnormalities. Metabolomics analysis of liver extracts and urine revealed clear differences in metabolites between Hmgn5(tm1/Y and their Hmgn5(+/Y littermates. Hmgn5(tm1/Y mice had a significant increase in hepatic glutathione levels and decreased urinary concentrations of betaine, phenylacetylglycine, and creatine, all of which are metabolically related to the glutathione precursor glycine. Microarray and qPCR analysis revealed that expression of two genes affecting glutathione metabolism, glutathione peroxidase 6 (Gpx6 and hexokinase 1 (Hk1, was significantly decreased in Hmgn5(tm1/Y mouse liver tissue. Analysis of chromatin structure by DNase I digestion revealed alterations in the chromatin structure of these genes in the livers of Hmgn5(tm1/Y mice. Thus, functional loss of HMGN5 leads to changes in transcription of Gpx6 and Hk1 that alter glutathione metabolism.

  13. Chromatin dynamics at DNA breaks: what, how and why?

    Directory of Open Access Journals (Sweden)

    Théo Lebeaupin

    2015-09-01

    Full Text Available Chromatin has a complex, dynamic architecture in the interphase nucleus, which regulates the accessibility of the underlying DNA and plays a key regulatory role in all the cellular functions using DNA as a template, such as replication, transcription or DNA damage repair. Here, we review the recent progresses in the understanding of the interplay between chromatin architecture and DNA repair mechanisms. Several reports based on live cell fluorescence imaging show that the activation of the DNA repair machinery is associated with major changes in the compaction state and the mobility of chromatin. We discuss the functional consequences of these changes in yeast and mammals in the light of the different repair pathways utilized by these organisms. In the final section of this review, we show how future developments in high-resolution light microscopy and chromatin modelling by polymer physics should contribute to a better understanding of the relationship between the structural changes in chromatin and the activity of the repair processes.

  14. Evolution and genetic architecture of chromatin accessibility and function in yeast.

    Directory of Open Access Journals (Sweden)

    Caitlin F Connelly

    2014-07-01

    Full Text Available Chromatin accessibility is an important functional genomics phenotype that influences transcription factor binding and gene expression. Genome-scale technologies allow chromatin accessibility to be mapped with high-resolution, facilitating detailed analyses into the genetic architecture and evolution of chromatin structure within and between species. We performed Formaldehyde-Assisted Isolation of Regulatory Elements sequencing (FAIRE-Seq to map chromatin accessibility in two parental haploid yeast species, Saccharomyces cerevisiae and Saccharomyces paradoxus and their diploid hybrid. We show that although broad-scale characteristics of the chromatin landscape are well conserved between these species, accessibility is significantly different for 947 regions upstream of genes that are enriched for GO terms such as intracellular transport and protein localization exhibit. We also develop new statistical methods to investigate the genetic architecture of variation in chromatin accessibility between species, and find that cis effects are more common and of greater magnitude than trans effects. Interestingly, we find that cis and trans effects at individual genes are often negatively correlated, suggesting widespread compensatory evolution to stabilize levels of chromatin accessibility. Finally, we demonstrate that the relationship between chromatin accessibility and gene expression levels is complex, and a significant proportion of differences in chromatin accessibility might be functionally benign.

  15. Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives.

    Science.gov (United States)

    Croken, Matthew M; Nardelli, Sheila C; Kim, Kami

    2012-05-01

    Chromatin structure plays a vital role in epigenetic regulation of protozoan parasite gene expression. Epigenetic gene regulation impacts upon parasite virulence, differentiation and cell-cycle control. Recent work in many laboratories has elucidated the functions of proteins that regulate parasite gene expression by chemical modification of constituent nucleosomes. A major focus of investigation has been the characterization of post-translational modifications (PTMs) of histones and the identification of the enzymes responsible. Despite conserved features and specificity common to all eukaryotes, parasite enzymes involved in chromatin modification have unique functions that regulate unique aspects of parasite biology.

  16. Chromatin remodelling: the industrial revolution of DNA around histones.

    Science.gov (United States)

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  17. Retention of the Native Epigenome in Purified Mammalian Chromatin.

    Directory of Open Access Journals (Sweden)

    Andreas H Ehrensberger

    Full Text Available A protocol is presented for the isolation of native mammalian chromatin as fibers of 25-250 nucleosomes under conditions that preserve the natural epigenetic signature. The material is composed almost exclusively of histones and DNA and conforms to the structure expected by electron microscopy. All sequences probed for were retained, indicating that the material is representative of the majority of the genome. DNA methylation marks and histone marks resembled the patterns observed in vivo. Importantly, nucleosome positions also remained largely unchanged, except on CpG islands, where nucleosomes were found to be unstable. The technical challenges of reconstituting biochemical reactions with native mammalian chromatin are discussed.

  18. Organisation of subunits in chromatin.

    Science.gov (United States)

    Carpenter, B G; Baldwin, J P; Bradbury, E M; Ibel, K

    1976-07-01

    There is considerable current interest in the organisation of nucleosomes in chromatin. A strong X-ray and neutron semi-meridional diffraction peak at approximately 10 nm had previously been attributed to the interparticle specing of a linear array of nucleosomes. This diffraction peak could also result from a close packed helical array of nucleosomes. A direct test of these proposals is whether the 10 nm peak is truly meridional as would be expected for a linear array of nucleosomes or is slightly off the meridian as expected for a helical array. Neutron diffraction studies of H1-depleted chromatin support the latter alternative. The 10 nm peak has maxima which form a cross-pattern with semi-meridional angle of 8 to 9 degrees. This is consistent with a coil of nucleosomes of pitch 10 nm and outer diameter of approximately 30 nm. These dimensions correspond to about six nucleosomes per turn of the coli.

  19. Interplay of Dynamic Transcription and Chromatin Remodeling: Lessons from Yeast

    Directory of Open Access Journals (Sweden)

    Eva Klopf

    2011-07-01

    Full Text Available Regulation of transcription involves dynamic rearrangements of chromatin structure. The budding yeast Saccharomyces cerevisiae has a variety of highly conserved factors necessary for these reconstructions. Chromatin remodelers, histone modifiers and histone chaperones directly associate to promoters and open reading frames of exposed genes and facilitate activation and repression of transcription. We compare two distinct patterns of induced transcription: Sustained transcribed genes switch to an activated state where they remain as long as the induction signal is present. In contrast, single pulsed transcribed genes show a quick and strong induction pulse resulting in high transcript levels followed by adaptation and repression to basal levels. We discuss intensively studied promoters and coding regions from both groups for their co-factor requirements during transcription. Interplay between chromatin restructuring factors and dynamic transcription is highly variable and locus dependent.

  20. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis.

    Science.gov (United States)

    Hu, Jialei; Donahue, Greg; Dorsey, Jean; Govin, Jérôme; Yuan, Zuofei; Garcia, Benjamin A; Shah, Parisha P; Berger, Shelley L

    2015-12-01

    Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  1. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  2. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene.

    Science.gov (United States)

    Kotomura, Naoe; Harada, Nobuhiro; Ishihara, Satoru

    2015-01-01

    The human CYP19 gene encodes aromatase, which converts androgens to estrogens. CYP19 mRNA variants are transcribed mainly from three promoters. Quantitative RT-PCR was used to measure the relative amounts of each of the three transcripts and determine the on/off state of the promoters. While some of the promoters were silent, CYP19 mRNA production differed among the other promoters, whose estimated transcription levels were 0.001% to 0.1% of that of the TUBB control gene. To investigate the structural aspects of chromatin that were responsible for this wide range of activity of the CYP19 promoters, we used a fractionation protocol, designated SEVENS, which sequentially separates densely packed nucleosomes from dispersed nucleosomes. The fractional distribution of each inactive promoter showed a similar pattern to that of the repressed reference loci; the inactive regions were distributed toward lower fractions, in which closed chromatin comprising packed nucleosomes was enriched. In contrast, active CYP19 promoters were raised toward upper fractions, including dispersed nucleosomes in open chromatin. Importantly, these active promoters were moderately enriched in the upper fractions as compared to active reference loci, such as the TUBB promoter; the proportion of open chromatin appeared to be positively correlated to the promoter strength. These results, together with ectopic transcription accompanied by an increase in the proportion of open chromatin in cells treated with an H3K27me inhibitor, indicate that CYP19 mRNA could be transcribed from a promoter in which chromatin is shifted toward an open state in the equilibrium between closed and open chromatin.

  3. The linkage of chromatin remodeling to genome maintenance: contribution from a human disease gene BRIT1/MCPH1.

    Science.gov (United States)

    Peng, Guang; Lin, Shiaw-Yih

    2009-10-01

    Genomic DNA is packed into a highly condensed chromatin structure, which acts as natural barrier preventing accessibility of DNA. In various processes to maintain genomic integrity such as DNA replication, DNA repair, telomere regulation, proteins need to overcome the barrier of condensed chromatin to gain access to DNA. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin. However, the chromatin remodeling complex does not contain intrinsic specificity for particular nuclear process, and the mechanism mediating its recruitment to DNA lesions remains to be an outstanding question. To address this question, in this review, we will discuss our current findings and future perspectives about how BRIT1/MCPH1, a human disease gene, specifies the function of chromatin remodelers and links chromatin remodeling to genome maintenance.

  4. Relations Between Permeability and Structure of Wood

    Institute of Scientific and Technical Information of China (English)

    Bao Fucheng; Zhao Youke; Lü Jianxiong

    2003-01-01

    The permeability and the structure of heartwood and sapwood of the solvent-exchange dried and the air-dried green-wood of Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) and masson pine (Pinus massoniana Lamb.) were measured inorder to study the relations between the permeability and the structure. The results showed that the permeability of sapwood of boththe air-dried and the solvent-exchange dried wood was higher than that of heartwood, and the permeability of the solvent-exchangeddried heartwood and sapwood was higher than that of the air-dried. A higher permeability of wood was attributed to, on the one hand,a bigger number of flow path per unit area of the wood perpendicular to the flow direction resulted from a bigger number ofunaspirated pits per unit area and a bigger number of effective pit openings per membrane, and on the other hand, a smaller numberof tracheid in series connection per unit length parallel to flow direction resulted from a longer tracheid length and an effectivetracheid length for permeability.

  5. Prion protein: structural features and related toxicity

    Institute of Scientific and Technical Information of China (English)

    Ping Ping Hu; Cheng Zhi Huang

    2013-01-01

    Transmissible spongiform encephalopathies,or prion diseases,is a group of infectious neurodegenerative disorders.The conformational conversion from cellular form (PrPC) to disease-causing isoform (PrPSc) is considered to be the most important and remarkable event in these diseases,while accumulation of PrPSc is thought to be the main reason for cell death,inflammation and spongiform degeneration observed in infected individuals.Although these rare but unique neurodegenerative disorders have attracted much attention,there are still many questions that remain to be answered.Knowledge of the scrapie agent structures and the toxic species may have significance for understanding the causes of the diseases,and could be helpful for rational design of novel therapeutic and diagnostic methods.In this review,we summarized the available experimental evidence concerning the relationship among the structural features,aggregation status of misfolded PrP and related neurotoxicity in the course of prion diseases development.In particular,most data supports the idea that the smaller oligomeric PrPSc aggregates,rather than the mature amyloid fibers,exhibit the highest toxicity to the host.

  6. Absence of canonical active chromatin marks in developmentally regulated genes

    Science.gov (United States)

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  7. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner

    DEFF Research Database (Denmark)

    Alexiadis, V; Waldmann, T; Andersen, Jens S.;

    2000-01-01

    The structure of chromatin regulates the genetic activity of the underlying DNA sequence. We report here that the protein encoded by the proto-oncogene DEK, which is involved in acute myelogenous leukemia, induces alterations of the superhelical density of DNA in chromatin. The change in topology...... protein substantially reduces the replication efficiency of chromatin but not of naked DNA templates.......The structure of chromatin regulates the genetic activity of the underlying DNA sequence. We report here that the protein encoded by the proto-oncogene DEK, which is involved in acute myelogenous leukemia, induces alterations of the superhelical density of DNA in chromatin. The change in topology...... is observed with chromatin but not with naked DNA and does not involve dissociation of core histones from chromatin. Moreover, these effects require histone H2A/H2B dimers in addition to histone H3/H4. We additionally tested whether the DEK protein affects DNA-utilizing processes and found that the DEK...

  8. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Jenna [Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet (Sweden); Ekwall, Karl, E-mail: karl.ekwall@ki.se [Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet (Sweden); School of Life Sciences, University College Sodertorn, NOVUM, Huddinge (Sweden)

    2010-05-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  9. Dicer is associated with ribosomal DNA chromatin in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Lasse Sinkkonen

    Full Text Available BACKGROUND: RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA repeats. Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse embryonic stem (ES cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer(-/- ES cells. Instead, we found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed cell lines. CONCLUSION/SIGNIFICANCE: We found that Dicer, a key component of RNA silencing pathways, can be detected in association with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since the enzyme is associated with rDNA genes regardless of their transcriptional activity. However, localization of Dicer to the transcribed region suggests that transcription may contribute to the Dicer deposition at rDNA chromatin. We hypothesize that Dicer functions in maintaining integrity of rDNA arrays.

  10. Sequence-structure relations of biopolymers

    CERN Document Server

    Barrett, Christopher; Reidys, Christian M

    2015-01-01

    Motivation: DNA data is transcribed into single-stranded RNA, which folds into specific molecular structures. In this paper we pose the question to what extent sequence- and structure-information correlate. We view this correlation as structural semantics of sequence data that allows for a different interpretation than conventional sequence alignment. Structural semantics could enable us to identify more general embedded "patterns" in DNA and RNA sequences. Results: We compute the partition function of sequences with respect to a fixed structure and connect this computation to the mutual information of a sequence-structure pair for RNA secondary structures. We present a Boltzmann sampler and obtain the a priori probability of specific sequence patterns. We present a detailed analysis for the three PDB-structures, 2JXV (hairpin), 2N3R (3-branch multi-loop) and 1EHZ (tRNA). We localize specific sequence patterns, contrast the energy spectrum of the Boltzmann sampled sequences versus those sequences that refold ...

  11. Proteomics of a fuzzy organelle: interphase chromatin

    Science.gov (United States)

    Kustatscher, Georg; Hégarat, Nadia; Wills, Karen L H; Furlan, Cristina; Bukowski-Wills, Jimi-Carlo; Hochegger, Helfrid; Rappsilber, Juri

    2014-01-01

    Chromatin proteins mediate replication, regulate expression, and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle, it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead, we propose a new approach that provides a quantitative assessment of a protein's probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of cyclin-dependent kinase (CDK) regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology. PMID:24534090

  12. Efficient cell migration requires global chromatin condensation.

    Science.gov (United States)

    Gerlitz, Gabi; Bustin, Michael

    2010-07-01

    Cell migration is a fundamental process that is necessary for the development and survival of multicellular organisms. Here, we show that cell migration is contingent on global condensation of the chromatin fiber. Induction of directed cell migration by the scratch-wound assay leads to decreased DNaseI sensitivity, alterations in the chromatin binding of architectural proteins and elevated levels of H4K20me1, H3K27me3 and methylated DNA. All these global changes are indicative of increased chromatin condensation in response to induction of directed cell migration. Conversely, chromatin decondensation inhibited the rate of cell migration, in a transcription-independent manner. We suggest that global chromatin condensation facilitates nuclear movement and reshaping, which are important for cell migration. Our results support a role for the chromatin fiber that is distinct from its known functions in genetic processes.

  13. Rapid genome-scale mapping of chromatin accessibility in tissue

    Science.gov (United States)

    2012-01-01

    Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh). The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied across a broad range of

  14. Rapid genome-scale mapping of chromatin accessibility in tissue

    Directory of Open Access Journals (Sweden)

    Grøntved Lars

    2012-06-01

    Full Text Available Abstract Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh. The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied

  15. Chromatin Modification and Remodeling in Heart Development

    Directory of Open Access Journals (Sweden)

    Paul Delgado-Olguín

    2006-01-01

    Full Text Available In organogenesis, cell types are specified from determined precursors as morphogenetic patterning takes place. These events are largely controlled by tissue-specific transcription factors. These transcription factors must function within the context of chromatin to activate or repress target genes. Recent evidence suggests that chromatin-remodeling and -modifying factors may have tissue-specific function. Here we review the potential roles for chromatin-remodeling and -modifying proteins in the development of the mammalian heart.

  16. Chromatin remodeling in cardiovascular development and physiology

    OpenAIRE

    Han, Pei; Hang, Calvin T.; Yang, Jin; Chang, Ching-Pin

    2011-01-01

    Chromatin regulation provides an important means of controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various tran...

  17. The chromatin response to DNA breaks: leaving a mark on genome integrity.

    Science.gov (United States)

    Smeenk, Godelieve; van Attikum, Haico

    2013-01-01

    Genetic, biochemical, and cellular studies have uncovered many of the molecular mechanisms underlying the signaling and repair of chromosomal DNA breaks. However, efficient repair of DNA damage is complicated in that genomic DNA is packaged, through histone and nonhistone proteins, into chromatin. The DNA repair machinery has to overcome this physical barrier to gain access to damaged DNA and repair DNA lesions. Posttranslational modifications of chromatin as well as ATP-dependent chromatin remodeling factors help to overcome this barrier and facilitate access to damaged DNA by altering chromatin structure at sites of DNA damage. Here we review and discuss our current knowledge of and recent advances in chromatin changes induced by chromosome breakage in mammalian cells and their implications for genome stability and human disease.

  18. Translocation of histone H1 subtypes between chromatin and cytoplasm during mitosis in normal human fibroblasts.

    Science.gov (United States)

    Gréen, Anna; Lönn, Anita; Peterson, Kajsa Holmgren; Ollinger, Karin; Rundquist, Ingemar

    2010-05-01

    Histone H1 is an important constituent of chromatin, which undergoes major structural rearrangements during mitosis. However, the role of H1, multiple H1 subtypes, and H1 phosphorylation is still unclear. In normal human fibroblasts, phosphorylated H1 was found located in nuclei during prophase and in both cytoplasm and condensed chromosomes during metaphase, anaphase, and telophase as detected by immunocytochemistry. Moreover, we detected remarkable differences in the distribution of the histone H1 subtypes H1.2, H1.3, and H1.5 during mitosis. H1.2 was found in chromatin during prophase and almost solely in the cytoplasm of metaphase and early anaphase cells. In late anaphase, it appeared in both chromatin and cytoplasm and again in chromatin during telophase. H1.5 distribution pattern resembled that of H1.2, but H1.5 was partitioned between chromatin and cytoplasm during metaphase and early anaphase. H1.3 was detected in chromatin in all cell cycle phases. We propose therefore, that H1 subtype translocation during mitosis is controlled by phosphorylation, in combination with H1 subtype inherent affinity. We conclude that H1 subtypes, or theirphosphorylated forms, may leave chromatin in a regulated way to give access for chromatin condensing factors or transcriptional regulators during mitosis.

  19. Ethidium bromide as a probe of conformational heterogeneity of DNA in chromatin. The role of histone H1.

    Science.gov (United States)

    Lawrence, J J; Daune, M

    1976-07-27

    The accessibility and the tertiary structure of the DNA inside chromatin were studied by using ethidium bromide (EB) as a fluorescent probe. The exclusion model of binding was refined by introductina a parameter alpha (0less than alpha less than 1) which measures the accessibility of the DNA and by taking into account when necessary the existence of two sets of binding sites. We were thus able to fit predicted and experimental isotherms and then to describe completely EB binding to native or partially histone depleted chromatin under various conditions. Itn native chromatin 95% of the DNA (alpha = 0.95) appears to be accessible to EB but two sets of sites are present. The first one corresponds to alpha = 0.13 and is characterized by an affinity constant which is higher by two orders of magnitude than that relative to pure DNA. The second set corresponds to alpha = 0.82 and the corresponding binding constant is only three or four times lower than that of pure DNA. The sites with high affinity are still present after treatment with formaldehyde but disappear after removal of histon H1. By comparison with chromatin treated with deoxycholate of with artifical complexes between H1 and DNA, high affinity sites were found only when all of the histons are bound to DNA. An alpha value around 0.8 is still obtained in 1 M NaC1 treated chromatin, pointing to the fact that histones H3 and H4 are preventing 20% of the DNA to intercalate EB.

  20. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components

    DEFF Research Database (Denmark)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Po

    2014-01-01

    To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use nascent chromatin capture (NCC) to profile chromatin proteome dynamics durin...

  1. The architects of crenarchaeal chromatin : A biophysical characterization of chromatin proteins from Sulfolobus solfataricus

    NARCIS (Netherlands)

    Driessen, Rosalie Paula Catharina

    2014-01-01

    Understanding of chromatin organization and compaction in Archaea is currently limited. The genome of several megabasepairs long is folded by a set of small chromatin proteins to fit into the micron-sized cell. A first step in understanding archaeal chromatin organization is to study the action of i

  2. Effects of abnormal structure of sperm chromatin on the outcome of in vitro fertilization and embryo transfer%精子染色质结构异常对体外受精-胚胎移植结局的影响

    Institute of Scientific and Technical Information of China (English)

    谷龙杰; 陈振文; 卢文红; 许剑锋; 李梅; 陈子江

    2011-01-01

    目的 探讨精子染色质结构异常对体外受精-胚胎移植(in vitro fertilization and embryo transfer,IVF-ET)的影响.方法 对IVF-ET治疗的不育夫妇136对,分别检测精子DNA碎片化和染色质包装缺陷,并分析精子染色质结构参数与受精及临床妊娠之间的关系.结果 精子DNA碎片化阳性率和染色质包装缺陷阳性率均与受精率呈负相关(r值分别为-0.198,P<0.05,和-0.389,P<0.01);在未获得临床妊娠的患者,精子DNA碎片化阳性率和染色质包装缺陷阳性率均高于获得临床妊娠的夫妇(分别为10.74%vs.5.40%,P<0.01和23.58%vs.11.83%,P<0.01).结论 IVF-ET治疗失败与精子染色质结构异常有关,精子染色质结构检测有助于评估IVF-ET失败的风险,以制订最佳治疗方案.%Objective To explore the effects of sperm chromatin structure abnormalities on the outcome of in vitro fertilization and embryo transfer (IVF-ET). Methods Sperm DNA fragmentation and chromatin packaging defects were assessed in 136 couples undergoing IVF-ET because of infertility. The relationship between sperm DNA fragmentation, chromatin packaging defects and fertilization rate and clinical pregnancy was evaluated. Results Both sperm DNA fragmentation and chromatin packaging defect had a negative correlation with fertilization rate (r= -0. 198, P<0. 05, and r= -0. 389, P<0. 01,respectively). Both parameters were higher in couples who failed to achieve pregnancy than those who achieved clinical pregnancy (10. 74% vs. 5. 40%, P<0. 01 and 23. 58% vs. 11. 83%, P<0. 01,respectively). Conclusion Abnormality of sperm chromatin structure is one of the reasons for IVF-ET failure. Examination of sperm chromatin structure is helpful in predicting he risk of IVF-ET failure and optimizing treatment of infertility.

  3. Structure Selection from Streaming Relational Data

    CERN Document Server

    Mihalkova, Lilyana

    2011-01-01

    Statistical relational learning techniques have been successfully applied in a wide range of relational domains. In most of these applications, the human designers capitalized on their background knowledge by following a trial-and-error trajectory, where relational features are manually defined by a human engineer, parameters are learned for those features on the training data, the resulting model is validated, and the cycle repeats as the engineer adjusts the set of features. This paper seeks to streamline application development in large relational domains by introducing a light-weight approach that efficiently evaluates relational features on pieces of the relational graph that are streamed to it one at a time. We evaluate our approach on two social media tasks and demonstrate that it leads to more accurate models that are learned faster.

  4. Trichomonas vaginalis: chromatin and mitotic spindle during mitosis.

    Science.gov (United States)

    Gómez-Conde, E; Mena-López, R; Hernández-Jaúregui, P; González-Camacho, M; Arroyo, R

    2000-11-01

    The mitotic phases and the changes that the chromatin and mitotic microtubules undergo during mitosis in the sexually transmitted parasite Trichomonas vaginalis are described. Parasites arrested in the gap 2 phase of the cell cycle by nutrient starvation were induced to mitosis by addition of fresh whole medium. [(3)H] Thymidine labeling of trichomonad parasites for 24 h showed that parasites have at least four synchronic duplications after mitosis induction. Fixed or live and acridine orange (AO)-stained trichomonads analyzed at different times during mitosis by epifluorescence microscopy showed that mitosis took about 45 min and is divided into five stages: prophase, metaphase, early and late anaphase, early and late telophase, and cytokinesis. The AO-stained nucleus of live trichomonads showed green (DNA) and orange (RNA) fluorescence, and the nucleic acid nature was confirmed by DNase and RNase treatment, respectively. The chromatin appeared partially condensed during interphase. At metaphase, it appeared as six condensed chromosomes, as recently reported, which decondensed at anaphase and migrated to the nuclear poles at telophase. In addition, small bundles of microtubules (as hemispindles) were detected only in metaphase with the polyclonal antibody anti-Entamoeba histolytica alpha-tubulin. This antibody showed that the hemispindle and an atractophore-like structure seem to duplicate and polarize during metaphase. In conclusion, T. vaginalis mitosis involves five mitotic phases in which the chromatin undergoes different degrees of condensation, from chromosomes to decondensed chromatin, and two hemispindles that are observed only in the metaphase stage.

  5. Agreement and the structure of relative clauses

    Directory of Open Access Journals (Sweden)

    Boban Arsenijević

    2016-07-01

    Full Text Available The paper proposes an account of asymmetries in agreement patterns that obtain in restrictive and non-restrictive relative clauses headed by hybrid agreement nouns 'd(jeca '‘children’, 'braća '‘brothers’, and 'gospoda '‘gentry’ in Bosnian/Croatian/Serbian (BCS. We note that relative clauses headed by hybrid nouns display different possibilities of agreement morphology on the relative pronoun 'koji/a/e '‘which’, depending, on the one hand, on whether the relative clause is restrictive or non-restrictive and on the other, on the case of the relative pronoun. We argue that the observed differences are the result of a conspiracy of the following factors: (i hybrid number-agreement nouns introduce a null plural pronoun unspecified for gender (Postal 1966; den Dikken 2001; Torrego and Laga 2015, (ii all plural case forms of the relative pronoun except for nominative and accusative show full gender syncretism (Alsina and Arsenijević 2012b, and (iii non-restrictive relative clauses involve a null definite pronoun and attach to the head noun higher than the restrictive relative clauses (Postal 1994; de Vries 2002; 2006. We maintain that the facts discussed in the paper argue against analyses which derive the differences between restrictive and non-restrictive relative clauses from their LF representations, rather than from their overt syntax.

  6. Chromatin-modifying proteins in cancer

    DEFF Research Database (Denmark)

    Fog, Cathrine K; Jensen, Klaus T; Lund, Anders Henrik

    2007-01-01

    -despite the fact that all cells in the organism contain the same genetic information. A large amount of data gathered over the last decades has demonstrated that deregulation of chromatin-modifying proteins is etiologically involved in the development and progression of cancer. Here we discuss how epigenetic...... alterations influence cancer development and review known cancer-associated alterations in chromatin-modifying proteins....

  7. A Long-Distance Chromatin Affair

    NARCIS (Netherlands)

    Denker, Annette; de Laat, Wouter

    2015-01-01

    Changes in transcription factor binding sequences result in correlated changes in chromatin composition locally and at sites hundreds of kilobases away. New studies demonstrate that this concordance is mediated via spatial chromatin interactions that constitute regulatory modules of the human genome

  8. Chromatin roadblocks to reprogramming 50 years on.

    Science.gov (United States)

    Skene, Peter J; Henikoff, Steven

    2012-10-29

    A half century after John Gurdon demonstrated nuclear reprogramming, for which he was awarded the 2012 Nobel Prize in Physiology or Medicine, his group provides insights into the molecular mechanisms whereby chromatin remodeling is required for nuclear reprogramming. Among the issues addressed in Gurdon's latest work are the chromatin impediments to artificially induced reprogramming, discovered by Shinya Yamanaka, who shared the award with Gurdon.

  9. Interactions of transcription factors with chromatin.

    Science.gov (United States)

    van Bakel, Harm

    2011-01-01

    Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.

  10. Chromatin remodeling in cardiovascular development and physiology.

    Science.gov (United States)

    Han, Pei; Hang, Calvin T; Yang, Jin; Chang, Ching-Pin

    2011-02-04

    Chromatin regulation provides an important means for controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various transcription factors in the fine regulation of gene expression, essential for all aspects of cardiovascular biology. Aberrant cardiac gene expression, triggered by a variety of pathological insults, can cause heart diseases in both animals and humans. The severity of cardiomyopathy and heart failure correlates strongly with abnormal cardiac gene expression. Therefore, controlling cardiac gene expression presents a promising approach to the treatment of human cardiomyopathy. This review focuses on the roles of ATP-dependent chromatin-remodeling factors and chromatin-modifying enzymes in the control of gene expression during cardiovascular development and disease.

  11. Discovering hierarchical structure in normal relational data

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Herlau, Tue; Mørup, Morten

    2014-01-01

    Hierarchical clustering is a widely used tool for structuring and visualizing complex data using similarity. Traditionally, hierarchical clustering is based on local heuristics that do not explicitly provide assessment of the statistical saliency of the extracted hierarchy. We propose a non-param...

  12. Polyethylene glycols (PEG) and related structures

    DEFF Research Database (Denmark)

    Wenande, Emily; Kroigaard, Mogens; Mosbech, Holger;

    2015-01-01

    We describe hypersensitivity to polyethylene glycols (PEGs), with cross-reactivity to a structural analog, polysorbate 80, in a 69-year-old patient with perioperative anaphylaxis and subsequent, severe anaphylactic reactions to unrelated medical products. PEGs and PEG analogs are prevalent...

  13. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization

    Directory of Open Access Journals (Sweden)

    Peterhansel Christoph

    2007-09-01

    Full Text Available Abstract Background Chromatin remodeling, histone modifications and other chromatin-related processes play a crucial role in gene regulation. A very useful technique to study these processes is chromatin immunoprecipitation (ChIP. ChIP is widely used for a few model systems, including Arabidopsis, but establishment of the technique for other organisms is still remarkably challenging. Furthermore, quantitative analysis of the precipitated material and normalization of the data is often underestimated, negatively affecting data quality. Results We developed a robust ChIP protocol, using maize (Zea mays as a model system, and present a general strategy to systematically optimize this protocol for any type of tissue. We propose endogenous controls for active and for repressed chromatin, and discuss various other controls that are essential for successful ChIP experiments. We experienced that the use of quantitative PCR (QPCR is crucial for obtaining high quality ChIP data and we explain why. The method of data normalization has a major impact on the quality of ChIP analyses. Therefore, we analyzed different normalization strategies, resulting in a thorough discussion of the advantages and drawbacks of the various approaches. Conclusion Here we provide a robust ChIP protocol and strategy to optimize the protocol for any type of tissue; we argue that quantitative real-time PCR (QPCR is the best method to analyze the precipitates, and present comprehensive insights into data normalization.

  14. Akirin: a context-dependent link between transcription and chromatin remodeling.

    Science.gov (United States)

    Nowak, Scott J; Baylies, Mary K

    2012-01-01

    Embryonic patterning relies upon an exquisitely timed program of gene regulation. While the regulation of this process via the action of transcription factor networks is well understood, new lines of study have highlighted the importance of a concurrently regulated program of chromatin remodeling during development. Chromatin remodeling refers to the manipulation of the chromatin architecture through rearrangement, repositioning, or restructuring of nucleosomes to either favor or hinder the expression of associated genes. While the role of chromatin remodeling pathways during tumor development and cancer progression are beginning to be clarified, the roles of these pathways in the course of tissue specification, morphogenesis and patterning remains relatively unknown. Further, relatively little is understood as to the mechanism whereby developmentally critical transcription factors coordinate with chromatin remodeling factors to optimize target gene loci for gene expression. Such a mechanism might involve direct transcription factor/chromatin remodeling factor interactions, or could likely be mediated via an unknown intermediary. Our group has identified the relatively unknown protein Akirin as a putative member of this latter group: a secondary cofactor that serves as an interface between a developmentally critical transcription factor and the chromatin remodeling machinery. This role for the Akirin protein suggests a novel regulatory mode for regulating gene expression during development.

  15. Discovering Multidimensional Structure in Relational Data

    DEFF Research Database (Denmark)

    Jensen, Mikael Rune; Holmgren, Thomas; Pedersen, Torben Bach

    2004-01-01

    On-Line Analytical Processing (OLAP) systems based on multidimensional databases are essential elements of decision support. However, most existing data is stored in “ordinary” relational OLTP databases, i.e., data has to be (re-) modeled as multidimensional cubes before the advantages of OLAP...... tools are available. In this paper we present an approach for the automatic construction of multidimensional OLAP database schemas from existing relational OLTP databases, enabling easy OLAP design and analysis for most existing data sources. This is achieved through a set of practical and effective...... algorithms for discovering multidimensional schemas from relational databases. The algorithms take a wide range of available metadata into account in the discovery process, including functional and inclusion dependencies, and key and cardinality information....

  16. The ING tumor suppressors in cellular senescence and chromatin.

    Science.gov (United States)

    Ludwig, Susann; Klitzsch, Alexandra; Baniahmad, Aria

    2011-07-18

    The Inhibitor of Growth (ING) proteins represent a type II tumor suppressor family comprising five conserved genes, ING1 to ING5. While ING1, ING2 and ING3 proteins are stable components of the mSIN3a-HDAC complexes, the association of ING1, ING4 and ING5 with HAT protein complexes was also reported. Among these the ING1 and ING2 have been analyzed more deeply. Similar to other tumor suppressor factors the ING proteins are also involved in many cellular pathways linked to cancer and cell proliferation such as cell cycle regulation, cellular senescence, DNA repair, apoptosis, inhibition of angiogenesis and modulation of chromatin.A common structural feature of ING factors is the conserved plant homeodomain (PHD), which can bind directly to the histone mark trimethylated lysine of histone H3 (H3K4me3). PHD mutants lose the ability to undergo cellular senescence linking chromatin mark recognition with cellular senescence. ING1 and ING2 are localized in the cell nucleus and associated with chromatin modifying enzymes, linking tumor suppression directly to chromatin regulation. In line with this, the expression of ING1 in tumors is aberrant or identified point mutations are mostly localized in the PHD finger and affect histone binding. Interestingly, ING1 protein levels increase in replicative senescent cells, latter representing an efficient pathway to inhibit cancer proliferation. In association with this, suppression of p33ING1 expression prolongs replicative life span and is also sufficient to bypass oncogene-induced senescence. Recent analyses of ING1- and ING2-deficient mice confirm a tumor suppressive role of ING1 and ING2 and also indicate an essential role of ING2 in meiosis.Here we summarize the activity of ING1 and ING2 as tumor suppressors, chromatin factors and in development.

  17. Relating transverse structure of various parton distributions

    CERN Document Server

    Maji, Tanmay; Chakrabarti, D; Teryaev, O V

    2015-01-01

    We present the results of T-even TMDs in a light front quark-diquark model of nucleons with the wave functions constructed from the soft-wall AdS/QCD prediction. The relations amongst TMDs are discussed. The $p_\\perp$ dependence of the TMDs are compared with the $t$-dependence of the GPDs. AdS/QCD wave function provides an explanation behind the approximate $x$ and $p_\\perp$ factorization observed in lattice TMD calculations.

  18. Chromatin structure of adenovirus DNA throughout infection

    OpenAIRE

    Giberson, Andrea N.; Davidson, Adam R.; Parks, Robin J.

    2011-01-01

    For more than half a century, researchers have studied the basic biology of Adenovirus (Ad), unraveling the subtle, yet profound, interactions between the virus and the host. These studies have uncovered previously unknown proteins and pathways crucial for normal cell function that the virus manipulates to achieve optimal virus replication and gene expression. In the infecting virion, the viral DNA is tightly condensed in a virally encoded protamine-like protein which must be remodeled within...

  19. Embryonic stem cell differentiation: a chromatin perspective.

    Science.gov (United States)

    Rasmussen, Theodore P

    2003-11-13

    Embryonic stem (ES) cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to cell-type. Therefore, a potent epigenetic system has evolved to coordinate and maintain tissue-specific patterns of gene expression. Recent advances show that mechanisms that govern epigenetic regulation of gene expression are rooted in the details of chromatin dynamics. As embryonic cells differentiate, certain genes are activated while others are silenced. These activation and silencing events are exquisitely coordinated with the allocation of cell lineages. Remodeling of the chromatin of developmentally-regulated genes occurs in conjunction with lineage commitment. Oocytes, early embryos, and ES cells contain potent chromatin-remodeling activities, an observation that suggests that chromatin dynamics may be especially important for early lineage decisions. Chromatin dynamics are also involved in the differentiation of adult stem cells, where the assembly of specialized chromatin upon tissue-specific genes has been studied in fine detail. The next few years will likely yield striking advances in the understanding of stem cell differentiation and developmental biology from the perspective of chromatin dynamics.

  20. Embryonic stem cell differentiation: A chromatin perspective

    Directory of Open Access Journals (Sweden)

    Rasmussen Theodore P

    2003-11-01

    Full Text Available Abstract Embryonic stem (ES cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to cell-type. Therefore, a potent epigenetic system has evolved to coordinate and maintain tissue-specific patterns of gene expression. Recent advances show that mechanisms that govern epigenetic regulation of gene expression are rooted in the details of chromatin dynamics. As embryonic cells differentiate, certain genes are activated while others are silenced. These activation and silencing events are exquisitely coordinated with the allocation of cell lineages. Remodeling of the chromatin of developmentally-regulated genes occurs in conjunction with lineage commitment. Oocytes, early embryos, and ES cells contain potent chromatin-remodeling activities, an observation that suggests that chromatin dynamics may be especially important for early lineage decisions. Chromatin dynamics are also involved in the differentiation of adult stem cells, where the assembly of specialized chromatin upon tissue-specific genes has been studied in fine detail. The next few years will likely yield striking advances in the understanding of stem cell differentiation and developmental biology from the perspective of chromatin dynamics.

  1. Structure of Leptin Receptor Related with Obesity

    DEFF Research Database (Denmark)

    Toleikis, Zigmantas

    The hormone leptin is central to obesity, but the molecular processes underlying the activation of the leptin receptor are unknown. To further the understanding of the system, an atomic resolution structure of this cytokine type I receptor in the unbound inactive form and in the activated bound...... of the receptor, while the D5 domain is the central leptin-binding domain, implicated in the first steps of activation. Both domains are characterized by a fibronectin type III fold and both contain a conserved WSXWS motif (X represents an unconserved amino acid residue), a distinct feature of the cytokine...... receptors. This motif is thought to play a major role in correct folding and activation of the receptor. The complex between leptin and the D5CA domain was analyzed using nuclear magnetic resonance spectroscopy and the amino acid residues implicated in the binding were determined. To investigate which parts...

  2. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling.

    Science.gov (United States)

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA-DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx (-/-) pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration.

  3. Histone H4 acetylation required for chromatin decompaction during DNA replication.

    Science.gov (United States)

    Ruan, Kun; Yamamoto, Takaharu G; Asakawa, Haruhiko; Chikashige, Yuji; Kimura, Hiroshi; Masukata, Hisao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2015-07-30

    Faithful DNA replication is a prerequisite for cell proliferation. Several cytological studies have shown that chromosome structures alter in the S-phase of the cell cycle. However, the molecular mechanisms behind the alteration of chromosome structures associated with DNA replication have not been elucidated. Here, we investigated chromatin structures and acetylation of specific histone residues during DNA replication using the meiotic nucleus of the fission yeast Schizosaccharomyces pombe. The S. pombe meiotic nucleus provides a unique opportunity for measuring the levels of compaction of chromatin along the chromosome in a defined orientation. By direct measurement of chromatin compaction in living cells, we demonstrated that decompaction of chromatin occurs during meiotic DNA replication. This chromatin decompaction was suppressed by depletion of histone acetyltransferase Mst1 or by arginine substitution of specific lysine residues (K8 and K12) of histone H4. These results suggest that acetylation of histone H4 residues K8 and K12 plays a critical role in loosening chromatin structures during DNA replication.

  4. Sense and antisense transcription are associated with distinct chromatin architectures across genes.

    Science.gov (United States)

    Murray, Struan C; Haenni, Simon; Howe, Françoise S; Fischl, Harry; Chocian, Karolina; Nair, Anitha; Mellor, Jane

    2015-09-18

    Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.

  5. Activation of DNA damage response signaling by condensed chromatin.

    Science.gov (United States)

    Burgess, Rebecca C; Burman, Bharat; Kruhlak, Michael J; Misteli, Tom

    2014-12-11

    The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.

  6. Chromatin targeting drugs in cancer and immunity.

    Science.gov (United States)

    Prinjha, Rab; Tarakhovsky, Alexander

    2013-08-15

    Recent advances in the enzymology of transcription and chromatin regulation have led to the discovery of proteins that play a prominent role in cell differentiation and the maintenance of specialized cell functions. Knowledge about post-synthetic DNA and histone modifications as well as information about the rules that guide the formation of multimolecular chromatin-bound complexes have helped to delineate gene-regulating pathways and describe how these pathways are altered in various pathological conditions. The present review focuses on the emerging area of therapeutic interference with chromatin function for the purpose of cancer treatment and immunomodulation.

  7. Chromatin proteins and RNA are associated with DNA during all phases of mitosis

    OpenAIRE

    L Black, Kathryn; Petruk, Svetlana; Fenstermaker, Tyler K.; Hodgson, Jacob W.; Caplan, Jeffrey L.; Brock, Hugh W; Mazo, Alexander

    2016-01-01

    Mitosis brings about major changes to chromosome and nuclear structure. We used recently developed proximity ligation assay-based techniques to investigate the association with DNA of chromatin-associated proteins and RNAs in Drosophila embryos during mitosis. All groups of tested proteins, histone-modifying and chromatin-remodeling proteins and methylated histones remained in close proximity to DNA during all phases of mitosis. We also found that RNA transcripts are associated with DNA durin...

  8. Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).

    Science.gov (United States)

    Soyer, Jessica L; Möller, Mareike; Schotanus, Klaas; Connolly, Lanelle R; Galazka, Jonathan M; Freitag, Michael; Stukenbrock, Eva H

    2015-06-01

    The presence or absence of specific transcription factors, chromatin remodeling machineries, chromatin modification enzymes, post-translational histone modifications and histone variants all play crucial roles in the regulation of pathogenicity genes. Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) provides an important tool to study genome-wide protein-DNA interactions to help understand gene regulation in the context of native chromatin. ChIP-seq is a convenient in vivo technique to identify, map and characterize occupancy of specific DNA fragments with proteins against which specific antibodies exist or which can be epitope-tagged in vivo. We optimized existing ChIP protocols for use in the wheat pathogen Zymoseptoria tritici and closely related sister species. Here, we provide a detailed method, underscoring which aspects of the technique are organism-specific. Library preparation for Illumina sequencing is described, as this is currently the most widely used ChIP-seq method. One approach for the analysis and visualization of representative sequence is described; improved tools for these analyses are constantly being developed. Using ChIP-seq with antibodies against H3K4me2, which is considered a mark for euchromatin or H3K9me3 and H3K27me3, which are considered marks for heterochromatin, the overall distribution of euchromatin and heterochromatin in the genome of Z. tritici can be determined. Our ChIP-seq protocol was also successfully applied to Z. tritici strains with high levels of melanization or aberrant colony morphology, and to different species of the genus (Z. ardabiliae and Z. pseudotritici), suggesting that our technique is robust. The methods described here provide a powerful framework to study new aspects of chromatin biology and gene regulation in this prominent wheat pathogen.

  9. Accumulation of DNA damage-induced chromatin alterations in tissue-specific stem cells: the driving force of aging?

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available Accumulation of DNA damage leading to stem cell exhaustion has been proposed to be a principal mechanism of aging. Using 53BP1-foci as a marker for DNA double-strand breaks (DSBs, hair follicle stem cells (HFSCs in mouse epidermis were analyzed for age-related DNA damage response (DDR. We observed increasing amounts of 53BP1-foci during the natural aging process independent of telomere shortening and after protracted low-dose radiation, suggesting substantial accumulation of DSBs in HFSCs. Electron microscopy combined with immunogold-labeling showed multiple small 53BP1 clusters diffusely distributed throughout the highly compacted heterochromatin of aged HFSCs, but single large 53BP1 clusters in irradiated HFSCs. These remaining 53BP1 clusters did not colocalize with core components of non-homologous end-joining, but with heterochromatic histone modifications. Based on these results we hypothesize that these lesions were not persistently unrepaired DSBs, but may reflect chromatin rearrangements caused by the repair or misrepair of DSBs. Flow cytometry showed increased activation of repair proteins and damage-induced chromatin modifications, triggering apoptosis and cellular senescence in irradiated, but not in aged HFSCs. These results suggest that accumulation of DNA damage-induced chromatin alterations, whose structural dimensions reflect the complexity of the initial genotoxic insult, may lead to different DDR events, ultimately determining the biological outcome of HFSCs. Collectively, our findings support the hypothesis that aging might be largely the remit of structural changes to chromatin potentially leading to epigenetically induced transcriptional deregulation.

  10. DNA methylation is dispensable for changes in global chromatin architecture but required for chromocentre formation in early stem cell differentiation.

    Science.gov (United States)

    Hassan-Zadeh, Vahideh; Rugg-Gunn, Peter; Bazett-Jones, David P

    2017-01-13

    Epiblast stem cells (EpiSCs), which are pluripotent cells isolated from early post-implantation mouse embryos (E5.5), show both similarities and differences compared to mouse embryonic stem cells (mESCs), isolated earlier from the inner cell mass (ICM) of the E3.5 embryo. Previously, we have observed that while chromatin is very dispersed in E3.5 ICM, compact chromatin domains and chromocentres appear in E5.5 epiblasts after embryo implantation. Given that the observed chromatin re-organization in E5.5 epiblasts coincides with an increase in DNA methylation, in this study, we aimed to examine the role of DNA methylation in chromatin re-organization during the in vitro conversion of ESCs to EpiSCs. The requirement for DNA methylation was determined by converting both wild-type and DNA methylation-deficient ESCs to EpiSCs, followed by structural analysis with electron spectroscopic imaging (ESI). We show that the chromatin re-organization which occurs in vivo can be re-capitulated in vitro during the ESC to EpiSC conversion. Indeed, after 7 days in EpiSC media, compact chromatin domains begin to appear throughout the nuclear volume, creating a chromatin organization similar to E5 epiblasts and embryo-derived EpiSCs. Our data demonstrate that DNA methylation is dispensable for this global chromatin re-organization but required for the compaction of pericentromeric chromatin into chromocentres.

  11. Cytomixis doesn’t induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes

    Directory of Open Access Journals (Sweden)

    Sergey eMursalimov

    2015-10-01

    Full Text Available Cytomixis is a poorly studied process of nuclear migration between plant cells. It is so far unknown what drives cytomixis and what is the functional state of the chromatin migrating between cells. Using immunostaining, we have analyzed the distribution of posttranslational histone modifications (methylation, acetylation, and phosphorylation that reflect the functional state of chromatin in the tobacco microsporocytes involved in cytomixis. We demonstrate that the chromatin in the cytomictic cells does not differ from the chromatin in intact microsporocytes according to all 14 analyzed histone modification types. We have also for the first time demonstrated that the migrating chromatin contains normal structures of the synaptonemal complex and lacks any signs of apoptosis. As has been shown, the chromatin migrating between cells in cytomixis is neither selectively heterochromatized nor degraded both before its migration to another cell and after it enters a recipient cell as micronuclei. We also showed that cytomictic chromatin contains marks typical for transcriptionally active chromatin as well as heterochromatin. Moreover, marks typical for chromosome condensation, synaptonemal complex formation and key proteins required for the formation of bivalents were also detected at migrated chromatin.

  12. Notes on a "printomere" mechanism of cellular memory and ion regulation of chromatin configurations.

    Science.gov (United States)

    Olovnikov, A M

    1999-12-01

    According to the proposed hypothesis, the memory of a cell about the achieved state of cytodifferentiation is based on the existence of a postulated genetic structure termed here as a "printomere". A printomere is a relatively small linear DNA fragment which is laterally located on the chromosomal body and armed at its termini with peculiar analogs of chromosomal telomeres, which in this case are designated as "acromeres". The printomere locates along its chromosomal original--protoprintomere--and is bound to this chromosomal segment via proteins. The printomere codes for so-called fountain RNAs (fRNAs). Molecules of fRNAs as a part of ribonucleoproteins, or fRNPs, specifically bind to the complementary for them DNA sites, or "fions", that are dispersed nearby many structural genes. fRNP--fion complexes help to open, for a very short time, closed ion channels in the inner nuclear membrane, and this occurs strictly nearby corresponding genes. Dosed and local entry of the specific ions from the perinuclear cistern of the nucleus modifies the local pattern of the chromatin decompaction and modulates the expression level of the corresponding genes. The implied role of the fRNAs was considered in the so-called "fountain theory" (A. M. Olovnikov (1997) Int. J. Dev. Biol., 41: 923-931; A. M. Olovnikov (1999) J. Anti-Aging Medicine, 2: 57-71; A. M. Olovnikov (1999) Advances in Gerontology (St. Petersburg), 3: 54-64). Transcripts (fRNAs) coded by printomeres participate in the creation and maintenance of the specific patterns of decompaction and compaction of chromatin, which are characteristic for corresponding cytodifferentiations. Printomeres of various differentiations differ in their nucleotide sequences. The printomere and its chromosomal original, the protoprintomere, located co-linearly, side by side with it, have their own ori. Their length may vary from several thousands of base pairs to tens of thousands of b.p. Printomere bound by its arms to the chromosomal DNA

  13. Spacetime Causal Structure and Dimension from Horismotic Relation

    Directory of Open Access Journals (Sweden)

    O. C. Stoica

    2016-01-01

    Full Text Available A reflexive relation on a set can be a starting point in defining the causal structure of a spacetime in General Relativity and other relativistic theories of gravity. If we identify this relation as the relation between lightlike separated events (the horismos relation, we can construct in a natural way the entire causal structure: causal and chronological relations, causal curves, and a topology. By imposing a simple additional condition, the structure gains a definite number of dimensions. This construction works with both continuous and discrete spacetimes. The dimensionality is obtained also in the discrete case, so this approach can be suited to prove the fundamental conjecture of causal sets. Other simple conditions lead to a differentiable manifold with a conformal structure (the metric up to a scaling factor as in Lorentzian manifolds. This structure provides a simple and general reconstruction of the spacetime in relativistic theories of gravity, which normally requires topological structure, differential structure, and geometric structure (which decomposes in the conformal structure, giving the causal relations and the volume element. Motivations for such a reconstruction come from relativistic theories of gravity, where the conformal structure is important, from the problem of singularities, and from Quantum Gravity, where various discretization methods are pursued, particularly in the causal sets approach.

  14. Interaction of the Arabidopsis UV-B-Specific Signaling Component UVR8 with Chromatin

    Institute of Scientific and Technical Information of China (English)

    Catherine Cloix; Gareth I.Jenkins

    2008-01-01

    Arabidopsis UV RESISTANCE LOCUS8 (UVR8) is a UV-B-specific signaling component that regulates expression of a range of genes concerned with UV protection. Here, we investigate the interaction of UVR8 with chromatin. Using antibodies specific to UVR8 in chromatin immunoprecipitation (CHIP) assays with wild-type plants, we show that native UVR8 binds to chromatin in vivo. Similar experiments using an anti-GFP antibody with plants expressing a GFP-UVR8 fusion show that UVR8 associates with a relatively small region of chromatin containing the HY5 gene. UVR8 interacts with chromatin containing the promoter regions of other genes, but not with all the genes it regulates. UV-B is not required for the interaction of UVR8 with chromatin because association with several gene loci is observed in the absence of UV-B. Pulldown assays demonstrate that UVR8 associates with histones in vivo and competition experiments indicate that the interaction is preferentially with histone H2B. ChIP experiments using antibodies that recognize specific histone modifications indicate that the UV-B-stimulated transcription of some genes may be correlated with histone modification. In particular, the ELIP1 promoter showed a significant enrichment of diacetyl histone H3 (K9/K14) following UV-B exposure.These findings increase understanding of the interaction of the key UV-B-specific regulator UVR8 with chromatin.

  15. The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes.

    Science.gov (United States)

    Estandarte, Ana Katrina; Botchway, Stanley; Lynch, Christophe; Yusuf, Mohammed; Robinson, Ian

    2016-08-16

    Chromatin undergoes dramatic condensation and decondensation as cells transition between the different phases of the cell cycle. The organization of chromatin in chromosomes is still one of the key challenges in structural biology. Fluorescence lifetime imaging (FLIM), a technique which utilizes a fluorophore's fluorescence lifetime to probe changes in its environment, was used to investigate variations in chromatin compaction in fixed human chromosomes. Fixed human metaphase and interphase chromosomes were labeled with the DNA minor groove binder, DAPI, followed by measurement and imaging of the fluorescence lifetime using multiphoton excitation. DAPI lifetime variations in metaphase chromosome spreads allowed mapping of the differentially compacted regions of chromatin along the length of the chromosomes. The heteromorphic regions of chromosomes 1, 9, 15, 16, and Y, which consist of highly condensed constitutive heterochromatin, showed statistically significant shorter DAPI lifetime values than the rest of the chromosomes. Differences in the DAPI lifetimes for the heteromorphic regions suggest differences in the structures of these regions. DAPI lifetime variations across interphase nuclei showed variation in chromatin compaction in interphase and the formation of chromosome territories. The successful probing of differences in chromatin compaction suggests that FLIM has enormous potential for application in structural and diagnostic studies.

  16. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1999-01-01

    In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism in eukar......In eukaryotes, DNA is packaged into chromatin, a compact structure that must be disrupted when genes are transcribed by RNA polymerase II. For transcription to take place, chromatin is remodeled via nucleosome disruption or displacement, a fundamental transcriptional regulatory mechanism...... in eukaryotic organisms. Here we show that the yeast chromatin-remodeling complex, RSC (remodels the structure of chromatin), isolated on the basis of homology to the SWI/SNF complex, is required for proper transcriptional regulation and nucleosome positioning in the highly inducible CHA1 promoter...... of the CHA1 promoter is disrupted, an architectural change normally only observed during transcriptional induction. In addition, deletion of the gene-specific activator Cha4p did not affect derepression of CHA1 in cells depleted for Swh3p. Thus, CHA1 constitutes a target for the RSC complex, and we propose...

  17. The chromatin remodeller ATRX: a repeat offender in human disease.

    Science.gov (United States)

    Clynes, David; Higgs, Douglas R; Gibbons, Richard J

    2013-09-01

    The regulation of chromatin structure is of paramount importance for a variety of fundamental nuclear processes, including gene expression, DNA repair, replication, and recombination. The ATP-dependent chromatin-remodelling factor ATRX (α thalassaemia/mental retardation X-linked) has emerged as a key player in each of these processes. Exciting recent developments suggest that ATRX plays a variety of key roles at tandem repeat sequences within the genome, including the deposition of a histone variant, prevention of replication fork stalling, and the suppression of a homologous recombination-based pathway of telomere maintenance. Here, we provide a mechanistic overview of the role of ATRX in each of these processes, and propose how they may be connected to give rise to seemingly disparate human diseases.

  18. Chromatin proteins and modifications as drug targets

    DEFF Research Database (Denmark)

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control...

  19. Involvement of ZFPIP/Zfp462 in chromatin integrity and survival of P19 pluripotent cells

    Energy Technology Data Exchange (ETDEWEB)

    Masse, Julie; Laurent, Audrey; Nicol, Barbara; Guerrier, Daniel; Pellerin, Isabelle; Deschamps, Stephane [UMR CNRS 6061, Institut of Genetique et Developpement de Rennes (IGDR), Faculte de Medecine, Universite de Rennes 1, 35043 Rennes cedex (France)

    2010-04-15

    Toti- or pluripotent cells proliferation and/or differentiation have been shown to be strongly related to nuclear chromatin organization and structure over the last past years. We have recently identified ZFPIP/Zfp462 as a zinc finger nuclear factor necessary for correct cell division during early embryonic developmental steps of vertebrates. We thus questioned whether this factor was playing a general role during cell division or if it was somehow involved in embryonic cell fate or differentiation. To achieve this goal, we performed a knock-down experiment in the pluripotent P19 and differentiated 3T3 cell lines, both expressing endogenous ZFPIP/Zfp462. Using specific shRNA directed against ZFPIP/Zfp462 transcripts, we demonstrated that depletion of this protein induced cell death in P19 but had no effect in 3T3 cells. In addition, in the absence of the protein, the P19 cells exhibited a complete destructuration of pericentromeric domains associated with a redistribution of the HP1{alpha} proteins and an increase in DNA satellites transcribed RNAs level. These data suggested an instrumental role of ZFPIP/Zfp462 in maintaining the chromatin structure of pluripotent cells.

  20. Global assemblages and Structural Models of International Relations

    DEFF Research Database (Denmark)

    Corry, Olaf

    2014-01-01

    This chapter argues that 'assemblages', although rooted in a deep skepticism of grand theory, could also be useful for re-thinking structure and models of structure in international relations. IR models of structure usually restrict themselves to how subjects are ordered. The idea of an ordering...

  1. Chromatin roadblocks to reprogramming 50 years on

    Directory of Open Access Journals (Sweden)

    Skene Peter J

    2012-10-01

    Full Text Available Abstract A half century after John Gurdon demonstrated nuclear reprogramming, for which he was awarded the 2012 Nobel Prize in Physiology or Medicine, his group provides insights into the molecular mechanisms whereby chromatin remodeling is required for nuclear reprogramming. Among the issues addressed in Gurdon's latest work are the chromatin impediments to artificially induced reprogramming, discovered by Shinya Yamanaka, who shared the award with Gurdon. See research article: http://www.epigeneticsandchromatin.com/content/5/1/17

  2. Chromatin Dynamics During DNA Replication and Uncharacterized Replication Factors determined by Nascent Chromatin Capture (NCC) Proteomics

    Science.gov (United States)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Bau; Kustatscher, Georg; Nakamura, Kyosuke; de Lima Alves, Flavia; Menard, Patrice; Mejlvang, Jakob; Rappsilber, Juri; Groth, Anja

    2014-01-01

    SUMMARY To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use Nascent Chromatin Capture (NCC) to profile chromatin proteome dynamics during replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity-purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3995 proteins. The replication machinery and 485 chromatin factors like CAF-1, DNMT1, SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, while H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment with experimentally derived chromatin probabilities to predict a function in nascent chromatin for 93 uncharacterized proteins and identify FAM111A as a replication factor required for PCNA loading. Together, this provides an extensive resource to understand genome and epigenome maintenance. PMID:24561620

  3. Till disassembly do us part: a happy marriage of nuclear envelope and chromatin.

    Science.gov (United States)

    Tsuchiya, Yuichi

    2008-02-01

    A characteristic feature of eukaryotic cells is the presence of nuclear envelope (NE) which separates genomic DNA from cytoplasm. NE is composed of inner nuclear membrane (INM), which interacts with chromatin, and outer nuclear membrane, which is connected to endoplasmic reticulum. Nuclear pore complexes are inserted into NE to form transport channels between nucleus and cytoplasm. In metazoan cells, an intermediate filament-based meshwork called as nuclear lamina exists between INM and chromatin. Sophisticated collaboration of these molecular machineries is necessary for the structure and functions of NE. Recent research advances have revealed that NE dynamically communicates with chromatin and cytoskeleton to control multiple nuclear functions. In this mini review, I briefly summarize the basic concepts and current topics of functional relationships between NE and chromatin.

  4. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics

    Science.gov (United States)

    Aguilar, Carlos A.; Craighead, Harold G.

    2013-10-01

    Deoxyribonucleic acid (DNA) is the blueprint on which life is based and transmitted, but the way in which chromatin -- a dynamic complex of nucleic acids and proteins -- is packaged and behaves in the cellular nucleus has only begun to be investigated. Epigenetic modifications sit 'on top of' the genome and affect how DNA is compacted into chromatin and transcribed into ribonucleic acid (RNA). The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and, in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations and, therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA modifications, chromatin modifications and higher-order chromatin structures.

  5. The nuclear matrix and the regulation of chromatin organization and function.

    Science.gov (United States)

    Davie, J R

    1995-01-01

    Nuclear DNA is organized into loop domains, with the base of the loop being bound to the nuclear matrix. Loops with transcriptionally active and/or potentially active genes have a DNase I-sensitive chromatin structure, while repressed chromatin loops have a condensed configuration that is essentially invisible to the transcription machinery. Core histone acetylation and torsional stress appear to be responsible for the generation and/or maintenance of the open potentially active chromatin loops. The transcriptionally active region of the loop makes several dynamic attachments with the nuclear matrix and is associated with core histones that are dynamically acetylated. Histone acetyltransferase and deacetylase, which catalyze this rapid acetylation and deacetylation, are bound to the nuclear matrix. Several transcription factors are components of the nuclear matrix. Histone acetyltransferase, deacetylase, and transcription factors may contribute to the dynamic attachment of the active chromatin domains with the nuclear matrix at sites of ongoing transcription.

  6. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop.

    Science.gov (United States)

    Ariel, Federico; Jegu, Teddy; Latrasse, David; Romero-Barrios, Natali; Christ, Aurélie; Benhamed, Moussa; Crespi, Martin

    2014-08-07

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes.

  7. ATRX in chromatin assembly and genome architecture during development and disease.

    Science.gov (United States)

    Bérubé, Nathalie G

    2011-10-01

    The regulation of genome architecture is essential for a variety of fundamental cellular phenomena that underlie the complex orchestration of mammalian development. The ATP-dependent chromatin remodeling protein ATRX is emerging as a key regulatory component of nucleosomal dynamics and higher order chromatin conformation. Here we provide an overview of the role of ATRX at chromatin and during development, and discuss recent studies exposing a repertoire of ATRX functions at heterochromatin, in gene regulation, and during mitosis and meiosis. Exciting new progress on several fronts suggest that ATRX operates in histone variant deposition and in the modulation of higher order chromatin structure. Not surprisingly, dysfunction or absence of ATRX protein has devastating consequences on embryonic development and leads to human disease.

  8. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P;

    2010-01-01

    cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression......Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... to dimethyl sulfoxide (DMSO) or after LIF withdrawal and display increased colony formation. UTF1 KD ES cells display extensive chromatin decondensation, reflected by a dramatic increase in nucleosome release on micrococcal nuclease (MNase) treatment and enhanced MNase sensitivity of UTF1 target genes in UTF1...

  9. Visualization of chromatin folding patterns in chicken erythrocytes by atomic force microscopy (AFM)

    Institute of Scientific and Technical Information of China (English)

    QIANRUOLAN; ZHENGXIALIU; 等

    1997-01-01

    The organization of the higher order structure of chromatin in chicken erythrocytes has been examined with tapping-mode scanning force microscopy under conditions close to their native envirinment.Reproducible highresolution AFM images of chromatin compaction at several levels can be demonstrated.An extended beads-on-astring (width of - 15-20nm,height of - 2-3nm for each individual nucleosome) can be consistently observed.Furthermore,superbeade (width of - 40nm,height of - 7nm) are demonstrated.Visualization of the solenoid conformation at the level of 30nm chromatin fiber is attained either by using AFM or by using electron microscopy.In addition,tightly coiled chromatin fibers (- 50-60nm and - 90-110nm) can be revealed.Our data suggest that the chromatin in the interphase nucleus of chicken erythrocyte represents a high-order conformation and AFM provides useful high-resolution structural information concerning the folding pattern of interphase chromatin fibers.

  10. Effect of Seminal Vesicles and Dithiotritol (Dtt on Stability of Sperm Chromatin

    Directory of Open Access Journals (Sweden)

    MH Nasr-Esfahani

    2005-04-01

    Full Text Available Introduction: Different studies have shown that there is no relation between sperm chromatin stability and fertilization rate in both IVF and ICSI patients. However, the relation between SDS tests, as a detergent, along with DTT as reducer of disulphide bridges has not been studied so far in ICSI patients. Since different concentrations of DTT can induce different degrees of sperm chromatin decondensation, the aim of this study was to evaluate the effect of different concentrations of DTT on sperm chromatin decondensation in IVF and ICSI cases. Methods: During this study, 85 patients were divided into two groups according to their treatment procedure (IVF or ICSI.Semen samples of each patient was evaluated for sperm chromatin tests including SDS, SDS+EDTA & SDS+DTT for assessment of free thiole groups level (-SH, amount of non covalent bond between Zn and thioles(-SH Zn SH- and levels of disulfide bond (-S-S- in sperm chromatin, respectively. In this study, seminal fructose concentration, corrected seminal fructose level and true corrected fructose level as indicators of seminal vesicle function on sperm chromatin stability were assessed. Results: No correlation was observed between any of the above tests and rate of fertilization, both in IVF and ICSI cases. However, in IVF patients, a significant correlation was observed between SDS, SDS+DTT test and seminal fructose level, while in ICSI patients, only a significant correlation was observed between SDS+DTT and corrected or true fructose concentration. Conclusion: Since no correlation was observed between sperm chromatin test and fertilization rate, it is suggested that the chromatin status of these samples are adequate for fertilization to take place and extent of disulphide bridges has no effect on fertilization rate. However, the amount of disulphide bound present in sperms of ICSI and IVF patients are different, and this difference is related to seminal vesicle performance in these patients.

  11. Analogies (Adages) as Aids for Comprehending Structural Relations in Text.

    Science.gov (United States)

    Moreno, Virginia; Di Vesta, Francis J.

    1994-01-01

    In 2 experiments involving a total of 43 college students, adages (relational metaphors) were found to facilitate processing of general ideas and higher-order principles. The higher the degree of structural relations embedded in the titles of passages, the greater the recall and accessibility of system-related ideas. (SLD)

  12. Absence of canonical marks of active chromatin in developmentally regulated genes.

    Science.gov (United States)

    Pérez-Lluch, Sílvia; Blanco, Enrique; Tilgner, Hagen; Curado, Joao; Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-10-01

    The interplay of active and repressive histone modifications is assumed to have a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that the transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated with the stable production of RNA, whereas unmarked chromatin would permit rapid gene activation and deactivation during development. In the latter case, regulation by transcription factors would have a comparatively more important regulatory role than chromatin marks.

  13. Nucleosome conformational flexibility in experiments with single chromatin fibers

    Directory of Open Access Journals (Sweden)

    Sivolob A. V.

    2010-09-01

    Full Text Available Studies on the chromatin nucleosome organization play an ever increasing role in our comprehension of mechanisms of the gene activity regulation. This minireview describes the results on the nucleosome conformational flexibility, which were obtained using magnetic tweezers to apply torsion to oligonucleosome fibers reconstituted on single DNA molecules. Such an approach revealed a new structural form of the nucleosome, the reversome, in which DNA is wrapped in a right-handed superhelix around a distorted histone octamer. Molecular mechanisms of the nucleosome structural flexibility and its biological relevance are discussed.

  14. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.

    Science.gov (United States)

    Lo, Stanley M; McElroy, Kyle A; Francis, Nicole J

    2012-01-01

    Chromatin architecture is regulated through both enzymatic and non-enzymatic activities. For example, the Polycomb Group (PcG) proteins maintain developmental gene silencing using an array of chromatin-based mechanisms. The essential Drosophila PcG protein, Posterior Sex Combs (PSC), compacts chromatin and inhibits chromatin remodeling and transcription through a non-enzymatic mechanism involving nucleosome bridging. Nucleosome bridging is achieved through a combination of nucleosome binding and self-interaction. Precisely how PSC interacts with chromatin to bridge nucleosomes is not known and is the subject of this work. We determine the stoichiometry of PSC-chromatin interactions in compact chromatin (in which nucleosomes are bridged) using Scanning Transmission Electron Microscopy (STEM). We find that full compaction occurs with one PSC per nucleosome. In addition to compacting chromatin, we show that PSC oligomerizes nucleosome arrays. PSC-mediated oligomerization of chromatin occurs at similar stoichiometry as compaction suggesting it may also involve nucleosome bridging. Interactions between the tail of histone H4 and the acidic patch of histone H2A are important for chromatin folding and oligomerization, and several chromatin proteins bind the histone H2A acidic patch. However, mutation of the acidic patch of histone H2A does not affect PSC's ability to inhibit chromatin remodeling or bridge nucleosomes. In fact, PSC does not require nucleosomes for bridging activity but can bridge naked DNA segments. PSC clusters nucleosomes on sparsely assembled templates, suggesting it interacts preferentially with nucleosomes over bare DNA. This may be due to the ability of PSC to bind free histones. Our data are consistent with a model in which each PSC binds a nucleosome and at least one other PSC to directly bridge nucleosomes and compact chromatin, but also suggest that naked DNA can be included in compacted structures. We discuss how our data highlight the diversity

  15. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.

    Directory of Open Access Journals (Sweden)

    Stanley M Lo

    Full Text Available Chromatin architecture is regulated through both enzymatic and non-enzymatic activities. For example, the Polycomb Group (PcG proteins maintain developmental gene silencing using an array of chromatin-based mechanisms. The essential Drosophila PcG protein, Posterior Sex Combs (PSC, compacts chromatin and inhibits chromatin remodeling and transcription through a non-enzymatic mechanism involving nucleosome bridging. Nucleosome bridging is achieved through a combination of nucleosome binding and self-interaction. Precisely how PSC interacts with chromatin to bridge nucleosomes is not known and is the subject of this work. We determine the stoichiometry of PSC-chromatin interactions in compact chromatin (in which nucleosomes are bridged using Scanning Transmission Electron Microscopy (STEM. We find that full compaction occurs with one PSC per nucleosome. In addition to compacting chromatin, we show that PSC oligomerizes nucleosome arrays. PSC-mediated oligomerization of chromatin occurs at similar stoichiometry as compaction suggesting it may also involve nucleosome bridging. Interactions between the tail of histone H4 and the acidic patch of histone H2A are important for chromatin folding and oligomerization, and several chromatin proteins bind the histone H2A acidic patch. However, mutation of the acidic patch of histone H2A does not affect PSC's ability to inhibit chromatin remodeling or bridge nucleosomes. In fact, PSC does not require nucleosomes for bridging activity but can bridge naked DNA segments. PSC clusters nucleosomes on sparsely assembled templates, suggesting it interacts preferentially with nucleosomes over bare DNA. This may be due to the ability of PSC to bind free histones. Our data are consistent with a model in which each PSC binds a nucleosome and at least one other PSC to directly bridge nucleosomes and compact chromatin, but also suggest that naked DNA can be included in compacted structures. We discuss how our data

  16. The Chromatin Scaffold Protein SAFB1 Renders Chromatin Permissive for DNA Damage Signaling

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Toledo Lazaro, Luis Ignacio; Gudjonsson, Thorkell

    2013-01-01

    the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly...

  17. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation.

    Science.gov (United States)

    Srikumar, Tharan; Lewicki, Megan C; Costanzo, Michael; Tkach, Johnny M; van Bakel, Harm; Tsui, Kyle; Johnson, Erica S; Brown, Grant W; Andrews, Brenda J; Boone, Charles; Giaever, Guri; Nislow, Corey; Raught, Brian

    2013-04-01

    Like ubiquitin, the small ubiquitin-related modifier (SUMO) proteins can form oligomeric "chains," but the biological functions of these superstructures are not well understood. Here, we created mutant yeast strains unable to synthesize SUMO chains (smt3(allR)) and subjected them to high-content microscopic screening, synthetic genetic array (SGA) analysis, and high-density transcript profiling to perform the first global analysis of SUMO chain function. This comprehensive assessment identified 144 proteins with altered localization or intensity in smt3(allR) cells, 149 synthetic genetic interactions, and 225 mRNA transcripts (primarily consisting of stress- and nutrient-response genes) that displayed a >1.5-fold increase in expression levels. This information-rich resource strongly implicates SUMO chains in the regulation of chromatin. Indeed, using several different approaches, we demonstrate that SUMO chains are required for the maintenance of normal higher-order chromatin structure and transcriptional repression of environmental stress response genes in budding yeast.

  18. Ephemeral Protein Binding to DNA Shapes Stable Nuclear Bodies and Chromatin Domains.

    Science.gov (United States)

    Brackley, Chris A; Liebchen, Benno; Michieletto, Davide; Mouvet, Francois; Cook, Peter R; Marenduzzo, Davide

    2017-03-28

    Fluorescence microscopy reveals that the contents of many (membrane-free) nuclear bodies exchange rapidly with the soluble pool while the underlying structure persists; such observations await a satisfactory biophysical explanation. To shed light on this, we perform large-scale Brownian dynamics simulations of a chromatin fiber interacting with an ensemble of (multivalent) DNA-binding proteins able to switch between an "on" (binding) and an "off" (nonbinding) state. This system provides a model for any DNA-binding protein that can be posttranslationally modified to change its affinity for DNA (e.g., through phosphorylation). Protein switching is a nonequilibrium process, and it leads to the formation of clusters of self-limiting size, where individual proteins in a cluster exchange with the soluble pool with kinetics similar to those seen in photobleaching experiments. This behavior contrasts sharply with that exhibited by nonswitching proteins, which are permanently in the on-state; when these bind to DNA nonspecifically, they form clusters that grow indefinitely in size. To explain these findings, we propose a mean-field theory from which we obtain a scaling relation between the typical cluster size and the protein switching rate. Protein switching also reshapes intrachromatin contacts to give networks resembling those seen in topologically associating domains, as switching markedly favors local (short-range) contacts over distant ones. Our results point to posttranslational modification of chromatin-bridging proteins as a generic mechanism driving the self-assembly of highly dynamic, nonequilibrium, protein clusters with the properties of nuclear bodies.

  19. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage.

    Science.gov (United States)

    Ortega-Atienza, Sara; Wong, Victor C; DeLoughery, Zachary; Luczak, Michal W; Zhitkovich, Anatoly

    2016-01-08

    Many carcinogens damage both DNA and protein constituents of chromatin, and it is unclear how cells respond to this compound injury. We examined activation of the main DNA damage-responsive kinase ATM and formation of DNA double-strand breaks (DSB) by formaldehyde (FA) that forms histone adducts and replication-blocking DNA-protein crosslinks (DPC). We found that low FA doses caused a strong and rapid activation of ATM signaling in human cells, which was ATR-independent and restricted to S-phase. High FA doses inactivated ATM via its covalent dimerization and formation of larger crosslinks. FA-induced ATM signaling showed higher CHK2 phosphorylation but much lower phospho-KAP1 relative to DSB inducers. Replication blockage by DPC did not produce damaged forks or detectable amounts of DSB during the main wave of ATM activation, which did not require MRE11. Chromatin-monitoring KAT5 (Tip60) acetyltransferase was responsible for acetylation and activation of ATM by FA. KAT5 and ATM were equally important for triggering of intra-S-phase checkpoint and ATM signaling promoted recovery of normal human cells after low-dose FA. Our results revealed a major role of the KAT5-ATM axis in protection of replicating chromatin against damage by the endogenous carcinogen FA.

  20. Chromatin domains and prediction of MAR sequences.

    Science.gov (United States)

    Boulikas, T

    1995-01-01

    Polynuceosomes are constrained into loops or domains and are insulated from the effects of chromatin structure and torsional strain from flanking domains by the cross-complexation of matrix-attached regions (MARs) and matrix proteins. MARs or SARs have an average size of 500 bp, are spaced about every 30 kb, and are control elements maintaining independent realms of gene activity. A fraction of MARs may cohabit with core origin replication (ORIs) and another fraction might cohabit with transcriptional enhancers. DNA replication, transcription, repair, splicing, and recombination seem to take place on the nuclear matrix. Classical AT-rich MARs have been proposed to anchor the core enhancers and core origins complexed with low abundancy transcription factors to the nuclear matrix via the cooperative binding to MARs of abundant classical matrix proteins (topoisomerase II, histone H1, lamins, SP120, ARBP, SATB1); this creates a unique nuclear microenvironment rich in regulatory proteins able to sustain transcription, replication, repair, and recombination. Theoretical searches and experimental data strongly support a model of activation of MARs and ORIs by transcription factors. A set of 21 characteristics are deduced or proposed for MAR/ORI sequences including their enrichment in inverted repeats, AT tracts, DNA unwinding elements, replication initiator protein sites, homooligonucleotide repeats (i.e., AAA, TTT, CCC), curved DNA, DNase I-hypersensitive sites, nucleosome-free stretches, polypurine stretches, and motifs with a potential for left-handed and triplex structures. We are establishing Banks of ORI and MAR sequences and have undertaken a large project of sequencing a large number of MARs in an effort to determine classes of DNA sequences in these regulatory elements and to understand their role at the origins of replication and transcriptional enhancers.

  1. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.

    Directory of Open Access Journals (Sweden)

    Gary Hon

    2008-10-01

    Full Text Available Computational methods to identify functional genomic elements using genetic information have been very successful in determining gene structure and in identifying a handful of cis-regulatory elements. But the vast majority of regulatory elements have yet to be discovered, and it has become increasingly apparent that their discovery will not come from using genetic information alone. Recently, high-throughput technologies have enabled the creation of information-rich epigenetic maps, most notably for histone modifications. However, tools that search for functional elements using this epigenetic information have been lacking. Here, we describe an unsupervised learning method called ChromaSig to find, in an unbiased fashion, commonly occurring chromatin signatures in both tiling microarray and sequencing data. Applying this algorithm to nine chromatin marks across a 1% sampling of the human genome in HeLa cells, we recover eight clusters of distinct chromatin signatures, five of which correspond to known patterns associated with transcriptional promoters and enhancers. Interestingly, we observe that the distinct chromatin signatures found at enhancers mark distinct functional classes of enhancers in terms of transcription factor and coactivator binding. In addition, we identify three clusters of novel chromatin signatures that contain evolutionarily conserved sequences and potential cis-regulatory elements. Applying ChromaSig to a panel of 21 chromatin marks mapped genomewide by ChIP-Seq reveals 16 classes of genomic elements marked by distinct chromatin signatures. Interestingly, four classes containing enrichment for repressive histone modifications appear to be locally heterochromatic sites and are enriched in quickly evolving regions of the genome. The utility of this approach in uncovering novel, functionally significant genomic elements will aid future efforts of genome annotation via chromatin modifications.

  2. Host-viral effects of chromatin assembly factor 1 interaction with HCMV IE2

    Institute of Scientific and Technical Information of China (English)

    Sung-Bau Lee; Li-Jung Juan; Chung-Fan Lee; Derick S-C Ou; Kalpana Dulal; Liang-Hao Chang; Chen-Han Ma; Chien-Fu Huang; Hua Zhu; Young-Sun Lin

    2011-01-01

    Chromatin assembly factor 1 (CAF1) consisting of p150, p60 and p48 is known to assemble histones onto newly synthesized DNA and thus maintain the chromatin structure. Here, we show that CAF1 expression was induced in human cytomegalovirus (HCMV)-infected cells, concomitantly with global chromatin decondensation. This apparent conflict was thought to result, in part, from CAF1 mislocalization to compartments of HCMV DNA synthesis through binding of its largest subunit p150 to viral immediate-early protein 2 (IE2). p150 interaction with p60 and IE2 facilitated HCMV DNA synthesis. The IE2Q548R mutation, previously reported to result in impaired HCMV growth with unknown mechanism, disrupted IE2/p150 and IE2/histones association in our study. Moreover, IE2 interaction with histones partly depends on p150, and the HCMV-induced chromatin decondensation was reduced in cells ectopically expressing the p150 mutant defective in IE2 binding. These results not only indicate that CAF1 was hijacked by IE2 to facilitate the replication of the HCMV genome, suggesting chromatin assembly plays an important role in herpesviral DNA synthesis, but also provide a model of the virus-induced chromatin instability through CAF1.

  3. New mitotic regulators released from chromatin

    Directory of Open Access Journals (Sweden)

    Hideki eYokoyama

    2013-12-01

    Full Text Available Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP, produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.

  4. Relative Energy Dissipation: Sensitive to Structural Changes of Liquids

    Institute of Scientific and Technical Information of China (English)

    祖方遒; 郭丽君; 朱震刚; 凤仪

    2002-01-01

    Energy dissipation techniques, widely used in solid physics previously, are proven to be sensitive also to changes in liquid structure. It has been suggested from relative energy dissipation that changes in liquid structure can occur as a function of temperature in some ordinary binary systems such as Pb-Sn, In-Sn and In-Bi. This finding may be helpful to understand liquid structure changing patterns, therefore enriching the phenomenology of liquid state physics. This is significant for engineering practices.

  5. Comparing Structural Brain Connectivity by the Infinite Relational Model

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø; Herlau, Tue; Dyrby, Tim;

    2013-01-01

    The growing focus in neuroimaging on analyzing brain connectivity calls for powerful and reliable statistical modeling tools. We examine the Infinite Relational Model (IRM) as a tool to identify and compare structure in brain connectivity graphs by contrasting its performance on graphs from...... modeling tool for the identification of structure and quantification of similarity in graphs of brain connectivity in general....

  6. Chromatin Regulators in Pancreas Development and Diabetes.

    Science.gov (United States)

    Campbell, Stephanie A; Hoffman, Brad G

    2016-03-01

    The chromatin landscape of a cell is dynamic and can be altered by chromatin regulators that control nucleosome placement and DNA or histone modifications. Together with transcription factors, these complexes help dictate the transcriptional output of a cell and, thus, balance cell proliferation and differentiation while restricting tissue-specific gene expression. In this review, we describe current research on chromatin regulators and their roles in pancreas development and the maintenance of mature β cell function, which, once elucidated, will help us better understand how β cell differentiation occurs and is maintained. These studies have so far implicated proteins from several complexes that regulate DNA methylation, nucleosome remodeling, and histone acetylation and methylation that could become promising targets for diabetes therapy and stem cell differentiation.

  7. Chromatin proteins and modifications as drug targets

    DEFF Research Database (Denmark)

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control...... is a frequent event in disease, and the first epigenetic-based therapies for cancer treatment have been approved. A generation of new classes of potent and specific inhibitors for several chromatin-associated proteins have shown promise in preclinical trials. Although the biology of epigenetic regulation...

  8. Principle of relative positioning of structures in the human body.

    Science.gov (United States)

    Meng, Buliang; Pang, Ailan; Li, Ming

    2013-03-25

    The arrangement of various biological structures should generally ensure the safety of crucial structures and increase their working efficiency; however, other principles governing the relative positions of structures in humans have not been reported. The present study therefore investigated other principles using nerves and their companion vessels in the human body as an example. Nerves and blood vessels usually travel together and in the most direct way towards their targets. Human embryology, histology, and gross anatomy suggest that there are many possible positions for these structures during development. However, for mechanical reasons, tougher or stronger structures should take priority. Nerves are tougher than most other structures, followed by arteries, veins, and lymphatic vessels. Nerves should therefore follow the most direct route, and be followed by the arteries, veins, and lymphatic vessels. This general principle should be applicable to all living things.

  9. Principle of relative positioning of structures in the human body

    Institute of Scientific and Technical Information of China (English)

    Buliang Meng; Ailan Pang; Ming Li

    2013-01-01

    The arrangement of various biological structures should generally ensure the safety of crucial structures and increase their working efficiency; however, other principles governing the relative positions of structures in humans have not been reported. The present study therefore investigated other principles using nerves and their companion vessels in the human body as an example. Nerves and blood vessels usually travel together and in the most direct way towards their targets. Human embryology, histology, and gross anatomy suggest that there are many possible positions for these structures during development. However, for mechanical reasons, tougher or stronger structures should take priority. Nerves are tougher than most other structures, followed by arteries, veins, and lymphatic vessels. Nerves should therefore follow the most direct route, and be followed by the arteries, veins, and lymphatic vessels. This general principle should be applicable to all living things.

  10. PSSARD: protein sequence-structure analysis relational database.

    Science.gov (United States)

    Guruprasad, Kunchur; Srikanth, K; Babu, A V N

    2005-09-15

    We have implemented a relational database comprising a representative dataset of amino acid sequences and their associated secondary structure. The representative amino acid sequences were selected according to the PDB_SELECT program by choosing proteins corresponding to protein crystal structure data deposited in the protein data bank that share less than 25% overall pair-wise sequence identity. The secondary structure was extracted from the protein data bank website. The information content in the database includes the protein description, PDB code, crystal structure resolution, total number of amino acid residues in the protein chain, amino acid sequence, secondary structure conformation and its summary. The database is freely accessible from the website mentioned below and is useful to query on any of the above fields. The database is particularly useful to quickly retrieve amino acid sequences that are compatible to any super-secondary structure conformation from several proteins simultaneously.

  11. Nuclei of Taxus baccata: Flavanols Linked to Chromatin Remodeling Factors

    Directory of Open Access Journals (Sweden)

    Walter Feucht

    2009-01-01

    Full Text Available Microscopic studies of young needles and shoot tips from Taxus baccata showed that flavanols are localized in the nuclei. This observation is based on the histochemical staining of flavanols with the DMACA reagent. The colour that is obtained with this reagent varies from pale to deep blue, depending on the amount of flavanols. This study is focused on nondifferentiated cell lineages and on differentiating cells. The key point to note is that all nuclei of a cell lineage showed a uniform DMACA staining pattern based on the amount and structural appearence of nuclear flavanols. This points to transcriptional and epigenetic programming. However, comparing various cell lineages from different shoot tips and needles revealed a lineage-specific expression of nuclear flavanols. This result implied that both positional and developmental signals from neighbouring cells were involved in the nuclear flavanol binding of lineages. The cells of a developmentally advanced lineage loose their intimate contact and, then, they separate from each other to undergo an autonomous, individual sequence of differentiation. This in turn was accompanied by differences in the nuclear flavanol patterns of the single cells. Investigating different mitotic stages revealed a wide spectrum in flavanol staining intensities of the chromosomes. These observations should be linked to UV-VIS spectroscopical kinetic results indicating that nuclear flavanols bound to histones are involved in epigenetically regulated modification of chromatin. The kinetic studies show that catechin is relatively rapidly degraded by oxygen in the presence of Mg2+-ions. However, this degradation reaction is strongly inhibited when histone proteins were added. This behaviour is a clear indication that coregulatory interactions exist between catechin and histones.

  12. Structure relations for monic orthogonal polynomials in two discrete variables

    Science.gov (United States)

    Rodal, J.; Area, I.; Godoy, E.

    2008-04-01

    In this paper, extensions of several relations linking differences of bivariate discrete orthogonal polynomials and polynomials themselves are given, by using an appropriate vector-matrix notation. Three-term recurrence relations are presented for the partial differences of the monic polynomial solutions of admissible second order partial difference equation of hypergeometric type. Structure relations, difference representations as well as lowering and raising operators are obtained. Finally, expressions for all matrix coefficients appearing in these finite-type relations are explicitly presented for a finite set of Hahn and Kravchuk orthogonal polynomials.

  13. Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Saera Hihara

    2012-12-01

    Full Text Available Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (∼50 nm movement/30 ms, which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.

  14. Chromatin compaction protects genomic DNA from radiation damage.

    Directory of Open Access Journals (Sweden)

    Hideaki Takata

    Full Text Available Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs in compact chromatin after ionizing irradiation was 5-50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.

  15. Rapid genome-scale mapping of chromatin accessibility in tissue

    DEFF Research Database (Denmark)

    Grøntved, Lars; Bandle, Russell; John, Sam;

    2012-01-01

    BACKGROUND: The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant...

  16. Hinge Atlas: relating protein sequence to sites of structural flexibility

    OpenAIRE

    Yang Julie; Lu Long J; Flores Samuel C; Carriero Nicholas; Gerstein Mark B

    2007-01-01

    Abstract Background Relating features of protein sequences to structural hinges is important for identifying domain boundaries, understanding structure-function relationships, and designing flexibility into proteins. Efforts in this field have been hampered by the lack of a proper dataset for studying characteristics of hinges. Results Using the Molecular Motions Database we have created a Hinge Atlas of manually annotated hinges and a statistical formalism for calculating the enrichment of v...

  17. Research Discovers Frequent Mutations of Chromatin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the support of National Natural Science Foundation of China, BGI, the largest genomics organization in the world, and Peking University Shenzhen Hospital, published online in Nature Geneticsics that the study on frequent mutations of chromatin remodeling genes in transitional cell carcinoma (TCC) of thebladder on August 8th, 2011. Their study provides a valuable genetic basis for future studies on TCC,

  18. Chromatin and epigenetics in all their states

    NARCIS (Netherlands)

    Bey, Till; Jamge, Suraj; Klemme, Sonja; Komar, Dorota Natalia; Gall, Le Sabine; Mikulski, Pawel; Schmidt, Martin; Zicola, Johan; Berr, Alexandre

    2016-01-01

    In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a meetin

  19. Epigenetic chromatin silencing: bistability and front propagation

    Science.gov (United States)

    Sedighi, Mohammad; Sengupta, Anirvan M.

    2007-12-01

    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.

  20. Chromatin conformation capture strategies in molecular diagnostics

    NARCIS (Netherlands)

    Vree, P.J.P. de

    2015-01-01

    In this thesis I have explored the clinical potential of the 4C-technology and worked on development of a novel chromatin conformation capture based technology, called TLA. In chapter 2 I describe how the 4C-technology can be applied as a targeted strategy to identify putative fusion-genes or chromo

  1. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    OpenAIRE

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the rece...

  2. A CADASTRAL SPATIAL DATA STORAGE STRUCTURE BASED ON RELATIONAL DATABASE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a cadastral spatial data storage structure based on relational database,the method and the procedure to realize it.The paper consists of three parts.In the first part,some existing problems in some de veloped cadastral management systems are discussed.These problems are the fo llowing four.1) The security of cadastral spatial data is difficult to be assure d.2) It is difficult to varify cadastral data and the integrality of cadastral d ata is diffi cult to be kept.3) To transmit and share cadastral data is difficult.4) The effi ciency of data access is low.In the second part,t he feasibility of using relational database to store spatial data is analyzed an d a new cadastral spatial data storage structure is presented.At the same time, the related table structures and field descriptions are given,and then the merits and demerits of this storage structure are analyzed in detail.In th e last part,through a real example,the detailed methods to make the new storag e structure a reality are given.Moreover,some involving key techniques of the ne w storage structure are discussed.These techniques are:1) the application of database transaction,2) the application of database trigger,3) and the appl ication of secure recovery of database.

  3. Evaluation of chromatin condensation in human spermatozoa: a flow cytometric assay using acridine orange staining.

    Science.gov (United States)

    Golan, R; Shochat, L; Weissenberg, R; Soffer, Y; Marcus, Z; Oschry, Y; Lewin, L M

    1997-01-01

    The quality of sperm chromatin is an important factor in fertilization and is especially critical where one spermatozoon is artificially selected for fertilizing an egg (as in intracytoplasmic sperm injection). In this study, flow cytometry after staining of human spermatozoa with Acridine Orange was used to study chromatin structure. A method is described for estimating the percentage of cells in a human sperm sample that have completed epididymal maturation in regard to chromatin condensation. Of the 121 samples of the semen that were examined, nine contained a higher percentage of hypocondensed spermatozoa and six samples contained elevated amounts of hypercondensed spermatozoa. In addition to aberrancies in chromatin condensation other defects showed up as satellite populations of spermatozoa with higher than normal ratios of red/green fluorescence after Acridine Orange staining. Such defects were found in 15 semen samples. The use of swim-up and Percoll gradient centrifugation methods was shown to improve the percentage of spermatozoa with normal chromatin structure in some samples with poor initial quality.

  4. Evaluation of chromatin integrity of motile bovine spermatozoa capacitated in vitro.

    Science.gov (United States)

    Reckova, Z; Machatkova, M; Rybar, R; Horakova, J; Hulinska, P; Machal, L

    2008-08-01

    The efficiency of in vitro embryo production is highly variable amongst individual sires in cattle. To eliminate that this variability is not caused by sperm chromatin damage caused by separation or capacitacion, chromatin integrity was evaluated. Seventeen of AI bulls with good NRRs but variable embryo production efficiency were used. For each bull, motile spermatozoa were separated on a Percoll gradient, resuspended in IVF-TALP medium and capacitated with or incubated without heparin for 6 h. Samples before and after separation and after 3-h and 6-h capacitacion or incubation were evaluated by the Sperm Chromatin Structure Assay (SCSA) and the proportion of sperm with intact chromatin structure was calculated. Based on changes in the non-DFI-sperm proportion, the sires were categorized as DNA-unstable (DNA-us), DNA-stable (DNA-s) and DNA-most stable (DNA-ms) bulls (n=3, n=5 and n=9, respectively). In DNA-us bulls, separation produced a significant increase of the mean non-DFI-sperm proportion (p Capacitacion produced a significant decrease in the mean non-DFI-sperm proportion in H+ sperm (p capacitacion, the mean non-DFI-sperm proportion remained almost unchanged. In DNA-ms bulls, neither separation nor capacitacion had any effect on the mean non-DFI-sperm proportion. It can be concluded that, although separation and capacitacion may produce some changes in sperm chromatin integrity, these are not associated with different in vitro fertility of the bulls involved.

  5. Introducing enteral feeding induces intestinal subclinical inflammation and respective chromatin changes in preterm pigs

    DEFF Research Database (Denmark)

    Willems, Rhea; Krych, Lukasz; Rybicki, Verena;

    2015-01-01

    AIM: To analyze how enteral food introduction affects intestinal gene regulation and chromatin structure in preterm pigs. MATERIALS & METHODS: Preterm pigs were fed parenteral nutrition plus/minus slowly increasing volumes of enteral nutrition. Intestinal gene-expression and chromatin structure...... were analyzed 5 days after birth. RESULTS: Enteral feeding led to differential upregulation of inflammatory and pattern recognition receptor genes, including IL8 (median: 5.8, 95% CI: 3.9-7.8 for formula; median: 2.2, 95% CI: 1.3-3.3 for colostrum) and TLR4 (median: 3.7, 95% CI: 2.6-4.8 for formula...... stimulation with lipopolysaccharide (median: 7.0; interquartile range: 5.63-8.85) compared with naive cells (median 4.2; interquartile range: 2.45-6.33; p = 0.03). CONCLUSION: Enteral feeding, particular with formula, induces subclinical inflammation in the premature intestine and more open chromatin...

  6. Heterogeneous anisotropic complex structure gradual model and constitutive relation

    Institute of Scientific and Technical Information of China (English)

    李永; 宋健; 张志民

    2003-01-01

    Four new gradually delaminate models of the three-dimensional macro-/mesoscopic structure and delamination of the heterogeneous anisotropic composite (HAC) are set up by conducting research into its structure and performance. A general theory, which demonstrates the three-dimensional constitutive relation of the macro-/mesoscopic performance of this structure is further developed. The macroscopic expression of HAC is presented in terms of a Tanigawa delaminate homogeneous equivalent approach, the mesoscopic problems are analysed utilizing Eshelby-Mori-Tanaka theory, with the introduction of the representative volume elements of monolayer single unit cell and interlaminar double unit cells.According to the gradual continuity of the structure as a whole, great attention is given to the modelling and research of the interlaminar macroscopic and mesoscopic problems of HAC structure. Comparison with the existing solutions is made through calculation of typical cases.

  7. The interplay among chromatin dynamics, cell cycle checkpoints and repair mechanisms modulates the cellular response to DNA damage.

    Science.gov (United States)

    Lazzaro, Federico; Giannattasio, Michele; Muzi-Falconi, Marco; Plevani, Paolo

    2007-06-01

    Cells are continuously under the assault of endogenous and exogenous genotoxic stress that challenges the integrity of DNA. To cope with such a formidable task cells have evolved surveillance mechanisms, known as checkpoints, and a variety of DNA repair systems responding to different types of DNA lesions. These lesions occur in the context of the chromatin structure and, as expected for all DNA transactions, the cellular response to DNA damage is going to be influenced by the chromatin enviroment. In this review, we will discuss recent studies implicating chromatin remodelling factors and histone modifications in the response to DNA double-strand breaks (DSBs) and in checkpoint activation in response to UV lesions.

  8. Direct chromatin PCR (DC-PCR: hypotonic conditions allow differentiation of chromatin states during thermal cycling.

    Directory of Open Access Journals (Sweden)

    Sergei Vatolin

    Full Text Available Current methods to study chromatin configuration are not well suited for high throughput drug screening since they require large cell numbers and multiple experimental steps that include centrifugation for isolation of nuclei or DNA. Here we show that site specific chromatin analysis can be achieved in one step by simply performing direct chromatin PCR (DC-PCR on cells. The basic underlying observation was that standard hypotonic PCR buffers prevent global cellular chromatin solubilization during thermal cycling while more loosely organized chromatin can be amplified. Despite repeated heating to >90 °C, 41 of 61 tested 5' sequences of silenced genes (CDKN2A, PU.1, IRF4, FOSB, CD34 were not amplifiable while 47 could be amplified from expressing cells. Two gene regions (IRF4, FOSB even required pre-heating of cells in isotonic media to allow this differentiation; otherwise none of 19 assayed sequences yielded PCR products. Cells with baseline expression or epigenetic reactivation gave similar DC-PCR results. Silencing during differentiation of CD34 positive cord blood cells closed respective chromatin while treatment of myeloma cells with an IRF4 transcriptional inhibitor opened a site to DC-PCR that was occupied by RNA polymerase II and NFκB as determined by ChIP. Translation into real-time PCR can not be achieved with commercial real-time PCR buffers which potently open chromatin, but even with simple ethidium bromide addition to standard PCR mastermix we were able to identify hits in small molecules screens that suppressed IRF4 expression or reactivated CDKN2A in myeloma cells using densitometry or visual inspection of PCR plates under UV light. While need in drug development inspired this work, application to genome-wide analysis appears feasible using phi29 for selective amplification of open cellular chromatin followed by library construction from supernatants since such supernatants yielded similar results as gene specific DC-PCR.

  9. FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription.

    Directory of Open Access Journals (Sweden)

    Nishal S Patel

    Full Text Available Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR signalling in Raldh2-/- embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that

  10. Relation between the geometrical and the electronic structures of buckyonions

    Institute of Scientific and Technical Information of China (English)

    王志坚; 李文铸; 曹志良; 韩汝珊

    1995-01-01

    An original scheme to represent all icosahedral fullerenes is set up. On the basis of realistic tight-binding approximate calculations, It is predicted that all icosahedral fullerenes can be classified into two classes: "metallic" balls and moderate gap "semiconductor" balls. There exists a very simple relation between these dasses and their structures specified by our representative scheme.

  11. Structure-rheology relations in sodium caseinate containing systems

    NARCIS (Netherlands)

    Ruis, H.G.M.

    2007-01-01

    The general aim of the work described in this thesis was to investigate structure-rheologyrelations for dairy related products, focusing on model systems containing sodium caseinate. The acid inducedgelationof sodium caseinate, of sodium caseinate

  12. Measurement of local relative displacements in large structures

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Eder, Martin Alexander; Nielsen, Magda

    2014-01-01

    This paper presents a novel measurement technique to measure local relative displacements between parts of large-scale structures. The measured deformations can be of significant importance for fracture analyses in many different types of structures in general, and for adhesive connections...... in particular. The measurement of small local relative displacements in structures subjected to large global deformations is complex and hardly feasible with conventional measurement methods. Therefore, a Small Displacement Measurement System (SDMS) has been devised. The SDMS is based on stereo photogrammetry...... and capable of measuring 3D local displacements with a high degree of accuracy. In this article, the technique is used to measure local deformations in the vicinity of the adhesive trailing edge joint of a wind turbine rotor blade. The SDMS results correspond well with another independent measurement method....

  13. Structural studies of human glioma pathogenesis-related protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States); Koski, Raymond A.; Bonafé, Nathalie [L2 Diagnostics LLC, 300 George Street, New Haven, CT 06511 (United States); College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States)

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  14. Assessment of chromatin status (SCSA) in epididymal and ejaculated sperm in Iberian red deer, ram and domestic dog.

    Science.gov (United States)

    Garcia-Macias, Vanesa; Martinez-Pastor, Felipe; Alvarez, Mercedes; Garde, Jose Julian; Anel, Enrique; Anel, Luis; de Paz, Paulino

    2006-11-01

    Abnormal chromatin condensation is not detected using classical techniques for sperm analysis. SCSA has demonstrated its usefulness in sperm chromatin analysis in several species (human, bull, stallion and boar). In this work, we studied sperm samples from red deer, ram and dog to analyze the differentiation of chromatin structure applying SCSA in epididymal and ejaculated spermatozoa. Epididymal samples were obtained from the caput, corpus and cauda by means of cuts, and ejaculated ones were obtained by electroejaculation (deer), artificial vagina (ram) and digital manipulation (dog). SCSA results suggested different critical points in sperm maturation (spermatozoa with loose chromatin to more condensed chromatin) among species: from corpus to cauda in ram and from caput to corpus in deer and dog. Moreover, we also detected differences in ruminants and dog, reflected in the appearance of SCSA plots. Indeed, ram and deer samples rendered two peaks within the sperm main population (sperm with condensed chromatin), whereas only one was detected in dog. Although some differences were observed between cauda and ejaculated samples, SCSA parameters indicated good chromatin condensation, making these samples suitable for germplasm banking. Some species-dependent modifications in the analysis of the results may be necessary to take full advantage of its analytical power.

  15. CAST-ChIP Maps Cell-Type-Specific Chromatin States in the Drosophila Central Nervous System

    Directory of Open Access Journals (Sweden)

    Tamás Schauer

    2013-10-01

    Full Text Available Chromatin organization and gene activity are responsive to developmental and environmental cues. Although many genes are transcribed throughout development and across cell types, much of gene regulation is highly cell-type specific. To readily track chromatin features at the resolution of cell types within complex tissues, we developed and validated chromatin affinity purification from specific cell types by chromatin immunoprecipitation (CAST-ChIP, a broadly applicable biochemical procedure. RNA polymerase II (Pol II CAST-ChIP identifies ∼1,500 neuronal and glia-specific genes in differentiated cells within the adult Drosophila brain. In contrast, the histone H2A.Z is distributed similarly across cell types and throughout development, marking cell-type-invariant Pol II-bound regions. Our study identifies H2A.Z as an active chromatin signature that is refractory to changes across cell fates. Thus, CAST-ChIP powerfully identifies cell-type-specific as well as cell-type-invariant chromatin states, enabling the systematic dissection of chromatin structure and gene regulation within complex tissues such as the brain.

  16. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening.

    Science.gov (United States)

    Musladin, Sanja; Krietenstein, Nils; Korber, Philipp; Barbaric, Slobodan

    2014-04-01

    Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential for viability, was a controversial candidate for the unrecognized remodeling activity but unassessed in vivo. Now we show that remodels the structure of chromatin (RSC) is crucially involved in PHO5 promoter opening. Further, the isw1 chd1 double deletion also delayed chromatin remodeling. Strikingly, combined absence of RSC and Isw1/Chd1 or Snf2 abolished for the first time promoter opening on otherwise sufficient induction in vivo. Together with previous findings, we recognize now a surprisingly complex network of five remodelers (RSC, SWI/SNF, INO80, Isw1 and Chd1) from four subfamilies (SWI/SNF, INO80, ISWI and CHD) as involved in PHO5 promoter chromatin remodeling. This is likely the first described complete remodeler set for a physiological chromatin transition. RSC was hardly involved at the coregulated PHO8 or PHO84 promoters despite cofactor recruitment by the same transactivator and RSC's presence at all three promoters. Therefore, promoter-specific chromatin rather than transactivators determine remodeler requirements.

  17. The relation of structural integrity and task-related functional connectivity in the aging brain.

    Science.gov (United States)

    Burianová, Hana; Marstaller, Lars; Choupan, Jeiran; Sepehrband, Farshid; Ziaei, Maryam; Reutens, David

    2015-10-01

    The relations among structural integrity, functional connectivity (FC), and cognitive performance in the aging brain are still understudied. Here, we used multimodal and multivariate approaches to specifically examine age-related changes in task-related FC, gray-matter volumetrics, white-matter integrity, and performance. Our results are two-fold, showing (i) age-related differences in FC of the working memory network and (ii) age-related recruitment of a compensatory network associated with better accuracy on the task. Increased connectivity in the compensatory network correlates positively with preserved white-matter integrity in bilateral frontoparietal tracks and with larger gray-matter volume of right inferior parietal lobule. These findings demonstrate the importance of structural integrity and FC in working memory performance associated with healthy aging.

  18. The binding of [3H]oestradiol-receptor complex to hypothalamic chromatin of male and female mice.

    Science.gov (United States)

    Lopez, A; Burgos, J; Ventanas, J

    1985-01-01

    Histones and masking acidic proteins were removed from hypothalamic chromatin in order to evaluate/measure the number of available acceptor sites for the [3H]oestradiol-receptor complex. This number increases after dehistonizing and unmasking and is lower than published values for comparable preparations. No sex-related difference in [3H]oestradiol-receptor binding to hypothalamic chromatin in vitro was observed. Failure to observe such a difference suggests that sexual differentiation and steroid sensitivity cannot be attributed to marked differences in the degree of chromatin masking.

  19. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation.

    Science.gov (United States)

    Castellano-Pozo, Maikel; Santos-Pereira, José M; Rondón, Ana G; Barroso, Sonia; Andújar, Eloisa; Pérez-Alegre, Mónica; García-Muse, Tatiana; Aguilera, Andrés

    2013-11-21

    R loops are transcription byproducts that constitute a threat to genome integrity. Here we show that R loops are tightly linked to histone H3 S10 phosphorylation (H3S10P), a mark of chromatin condensation. Chromatin immunoprecipitation (ChIP)-on-chip (ChIP-chip) analyses reveal H3S10P accumulation at centromeres, pericentromeric chromatin, and a large number of active open reading frames (ORFs) in R-loop-accumulating yeast cells, better observed in G1. Histone H3S10 plays a key role in maintaining genome stability, as scored by ectopic recombination and plasmid loss, Rad52 foci, and Rad53 checkpoint activation. H3S10P coincides with the presence of DNA-RNA hybrids, is suppressed by ribonuclease H overexpression, and causes reduced accessibility of restriction endonucleases, implying a tight connection between R loops, H3S10P, and chromatin compaction. Such histone modifications were also observed in R-loop-accumulating Caenorhabditis elegans and HeLa cells. We therefore provide a role of RNA in chromatin structure essential to understand how R loops modulate genome dynamics.

  20. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  1. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer

    Institute of Scientific and Technical Information of China (English)

    Jiang I. Wu

    2012-01-01

    Mammalian SWI/SNF like Brg1/Brm associated factors (BAF) chromatin-remodeling complexes are able to use energy derived from adenosine triphosphate (ATP) hydrolysis to change chromatin structures and regulate nuclear processes such as transcription.BAF complexes contain multiple subunits and the diverse subunit compositions provide functional specificities to BAF complexes.In this review,we summarize the functions of BAF subunits during mammalian development and in progression of various cancers.The mechanisms underlying the functional diversity and specificities of BAF complexes will be discussed.

  2. Chromatin remodeling and SWI/SNF2 factors in human disease.

    Science.gov (United States)

    Kokavec, Juraj; Podskocova, Jarmila; Zavadil, Jiri; Stopka, Tomas

    2008-05-01

    Chromatin structure and its changes or maintenance throughout developmental checkpoints play indispensable role in organismal homeostasis. Chromatin remodeling factors of the SWI/SNF2 superfamily use ATP hydrolysis to change DNA-protein contacts, and their loss-of-function or inappropriate increase leads to distinct human pathologic states. In this review, we focus on the translational view of human pathologic physiology involving SWI/SNF2 superfamily, combining latest finding from basic and clinical research. We discuss in mechanistic terms the consequences resulting from dose alteration of the SWI/SNF2 superfamily ATPases and emphasize the necessity of future human subject-based studies.

  3. Modulation of Higher Order Chromatin Conformation in Mammalian Cell Nuclei Can Be Mediated by Polyamines and Divalent Cations.

    Directory of Open Access Journals (Sweden)

    Ashwat Visvanathan

    Full Text Available The organisation of the large volume of mammalian genomic DNA within cell nuclei requires mechanisms to regulate chromatin compaction involving the reversible formation of higher order structures. The compaction state of chromatin varies between interphase and mitosis and is also subject to rapid and reversible change upon ATP depletion/repletion. In this study we have investigated mechanisms that may be involved in promoting the hyper-condensation of chromatin when ATP levels are depleted by treating cells with sodium azide and 2-deoxyglucose. Chromatin conformation was analysed in both live and permeabilised HeLa cells using FLIM-FRET, high resolution fluorescence microscopy and by electron spectroscopic imaging microscopy. We show that chromatin compaction following ATP depletion is not caused by loss of transcription activity and that it can occur at a similar level in both interphase and mitotic cells. Analysis of both live and permeabilised HeLa cells shows that chromatin conformation within nuclei is strongly influenced by the levels of divalent cations, including calcium and magnesium. While ATP depletion results in an increase in the level of unbound calcium, chromatin condensation still occurs even in the presence of a calcium chelator. Chromatin compaction is shown to be strongly affected by small changes in the levels of polyamines, including spermine and spermidine. The data are consistent with a model in which the increased intracellular pool of polyamines and divalent cations, resulting from depletion of ATP, bind to DNA and contribute to the large scale hyper-compaction of chromatin by a charge neutralisation mechanism.

  4. Structural and diffusional brain abnormality related to relatively low level alcohol consumption.

    Science.gov (United States)

    Sasaki, Hiroki; Abe, Osamu; Yamasue, Hidenori; Fukuda, Rin; Yamada, Haruyasu; Takei, Kunio; Suga, Motomu; Takao, Hidemasa; Kasai, Kiyoto; Aoki, Shigeki; Ohtomo, Kuni

    2009-06-01

    Chronic excessive alcohol intake results in alcohol-related brain damage. Many previous reports have documented alcohol-related global or local brain shrinkage or diffusional abnormalities among alcoholics and heavy to moderate drinkers; however, the influence of relatively low levels of alcohol consumption on brain structural or diffusional abnormality is unclear. We investigated structural or diffusional abnormalities related to lifetime alcohol consumption (LAC) using voxel-based morphometry (VBM) among Japanese non-alcohol-dependent individuals (114 males, 97 females). High-resolution three-dimensional magnetic resonance images and diffusion tensor imaging were acquired in all subjects. The collected images were normalized, segmented, and smoothed using SPM 5. Gray matter volume (GMV) and white matter volume (WMV) were normalized for each total intracranial volume (TIV), and partial correlation coefficients were estimated between normalized GMV or WMV and lifetime alcohol consumption (LAC) adjusted for age. To investigate regional GMV or WMV abnormalities related to LAC, multiple regression analyses were performed among regional GMV or WMV and LAC, age, and TIV. To investigate subtle regional abnormalities, multiple regression analyses were performed among fractional anisotropy (FA) or mean diffusivity (MD), and LAC and age. No LAC-related global or regional GMV or WMV abnormality or LAC-related regional FA abnormality was found among male or female subjects. Significant LAC-related MD increase was found in the right amygdala among female subjects only. The current results suggest female brain vulnerability to alcohol, and a relation between subtle abnormality in the right amygdala and alcohol misuse.

  5. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo.

    Science.gov (United States)

    Ricci, Maria Aurelia; Manzo, Carlo; García-Parajo, María Filomena; Lakadamyali, Melike; Cosma, Maria Pia

    2015-03-12

    Nucleosomes help structure chromosomes by compacting DNA into fibers. To gain insight into how nucleosomes are arranged in vivo, we combined quantitative super-resolution nanoscopy with computer simulations to visualize and count nucleosomes along the chromatin fiber in single nuclei. Nucleosomes assembled in heterogeneous groups of varying sizes, here termed "clutches," and these were interspersed with nucleosome-depleted regions. The median number of nucleosomes inside clutches and their compaction defined as nucleosome density were cell-type-specific. Ground-state pluripotent stem cells had, on average, less dense clutches containing fewer nucleosomes and clutch size strongly correlated with the pluripotency potential of induced pluripotent stem cells. RNA polymerase II preferentially associated with the smallest clutches while linker histone H1 and heterochromatin were enriched in the largest ones. Our results reveal how the chromatin fiber is formed at nanoscale level and link chromatin fiber architecture to stem cell state.

  6. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding.

    Science.gov (United States)

    Floer, Monique; Wang, Xin; Prabhu, Vidya; Berrozpe, Georgina; Narayan, Santosh; Spagna, Dan; Alvarez, David; Kendall, Jude; Krasnitz, Alexander; Stepansky, Asya; Hicks, James; Bryant, Gene O; Ptashne, Mark

    2010-04-30

    How is chromatin architecture established and what role does it play in transcription? We show that the yeast regulatory locus UASg bears, in addition to binding sites for the activator Gal4, sites bound by the RSC complex. RSC positions a nucleosome, evidently partially unwound, in a structure that facilitates Gal4 binding to its sites. The complex comprises a barrier that imposes characteristic features of chromatin architecture. In the absence of RSC, ordinary nucleosomes encroach over the UASg and compete with Gal4 for binding. Taken with our previous work, the results show that both prior to and following induction, specific DNA-binding proteins are the predominant determinants of chromatin architecture at the GAL1/10 genes. RSC/nucleosome complexes are also found scattered around the yeast genome. Higher eukaryotic RSC lacks the specific DNA-binding determinants found on yeast RSC, and evidently Gal4 works in those organisms despite whatever obstacle broadly positioned nucleosomes present.

  7. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation

    DEFF Research Database (Denmark)

    Düring, Louis; Thorsen, Michael; Petersen, Darima

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6¿¿ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin...... architectural proteins Nhp6A/Nhp6B, accumulate intron-containing pre-mRNA at the restrictive temperature. In addition, we demonstrate that rsc8-ts16 nhp6¿¿ cells contain low levels of U6 snRNA and U4/U6 di-snRNA that is further exacerbated after two hours growth at the restrictive temperature. This change in U6...

  8. UbSRD: The Ubiquitin Structural Relational Database.

    Science.gov (United States)

    Harrison, Joseph S; Jacobs, Tim M; Houlihan, Kevin; Van Doorslaer, Koenraad; Kuhlman, Brian

    2016-02-22

    The structurally defined ubiquitin-like homology fold (UBL) can engage in several unique protein-protein interactions and many of these complexes have been characterized with high-resolution techniques. Using Rosetta's structural classification tools, we have created the Ubiquitin Structural Relational Database (UbSRD), an SQL database of features for all 509 UBL-containing structures in the PDB, allowing users to browse these structures by protein-protein interaction and providing a platform for quantitative analysis of structural features. We used UbSRD to define the recognition features of ubiquitin (UBQ) and SUMO observed in the PDB and the orientation of the UBQ tail while interacting with certain types of proteins. While some of the interaction surfaces on UBQ and SUMO overlap, each molecule has distinct features that aid in molecular discrimination. Additionally, we find that the UBQ tail is malleable and can adopt a variety of conformations upon binding. UbSRD is accessible as an online resource at rosettadesign.med.unc.edu/ubsrd.

  9. Transformation of Wiktionary entry structure into tables and relations in a relational database schema

    CERN Document Server

    Krizhanovsky, A A

    2010-01-01

    This paper addresses the question of automatic data extraction from the Wiktionary, which is a multilingual and multifunctional dictionary. Wiktionary is a collaborative project working on the same principles as the Wikipedia. The Wiktionary entry is a plain text from the text processing point of view. Wiktionary guidelines prescribe the entry layout and rules, which should be followed by editors of the dictionary. The presence of the structure of a Wiktionary article and formatting rules allows transforming the Wiktionary entry structure into tables and relations in a relational database schema, which is a part of a machine-readable dictionary (MRD). The paper describes how the flat text of the Wiktionary entry was extracted, converted, and stored in the specially designed relational database. The MRD contains the definitions, semantic relations, and translations extracted from the English and Russian Wiktionaries. The parser software is released under the open source license agreement (GPL), to facilitate i...

  10. Keystone Symposia on Epigenomics and Chromatin Dynamics

    DEFF Research Database (Denmark)

    Ravnskjær, Kim

    2012-01-01

    Keystone Symposia kicked off the start of 2012 with two joint meetings on Epigenomics and Chromatin Dynamics and a star-studded list of speakers. Held in Keystone, CO, January 17-22, and organized by Steven Jacobsen and Steven Henikoff and by Bradley Cairns and Geneviève Almouzni, respectively, t......, there was plenty happening in these sessions that it did not seem to matter that the ski-slope conditions were not ideal....

  11. Partners in crime: Genes within an amplicon collude to globally deregulate chromatin in lymphoma.

    Science.gov (United States)

    Min, Dong-Joon; Licht, Jonathan D

    2010-12-14

    In this issue of Cancer Cell, Rui et al. identify JAK2 and JMJDC2 as two contiguous, coamplified oncogenes in primary mediastinal B cell and Hodgkin lymphoma. Together, JAK2 and JMJD2C induce major changes in chromatin structure and gene expression. Targeting these proteins with small molecules represents a new avenue for therapy.

  12. PARTNERS IN CRIME: GENES WITHIN AN AMPLICON COLLUDE TO GLOBALLY DEREGULATE CHROMATIN In LYMPHOMA

    OpenAIRE

    Min, Dong-Joon; Licht, Jonathan D.

    2010-01-01

    In this issue of Cancer Cell, Rui et al. identify JAK2 and JMJDC2 as two contiguous, co-amplified oncogenes in primary mediastinal B-cell and Hodgkin lymphoma. Together JAK2 and JMJD2C induce major changes in chromatin structure and gene expression. Targeting theses protein with small molecules represents a new avenue for therapy.

  13. Knockdown Brm and Baf170, components of chromatin remodeling complex, facilitates reprogramming of somatic cells

    Science.gov (United States)

    The SWI/SNF (SWItch/Sucrose NonFermentable or BAF, Brg/Brahma-associated factors) complexes are epigenetic modifiers of chromatin structure and undergo progressive changes in subunit composition during cellular differentiation. For example, in embryonic stem cells (ESCs) esBAF contains Brg1 and Baf...

  14. Structured IR illumination for relative depth sensing in virtual interfaces

    Science.gov (United States)

    Kress, Bernard; Raulot, Victorien; Grossman, Michel

    2012-06-01

    Depth mapping or depth sensing has become a popular field, applied not only to automotive sensing for collision avoidance (radar) but also to gesture sensing for gaming and virtual interfaces (optical). Popular gesture sensing devices such as the Kinect from Microsoft's Xbox gaming device produce a full absolute depth map, which is in most cases not adapted to the task on hand (relative gesture sensing). We propose in this paper a new gesture sensing technique through structured IR illumination to provide a relative depth mapping rather than an absolute one, and this reducing the requirements on computing power and therefore enabling this technology for wearable computing such as see through display.

  15. Tagged Chromosomal Insertion Site System: A Method to Study Lamina-Associated Chromatin.

    Science.gov (United States)

    Harr, Jennifer C; Reddy, Karen L

    2016-01-01

    The three-dimensional (3D) organization of the genome is important for chromatin regulation. This organization is nonrandom and appears to be tightly correlated with or regulated by chromatin state and scaffolding proteins. To understand how specific DNA and chromatin elements contribute to the functional organization of the genome, we developed a new tool-the tagged chromosomal insertion site (TCIS) system-to identify and study minimal DNA sequences that drive nuclear compartmentalization and applied this system to specifically study the role of cis elements in targeting DNA to the nuclear lamina. The TCIS system allows Cre-recombinase-mediated site-directed integration of any DNA fragment into a locus tagged with lacO arrays, thus enabling both functional molecular studies and positional analysis of the altered locus. This system can be used to study the minimal DNA sequences that target the nuclear periphery (or other nuclear compartments), allowing researchers to understand how genome-wide results obtained, for example, by DNA adenine methyltransferase identification, chromosome conformation capture (HiC), or related methods, connect to the actual organization of DNA and chromosomes at the single-cell level. Finally, TCIS allows one to test roles for specific proteins in chromatin reorganization and to determine how changes in nuclear environment affect chromatin state and gene regulation at a single locus.

  16. Relating Chain Structure to Physical Properties of Branched Polymers

    Science.gov (United States)

    Ramachandran, Ramnath; Beaucage, Gregory; Kulkarni, Amit S.; Galiatsatos, Vassilios; McFaddin, Douglas C.

    2008-03-01

    We investigated linear and branched polyethylene (PE) using small-angle neutron scattering (SANS). The experiments were conducted on dilute solutions of PE in deuterated p-xylene. A variety of structural information^ such as fractal dimension (df), connectivity dimension (c), minimum path dimension (dmin), long chain branch fraction (φbr), radius of gyration (Rg) and persistence length (lp) were obtained. Such information presents a qualitative and quantitative assessment of branching in polymers. Theoretical models such as `binary contacts per pervaded volume' model^* were employed to correlate the structural information of the polymer to its entanglement molecular weight (Me). Me was used to predict physical properties such as plateau modulus (GN^0 ) and zero-shear viscosity (η0). We relate physical properties of branched polymers to their structural properties.^ Beaucage G. Physical Review E 70,031401 (2004) ^*Colby et al. Macromolecules 25, p.996 (1992)

  17. Relations between constructive peculiarities and structural behavior in Venice buildings

    OpenAIRE

    Doglioni, F.

    2012-01-01

    Here we are synthetically describing some constructive peculiarities of Venice civil buildings, analyzing the relation with the features of their structural decay and behavior in the long run. We suppose Venetian buildings, especially those parts which are conceived to suit the lagoon environment, to have undergone an evolution made of some adjustments, which were based on the observation of damages in previous buildings. That is we suppose ancient builders to rely on their awareness of the b...

  18. Structure-function relations of carbohydrates by neoglycolipid arrays.

    Science.gov (United States)

    Huang, Gang-Liang; Huang, Hua-Liang; Zhang, Hou-Cheng; Wang, Peng-George

    2006-06-01

    The work presented herein is a new noncovalent glycoarray assembly method for microplates created by simply mixing together a carbohydrate and a tetradecylamine. alpha-D-Mannopyranoside, alpha-D-glucopyranoside, and alpha-D-galactopyranoside were utilized in model studies and product formations were detected by lectin binding. The method can be extended to study the steric hindrance effect of carbohydrate-protein interactions, namely the structure-function relations of carbohydrates.

  19. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jégu, Teddy

    2015-10-12

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  20. Structure - property relations of high-temperature composite polymer matrices

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, R.J.; Jurek, R.J.; Larive, D.E. [Michigan Molecular Institute, Midland, MI (United States); Tung, C.M. [Northrop Corp., Hawthorne, CA (United States); Donnellan, T. [Naval Air Development Center, Warminster, PA (United States)

    1993-12-31

    The structure-deformation-failure mode-mechanical property relations of high-temperature thermoplastic polyimide and thermoset bismaleimide (BMI) polymeric matrices and their composites will be discussed. In the case of polyimides, the effects of test temperature, thermal history, strain rate, type of filler, and filler volume fraction on structure - property relations will be discussed. For BMIs we report systematic Fourier transform infrared spectroscopy and differential scanning calorimetry studies of the cure reactions as a function of chemical composition and time - temperature cure conditions and then describe the resultant cross-linked network structure based on our understanding of the cure reactions. The optimization of the BMI matrix toughness will be considered in terms of network structure and process-induced matrix microcracking. We also describe optimization of composite prepreg, lamination and postcure conditions based on cure kinetics, and their relationship to the BMI viscosity-time-temperature profiles. The critical processing-performance limitations of high-temperature polymer matrices will be critically discussed, and toughening approaches to address these limitations, such as toughness over a wide temperature range, will be presented. 7 refs., 2 figs., 1 tab.

  1. Process-Structure-Function Relations of Pectin in Food.

    Science.gov (United States)

    Christiaens, Stefanie; Van Buggenhout, Sandy; Houben, Ken; Jamsazzadeh Kermani, Zahra; Moelants, Katlijn R N; Ngouémazong, Eugénie D; Van Loey, Ann; Hendrickx, Marc E G

    2016-01-01

    Pectin, a complex polysaccharide rich in galacturonic acid, has been identified as a critical structural component of plant cell walls. The functionality of this intricate macromolecule in fruit- and vegetable-based-derived products and ingredients is strongly determined by the nanostructure of its most abundant polymer, homogalacturonan. During food processing, pectic homogalacturonan is susceptible to various enzymatic as well as nonenzymatic conversion reactions modifying its structural and, hence, its functional properties. Consequently, a profound understanding of the various process-structure-function relations of pectin aids food scientists to tailor the functional properties of plant-based derived products and ingredients. This review describes the current knowledge on process-structure-function relations of pectin in foods with special focus on pectin's functionality with regard to textural attributes of solid plant-based foods and rheological properties of particulated fruit- and vegetable-derived products. In this context, both pectin research performed via traditional, ex situ physicochemical analyses of fractionated walls and isolated polymers and pectin investigation through in situ pectin localization are considered.

  2. Chemical and physical structures of proteinoids and related polyamino acids

    Science.gov (United States)

    Mita, Hajime; Kuwahara, Yusuke; Nomoto, Shinya

    Studies of polyamino acid formation pathways in the prebiotic condition are important for the study of the origins of life. Several pathways of prebiotic polyamino acid formation have been reported. Heating of monoammonium malate [1] and heating of amino acids in molten urea [2] are important pathways of the prebiotic peptide formation. The former case, globular structure called proteinoid microsphere is formed in aqueous conditions. The later case, polyamino acids are formed from unrestricted amino acid species. Heating of aqueous aspargine is also interesting pathway for the prebiotic polyamino acid formation, because polyamino acid formation proceeds in aqueous condition [3]. In this study, we analyzed the chemical structure of the proteinoids and related polyamino acids formed in the above three pathways using with mass spectrometer. In addition, their physical structures are analyzed by the electron and optical microscopes, in order to determine the self-organization abilities. We discuss the relation between the chemical and the physical structures for the origins of life. References [1] Harada, K., J. Org. Chem., 24, 1662 (1959), Fox, S. W., Harada, K., and Kendrick, J., Science, 129, 1221 (1959). [2] Terasaki, M., Nomoto, S., Mita, H., and Shimoyama, A., Chem. Lett., 480 (2002), Mita, H., Nomoto, S., Terasaki, M., Shimoyama, A., and Yamamoto, Y., Int. J. Astrobiol., 4, 145 (2005). [3] Kovacs, K and Nagy, H., Nature, 190, 531 (1961), Munegumi, T., Tanikawa, N., Mita, H. and Harada, K., Viva Origino, 22, 109 (1994).

  3. Plant chromatin warms up in Madrid: meeting summary of the 3rd European Workshop on Plant Chromatin 2013, Madrid, Spain.

    Science.gov (United States)

    Jarillo, José A; Gaudin, Valérie; Hennig, Lars; Köhler, Claudia; Piñeiro, Manuel

    2014-04-01

    The 3rd European Workshop on Plant Chromatin (EWPC) was held on August 2013 in Madrid, Spain. A number of different topics on plant chromatin were presented during the meeting, including new factors mediating Polycomb Group protein function in plants, chromatin-mediated reprogramming in plant developmental transitions, the role of histone variants, and newly identified chromatin remodeling factors. The function of interactions between chromatin and transcription factors in the modulation of gene expression, the role of chromatin dynamics in the control of nuclear processes and the influence of environmental factors on chromatin organization were also reported. In this report, we highlight some of the new insights emerging in this growing area of research, presented at the 3rd EWPC.

  4. Damage - Permeability relation for concrete. Applications to structural computations; Relation endommagement permeabilite pour les betons

    Energy Technology Data Exchange (ETDEWEB)

    Jason, L

    2004-10-01

    The relation between damage and permeability is of great importance to evaluate the consequences of a mechanical loading on the hydraulic integrity of sensitive concrete structures like containment buildings of nuclear power plants. An elastic plastic damage constitutive law for the mechanical behaviour is first developed. The model is validated on elementary and structural applications with a special focus on the efficiency of the numerical tools (tangent matrices). A relation between water saturation (drying), damage and permeability is then proposed, based on theoretical and experimental observations. Finally, a Representative Structural Volume of a containment vessel is studied to highlight the influence of hygro - mechanical loading on the hydraulic behaviour (distribution of gas pressure). (author)

  5. Statistical-mechanical lattice models for protein-DNA binding in chromatin

    CERN Document Server

    Teif, Vladimir B

    2010-01-01

    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibriums measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quant...

  6. Convergent evolution of chromatin modification by structurally distinct enzymes: comparative enzymology of histone H3 Lys²⁷ methylation by human polycomb repressive complex 2 and vSET.

    Science.gov (United States)

    Swalm, Brooke M; Hallenbeck, Kenneth K; Majer, Christina R; Jin, Lei; Scott, Margaret Porter; Moyer, Mikel P; Copeland, Robert A; Wigle, Tim J

    2013-07-15

    H3K27 (histone H3 Lys27) methylation is an important epigenetic modification that regulates gene transcription. In humans, EZH (enhancer of zeste homologue) 1 and EZH2 are the only enzymes capable of catalysing methylation of H3K27. There is great interest in understanding structure-function relationships for EZH2, as genetic alterations in this enzyme are thought to play a causal role in a number of human cancers. EZH2 is challenging to study because it is only active in the context of the multi-subunit PRC2 (polycomb repressive complex 2). vSET is a viral lysine methyltransferase that represents the smallest protein unit capable of catalysing H3K27 methylation. The crystal structure of this minimal catalytic protein has been solved and researchers have suggested that vSET might prove useful as an EZH2 surrogate for the development of active site-directed inhibitors. To test this proposition, we conducted comparative enzymatic analysis of human EZH2 and vSET and report that, although both enzymes share similar preferences for methylation of H3K27, they diverge in terms of their permissiveness for catalysing methylation of alternative histone lysine sites, their relative preferences for utilization of multimeric macromolecular substrates, their active site primary sequences and, most importantly, their sensitivity to inhibition by drug-like small molecules. The cumulative data led us to suggest that EZH2 and vSET have very distinct active site structures, despite the commonality of the reaction catalysed by the two enzymes. Hence, the EZH2 and vSET pair of enzymes represent an example of convergent evolution in which distinct structural solutions have developed to solve a common catalytic need.

  7. Elucidation of operon structures across closely related bacterial genomes.

    Science.gov (United States)

    Zhou, Chuan; Ma, Qin; Li, Guojun

    2014-01-01

    About half of the protein-coding genes in prokaryotic genomes are organized into operons to facilitate co-regulation during transcription. With the evolution of genomes, operon structures are undergoing changes which could coordinate diverse gene expression patterns in response to various stimuli during the life cycle of a bacterial cell. Here we developed a graph-based model to elucidate the diversity of operon structures across a set of closely related bacterial genomes. In the constructed graph, each node represents one orthologous gene group (OGG) and a pair of nodes will be connected if any two genes, from the corresponding two OGGs respectively, are located in the same operon as immediate neighbors in any of the considered genomes. Through identifying the connected components in the above graph, we found that genes in a connected component are likely to be functionally related and these identified components tend to form treelike topology, such as paths and stars, corresponding to different biological mechanisms in transcriptional regulation as follows. Specifically, (i) a path-structure component integrates genes encoding a protein complex, such as ribosome; and (ii) a star-structure component not only groups related genes together, but also reflects the key functional roles of the central node of this component, such as the ABC transporter with a transporter permease and substrate-binding proteins surrounding it. Most interestingly, the genes from organisms with highly diverse living environments, i.e., biomass degraders and animal pathogens of clostridia in our study, can be clearly classified into different topological groups on some connected components.

  8. Elucidation of operon structures across closely related bacterial genomes.

    Directory of Open Access Journals (Sweden)

    Chuan Zhou

    Full Text Available About half of the protein-coding genes in prokaryotic genomes are organized into operons to facilitate co-regulation during transcription. With the evolution of genomes, operon structures are undergoing changes which could coordinate diverse gene expression patterns in response to various stimuli during the life cycle of a bacterial cell. Here we developed a graph-based model to elucidate the diversity of operon structures across a set of closely related bacterial genomes. In the constructed graph, each node represents one orthologous gene group (OGG and a pair of nodes will be connected if any two genes, from the corresponding two OGGs respectively, are located in the same operon as immediate neighbors in any of the considered genomes. Through identifying the connected components in the above graph, we found that genes in a connected component are likely to be functionally related and these identified components tend to form treelike topology, such as paths and stars, corresponding to different biological mechanisms in transcriptional regulation as follows. Specifically, (i a path-structure component integrates genes encoding a protein complex, such as ribosome; and (ii a star-structure component not only groups related genes together, but also reflects the key functional roles of the central node of this component, such as the ABC transporter with a transporter permease and substrate-binding proteins surrounding it. Most interestingly, the genes from organisms with highly diverse living environments, i.e., biomass degraders and animal pathogens of clostridia in our study, can be clearly classified into different topological groups on some connected components.

  9. Abstract numeric relations and the visual structure of algebra.

    Science.gov (United States)

    Landy, David; Brookes, David; Smout, Ryan

    2014-09-01

    Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition, it has often been assumed that skilled users of these formalisms treat situations in terms of semantic properties encoded in an abstract syntax that governs the use of notation without particular regard to the details of the physical structure of the equation itself (Anderson, 2005; Hegarty, Mayer, & Monk, 1995). We explore how the notational structure of verbal descriptions or algebraic equations (e.g., the spatial proximity of certain words or the visual alignment of numbers and symbols in an equation) plays a role in the process of interpreting or constructing symbolic equations. We propose in particular that construction processes involve an alignment of notational structures across representation systems, biasing reasoners toward the selection of formal notations that maintain the visuospatial structure of source representations. For example, in the statement "There are 5 elephants for every 3 rhinoceroses," the spatial proximity of 5 and elephants and 3 and rhinoceroses will bias reasoners to write the incorrect expression 5E = 3R, because that expression maintains the spatial relationships encoded in the source representation. In 3 experiments, participants constructed equations with given structure, based on story problems with a variety of phrasings. We demonstrate how the notational alignment approach accounts naturally for a variety of previously reported phenomena in equation construction and successfully predicts error patterns that are not accounted for by prior explanations, such as the left to right transcription heuristic.

  10. PTEN Interacts with Histone H1 and Controls Chromatin Condensation

    Directory of Open Access Journals (Sweden)

    Zhu Hong Chen

    2014-09-01

    Full Text Available Chromatin organization and dynamics are integral to global gene transcription. Histone modification influences chromatin status and gene expression. PTEN plays multiple roles in tumor suppression, development, and metabolism. Here, we report on the interplay of PTEN, histone H1, and chromatin. We show that loss of PTEN leads to dissociation of histone H1 from chromatin and decondensation of chromatin. PTEN deletion also results in elevation of histone H4 acetylation at lysine 16, an epigenetic marker for chromatin activation. We found that PTEN and histone H1 physically interact through their C-terminal domains. Disruption of the PTEN C terminus promotes the chromatin association of MOF acetyltransferase and induces H4K16 acetylation. Hyperacetylation of H4K16 impairs the association of PTEN with histone H1, which constitutes regulatory feedback that may reduce chromatin stability. Our results demonstrate that PTEN controls chromatin condensation, thus influencing gene expression. We propose that PTEN regulates global gene transcription profiling through histones and chromatin remodeling.

  11. Stacked thin layers of metaphase chromatin explain the geometry of chromosome rearrangements and banding.

    Science.gov (United States)

    Daban, Joan-Ramon

    2015-10-08

    The three-dimensional organization of tightly condensed chromatin within metaphase chromosomes has been one of the most challenging problems in structural biology since the discovery of the nucleosome. This study shows that chromosome images obtained from typical banded karyotypes and from different multicolour cytogenetic analyses can be used to gain information about the internal structure of chromosomes. Chromatin bands and the connection surfaces in sister chromatid exchanges and in cancer translocations are planar and orthogonal to the chromosome axis. Chromosome stretching produces band splitting and even the thinnest bands are orthogonal and well defined, indicating that short stretches of DNA can occupy completely the chromosome cross-section. These observations impose strong physical constraints on models that attempt to explain chromatin folding in chromosomes. The thin-plate model, which consists of many stacked layers of planar chromatin perpendicular to the chromosome axis, is compatible with the observed orientation of bands, with the existence of thin bands, and with band splitting; it is also compatible with the orthogonal orientation and planar geometry of the connection surfaces in chromosome rearrangements. The results obtained provide a consistent interpretation of the chromosome structural properties that are used in clinical cytogenetics for the diagnosis of hereditary diseases and cancers.

  12. Using computational models to relate structural and functional brain connectivity.

    Science.gov (United States)

    Hlinka, Jaroslav; Coombes, Stephen

    2012-07-01

    Modern imaging methods allow a non-invasive assessment of both structural and functional brain connectivity. This has lead to the identification of disease-related alterations affecting functional connectivity. The mechanism of how such alterations in functional connectivity arise in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which this can arise and to highlight the important role that local population dynamics can have in shaping emergent spatial functional connectivity patterns. The local dynamics for a neural population is taken to be of the Wilson-Cowan type, whilst the structural connectivity patterns used, describing long-range anatomical connections, cover both realistic scenarios (from the CoComac database) and idealized ones that allow for more detailed theoretical study. We have calculated graph-theoretic measures of functional network topology from numerical simulations of model networks. The effect of the form of local dynamics on the observed network state is quantified by examining the correlation between structural and functional connectivity. We document a profound and systematic dependence of the simulated functional connectivity patterns on the parameters controlling the dynamics. Importantly, we show that a weakly coupled oscillator theory explaining these correlations and their variation across parameter space can be developed. This theoretical development provides a novel way to characterize the mechanisms for the breakdown of functional connectivity in diseases through changes in local dynamics.

  13. Diffusion-driven looping provides a consistent framework for chromatin organization.

    Directory of Open Access Journals (Sweden)

    Manfred Bohn

    Full Text Available Chromatin folding inside the interphase nucleus of eukaryotic cells is done on multiple scales of length and time. Despite recent progress in understanding the folding motifs of chromatin, the higher-order structure still remains elusive. Various experimental studies reveal a tight connection between genome folding and function. Chromosomes fold into a confined subspace of the nucleus and form distinct territories. Chromatin looping seems to play a dominant role both in transcriptional regulation as well as in chromatin organization and has been assumed to be mediated by long-range interactions in many polymer models. However, it remains a crucial question which mechanisms are necessary to make two chromatin regions become co-located, i.e. have them in spatial proximity. We demonstrate that the formation of loops can be accomplished solely on the basis of diffusional motion. The probabilistic nature of temporary contacts mimics the effects of proteins, e.g. transcription factors, in the solvent. We establish testable quantitative predictions by deriving scale-independent measures for comparison to experimental data. In this Dynamic Loop (DL model, the co-localization probability of distant elements is strongly increased compared to linear non-looping chains. The model correctly describes folding into a confined space as well as the experimentally observed cell-to-cell variation. Most importantly, at biological densities, model chromosomes occupy distinct territories showing less inter-chromosomal contacts than linear chains. Thus, dynamic diffusion-based looping, i.e. gene co-localization, provides a consistent framework for chromatin organization in eukaryotic interphase nuclei.

  14. Relations Between Stabilities and Structures of Closo Borane Dianions

    Institute of Scientific and Technical Information of China (English)

    LI Ping

    2006-01-01

    An effective method to investigate the stabilities of a series of new closo-BnHn2-(n = 12, 14, 16, 18, 20, 22, 24, 30) was put forward with the aid of G96PW91/SHC calculations. Stabilities are related to the relative stabilized energies (RSE) and the 2e3c bound geometries of closo-BnHn2-. The structures in which a boron atom connects to four atoms up to seven are stable and appear in many borides because of the lower relative stabilized energy. In geometries, both triangular and quadrangular faces are in favor of forming the structures of closo-BnHn2-. The energies of optimized geometries support the existence of these new compounds. By employing both RSE and ▲E per boron atom in cage, the stabilities were studied to predict the probabilities of unknown clusters in existence. The electron-deficient clusters can be understood that the positive holes should be disperse to every triangular face and lead to share the holes, wherever there are not enough electrons to occupy them. The negative charges which anions carry distribute to 2e3c bonds to increase the stabilities.

  15. Incorporating double copies of a chromatin insulator into lentiviral vectors results in less viral integrants

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Jakobsson, Johan; Rosenqvist, Nina;

    2009-01-01

    BACKGROUND: Lentiviral vectors hold great promise as gene transfer vectors in gene therapeutic settings. However, problems related to the risk of insertional mutagenesis, transgene silencing and positional effects have stalled the use of such vectors in the clinic. Chromatin insulators are boundary...

  16. Relating structure and function of inner hair cell ribbon synapses.

    Science.gov (United States)

    Wichmann, C; Moser, T

    2015-07-01

    In the mammalian cochlea, sound is encoded at synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs). Each SGN receives input from a single IHC ribbon-type active zone (AZ) and yet SGNs indefatigably spike up to hundreds of Hz to encode acoustic stimuli with submillisecond precision. Accumulating evidence indicates a highly specialized molecular composition and structure of the presynapse, adapted to suit these high functional demands. However, we are only beginning to understand key features such as stimulus-secretion coupling, exocytosis mechanisms, exo-endocytosis coupling, modes of endocytosis and vesicle reformation, as well as replenishment of the readily releasable pool. Relating structure and function has become an important avenue in addressing these points and has been applied to normal and genetically manipulated hair cell synapses. Here, we review some of the exciting new insights gained from recent studies of the molecular anatomy and physiology of IHC ribbon synapses.

  17. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  18. [Structure analysis of disease-related proteins using vibrational spectroscopy].

    Science.gov (United States)

    Hiramatsu, Hirotsugu

    2014-01-01

    Analyses of the structure and properties of identified pathogenic proteins are important for elucidating the molecular basis of diseases and in drug discovery research. Vibrational spectroscopy has advantages over other techniques in terms of sensitivity of detection of structural changes. Spectral analysis, however, is complicated because the spectrum involves a substantial amount of information. This article includes examples of structural analysis of disease-related proteins using vibrational spectroscopy in combination with additional techniques that facilitate data acquisition and analysis. Residue-specific conformation analysis of an amyloid fibril was conducted using IR absorption spectroscopy in combination with (13)C-isotope labeling, linear dichroism measurement, and analysis of amide I band features. We reveal a pH-dependent property of the interacting segment of an amyloidogenic protein, β2-microglobulin, which causes dialysis-related amyloidosis. We also reveal the molecular mechanisms underlying pH-dependent sugar-binding activity of human galectin-1, which is involved in cell adhesion, using spectroscopic techniques including UV resonance Raman spectroscopy. The decreased activity at acidic pH was attributed to a conformational change in the sugar-binding pocket caused by protonation of His52 (pKa 6.3) and the cation-π interaction between Trp68 and the protonated His44 (pKa 5.7). In addition, we show that the peak positions of the Raman bands of the C4=C5 stretching mode at approximately 1600 cm(-1) and the Nπ-C2-Nτ bending mode at approximately 1405 cm(-1) serve as markers of the His side-chain structure. The Raman signal was enhanced 12 fold using a vertical flow apparatus.

  19. A role for chromatin topology in imprinted domain regulation.

    Science.gov (United States)

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  20. Constraining cosmological ultra-large scale structure using numerical relativity

    CERN Document Server

    Braden, Jonathan; Peiris, Hiranya V; Aguirre, Anthony

    2016-01-01

    Cosmic inflation, a period of accelerated expansion in the early universe, can give rise to large amplitude ultra-large scale inhomogeneities on distance scales comparable to or larger than the observable universe. The cosmic microwave background (CMB) anisotropy on the largest angular scales is sensitive to such inhomogeneities and can be used to constrain the presence of ultra-large scale structure (ULSS). We numerically evolve nonlinear inhomogeneities present at the beginning of inflation in full General Relativity to assess the CMB quadrupole constraint on the amplitude of the initial fluctuations and the size of the observable universe relative to a length scale characterizing the ULSS. To obtain a statistically significant number of simulations, we adopt a toy model in which inhomogeneities are injected along a preferred direction. We compute the likelihood function for the CMB quadrupole including both ULSS and the standard quantum fluctuations produced during inflation. We compute the posterior given...

  1. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  2. Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation

    Directory of Open Access Journals (Sweden)

    He Shuying

    2010-11-01

    Full Text Available Abstract Background Brahma-related gene 1 (Brg1, also known as Smarca4 and Snf2β encodes an adenosine-5'-triphosphate (ATP-dependent catalytical subunit of the (switch/sucrose nonfermentable (SWI/SNF chromatin remodeling complexes. SWI/SNF complexes are recruited to chromatin through multiple mechanisms, including specific DNA-binding factors (for example, heat shock transcription factor 4 (Hsf4 and paired box gene 6 (Pax6, chromatin structural proteins (for example, high-mobility group A1 (HMGA1 and/or acetylated core histones. Previous studies have shown that a single amino acid substitution (K798R in the Brg1 ATPase domain acts via a dominant-negative (dn mechanism. Genetic studies have demonstrated that Brg1 is an essential gene for early (that is, prior implantation mouse embryonic development. Brg1 also controls neural stem cell maintenance, terminal differentiation of multiple cell lineages and organs including the T-cells, glial cells and limbs. Results To examine the roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific αA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (that is, denucleation of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in embryonic day 15.5 (E15.5 wild-type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous and Hsf4 homozygous lenses identified multiple genes coregulated by Brg1, Hsf4 and Pax6. DNase IIβ, a key enzyme required for lens fiber cell denucleation, was found to be downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that

  3. Genome-wide Association of Yorkie with Chromatin and Chromatin-Remodeling Complexes

    Directory of Open Access Journals (Sweden)

    Hyangyee Oh

    2013-02-01

    Full Text Available The Hippo pathway regulates growth through the transcriptional coactivator Yorkie, but how Yorkie promotes transcription remains poorly understood. We address this by characterizing Yorkie’s association with chromatin and by identifying nuclear partners that effect transcriptional activation. Coimmunoprecipitation and mass spectrometry identify GAGA factor (GAF, the Brahma complex, and the Mediator complex as Yorkie-associated nuclear protein complexes. All three are required for Yorkie’s transcriptional activation of downstream genes, and GAF and the Brahma complex subunit Moira interact directly with Yorkie. Genome-wide chromatin-binding experiments identify thousands of Yorkie sites, most of which are associated with elevated transcription, based on genome-wide analysis of messenger RNA and histone H3K4Me3 modification. Chromatin binding also supports extensive functional overlap between Yorkie and GAF. Our studies suggest a widespread role for Yorkie as a regulator of transcription and identify recruitment of the chromatin-modifying GAF protein and BRM complex as a molecular mechanism for transcriptional activation by Yorkie.

  4. From the chromatin interaction network to the organization of the human genome into replication N/U-domains

    Science.gov (United States)

    Boulos, Rasha E.; Julienne, Hanna; Baker, Antoine; Chen, Chun-Long; Petryk, Nataliya; Kahli, Malik; dʼAubenton-Carafa, Yves; Goldar, Arach; Jensen, Pablo; Hyrien, Olivier; Thermes, Claude; Arneodo, Alain; Audit, Benjamin

    2014-11-01

    The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome.

  5. Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication

    Directory of Open Access Journals (Sweden)

    Yasushi Shiomi

    2017-01-01

    Full Text Available During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA, acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.

  6. Long-term effects of chromatin remodeling and DNA damage in stem cells induced by environmental and dietary agents.

    Science.gov (United States)

    Bariar, Bhawana; Vestal, C Greer; Richardson, Christine

    2013-01-01

    The presence of histones acts as a barrier to protein access; thus chromatin remodeling must occur for essential processes such as transcription and replication. In conjunction with histone modifications, DNA methylation plays critical roles in gene silencing through chromatin remodeling. Chromatin remodeling is also interconnected with the DNA damage response, maintenance of stem cell properties, and cell differentiation programs. Chromatin modifications have increasingly been shown to produce long-lasting alterations in chromatin structure and transcription. Recent studies have shown environmental exposures in utero have the potential to alter normal developmental signaling networks, physiologic responses, and disease susceptibility later in life during a process known as developmental reprogramming. In this review we discuss the long-term impact of exposure to environmental compounds, the chromatin modifications that they induce, and the differentiation and developmental programs of multiple stem and progenitor cell types altered by exposure. The main focus is to highlight agents present in the human lifestyle that have the potential to promote epigenetic changes that impact developmental programs of specific cell types, may promote tumorigenesis through altering epigenetic marks, and may be transgenerational, for example, those able to be transmitted through multiple cell divisions.

  7. Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication.

    Science.gov (United States)

    Shiomi, Yasushi; Nishitani, Hideo

    2017-01-26

    During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA), acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC) complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.

  8. Distribution of intercalative dye binding sites in chromatin.

    Science.gov (United States)

    Lurquin, P F; Seligy, V L

    1976-04-01

    Actinomycin D (AMD) and ethidium bromide (EB) were found to bind to chromatin isolated from a variety of gander tissues according to a strong and weak process analogous to that found for deproteinized DNA. Distribution of the dye intercalation sites in chromatin and DNA were evaluated at low r-values (dye bound per nucleotide) by following the appearance of free dye released from chromatin and DNA during thermal denaturation. The AMD dissociation profiles closely resembled the DNA or chromatin-DNA denaturation profiles; whereas the EB derivative dissociation profiles, indicated 3 major transitions for transcriptionally active chromatin with the main component corresponding to the single component which characterizes DNA. The DNA-like component was greatly reduced for mature erythrocyte chromatin but could be generated by removal of histone I and V. Removal of residual non acid-soluble proteins from dehistonized chromatin, urea treatment or dissociation and reconstitution of chromatin favoured conversion to the DNA-like component with loss of the other two. This study indicates that more than one type of binding exists generally in chromatin.

  9. Non-coding RNAs in chromatin disease involving neurological defects

    Directory of Open Access Journals (Sweden)

    Floriana eDella Ragione

    2014-02-01

    Full Text Available Novel classes of small and long non-coding RNAs (ncRNAs are increasingly becoming apparent, being engaged in diverse structural, functional and regulatory activities. They take part in target gene silencing, play roles in transcriptional, post-transcriptional and epigenetic processes, such as chromatin remodeling, nuclear reorganization with the formation of silent compartments and fine-tuning of gene recruitment into them. Among their functions, non-coding RNAs are thought to act either as guide or scaffold for epigenetic modifiers that write, erase and read the epigenetic signature over the genome. Studies on human disorders caused by defects in epigenetic modifiers and involving neurological phenotypes highlight the disruption of diverse classes of non-coding RNAs. Noteworthy, these molecules mediate a wide spectrum of neuronal functions, including brain development, and synaptic plasticity. These findings imply a significant contribution of ncRNAs in pathophysiology of the aforesaid diseases and provide new concepts for potential therapeutic applications.

  10. Chromatin Dynamics in Vivo: A Game of Musical Chairs

    Directory of Open Access Journals (Sweden)

    Daniël P. Melters

    2015-08-01

    Full Text Available Histones are a major component of chromatin, the nucleoprotein complex fundamental to regulating transcription, facilitating cell division, and maintaining genome integrity in almost all eukaryotes. In addition to canonical, replication-dependent histones, replication-independent histone variants exist in most eukaryotes. In recent years, steady progress has been made in understanding how histone variants assemble, their involvement in development, mitosis, transcription, and genome repair. In this review, we will focus on the localization of the major histone variants H3.3, CENP-A, H2A.Z, and macroH2A, as well as how these variants have evolved, their structural differences, and their functional significance in vivo.

  11. The Guadalquivir Diapiric Ridge: Deep Tectonics and Related Gas Structures

    Science.gov (United States)

    Fernández-Puga, M. C.; Somoza, L.; Pinheiro, L. M.; Magalhães, V.; Vázquez, J. T.; Díaz-del-Río, V.; Ivanov, M.

    Cooperation between the Spanish TASYO project during the cruises Tasyo/2000, Anastasya/99, Anastasya/00 and Anastasya/01 and the UNESCO-IOC Trainning Trough Research Programme during the TTR9, TTR10 and TTR-11 cruises have per- mitted to identify numerous structures related to hydrocarbon seepages in the Gulf of Cadiz, located between the Africa and Eurasia plate. The interpretation of multibeam bathymetry and a large database of reflection seismic profiles shows two important morphotectonics structures: the Cadiz Diapiric Ridge (CDR) and the Guadalquivir Di- apiric Ridge (GDR). The CDR is a diapiric elongate structure located between 400 and 700m water depth, with a N-S direction. The GDR is an elongated ridge, situated west- ward of this structure and located along the shelf and slope between 300-1100m depth. This highly deformed ridge, formed by several diapirs oriented in NE-SW direction, has been mapped using industrial multifold seismic, core logs, gravity cores, dredge samples and photographs, obtained during the ANASTASYA 01/09 cruise. This data has shown that it is composed of early-middle Miocene blue marls (Maldonado et al, 1999), mud breccias and calcarenites. In fact, this diapiric structure is associated with a complex tectono-sedimentary history related to along slope gravity gliding and tec- tonic compression westward the fronts of the deformed wedges of the SOlistostromic & cedil;allochtonous unitsT (Somoza et al., 1999). According to the observed and sampled structures along the GDR, this ridge can be divided in three areas: (a) The NE area is characterized by the existence of a series of wide single sub-circular mud volcanoes (Anastasya, Tarsis and Pipoca), surrounded by a ring shaped seafloor depression. Mud breccia has been collected from these mud volcanoes (ANAS00-TG5,TG6,TG7,TG8 and ANAS01-TG2); (b) a central sector with long rounded-like crater structures, of unknown origin, from which calcarenites were collected (ANAS01-DA13); and (c) a SW

  12. The Structure of Relations among Neighbours in Croatia

    Directory of Open Access Journals (Sweden)

    Barbara Tołłoczko

    2015-12-01

    Full Text Available The Structure of Relations among Neighbours in CroatiaThe article discusses the study carried out by Croatian researchers from the Institute of Social Sciences Ivo Pilar. The research was realized through face-to-face interviews conducted between March and May 2014. It’s goal was to investigate the structure of local social relations by exploring the frequency and density of interactions between neighbours. Obtained data was analysed according to the demographic and socioeconomic background of the responders. The article includes a short introduction into the issue of neighbourhood patterns in Croatia which is described in the context of broader, global changes. After reviewing the research theoretical and methodological assumptions I present and discuss its findings. The summary suggests some problems and inspirations for further exploration in the matter of neighbourhood relations. Struktura relacji międzysąsiedzkich w ChorwacjiArtykuł omawia prace przeprowadzone przez badaczy z Instytutu Ivo Pilar w Zagrzebiu. Wykonano serię wywiadów bezpośrednich w okresie od marca do maja 2014 r. Ich celem było przyjrzenie się strukturze lokalnych relacji społecznych poprzez zbadanie częstotliwości i głębokości interakcji między sąsiadami. Otrzymane dane zostały zanalizowane w świetle demograficznego i socjoekonomicznego profilu badanych. Artykuł zawiera krótkie wprowadzenie w problematykę wzorów sąsiedztwa w Chorwacji w szerszym, globalnym kontekście. Po omówieniu teoretycznych i metodologicznych założeń przedstawiono i przedyskutowano rezultaty badania.

  13. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells.

    Directory of Open Access Journals (Sweden)

    Laurie A Steiner

    Full Text Available CTCF and cohesinSA-1 are regulatory proteins involved in a number of critical cellular processes including transcription, maintenance of chromatin domain architecture, and insulator function. To assess changes in the CTCF and cohesinSA-1 interactomes during erythropoiesis, chromatin immunoprecipitation coupled with high throughput sequencing and mRNA transcriptome analyses via RNA-seq were performed in primary human hematopoietic stem and progenitor cells (HSPC and primary human erythroid cells from single donors.Sites of CTCF and cohesinSA-1 co-occupancy were enriched in gene promoters in HSPC and erythroid cells compared to single CTCF or cohesin sites. Cell type-specific CTCF sites in erythroid cells were linked to highly expressed genes, with the opposite pattern observed in HSPCs. Chromatin domains were identified by ChIP-seq with antibodies against trimethylated lysine 27 histone H3, a modification associated with repressive chromatin. Repressive chromatin domains increased in both number and size during hematopoiesis, with many more repressive domains in erythroid cells than HSPCs. CTCF and cohesinSA-1 marked the boundaries of these repressive chromatin domains in a cell-type specific manner.These genome wide data, changes in sites of protein occupancy, chromatin architecture, and related gene expression, support the hypothesis that CTCF and cohesinSA-1 have multiple roles in the regulation of gene expression during erythropoiesis including transcriptional regulation at gene promoters and maintenance of chromatin architecture. These data from primary human erythroid cells provide a resource for studies of normal and perturbed erythropoiesis.

  14. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber

    DEFF Research Database (Denmark)

    Comet, Itys; Schuettengruber, Bernd; Sexton, Tom;

    2011-01-01

    to insulate genes from regulatory elements or to take part in long-distance interactions. Using a high-resolution chromatin conformation capture (H3C) method, we show that the Drosophila gypsy insulator behaves as a conformational chromatin border that is able to prohibit contacts between a Polycomb response...... element (PRE) and a distal promoter. On the other hand, two spaced gypsy elements form a chromatin loop that is able to bring an upstream PRE in contact with a downstream gene to mediate its repression. Chromatin immunoprecipitation (ChIP) profiles of the Polycomb protein and its associated H3K27me3...

  15. Approximation method to compute domain related integrals in structural studies

    Science.gov (United States)

    Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.

    2015-11-01

    Various engineering calculi use integral calculus in theoretical models, i.e. analytical and numerical models. For usual problems, integrals have mathematical exact solutions. If the domain of integration is complicated, there may be used several methods to calculate the integral. The first idea is to divide the domain in smaller sub-domains for which there are direct calculus relations, i.e. in strength of materials the bending moment may be computed in some discrete points using the graphical integration of the shear force diagram, which usually has a simple shape. Another example is in mathematics, where the surface of a subgraph may be approximated by a set of rectangles or trapezoids used to calculate the definite integral. The goal of the work is to introduce our studies about the calculus of the integrals in the transverse section domains, computer aided solutions and a generalizing method. The aim of our research is to create general computer based methods to execute the calculi in structural studies. Thus, we define a Boolean algebra which operates with ‘simple’ shape domains. This algebraic standpoint uses addition and subtraction, conditioned by the sign of every ‘simple’ shape (-1 for the shapes to be subtracted). By ‘simple’ shape or ‘basic’ shape we define either shapes for which there are direct calculus relations, or domains for which their frontiers are approximated by known functions and the according calculus is carried out using an algorithm. The ‘basic’ shapes are linked to the calculus of the most significant stresses in the section, refined aspect which needs special attention. Starting from this idea, in the libraries of ‘basic’ shapes, there were included rectangles, ellipses and domains whose frontiers are approximated by spline functions. The domain triangularization methods suggested that another ‘basic’ shape to be considered is the triangle. The subsequent phase was to deduce the exact relations for the

  16. Recognition of chromatin by the plant alkaloid, ellipticine as a dual binder

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amrita; Sanyal, Sulagna; Majumder, Parijat [Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal (India); Chakraborty, Payal [Bionivid Technology Pvt Ltd, Kasturi Nagar, Bangalore 560043 (India); Jana, Kuladip [Division of Molecular Medicine, Centre for Translational Animal Research, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal (India); Das, Chandrima, E-mail: chandrima.das@saha.ac.in [Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal (India); Dasgupta, Dipak, E-mail: dipak.dasgupta@saha.ac.in [Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal (India)

    2015-07-10

    Recognition of core histone components of chromatin along with chromosomal DNA by a class of small molecule modulators is worth examining to evaluate their intracellular mode of action. A plant alkaloid ellipticine (ELP) which is a putative anticancer agent has so far been reported to function via DNA intercalation, association with topoisomerase II and binding to telomere region. However, its effect upon the potential intracellular target, chromatin is hitherto unreported. Here we have characterized the biomolecular recognition between ELP and different hierarchical levels of chromatin. The significant result is that in addition to DNA, it binds to core histone(s) and can be categorized as a ‘dual binder’. As a sequel to binding with histone(s) and core octamer, it alters post-translational histone acetylation marks. We have further demonstrated that it has the potential to modulate gene expression thereby regulating several key biological processes such as nuclear organization, transcription, translation and histone modifications. - Highlights: • Ellipticine acts a dual binder binding to both DNA and core histone(s). • It induces structural perturbations in chromatin, chromatosome and histone octamer. • It alters histones acetylation and affects global gene expression.

  17. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination.

    Science.gov (United States)

    Reddy, Kirthi C; Villeneuve, Anne M

    2004-08-20

    Initiation of meiotic recombination by double-strand breaks (DSBs) must occur in a controlled fashion to avoid jeopardizing genome integrity. Here, we identify chromatin-associated protein HIM-17 as a link between chromatin state and DSB formation during C. elegans meiosis. Dependencies of several meiotic prophase events on HIM-17 parallel those seen for DSB-generating enzyme SPO-11: HIM-17 is essential for DSB formation but dispensable for homolog synapsis. Crossovers and chiasmata are eliminated in him-17 null mutants but are restored by artificially induced DSBs, indicating that all components required to convert DSBs into chiasmata are present. Unlike SPO-11, HIM-17 is also required for proper accumulation of histone H3 methylation at lysine 9 on meiotic prophase chromosomes. HIM-17 shares structural features with three proteins that interact genetically with LIN-35/Rb, a known component of chromatin-modifying complexes. Furthermore, DSB levels and incidence of chiasmata can be modulated by loss of LIN-35/Rb. These and other data suggest that chromatin state governs the timing of DSB competence.

  18. The fractal globule as a model of chromatin architecture in the cell.

    Science.gov (United States)

    Mirny, Leonid A

    2011-01-01

    The fractal globule is a compact polymer state that emerges during polymer condensation as a result of topological constraints which prevent one region of the chain from passing across another one. This long-lived intermediate state was introduced in 1988 (Grosberg et al. 1988) and has not been observed in experiments or simulations until recently (Lieberman-Aiden et al. 2009). Recent characterization of human chromatin using a novel chromosome conformational capture technique brought the fractal globule into the spotlight as a structural model of human chromosome on the scale of up to 10 Mb (Lieberman-Aiden et al. 2009). Here, we present the concept of the fractal globule, comparing it to other states of a polymer and focusing on its properties relevant for the biophysics of chromatin. We then discuss properties of the fractal globule that make it an attractive model for chromatin organization inside a cell. Next, we connect the fractal globule to recent studies that emphasize topological constraints as a primary factor driving formation of chromosomal territories. We discuss how theoretical predictions, made on the basis of the fractal globule model, can be tested experimentally. Finally, we discuss whether fractal globule architecture can be relevant for chromatin packing in other organisms such as yeast and bacteria.

  19. Increased chromatin fragmentation and reduced acrosome integrity in spermatozoa of red deer from lead polluted sites.

    Science.gov (United States)

    Castellanos, Pilar; del Olmo, Enrique; Fernández-Santos, M Rocío; Rodríguez-Estival, Jaime; Garde, J Julián; Mateo, Rafael

    2015-02-01

    Vertebrates are constantly exposed to a diffuse pollution of heavy metals existing in the environment, but in some cases, the proximity to emission sources like mining activity increases the risk of developing adverse effects of these pollutants. Here we have studied lead (Pb) levels in spermatozoa and testis, and chromatin damage and levels of endogenous antioxidant activity in spermatozoa of red deer (Cervus elaphus) from a Pb mining area (n=37) and a control area (n=26). Deer from the Pb-polluted area showed higher Pb levels in testis parenchyma, epididymal cauda and spermatozoa, lower values of acrosome integrity, higher activity of glutathione peroxidase (GPx) and higher values of DNA fragmentation (X-DFI) and stainability (HDS) in sperm than in the control area. These results indicate that mining pollution can produce damage on chromatin and membrane spermatozoa in wildlife. The study of chromatin fragmentation has not been studied before in spermatozoa of wildlife species, and the sperm chromatin structure assay (SCSA) has been revealed as a successful tool for this purpose in species in which the amount of sperm that can be collected is very limited.

  20. New insights into protamine-like component organization in Mytilus galloprovincialis' sperm chromatin.

    Science.gov (United States)

    Vassalli, Quirino Attilio; Caccavale, Filomena; Avagnano, Stefano; Murolo, Alessandra; Guerriero, Giulia; Fucci, Laura; Ausió, Juan; Piscopo, Marina

    2015-03-01

    We have analyzed Mytilus galloprovincialis' sperm chromatin, which consists of three protamine-like proteins, PL-II, PL-III, and PL-IV, in addition to a residual amount of the four core histones. We have probed the structure of this sperm chromatin through digestion with micrococcal nuclease (MNase) in combination with salt fractionation. Furthermore, we used the electrophoretic mobility shift assay to define DNA-binding mode of PL-II and PL-III and turbidimetric assays to determine their self-association ability in the presence of sodium phosphate. Although in literature it is reported that M. galloprovincialis' sperm chromatin lacks nucleosomal organization, our results obtained by MNase digestion suggest the existence of a likely unusual organization, in which there would be a more accessible location of PL-II/PL-IV when compared with PL-III and core histones. So, we hypothesize that in M. galloprovincialis' sperm chromatin organization DNA is wrapped around a PL-III protein core and core histones and PL-II and PL-IV are bound to the flanking DNA regions (similarly to somatic histone H1). Furthermore, we propose that PL's K/R ratio affects their DNA-binding mode and self-association ability as reported previously for somatic and sperm H1 histones.

  1. Development of a novel flow cytometric approach to evaluate fish sperm chromatin using fixed samples

    Science.gov (United States)

    Jenkins, Jill A.

    2013-01-01

    The integrity of the paternal DNA is essential for the accurate transmission of genetic information, yet fertilization is not inhibited by chromatin breakage. Some methods are available for the sensitive detection of DNA damage and can be applied in studies of environmental toxicology, carcinogenesis, aging, and assisted reproduction techniques in both clinical and experimental settings. Because semen samples obtained from remote locations undergo chromatin damage prior to laboratory assessment, the present study was undertaken to evaluate treatments for effective chromatin staining in the development of a DNA fragmentation assay using fixed milt from yellow perch (Perca flavescens). Similar to the sperm chromatin structure assay (SCSA), susceptibility of nuclear DNA to acid-induced denaturation was measured by flow cytometry (FCM). Use of 10% buffered formalin for milt fixation allowed easier peak discrimination than 4% paraformaldehyde. The effects of time and temperature of incubation in 0.08 N HCl were evaluated in order to determine the ideal conditions for promoting DNA decondensation and making strand breaks more available for staining and detection by FCM. The best results were obtained with incubation at 37°C for 1 minute, followed by cold propidium iodide staining for 30 minutes.

  2. Put your 3D glasses on: plant chromatin is on show

    KAUST Repository

    Rodriguez-Granados, Natalia Y.

    2016-04-30

    The three-dimensional organization of the eukaryotic nucleus and its chromosomal conformation have emerged as important features in the complex network of mechanisms behind gene activity and genome connectivity dynamics, which can be evidenced in the regionalized chromosomal spatial distribution and the clustering of diverse genomic regions with similar expression patterns. The development of chromatin conformation capture (3C) techniques has permitted the elucidation of commonalities between the eukaryotic phyla, as well as important differences among them. The growing number of studies in the field performed in plants has shed light on the structural and regulatory features of these organisms. For instance, it has been proposed that plant chromatin can be arranged into different conformations such as Rabl, Rosette-like, and Bouquet, and that both short- and long-range chromatin interactions occur in Arabidopsis. In this review, we compile the current knowledge about chromosome architecture characteristics in plants, as well as the molecular events and elements (including long non-coding RNAs, histone and DNA modifications, chromatin remodeling complexes, and transcription factors) shaping the genome three-dimensional conformation. Furthermore, we discuss the developmental outputs of genome topology-mediated gene expression regulation. It is becoming increasingly clear that new tools and techniques with higher resolution need to be developed and implemented in Arabidopsis and other model plants in order to better understand chromosome architecture dynamics, from an integrative perspective with other fields of plant biology such as development, stress biology, and finally agriculture. © 2016 The Author 2016.

  3. Epigenetic phenomena, chromatin dynamics, and gene expression. New theoretical approaches in the study of living systems.

    Science.gov (United States)

    Boi, Luciano

    2008-01-01

    This paper is aimed at exploring the genome at the level beyond that of DNA sequence alone. We stress the fact that the level of genes is not the sole "reality" in the living world, for there are different epigenetic processes that profoundly affect change in living systems. Moreover, epigenetics very likely influences the course of evolution and the unfolding of life. We further attempt to investigate how the genome is dynamically organized into the nuclear space within the cell. We mainly focus on analyses of higher order nuclear architecture and the dynamic interactions of chromatin with other nuclear components. We especially want to know how epigenetic phenomena influences genes expression and chromosome functions. The proper understanding of these processes require new concepts and approaches be introduced and developed. In particular, we think that research in biology has to shift from only describing molecular and local features of living systems to studying the regulatory networks of interactions among gene pathways, the folding and dynamics of chromatin structure and how environmental factors affects the behavior of organisms. There are essential components of biological information on living organisms which cannot be portrayed in the DNA sequence alone. In a post-genomic era, the importance of chromatin/epigenetic interface has become increasingly apparent. One of the purposes of current research should be to highlight the enormous impact of chromatin organization and dynamics on epigenetic phenomena, and, conversely, to emphasize the important role that epigenetic phenomena play in gene expression and cell regulation.

  4. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.

    2014-08-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  5. A Method to Study the Epigenetic Chromatin States of Rare Hematopoietic Stem and Progenitor Cells; MiniChIP–Chip

    Directory of Open Access Journals (Sweden)

    Weishaupt Holger

    2010-01-01

    Full Text Available Abstract Dynamic chromatin structure is a fundamental property of gene transcriptional regulation, and has emerged as a critical modulator of physiological processes during cellular differentiation and development. Analysis of chromatin structure using molecular biology and biochemical assays in rare somatic stem and progenitor cells is key for understanding these processes but poses a great challenge because of their reliance on millions of cells. Through the development of a miniaturized genome-scale chromatin immunoprecipitation method (miniChIP–chip, we have documented the genome-wide chromatin states of low abundant populations that comprise hematopoietic stem cells and immediate progeny residing in murine bone marrow. In this report, we describe the miniChIP methodology that can be used for increasing an understanding of the epigenetic mechanisms underlying hematopoietic stem and progenitor cell function. Application of this method will reveal the contribution of dynamic chromatin structure in regulating the function of other somatic stem cell populations, and how this process becomes perturbed in pathological conditions. Additional file 1 Click here for file

  6. Convulsion-related activities of Scutellaria flavones are related to the 5,7-dihydroxyl structures.

    Science.gov (United States)

    Yoon, Seo Young; dela Peña, Ike Campomayor; Shin, Chan Young; Son, Kun Ho; Lee, Yong Soo; Ryu, Jong Hoon; Cheong, Jae Hoon; Ko, Kwang Ho

    2011-06-01

    We screened the major bioactive flavones isolated from Scutellaria baicalensis (baicalin, baicalein and oroxylin A) for their convulsion related activities. In electrogenic response score system and the pentylenetetrazole seizure model, baicalein but not oroxylin A and baicalin exhibited anticonvulsant effects. In vitro studies also revealed that baicalein induced intracellular Cl(-) influx, whereas oroxylin A blocked muscimol- and baicalein-induced intracellular Cl(-) influx. The anticonvulsant effect of baicalein was inhibited by flumazenil, a benzodiazepine(BZD) receptor antagonist. Therefore, anticonvulsive effect of baicalein was mediated by the BZD binding site of GABA(A) receptor. The 5, 7-dihydroxyl group is present in the structure of the three flavones. It is postulated that this group played a key role in inducing convulsion-related activities.

  7. Hinge Atlas: relating protein sequence to sites of structural flexibility

    Directory of Open Access Journals (Sweden)

    Yang Julie

    2007-05-01

    Full Text Available Abstract Background Relating features of protein sequences to structural hinges is important for identifying domain boundaries, understanding structure-function relationships, and designing flexibility into proteins. Efforts in this field have been hampered by the lack of a proper dataset for studying characteristics of hinges. Results Using the Molecular Motions Database we have created a Hinge Atlas of manually annotated hinges and a statistical formalism for calculating the enrichment of various types of residues in these hinges. Conclusion We found various correlations between hinges and sequence features. Some of these are expected; for instance, we found that hinges tend to occur on the surface and in coils and turns and to be enriched with small and hydrophilic residues. Others are less obvious and intuitive. In particular, we found that hinges tend to coincide with active sites, but unlike the latter they are not at all conserved in evolution. We evaluate the potential for hinge prediction based on sequence. Motions play an important role in catalysis and protein-ligand interactions. Hinge bending motions comprise the largest class of known motions. Therefore it is important to relate the hinge location to sequence features such as residue type, physicochemical class, secondary structure, solvent exposure, evolutionary conservation, and proximity to active sites. To do this, we first generated the Hinge Atlas, a set of protein motions with the hinge locations manually annotated, and then studied the coincidence of these features with the hinge location. We found that all of the features have bearing on the hinge location. Most interestingly, we found that hinges tend to occur at or near active sites and yet unlike the latter are not conserved. Less surprisingly, we found that hinge residues tend to be small, not hydrophobic or aliphatic, and occur in turns and random coils on the surface. A functional sequence based hinge predictor was

  8. A Broad Set of Chromatin Factors Influences Splicing

    Science.gov (United States)

    Allemand, Eric; Myers, Michael P.; Garcia-Bernardo, Jose; Harel-Bellan, Annick; Krainer, Adrian R.; Muchardt, Christian

    2016-01-01

    Several studies propose an influence of chromatin on pre-mRNA splicing, but it is still unclear how widespread and how direct this phenomenon is. We find here that when assembled in vivo, the U2 snRNP co-purifies with a subset of chromatin-proteins, including histones and remodeling complexes like SWI/SNF. Yet, an unbiased RNAi screen revealed that the outcome of splicing is influenced by a much larger variety of chromatin factors not all associating with the spliceosome. The availability of this broad range of chromatin factors impacting splicing further unveiled their very context specific effect, resulting in either inclusion or skipping, depending on the exon under scrutiny. Finally, a direct assessment of the impact of chromatin on splicing using an in vitro co-transcriptional splicing assay with pre-mRNAs transcribed from a nucleosomal template, demonstrated that chromatin impacts nascent pre-mRNP in their competence for splicing. Altogether, our data show that numerous chromatin factors associated or not with the spliceosome can affect the outcome of splicing, possibly as a function of the local chromatin environment that by default interferes with the efficiency of splicing. PMID:27662573

  9. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  10. Data on the kinetics of in vitro assembled chromatin.

    Science.gov (United States)

    Völker-Albert, Moritz Carl; Pusch, Miriam Caroline; Schmidt, Andreas; Imhof, Axel

    2016-09-01

    Here, we use LC-MS/MS and SWATH-MS to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos (DREX). This system allows easy manipulation of distinct aspects of chromatin assembly such as post-translational histone modifications, the levels of histone chaperones and the concentration of distinct DNA binding factors. In total, 480 proteins have been quantified as chromatin enriched factors and their binding kinetics have been monitored in the time course of 15 min, 1 h and 4 h of chromatin assembly. The data accompanying the manuscript on this approach, Völker-Albert et al., 2016 "A quantitative proteomic analysis of in vitro assembled chromatin" [1], has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with the dataset identifier submission number PRIDE: PXD002537 and PRIDE: PXD003445.

  11. Transcription upregulation via force-induced direct stretching of chromatin

    Science.gov (United States)

    Tajik, Arash; Zhang, Yuejin; Wei, Fuxiang; Sun, Jian; Jia, Qiong; Zhou, Wenwen; Singh, Rishi; Khanna, Nimish; Belmont, Andrew S.; Wang, Ning

    2016-12-01

    Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green fluorescent protein (GFP)-tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina-chromatin interactions to directly stretch chromatin and upregulate transcription.

  12. Chromatin-based epigenetics of adult subventricular zone neural stem cells

    Directory of Open Access Journals (Sweden)

    Gabriel eGonzales-Roybal

    2013-10-01

    Full Text Available In specific regions of the adult mammalian brain, neural stem cells (NSCs generate new neurons throughout life. Emerging evidence indicate that chromatin-based transcriptional regulation is a key epigenetic mechanism for the life-long function of adult NSCs. In the adult mouse brain, NSCs in the subventricular zone (SVZ retain the ability to produce both neurons and glia for the life of the animal. In this review, we discuss the origin and function of SVZ NSCs as they relate to key epigenetic concepts of development and potential underlying mechanism of chromatin-based transcriptional regulation. A central point of discussion is how SVZ NSCs – which possess many characteristics of mature, non-neurogenic astrocytes – maintain a youthful ability to produce both neuronal and glial lineages. In addition to reviewing data regarding the function of chromatin-modifying factors in SVZ neurogenesis, we incorporate our growing understanding that long noncoding RNAs (lncRNAs serve as an important element to chromatin-based transcriptional regulation, including that of SVZ NSCs. Discoveries regarding the epigenetic mechanisms of adult SVZ NSCs may provide key insights into fundamental principles of adult stem cell biology as well as the more complex and dynamic developmental environment of the embryonic brain.

  13. Matroidal Structure of Generalized Rough Sets Based on Tolerance Relations

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-01-01

    of the generalized rough set based on the tolerance relation. The matroid can also induce a new relation. We investigate the connection between the original tolerance relation and the induced relation.

  14. Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context.

    Directory of Open Access Journals (Sweden)

    Artyom A Alekseyenko

    Full Text Available The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at "entry sites" that contain a consensus sequence motif ("MSL recognition element" or MRE. However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex and female Kc cells (which lack the complex, we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.

  15. Bio-related noble metal nanoparticle structure property relationships

    Science.gov (United States)

    Leonard, Donovan Nicholas

    Structure property relationships of noble metal nanoparticles (NPs) can be drastically different than bulk properties of the same metals. This research study used state-of-the-art analytical electron microscopy and scanned probe microscopy to determine material properties on the nanoscale of bio-related Au and Pd NPs. Recently, it has been demonstrated the self-assembly of Au NPs on functionalized silica surfaces creates a conductive surface. Determination of the aggregate morphology responsible for electron conduction was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In addition, changes in the electrical properties of the substrates after low temperature (encapsulate Au NPs. Results indicated the sol-gel deposited SiO2 had a band gap energy of ˜8.9eV, bulk plasmon-peak energy of ˜25.5eV and chemical composition of stoichiometric SiO2. Lastly, an attempt to elicit structure property relationships of novel RNA mediated Pd hexagon NPs was performed. Selected area electron diffraction (SAD), low voltage scanning transmission electron microscopy (LV-STEM), electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) were chosen for characterization of atomic ordering, chemical composition and optoelectronic properties of the novel nanostructures. Data from control experiments found the hexagons could be made without RNA and confirmed the presence of nanocrystalline Pd metal NPs in unpurified Pd2(DBA)3 reagent powder. Furthermore, the study determined the hexagon platelets to have a chemical composition of ˜90at% carbon and ˜10at% Pd and a lattice parameter corresponding to molecular crystals of Pd2(DBA)3 precursor, not Pd metal.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Windows MediaPlayer or RealPlayer.

  16. The Epc-N domain: a predicted protein-protein interaction domain found in select chromatin associated proteins

    Directory of Open Access Journals (Sweden)

    Perry Jason

    2006-01-01

    Full Text Available Abstract Background An underlying tenet of the epigenetic code hypothesis is the existence of protein domains that can recognize various chromatin structures. To date, two major candidates have emerged: (i the bromodomain, which can recognize certain acetylation marks and (ii the chromodomain, which can recognize certain methylation marks. Results The Epc-N (Enhancer of Polycomb-N-terminus domain is formally defined herein. This domain is conserved across eukaryotes and is predicted to form a right-handed orthogonal four-helix bundle with extended strands at both termini. The types of amino acid residues that define the Epc-N domain suggest a role in mediating protein-protein interactions, possibly specifically in the context of chromatin binding, and the types of proteins in which it is found (known components of histone acetyltransferase complexes strongly suggest a role in epigenetic structure formation and/or recognition. There appear to be two major Epc-N protein families that can be divided into four unique protein subfamilies. Two of these subfamilies (I and II may be related to one another in that subfamily I can be viewed as a plant-specific expansion of subfamily II. The other two subfamilies (III and IV appear to be related to one another by duplication events in a primordial fungal-metazoan-mycetozoan ancestor. Subfamilies III and IV are further defined by the presence of an evolutionarily conserved five-center-zinc-binding motif in the loop connecting the second and third helices of the four-helix bundle. This motif appears to consist of a PHD followed by a mononuclear Zn knuckle, followed by a PHD-like derivative, and will thus be referred to as the PZPM. All non-Epc-N proteins studied thus far that contain the PZPM have been implicated in histone methylation and/or gene silencing. In addition, an unusual phyletic distribution of Epc-N-containing proteins is observed. Conclusion The data suggest that the Epc-N domain is a protein

  17. RELATION STRUCTURE/SOLUBILITE AQUEUSE DE HAP PRIORITAIRES

    Directory of Open Access Journals (Sweden)

    I TOUHAMI

    2009-06-01

    Full Text Available Une relation structure/solubilité aqueuse des HAP retenus comme prioritaires par l’agence environnementale américaine (US-EPA a été recherchée enfavorisant l’approche hybride algorithme génétique/régression multilinéaire, les paramètres structuraux étant calculés avec lelogiciel DRAGON. Parmi la centaine de modèles à 2 régresseurs obtenus nous avons sélectionné celui qui présente les meilleures valeurs du paramètre de prédiction (Q2 et du coefficient dedétermination (R2 : logS = 23,624- 8,6316 VEA1– 11,145 Kp ; n=15; ES= 0,464 ; Q2(%=98,38; R2(%=98,90 ;F=544,19 ; P=0,000. La première  variable explicative (VEA1 est associée aux propriétés locales d’une molécule, alorsque la seconde reflète sa forme globale.

  18. The role of chromatin-associated protein Hbsu in beta-mediated DNA recombination is to facilitate the joining of distant recombination sites.

    Science.gov (United States)

    Alonso, J C; Gutierrez, C; Rojo, F

    1995-11-01

    The beta recombinase is unable to mediate in vitro DNA recombination between two directly oriented recombination sites unless a bacterial chromatin-associated protein (Bacillus subtilis Hbsu or Escherichia [correction of Eschrichia] coli HU] is provided. By electron microscopy, we show that the role of Hbsu is to help in joining the recombination sites to form a stable synaptic complex. Some evidence supports the fact that Hbsu works by recognizing and stabilizing a DNA structure at the recombination site, rather than by serving as a bridge between beta recombinase dimers through a protein-protein interaction. We show that the mammalian HMG1 protein, which shares neither sequence nor structural homology with Hbsu, can also stimulate beta-mediated recombination. These chromatin-associated proteins share the property of binding to DNA in a relatively non-specific fashion, bending it, and having a marked preference for altered DNA structures. Hbsu, HU or HMG1 proteins probably bind specifically at the crossing-over region, since at limiting protein-DNA molar ratios they could not be outcompeted by an excess of a DNA lacking the crossing over site. Distamycin, a minor groove binder that induces local distortions in DNA, did not affect the binding of beta protein to DNA, but inhibited the formation of the synaptic complex.

  19. Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes

    OpenAIRE

    Szczurek, Aleksander T; PRAKASH, KIRTI; Lee, Hyun-Keun; Żurek-Biesiada, Dominika J; Best, Gerrit; Hagmann, Martin; Dobrucki, Jurek W; Cremer, Christoph; Birk, Udo

    2014-01-01

    Several approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure. In this report, we demonstrate that DNA mino...

  20. Compositions comprising enhanced graphene oxide structures and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Priyank Vijaya; Bardhan, Neelkanth M.; Belcher, Angela; Grossman, Jeffrey

    2016-12-27

    Embodiments described herein generally relate to compositions comprising a graphene oxide species. In some embodiments, the compositions advantageously have relatively high oxygen content, even after annealing.

  1. Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns.

    Science.gov (United States)

    Schnetz, Michael P; Bartels, Cynthia F; Shastri, Kuntal; Balasubramanian, Dheepa; Zentner, Gabriel E; Balaji, Ravishankar; Zhang, Xiaodong; Song, Lingyun; Wang, Zhenghe; Laframboise, Thomas; Crawford, Gregory E; Scacheri, Peter C

    2009-04-01

    CHD7 is a member of the chromodomain helicase DNA binding domain family of ATP-dependent chromatin remodeling enzymes. De novo mutation of the CHD7 gene is a major cause of CHARGE syndrome, a genetic disease characterized by a complex constellation of birth defects (Coloboma of the eye, Heart defects, Atresia of the choanae, severe Retardation of growth and development, Genital abnormalities, and Ear abnormalities). To gain insight into the function of CHD7, we mapped the distribution of the CHD7 protein on chromatin using the approach of chromatin immunoprecipitation on tiled microarrays (ChIP-chip). These studies were performed in human colorectal carcinoma cells, human neuroblastoma cells, and mouse embryonic stem (ES) cells before and after differentiation into neural precursor cells. The results indicate that CHD7 localizes to discrete locations along chromatin that are specific to each cell type, and that the cell-specific binding of CHD7 correlates with a subset of histone H3 methylated at lysine 4 (H3K4me). The CHD7 sites change concomitantly with H3K4me patterns during ES cell differentiation, suggesting that H3K4me is part of the epigenetic signature that defines lineage-specific association of CHD7 with specific sites on chromatin. Furthermore, the CHD7 sites are predominantly located distal to transcription start sites, most often contained within DNase hypersensitive sites, frequently conserved, and near genes expressed at relatively high levels. These features are similar to those of gene enhancer elements, raising the possibility that CHD7 functions in enhancer mediated transcription, and that the congenital anomalies in CHARGE syndrome are due to alterations in transcription of tissue-specific genes normally regulated by CHD7 during development.

  2. Relations between constructive peculiarities and structural behavior in Venice buildings

    Directory of Open Access Journals (Sweden)

    Doglioni, F.

    2012-12-01

    Full Text Available Here we are synthetically describing some constructive peculiarities of Venice civil buildings, analyzing the relation with the features of their structural decay and behavior in the long run. We suppose Venetian buildings, especially those parts which are conceived to suit the lagoon environment, to have undergone an evolution made of some adjustments, which were based on the observation of damages in previous buildings. That is we suppose ancient builders to rely on their awareness of the behavior of structures yet to come, and to be able to forecast it in part. This process brought some building contrivances to perfection, as exclusive and enduring features of Venice, overcoming changes in style and architectural layout, till they grew into essential elements of a whole and adaptable “device”. This writing is meant for a concise interpretation of this device, which is the result of some research works carried out at Venice IUAV University.

    En este texto, se describen sintéticamente algunas peculiaridades de la edificación residencial de Venecia, analizando su relación con el abanico de problemas estructurales que caracterizan el comportamiento estructural del edificio a lo largo del tiempo. Se aventura la hipótesis que las construcciones venecianas y, en particular, algunos de sus detalles, concebidos específicamente para la laguna donde se enclava, han sido objeto de una adaptación evolutiva a través de la observación de los problemas estructurales de los edificios precedentes. Los alarifes venecianos aprendieron a tener en cuenta el comportamiento estructural posterior del edificio, que previeron en cierta medida. Este proceso ha llevado a perfeccionar algunos detalles constructivos exclusivos de Venecia que han perdurado en el tiempo, que han resistido impertérritos a mutaciones de estilo y de configuración arquitectónica, hasta constituir elementos esenciales de un aparato indivisible y adaptable cuya interpretaci

  3. Determinants of Sir2-Mediated, Silent Chromatin Cohesion.

    Science.gov (United States)

    Chen, Yu-Fan; Chou, Chia-Ching; Gartenberg, Marc R

    2016-08-01

    Cohesin associates with distinct sites on chromosomes to mediate sister chromatid cohesion. Single cohesin complexes are thought to bind by encircling both sister chromatids in a topological embrace. Transcriptionally repressed chromosomal domains in the yeast Saccharomyces cerevisiae represent specialized sites of cohesion where cohesin binds silent chromatin in a Sir2-dependent fashion. In this study, we investigated the molecular basis for Sir2-mediated cohesion. We identified a cluster of charged surface residues of Sir2, collectively termed the EKDK motif, that are required for cohesin function. In addition, we demonstrated that Esc8, a Sir2-interacting factor, is also required for silent chromatin cohesion. Esc8 was previously shown to associate with Isw1, the enzymatic core of ISW1 chromatin remodelers, to form a variant of the ISW1a chromatin remodeling complex. When ESC8 was deleted or the EKDK motif was mutated, cohesin binding at silenced chromatin domains persisted but cohesion of the domains was abolished. The data are not consistent with cohesin embracing both sister chromatids within silent chromatin domains. Transcriptional silencing remains largely intact in strains lacking ESC8 or bearing EKDK mutations, indicating that silencing and cohesion are separable functions of Sir2 and silent chromatin.

  4. Persistent Chromatin Modifications Induced by High Fat Diet.

    Science.gov (United States)

    Leung, Amy; Trac, Candi; Du, Juan; Natarajan, Rama; Schones, Dustin E

    2016-05-13

    Obesity is a highly heritable complex disease that results from the interaction of multiple genetic and environmental factors. Formerly obese individuals are susceptible to metabolic disorders later in life, even after lifestyle changes are made to mitigate the obese state. This is reminiscent of the metabolic memory phenomenon originally observed for persistent complications in diabetic patients, despite subsequent glycemic control. Epigenetic modifications represent a potential mediator of this observed memory. We previously demonstrated that a high fat diet leads to changes in chromatin accessibility in the mouse liver. The regions of greatest chromatin changes in accessibility are largely strain-dependent, indicating a genetic component in diet-induced chromatin alterations. We have now examined the persistence of diet-induced chromatin accessibility changes upon diet reversal in two strains of mice. We find that a substantial fraction of loci that undergo chromatin accessibility changes with a high fat diet remains in the remodeled state after diet reversal in C57BL/6J mice. In contrast, the vast majority of diet-induced chromatin accessibility changes in A/J mice are transient. Our data also indicate that the persistent chromatin accessibility changes observed in C57BL/6J mice are associated with specific transcription factors and histone post-translational modifications. The persistent loci identified here are likely to be contributing to the overall phenotype and are attractive targets for therapeutic intervention.

  5. Anti-chromatin antibodies in juvenile rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    V. Gerloni

    2011-09-01

    Full Text Available Objective: to evaluate the prevalence and clinical significance of anti-chromatin antibodies (Abs in juvenile rheumatoid arthritis (JRA. Methods: IgG anti-chromatin Abs were detected by an enzyme-linked immunosorbent assay (ELISA, in sera of 94 children with JRA (10 children with systemic, 38 with polyarticular and 46 with oligoarticular disease onset. As control group, 33 age- and-sex-matched healthy children (HC were also examined. Results: Abs to chromatin were detected in 24/94 (25,5% of children suffering from JRA. Particularly, the higher prevalence of anti-chromatin Abs has been found in children with oligoarticular (30,4% and polyarticular (23,7% onset JRA. In these groups Abs titers were significantly higher compared to systemic JRA and HC (p=0.003. Anti-chromatin Abs were observed more frequently in patients with oligoarticular disease and chronic uveitis (21,7%. Furthermore, higher levels of anti-chromatin Abs has been found in all the patients treated with anti-TNFα therapy (p<0.0001. Conclusions: our results confirm previous data about the prevalence of anti-chromatin Abs in JRA. These Abs were significantly higher in the group of patients with oligoarticular onset with past or present hystory of ocular involvement and in the group with polyarticular JRA treated with biologic therapy. A long-term follow-up study could be useful to evaluate the potential utility of these autoantibodies.

  6. Gender and sexual orientation in relation to hypothalamic structures.

    Science.gov (United States)

    Swaab, D F; Gooren, L J; Hofman, M A

    1992-01-01

    Animal experiments have provided evidence for the presence of sex differences from the synaptic level up to behaviour. Although sex differences in the human brain may have been presumed implicitly since the days of Aristotle, research on the presence of functional and structural sex differences of the human brain started only relatively recently. The most conspicuous sex difference in the mammalian brain was described by Gorski et al. [1978] in the preoptic area (POA) of the rat hypothalamus. We found that the volume of a putative homologue of this sexually dimorphic nucleus (SDN) in the adult human hypothalamus was more than twice as large in men as in women and contained about twice as many cells. Recently a similar sex difference and volume has been described for the human bed nucleus of the stria terminalis and 'interstitial nuclei of the hypothalamus' (INAH). Sexual differentiation of the hypothalamus was generally believed to take place between 4 and 7 months of gestation. A life span study on the SDN of more than 100 subjects revealed, however, that only after the age of 2-4 years postnatally sexual differentiation becomes manifest by a decrease in volume and cell number in the female SDN. If sexual differentiation of the brain indeed takes place postnatally, not only chemical and hormonal factors may influence this process but also social factors. A prominent theory on the development of sexual orientation is that it develops as a result of an interaction between the developing brain and sex hormones. According to Dörner's hypothesis, male homosexuals have a female differentiation of the hypothalamus. This hypothesis was not supported by our observations on the SDN. Neither the SDN volume nor the cell number in the hypothalamus of homosexual men differed from that of heterosexual men. However, a difference in SCN cell number was observed in relation to sexual orientation. The volume and cell number of the SCN of homosexual men was twice as large as that of

  7. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription.

    Science.gov (United States)

    Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Szalaj, Przemyslaw; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Penrad-Mobayed, May; Sachs, Laurent M; Ruan, Xiaoan; Wei, Chia-Lin; Liu, Edison T; Wilczynski, Grzegorz M; Plewczynski, Dariusz; Li, Guoliang; Ruan, Yijun

    2015-12-17

    Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.

  8. A mammal-specific Doublesex homolog associates with male sex chromatin and is required for male meiosis.

    Directory of Open Access Journals (Sweden)

    Shinseog Kim

    2007-04-01

    Full Text Available Gametogenesis is a sexually dimorphic process requiring profound differences in germ cell differentiation between the sexes. In mammals, the presence of heteromorphic sex chromosomes in males creates additional sex-specific challenges, including incomplete X and Y pairing during meiotic prophase. This triggers formation of a heterochromatin domain, the XY body. The XY body disassembles after prophase, but specialized sex chromatin persists, with further modification, through meiosis. Here, we investigate the function of DMRT7, a mammal-specific protein related to the invertebrate sexual regulators Doublesex and MAB-3. We find that DMRT7 preferentially localizes to the XY body in the pachytene stage of meiotic prophase and is required for male meiosis. In Dmrt7 mutants, meiotic pairing and recombination appear normal, and a transcriptionally silenced XY body with appropriate chromatin marks is formed, but most germ cells undergo apoptosis during pachynema. A minority of mutant cells can progress to diplonema, but many of these escaping cells have abnormal sex chromatin lacking histone H3K9 di- and trimethylation and heterochromatin protein 1beta accumulation, modifications that normally occur between pachynema and diplonema. Based on the localization of DMRT7 to the XY body and the sex chromatin defects observed in Dmrt7 mutants, we conclude that DMRT7 plays a role in the sex chromatin transformation that occurs between pachynema and diplonema. We suggest that DMRT7 may help control the transition from meiotic sex chromosome inactivation to postmeiotic sex chromatin in males. In addition, because it is found in all branches of mammals, but not in other vertebrates, Dmrt7 may shed light on evolution of meiosis and of sex chromatin.

  9. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Nicola Wiechens

    2016-03-01

    Full Text Available Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.

  10. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors.

    Science.gov (United States)

    Wiechens, Nicola; Singh, Vijender; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-03-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.

  11. De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles.

    Science.gov (United States)

    Chen, Yong; Wang, Yunfei; Xuan, Zhenyu; Chen, Min; Zhang, Michael Q

    2016-06-20

    Defining chromatin interaction frequencies and topological domains is a great challenge for the annotations of genome structures. Although the chromosome conformation capture (3C) and its derivative methods have been developed for exploring the global interactome, they are limited by high experimental complexity and costs. Here we describe a novel computational method, called CITD, for de novo prediction of the chromatin interaction map by integrating histone modification data. We used the public epigenomic data from human fibroblast IMR90 cell and embryonic stem cell (H1) to develop and test CITD, which can not only successfully reconstruct the chromatin interaction frequencies discovered by the Hi-C technology, but also provide additional novel details of chromosomal organizations. We predicted the chromatin interaction frequencies, topological domains and their states (e.g. active or repressive) for 98 additional cell types from Roadmap Epigenomics and ENCODE projects. A total of 131 protein-coding genes located near 78 preserved boundaries among 100 cell types are found to be significantly enriched in functional categories of the nucleosome organization and chromatin assembly. CITD and its predicted results can be used for complementing the topological domains derived from limited Hi-C data and facilitating the understanding of spatial principles underlying the chromosomal organization.

  12. The sperm nucleus: chromatin, RNA and the nuclear matrix

    Science.gov (United States)

    Johnson, Graham D.; Lalancette, Claudia; Linnemann, Amelia K.; Leduc, Frédéric; Boissonneault, Guylain; Krawetz, Stephen A.

    2017-01-01

    Within the sperm nucleus the paternal genome remains functionally inert and protected following protamination. This is marked by a structural morphogenesis that is heralded by a striking reduction in nuclear volume. Despite these changes, both human and mouse spermatozoa maintain low levels of nucleosomes that appear non-randomly distributed throughout the genome. These regions may be necessary for organizing higher order genomic structure through interactions with the nuclear matrix. The promoters of this transcriptionally quiescent genome are differentially marked by modified histones that may poise downstream epigenetic effects. This notion is supported by increasing evidence that the embryo inherits these differing levels of chromatin organization. In concert with the suite of RNAs retained in the mature sperm they may synergistically interact to direct early embryonic gene expression. Irrespective, these features reflect the transcriptional history of spermatogenic differentiation. As such they may soon be utilized as clinical markers of male fertility. In this review we explore and discuss how this may be orchestrated. PMID:20876223

  13. Relation between native ensembles and experimental structures of proteins

    DEFF Research Database (Denmark)

    Best, R. B.; Lindorff-Larsen, Kresten; DePristo, M. A.

    2006-01-01

    Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest......Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of "high-sequence similarity Protein Data Bank" (HSP) structures and consider the extent to which such ensembles represent the structural...... heterogeneity of the native state in solution. We find that different NMR measurements probing structure and dynamics of given proteins in solution, including order parameters, scalar couplings, and residual dipolar couplings, are remarkably well reproduced by their respective high-sequence similarity Protein...

  14. Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro.

    Science.gov (United States)

    Kuryan, Benjamin G; Kim, Jessica; Tran, Nancy Nga H; Lombardo, Sarah R; Venkatesh, Swaminathan; Workman, Jerry L; Carey, Michael

    2012-02-01

    ATPases and histone chaperones facilitate RNA polymerase II (pol II) elongation on chromatin. In vivo, the coordinated action of these enzymes is necessary to permit pol II passage through a nucleosome while restoring histone density afterward. We have developed a biochemical system recapitulating this basic process. Transcription through a nucleosome in vitro requires the ATPase remodels structure of chromatin (RSC) and the histone chaperone nucleosome assembly protein 1 (NAP1). In the presence of NAP1, RSC generates a hexasome. Despite the propensity of RSC to evict histones, NAP1 reprograms the reaction such that the hexasome is retained on the template during multiple rounds of transcription. This work has implications toward understanding the mechanism of pol II elongation on chromatin.

  15. Lamin C and chromatin organization in Drosophila

    Indian Academy of Sciences (India)

    B. V. Gurudatta; L. S. Shashidhara; Veena K. Parnaik

    2010-04-01

    Drosophila lamin C (LamC) is a developmentally regulated component of the nuclear lamina. The lamC gene is situated in the fifth intron of the essential gene tout velu (ttv). We carried out genetic analysis of lamC during development. Phenotypic analyses of RNAi-mediated downregulation of lamC expression as well as targeted misexpression of lamin C suggest a role for lamC in cell survival. Of particular interest in the context of laminopathies is the caspase-dependent apoptosis induced by the overexpression of lamin C. Interestingly, misexpression of lamin C in the central nervous system, where it is not normally expressed, did not affect organization of the nuclear lamina. lamC mutant alleles suppressed position effect variegation normally displayed at near-centromeric and telomeric regions. Further, both downregulation and misexpression of lamin C affected the distribution of heterochromatin protein 1. Our results suggest that Drosophila lamC has a tissue-specific role during development and is required for chromatin organization.

  16. Relations of Control: Walkthroughs and the Structuring of Player Agency

    Directory of Open Access Journals (Sweden)

    James Newman

    2010-07-01

    Full Text Available Videogame walkthroughs provide instructions on various elements of gameplay in relation to specific digital games, and exist as text-based documents and, to a lesser extent, as recorded moving image game footage. We focus here on written-walkthroughs for the purposes of depth, while recognising the specific and significant position that moving image walkthroughs hold (see Ashton, forthcoming. Player-produced walkthroughs, freely and widely distributed online, point to the broader social contexts that inform and structure player agency. In this article, we emphasize three perspectives on these documents. First, walkthroughs can be approached as a means of recording and codifying playing styles, thereby legitimising specific approaches or strategies. Accordingly, we highlight glitch hunting and the Pokémon series to illustrate the diversity of these playing styles and the significance of the walkthrough as a form of ludic archival document. Second, walkthroughs as textual codifications of gameplay potential can encourage new styles of engagement with authors and performers by outlining opportunities for play, and illuminating strategies and techniques previously unknown to the reader. Importantly, as we shall demonstrate, walkthroughs not only investigate and interrogate game texts – exploring their every narrative turn and spatial aspects in minute detail – but also frequently present techniques that take advantage of weaknesses and flaws in the ruleset or code of the game in order to offer new gameplay options. In this respect, as James Newman (2008 suggests, walkthroughs can be understood as a form of reverse-engineering that renegotiates the player-designer relationship and encourages (perhaps even demands deliberately investigative, resistant and deviant strategies of gameplay. These modes of engagement frequently involve playing beyond performative norms and technical limits. The walkthrough, then, is both a document of the game as

  17. Effective constitutive relations for large repetitive frame-like structures

    Science.gov (United States)

    Nayfeh, A. H.; Hefzy, M. S.

    1981-01-01

    Effective mechanical properties for large repetitive framelike structures are derived using combinations of strength of material and orthogonal transformation techniques. Symmetry considerations are used in order to identify independent property constants. The actual values of these constants are constructed according to a building block format which is carried out in the three consecutive steps: (1) all basic planar lattices are identified; (2) effective continuum properties are derived for each of these planar basic grids using matrix structural analysis methods; and (3) orthogonal transformations are used to determine the contribution of each basic set to the overall effective continuum properties of the structure.

  18. Fire's effect on chloride ingress related durability of concrete structure

    Institute of Scientific and Technical Information of China (English)

    JIN Wei-liang; ZHANG Yi

    2007-01-01

    This paper describes the effects of fire on durability of reinforced concrete structures, and points out that fire not only damages the chemical composition and physical structure of concrete by high temperature, but also leads to an additional risk due to the generation of polyvinyl chloride (PVC)combustion gases. A mathematical model is proposed to calculate chloride ingress profiles in fire damaged concrete, so as to explore the service life prediction of the structure. Rapid Chloride Migration (RCM) test was carried out to determine the chloride diffusion coefficients for the application of the mathematical model. Finally, the detected results of a reported case testified to the validity of the mathematical model.

  19. Phosphorylated SAP155, the spliceosomal component, is localized to chromatin in postnatal mouse testes

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Ko, E-mail: etoko@gpo.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Sonoda, Yoshiyuki [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Jin, Yuji [School of Basic Medicine, Jilin Medical College, Jilin 132013 (China); Abe, Shin-ichi [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan)

    2010-03-19

    SAP155 is an essential component of the spliceosome and its phosphorylation is required for splicing catalysis, but little is known concerning its expression and regulation during spermatogenesis in postnatal mouse testes. We report that SAP155 is ubiquitously expressed in nuclei of germ and Sertoli cells within the seminiferous tubules of 6- and 35-day postpartum (dpp) testes. Analyses by fractionation of testes revealed that (1) phosphorylated SAP155 was found in the fraction containing nuclear structures at 6 dpp in amounts much larger than that at other ages; (2) non-phosphorylated SAP155 was detected in the fraction containing nucleoplasm; and (3) phosphorylated SAP155 was preferentially associated with chromatin. Our findings suggest that the active spliceosome, containing phosphorylated SAP155, performs pre-mRNA splicing on chromatin concomitant with transcription during testicular development.

  20. DNA methylation topology: potential of a chromatin landmark for epigenetic drug toxicology.

    Science.gov (United States)

    Tajbakhsh, Jian

    2011-12-01

    Targeting chromatin and its basic components through epigenetic drug therapy has become an increased focus in the treatment of complex diseases. This boost calls for the implementation of high-throughput cell-based assays that exploit the increasing knowledge about epigenetic mechanisms and their interventions for genotoxicity testing of epigenetic drugs. 3D quantitative DNA methylation imaging is a novel approach for detecting drug-induced DNA demethylation and concurrent heterochromatin decondensation/reorganization in cells through the analysis of differential nuclear distribution patterns of methylcytosine and gDNA visualized by fluorescence and processed by machine-learning algorithms. Utilizing 3D DNA methylation patterns is a powerful precursor to a series of fully automatable assays that employ chromatin structure and higher organization as novel pharmacodynamic biomarkers for various epigenetic drug actions.

  1. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  2. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  3. Chromatin remodeling and cancer, Part I: Covalent histone modifications.

    Science.gov (United States)

    Wang, Gang G; Allis, C David; Chi, Ping

    2007-09-01

    Dynamic chromatin remodeling underlies many, if not all, DNA-templated biological processes, including gene transcription; DNA replication and repair; chromosome condensation; and segregation and apoptosis. Disruption of these processes has been linked to the development and progression of cancer. The mechanisms of dynamic chromatin remodeling include the use of covalent histone modifications, histone variants, ATP-dependent complexes and DNA methylation. Together, these mechanisms impart variation into the chromatin fiber, and this variation gives rise to an 'epigenetic landscape' that extends the biological output of DNA alone. Here, we review recent advances in chromatin remodeling, and pay particular attention to mechanisms that appear to be linked to human cancer. Where possible, we discuss the implications of these advances for disease-management strategies.

  4. Chromatin Folding, Fragile Sites, and Chromosome Aberrations Induced by Low- and High- LET Radiation

    Science.gov (United States)

    Zhang, Ye; Cox, Bradley; Asaithamby, Aroumougame; Chen, David J.; Wu, Honglu

    2013-01-01

    We previously demonstrated non-random distributions of breaks involved in chromosome aberrations induced by low- and high-LET radiation. To investigate the factors contributing to the break point distribution in radiation-induced chromosome aberrations, human epithelial cells were fixed in G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome in separate colors. After the images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multimega base pair scale. Specific locations of the chromosome, in interphase, were also analyzed with bacterial artificial chromosome (BAC) probes. Both mBAND and BAC studies revealed non-random folding of chromatin in interphase, and suggested association of interphase chromatin folding to the radiation-induced chromosome aberration hotspots. We further investigated the distribution of genes, as well as the distribution of breaks found in tumor cells. Comparisons of these distributions to the radiation hotspots showed that some of the radiation hotspots coincide with the frequent breaks found in solid tumors and with the fragile sites for other environmental toxins. Our results suggest that multiple factors, including the chromatin structure and the gene distribution, can contribute to radiation-induced chromosome aberrations.

  5. A chromatin link to caste identity in the carpenter ant Camponotus floridanus.

    Science.gov (United States)

    Simola, Daniel F; Ye, Chaoyang; Mutti, Navdeep S; Dolezal, Kelly; Bonasio, Roberto; Liebig, Jürgen; Reinberg, Danny; Berger, Shelley L

    2013-03-01

    In many ant species, sibling larvae follow alternative ontogenetic trajectories that generate striking variation in morphology and behavior among adults. These organism-level outcomes are often determined by environmental rather than genetic factors. Therefore, epigenetic mechanisms may mediate the expression of adult polyphenisms. We produced the first genome-wide maps of chromatin structure in a eusocial insect and found that gene-proximal changes in histone modifications, notably H3K27 acetylation, discriminate two female worker and male castes in Camponotus floridanus ants and partially explain differential gene expression between castes. Genes showing coordinated changes in H3K27ac and RNA implicate muscle development, neuronal regulation, and sensory responses in modulating caste identity. Binding sites of the acetyltransferase CBP harbor the greatest caste variation in H3K27ac, are enriched with motifs for conserved transcription factors, and show evolutionary expansion near developmental and neuronal genes. These results suggest that environmental effects on caste identity may be mediated by differential recruitment of CBP to chromatin. We propose that epigenetic mechanisms that modify chromatin structure may help orchestrate the generation and maintenance of polyphenic caste morphology and social behavior in ants.

  6. Impaired methylation modifications of FZD3 alter chromatin accessibility and are involved in congenital hydrocephalus pathogenesis.

    Science.gov (United States)

    Wang, Li; Shangguan, Shaofang; Chang, Shaoyan; Wang, Zhen; Lu, Xiaolin; Wu, Lihua; Li, Rui; Bao, Yihua; Qiu, Zhiyong; Niu, Bo; Zhang, Ting

    2014-06-20

    Congenital hydrocephalus is heterogeneous in its etiology, and in addition to a genetic component, has been shown to be caused by environmental factors. Until now, however, no methylation alterations of target genes have been connected with congenital hydrocephalus in humans. Frizzled 3(FZD3) is a planar cell polarity (PCP) gene required for PCP signaling. Partial restoration of frizzled 3 activities in FZD3 mutant mice results in hydrocephalus. To analyze the possible roles of epigenetic modifications of the FZD3 gene in congenital hydrocephalus pathogenesis, DNA methylation in the promoter region of FZD3 was assayed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Gene expression and chromatin accessibility were also determined to assess the role of methylation alterations. Our study found methylation levels of the FZD3 gene were increased in congenital hydrocephalus, especially in males (10.57 ± 3.90 vs. 7.08 ± 0.94, p=0.001). Hypermethylation of FZD3 increased congenital hydrocephalus risk, with an odds ratio of 10.125 (p=0.003). Aberrant methylation modification of FZD3 altered both chromatin structure in this region and FZD3 expression levels. Totally, aberrant methylation modification of the FZD3 gene increases the risk of congenital hydrocephalus by altering chromatin structure and disturbing gene expression.

  7. Abstract Numeric Relations and the Visual Structure of Algebra

    Science.gov (United States)

    Landy, David; Brookes, David; Smout, Ryan

    2014-01-01

    Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition,…

  8. The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome.

    Science.gov (United States)

    Kitagawa, Hirochika; Fujiki, Ryoji; Yoshimura, Kimihiro; Mezaki, Yoshihiro; Uematsu, Yoshikatsu; Matsui, Daisuke; Ogawa, Satoko; Unno, Kiyoe; Okubo, Mataichi; Tokita, Akifumi; Nakagawa, Takeya; Ito, Takashi; Ishimi, Yukio; Nagasawa, Hiromichi; Matsumoto, Toshio; Yanagisawa, Junn; Kato, Shigeaki

    2003-06-27

    We identified a human multiprotein complex (WINAC) that directly interacts with the vitamin D receptor (VDR) through the Williams syndrome transcription factor (WSTF). WINAC has ATP-dependent chromatin-remodeling activity and contains both SWI/SNF components and DNA replication-related factors. The latter might explain a WINAC requirement for normal S phase progression. WINAC mediates the recruitment of unliganded VDR to VDR target sites in promoters, while subsequent binding of coregulators requires ligand binding. This recruitment order exemplifies that an interaction of a sequence-specific regulator with a chromatin-remodeling complex can organize nucleosomal arrays at specific local sites in order to make promoters accessible for coregulators. Furthermore, overexpression of WSTF could restore the impaired recruitment of VDR to vitamin D regulated promoters in fibroblasts from Williams syndrome patients. This suggests that WINAC dysfunction contributes to Williams syndrome, which could therefore be considered, at least in part, a chromatin-remodeling factor disease.

  9. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  10. The structure of the pelagic food web in relation to water column structure in the Skagerrak

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Kaas, H.; Kruse, B.

    1990-01-01

    by a doming of the pycnocline, with a deep mixed layer along the periphery and a very shallow pycnocline in central parts. Average phytoplankton size increased with the depth of the upper mixed layer, and the central stratified area was characterized by small flagellates while large and chain-forming diatoms...... on particle surface area rather than particle volume or chl a, and showed a distributional pattern that was nearly the inverse of the distribution of copepod activity. That is, peak bacterial growth rates occurred in central, stratified parts and lower rates were found along the margin with a deep mixed layer....... Thus a 'microbial loop' type of food web seemed to be evolving in the central, strongly stratified parts of the Skagerrak, while a shorter 'classical' type of food web appeared to dominate along the margin. The relation between food web structure and vertical mixing processes observed on oceanwide...

  11. Composition-structure-property relation of oxide glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian

    The composition of glass can be varied continuously within their glass-forming regions. This compositional flexibility makes it possible to tailor the properties of a glass for a variety of specific uses. In the industry such tailoring is done on a trial-and-error basis with only the intuition...... also increases such properties. Yet, these rules are not strictly followed even for the simplest binary oxide glasses, such as alkali silicates, borates and phosphates. In this thesis it is argued that the missing link between composition and properties is the glass structure. Structural models...... capable of ab initio prediction of the oxide glass properties from composition....

  12. Mapping relational database into OWL Structure with data semantic preservation

    CERN Document Server

    Gherabi, Noreddine; Bahaj, Mohamed

    2012-01-01

    This paper proposes a solution for migrating an RDB into Web semantic. The solution takes an existing RDB as input, and extracts its metadata representation (MTRDB). Based on the MTRDB, a Canonical Data Model (CDM) is generated. Finally, the structure of the classification scheme in the CDM model is converted into OWL ontology and the recordsets of database are stored in owl document. A prototype has been implemented, which migrates a RDB into OWL structure, for demonstrate the practical applicability of our approach by showing how the results of reasoning of this technique can help improve the Web systems.

  13. About Hierarchical XML Structures, Replacement of Relational Data Structures in Construction and Implementation of ERP Systems

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The projects essential objective is to develop a new ERP system, of homogeneous nature, based on XML structures, as a possible replacement for classic ERP systems. The criteria that guide the objective definition are modularity, portability and Web connectivity. This objective is connected to a series of secondary objectives, considering that the technological approach will be filtered through the economic, social and legislative environment for a validation-by-context study. Statistics and cybernetics are to be used for simulation purposes. The homogeneous approach is meant to provide strong modularity and portability, in relation with the n-tier principles, but the main advantage of the model is its opening to the semantic Web, based on a Small enterprise ontology defined with XML-driven languages. Shockwave solutions will be used for implementing client-oriented hypermedia elements and an XML Gate will be de-fined between black box modules, for a clear separation with obvious advantages. Security and the XMLTP project will be an important issue for XML transfers due to the conflict between the open architecture of the Web, the readability of XML data and the privacy elements which have to be preserved within a business environment. The projects finality is oriented on small business but the semantic Web perspective and the surprising new conflict between hierarchical/network data structures and relational ones will certainly widen its scope. The proposed model is meant to fulfill the IT compatibility requirements of the European environment, defined as a knowledge society. The paper is a brief of the contributions of the team re-search at the project type A applied to CNCSIS "Research on the Role of XML in Building Extensible and Homogeneous ERP Systems".

  14. State Confessional Relations: Problem of the Subject Structure

    Directory of Open Access Journals (Sweden)

    Alexandra A. Dorskaya

    2014-06-01

    Full Text Available In the article various existing definitions of the concept "state and confessional relations" are analyzed, also author's definition is offered. Three levels of the state and confessional relations are revealed: conceptual, legislative and administrative-managerial. In the article it is shown that in Russia a tradition of only two subjects of the state and confessional relations – government bodies and the religious organizations allocation exists. It is revealed that at the present stage many researchers are dissatisfied with such situation. Scientific sources of the problem of the state and church relations within the psychological school of the law, which are addressed to the personality and experiences in the legal sphere are studied and revealed. Special attention is paid to scientific heritage of the M.A. Reysner, who was one of the first to begin study of this problem. In the article the question of the school of three subjects of the state and confessional relations allocation formation, what adds the faithful or faithless personality in addition to two traditional subjects is analyzed. The state and confessional relations are considered in the context of the human rights development. The question of new type of the believer possessing high education level and knowledge formation is considered. In the article it is shown that at the present stage relations of any regulation between the state and religious organizations is based on the basis of international legal standards, domestic legislation and norms of canon law.

  15. Gray level co-occurrence matrix algorithm as pattern recognition biosensor for oxidopamine-induced changes in lymphocyte chromatin architecture.

    Science.gov (United States)

    Pantic, Igor; Dimitrijevic, Draga; Nesic, Dejan; Petrovic, Danica

    2016-10-07

    We demonstrate that a proapoptotic chemical agent, oxidopamine, induces dose dependent changes in chromatin textural patterns which can be quantified using the Gray level co-occurrence matrix (GLCM) method. Peripheral blood (heparin-pretreated) samples were treated with oxidopamine (6-OHDA, 6-hydroxydopamine) to achieve effective concentrations of 100, 200 and 300µM. The samples were smeared on microscope slides and fixated in methanol. The smears were stained using a modification of Feulgen method for DNA visualization. For each stained smear, a sample of 30 lymphocyte chromatin structures were visualized and analyzed. This way, textural parameters for a total of 120 nuclei micrographs were calculated. For each chromatin structure, five different GLCM features were calculated: angular second moment, GLCM entropy, inverse difference moment, GLCM correlation, and GLCM variance. Oxidopamine induced the rise of the values of GLCM entropy and variance, and the reduction of angular second moment, correlation, and inverse difference moment. The trends for GLCM parameter changes were found to be highly significant (pGLCM mathematical algorithm might be successfully used in detection and evaluation of discrete early apoptotic structural changes in Feulgen-stained chromatin of peripheral blood lymphocytes that are not detectable using conventional microscopy/cell biology techniques.

  16. The Intestinal Tract: Structure, Function, Disorders and Related Medication.

    Science.gov (United States)

    Wagner, Dianne M.

    This instructional guide is intended for use within inservice or continuing education programs for people who work in long-term care facilities. This module includes an overview of the normal functions of the small and large intestines and discusses the structures of the intestines, absorption in the intestines, and commonly occurring conditions…

  17. Website on Protein Interaction and Protein Structure Related Work

    Science.gov (United States)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  18. Protein quaternary structure and aggregation in relation to allergenicity

    NARCIS (Netherlands)

    Boxtel, van E.L.

    2007-01-01

    In order to induce systemic food allergic reactions in humans, proteins after digestion in the human gastro-intestinal tract should still be able to bind IgE. The aim of the work presented in this thesis was to determine the effects of heating on the structure and digestibility of cupin and prolamin

  19. Industrial - Institutional - Structural and Health Related Pest Control Category Manual.

    Science.gov (United States)

    Bowman, James S.; Turmel, Jon P.

    This manual provides information needed to meet the standards for pesticide applicator certification. The emphasis of this document is on the identification of wood-destroying pests and the damage caused by them to the structural components of buildings. The pests discussed include termites, carpenter ants, beetles, bees, and wasps and numerous…

  20. Overall Dynamic Constitutive Relations of Micro-structured Elastic Composites

    CERN Document Server

    Nemat-Nasser, Sia

    2011-01-01

    A method for homogenization of a heterogeneous (finite or periodic) elastic composite is presented. It allows direct, consistent, and accurate evaluation of the averaged overall frequency-dependent dynamic material constitutive relations. It is shown that when the spatial variation of the field variables is restricted by a Bloch-form (Floquet-form) periodicity, then these relations together with the overall conservation and kinematical equations accurately yield the displacement or stress modeshapes and, necessarily, the dispersion relations. It also gives as a matter of course point-wise solution of the elasto-dynamic field equations, to any desired degree of accuracy. The resulting overall dynamic constitutive relations however, are general and need not be restricted by the Bloch-form periodicity. The formulation is based on micro-mechanical modeling of a representative unit cell of the composite proposed by Nemat-Nasser and coworkers; see, e.g., [1] and [2].

  1. Fuzzy approximation relations, modal structures and possibilistic logic

    OpenAIRE

    Esteva Massaguer, Francesc; Garcia, Pere; Godo Lacasa, Lluís; Rodríguez, Ricardo Óscar

    1998-01-01

    The paper introduces a general axiomatic notion of approximation mapping, a mapping that associates to each crisp proposition p a fuzzy set representing "approximately p". It is shown how it can be obtained through fuzzy relations, which are at least reflexive. We study the corresponding multi-modal systems depending on the properties satisfied by the approximate relation. Finally, we show some equivalences between possibilistic logical consequences and global/local logical consequences in...

  2. Chromatin modification and NBS1: their relationship in DNA double-strand break repair.

    Science.gov (United States)

    Saito, Yuichiro; Zhou, Hui; Kobayashi, Junya

    2016-01-01

    The importance of chromatin modification, including histone modification and chromatin remodeling, for DNA double-strand break (DSB) repair, as well as transcription and replication, has been elucidated. Phosphorylation of H2AX to γ-H2AX is one of the first responses following DSB detection, and this histone modification is important for the DSB damage response by triggering several events, including the accumulation of DNA damage response-related proteins and subsequent homologous recombination (HR) repair. The roles of other histone modifications such as acetylation, methylation and ubiquitination have also been recently clarified, particularly in the context of HR repair. NBS1 is a multifunctional protein that is involved in various DNA damage responses. Its recently identified binding partner RNF20 is an E3 ubiquitin ligase that facilitates the monoubiquitination of histone H2B, a process that is crucial for recruitment of the chromatin remodeler SNF2h to DSB damage sites. Evidence suggests that SNF2h functions in HR repair, probably through regulation of end-resection. Moreover, several recent reports have indicated that SNF2h can function in HR repair pathways as a histone remodeler and that other known histone remodelers can also participate in DSB damage responses. On the other hand, information about the roles of such chromatin modifications and NBS1 in non-homologous end joining (NHEJ) repair of DSBs and stalled fork-related damage responses is very limited; therefore, these aspects and processes need to be further studied to advance our understanding of the mechanisms and molecular players involved.

  3. The network structure of city-firm relations

    CERN Document Server

    Garas, Antonios; Schweitzer, Frank

    2015-01-01

    How are economic activities linked to geographic locations? To answer this question, we use a data-driven approach that builds on the information about location, ownership and economic activities of the world's 3,000 largest firms and their almost one million subsidiaries. From this information we generate a bipartite network of cities linked to economic activities. Analysing the structure of this network, we find striking similarities with nested networks observed in ecology, where links represent mutualistic interactions between species. This motivates us to apply ecological indicators to identify the unbalanced deployment of economic activities. Such deployment can lead to an over-representation of specific economic sectors in a given city, and poses a significant thread for the city's future especially in times when the over-represented activities face economic uncertainties. If we compare our analysis with external rankings about the quality of life in a city, we find that the nested structure of the cit...

  4. Controllability and reliability issues related to electrorheological material adaptive structures

    Energy Technology Data Exchange (ETDEWEB)

    Shiang, A.; Coulter, J. [Lehigh Univ., Bethlehem, PA (United States). Mechanical Engineering and Mechanics--Packard Lab.

    1994-12-31

    The present investigation focused on the controllability and reliability of an electrorheological (ER) material filled adaptive beam. An AC ER material-filled composite beam was constructed and tested over a period of 500 hours. Attention was focused on changes in fundamental vibration frequencies and modal loss factor over the test period. Controllability in terms of beam vibration response time to both increasing and decreasing field strengths was also studied. Response times at the first two fundamental frequencies of 15 and 35 Hertz were focused on. The results indicated that at 35 Hertz, the structural response time was faster for both switching on and switching off of the electric field. In switching off the electric field, the structure returned to zero-field behavior within three seconds on all occasions. The duration of the electric field application did not affect beam response time.

  5. Relating Chromophoric and Structural Disorder in Conjugated Polymers

    CERN Document Server

    Simine, Lena

    2016-01-01

    The optoelectronic properties of amorphous conjugated polymers are sensitive to conformational disorder and spectroscopy provides the means for structural characterization of the fragments of the chain which interact with light - "chromophores". A faithful interpretation of spectroscopic conformational signatures, however, presents a key challenge. We investigate the relationship between the ground state optical gaps, the properties of the excited states, and the structural features of chromophores of a single molecule poly(3-hexyl)-thiophene (P3HT), using quantum-classical atomistic simulations. Our results demonstrate that chromophoric disorder reflects an interplay between excited state de-localization and electron-hole polarization, and is controlled by torsional disorder that is specifically associated with the presence of side chains. Within this conceptual framework, we predict and explain a counter-intuitive spectral signature of P3HT: a red-shifted absorption, despite shortening of chromophores, with...

  6. Structure-property relations in amorphous carbon for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Risplendi, Francesca; Cicero, Giancarlo [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Bernardi, Marco [Department of Physics, University of California, Berkeley, California 94720 (United States); Grossman, Jeffrey C., E-mail: jcg@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-07-28

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  7. ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs in human cells.

    Directory of Open Access Journals (Sweden)

    Annabelle Becker

    Full Text Available Ionizing radiation induces DNA double strand breaks (DSBs which can lead to the formation of chromosome rearrangements through error prone repair. In mammalian cells the positional stability of chromatin contributes to the maintenance of genome integrity. DSBs exhibit only a small, submicron scale diffusive mobility, but a slight increase in the mobility of chromatin domains by the induction of DSBs might influence repair fidelity and the formation of translocations. The radiation-induced local DNA decondensation in the vicinity of DSBs is one factor potentially enhancing the mobility of DSB-containing chromatin domains. Therefore in this study we focus on the influence of different chromatin modifying proteins, known to be activated by the DNA damage response, on the mobility of DSBs. IRIF (ionizing radiation induced foci in U2OS cells stably expressing 53BP1-GFP were used as a surrogate marker of DSBs. Low angle charged particle irradiation, known to trigger a pronounced DNA decondensation, was used for the defined induction of linear tracks of IRIF. Our results show that movement of IRIF is independent of the investigated chromatin modifying proteins like ACF1 or PARP1 and PARG. Also depletion of proteins that tether DNA strands like MRE11 and cohesin did not alter IRIF dynamics significantly. Inhibition of ATM, a key component of DNA damage response signaling, resulted in a pronounced confinement of DSB mobility, which might be attributed to a diminished radiation induced decondensation. This confinement following ATM inhibition was confirmed using X-rays, proving that this effect is not restricted to densely ionizing radiation. In conclusion, repair sites of DSBs exhibit a limited mobility on a small spatial scale that is mainly unaffected by depletion of single remodeling or DNA tethering proteins. However, it relies on functional ATM kinase which is considered to influence the chromatin structure after irradiation.

  8. Structure Mapping and Relational Language Support Children's Learning of Relational Categories

    Science.gov (United States)

    Gentner, Dedre; Anggoro, Florencia K.; Klibanoff, Raquel S.

    2011-01-01

    Learning relational categories--whose membership is defined not by intrinsic properties but by extrinsic relations with other entities--poses a challenge to young children. The current work showed 3-, 4- to 5-, and 6-year-olds pairs of cards exemplifying familiar relations (e.g., a nest and a bird exemplifying "home for") and then tested whether…

  9. Chromatin Landscape of the IRF Genes and Role of the Epigenetic Reader BRD4.

    Science.gov (United States)

    Bachu, Mahesh; Dey, Anup; Ozato, Keiko

    2016-07-01

    Histone post-translational modification patterns represent epigenetic states of genomic genes and denote the state of their transcription, past history, and future potential in gene expression. Genome-wide chromatin modification patterns reported from various laboratories are assembled in the ENCODE database, providing a fertile ground for understanding epigenetic regulation of any genes of interest across many cell types. The IRF family genes critically control innate immunity as they direct expression and activities of interferons. While these genes have similar structural and functional traits, their chromatin landscapes and epigenetic features have not been systematically evaluated. Here, by mining ENCODE database using an imputational approach, we summarize chromatin modification patterns for 6 of 9 IRF genes and show characteristic features that connote their epigenetic states. BRD4 is a BET bromodomain protein that "reads and translates" epigenetic marks into transcription. We review recent findings that BRD4 controls constitutive and signal-dependent transcription of many genes, including IRF genes. BRD4 dynamically binds to various genomic genes with a spatial and temporal specificity. Of particular importance, BRD4 is shown to critically regulate IRF-dependent anti-pathogen protection, inflammatory responses triggered by NF-κB, and the growth and spread of many cancers. The advent of small molecule inhibitors that disrupt binding of BET bromdomain to acetylated histone marks has opened new therapeutic possibilities for cancer and inflammatory diseases.

  10. Essential roles of the chromatin remodeling factor BRG1 in spermatogenesis in mice.

    Science.gov (United States)

    Wang, Jianguan; Gu, Honggang; Lin, Haifan; Chi, Tian

    2012-06-01

    Mammalian spermatogenesis is a complex process that involves spatiotemporal regulation of gene expression and meiotic recombination, both of which require the modulation of chromatin structure. Proteins important for chromatin regulation during spermatogenesis remain poorly understood. Here we addressed the role of BRG1, the catalytic subunit of the mammalian Swi/Snf-like BAF chromatin-remodeling complex, during spermatogenesis in mice. BRG1 expression is dynamically regulated in the male germline, being weakly detectable in spermatogonia, highly expressed in pachytene spermatocytes, and turned off in maturing round spermatids. This expression pattern overlaps that of Brm, the Brg1 homolog. While Brm knockout males are known to be fertile, germline-specific Brg1 deletion completely arrests spermatogenesis at the midpachytene stage, which is associated with spermatocyte apoptosis and apparently also with impaired homologous recombination and meiotic sex chromosome inactivation. However, Brg1 is dispensable for gammaH2AX formation during meiotic recombination, contrary to its reported role in DNA repair in somatic cells. Our study reveals the essential role of Brg1 in meiosis and underscores the differences in the mechanisms of DNA repair between germ cells and somatic cells.

  11. An Allosteric Interaction Links USP7 to Deubiquitination and Chromatin Targeting of UHRF1

    Directory of Open Access Journals (Sweden)

    Zhi-Min Zhang

    2015-09-01

    Full Text Available The protein stability and chromatin functions of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1 are regulated in a cell-cycle-dependent manner. We report a structural characterization of the complex between UHRF1 and the deubiquitinase USP7. The first two UBL domains of USP7 bind to the polybasic region (PBR of UHRF1, and this interaction is required for the USP7-mediated deubiquitination of UHRF1. Importantly, we find that the USP7-binding site of the UHRF1 PBR overlaps with the region engaging in an intramolecular interaction with the N-terminal tandem Tudor domain (TTD. We show that the USP7-UHRF1 interaction perturbs the TTD-PBR interaction of UHRF1, thereby shifting the conformation of UHRF1 from a TTD-“occluded” state to a state open for multivalent histone binding. Consistently, introduction of a USP7-interaction-defective mutation to UHRF1 significantly reduces its chromatin association. Together, these results link USP7 interaction to the dynamic deubiquitination and chromatin association of UHRF1.

  12. Making Sense of the Tangle: Insights into Chromatin Folding and Gene Regulation

    Directory of Open Access Journals (Sweden)

    Ill-Min Chung

    2016-09-01

    Full Text Available Proximity ligation assays such as circularized chromosome conformation capture and high-throughput chromosome capture assays have shed light on the structural organization of the interphase genome. Functional topologically associating domains (TADs that constitute the building blocks of genomic organization are disrupted and reconstructed during the cell cycle. Epigenetic memory, as well as the sequence of chromosomes, regulate TAD reconstitution. Sub-TAD domains that are invariant across cell types have been identified, and contacts between these domains, rather than looping, are speculated to drive chromatin folding. Replication domains are established simultaneously with TADs during the cell cycle and the two correlate well in terms of characteristic features, such as lamin association and histone modifications. CCCTC-binding factor (CTCF and cohesin cooperate across different cell types to regulate genes and genome organization. CTCF elements that demarcate TAD boundaries are commonly disrupted in cancer and promote oncogene activation. Chromatin looping facilitates interactions between distant promoters and enhancers, and the resulting enhanceosome complex promotes gene expression. Deciphering the chromatin tangle requires comprehensive integrative analyses of DNA- and protein-dependent factors that regulate genomic organization.

  13. Chromatin remodeling complexes in the assembly of long noncoding RNA-dependent nuclear bodies.

    Science.gov (United States)

    Kawaguchi, Tetsuya; Hirose, Tetsuro

    2015-01-01

    Paraspeckles are subnuclear structures that assemble on nuclear paraspeckle assembly transcript 1 (NEAT1) long noncoding (lnc)RNA. Paraspeckle formation requires appropriate NEAT1 biogenesis and subsequent assembly with multiple prion-like domain (PLD) containing RNA-binding proteins. We found that SWI/SNF chromatin remodeling complexes function as paraspeckle components that interact with paraspeckle proteins (PSPs) and NEAT1. SWI/SNF complexes play an essential role in paraspeckle formation that does not require their ATP-dependent chromatin remodeling activity. Instead, SWI/SNF complexes facilitate organization of the PSP interaction network required for intact paraspeckle assembly. SWI/SNF complexes may collectively bind multiple PSPs to recruit them onto NEAT1. SWI/SNF complexes are also required for Sat III (Satellite III) lncRNA-dependent formation of nuclear stress bodies under heat shock conditions. Organization of the lncRNA-dependent omega speckle in Drosophila also depends on the chromatin remodeling complex. These findings raise the possibility that a common mechanism controls the formation of lncRNA-dependent nuclear body architecture.

  14. Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome.

    Science.gov (United States)

    Gu, Zhuoya; Jin, Ke; Crabbe, M James C; Zhang, Yang; Liu, Xiaolin; Huang, Yanyan; Hua, Mengyi; Nan, Peng; Zhang, Zhaolei; Zhong, Yang

    2016-04-01

    Transposable elements (TEs) have no longer been totally considered as "junk DNA" for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C (chromosome conformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r = 0.9, P elements like enhancers and promoters (Enhancer: hESC: r = 0.997, P = 2.3 × 10(-4); IMR90: r = 0.934, P = 2 × 10(-2); Promoter: hESC: r = 0.995, P = 3.8 × 10(-4); IMR90: r = 0.996, P = 3.2 × 10(-4)). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes.

  15. DNA double strand break repair, aging and the chromatin connection.

    Science.gov (United States)

    Gorbunova, Vera; Seluanov, Andrei

    2016-06-01

    Are DNA damage and mutations possible causes or consequences of aging? This question has been hotly debated by biogerontologists for decades. The importance of DNA damage as a possible driver of the aging process went from being widely recognized to then forgotten, and is now slowly making a comeback. DNA double strand breaks (DSBs) are particularly relevant to aging because of their toxicity, increased frequency with age and the association of defects in their repair with premature aging. Recent studies expand the potential impact of DNA damage and mutations on aging by linking DNA DSB repair and age-related chromatin changes. There is overwhelming evidence that increased DNA damage and mutations accelerate aging. However, an ultimate proof of causality would be to show that enhanced genome and epigenome stability delays aging. This is not an easy task, as improving such complex biological processes is infinitely more difficult than disabling it. We will discuss the possibility that animal models with enhanced DNA repair and epigenome maintenance will be generated in the near future.

  16. The Torsion of Spinor Connections and Related Structures

    Directory of Open Access Journals (Sweden)

    Frank Klinker

    2006-11-01

    Full Text Available In this text we introduce the torsion of spinor connections. In terms of the torsion we give conditions on a spinor connection to produce Killing vector fields. We relate the Bianchi type identities for the torsion of spinor connections with Jacobi identities for vector fields on supermanifolds. Furthermore, we discuss applications of this notion of torsion.

  17. [Age-related characteristics of structural support for ovarian function].

    Science.gov (United States)

    Koval'skiĭ, G B

    1984-12-01

    Histoenzymological assay was used to investigate various structures of the ovaries of rats of two groups aged 3-4 and 12-14 months during estral cycle. The activity of 3 beta-, 17 beta- and 20 alpha-steroid dehydrogenases, glucose-6-phosphate dehydrogenase, NAD and NADP-diaphorases, esterase, acid and alkaline phosphatases was studied. It has been shown that transport alterations in the microcirculation including the hematofollicular barrier play, the leading part in age-dependent depression of reproductive and endocrine functions. Ageing rats demonstrated no linkage between endothelial, thecal and granular cells, which points to the injury of the histophysiological mechanisms of the follicular system integration.

  18. Structures and related properties of helical, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, M.D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

    1993-11-01

    The three dimensional structure of several peptides were determined by NMR spectroscopy and distance geometry calculations. Each peptide formed a predictable, rigid structure, consisting of an {alpha}-helix, a {open_quotes}scaffold{close_quotes} region which packed along one face of the helix, and two disulfide bridges which covalently connect the helix and scaffold regions. The peptide Apa-M5 was designed to constrain the M5 peptide from MLCK in a helical geometry using the apamin disulfide scaffold. This scaffold constrains the N- terminal end of the helix with two disulfide bridges and a reverse turn. Like the M5 peptide, Apa-M5 was found to bind calmodulin in a Ca{sup 2+}-dependent 1:1 stoichiometry. However, the dissociation constant of the (Apa-M5)-calmodulin complex, 107 nM, was 100-fold higher than the dissociation constant of the M5-calmodulin complex. This difference was due to a putative steric overlap between the Apa-M5 scaffold and calmodulin. The peptide Apa-Cro was designed to replace the large structural protein matrix of {lambda} Cro with the apamin disulfide scaffold. However, Apa-Cro did not bind the consensus DNA operator half-site of {lambda} Cro, probably due to a steric overlap between the Apa-Cro disulfide framework and the DNA. The amino acid sequence of the scaffold-disulfide bridge arrangement of the peptide Max was derived from the core sequence of scyllatoxin, which contains an {alpha}-helix constrained at the C-terminal end by two disulfide bridges and a two-stranded {beta}sheet scaffold. Max was shown to fold with >84% yield to form a predictable, stable structure that is similar to scyllatoxin. The folding and stability properties of Max make this scaffold and disulfide bridge arrangement an ideal candidate for the development of hybrid sequence peptides. The dynamics of a fraying C-terminal end of the helix of the peptide Apa-AlaN was determined by analysis of {sup 15}N NMR relaxation properties.

  19. Structures and related properties of helical, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, Mark D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1993-11-01

    The three dimensional structure of several peptides were determined by NMR spectroscopy and distance geometry calculations. Each peptide formed a predictable, rigid structure, consisting of an α-helix, a "scaffold" region which packed along one face of the helix, and two disulfide bridges which covalently connect the helix and scaffold regions. The peptide Apa-M5 was designed to constrain the M5 peptide from MLCK in a helical geometry using the apamin disulfide scaffold. This scaffold constrains the N- terminal end of the helix with two disulfide bridges and a reverse turn. Like the M5 peptide, Apa-M5 was found to bind calmodulin in a Ca2+-dependent 1:1 stoichiometry. However, the dissociation constant of the (Apa-M5)-calmodulin complex, 107 nM, was 100-fold higher than the dissociation constant of the M5-calmodulin complex. This difference was due to a putative steric overlap between the Apa-M5 scaffold and calmodulin. The peptide Apa-Cro was designed to replace the large structural protein matrix of λ Cro with the apamin disulfide scaffold. However, Apa-Cro did not bind the consensus DNA operator half-site of λ Cro, probably due to a steric overlap between the Apa-Cro disulfide framework and the DNA. The amino acid sequence of the scaffold-disulfide bridge arrangement of the peptide Max was derived from the core sequence of scyllatoxin, which contains an α-helix constrained at the C-terminal end by two disulfide bridges and a two-stranded βsheet scaffold. Max was shown to fold with >84% yield to form a predictable, stable structure that is similar to scyllatoxin. The folding and stability properties of Max make this scaffold and disulfide bridge arrangement an ideal candidate for the development of hybrid sequence peptides. The dynamics of a fraying C-terminal end of the helix of the peptide Apa-AlaN was determined by analysis of 15N NMR relaxation properties.

  20. Emergent structure-function relations in emphysema and asthma.

    Science.gov (United States)

    Winkler, Tilo; Suki, Béla

    2011-01-01

    Structure-function relationships in the respiratory system are often a result of the emergence of self-organized patterns or behaviors that are characteristic of certain respiratory diseases. Proper description of such self-organized behavior requires network models that include nonlinear interactions among different parts of the system. This review focuses on 2 models that exhibit self-organized behavior: a network model of the lung parenchyma during the progression of emphysema that is driven by mechanical force-induced breakdown, and an integrative model of bronchoconstriction in asthma that describes interactions among airways within the bronchial tree. Both models suggest that the transition from normal to pathologic states is a nonlinear process that includes a tipping point beyond which interactions among the system components are reinforced by positive feedback, further promoting the progression of pathologic changes. In emphysema, the progressive destruction of tissue is irreversible, while in asthma, it is possible to recover from a severe bronchoconstriction. These concepts may have implications for pulmonary medicine. Specifically, we suggest that structure-function relationships emerging from network behavior across multiple scales should be taken into account when the efficacy of novel treatments or drug therapy is evaluated. Multiscale, computational, network models will play a major role in this endeavor.