WorldWideScience

Sample records for chromatin assembly factor

  1. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor I with chromatin.

    Science.gov (United States)

    Jeffery, Daniel C B; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28-1 mutant and to a lesser extent in a cdc7-1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly.

  2. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor i with chromatin

    Science.gov (United States)

    Jeffery, Daniel CB; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28–1 mutant and to a lesser extent in a cdc7–1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly. PMID:25602519

  3. Host-viral effects of chromatin assembly factor 1 interaction with HCMV IE2

    Institute of Scientific and Technical Information of China (English)

    Sung-Bau Lee; Li-Jung Juan; Chung-Fan Lee; Derick S-C Ou; Kalpana Dulal; Liang-Hao Chang; Chen-Han Ma; Chien-Fu Huang; Hua Zhu; Young-Sun Lin

    2011-01-01

    Chromatin assembly factor 1 (CAF1) consisting of p150, p60 and p48 is known to assemble histones onto newly synthesized DNA and thus maintain the chromatin structure. Here, we show that CAF1 expression was induced in human cytomegalovirus (HCMV)-infected cells, concomitantly with global chromatin decondensation. This apparent conflict was thought to result, in part, from CAF1 mislocalization to compartments of HCMV DNA synthesis through binding of its largest subunit p150 to viral immediate-early protein 2 (IE2). p150 interaction with p60 and IE2 facilitated HCMV DNA synthesis. The IE2Q548R mutation, previously reported to result in impaired HCMV growth with unknown mechanism, disrupted IE2/p150 and IE2/histones association in our study. Moreover, IE2 interaction with histones partly depends on p150, and the HCMV-induced chromatin decondensation was reduced in cells ectopically expressing the p150 mutant defective in IE2 binding. These results not only indicate that CAF1 was hijacked by IE2 to facilitate the replication of the HCMV genome, suggesting chromatin assembly plays an important role in herpesviral DNA synthesis, but also provide a model of the virus-induced chromatin instability through CAF1.

  4. Chromatin assembly using Drosophila systems.

    Science.gov (United States)

    Fyodorov, Dmitry V; Levenstein, Mark E

    2002-05-01

    To successfully study chromatin structure and activity in vitro, it is essential to have a chromatin assembly system that will prepare extended nucleosome arrays with highly defined protein content that resemble bulk chromatin isolated from living cell nuclei in terms of periodicity and nucleosome positioning. The Drosophila ATP-dependent chromatin assembly system described in this unit meets these requirements. The end product of the reaction described here has highly periodic extended arrays with physiologic spacing and positioning of the nucleosomes.

  5. Data on the kinetics of in vitro assembled chromatin.

    Science.gov (United States)

    Völker-Albert, Moritz Carl; Pusch, Miriam Caroline; Schmidt, Andreas; Imhof, Axel

    2016-09-01

    Here, we use LC-MS/MS and SWATH-MS to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos (DREX). This system allows easy manipulation of distinct aspects of chromatin assembly such as post-translational histone modifications, the levels of histone chaperones and the concentration of distinct DNA binding factors. In total, 480 proteins have been quantified as chromatin enriched factors and their binding kinetics have been monitored in the time course of 15 min, 1 h and 4 h of chromatin assembly. The data accompanying the manuscript on this approach, Völker-Albert et al., 2016 "A quantitative proteomic analysis of in vitro assembled chromatin" [1], has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with the dataset identifier submission number PRIDE: PXD002537 and PRIDE: PXD003445.

  6. Tissue Microarray-Based Evaluation of Chromatin Assembly Factor-1 (CAF-1/p60 as Tumour Prognostic Marker

    Directory of Open Access Journals (Sweden)

    Stefania Staibano

    2012-09-01

    Full Text Available In this study we aimed to confirm the emerging role of Chromatin Assembly Factor 1 (CAF-1 p60 as a new proliferation and prognostic marker for cancer and to test the usefulness of the tissue microarray technique (TMA for CAF-1 p60 rapid screening in several human malignancies. CAF-1 is a histone chaperone, regulating chromatin dynamics during DNA replication and repair in eukaryotics. TMA is a powerful high-throughput methodology in the study of cancer, allowing simultaneous assessment of different biomarkers within large numbers of tissue specimens. We generated TMA taking 3 mm diameter-core biopsies from oral squamous cell carcinoma, prostate cancer, salivary gland tumours and skin melanoma specimens, which had been previously tested for CAF-1 p60 on routine tissue sections. We also analysed, for the first time, 30 larynx and 30 skin squamous cell carcinomas. CAF-1 p60 resulted over-expressed in both the tissue sections and the TMA specimens, with the highest levels of expression in tumours which were more aggressive and metastasizing. Notably, a high degree of agreement was found between the CAF-1 p60 assessment on TMAs and on routine tissue sections. Our findings confirm the prognostic role of CAF-1 p60 and indicate TMA as a really advantageous method for CAF-1 p60 immunohistochemical screening, allowing savings on both tissue quantity and operator-time.

  7. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli

    OpenAIRE

    2014-01-01

    Chromatin assembly factor-1 (CAF-1) is a three-subunit protein complex conserved throughout eukaryotes that deposits histones during DNA synthesis. Here we present a novel role for the human p150 subunit in regulating nucleolar macromolecular interactions. Acute depletion of p150 causes redistribution of multiple nucleolar proteins and reduces nucleolar association with several repetitive element–containing loci. Of note, a point mutation in a SUMO-interacting motif (SIM) within p150 abolishe...

  8. Chromatin Assembly in a Yeast Whole-Cell Extract

    Science.gov (United States)

    Schultz, Michael C.; Hockman, Darren J.; Harkness, Troy A. A.; Garinther, Wendy I.; Altheim, Brent A.

    1997-08-01

    A simple in vitro system that supports chromatin assembly was developed for Saccharomyces cerevisiae. The assembly reaction is ATP-dependent, uses soluble histones and assembly factors, and generates physiologically spaced nucleosomes. We analyze the pathway of histone recruitment into nucleosomes, using this system in combination with genetic methods for the manipulation of yeast. This analysis supports the model of sequential recruitment of H3/H4 tetramers and H2A/H2B dimers into nucleosomes. Using a similar approach, we show that DNA ligase I can play an important role in template repair during assembly. These studies demonstrate the utility of this system for the combined biochemical and genetic analysis of chromatin assembly in yeast.

  9. ATP-Dependent Chromatin Remodeling Factors and Their Roles in Affecting Nucleosome Fiber Composition

    Directory of Open Access Journals (Sweden)

    Alexandra Lusser

    2011-10-01

    Full Text Available ATP-dependent chromatin remodeling factors of the SNF2 family are key components of the cellular machineries that shape and regulate chromatin structure and function. Members of this group of proteins have broad and heterogeneous functions ranging from controlling gene activity, facilitating DNA damage repair, promoting homologous recombination to maintaining genomic stability. Several chromatin remodeling factors are critical components of nucleosome assembly processes, and recent reports have identified specific functions of distinct chromatin remodeling factors in the assembly of variant histones into chromatin. In this review we will discuss the specific roles of ATP-dependent chromatin remodeling factors in determining nucleosome composition and, thus, chromatin fiber properties.

  10. A Broad Set of Chromatin Factors Influences Splicing

    Science.gov (United States)

    Allemand, Eric; Myers, Michael P.; Garcia-Bernardo, Jose; Harel-Bellan, Annick; Krainer, Adrian R.; Muchardt, Christian

    2016-01-01

    Several studies propose an influence of chromatin on pre-mRNA splicing, but it is still unclear how widespread and how direct this phenomenon is. We find here that when assembled in vivo, the U2 snRNP co-purifies with a subset of chromatin-proteins, including histones and remodeling complexes like SWI/SNF. Yet, an unbiased RNAi screen revealed that the outcome of splicing is influenced by a much larger variety of chromatin factors not all associating with the spliceosome. The availability of this broad range of chromatin factors impacting splicing further unveiled their very context specific effect, resulting in either inclusion or skipping, depending on the exon under scrutiny. Finally, a direct assessment of the impact of chromatin on splicing using an in vitro co-transcriptional splicing assay with pre-mRNAs transcribed from a nucleosomal template, demonstrated that chromatin impacts nascent pre-mRNP in their competence for splicing. Altogether, our data show that numerous chromatin factors associated or not with the spliceosome can affect the outcome of splicing, possibly as a function of the local chromatin environment that by default interferes with the efficiency of splicing. PMID:27662573

  11. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli.

    Science.gov (United States)

    Smith, Corey L; Matheson, Timothy D; Trombly, Daniel J; Sun, Xiaoming; Campeau, Eric; Han, Xuemei; Yates, John R; Kaufman, Paul D

    2014-09-15

    Chromatin assembly factor-1 (CAF-1) is a three-subunit protein complex conserved throughout eukaryotes that deposits histones during DNA synthesis. Here we present a novel role for the human p150 subunit in regulating nucleolar macromolecular interactions. Acute depletion of p150 causes redistribution of multiple nucleolar proteins and reduces nucleolar association with several repetitive element-containing loci. Of note, a point mutation in a SUMO-interacting motif (SIM) within p150 abolishes nucleolar associations, whereas PCNA or HP1 interaction sites within p150 are not required for these interactions. In addition, acute depletion of SUMO-2 or the SUMO E2 ligase Ubc9 reduces α-satellite DNA association with nucleoli. The nucleolar functions of p150 are separable from its interactions with the other subunits of the CAF-1 complex because an N-terminal fragment of p150 (p150N) that cannot interact with other CAF-1 subunits is sufficient for maintaining nucleolar chromosome and protein associations. Therefore these data define novel functions for a separable domain of the p150 protein, regulating protein and DNA interactions at the nucleolus.

  12. Interactions of transcription factors with chromatin.

    Science.gov (United States)

    van Bakel, Harm

    2011-01-01

    Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.

  13. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging.

    Science.gov (United States)

    Tatavosian, Roubina; Zhen, Chao Yu; Duc, Huy Nguyen; Balas, Maggie M; Johnson, Aaron M; Ren, Xiaojun

    2015-11-20

    Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.

  14. Histone chaperones link histone nuclear import and chromatin assembly.

    Science.gov (United States)

    Keck, Kristin M; Pemberton, Lucy F

    2013-01-01

    Histone chaperones are proteins that shield histones from nonspecific interactions until they are assembled into chromatin. After their synthesis in the cytoplasm, histones are bound by different histone chaperones, subjected to a series of posttranslational modifications and imported into the nucleus. These evolutionarily conserved modifications, including acetylation and methylation, can occur in the cytoplasm, but their role in regulating import is not well understood. As part of histone import complexes, histone chaperones may serve to protect the histones during transport, or they may be using histones to promote their own nuclear localization. In addition, there is evidence that histone chaperones can play an active role in the import of histones. Histone chaperones have also been shown to regulate the localization of important chromatin modifying enzymes. This review is focused on the role histone chaperones play in the early biogenesis of histones, the distinct cytoplasmic subcomplexes in which histone chaperones have been found in both yeast and mammalian cells and the importins/karyopherins and nuclear localization signals that mediate the nuclear import of histones. We also address the role that histone chaperone localization plays in human disease. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

  15. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo.

    Directory of Open Access Journals (Sweden)

    Davide F V Corona

    2007-09-01

    Full Text Available Imitation SWI (ISWI and other ATP-dependent chromatin-remodeling factors play key roles in transcription and other processes by altering the structure and positioning of nucleosomes. Recent studies have also implicated ISWI in the regulation of higher-order chromatin structure, but its role in this process remains poorly understood. To clarify the role of ISWI in vivo, we examined defects in chromosome structure and gene expression resulting from the loss of Iswi function in Drosophila. Consistent with a broad role in transcriptional regulation, the expression of a large number of genes is altered in Iswi mutant larvae. The expression of a dominant-negative form of ISWI leads to dramatic alterations in higher-order chromatin structure, including the apparent decondensation of both mitotic and polytene chromosomes. The loss of ISWI function does not cause obvious defects in nucleosome assembly, but results in a significant reduction in the level of histone H1 associated with chromatin in vivo. These findings suggest that ISWI plays a global role in chromatin compaction in vivo by promoting the association of the linker histone H1 with chromatin.

  16. Chromatin Dynamics During DNA Replication and Uncharacterized Replication Factors determined by Nascent Chromatin Capture (NCC) Proteomics

    Science.gov (United States)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Bau; Kustatscher, Georg; Nakamura, Kyosuke; de Lima Alves, Flavia; Menard, Patrice; Mejlvang, Jakob; Rappsilber, Juri; Groth, Anja

    2014-01-01

    SUMMARY To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use Nascent Chromatin Capture (NCC) to profile chromatin proteome dynamics during replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity-purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3995 proteins. The replication machinery and 485 chromatin factors like CAF-1, DNMT1, SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, while H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment with experimentally derived chromatin probabilities to predict a function in nascent chromatin for 93 uncharacterized proteins and identify FAM111A as a replication factor required for PCNA loading. Together, this provides an extensive resource to understand genome and epigenome maintenance. PMID:24561620

  17. Genome-Wide Association between Transcription Factor Expression and Chromatin Accessibility Reveals Regulators of Chromatin Accessibility

    Science.gov (United States)

    Rueedi, Rico

    2017-01-01

    To better understand genome regulation, it is important to uncover the role of transcription factors in the process of chromatin structure establishment and maintenance. Here we present a data-driven approach to systematically characterise transcription factors that are relevant for this process. Our method uses a linear mixed modelling approach to combine datasets of transcription factor binding motif enrichments in open chromatin and gene expression across the same set of cell lines. Applying this approach to the ENCODE dataset, we confirm already known and imply numerous novel transcription factors that play a role in the establishment or maintenance of open chromatin. In particular, our approach rediscovers many factors that have been annotated as pioneer factors. PMID:28118358

  18. Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state.

    Directory of Open Access Journals (Sweden)

    Lisa Prendergast

    2011-06-01

    Full Text Available Centromeres are differentiated chromatin domains, present once per chromosome, that direct segregation of the genome in mitosis and meiosis by specifying assembly of the kinetochore. They are distinct genetic loci in that their identity in most organisms is determined not by the DNA sequences they are associated with, but through specific chromatin composition and context. The core nucleosomal protein CENP-A/cenH3 plays a primary role in centromere determination in all species and directs assembly of a large complex of associated proteins in vertebrates. While CENP-A itself is stably transmitted from one generation to the next, the nature of the template for centromere replication and its relationship to kinetochore function are as yet poorly understood. Here, we investigate the assembly and inheritance of a histone fold complex of the centromere, the CENP-T/W complex, which is integrated with centromeric chromatin in association with canonical histone H3 nucleosomes. We have investigated the cell cycle regulation, timing of assembly, generational persistence, and requirement for function of CENPs -T and -W in the cell cycle in human cells. The CENP-T/W complex assembles through a dynamic exchange mechanism in late S-phase and G2, is required for mitosis in each cell cycle and does not persist across cell generations, properties reciprocal to those measured for CENP-A. We propose that the CENP-A and H3-CENP-T/W nucleosome components of the centromere are specialized for centromeric and kinetochore activities, respectively. Segregation of the assembly mechanisms for the two allows the cell to switch between chromatin configurations that reciprocally support the replication of the centromere and its conversion to a mitotic state on postreplicative chromatin.

  19. Role of chromatin factors in Arabidopsis root stem cell maintenance

    NARCIS (Netherlands)

    Kornet, N.G.

    2008-01-01

    Stem cells replenish the cells present in an organism throughout its lifetime and sustain growth. They have unique characteristics: the capability to self-renew and the potential to differentiate into several cell types. Recently, it has become clear that chromatin factors support these unique featu

  20. Data on the kinetics of in vitro assembled chromatin

    Directory of Open Access Journals (Sweden)

    Moritz Carl Völker-Albert

    2016-09-01

    The data accompanying the manuscript on this approach, Völker-Albert et al., 2016 “A quantitative proteomic analysis of in vitro assembled chromatin” [1], has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org via the PRIDE partner repository with the dataset identifier submission number PRIDE: PXD002537 and PRIDE: PXD003445.

  1. Chromatin remodeling complexes in the assembly of long noncoding RNA-dependent nuclear bodies.

    Science.gov (United States)

    Kawaguchi, Tetsuya; Hirose, Tetsuro

    2015-01-01

    Paraspeckles are subnuclear structures that assemble on nuclear paraspeckle assembly transcript 1 (NEAT1) long noncoding (lnc)RNA. Paraspeckle formation requires appropriate NEAT1 biogenesis and subsequent assembly with multiple prion-like domain (PLD) containing RNA-binding proteins. We found that SWI/SNF chromatin remodeling complexes function as paraspeckle components that interact with paraspeckle proteins (PSPs) and NEAT1. SWI/SNF complexes play an essential role in paraspeckle formation that does not require their ATP-dependent chromatin remodeling activity. Instead, SWI/SNF complexes facilitate organization of the PSP interaction network required for intact paraspeckle assembly. SWI/SNF complexes may collectively bind multiple PSPs to recruit them onto NEAT1. SWI/SNF complexes are also required for Sat III (Satellite III) lncRNA-dependent formation of nuclear stress bodies under heat shock conditions. Organization of the lncRNA-dependent omega speckle in Drosophila also depends on the chromatin remodeling complex. These findings raise the possibility that a common mechanism controls the formation of lncRNA-dependent nuclear body architecture.

  2. Replication-coupled chromatin assembly of newly synthesized histones: distinct functions for the histone tail domains.

    Science.gov (United States)

    Ejlassi-Lassallette, Aïda; Thiriet, Christophe

    2012-02-01

    The maintenance of the genome during replication requires the assembly of nucleosomes with newly synthesized histones. Achieving the deposition of newly synthesized histones in chromatin implies their transport from the cytoplasm to the nucleus at the replication sites. Several lines of evidence have revealed critical functions of the histone tail domains in these conserved cellular processes. In this review, we discuss the role of the amino termini of the nucleosome building blocks, H2A/H2B and H3/H4, in different model systems. The experimental data showed that H2A/H2B tails and H3/H4 tails display distinct functions in nuclear import and chromatin assembly. Furthermore, we describe recent studies exploiting the unique properties of the slime mold, Physarum polycephalum , that have advanced understanding of the function of the highly conserved replication-dependent diacetylation of H4.

  3. SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Mickaël Durand-Dubief

    2012-09-01

    Full Text Available Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4, coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin by promoting correct chromatin architecture.

  4. Chromatin-bound NLS proteins recruit membrane vesicles and nucleoporins for nuclear envelope assembly via importin-α/β

    Institute of Scientific and Technical Information of China (English)

    Quanlong Lu; Zhigang Lu; Qinying Liu; Li Guo; He Ren; Jingyan Fu; Qing Jiang; Paul R Clarke; Chuanmao Zhang

    2012-01-01

    The mechanism for nuclear envelope (NE) assembly is not fully understood.Importin-β and the small GTPase Ran have been implicated in the spatial regulation of NE assembly process.Here we report that chromatin-bound NLS (nuclear localization sequence) proteins provide docking sites for the NE precursor membrane vesicles and nucleoporins via importin-α and -β during NE assembly in Xenopus egg extracts.We show that along with the fast recruitment of the abundant NLS proteins such as nucleoplasmin and histones to the demembranated sperm chromatin in the extracts,importin-α binds the chromatin NLS proteins rapidly.Meanwhile,importin-β binds cytoplasmic NE precursor membrane vesicles and nucleoporins.Through interacting with importin-α on the chromatin NLS proteins,importin-β targets the membrane vesicles and nucleoporins to the chromatin surface.Once encountering RanGTP on the chromatin generated by RCC1,importin-β preferentially binds Ran-GTP and releases the membrane vesicles and nucleoporins for NE assembly.NE assembly is disrupted by blocking the interaction between importin-α and NLS proteins with excess soluble NLS proteins or by depletion of importin-β from the extract.Our findings reveal a novel molecular mechanism for NE assembly in Xenopus egg extracts.

  5. Impact of the Chromatin Remodeling Factor CHD1 on Gut Microbiome Composition of Drosophila melanogaster.

    Science.gov (United States)

    Sebald, Johanna; Willi, Michaela; Schoberleitner, Ines; Krogsdam, Anne; Orth-Höller, Dorothea; Trajanoski, Zlatko; Lusser, Alexandra

    2016-01-01

    The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.

  6. Impact of the Chromatin Remodeling Factor CHD1 on Gut Microbiome Composition of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Johanna Sebald

    Full Text Available The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.

  7. Testing Whether Defective Chromatin Assembly in S-Phase Contributes to Breast Cancer

    Science.gov (United States)

    2005-10-01

    TACTTGTACC) was designed using the approach described by Dr. les (Phair and Misteli, 2000) and Cajal bodies (Dundr et Greg Hannon. al., 2004) and with...machin- K.B., Meier, U.T., Neugebauer, K.M., Matera, A.G., and Misteli, T. ery. Genes Dev. 16, 2621-2626. (2004). In vivo kinetics of Cajal body components...years of starting my lab has been crucial. Body . The initial goal of this application was to investigate whether defective chromatin assembly in S-phase

  8. Reprogramming chromatin

    DEFF Research Database (Denmark)

    Ehrensberger, Andreas Hasso; Svejstrup, Jesper Qualmann

    2012-01-01

    attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming...... and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors...

  9. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation

    DEFF Research Database (Denmark)

    Düring, Louis; Thorsen, Michael; Petersen, Darima;

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6¿¿ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin....... Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309¿, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing....

  10. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization

    NARCIS (Netherlands)

    Kuznetsova, T.; Wang, S.Y.; Rao, N.A.; Mandoli, A.; Martens, J.H.; Rother, N; Aartse, A.; Groh, L.; Janssen-Megens, E.M.; Li, G.; Ruan, Y.; Logie, C.; Stunnenberg, H.G.

    2015-01-01

    BACKGROUND: The impact of signal-dependent transcription factors, such as glucocorticoid receptor and nuclear factor kappa-b, on the three-dimensional organization of chromatin remains a topic of discussion. The possible scenarios range from remodeling of higher order chromatin architecture by activ

  11. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions

    Science.gov (United States)

    Burton, Joshua N.; Adey, Andrew; Patwardhan, Rupali P.; Qiu, Ruolan; Kitzman, Jacob O.; Shendure, Jay

    2014-01-01

    Genomes assembled de novo from short reads are highly fragmented relative to the finished chromosomes of H. sapiens and key model organisms generated by the Human Genome Project. To address this, we need scalable, cost-effective methods enabling chromosome-scale contiguity. Here we show that genome-wide chromatin interaction datasets, such as those generated by Hi-C, are a rich source of long-range information for assigning, ordering and orienting genomic sequences to chromosomes, including across centromeres. To exploit this, we developed an algorithm that uses Hi-C data for ultra-long-range scaffolding of de novo genome assemblies. We demonstrate the approach by combining shotgun fragment and short jump mate-pair sequences with Hi-C data to generate chromosome-scale de novo assemblies of the human, mouse and Drosophila genomes, achieving – for human – 98% accuracy in assigning scaffolds to chromosome groups and 99% accuracy in ordering and orienting scaffolds within chromosome groups. Hi-C data can also be used to validate chromosomal translocations in cancer genomes. PMID:24185095

  12. Altered oncomodules underlie chromatin regulatory factors driver mutations.

    Science.gov (United States)

    Frigola, Joan; Iturbide, Ane; Lopez-Bigas, Nuria; Peiro, Sandra; Gonzalez-Perez, Abel

    2016-05-24

    Chromatin regulatory factors (CRFs), are known to be involved in tumorigenesis in several cancer types. Nevertheless, the molecular mechanisms through which driver alterations of CRFs cause tumorigenesis remain unknown. Here, we developed a CRFs Oncomodules Discovery approach, which mines several sources of cancer genomics and perturbaomics data. The approach prioritizes sets of genes significantly miss-regulated in primary tumors (oncomodules) bearing mutations of driver CRFs. We applied the approach to eleven TCGA tumor cohorts and uncovered oncomodules potentially associated to mutations of five driver CRFs in three cancer types. Our results revealed, for example, the potential involvement of the mTOR pathway in the development of tumors with loss-of-function mutations of MLL2 in head and neck squamous cell carcinomas. The experimental validation that MLL2 loss-of-function increases the sensitivity of cancer cell lines to mTOR inhibition lends further support to the validity of our approach. The potential oncogenic modules detected by our approach may guide experiments proposing ways to indirectly target driver mutations of CRFs.

  13. Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins

    Institute of Scientific and Technical Information of China (English)

    LiuWang; AihuaZheng; LingYi; ChongrenXu; MingxiaoDing; HongkuiDeng

    2005-01-01

    Nuclear reprogramming is critical for animal cloning and stem cell creation through nuclear transfer, which requires extensive remodeling of chromosomal architecture involving dramatic changes in chromatin-binding proteins. To understand the mechanism of nuclear reprogramming, it is critical to identify chromatin-binding factors specify the reprogramming process. In this report, we have developed a high-throughput selection method, based on T7 phage display and chromatin immunoprecipitation, to isolate chromatin-binding factors expressed in mouse embryonic stem cells using primary mouse embryonic fibroblast chromatin. Seven chromatin-binding proteins have been isolated by this method. We have also isolated several chromatin-binding proteins involved in hepatocyte differentiation. Our method provides a powerful tool to rapidly and selectively identify chromatin-binding proteins. The method can be used to study epigenetic modification of chromatin during nuclear reprogramming, cell differentiation, and transdifferentiation.

  14. Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription.

    Directory of Open Access Journals (Sweden)

    Manuela Vanti

    2009-01-01

    Full Text Available Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5' end of HIV-1 transcribed region (5'HIV-TR, which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5'HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5'HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5'HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.

  15. Assembly of Two Transgenes in an Artificial Chromatin Domain Gives Highly Coordinated Expression in Tobacco

    OpenAIRE

    2002-01-01

    The chromatin loop model predicts that genes within the same chromatin domain exhibit coordinated regulation. We here present the first direct experimental support for this model in plants. Two reporter genes, the E. coli beta-glucuronidase gene and the firefly luciferase gene, driven by different promoters, were placed between copies of the chicken lysozyme A element, a member of the matrix-associated region (MAR) group of chromatin boundary elements, and introduced in tobacco (Nicotiana tab...

  16. The microtubule aster formation and its role in nuclear envelope assembly around the sperm chromatin in Xenopus egg extracts

    Institute of Scientific and Technical Information of China (English)

    YANG Ning; CHEN Zhongcai; LU Ping; ZHANG Chuanmao; ZHAI Zhonghe; TANG Xiaowei

    2003-01-01

    Nuclear envelope is a dynamic structure in the cell cycle. At the beginning of mitosis, nuclear envelope breaks down and its components disperse into the cytoplasm. At the end of mitosis, nuclear envelope reassembles using the dispersed components. Searching for the mechanisms of the nuclear disassembly and reassembly has for a long time been one of the key projects for cell biologists. In this report we show that microtubules take a role in the nuclear envelope assembly around the sperm chromatin in Xenopus egg extracts. Microtubule cytoskeleton has been demonstrated to take roles in the transport of intracellular membranes such as Golgi and ER vesicles. We found that the nuclear envelope assembly needs functional microtubules. At the beginning of the nuclear assembly, microtubules nucleated to form a microtubule aster around the centrosome at the base of the sperm head. Using the microtubule drug colchicine to disrupt the microtubule nucleation, nuclear envelope reassembly was seriously inhibited. If the microtubules were stabilized by taxol, another microtubule drug, the nuclear envelope reassembly was also interfered, although a significantly large aster formed around the chromatin. Based on these observations, we propose that microtubules play an important role in the nuclear envelope reassembly maybe by transporting the nuclear envelope precursors to the chromatin surfaces.

  17. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P;

    2010-01-01

    cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression......Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... to dimethyl sulfoxide (DMSO) or after LIF withdrawal and display increased colony formation. UTF1 KD ES cells display extensive chromatin decondensation, reflected by a dramatic increase in nucleosome release on micrococcal nuclease (MNase) treatment and enhanced MNase sensitivity of UTF1 target genes in UTF1...

  18. Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma

    Directory of Open Access Journals (Sweden)

    Landman Gilles

    2010-06-01

    Full Text Available Abstract Background Prognostic factors in malignant melanoma are currently based on clinical data and morphologic examination. Other prognostic features, however, which are not yet used in daily practice, might add important information and thus improve prognosis, treatment, and survival. Therefore a search for new markers is desirable. Previous studies have demonstrated that fractal characteristics of nuclear chromatin are of prognostic importance in neoplasias. We have therefore investigated whether the fractal dimension of nuclear chromatin measured in routine histological preparations of malignant melanomas could be a prognostic factor for survival. Methods We examined 71 primary superficial spreading cutaneous melanoma specimens (thickness ≥ 1 mm from patients with a minimum follow up of 5 years. Nuclear area, form factor and fractal dimension of chromatin texture were obtained from digitalized images of hematoxylin-eosin stained tissue micro array sections. Clark's level, tumor thickness and mitotic rate were also determined. Results The median follow-up was 104 months. Tumor thickness, Clark's level, mitotic rate, nuclear area and fractal dimension were significant risk factors in univariate Cox regressions. In the multivariate Cox regression, stratified for the presence or absence of metastases at diagnosis, only the Clark level and fractal dimension of the nuclear chromatin were included as independent prognostic factors in the final regression model. Conclusion In general, a more aggressive behaviour is usually found in genetically unstable neoplasias with a higher number of genetic or epigenetic changes, which on the other hand, provoke a more complex chromatin rearrangement. The increased nuclear fractal dimension found in the more aggressive melanomas is the mathematical equivalent of a higher complexity of the chromatin architecture. So, there is strong evidence that the fractal dimension of the nuclear chromatin texture is a new

  19. The differential mobilization of histones H3.1 and H3.3 by herpes simplex virus 1 relates histone dynamics to the assembly of viral chromatin.

    Science.gov (United States)

    Conn, Kristen L; Hendzel, Michael J; Schang, Luis M

    2013-01-01

    During lytic infections, HSV-1 genomes are assembled into unstable nucleosomes. The histones required for HSV-1 chromatin assembly, however, are in the cellular chromatin. We have shown that linker (H1) and core (H2B and H4) histones are mobilized during HSV-1 infection, and proposed that the mobilized histones are available for assembly into viral chromatin. However, the actual relevance of histone mobilization remained unknown. We now show that canonical H3.1 and variant H3.3 are also mobilized during HSV-1 infection. Mobilization required no HSV-1 protein expression, although immediate early or early proteins enhanced it. We used the previously known differential association of H3.3 and H3.1 with HSV-1 DNA to test the relevance of histone mobilization. H3.3 binds to HSV-1 genomes first, whereas H3.1 only binds after HSV-1 DNA replication initiates. Consistently, H3.3 and H3.1 were differentially mobilized. H3.1 mobilization decreased with HSV-1 DNA replication, whereas H3.3 mobilization was largely unaffected by it. These results support a model in which previously mobilized H3.1 is immobilized by assembly into viral chromatin during HSV-1 DNA replication, whereas H3.3 is mobilized and assembled into HSV-1 chromatin throughout infection. The differential mobilizations of H3.3 and H3.1 are consistent with their differential assembly into viral chromatin. These data therefore relate nuclear histone dynamics to the composition of viral chromatin and provide the first evidence that histone mobilization relates to viral chromatin assembly.

  20. ATRX in chromatin assembly and genome architecture during development and disease.

    Science.gov (United States)

    Bérubé, Nathalie G

    2011-10-01

    The regulation of genome architecture is essential for a variety of fundamental cellular phenomena that underlie the complex orchestration of mammalian development. The ATP-dependent chromatin remodeling protein ATRX is emerging as a key regulatory component of nucleosomal dynamics and higher order chromatin conformation. Here we provide an overview of the role of ATRX at chromatin and during development, and discuss recent studies exposing a repertoire of ATRX functions at heterochromatin, in gene regulation, and during mitosis and meiosis. Exciting new progress on several fronts suggest that ATRX operates in histone variant deposition and in the modulation of higher order chromatin structure. Not surprisingly, dysfunction or absence of ATRX protein has devastating consequences on embryonic development and leads to human disease.

  1. Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA.

    Science.gov (United States)

    Sirbu, Bianca M; Couch, Frank B; Cortez, David

    2012-03-01

    Understanding the processes of DNA replication, chromatin assembly and maturation, and the replication stress response requires the ability to monitor protein dynamics at active and damaged replication forks. Detecting protein accumulation at replication forks or damaged sites has primarily relied on immunofluorescence imaging, which is limited in resolution and antibody sensitivity. Here we describe a procedure to isolate proteins on nascent DNA (iPOND) that permits a high-resolution spatiotemporal analysis of proteins at replication forks or on chromatin following DNA replication in cultured cells. iPOND relies on labeling of nascent DNA with the nucleoside analog 5-ethynyl-2'-deoxyuridine (EdU). Biotin conjugation to EdU-labeled DNA using click chemistry facilitates a single-step streptavidin purification of proteins bound to the nascent DNA. iPOND permits an interrogation of any cellular process linked to DNA synthesis using a 3- to 4-d protocol.

  2. The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C.

    Science.gov (United States)

    Dunleavy, Elaine M; Beier, Nicole L; Gorgescu, Walter; Tang, Jonathan; Costes, Sylvain V; Karpen, Gary H

    2012-01-01

    CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote.

  3. The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C.

    Directory of Open Access Journals (Sweden)

    Elaine M Dunleavy

    Full Text Available CENP-A (CID in flies is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote.

  4. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Lior Izhar

    2015-06-01

    Full Text Available Localization to sites of DNA damage is a hallmark of DNA damage response (DDR proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose polymerase (PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins.

  5. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation

    DEFF Research Database (Denmark)

    Düring, Louis; Thorsen, Michael; Petersen, Darima

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6¿¿ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin...... architectural proteins Nhp6A/Nhp6B, accumulate intron-containing pre-mRNA at the restrictive temperature. In addition, we demonstrate that rsc8-ts16 nhp6¿¿ cells contain low levels of U6 snRNA and U4/U6 di-snRNA that is further exacerbated after two hours growth at the restrictive temperature. This change in U6...

  6. Nuclei of Taxus baccata: Flavanols Linked to Chromatin Remodeling Factors

    Directory of Open Access Journals (Sweden)

    Walter Feucht

    2009-01-01

    Full Text Available Microscopic studies of young needles and shoot tips from Taxus baccata showed that flavanols are localized in the nuclei. This observation is based on the histochemical staining of flavanols with the DMACA reagent. The colour that is obtained with this reagent varies from pale to deep blue, depending on the amount of flavanols. This study is focused on nondifferentiated cell lineages and on differentiating cells. The key point to note is that all nuclei of a cell lineage showed a uniform DMACA staining pattern based on the amount and structural appearence of nuclear flavanols. This points to transcriptional and epigenetic programming. However, comparing various cell lineages from different shoot tips and needles revealed a lineage-specific expression of nuclear flavanols. This result implied that both positional and developmental signals from neighbouring cells were involved in the nuclear flavanol binding of lineages. The cells of a developmentally advanced lineage loose their intimate contact and, then, they separate from each other to undergo an autonomous, individual sequence of differentiation. This in turn was accompanied by differences in the nuclear flavanol patterns of the single cells. Investigating different mitotic stages revealed a wide spectrum in flavanol staining intensities of the chromosomes. These observations should be linked to UV-VIS spectroscopical kinetic results indicating that nuclear flavanols bound to histones are involved in epigenetically regulated modification of chromatin. The kinetic studies show that catechin is relatively rapidly degraded by oxygen in the presence of Mg2+-ions. However, this degradation reaction is strongly inhibited when histone proteins were added. This behaviour is a clear indication that coregulatory interactions exist between catechin and histones.

  7. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    Science.gov (United States)

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  8. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    Science.gov (United States)

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.

  9. Chromatin computation.

    Directory of Open Access Journals (Sweden)

    Barbara Bryant

    Full Text Available In living cells, DNA is packaged along with protein and RNA into chromatin. Chemical modifications to nucleotides and histone proteins are added, removed and recognized by multi-functional molecular complexes. Here I define a new computational model, in which chromatin modifications are information units that can be written onto a one-dimensional string of nucleosomes, analogous to the symbols written onto cells of a Turing machine tape, and chromatin-modifying complexes are modeled as read-write rules that operate on a finite set of adjacent nucleosomes. I illustrate the use of this "chromatin computer" to solve an instance of the Hamiltonian path problem. I prove that chromatin computers are computationally universal--and therefore more powerful than the logic circuits often used to model transcription factor control of gene expression. Features of biological chromatin provide a rich instruction set for efficient computation of nontrivial algorithms in biological time scales. Modeling chromatin as a computer shifts how we think about chromatin function, suggests new approaches to medical intervention, and lays the groundwork for the engineering of a new class of biological computing machines.

  10. Chromatin remodeling and SWI/SNF2 factors in human disease.

    Science.gov (United States)

    Kokavec, Juraj; Podskocova, Jarmila; Zavadil, Jiri; Stopka, Tomas

    2008-05-01

    Chromatin structure and its changes or maintenance throughout developmental checkpoints play indispensable role in organismal homeostasis. Chromatin remodeling factors of the SWI/SNF2 superfamily use ATP hydrolysis to change DNA-protein contacts, and their loss-of-function or inappropriate increase leads to distinct human pathologic states. In this review, we focus on the translational view of human pathologic physiology involving SWI/SNF2 superfamily, combining latest finding from basic and clinical research. We discuss in mechanistic terms the consequences resulting from dose alteration of the SWI/SNF2 superfamily ATPases and emphasize the necessity of future human subject-based studies.

  11. Undifferentiated Embryonic Cell Transcription Factor 1 Regulates ESC Chromatin Organization and Gene Expression

    NARCIS (Netherlands)

    Kooistra, Susanne M.; van den Boom, Vincent; Thummer, Rajkumar P.; Johannes, Frank; Wardenaar, Rene; Tesson, Bruno M.; Veenhoff, Liesbeth M.; Fusetti, Fabrizia; O'Neill, Laura P.; Turner, Bryan M.; de Haan, Gerald; Eggen, Bart J. L.; O’Neill, Laura P.

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES ce

  12. Chromatin remodeling regulated by steroid and nuclear receptors

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Coactivators and corepressors regulate transcription by controlling interactions between sequence-specific transcription factors,the basal transcriptional machinery and the chromatin environment,This review consider the access of nuclear and steroid receptors to chromatin,their use of corepressors and coactivators to modify chromatin structure and the implications for transcriptional control.The assembly of specific nucleoprotein architectures and targeted histone modification emerge as central controlling elements for gene expression.

  13. Chromatin Structure and Function

    CERN Document Server

    Wolffe, Alan P

    1999-01-01

    The Third Edition of Chromatin: Structure and Function brings the reader up-to-date with the remarkable progress in chromatin research over the past three years. It has been extensively rewritten to cover new material on chromatin remodeling, histone modification, nuclear compartmentalization, DNA methylation, and transcriptional co-activators and co-repressors. The book is written in a clear and concise fashion, with 60 new illustrations. Chromatin: Structure and Function provides the reader with a concise and coherent account of the nature, structure, and assembly of chromatin and its active

  14. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  15. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication...... initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  16. Downregulation of SWI/SNF chromatin remodeling factor subunits modulates cisplatin cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kothandapani, Anbarasi [Department of Biochemistry and Cancer Biology, University of Toledo-Health Science Campus, Toledo, OH 43614 (United States); Gopalakrishnan, Kathirvel [Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614 (United States); Kahali, Bhaskar; Reisman, David [Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610 (United States); Patrick, Steve M., E-mail: Stephan.Patrick@utoledo.edu [Department of Biochemistry and Cancer Biology, University of Toledo-Health Science Campus, Toledo, OH 43614 (United States)

    2012-10-01

    Chromatin remodeling complex SWI/SNF plays important roles in many cellular processes including transcription, proliferation, differentiation and DNA repair. In this report, we investigated the role of SWI/SNF catalytic subunits Brg1 and Brm in the cellular response to cisplatin in lung cancer and head/neck cancer cells. Stable knockdown of Brg1 and Brm enhanced cellular sensitivity to cisplatin. Repair kinetics of cisplatin DNA adducts revealed that downregulation of Brg1 and Brm impeded the repair of both intrastrand adducts and interstrand crosslinks (ICLs). Cisplatin ICL-induced DNA double strand break repair was also decreased in Brg1 and Brm depleted cells. Altered checkpoint activation with enhanced apoptosis as well as impaired chromatin relaxation was observed in Brg1 and Brm deficient cells. Downregulation of Brg1 and Brm did not affect the recruitment of DNA damage recognition factor XPC to cisplatin DNA lesions, but affected ERCC1 recruitment, which is involved in the later stages of DNA repair. Based on these results, we propose that SWI/SNF chromatin remodeling complex modulates cisplatin cytotoxicity by facilitating efficient repair of the cisplatin DNA lesions. -- Highlights: Black-Right-Pointing-Pointer Stable knockdown of Brg1 and Brm enhances cellular sensitivity to cisplatin. Black-Right-Pointing-Pointer Downregulation of Brg1 and Brm impedes the repair of cisplatin intrastrand adducts and interstrand crosslinks. Black-Right-Pointing-Pointer Brg1 and Brm deficiency results in impaired chromatin relaxation, altered checkpoint activation as well as enhanced apoptosis. Black-Right-Pointing-Pointer Downregulation of Brg1 and Brm affects recruitment of ERCC1, but not XPC to cisplatin DNA lesions.

  17. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2.

    Science.gov (United States)

    Elfring, L K; Daniel, C; Papoulas, O; Deuring, R; Sarte, M; Moseley, S; Beek, S J; Waldrip, W R; Daubresse, G; DePace, A; Kennison, J A; Tamkun, J W

    1998-01-01

    The Drosophila brahma (brm) gene encodes an activator of homeotic genes related to the yeast chromatin remodeling factor SWI2/SNF2. Here, we report the phenotype of null and dominant-negative brm mutations. Using mosaic analysis, we found that the complete loss of brm function decreases cell viability and causes defects in the peripheral nervous system of the adult. A dominant-negative brm mutation was generated by replacing a conserved lysine in the ATP-binding site of the BRM protein with an arginine. This mutation eliminates brm function in vivo but does not affect assembly of the 2-MD BRM complex. Expression of the dominant-negative BRM protein caused peripheral nervous system defects, homeotic transformations, and decreased viability. Consistent with these findings, the BRM protein is expressed at relatively high levels in nuclei throughout the developing organism. Site-directed mutagenesis was used to investigate the functions of conserved regions of the BRM protein. Domain II is essential for brm function and is required for the assembly or stability of the BRM complex. In spite of its conservation in numerous eukaryotic regulatory proteins, the deletion of the bromodomain of the BRM protein has no discernible phenotype.

  18. Defective DNA repair and increased chromatin binding of DNA repair factors in Down syndrome fibroblasts.

    Science.gov (United States)

    Necchi, Daniela; Pinto, Antonella; Tillhon, Micol; Dutto, Ilaria; Serafini, Melania Maria; Lanni, Cristina; Govoni, Stefano; Racchi, Marco; Prosperi, Ennio

    2015-10-01

    Down syndrome (DS) is characterized by genetic instability, neurodegeneration, and premature aging. However, the molecular mechanisms leading to this phenotype are not yet well understood. Here, we report that DS fibroblasts from both fetal and adult donors show the presence of oxidative DNA base damage, such as dihydro-8-oxoguanine (8-oxodG), and activation of a DNA damage response (DDR), already during unperturbed growth conditions. DDR with checkpoint activation was indicated by histone H2AX and Chk2 protein phosphorylation, and by increased p53 protein levels. In addition, both fetal and adult DS fibroblasts were more sensitive to oxidative DNA damage induced by potassium bromate, and were defective in the removal of 8-oxodG, as compared with age-matched cells from control healthy donors. The analysis of core proteins participating in base excision repair (BER), such as XRCC1 and DNA polymerase β, showed that higher amounts of these factors were bound to chromatin in DS than in control cells, even in the absence of DNA damage. These findings occurred in concomitance with increased levels of phosphorylated XRCC1 detected in DS cells. These results indicate that DS cells exhibit a BER deficiency, which is associated with prolonged chromatin association of core BER factors.

  19. Up regulation in gene expression of chromatin remodelling factors in cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Van Niekerk Dirk

    2008-02-01

    Full Text Available Abstract Background The highest rates of cervical cancer are found in developing countries. Frontline monitoring has reduced these rates in developed countries and present day screening programs primarily identify precancerous lesions termed cervical intraepithelial neoplasias (CIN. CIN lesions described as mild dysplasia (CIN I are likely to spontaneously regress while CIN III lesions (severe dysplasia are likely to progress if untreated. Thoughtful consideration of gene expression changes paralleling the progressive pre invasive neoplastic development will yield insight into the key casual events involved in cervical cancer development. Results In this study, we have identified gene expression changes across 16 cervical cases (CIN I, CIN II, CIN III and normal cervical epithelium using the unbiased long serial analysis of gene expression (L-SAGE method. The 16 L-SAGE libraries were sequenced to the level of 2,481,387 tags, creating the largest SAGE data collection for cervical tissue worldwide. We have identified 222 genes differentially expressed between normal cervical tissue and CIN III. Many of these genes influence biological functions characteristic of cancer, such as cell death, cell growth/proliferation and cellular movement. Evaluation of these genes through network interactions identified multiple candidates that influence regulation of cellular transcription through chromatin remodelling (SMARCC1, NCOR1, MRFAP1 and MORF4L2. Further, these expression events are focused at the critical junction in disease development of moderate dysplasia (CIN II indicating a role for chromatin remodelling as part of cervical cancer development. Conclusion We have created a valuable publically available resource for the study of gene expression in precancerous cervical lesions. Our results indicate deregulation of the chromatin remodelling complex components and its influencing factors occur in the development of CIN lesions. The increase in SWI

  20. Bidirectional Transcription Arises from Two Distinct Hubs of Transcription Factor Binding and Active Chromatin.

    Science.gov (United States)

    Scruggs, Benjamin S; Gilchrist, Daniel A; Nechaev, Sergei; Muse, Ginger W; Burkholder, Adam; Fargo, David C; Adelman, Karen

    2015-06-18

    Anti-sense transcription originating upstream of mammalian protein-coding genes is a well-documented phenomenon, but remarkably little is known about the regulation or function of anti-sense promoters and the non-coding RNAs they generate. Here we define at nucleotide resolution the divergent transcription start sites (TSSs) near mouse mRNA genes. We find that coupled sense and anti-sense TSSs precisely define the boundaries of a nucleosome-depleted region (NDR) that is highly enriched in transcription factor (TF) motifs. Notably, as the distance between sense and anti-sense TSSs increases, so does the size of the NDR, the level of signal-dependent TF binding, and gene activation. We further discover a group of anti-sense TSSs in macrophages with an enhancer-like chromatin signature. Interestingly, this signature identifies divergent promoters that are activated during immune challenge. We propose that anti-sense promoters serve as platforms for TF binding and establishment of active chromatin to further regulate or enhance sense-strand mRNA expression.

  1. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes.

    Science.gov (United States)

    Li, Xu; Wang, Wenqi; Wang, Jiadong; Malovannaya, Anna; Xi, Yuanxin; Li, Wei; Guerra, Rudy; Hawke, David H; Qin, Jun; Chen, Junjie

    2015-01-21

    The current knowledge on how transcription factors (TFs), the ultimate targets and executors of cellular signalling pathways, are regulated by protein-protein interactions remains limited. Here, we performed proteomics analyses of soluble and chromatin-associated complexes of 56 TFs, including the targets of many signalling pathways involved in development and cancer, and 37 members of the Forkhead box (FOX) TF family. Using tandem affinity purification followed by mass spectrometry (TAP/MS), we performed 214 purifications and identified 2,156 high-confident protein-protein interactions. We found that most TFs form very distinct protein complexes on and off chromatin. Using this data set, we categorized the transcription-related or unrelated regulators for general or specific TFs. Our study offers a valuable resource of protein-protein interaction networks for a large number of TFs and underscores the general principle that TFs form distinct location-specific protein complexes that are associated with the different regulation and diverse functions of these TFs.

  2. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Nicola Wiechens

    2016-03-01

    Full Text Available Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.

  3. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors.

    Science.gov (United States)

    Wiechens, Nicola; Singh, Vijender; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-03-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.

  4. New mitotic regulators released from chromatin

    Directory of Open Access Journals (Sweden)

    Hideki eYokoyama

    2013-12-01

    Full Text Available Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP, produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.

  5. Reduced expression of the ATRX gene, a chromatin-remodeling factor, causes hippocampal dysfunction in mice.

    Science.gov (United States)

    Nogami, Tatsuya; Beppu, Hideyuki; Tokoro, Takashi; Moriguchi, Shigeki; Shioda, Norifumi; Fukunaga, Kohji; Ohtsuka, Toshihisa; Ishii, Yoko; Sasahara, Masakiyo; Shimada, Yutaka; Nishijo, Hisao; Li, En; Kitajima, Isao

    2011-06-01

    Mutations of the ATRX gene, which encodes an ATP-dependent chromatin-remodeling factor, were identified in patients with α-thalassemia X-linked mental retardation (ATR-X) syndrome. There is a milder variant of ATR-X syndrome caused by mutations in the Exon 2 of the gene. To examine the impact of the Exon 2 mutation on neuronal development, we generated ATRX mutant (ATRX(ΔE2)) mice. Truncated ATRX protein was produced from the ATRX(ΔE2) mutant allele with reduced expression level. The ATRX(ΔE2) mice survived and reproduced normally. There was no significant difference in Morris water maze test between wild-type and ATRX(ΔE2) mice. In a contextual fear conditioning test, however, total freezing time was decreased in ATRX(ΔE2) mice compared to wild-type mice, suggesting that ATRX(ΔE2) mice have impaired contextual fear memory. ATRX(ΔE2) mice showed significantly reduced long-term potentiation in the hippocampal CA1 region evoked by high-frequency stimulation. Moreover, autophosphorylation of calcium-calmodulin-dependent kinase II (αCaMKII) and phosphorylation of glutamate receptor, ionotropic, AMPA 1 (GluR1) were decreased in the hippocampi of the ATRX(ΔE2) mice compared to wild-type mice. These findings suggest that ATRX(ΔE2) mice may have fear-associated learning impairment with the dysfunction of αCaMKII and GluR1. The ATRX(ΔE2) mice would be useful tools to investigate the role of the chromatin-remodeling factor in the pathogenesis of abnormal behaviors and learning impairment.

  6. SHORT HYPOCOTYL1 Encodes a SMARCA3-Like Chromatin Remodeling Factor Regulating Elongation1[OPEN

    Science.gov (United States)

    Bo, Kailiang; Behera, Tusar K.; Pandey, Sudhakar; Wen, Changlong; Wang, Yuhui; Simon, Philipp W.; Li, Yuhong

    2016-01-01

    In Arabidopsis (Arabidopsis thaliana), the UVR8-mediated signaling pathway is employed to attain UVB protection and acclimation to deal with low-dosage UVB (LDUVB)-induced stresses. Here, we identified SHORT HYPOCOTYL1 (SH1) in cucumber (Cucumis sativus), which regulates LDUVB-dependent hypocotyl elongation by modulating the UVR8 signaling pathway. We showed that hypocotyl elongation in cucumbers carrying the recessive sh1 allele was LDUVB insensitive and that Sh1 encoded a human SMARCA3-like chromatin remodeling factor. The allele frequency and distribution pattern at this locus among natural populations supported the wild cucumber origin of sh1 for local adaptation, which was under selection during domestication. The cultivated cucumber carries predominantly the Sh1 allele; the sh1 allele is nearly fixed in the semiwild Xishuangbanna cucumber, and the wild cucumber population is largely at Hardy-Weinberg equilibrium for the two alleles. The SH1 protein sequence was highly conserved among eukaryotic organisms, but its regulation of hypocotyl elongation in cucumber seems to be a novel function. While Sh1 expression was inhibited by LDUVB, its transcript abundance was highly correlated with hypocotyl elongation rate and the expression level of cell-elongation-related genes. Expression profiling of key regulators in the UVR8 signaling pathway revealed significant differential expression of CsHY5 between two near isogenic lines of Sh1. Sh1 and CsHY5 acted antagonistically at transcriptional level. A working model was proposed in which Sh1 regulates LDUVB-dependent hypocotyl elongation in cucumber through changing the chromatin states and thus the accessibility of CsHY5 in the UVR8 signaling pathway to promoters of LDUVB-responsive genes for hypocotyl elongation. PMID:27559036

  7. Protooncogene Ski cooperates with the chromatin-remodeling factor Satb2 in specifying callosal neurons.

    Science.gov (United States)

    Baranek, Constanze; Dittrich, Manuela; Parthasarathy, Srinivas; Bonnon, Carine Gaiser; Britanova, Olga; Lanshakov, Dmitriy; Boukhtouche, Fatiha; Sommer, Julia E; Colmenares, Clemencia; Tarabykin, Victor; Atanasoski, Suzana

    2012-02-28

    First insights into the molecular programs orchestrating the progression from neural stem cells to cortical projection neurons are emerging. Loss of the transcriptional regulator Ski has been linked to the human 1p36 deletion syndrome, which includes central nervous system defects. Here, we report critical roles for Ski in the maintenance of the neural stem cell pool and the specification of callosal neurons. Ski-deficient callosal neurons lose their identity and ectopically express the transcription factor Ctip2. The misspecified callosal neurons largely fail to form the corpus callosum and instead redirect their axons toward subcortical targets. We identify the chromatin-remodeling factor Satb2 as a partner of Ski, and show that both proteins are required for transcriptional repression of Ctip2 in callosal neurons. We propose a model in which Satb2 recruits Ski to the Ctip2 locus, and Ski attracts histone deacetylases, thereby enabling the formation of a functional nucleosome remodeling and deacetylase repressor complex. Our findings establish a central role for Ski-Satb2 interactions in regulating transcriptional mechanisms of callosal neuron specification.

  8. Analysis of a Splice Array Experiment Elucidates Roles of Chromatin Elongation Factor Spt4-5 in Splicing.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Splicing is an important process for regulation of gene expression in eukaryotes, and it has important functional links to other steps of gene expression. Two examples of these linkages include Ceg1, a component of the mRNA capping enzyme, and the chromatin elongation factors Spt4-5, both of which have recently been shown to play a role in the normal splicing of several genes in the yeast Saccharomyces cerevisiae. Using a genomic approach to characterize the roles of Spt4-5 in splicing, we used splicing-sensitive DNA microarrays to identify specific sets of genes that are mis-spliced in ceg1, spt4, and spt5 mutants. In the context of a complex, nested, experimental design featuring 22 dye-swap array hybridizations, comprising both biological and technical replicates, we applied five appropriate statistical models for assessing differential expression between wild-type and the mutants. To refine selection of differential expression genes, we then used a robust model-synthesizing approach, Differential Expression via Distance Synthesis, to integrate all five models. The resultant list of differentially expressed genes was then further analyzed with regard to select attributes: we found that highly transcribed genes with long introns were most sensitive to spt mutations. QPCR confirmation of differential expression was established for the limited number of genes evaluated. In this paper, we showcase splicing array technology, as well as powerful, yet general, statistical methodology for assessing differential expression, in the context of a real, complex experimental design. Our results suggest that the Spt4-Spt5 complex may help coordinate splicing with transcription under conditions that present kinetic challenges to spliceosome assembly or function.

  9. Analysis of a splice array experiment elucidates roles of chromatin elongation factor Spt4-5 in splicing.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Xiao

    2005-09-01

    Full Text Available Splicing is an important process for regulation of gene expression in eukaryotes, and it has important functional links to other steps of gene expression. Two examples of these linkages include Ceg1, a component of the mRNA capping enzyme, and the chromatin elongation factors Spt4-5, both of which have recently been shown to play a role in the normal splicing of several genes in the yeast Saccharomyces cerevisiae. Using a genomic approach to characterize the roles of Spt4-5 in splicing, we used splicing-sensitive DNA microarrays to identify specific sets of genes that are mis-spliced in ceg1, spt4, and spt5 mutants. In the context of a complex, nested, experimental design featuring 22 dye-swap array hybridizations, comprising both biological and technical replicates, we applied five appropriate statistical models for assessing differential expression between wild-type and the mutants. To refine selection of differential expression genes, we then used a robust model-synthesizing approach, Differential Expression via Distance Synthesis, to integrate all five models. The resultant list of differentially expressed genes was then further analyzed with regard to select attributes: we found that highly transcribed genes with long introns were most sensitive to spt mutations. QPCR confirmation of differential expression was established for the limited number of genes evaluated. In this paper, we showcase splicing array technology, as well as powerful, yet general, statistical methodology for assessing differential expression, in the context of a real, complex experimental design. Our results suggest that the Spt4-Spt5 complex may help coordinate splicing with transcription under conditions that present kinetic challenges to spliceosome assembly or function.

  10. Chromatin determinants of the inner-centromere rely on replication factors with functions that impart cohesion.

    Science.gov (United States)

    Abe, Takuya; Kawasumi, Ryotaro; Arakawa, Hiroshi; Hori, Tetsuya; Shirahige, Katsuhiko; Losada, Ana; Fukagawa, Tatsuo; Branzei, Dana

    2016-10-18

    Replication fork-associated factors promote genome integrity and protect against cancer. Mutations in the DDX11 helicase and the ESCO2 acetyltransferase also cause related developmental disorders classified as cohesinopathies. Here we generated vertebrate model cell lines of these disorders and cohesinopathies-related genes. We found that vertebrate DDX11 and Tim-Tipin are individually needed to compensate for ESCO2 loss in chromosome segregation, with DDX11 also playing complementary roles with ESCO2 in centromeric cohesion. Our study reveals that overt centromeric cohesion loss does not necessarily precede chromosome missegregation, while both these problems correlate with, and possibly originate from, inner-centromere defects involving reduced phosphorylation of histone H3T3 (pH3T3) in the region. Interestingly, the mitotic pH3T3 mark was defective in all analyzed replication-related mutants with functions in cohesion. The results pinpoint mitotic pH3T3 as a postreplicative chromatin mark that is sensitive to replication stress and conducts with different kinetics to robust centromeric cohesion and correct chromosome segregation.

  11. The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression

    Science.gov (United States)

    Whittaker, Danielle E.; Riegman, Kimberley L.H.; Kasah, Sahrunizam; Mohan, Conor; Yu, Tian; Sala, Blanca Pijuan; Hebaishi, Husam; Caruso, Angela; Marques, Ana Claudia; Michetti, Caterina; Smachetti, María Eugenia Sanz; Shah, Apar; Sabbioni, Mara; Kulhanci, Omer; Tee, Wee-Wei; Reinberg, Danny; Scattoni, Maria Luisa; McGonnell, Imelda; Wardle, Fiona C.; Fernandes, Cathy

    2017-01-01

    The mechanisms underlying the neurodevelopmental deficits associated with CHARGE syndrome, which include cerebellar hypoplasia, developmental delay, coordination problems, and autistic features, have not been identified. CHARGE syndrome has been associated with mutations in the gene encoding the ATP-dependent chromatin remodeler CHD7. CHD7 is expressed in neural stem and progenitor cells, but its role in neurogenesis during brain development remains unknown. Here we have shown that deletion of Chd7 from cerebellar granule cell progenitors (GCps) results in reduced GCp proliferation, cerebellar hypoplasia, developmental delay, and motor deficits in mice. Genome-wide expression profiling revealed downregulated expression of the gene encoding the glycoprotein reelin (Reln) in Chd7-deficient GCps. Recessive RELN mutations have been associated with severe cerebellar hypoplasia in humans. We found molecular and genetic evidence that reductions in Reln expression contribute to GCp proliferative defects and cerebellar hypoplasia in GCp-specific Chd7 mouse mutants. Finally, we showed that CHD7 is necessary for maintaining an open, accessible chromatin state at the Reln locus. Taken together, this study shows that Reln gene expression is regulated by chromatin remodeling, identifies CHD7 as a previously unrecognized upstream regulator of Reln, and provides direct in vivo evidence that a mammalian CHD protein can control brain development by modulating chromatin accessibility in neuronal progenitors. PMID:28165338

  12. The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a

    Directory of Open Access Journals (Sweden)

    Mann Graham J

    2009-01-01

    Full Text Available Abstract Background CDKN2A/p16INK4a is frequently altered in human cancers and it is the most important melanoma susceptibility gene identified to date. p16INK4a inhibits pRb phosphorylation and induces cell cycle arrest, which is considered its main tumour suppressor function. Nevertheless, additional activities may contribute to the tumour suppressor role of p16INK4a and could help explain its specific association with melanoma predisposition. To identify such functions we conducted a yeast-two-hybrid screen for novel p16INK4a binding partners. Results We now report that p16INK4a interacts with the chromatin remodelling factor BRG1. We investigated the cooperative roles of p16INK4a and BRG1 using a panel of cell lines and a melanoma cell model with inducible p16INK4a expression and BRG1 silencing. We found evidence that BRG1 is not required for p16INK4a-induced cell cycle inhibition and propose that the p16INK4a-BRG1 complex regulates BRG1 chromatin remodelling activity. Importantly, we found frequent loss of BRG1 expression in primary and metastatic melanomas, implicating this novel p16INK4a binding partner as an important tumour suppressor in melanoma. Conclusion This data adds to the increasing evidence implicating the SWI/SNF chromatin remodelling complex in tumour development and the association of p16INK4a with chromatin remodelling highlights potentially new functions that may be important in melanoma predisposition and chemoresistance.

  13. Proteomic interrogation of human chromatin.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome" is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.

  14. Essential roles of the chromatin remodeling factor BRG1 in spermatogenesis in mice.

    Science.gov (United States)

    Wang, Jianguan; Gu, Honggang; Lin, Haifan; Chi, Tian

    2012-06-01

    Mammalian spermatogenesis is a complex process that involves spatiotemporal regulation of gene expression and meiotic recombination, both of which require the modulation of chromatin structure. Proteins important for chromatin regulation during spermatogenesis remain poorly understood. Here we addressed the role of BRG1, the catalytic subunit of the mammalian Swi/Snf-like BAF chromatin-remodeling complex, during spermatogenesis in mice. BRG1 expression is dynamically regulated in the male germline, being weakly detectable in spermatogonia, highly expressed in pachytene spermatocytes, and turned off in maturing round spermatids. This expression pattern overlaps that of Brm, the Brg1 homolog. While Brm knockout males are known to be fertile, germline-specific Brg1 deletion completely arrests spermatogenesis at the midpachytene stage, which is associated with spermatocyte apoptosis and apparently also with impaired homologous recombination and meiotic sex chromosome inactivation. However, Brg1 is dispensable for gammaH2AX formation during meiotic recombination, contrary to its reported role in DNA repair in somatic cells. Our study reveals the essential role of Brg1 in meiosis and underscores the differences in the mechanisms of DNA repair between germ cells and somatic cells.

  15. Chromatin-related proteins in pluripotent mouse embryonic stem cells are downregulated after removal of leukemia inhibitory factor.

    Science.gov (United States)

    Kurisaki, Akira; Hamazaki, Tatsuo S; Okabayashi, Koji; Iida, Tetsuo; Nishine, Tsutomu; Chonan, Ritsu; Kido, Hiroshi; Tsunasawa, Susumu; Nishimura, Osamu; Asashima, Makoto; Sugino, Hiromu

    2005-09-30

    Embryonic stem (ES) cells have generated enormous interest due to their capacity to self-renew and the potential for growing many different cell types in vitro. Leukemia inhibitory factor (LIF), bone morphogenetic proteins, octamer-binding protein 3 or 4, and Nanog are important factors in the maintenance of pluripotency in mouse ES cells. However, the mechanisms by which these factors regulate the pluripotency remain poorly understood. To identify other proteins involved in this process, we did a proteomic analysis of mouse ES cells that were cultured in the presence or absence of LIF. More than 100 proteins were found to be involved specifically in either the differentiation process or the maintenance of undifferentiated state. Among these, chromatin-related proteins were identified as the major proteins in nuclear extracts of undifferentiated cells. Analysis with real-time RT-PCR revealed that enrichment of these proteins in pluripotent ES cells was regulated at the transcriptional levels. These results suggest that specific chromatin-related proteins may be involved in maintaining the unique properties of pluripotent ES cells.

  16. Cas9 Functionally Opens Chromatin.

    Directory of Open Access Journals (Sweden)

    Amira A Barkal

    Full Text Available Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding.

  17. Discovery of transcription factors and regulatory regions driving in vivo tumor development by ATAC-seq and FAIRE-seq open chromatin profiling.

    Directory of Open Access Journals (Sweden)

    Kristofer Davie

    2015-02-01

    Full Text Available Genomic enhancers regulate spatio-temporal gene expression by recruiting specific combinations of transcription factors (TFs. When TFs are bound to active regulatory regions, they displace canonical nucleosomes, making these regions biochemically detectable as nucleosome-depleted regions or accessible/open chromatin. Here we ask whether open chromatin profiling can be used to identify the entire repertoire of active promoters and enhancers underlying tissue-specific gene expression during normal development and oncogenesis in vivo. To this end, we first compare two different approaches to detect open chromatin in vivo using the Drosophila eye primordium as a model system: FAIRE-seq, based on physical separation of open versus closed chromatin; and ATAC-seq, based on preferential integration of a transposon into open chromatin. We find that both methods reproducibly capture the tissue-specific chromatin activity of regulatory regions, including promoters, enhancers, and insulators. Using both techniques, we screened for regulatory regions that become ectopically active during Ras-dependent oncogenesis, and identified 3778 regions that become (over-activated during tumor development. Next, we applied motif discovery to search for candidate transcription factors that could bind these regions and identified AP-1 and Stat92E as key regulators. We validated the importance of Stat92E in the development of the tumors by introducing a loss of function Stat92E mutant, which was sufficient to rescue the tumor phenotype. Additionally we tested if the predicted Stat92E responsive regulatory regions are genuine, using ectopic induction of JAK/STAT signaling in developing eye discs, and observed that similar chromatin changes indeed occurred. Finally, we determine that these are functionally significant regulatory changes, as nearby target genes are up- or down-regulated. In conclusion, we show that FAIRE-seq and ATAC-seq based open chromatin profiling

  18. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes.

    Science.gov (United States)

    Yalley, Akua; Schill, Daniel; Hatta, Mitsutoki; Johnson, Nicole; Cirillo, Lisa Ann

    2016-04-15

    FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 as a "pioneer" factor, suggested a model whereby FoxO1 chromatin remodeling at regulatory targets facilitates binding and recruitment of additional regulatory factors. However, the impact of FoxO1 phosphorylation on its ability to bind chromatin and the effect of FoxO1 loss on recruitment of neighboring transcription factors at its regulatory targets in liver chromatin is unknown. In this study, we demonstrate that an amino acid substitution that mimics insulin-mediated phosphorylation of a serine in the winged helix DNA binding motif curtails FoxO1 nucleosome binding. We also demonstrate that shRNA-mediated loss of FoxO1 binding to the IGFBP1 and G6Pase promoters in HepG2 cells significantly reduces binding of RNA polymerase II and the pioneer factors FoxA1/A2. Knockdown of FoxA1 similarly reduced binding of RNA polymerase II and FoxO1. Reduction in acetylation of histone H3 Lys-27 accompanies loss of FoxO1 and FoxA1/A2 binding. Interdependent binding of FoxO1 and FoxA1/A2 possibly entails cooperative binding because FoxO1 and FoxA1/A2 facilitate one another's binding to IGFPB1 promoter DNA. These results illustrate how transcription factors can nucleate transcriptional events in chromatin in response to signaling events and suggest a model for regulation of hepatic glucose metabolism through interdependent FoxO/FoxA binding.

  19. A novel Toxoplasma gondii nuclear factor TgNF3 is a dynamic chromatin-associated component, modulator of nucleolar architecture and parasite virulence.

    Directory of Open Access Journals (Sweden)

    Alejandro Olguin-Lamas

    2011-03-01

    Full Text Available In Toxoplasma gondii, cis-acting elements present in promoter sequences of genes that are stage-specifically regulated have been described. However, the nuclear factors that bind to these cis-acting elements and regulate promoter activities have not been identified. In the present study, we performed affinity purification, followed by proteomic analysis, to identify nuclear factors that bind to a stage-specific promoter in T. gondii. This led to the identification of several nuclear factors in T. gondii including a novel factor, designated herein as TgNF3. The N-terminal domain of TgNF3 shares similarities with the N-terminus of yeast nuclear FK506-binding protein (FKBP, known as a histone chaperone regulating gene silencing. Using anti-TgNF3 antibodies, HA-FLAG and YFP-tagged TgNF3, we show that TgNF3 is predominantly a parasite nucleolar, chromatin-associated protein that binds specifically to T. gondii gene promoters in vivo. Genome-wide analysis using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified promoter occupancies by TgNF3. In addition, TgNF3 has a direct role in transcriptional control of genes involved in parasite metabolism, transcription and translation. The ectopic expression of TgNF3 in the tachyzoites revealed dynamic changes in the size of the nucleolus, leading to a severe attenuation of virulence in vivo. We demonstrate that TgNF3 physically interacts with H3, H4 and H2A/H2B assembled into bona fide core and nucleosome-associated histones. Furthermore, TgNF3 interacts specifically to histones in the context of stage-specific gene silencing of a promoter that lacks active epigenetic acetylated histone marks. In contrast to virulent tachyzoites, which express the majority of TgNF3 in the nucleolus, the protein is exclusively located in the cytoplasm of the avirulent bradyzoites. We propose a model where TgNF3 acts essentially to coordinate nucleolus and nuclear functions by modulating

  20. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX.

    Science.gov (United States)

    Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Scott, Caroline; Mitson, Matthew; Taylor, Stephen; Higgs, Douglas R; Gibbons, Richard J

    2015-07-06

    Fifteen per cent of cancers maintain telomere length independently of telomerase by the homologous recombination (HR)-associated alternative lengthening of telomeres (ALT) pathway. A unifying feature of these tumours are mutations in ATRX. Here we show that expression of ectopic ATRX triggers a suppression of the pathway and telomere shortening. Importantly ATRX-mediated ALT suppression is dependent on the histone chaperone DAXX. Re-expression of ATRX is associated with a reduction in replication fork stalling, a known trigger for HR and loss of MRN from telomeres. A G-quadruplex stabilizer partially reverses the effect of ATRX, inferring ATRX may normally facilitate replication through these sequences that, if they persist, promote ALT. We propose that defective telomere chromatinization through loss of ATRX promotes the persistence of aberrant DNA secondary structures, which in turn present a barrier to DNA replication, leading to replication fork stalling, collapse, HR and subsequent recombination-mediated telomere synthesis in ALT cancers.

  1. SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Vachtenheim, Jiri, E-mail: jivach@upn.anet.cz [Laboratory of Molecular Biology, University Hospital, Charles University, Prague (Czech Republic); Ondrusova, Lubica [Laboratory of Molecular Biology, University Hospital, Charles University, Prague (Czech Republic); Borovansky, Jan [Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University, Prague (Czech Republic)

    2010-02-12

    The microphthalmia-associated transcription factor (MITF) is required for melanocyte development, maintenance of the melanocyte-specific transcription, and survival of melanoma cells. MITF positively regulates expression of more than 25 genes in pigment cells. Recently, it has been demonstrated that expression of several MITF downstream targets requires the SWI/SNF chromatin remodeling complex, which contains one of the two catalytic subunits, Brm or Brg1. Here we show that the expression of MITF itself critically requires active SWI/SNF. In several Brm/Brg1-expressing melanoma cell lines, knockdown of Brg1 severely compromised MITF expression with a concomitant dowregulation of MITF targets and decreased cell proliferation. Although Brm was able to substitute for Brg1 in maintaining MITF expression and melanoma cell proliferation, sequential knockdown of both Brm and Brg1 in 501mel cells abolished proliferation. In Brg1-null SK-MEL-5 melanoma cells, depletion of Brm alone was sufficient to abrogate MITF expression and cell proliferation. Chromatin immunoprecipitation confirmed the binding of Brg1 or Brm to the promoter of MITF. Together these results demonstrate the essential role of SWI/SNF for expression of MITF and suggest that SWI/SNF may be a promissing target in melanoma therapy.

  2. Lichen-forming fungus Caloplaca flavoruscens inhibits transcription factors and chromatin remodeling system in fungi.

    Science.gov (United States)

    Kwon, Youngho; Cha, Jaeyul; Chiang, Jennifer; Tran, Grant; Nislow, Corey; Hur, Jae-Seoun; Kwak, Youn-Sig

    2016-06-01

    Lichen-forming fungi and extracts derived from them have been used as alternative medicine sources for millennia and recently there has been a renewed interest in their known bioactive properties for anticancer agents, cosmetics and antibiotics. Although lichen-forming fungus-derived compounds are biologically and commercially valuable, few studies have been performed to determine their modes of action. This study used chemical-genetic and chemogenomic high-throughput analyses to gain insight into the modes of action of Caloplaca flavoruscens extracts. High-throughput screening of 575 lichen extracts was performed and 39 extracts were identified which inhibited yeast growth. A C. flavoruscens extract was selected as a promising antifungal and was subjected to genome-wide haploinsufficiency profiling and homozygous profiling assays. These screens revealed that yeast deletion strains lacking Rsc8, Pro1 and Toa2 were sensitive to three concentrations (IC25.5, IC25 and IC50, respectively) of C. flavoruscens extract. Gene-enrichment analysis of the data showed that C. flavoruscens extracts appear to perturb transcription and chromatin remodeling.

  3. Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation.

    Science.gov (United States)

    Obier, Nadine; Bonifer, Constanze

    2016-11-01

    Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development.

  4. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain;

    2007-01-01

    Inheritance and maintenance of the DNA sequence and its organization into chromatin are central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the context of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin organization. To meet...... the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...

  5. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications...

  6. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP)

    NARCIS (Netherlands)

    Kaufmann, K.; Muiño, J.M.; Østerås, M.; Farinelli, L.; Krajewski, P.; Angenent, G.C.

    2010-01-01

    Chromatin immunoprecipitation (ChIP) is a powerful technique to study interactions between transcription factors (TFs) and DNA in vivo. For genome-wide de novo discovery of TF-binding sites, the DNA that is obtained in ChIP experiments needs to be processed for sequence identification. The sequences

  7. HTLV-1 Tax mediated downregulation of miRNAs associated with chromatin remodeling factors in T cells with stably integrated viral promoter.

    Directory of Open Access Journals (Sweden)

    Saifur Rahman

    Full Text Available RNA interference (RNAi is a natural cellular mechanism to silence gene expression and is predominantly mediated by microRNAs (miRNAs that target messenger RNA. Viruses can manipulate the cellular processes necessary for their replication by targeting the host RNAi machinery. This study explores the effect of human T-cell leukemia virus type 1 (HTLV-1 transactivating protein Tax on the RNAi pathway in the context of a chromosomally integrated viral long terminal repeat (LTR using a CD4(+ T-cell line, Jurkat. Transcription factor profiling of the HTLV-1 LTR stably integrated T-cell clone transfected with Tax demonstrates increased activation of substrates and factors associated with chromatin remodeling complexes. Using a miRNA microarray and bioinformatics experimental approach, Tax was also shown to downregulate the expression of miRNAs associated with the translational regulation of factors required for chromatin remodeling. These observations were validated with selected miRNAs and an HTLV-1 infected T cells line, MT-2. miR-149 and miR-873 were found to be capable of directly targeting p300 and p/CAF, chromatin remodeling factors known to play critical role in HTLV-1 pathogenesis. Overall, these results are first in line establishing HTLV-1/Tax-miRNA-chromatin concept and open new avenues toward understanding retroviral latency and/or replication in a given cell type.

  8. Versatile reporter systems show that transactivation by human T-cell leukemia virus type 1 Tax occurs independently of chromatin remodeling factor BRG1.

    Science.gov (United States)

    Zhang, Ling; Liu, Meihong; Merling, Randall; Giam, Chou-Zen

    2006-08-01

    Potent activation of human T-cell leukemia virus type 1 (HTLV-1) gene expression is mediated by the virus-encoded transactivator protein Tax and three imperfect 21-bp repeats in the viral long terminal repeats. Each 21-bp repeat contains a cAMP-responsive-element core flanked by 5' G-rich and 3' C-rich sequences. Tax alone does not bind DNA. Rather, it interacts with basic domain-leucine zipper transcription factors CREB and ATF-1 to form ternary complexes with the 21-bp repeats. In the context of the ternary complexes, Tax contacts the G/C-rich sequences and recruits transcriptional coactivators CREB-binding protein (CBP)/p300 to effect potent transcriptional activation. Using an easily transduced and chromosomally integrated reporter system derived from a self-inactivating lentivirus vector, we showed in a BRG1- and BRM1-deficient adrenal carcinoma cell line, SW-13, that Tax- and 21-bp repeat-mediated transactivation does not require BRG1 or BRM1 and is not enhanced by BRG1. With a similar reporter system, we further demonstrated that Tax- and tumor necrosis factor alpha-induced NF-kappaB activation occurs readily in SW-13 cells in the absence of BRG1 and BRM1. These results suggest that the assembly of stable multiprotein complexes containing Tax, CREB/ATF-1, and CBP/p300 on the 21-bp repeats is the principal mechanism employed by Tax to preclude nucleosome formation at the HTLV-1 enhancer/promoter. This most likely bypasses the need for BRG1-containing chromatin-remodeling complexes. Likewise, recruitment of CBP/p300 by NF-kappaB may be sufficient to disrupt histone-DNA interaction for the initiation of transcription.

  9. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators.

    Directory of Open Access Journals (Sweden)

    So Yeon Kwon

    2016-04-01

    Full Text Available NURF is a conserved higher eukaryotic ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF is able to alter chromatin dynamics to control transcription and genome organization. Previous biochemical and genetic analysis of the specificity-subunit of Drosophila NURF (Nurf301/Enhancer of Bithorax (E(bx has defined NURF as a critical regulator of homeotic, heat-shock and steroid-responsive gene transcription. It has been speculated that NURF controls pathway specific transcription by co-operating with sequence-specific transcription factors to remodel chromatin at dedicated enhancers. However, conclusive in vivo demonstration of this is lacking and precise regulatory elements targeted by NURF are poorly defined. To address this, we have generated a comprehensive map of in vivo NURF activity, using MNase-sequencing to determine at base pair resolution NURF target nucleosomes, and ChIP-sequencing to define sites of NURF recruitment. Our data show that, besides anticipated roles at enhancers, NURF interacts physically and functionally with the TRF2/DREF basal transcription factor to organize nucleosomes downstream of active promoters. Moreover, we detect NURF remodeling and recruitment at distal insulator sites, where NURF functionally interacts with and co-localizes with DREF and insulator proteins including CP190 to establish nucleosome-depleted domains. This insulator function of NURF is most apparent at subclasses of insulators that mark the boundaries of chromatin domains, where multiple insulator proteins co-associate. By visualizing the complete repertoire of in vivo NURF chromatin targets, our data provide new insights into how chromatin remodeling can control genome organization and regulatory interactions.

  10. Reprogramming the chromatin landscape

    DEFF Research Database (Denmark)

    Miranda, Tina B; Voss, Ty C; Sung, Myong-Hee;

    2013-01-01

    , mechanistic details defining the cellular interactions between ER and GR are poorly understood. We investigated genome-wide binding profiles for ER and GR upon coactivation and characterized the status of the chromatin landscape. We describe a novel mechanism dictating the molecular interplay between ER...... and GR. Upon induction, GR modulates access of ER to specific sites in the genome by reorganization of the chromatin configuration for these elements. Binding to these newly accessible sites occurs either by direct recognition of ER response elements or indirectly through interactions with other factors...

  11. Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis

    Science.gov (United States)

    Zhang, Zhengjian; English, Brian P.; Grimm, Jonathan B.; Kazane, Stephanie A.; Hu, Wenxin; Tsai, Albert; Inouye, Carla; You, Changjiang; Piehler, Jacob; Schultz, Peter G.; Lavis, Luke D.; Revyakin, Andrey; Tjian, Robert

    2016-01-01

    Transcription of protein-encoding genes in eukaryotic cells requires the coordinated action of multiple general transcription factors (GTFs) and RNA polymerase II (Pol II). A “step-wise” preinitiation complex (PIC) assembly model has been suggested based on conventional ensemble biochemical measurements, in which protein factors bind stably to the promoter DNA sequentially to build a functional PIC. However, recent dynamic measurements in live cells suggest that transcription factors mostly interact with chromatin DNA rather transiently. To gain a clearer dynamic picture of PIC assembly, we established an integrated in vitro single-molecule transcription platform reconstituted from highly purified human transcription factors and complemented it by live-cell imaging. Here we performed real-time measurements of the hierarchal promoter-specific binding of TFIID, TFIIA, and TFIIB. Surprisingly, we found that while promoter binding of TFIID and TFIIA is stable, promoter binding by TFIIB is highly transient and dynamic (with an average residence time of 1.5 sec). Stable TFIIB–promoter association and progression beyond this apparent PIC assembly checkpoint control occurs only in the presence of Pol II–TFIIF. This transient-to-stable transition of TFIIB-binding dynamics has gone undetected previously and underscores the advantages of single-molecule assays for revealing the dynamic nature of complex biological reactions. PMID:27798851

  12. Impaired contextual fear extinction learning is associated with aberrant regulation of CHD-type chromatin remodeling factors

    Directory of Open Access Journals (Sweden)

    Alexandra eWille

    2015-11-01

    Full Text Available Successful attenuation of fearful memories is a cognitive process requiring initiation of highly coordinated transcription programs. Chromatin-modulating mechanisms such as DNA methylation and histone modifications, including acetylation, are key regulators of these processes. However, knowledge concerning the role of ATP-dependent chromatin remodeling factors (ChRFs being required for successful fear extinction is lacking. Underscoring the potential importance of these factors that alter histone-DNA contacts within nucleosomes are recent genome-wide association studies linking several ChRFs to various human cognitive and psychiatric disorders. To better understand the role of ChRFs in the brain, and since to date little is known about ChRF expression in the brain, we performed a comprehensive survey of expression levels of 24 ATP-dependent remodelers across different brain areas, and we identified several distinct high molecular weight complexes by chromatographic methods. We next aimed to gain novel insight into the potential regulation of ChRFs in different brain regions in association with normal and impaired fear extinction learning. To this end, we established the 129S1/SvImJ (S1 laboratory mouse strain as a model for compromised contextual fear extinction learning that can be rescued by dietary zinc restriction. Using this model along with genetically related but fear extinction-competent 129S6/SvEv (S6 mice as controls, we found that impaired fear extinction in S1 was associated with enhanced ventral hippocampal expression of CHD1 and reduced expression of CHD5 that was normalized following successful rescue of impaired fear extinction. Moreover, a select reduction in CHD3 expression was observed in the ventral hippocampus following successful rescue of fear extinction in S1 mice. Taken together, these data provide novel insight into the regulation of specific ChRFs following an impaired cognitive process and its rescue, and they suggest

  13. Chromatin Properties of Regulatory DNA Probed by Manipulation of Transcription Factors

    Science.gov (United States)

    Sharov, Alexei A.; Nishiyama, Akira; Qian, Yong; Dudekula, Dawood B.; Longo, Dan L.; Schlessinger, David

    2014-01-01

    Abstract Transcription factors (TFs) bind to DNA and regulate the transcription of nearby genes. However, only a small fraction of TF binding sites have such regulatory effects. Here we search for the predictors of functional binding sites by carrying out a systematic computational screening of a variety of contextual factors (histone modifications, nuclear lamin-bindings, and cofactor bindings). We used regression analysis to test if contextual factors are associated with upregulation or downregulation of neighboring genes following the induction or knockdown of the 9 TFs in mouse embryonic stem (ES) cells. Functional TF binding sites appeared to be either active (i.e., bound by P300, CHD7, mediator, cohesin, and SWI/SNF) or repressed (i.e., with H3K27me3 histone marks and bound by Polycomb factors). Active binding sites mediated the downregulation of nearby genes upon knocking down the activating TFs or inducing repressors. Repressed TF binding sites mediated the upregulation of nearby genes (e.g., poised developmental regulators) upon inducing TFs. In addition, repressed binding sites mediated repressive effects of TFs, identified by the downregulation of target genes after the induction of TFs or by the upregulation of target genes after the knockdown of TFs. The contextual factors associated with functions of DNA-bound TFs were used to improve the identification of candidate target genes regulated by TFs. PMID:24918633

  14. Chromatin properties of regulatory DNA probed by manipulation of transcription factors.

    Science.gov (United States)

    Sharov, Alexei A; Nishiyama, Akira; Qian, Yong; Dudekula, Dawood B; Longo, Dan L; Schlessinger, David; Ko, Minoru S H

    2014-08-01

    Transcription factors (TFs) bind to DNA and regulate the transcription of nearby genes. However, only a small fraction of TF binding sites have such regulatory effects. Here we search for the predictors of functional binding sites by carrying out a systematic computational screening of a variety of contextual factors (histone modifications, nuclear lamin-bindings, and cofactor bindings). We used regression analysis to test if contextual factors are associated with upregulation or downregulation of neighboring genes following the induction or knockdown of the 9 TFs in mouse embryonic stem (ES) cells. Functional TF binding sites appeared to be either active (i.e., bound by P300, CHD7, mediator, cohesin, and SWI/SNF) or repressed (i.e., with H3K27me3 histone marks and bound by Polycomb factors). Active binding sites mediated the downregulation of nearby genes upon knocking down the activating TFs or inducing repressors. Repressed TF binding sites mediated the upregulation of nearby genes (e.g., poised developmental regulators) upon inducing TFs. In addition, repressed binding sites mediated repressive effects of TFs, identified by the downregulation of target genes after the induction of TFs or by the upregulation of target genes after the knockdown of TFs. The contextual factors associated with functions of DNA-bound TFs were used to improve the identification of candidate target genes regulated by TFs.

  15. Local and regional factors influencing bacterial community assembly.

    Science.gov (United States)

    Lindström, Eva S; Langenheder, Silke

    2012-02-01

    The classical view states that microbial biogeography is not affected by dispersal barriers or historical events, but only influenced by the local contemporary habitat conditions (species sorting). This has been challenged during recent years by studies suggesting that also regional factors such as mass effect, dispersal limitation and neutral assembly are important for the composition of local bacterial communities. Here we summarize results from biogeography studies in different environments, i.e. in marine, freshwater and soil as well in human hosts. Species sorting appears to be the most important mechanism. However, this result might be biased since this is the mechanism that is easiest to measure, detect and interpret. Hence, the importance of regional factors may have been underestimated. Moreover, our survey indicates that different assembly mechanisms might be important for different parts of the total community, differing, for example, between generalists and specialists, and between taxa of different dispersal ability and motility. We conclude that there is a clear need for experimental studies, first, to clearly separate regional and local factors in order to study their relative importance, and second, to test whether there are differences in assembly mechanisms depending on different taxonomic or functional groups.

  16. The sequence-specific transcription factor c-Jun targets Cockayne syndrome protein B to regulate transcription and chromatin structure.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2014-04-01

    Full Text Available Cockayne syndrome is an inherited premature aging disease associated with numerous developmental and neurological defects, and mutations in the gene encoding the CSB protein account for the majority of Cockayne syndrome cases. Accumulating evidence suggests that CSB functions in transcription regulation, in addition to its roles in DNA repair, and those defects in this transcriptional activity might contribute to the clinical features of Cockayne syndrome. Transcription profiling studies have so far uncovered CSB-dependent effects on gene expression; however, the direct targets of CSB's transcriptional activity remain largely unknown. In this paper, we report the first comprehensive analysis of CSB genomic occupancy during replicative cell growth. We found that CSB occupancy sites display a high correlation to regions with epigenetic features of promoters and enhancers. Furthermore, we found that CSB occupancy is enriched at sites containing the TPA-response element. Consistent with this binding site preference, we show that CSB and the transcription factor c-Jun can be found in the same protein-DNA complex, suggesting that c-Jun can target CSB to specific genomic regions. In support of this notion, we observed decreased CSB occupancy of TPA-response elements when c-Jun levels were diminished. By modulating CSB abundance, we found that CSB can influence the expression of nearby genes and impact nucleosome positioning in the vicinity of its binding site. These results indicate that CSB can be targeted to specific genomic loci by sequence-specific transcription factors to regulate transcription and local chromatin structure. Additionally, comparison of CSB occupancy sites with the MSigDB Pathways database suggests that CSB might function in peroxisome proliferation, EGF receptor transactivation, G protein signaling and NF-κB activation, shedding new light on the possible causes and mechanisms of Cockayne syndrome.

  17. Chromatin Modification and Remodeling in Heart Development

    Directory of Open Access Journals (Sweden)

    Paul Delgado-Olguín

    2006-01-01

    Full Text Available In organogenesis, cell types are specified from determined precursors as morphogenetic patterning takes place. These events are largely controlled by tissue-specific transcription factors. These transcription factors must function within the context of chromatin to activate or repress target genes. Recent evidence suggests that chromatin-remodeling and -modifying factors may have tissue-specific function. Here we review the potential roles for chromatin-remodeling and -modifying proteins in the development of the mammalian heart.

  18. 30 nm染色质的体外组装和电镜分析%In vitro Assembly and Electron Microscopic Analysis of 30 nm Chromatin Fibers

    Institute of Scientific and Technical Information of China (English)

    孙大鹏; 宋峰; 黄丽; 张阔; 季刚; 陈萍; 朱平

    2013-01-01

    Abstract Genomic DNA in the eukaryotic nucleus is hierarchically packaged by histones into chromatin.The plasticity and dynamics of higher-order chromatin fiber have been widely thought as the key regulators of transcription and other biological processes inherent to DNA.Elucidating how nucleosomal arrays can be folded into higher-order chromatin fibers is essential to understand the dynamics of chromatin structure.Although the structure of nucleosomes,the fundamental repeating unit of chromatin,which comprises 147 base pairs of DNA wrapped in 1.7 superhelical turns around an octamer ofhistones,has been solved at the atomic resolution,there is still much controversy over the chromatin structure at the higher-order level.Here,we built an in vitro chromatin reconstitution system which adopts histone octamers and arrays of 177 bp and 200 bp repeat of the Widom 601 DNA sequence.Taking advantage of this system,we have obtained highly regular spaced and soluble nucleosome arrays,and folded the arrays into 30 nm chromatin fibers with the existence of linker histone H1 or MgCh respectively.Several electron microscopic techniques,including metal shadowing,negative staining and Cryo-EM,have been used to investigate the morphology of the reconstituted 30 nm chromatin fibers.Our results suggest that both histone H1 and divalent Mg2+ can help the formation of 30 nm chromatin fibers,but the resulted chromatin fibers display different topologically architectures.To investigate how the length of linker histone may affect the architecture of chromatin,we measured the diameters of the reconstituted 30 nm chromatin fibers with different nucleosome repeat lengths (NRLs) of 177 and 200 bp and found that these two classes of chromatin fibers present different diameters (P < 0.05).%真核生物的基因组以染色质的形式存在,染色质在真核生物的基因表达调控及胚胎发育过程中起重要作用,为表观遗传提供一个重要的信息整合平台.染

  19. Vernalization-mediated chromatin changes.

    Science.gov (United States)

    Zografos, Brett R; Sung, Sibum

    2012-07-01

    Proper flowering time is vital for reproductive fitness in flowering plants. In Arabidopsis, vernalization is mediated primarily through the repression of a MADS box transcription factor, FLOWERING LOCUS C (FLC). The induction of a plant homeodomain-containing protein, VERNALIZATION INSENSITIVE 3 (VIN3), by vernalizing cold is required for proper repression of FLC. One of a myriad of changes that occurs after VIN3 is induced is the establishment of FLC chromatin at a mitotically repressed state due to the enrichment of repressive histone modifications. VIN3 induction by cold is the earliest known event during the vernalization response and includes changes in histone modifications at its chromatin. Here, the current understanding of the vernalization-mediated chromatin changes in Arabidopsis is discussed, with a focus on the roles of shared chromatin-modifying machineries in regulating VIN3 and FLC gene family expression during the course of vernalization.

  20. Scattering form factors for self-assembled network junctions

    Science.gov (United States)

    Foster, T.; Safran, S. A.; Sottmann, T.; Strey, R.

    2007-11-01

    The equilibrium microstructures in microemulsions and other self-assembled systems show complex, connected shapes such as symmetric bicontinuous spongelike structures and asymmetric bicontinuous networks formed by cylinders interconnected at junctions. In microemulsions, these cylinder network microstructures may mediate the structural transition from a spherical or globular phase to the bicontinuous microstructure. To understand the structural and statistical properties of such cylinder network microstructures as measured by scattering experiments, models are needed to extract the real-space structure from the scattering data. In this paper, we calculate the scattering functions appropriate for cylinder network microstructures. We focus on such networks that contain a high density of network junctions that connect the cylindrical elements. In this limit, the network microstructure can be regarded as an assembly of randomly oriented, closed packed network junctions (i.e., the cylinder scattering contributions are neglected). Accordingly, the scattering spectrum of the network microstructure can be calculated as the product of the junction number density, the junction form factor, which describes the scattering from the surface of a single junction, and a structure factor, which describes the local correlations of different junctions due to junction interactions (including their excluded volume). This approach is applied to analyze the scattering data from a bicontinuous microemulsion with equal volumes of water and oil. In a second approach, we included the cylinder scattering contribution in the junction form factor by calculating the scattering intensity of Y junctions to which three rods with spherical cross section are attached. The respective theoretical predictions are compared with results of neutron scattering measurements on a water-in-oil microemulsion with a connected microstructure.

  1. Cloning and analysis of a Toxoplasma gondii histone acetyltransferase: a novel chromatin remodelling factor in Apicomplexan parasites.

    Science.gov (United States)

    Hettmann, C; Soldati, D

    1999-11-15

    The yeast transcriptional adaptor GCN5 functions as a histone acetyltransferase, directly linking chromatin modification to transcriptional regulation. Homologues of yeast GCN5 have been found in Tetrahymena, Drosophila, Arabidopsis and human, suggesting that this pathway of chromatin remodelling is evolutionarily conserved. Consistent with this view, we have identified the Toxoplasma gondii homologue, referred to here as TgGCN5. The gene codes for a protein of 474 amino acids with an estimated molecular mass of 53 kDa. The protein reveals two regions of close similarity with the GCN5 family members, the HAT domain and the bromodomain. Tg GCN5 occurs in a single copy in the T.gondii genome. The introduction of a second copy of TgGCN5 in T.gondii tachyzoites is toxic unless the HAT activity is disrupted by a single point mutation. Full TgGCN5 does not complement the growth defect in a yeast gcn5 (-)mutant strain, but a chimera comprising the T.gondii HAT domain fused to the remainder of yGCN5 does. These data show that T.gondii GNC5 is a histone acetyltransferase attesting to the significance of chromatin remodelling in gene regulation of Apicomplexa.

  2. Chromatin organization as a possible factor in the control of susceptibility to radiation-induced AML in mice

    Science.gov (United States)

    Maranon, David G.

    The studies described in this dissertation involve the use and comparison of two mouse strains: one sensitive (CBA/CaJ) and another resistant (C57BL/6J) to radiation-induced acute myeloid leukemia (AML). The purpose of these studies was to identify factors that may account for the large difference in the susceptibility of these strains to radiation-induced AML. The present study was initiated to determine whether the distances between breakpoint clusters on chromosome 2 are in closer proximity in the bone marrow cells of the CBA/CaJ mouse strain than in the C57BL/6J strain. Bacterial artificial chromosomes (BACs) were selected as markers of the central portion of the proximal and distal deletion breakpoint clusters as well as mdr on chromosome 2, where the preponderance of breaks occurs. Distance measurements were made by three dimensional fluorescent in situ hybridization (3DFISH) image analysis of hundreds of cells using Metamorph and ImageJ for data collection and Autoquant software for deconvolution and reconstruction of the three dimensional cell nuclei. Comparing bone marrow cells of CBA/CaJ and C57BL/6J mice, no differences were found between the proximity of the two regions represented for the selected markers compared in both murine strains. For the markers chosen the distribution of the distances showed similarities between the same cell types from both mouse strains; namely, fibroblasts, whole bone marrow (WBM), and hematopoietic stem cells (HSC). However, there was not found a change in the distance distributions toward the closer distances expected between the clusters in HSC and WBM compared with fibroblasts in both mouse strains. There was; however, a tissue-dependent distance distribution between the markers Specifically, the average distances of the clusters in fibroblasts (2.55 um for CBA/CaJ and 3.09 um for C57BL/6) were larger than the distance in blood cells (1.74 um in BM and 1.53 um in HSC for CBA/CaJ; and 1.79 um in BM and 1.77 um in HSC for

  3. Chromatin remodeling in cardiovascular development and physiology

    OpenAIRE

    Han, Pei; Hang, Calvin T.; Yang, Jin; Chang, Ching-Pin

    2011-01-01

    Chromatin regulation provides an important means of controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various tran...

  4. Advances in chromatin remodeling and human disease.

    Science.gov (United States)

    Cho, Kyoung Sang; Elizondo, Leah I; Boerkoel, Cornelius F

    2004-06-01

    Epigenetic factors alter phenotype without changing genotype. A primary molecular mechanism underlying epigenetics is the alteration of chromatin structure by covalent DNA modifications, covalent histone modifications, and nucleosome reorganization. Remodeling of chromatin structure regulates DNA methylation, replication, recombination, and repair as well as gene expression. As these functions would predict, dysfunction of the proteins that remodel chromatin causes an array of multi-system disorders and neoplasias. Insights from these diseases suggest that during embryonic and fetal life, environmental distortions of chromatin remodeling encode a 'molecular memory' that predispose the individual to diseases in adulthood.

  5. Chromatin analysis of occluded genes

    Science.gov (United States)

    Lee, Jae Hyun; Gaetz, Jedidiah; Bugarija, Branimir; Fernandes, Croydon J.; Snyder, Gregory E.; Bush, Eliot C.; Lahn, Bruce T.

    2009-01-01

    We recently described two opposing states of transcriptional competency. One is termed ‘competent’ whereby a gene is capable of responding to trans-acting transcription factors of the cell, such that it is active if appropriate transcriptional activators are present, though it can also be silent if activators are absent or repressors are present. The other is termed ‘occluded’ whereby a gene is silenced by cis-acting, chromatin-based mechanisms in a manner that blocks it from responding to trans-acting factors, such that it is silent even when activators are present in the cellular milieu. We proposed that gene occlusion is a mechanism by which differentiated cells stably maintain their phenotypic identities. Here, we describe chromatin analysis of occluded genes. We found that DNA methylation plays a causal role in maintaining occlusion for a subset of occluded genes. We further examined a variety of other chromatin marks typically associated with transcriptional silencing, including histone variants, covalent histone modifications and chromatin-associated proteins. Surprisingly, we found that although many of these marks are robustly linked to silent genes (which include both occluded genes and genes that are competent but silent), none is linked specifically to occluded genes. Although the observation does not rule out a possible causal role of these chromatin marks in occlusion, it does suggest that these marks might be secondary effect rather than primary cause of the silent state in many genes. PMID:19380460

  6. Chromatin remodeling in cardiovascular development and physiology.

    Science.gov (United States)

    Han, Pei; Hang, Calvin T; Yang, Jin; Chang, Ching-Pin

    2011-02-04

    Chromatin regulation provides an important means for controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various transcription factors in the fine regulation of gene expression, essential for all aspects of cardiovascular biology. Aberrant cardiac gene expression, triggered by a variety of pathological insults, can cause heart diseases in both animals and humans. The severity of cardiomyopathy and heart failure correlates strongly with abnormal cardiac gene expression. Therefore, controlling cardiac gene expression presents a promising approach to the treatment of human cardiomyopathy. This review focuses on the roles of ATP-dependent chromatin-remodeling factors and chromatin-modifying enzymes in the control of gene expression during cardiovascular development and disease.

  7. Spreading chromatin into chemical biology.

    Science.gov (United States)

    Allis, C David; Muir, Tom W

    2011-01-24

    Epigenetics, broadly defined as the inheritance of non-Mendelian phenotypic traits, can be more narrowly defined as heritable alterations in states of gene expression ("on" versus "off") that are not linked to changes in DNA sequence. Moreover, these alterations can persist in the absence of the signals that initiate them, thus suggesting some kind of "memory" to epigenetic forms of regulation. How, for example, during early female mammalian development, is one X chromosome selected to be kept in an active state, while the genetically identical sister X chromosome is "marked" to be inactive, even though they reside in the same nucleus, exposed to the same collection of shared trans-factors? Once X inactivation occurs, how are these contrasting chromatin states maintained and inherited faithfully through subsequent cell divisions? Chromatin states, whether active (euchromatic) or silent (heterochromatic) are established, maintained, and propagated with remarkable precision during normal development and differentiation. However, mistakes made in establishing and maintaining these chromatin states, often executed by a variety of chromatin-remodeling activities, can lead to mis-expression or mis-silencing of critical downstream gene targets with far-reaching implications for human biology and disease, notably cancer. Though chromatin biologists have identified many of the "inputs" that are important for controlling chromatin states, the detailed mechanisms by which these processes work remain largely opaque, in part due to the staggering complexity of the chromatin polymer, the physiologically relevant form of our genome. The primary objective of this article is to serve as a "call to arms" for chemists to contribute to the development of the precision tools needed to answer pressing molecular problems in this rapidly moving field.

  8. A Long-Distance Chromatin Affair

    NARCIS (Netherlands)

    Denker, Annette; de Laat, Wouter

    2015-01-01

    Changes in transcription factor binding sequences result in correlated changes in chromatin composition locally and at sites hundreds of kilobases away. New studies demonstrate that this concordance is mediated via spatial chromatin interactions that constitute regulatory modules of the human genome

  9. Chromatin is wonderful stuff.

    NARCIS (Netherlands)

    R. van Driel

    2007-01-01

    Chromatin molecules have properties that set them aside from all other biomacromolecules in the cell. (i) Chromosomes, which are single chromatin molecules, are the largest macromolecules in eukaryotic cells. (ii) Chromatin molecules carry the cell's genetic and epigenetic information and all contro

  10. Reshaping chromatin after DNA damage: the choreography of histone proteins.

    Science.gov (United States)

    Polo, Sophie E

    2015-02-13

    DNA damage signaling and repair machineries operate in a nuclear environment where DNA is wrapped around histone proteins and packaged into chromatin. Understanding how chromatin structure is restored together with the DNA sequence during DNA damage repair has been a topic of intense research. Indeed, chromatin integrity is central to cell functions and identity. However, chromatin shows remarkable plasticity in response to DNA damage. This review presents our current knowledge of chromatin dynamics in the mammalian cell nucleus in response to DNA double strand breaks and UV lesions. I provide an overview of the key players involved in regulating histone dynamics in damaged chromatin regions, focusing on histone chaperones and their concerted action with histone modifiers, chromatin remodelers and repair factors. I also discuss how these dynamics contribute to reshaping chromatin and, by altering the chromatin landscape, may affect the maintenance of epigenetic information.

  11. Assembling the archaeal ribosome: roles for translation-factor-related GTPases

    NARCIS (Netherlands)

    Blombach, F.; Brouns, S.J.J.; Oost, van der J.

    2011-01-01

    The assembly of ribosomal subunits from their individual components (rRNA and ribosomal proteins) requires the assistance of a multitude of factors in order to control and increase the efficiency of the assembly process. GTPases of the TRAFAC (translation-factor-related) class constitute a major typ

  12. A Structural Basis for BRD2/4-Mediated Host Chromatin Interaction and Oligomer Assembly of Kaposi Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus LANA Proteins

    Science.gov (United States)

    Krausze, Joern; Richter, Ulrike; Adler, Heiko; Fedorov, Roman; Pietrek, Marcel; Rückert, Jessica; Ritter, Christiane; Schulz, Thomas F.; Lührs, Thorsten

    2013-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) establishes a lifelong latent infection and causes several malignancies in humans. Murine herpesvirus 68 (MHV-68) is a related γ2-herpesvirus frequently used as a model to study the biology of γ-herpesviruses in vivo. The KSHV latency-associated nuclear antigen (kLANA) and the MHV68 mLANA (orf73) protein are required for latent viral replication and persistence. Latent episomal KSHV genomes and kLANA form nuclear microdomains, termed ‘LANA speckles’, which also contain cellular chromatin proteins, including BRD2 and BRD4, members of the BRD/BET family of chromatin modulators. We solved the X-ray crystal structure of the C-terminal DNA binding domains (CTD) of kLANA and MHV-68 mLANA. While these structures share the overall fold with the EBNA1 protein of Epstein-Barr virus, they differ substantially in their surface characteristics. Opposite to the DNA binding site, both kLANA and mLANA CTD contain a characteristic lysine-rich positively charged surface patch, which appears to be a unique feature of γ2-herpesviral LANA proteins. Importantly, kLANA and mLANA CTD dimers undergo higher order oligomerization. Using NMR spectroscopy we identified a specific binding site for the ET domains of BRD2/4 on kLANA. Functional studies employing multiple kLANA mutants indicate that the oligomerization of native kLANA CTD dimers, the characteristic basic patch and the ET binding site on the kLANA surface are required for the formation of kLANA ‘nuclear speckles’ and latent replication. Similarly, the basic patch on mLANA contributes to the establishment of MHV-68 latency in spleen cells in vivo. In summary, our data provide a structural basis for the formation of higher order LANA oligomers, which is required for nuclear speckle formation, latent replication and viral persistence. PMID:24146614

  13. Embryonic stem cell differentiation: a chromatin perspective.

    Science.gov (United States)

    Rasmussen, Theodore P

    2003-11-13

    Embryonic stem (ES) cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to cell-type. Therefore, a potent epigenetic system has evolved to coordinate and maintain tissue-specific patterns of gene expression. Recent advances show that mechanisms that govern epigenetic regulation of gene expression are rooted in the details of chromatin dynamics. As embryonic cells differentiate, certain genes are activated while others are silenced. These activation and silencing events are exquisitely coordinated with the allocation of cell lineages. Remodeling of the chromatin of developmentally-regulated genes occurs in conjunction with lineage commitment. Oocytes, early embryos, and ES cells contain potent chromatin-remodeling activities, an observation that suggests that chromatin dynamics may be especially important for early lineage decisions. Chromatin dynamics are also involved in the differentiation of adult stem cells, where the assembly of specialized chromatin upon tissue-specific genes has been studied in fine detail. The next few years will likely yield striking advances in the understanding of stem cell differentiation and developmental biology from the perspective of chromatin dynamics.

  14. Embryonic stem cell differentiation: A chromatin perspective

    Directory of Open Access Journals (Sweden)

    Rasmussen Theodore P

    2003-11-01

    Full Text Available Abstract Embryonic stem (ES cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to cell-type. Therefore, a potent epigenetic system has evolved to coordinate and maintain tissue-specific patterns of gene expression. Recent advances show that mechanisms that govern epigenetic regulation of gene expression are rooted in the details of chromatin dynamics. As embryonic cells differentiate, certain genes are activated while others are silenced. These activation and silencing events are exquisitely coordinated with the allocation of cell lineages. Remodeling of the chromatin of developmentally-regulated genes occurs in conjunction with lineage commitment. Oocytes, early embryos, and ES cells contain potent chromatin-remodeling activities, an observation that suggests that chromatin dynamics may be especially important for early lineage decisions. Chromatin dynamics are also involved in the differentiation of adult stem cells, where the assembly of specialized chromatin upon tissue-specific genes has been studied in fine detail. The next few years will likely yield striking advances in the understanding of stem cell differentiation and developmental biology from the perspective of chromatin dynamics.

  15. A Framework for Geometric Reasoning About Human Figures and Factors in Assembly Processes

    Energy Technology Data Exchange (ETDEWEB)

    Calton, Terri L.

    1999-07-20

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be perfectly valid operations, but in reality some operations cannot physically be carried out by a human. For example, the use of a ratchet may be reasoned feasible for an assembly operation; however, when a hand is placed on the tool the operation is no longer feasible, perhaps because of inaccessibility, insufficient strength or human interference with assembly components. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications, however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem, HFFMs must be integrated with automated assembly planning which allows engineers to quickly verify that assembly operations are possible and to see ways to make the designs even better. This paper presents a framework for integrating geometry-based assembly planning algorithms with commercially available human figure modeling software packages. Experimental results to selected applications along with lessons learned are presented.

  16. Chromatin Dynamics of the mouse β-globin locus

    NARCIS (Netherlands)

    M.P.C. van de Corput (Mariëtte); E. de Boer (Ernie); T.A. Knoch (Tobias); W.A. van Cappellen (Gert); M. Lesnussa (Michael); H.J.F.M.M. Eussen (Bert)

    2010-01-01

    textabstractLately it has become more clear that (subtle) changes in 3D organization of chromatin can either trigger transcription or silence genes or gene clusters. It has also been postulated that due to changes in chromatin structure, a change in chromatin accessibility of transcription factors

  17. Plant chromatin warms up in Madrid: meeting summary of the 3rd European Workshop on Plant Chromatin 2013, Madrid, Spain.

    Science.gov (United States)

    Jarillo, José A; Gaudin, Valérie; Hennig, Lars; Köhler, Claudia; Piñeiro, Manuel

    2014-04-01

    The 3rd European Workshop on Plant Chromatin (EWPC) was held on August 2013 in Madrid, Spain. A number of different topics on plant chromatin were presented during the meeting, including new factors mediating Polycomb Group protein function in plants, chromatin-mediated reprogramming in plant developmental transitions, the role of histone variants, and newly identified chromatin remodeling factors. The function of interactions between chromatin and transcription factors in the modulation of gene expression, the role of chromatin dynamics in the control of nuclear processes and the influence of environmental factors on chromatin organization were also reported. In this report, we highlight some of the new insights emerging in this growing area of research, presented at the 3rd EWPC.

  18. Elucidating biotic factors that influence assembly of fungal endophyte communities

    Science.gov (United States)

    Most plants harbor a diverse assemblage of non-mycorrhizal fungal endophytes. These fungi can directly influence the host plant, and can instigate trophic cascades that affect surrounding communities of herbivores, plants, and animals. Despite this, biotic mechanisms that influence assembly of funga...

  19. Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Saera Hihara

    2012-12-01

    Full Text Available Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (∼50 nm movement/30 ms, which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.

  20. Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication

    Directory of Open Access Journals (Sweden)

    Yasushi Shiomi

    2017-01-01

    Full Text Available During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA, acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.

  1. Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication.

    Science.gov (United States)

    Shiomi, Yasushi; Nishitani, Hideo

    2017-01-26

    During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA), acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC) complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.

  2. The Chromatin Scaffold Protein SAFB1 Renders Chromatin Permissive for DNA Damage Signaling

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Toledo Lazaro, Luis Ignacio; Gudjonsson, Thorkell

    2013-01-01

    the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly...

  3. Self-assembling peptide amphiphiles and related methods for growth factor delivery

    Science.gov (United States)

    Stupp, Samuel I.; Donners, Jack J. J. M.; Silva, Gabriel A.; Behanna, Heather A.; Anthony, Shawn G.

    2009-06-09

    Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.

  4. The yeast histone chaperone hif1p functions with RNA in nucleosome assembly.

    Directory of Open Access Journals (Sweden)

    Amy R Knapp

    Full Text Available Hif1p is an H3/H4-specific histone chaperone that associates with the nuclear form of the Hat1p/Hat2p complex (NuB4 complex in the yeast Saccharomyces cerevisiae. While not capable of depositing histones onto DNA on its own, Hif1p can act in conjunction with a yeast cytosolic extract to assemble nucleosomes onto a relaxed circular plasmid.To identify the factor(s that function with Hif1p to carry out chromatin assembly, multiple steps of column chromatography were carried out to fractionate the yeast cytosolic extract. Analysis of partially purified fractions indicated that Hif1p-dependent chromatin assembly activity resided in RNA rather than protein. Fractionation of isolated RNA indicated that the chromatin assembly activity did not simply purify with bulk RNA. In addition, the RNA-mediated chromatin assembly activity was blocked by mutations in the human homolog of Hif1p, sNASP, that prevent the association of this histone chaperone with histone H3 and H4 without altering its electrostatic properties.These results suggest that specific RNA species may function in concert with histone chaperones to assemble chromatin.

  5. Chromatin structure of repeating CTG/CAG and CGG/CCG sequences in human disease.

    Science.gov (United States)

    Wang, Yuh-Hwa

    2007-05-01

    In eukaryotic cells, chromatin structure organizes genomic DNA in a dynamic fashion, and results in regulation of many DNA metabolic processes. The CTG/CAG and CGG/CCG repeating sequences involved in several neuromuscular degenerative diseases display differential abilities for the binding of histone octamers. The effect of the repeating DNA on nucleosome assembly could be amplified as the number of repeats increases. Also, CpG methylation, and sequence interruptions within the triplet repeats exert an impact on the formation of nucleosomes along these repeating DNAs. The two most common triplet expansion human diseases, myotonic dystrophy 1 and fragile X syndrome, are caused by the expanded CTG/CAG and CGG/CCG repeats, respectively. In addition to the expanded repeats and CpG methylation, histone modifications, chromatin remodeling factors, and noncoding RNA have been shown to coordinate the chromatin structure at both myotonic dystrophy 1 and fragile X loci. Alterations in chromatin structure at these two loci can affect transcription of these disease-causing genes, leading to disease symptoms. These observations have brought a new appreciation that a full understanding of disease gene expression requires a knowledge of the structure of the chromatin domain within which the gene resides.

  6. Extensive Variation in Chromatin States Across Humans

    KAUST Repository

    Kasowski, M.

    2013-10-17

    The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.

  7. Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors

    Energy Technology Data Exchange (ETDEWEB)

    Shishkov, Lev; Gorodkov, Sergey; Mikailov, Eldar; Sukhino-Khomenko, Evgenia [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    Jacketless fuel assemblies change their form in the course of operation. Often they bow lengthwise. Primarily, these fuel assembly (FA) bows threaten to reduce the control rods' fall rate, but at the same time they change (e.g. increase) the amount of moderator in inter-assembly gaps, thus producing additional power surges. Gap sizes vary randomly and their impact is accounted for with the help of engineering margin factors. For VVER-1000, this account of engineering margin factors increases the fuel component of electricity generation cost by 3 - 5 %, and a half of this increase is due to inter- assembly gap variations. This paper discusses the technique used to account for the impact produced by these gaps on fuel rod power; gives numerical values of sensitivity factors for power variations vs. gap sizes depending on the computational model assumed; and discusses the interference of gap effects and the account of power and coolant temperature feedbacks.

  8. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens.

    Science.gov (United States)

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R; Vaishampayan, Parag A

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella

  9. Quantification of chromatin condensation level by image processing.

    Science.gov (United States)

    Irianto, Jerome; Lee, David A; Knight, Martin M

    2014-03-01

    The level of chromatin condensation is related to the silencing/activation of chromosomal territories and therefore impacts on gene expression. Chromatin condensation changes during cell cycle, progression and differentiation, and is influenced by various physicochemical and epigenetic factors. This study describes a validated experimental technique to quantify chromatin condensation. A novel image processing procedure is developed using Sobel edge detection to quantify the level of chromatin condensation from nuclei images taken by confocal microscopy. The algorithm was developed in MATLAB and used to quantify different levels of chromatin condensation in chondrocyte nuclei achieved through alteration in osmotic pressure. The resulting chromatin condensation parameter (CCP) is in good agreement with independent multi-observer qualitative visual assessment. This image processing technique thereby provides a validated unbiased parameter for rapid and highly reproducible quantification of the level of chromatin condensation.

  10. Cotranscriptional Chromatin Remodeling by Small RNA Species: An HTLV-1 Perspective

    Directory of Open Access Journals (Sweden)

    Nishat Aliya

    2012-01-01

    Full Text Available Cell type specificity of human T cell leukemia virus 1 has been proposed as a possible reason for differential viral outcome in primary target cells versus secondary. Through chromatin remodeling, the HTLV-1 transactivator protein Tax interacts with cellular factors at the chromosomally integrated viral promoter to activate downstream genes and control viral transcription. RNA interference is the host innate defense mechanism mediated by short RNA species (siRNA or miRNA that regulate gene expression. There exists a close collaborative functioning of cellular transcription factors with miRNA in order to regulate the expression of a number of eukaryotic genes including those involved in suppression of cell growth, induction of apoptosis, as well as repressing viral replication and propagation. In addition, it has been suggested that retroviral latency is influenced by chromatin alterations brought about by miRNA. Since Tax requires the assembly of transcriptional cofactors to carry out viral gene expression, there might be a close association between miRNA influencing chromatin alterations and Tax-mediated LTR activation. Herein we explore the possible interplay between HTLV-1 infection and miRNA pathways resulting in chromatin reorganization as one of the mechanisms determining HTLV-1 cell specificity and viral fate in different cell types.

  11. FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1.

    Directory of Open Access Journals (Sweden)

    Macarena Morillo-Huesca

    2010-05-01

    Full Text Available The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3 in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA-damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication.

  12. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    Science.gov (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  13. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  14. Assembling the archaeal ribosome: roles for translation-factor-related GTPases.

    Science.gov (United States)

    Blombach, Fabian; Brouns, Stan J J; van der Oost, John

    2011-01-01

    The assembly of ribosomal subunits from their individual components (rRNA and ribosomal proteins) requires the assistance of a multitude of factors in order to control and increase the efficiency of the assembly process. GTPases of the TRAFAC (translation-factor-related) class constitute a major type of ribosome-assembly factor in Eukaryota and Bacteria. They are thought to aid the stepwise assembly of ribosomal subunits through a 'molecular switch' mechanism that involves conformational changes in response to GTP hydrolysis. Most conserved TRAFAC GTPases are involved in ribosome assembly or other translation-associated processes. They typically interact with ribosomal subunits, but in many cases, the exact role that these GTPases play remains unclear. Previous studies almost exclusively focused on the systems of Bacteria and Eukaryota. Archaea possess several conserved TRAFAC GTPases as well, with some GTPase families being present only in the archaeo-eukaryotic lineage. In the present paper, we review the occurrence of TRAFAC GTPases with translation-associated functions in Archaea.

  15. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Brdlik, Cathleen M; Niu, Wei; Snyder, Michael

    2014-01-01

    The global identification of transcription factor (TF) binding sites is a critical step in the elucidation of the functional elements of the genome. Several methods have been developed that map TF binding in human cells, yeast, and other model organisms. These methods make use of chromatin immunoprecipitation, or ChIP, and take advantage of the fact that formaldehyde fixation of living cells can be used to cross-link DNA sequences to the TFs that bind them in vivo. In ChIP, the cross-linked TF-DNA complexes are sheared by sonication, size fractionated, and incubated with antibody specific to the TF of interest to generate a library of TF-bound DNA sequences. ChIP-chip was the first technology developed to globally identify TF-bound DNA sequences and involves subsequent hybridization of the ChIP DNA to oligonucleotide microarrays. However, ChIP-chip proved to be costly, labor-intensive, and limited by the fixed number of probes available on the microarray chip. ChIP-Seq combines ChIP with massively parallel high-throughput sequencing (see Explanatory Chapter: Next Generation Sequencing) and has demonstrated vast improvement over ChIP-chip with respect to time and cost, signal-to-noise ratio, and resolution. In particular, multiplex sequencing can be used to achieve a higher throughput in ChIP-Seq analyses involving organisms with genomes of lower complexity than that of human (Lefrançois et al., 2009) and thereby reduce the cost and amount of time needed for each result. The multiplex ChIP-Seq method described in this section has been developed for Caenorhabditis elegans, but is easily adaptable for other organisms.

  16. Assaying chromatin structure and remodeling by restriction enzyme accessibility

    OpenAIRE

    Trotter, Kevin W.; Archer, Trevor K.

    2012-01-01

    The packaging of eukaryotic DNA into nucleosomes, the fundamental unit of chromatin, creates a barrier to nuclear processes, such as transcription, DNA replication, recombination, and repair(1). This obstructive nature of chromatin can be overcome by the enzymatic activity of chromatin remodeling complexes which creates a more favorable environment for the association of essential factors and regulators to sequences within target genes. Here we describe a detailed approach for analyzing chrom...

  17. Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization.

    Science.gov (United States)

    Emelyanov, Alexander V; Rabbani, Joshua; Mehta, Monika; Vershilova, Elena; Keogh, Michael C; Fyodorov, Dmitry V

    2014-09-15

    Nuclear DNA in the male gamete of sexually reproducing animals is organized as sperm chromatin compacted primarily by sperm-specific protamines. Fertilization leads to sperm chromatin remodeling, during which protamines are expelled and replaced by histones. Despite our increased understanding of the factors that mediate nucleosome assembly in the nascent male pronucleus, the machinery for protamine removal remains largely unknown. Here we identify four Drosophila protamine chaperones that mediate the dissociation of protamine-DNA complexes: NAP-1, NLP, and nucleophosmin are previously characterized histone chaperones, and TAP/p32 has no known function in chromatin metabolism. We show that TAP/p32 is required for the removal of Drosophila protamine B in vitro, whereas NAP-1, NLP, and Nph share roles in the removal of protamine A. Embryos from P32-null females show defective formation of the male pronucleus in vivo. TAP/p32, similar to NAP-1, NLP, and Nph, facilitates nucleosome assembly in vitro and is therefore a histone chaperone. Furthermore, mutants of P32, Nlp, and Nph exhibit synthetic-lethal genetic interactions. In summary, we identified factors mediating protamine removal from DNA and reconstituted in a defined system the process of sperm chromatin remodeling that exchanges protamines for histones to form the nucleosome-based chromatin characteristic of somatic cells.

  18. Functional metagenomics of spacecraft assembly cleanrooms: Presence of virulence factors associated with human pathogens.

    Directory of Open Access Journals (Sweden)

    Mina Bashir

    2016-09-01

    Full Text Available Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics’ Multiple Testing Facility during DAWN, the Kennedy Space Center’s Payload Hazardous Servicing Facility (KSC-PHSF during Phoenix, and the Jet Propulsion Laboratory’s Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii

  19. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens

    Science.gov (United States)

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R.; Vaishampayan, Parag A.

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella

  20. Binding of the Covalent Flavin Assembly Factor to the Flavoprotein Subunit of Complex II.

    Science.gov (United States)

    Maklashina, Elena; Rajagukguk, Sany; Starbird, Chrystal A; McDonald, W Hayes; Koganitsky, Anna; Eisenbach, Michael; Iverson, Tina M; Cecchini, Gary

    2016-02-05

    Escherichia coli harbors two highly conserved homologs of the essential mitochondrial respiratory complex II (succinate:ubiquinone oxidoreductase). Aerobically the bacterium synthesizes succinate:quinone reductase as part of its respiratory chain, whereas under microaerophilic conditions, the quinol:fumarate reductase can be utilized. All complex II enzymes harbor a covalently bound FAD co-factor that is essential for their ability to oxidize succinate. In eukaryotes and many bacteria, assembly of the covalent flavin linkage is facilitated by a small protein assembly factor, termed SdhE in E. coli. How SdhE assists with formation of the covalent flavin bond and how it binds the flavoprotein subunit of complex II remain unknown. Using photo-cross-linking, we report the interaction site between the flavoprotein of complex II and the SdhE assembly factor. These data indicate that SdhE binds to the flavoprotein between two independently folded domains and that this binding mode likely influences the interdomain orientation. In so doing, SdhE likely orients amino acid residues near the dicarboxylate and FAD binding site, which facilitates formation of the covalent flavin linkage. These studies identify how the conserved SdhE assembly factor and its homologs participate in complex II maturation.

  1. Integration of prolactin and glucocorticoid signaling at the beta-casein promoter and enhancer by ordered recruitment of specific transcription factors and chromatin modifiers

    Science.gov (United States)

    Lactogenic hormone regulation of beta-casein gene expression in mammary epithelial cells provides an excellent system in which to perform kinetic studies of chromatin remodeling and transcriptional activation. Using HC11 cells as a model, we have investigated the effects of prolactin and glucocortic...

  2. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization

    NARCIS (Netherlands)

    Denholtz, M.; Bonora, G.; Chronis, C.; Splinter, E.; de Laat, W.; Ernst, J.; Pellegrini, M.; Plath, K.

    2013-01-01

    The relationship between 3D organization of the genome and gene-regulatory networks is poorly understood. Here, we examined long-range chromatin interactions genome-wide in mouse embryonic stem cells (ESCs), iPSCs, and fibroblasts and uncovered a pluripotency-specific genome organization that is gra

  3. A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Yang Lu

    Full Text Available Candida albicans is an important opportunistic fungal pathogen of immunocompromised individuals. One critical virulence attribute is its morphogenetic plasticity. Hyphal development requires two temporally linked changes in promoter chromatin, which is sequentially regulated by temporarily clearing the transcription inhibitor Nrg1 upon activation of the cAMP/PKA pathway and promoter recruitment of the histone deacetylase Hda1 under reduced Tor1 signaling. Molecular mechanisms for the temporal connection and the link to Tor1 signaling are not clear. Here, through a forward genetic screen, we report the identification of the GATA family transcription factor Brg1 as the factor that recruits Hda1 to promoters of hypha-specific genes during hyphal elongation. BRG1 expression requires both the removal of Nrg1 and a sub-growth inhibitory level of rapamycin; therefore, it is a sensitive readout of Tor1 signaling. Interestingly, promoters of hypha-specific genes are not accessible to Brg1 in yeast cells. Furthermore, ectopic expression of Brg1 cannot induce hyphae, but can sustain hyphal development. Nucleosome mapping of a hypha-specific promoter shows that Nrg1 binding sites are in nucleosome free regions in yeast cells, whereas Brg1 binding sites are occupied by nucleosomes. Nucleosome disassembly during hyphal initiation exposes the binding sites for both regulators. During hyphal elongation, Brg1-mediated Hda1 recruitment causes nucleosome repositioning and occlusion of Nrg1 binding sites. We suggest that nucleosome repositioning is the underlying mechanism for the yeast-hyphal transition. The hypha-specific regulator Ume6 is a key downstream target of Brg1 and functions after Brg1 as a built-in positive feedback regulator of the hyphal transcriptional program to sustain hyphal development. With the levels of Nrg1 and Brg1 dynamically and sensitively controlled by the two major cellular growth pathways, temporal changes in nucleosome positioning

  4. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information.

    Science.gov (United States)

    Corpet, Armelle; Almouzni, Geneviève

    2009-01-01

    Understanding the basic mechanisms underlying chromatin dynamics during DNA replication in eukaryotic cells is of fundamental importance. Beyond DNA compaction, chromatin organization represents a means to regulate genome function. Thus, the inheritance and maintenance of the DNA sequence, along with its organization into chromatin, is central for eukaryotic life. To orchestrate DNA replication in the context of chromatin is a challenge, both in terms of accessibility to the compact structures and maintenance of chromatin organization. To meet the challenge of maintenance, cells have evolved efficient nucleosome dynamics involving assembly pathways and chromatin maturation mechanisms that restore chromatin organization in the wake of DNA replication. In this review, we describe our current knowledge concerning how these pathways operate at the nucleosomal level and highlight the key players, such as histone chaperones, chromatin remodelers or modifiers, involved in the process of chromatin duplication. Major advances have been made recently concerning de novo nucleosome assembly and our understanding of its coordination with recycling of parental histones is progressing. Insights into the transmission of chromatin-based information during replication have important implications in the field of epigenetics to fully comprehend how the epigenetic landscape might, or at times might not, be stably maintained in the face of dramatic changes in chromatin structure.

  5. Chromatin dynamics in plants

    NARCIS (Netherlands)

    Fransz, P.F.; Jong, de J.H.

    2002-01-01

    Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large netwo

  6. Effects of fast neutrons on chromatin: dependence on chromatin structure

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Dept. of Molecular Genetics, V. Babes National Inst., Bd. Timisoara, Bucharest (Romania); Constantinescu, B. [Dept. of Cyclotron, H. Hulubei National Inst., Bucharest (Romania); Gazdaru, D. [Dept. of Biophysics, Physics Faculty, Univ. of Bucharest (Romania)

    2002-07-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  7. NET23/STING promotes chromatin compaction from the nuclear envelope.

    Directory of Open Access Journals (Sweden)

    Poonam Malik

    Full Text Available Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173, strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture.

  8. CHD chromatin remodelers and the transcription cycle.

    Science.gov (United States)

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  9. Chromatin Regulators in Pancreas Development and Diabetes.

    Science.gov (United States)

    Campbell, Stephanie A; Hoffman, Brad G

    2016-03-01

    The chromatin landscape of a cell is dynamic and can be altered by chromatin regulators that control nucleosome placement and DNA or histone modifications. Together with transcription factors, these complexes help dictate the transcriptional output of a cell and, thus, balance cell proliferation and differentiation while restricting tissue-specific gene expression. In this review, we describe current research on chromatin regulators and their roles in pancreas development and the maintenance of mature β cell function, which, once elucidated, will help us better understand how β cell differentiation occurs and is maintained. These studies have so far implicated proteins from several complexes that regulate DNA methylation, nucleosome remodeling, and histone acetylation and methylation that could become promising targets for diabetes therapy and stem cell differentiation.

  10. Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer

    OpenAIRE

    Weissman, Bernard; Knudsen, Karen E

    2009-01-01

    There is increasing evidence that alterations in chromatin remodeling play a significant role in human disease. The SWI/SNF chromatin remodeling complex family mobilizes nucleosomes and functions as a master regulator of gene expression and chromatin dynamics whose functional specificity is driven by combinatorial assembly of a central ATPase and association with 10-12 unique subunits. While the biochemical consequence of SWI/SNF in model systems has been extensively reviewed, the present art...

  11. Assembly of transcription factor IIB at a promoter in vivo requires contact with RNA polymerase II

    OpenAIRE

    Elsby, Laura M.; O'Donnell, Amanda J M; Green, Laura M.; Sharrocks, Andrew D.; Roberts, Stefan G. E.

    2006-01-01

    The general transcription factor TFIIB has a central role in the assembly of the preinitiation complex at the promoter, providing a platform for the entry of RNA polymerase II/TFIIF. We used an RNA interference (RNAi)-based system in which TFIIB expression is ablated in vivo and replaced with a TFIIB derivative that contains a silent mutation and is refractory to the RNAi. Using this approach, we found that transcriptionally defective TFIIB amino-terminal mutants showed distinct effects on th...

  12. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  13. Global chromatin fibre compaction in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Charlotte [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Hayward, Richard L. [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Gilbert, Nick, E-mail: Nick.Gilbert@ed.ac.uk [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. Black-Right-Pointing-Pointer DNA repair foci are found in soluble chromatin. Black-Right-Pointing-Pointer Biophysical analysis reveals global chromatin fibre compaction after DNA damage. Black-Right-Pointing-Pointer DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation ({gamma}H2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and {gamma}H2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by

  14. Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Galli, Elisa; Møller-Jensen, Jakob;

    2008-01-01

    Formation of the Z ring is the first known event in bacterial cell division. However, it is not yet known how the assembly and contraction of the Z ring are regulated. Here, we identify a novel cell division factor ZapB in Escherichia coli that simultaneously stimulates Z ring assembly and cell...

  15. Nucleosome positioning and composition modulate in silico chromatin flexibility.

    Science.gov (United States)

    Clauvelin, N; Lo, P; Kulaeva, O I; Nizovtseva, E V; Diaz-Montes, J; Zola, J; Parashar, M; Studitsky, V M; Olson, W K

    2015-02-18

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and

  16. COX assembly factor ccdc56 regulates mitochondrial morphology by affecting mitochondrial recruitment of Drp1.

    Science.gov (United States)

    Ban-Ishihara, Reiko; Tomohiro-Takamiya, Shiho; Tani, Motohiro; Baudier, Jacques; Ishihara, Naotada; Kuge, Osamu

    2015-10-07

    Mitochondria are dynamic organelles that alter their morphology in response to cellular signaling and differentiation through balanced fusion and fission. In this study, we found that the mitochondrial inner membrane ATPase ATAD3A interacted with ccdc56/MITRAC12/COA3, a subunit of the cytochrome oxidase (COX)-assembly complex. Overproduction of ccdc56 in HeLa cells resulted in fragmented mitochondrial morphology, while mitochondria were highly elongated in ccdc56-repressed cells by the defective recruitment of the fission factor Drp1. We also found that mild and chronic inhibition of COX led to mitochondrial elongation, as seen in ccdc56-repressed cells. These results indicate that ccdc56 positively regulates mitochondrial fission via regulation of COX activity and the mitochondrial recruitment of Drp1, and thus, suggest a novel relationship between COX assembly and mitochondrial morphology.

  17. RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors

    DEFF Research Database (Denmark)

    Thompson, Nancy; Gésina, Emilie; Scheinert, Peter;

    2012-01-01

    Pancreas development is initiated by the specification and expansion of a small group of endodermal cells. Several transcription factors are crucial for progenitor maintenance and expansion, but their interactions and the downstream targets mediating their activity are poorly understood. Among...... those factors, PTF1a, a basic helix-loop-helix (bHLH) transcription factor which controls pancreas exocrine cell differentiation, maintenance, and functionality, is also needed for the early specification of pancreas progenitors. We used RNA profiling and chromatin immunoprecipitation (ChIP) sequencing...... to identify a set of targets in pancreas progenitors. We demonstrate that Mnx1, a gene that is absolutely required in pancreas progenitors, is a major direct target of PTF1a and is regulated by a distant enhancer element. Pdx1, Nkx6.1, and Onecut1 are also direct PTF1a targets whose expression is promoted...

  18. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers.

    Science.gov (United States)

    Hayami, Shinya; Kelly, John D; Cho, Hyun-Soo; Yoshimatsu, Masanori; Unoki, Motoko; Tsunoda, Tatsuhiko; Field, Helen I; Neal, David E; Yamaue, Hiroki; Ponder, Bruce A J; Nakamura, Yusuke; Hamamoto, Ryuji

    2011-02-01

    A number of histone demethylases have been identified and biochemically characterized, but the pathological roles of their dysfunction in human disease like cancer have not been well understood. Here, we demonstrate important roles of lysine-specific demethylase 1 (LSD1) in human carcinogenesis. Expression levels of LSD1 are significantly elevated in human bladder carcinomas compared with nonneoplastic bladder tissues (p human embryonic kidney fibroblast cells. Expression profile analysis showed that LSD1 could affect the expression of genes involved in various chromatin-modifying pathways such as chromatin remodeling at centromere, centromeric heterochromatin formation and chromatin assembly, indicating its essential roles in carcinogenesis through chromatin modification.

  19. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    Science.gov (United States)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  20. Fabrication of a microresonator-fiber assembly maintaining a high-quality factor by CO2 laser welding

    CERN Document Server

    Fang, Zhiwei; Wang, Min; Liu, Zhengming; Yao, Jinping; Qiao, Lingling; Cheng, Ya

    2015-01-01

    We demonstrate fabrication of a microtoroid resonator of a high-quality (high-Q) factor using femtosecond laser three-dimensional (3D) micromachining. A fiber taper is reliably assembled to the microtoroid using CO2 laser welding. Specifically, we achieve a high Q-factor of 2.12*10^6 in the microresonator-fiber assembly by optimizing the contact position between the fiber taper and the microtoroid.

  1. Self-assembly and DNA binding of the blocking factor in x chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Mario Nicodemi

    2007-11-01

    Full Text Available X chromosome inactivation (XCI is the phenomenon occurring in female mammals whereby dosage compensation of X-linked genes is obtained by transcriptional silencing of one of their two X chromosomes, randomly chosen during early embryo development. The earliest steps of random X-inactivation, involving counting of the X chromosomes and choice of the active and inactive X, are still not understood. To explain "counting and choice," the longstanding hypothesis is that a molecular complex, a "blocking factor" (BF, exists. The BF is present in a single copy and can randomly bind to just one X per cell which is protected from inactivation, as the second X is inactivated by default. In such a picture, the missing crucial step is to explain how the molecular complex is self-assembled, why only one is formed, and how it binds only one X. We answer these questions within the framework of a schematic Statistical Physics model, investigated by Monte Carlo computer simulations. We show that a single complex is assembled as a result of a thermodynamic process relying on a phase transition occurring in the system which spontaneously breaks the symmetry between the X's. We discuss, then, the BF interaction with X chromosomes. The thermodynamics of the mechanism that directs the two chromosomes to opposite fates could be, thus, clarified. The insights on the self-assembling and X binding properties of the BF are used to derive a quantitative scenario of biological implications describing current experimental evidences on "counting and choice."

  2. Chromatin Flavors: Chromatin composition and domain organization in Drosophila melanogaster

    NARCIS (Netherlands)

    J.G. van Bemmel (Joke)

    2012-01-01

    textabstractChromatin was originally identified by W. Flemming in 1882 as not much more than the stainable substance of the cell nucleus. Flemming named this substance according to the Greek word “chroma”, meaning color. In 1911 chromatin was characterized as proteins, named histones, that were atta

  3. Force and Influencing Factors Analysis for Bottomhole Assembly with Two Stabilizers and One Bend

    Directory of Open Access Journals (Sweden)

    Wanlong Huang

    2013-10-01

    Full Text Available The aim of this study is to research the force and influencing factors for bottomhole assembly with two stabilizers and one bend. Borehole trajectory control is one of the basic problems in drilling engineering and it is generally paid attention at home and abroad. Experts and scholars at home and abroad have done a lot of research in the drill string mechanics (especially the force and deformation analysis of BHA, interaction of bit and formation, borehole trajectory prediction method. They have obtained many achievements in scientific research, so as to make the hole trajectory control theory and technology constantly develop.

  4. Involvement of chromatin and histone acetylation in theregulation of HIV-LTR by thyroid hormone receptor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology.Numerous host factors have been shown to participate in the regulation of the LTR promoter.Among them is the thyroid hormone (T3) receptor (TR).TR has been shown to bind to the critical region of the promoter that contain the NFκB and Sp1 binding sites.Interestingly,earlier transient transfection studies in tissue culture cells have yielded contradicting conclusions on the role of TR in LTR regulation,likely due to the use of different cell types and/or lack of proper chromatin organization.Here,using the frog oocyte as a model system that allows replication-coupled chromatin assembly,mimicking that in somatic cells,we demonstrate that unliganded heterodimers of TR and RXR (9-cis retinoic acid receptor) repress LTR while the addition of T3 relieves the repression and further activates the promoter.More importantly,we show that chromatin and unliganded TR/RXR synergize to repress the promoter in a histone deacetylase-dependent manner.

  5. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jégu, Teddy

    2015-10-12

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  6. Persistent Chromatin Modifications Induced by High Fat Diet.

    Science.gov (United States)

    Leung, Amy; Trac, Candi; Du, Juan; Natarajan, Rama; Schones, Dustin E

    2016-05-13

    Obesity is a highly heritable complex disease that results from the interaction of multiple genetic and environmental factors. Formerly obese individuals are susceptible to metabolic disorders later in life, even after lifestyle changes are made to mitigate the obese state. This is reminiscent of the metabolic memory phenomenon originally observed for persistent complications in diabetic patients, despite subsequent glycemic control. Epigenetic modifications represent a potential mediator of this observed memory. We previously demonstrated that a high fat diet leads to changes in chromatin accessibility in the mouse liver. The regions of greatest chromatin changes in accessibility are largely strain-dependent, indicating a genetic component in diet-induced chromatin alterations. We have now examined the persistence of diet-induced chromatin accessibility changes upon diet reversal in two strains of mice. We find that a substantial fraction of loci that undergo chromatin accessibility changes with a high fat diet remains in the remodeled state after diet reversal in C57BL/6J mice. In contrast, the vast majority of diet-induced chromatin accessibility changes in A/J mice are transient. Our data also indicate that the persistent chromatin accessibility changes observed in C57BL/6J mice are associated with specific transcription factors and histone post-translational modifications. The persistent loci identified here are likely to be contributing to the overall phenotype and are attractive targets for therapeutic intervention.

  7. Chromatinization of the KSHV Genome During the KSHV Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Uppal, Timsy [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Jha, Hem C. [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States); Verma, Subhash C. [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Robertson, Erle S., E-mail: erle@mail.med.upenn.edu [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)

    2015-01-14

    Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.

  8. Restoring chromatin after replication: How new and old histone marks come together

    DEFF Research Database (Denmark)

    Jasencakova, Zusana; Groth, Anja

    2010-01-01

    replication and chromatin assembly processes in time and space. Dynamic recycling and de novo deposition of histones are fundamental for chromatin restoration. Histone post-translational modifications (PTMs) are thought to have a causal role in establishing distinct chromatin structures. Here we discuss PTMs......In dividing cells genome stability and function rely on faithful transmission of both DNA sequence and its organization into chromatin. In the course of DNA replication chromatin undergoes transient genome-wide disruption followed by restoration on new DNA. This involves tight coordination of DNA...... present on new and parental histones and how they influence genome stability and restoration of epigenetically defined domains. Newly deposited histones must change their signature in the process of chromatin restoration, this may occur in a step-wise fashion involving replication-coupled processes...

  9. Epigenetics & chromatin: Interactions and processes

    NARCIS (Netherlands)

    S. Henikoff (Steven); F.G. Grosveld (Frank)

    2013-01-01

    textabstractOn 11 to 13 March 2013, BioMed Central will be hosting its inaugural conference, Epigenetics & Chromatin: Interactions and Processes, at Harvard Medical School, Cambridge, MA, USA. Epigenetics & Chromatin has now launched a special article series based on the general themes of the confer

  10. Chromatin Structure of Epstein-Barr Virus Latent Episomes.

    Science.gov (United States)

    Lieberman, Paul M

    2015-01-01

    EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.

  11. Determinants of Sir2-Mediated, Silent Chromatin Cohesion.

    Science.gov (United States)

    Chen, Yu-Fan; Chou, Chia-Ching; Gartenberg, Marc R

    2016-08-01

    Cohesin associates with distinct sites on chromosomes to mediate sister chromatid cohesion. Single cohesin complexes are thought to bind by encircling both sister chromatids in a topological embrace. Transcriptionally repressed chromosomal domains in the yeast Saccharomyces cerevisiae represent specialized sites of cohesion where cohesin binds silent chromatin in a Sir2-dependent fashion. In this study, we investigated the molecular basis for Sir2-mediated cohesion. We identified a cluster of charged surface residues of Sir2, collectively termed the EKDK motif, that are required for cohesin function. In addition, we demonstrated that Esc8, a Sir2-interacting factor, is also required for silent chromatin cohesion. Esc8 was previously shown to associate with Isw1, the enzymatic core of ISW1 chromatin remodelers, to form a variant of the ISW1a chromatin remodeling complex. When ESC8 was deleted or the EKDK motif was mutated, cohesin binding at silenced chromatin domains persisted but cohesion of the domains was abolished. The data are not consistent with cohesin embracing both sister chromatids within silent chromatin domains. Transcriptional silencing remains largely intact in strains lacking ESC8 or bearing EKDK mutations, indicating that silencing and cohesion are separable functions of Sir2 and silent chromatin.

  12. Molecular assembly of the ternary granulocyte-macrophage colony-stimulating factor receptor complex.

    Science.gov (United States)

    McClure, Barbara J; Hercus, Timothy R; Cambareri, Bronwyn A; Woodcock, Joanna M; Bagley, Christopher J; Howlett, Geoff J; Lopez, Angel F

    2003-02-15

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine that stimulates the production and functional activity of granulocytes and macrophages, properties that have encouraged its clinical use in bone marrow transplantation and in certain infectious diseases. Despite the importance of GM-CSF in regulating myeloid cell numbers and function, little is known about the exact composition and mechanism of assembly of the GM-CSF receptor complex. We have now produced soluble forms of the GM-CSF receptor alpha chain (sGMRalpha) and beta chain (sbetac) and utilized GM-CSF, the GM-CSF antagonist E21R (Glu21Arg), and the betac-blocking monoclonal antibody BION-1 to define the molecular assembly of the GM-CSF receptor complex. We found that GM-CSF and E21R were able to form low-affinity, binary complexes with sGMRalpha, each having a stoichiometry of 1:1. Importantly, GM-CSF but not E21R formed a ternary complex with sGMRalpha and sbetac, and this complex could be disrupted by E21R. Significantly, size-exclusion chromatography, analytical ultracentrifugation, and radioactive tracer experiments indicated that the ternary complex is composed of one sbetac dimer with a single molecule each of sGMRalpha and of GM-CSF. In addition, a hitherto unrecognized direct interaction between betac and GM-CSF was detected that was absent with E21R and was abolished by BION-1. These results demonstrate a novel mechanism of cytokine receptor assembly likely to apply also to interleukin-3 (IL-3) and IL-5 and have implications for our molecular understanding and potential manipulation of GM-CSF activation of its receptor.

  13. Structure of chromatin in spermatozoa.

    Science.gov (United States)

    Björndahl, Lars; Kvist, Ulrik

    2014-01-01

    The specialized structure of the sperm chromatin has a dual function - first to protect the DNA from damage during storage and transport to the oocyte, and then to enable a rapid and complete unpacking of the undamaged paternal genome in the ooplasm. It is evident that zinc has a pivotal role in maintaining the structural stability and in enabling a rapid decondensation at the appropriate time. It is important for the sperm chromatin structure that the spermatozoa are ejaculated together with the zinc-rich prostatic secretion. Early exposure to zinc-binding seminal vesicular fluid can deplete the sperm chromatin of zinc and most likely induce surplus formation of disulfide bridges, likely to cause incomplete and delayed decondensation of the sperm chromatin in the oocyte. A premature decrease in sperm chromatin structure stability is likely to increase the risk for damage to the DNA due to increased access to the genome for DNA damaging compounds. The status of the sperm chromatin structure can vary in vitro depending on the exposure to zinc-depleting conditions when spermatozoa are stored in semen after ejaculation. When sperm DNA damage tests are evaluated and validated, it is therefore essential to also take into account the dynamics of zinc-dependent and zinc-independent sperm chromatin stability.

  14. Upper extremities musculoskeletal disorders: Prevalence and associated ergonomic factors in an electronic assembly factory

    Directory of Open Access Journals (Sweden)

    Somthus Pullopdissakul

    2013-10-01

    Full Text Available Objectives:To determine the magnitude, distribution and associated ergonomic factors of upper extremities musculoskeletal disorders (UEMSD among workers of electronic assembly in Thailand. Material and Methods: This was a cross-sectional study. 591 of 853 workers in an electronic and electrical appliance assembly factory in Bangkok, Thailand, participated in this study. A self-administered questionnaire consisting of demographic data and ergonomic factors was collected from October 2010 to January 2011. Clinical examination of each worker was performed by an occupational physician. The criteria for diagnosis of UEMSD came as a result of a consensus reached by a group of orthopedists. The associated factors were analyzed using a multiple logistic regression. Results: The point prevalence of clinically diagnosed UEMSD was as follows: radial styloid tenosynovitis - 13.03% (95% CI: 10.31-15.75, trigger finger - 9.48% (95% CI: 7.11-11.84, carpal tunnel syndrome - 8.12% (95% CI: 5.91-10.33, lateral epicondylitis - 3.38% (95% CI: 1.92-4.85, and medial epicondylitis - 1.69% (95% CI: 0.65-2.73, respectively. The adjusted odds ratio with statistical significance associated with UEMSD was as follows: high force of wrist - 1.78 (95% CI: 1.06-2.99, awkward posture of wrist - 2.37 (95% CI: 1.28-4.37 and contact stress at wrists - 1.75 (95% CI: 1.02-3.00 to develop radial styloid tenosynovitis. For trigger finger, the ratios were awkward posture of fingers - 2.09 (95% CI: 1.12-3.90 and contact stress on finger - 1.86 (95% CI: 1.04-3.34. For medial epicondylitis, it was an awkward posture of using elbows - 3.14 (95% CI: 1.10-8.95. However, this study did not find any associations between repetitive motion and any UEMSD. Conclusions: UEMSD are most commonly found in electronic assembly workers. The relevant parties should provide comprehensive ergonomic resolution for these workers.

  15. The TALE transcription factor homothorax functions to assemble heterochromatin during Drosophila embryogenesis.

    Directory of Open Access Journals (Sweden)

    Miguel Angel Zaballos

    Full Text Available We have previously identified Homothorax (Hth as an important factor for the correct assembly of the pericentromeric heterochromatin during the first fast syncytial divisions of the Drosophila embryo. Here we have extended our studies to later stages of embryonic development. We were able to show that hth mutants exhibit a drastic overall reduction in the tri-methylation of H3 in Lys9, with no reduction of the previous di-methylation. One phenotypic outcome of such a reduction is a genome instability visualized by the many DNA breaks observed in the mutant nuclei. Moreover, loss of Hth leads to the opening of closed heterochromatic regions, including the rDNA genomic region. Our data show that the satellite repeats get transcribed in wild type embryos and that this transcription depends on the presence of Hth, which binds to them as well as to the rDNA region. This work indicates that there is an important role of transcription of non-coding RNAs for constitutive heterochromatin assembly in the Drosophila embryo, and suggests that Hth plays an important role in this process.

  16. The TALE transcription factor homothorax functions to assemble heterochromatin during Drosophila embryogenesis.

    Science.gov (United States)

    Zaballos, Miguel Angel; Cantero, Walter; Azpiazu, Natalia

    2015-01-01

    We have previously identified Homothorax (Hth) as an important factor for the correct assembly of the pericentromeric heterochromatin during the first fast syncytial divisions of the Drosophila embryo. Here we have extended our studies to later stages of embryonic development. We were able to show that hth mutants exhibit a drastic overall reduction in the tri-methylation of H3 in Lys9, with no reduction of the previous di-methylation. One phenotypic outcome of such a reduction is a genome instability visualized by the many DNA breaks observed in the mutant nuclei. Moreover, loss of Hth leads to the opening of closed heterochromatic regions, including the rDNA genomic region. Our data show that the satellite repeats get transcribed in wild type embryos and that this transcription depends on the presence of Hth, which binds to them as well as to the rDNA region. This work indicates that there is an important role of transcription of non-coding RNAs for constitutive heterochromatin assembly in the Drosophila embryo, and suggests that Hth plays an important role in this process.

  17. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verbakel, Werner, E-mail: werner.verbakel@chem.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium); Carmeliet, Geert, E-mail: geert.carmeliet@med.kuleuven.be [Laboratory of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Herestraat 49, Bus 902, 3000 Leuven (Belgium); Engelborghs, Yves, E-mail: yves.engelborghs@fys.kuleuven.be [Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200G, Bus 2403, 3001 Heverlee (Belgium)

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase NuSAP-chromatin

  18. Inhibition of N-terminal lysines acetylation and transcription factor assembly by epirubicin induced deranged cell homeostasis.

    Directory of Open Access Journals (Sweden)

    Shahper N Khan

    Full Text Available Epirubicin (EPI, an anthracycline antitumour antibiotic, is a known intercalating and DNA damaging agent. Here, we study the molecular interaction of EPI with histones and other cellular targets. EPI binding with histone core protein was predicted with spectroscopic and computational techniques. The molecular distance r, between donor (histone H3 and acceptor (EPI was estimated using Förster's theory of non-radiation energy transfer and the detailed binding phenomenon is expounded. Interestingly, the concentration dependent reduction in the acetylated states of histone H3 K9/K14 was observed suggesting more repressed chromatin state on EPI treatment. Its binding site near N-terminal lysines is further characterized by thermodynamic determinants and molecular docking studies. Specific DNA binding and inhibition of transcription factor (Tf-DNA complex formation implicates EPI induced transcriptional inhibition. EPI also showed significant cell cycle arrest in drug treated cells. Chromatin fragmentation and loss of membrane integrity in EPI treated cells is suggestive of their commitment to cell death. This study provides an analysis of nucleosome dynamics during EPI treatment and provides a novel insight into its action.

  19. Decoding chromatin goes high tech.

    Science.gov (United States)

    Levy, Dan; Gozani, Or

    2010-09-17

    Identifying proteins that recognize histone methylation is critical for understanding chromatin function. Vermeulen et al. (2010) now describe a cutting-edge strategy to identify and characterize several nuclear proteins and complexes that recognize five major histone trimethyl marks.

  20. R-loop: an emerging regulator of chromatin dynamics

    Institute of Scientific and Technical Information of China (English)

    Qais Al-Hadid; Yanzhong Yang

    2016-01-01

    The dynamic structure of chromatin,which exists in two conformational states:heterochromatin and euchromatin,alters the accessibility of the DNA to regulatory factors during transcription,replication,recombination,and DNA damage repair.Chemical modifications of histones and DNA,as well as adenosine triphospahate-dependent nucleosome remodeling,have been the major focus of research on chromatin dynamics over the past two decades.However,recent studies using a DNA-RNA hybrid-specific antibody and next-generation seque,ncing approaches have revealed that the formation of R-loops,one of the most common non-canonical DNA structures,is an emerging regulator of chromatin states.This review focuses on recent insights into the interplay between R-loop formation and the epigenetic modifications of chromatin in normal and disease states.

  1. Control of chromatin structure by long noncoding RNA

    Science.gov (United States)

    Böhmdorfer, Gudrun; Wierzbicki, Andrzej T.

    2015-01-01

    Long noncoding RNA (lncRNA) is a pivotal factor regulating various aspects of genome activity. Genome regulation via DNA methylation and posttranslational histone modifications is a well-documented function of lncRNA in plants, fungi, and animals. Here, we summarize evidence showing that lncRNA also controls chromatin structure including nucleosome positioning and chromosome looping. We focus on data from plant experimental systems, discussed in the context of other eukaryotes. We explain the mechanisms of lncRNA-controlled chromatin remodeling and the implications of the functional interplay between noncoding transcription and several different chromatin remodelers. We propose that the unique properties of RNA make it suitable for controlling chromatin modifications and structure. PMID:26410408

  2. Chromatin modifications and the DNA damage response to ionizing radiation

    Science.gov (United States)

    Kumar, Rakesh; Horikoshi, Nobuo; Singh, Mayank; Gupta, Arun; Misra, Hari S.; Albuquerque, Kevin; Hunt, Clayton R.; Pandita, Tej K.

    2013-01-01

    In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response. PMID:23346550

  3. Ectopically tethered CP190 induces large-scale chromatin decondensation

    Science.gov (United States)

    Ahanger, Sajad H.; Günther, Katharina; Weth, Oliver; Bartkuhn, Marek; Bhonde, Ramesh R.; Shouche, Yogesh S.; Renkawitz, Rainer

    2014-01-01

    Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF.

  4. The Putative Assembly Factor CcoH Is Stably Associated with the cbb3-Type Cytochrome Oxidase ▿

    Science.gov (United States)

    Pawlik, Grzegorz; Kulajta, Carmen; Sachelaru, Ilie; Schröder, Sebastian; Waidner, Barbara; Hellwig, Petra; Daldal, Fevzi; Koch, Hans-Georg

    2010-01-01

    Cytochrome oxidases are perfect model substrates for analyzing the assembly of multisubunit complexes because the need for cofactor incorporation adds an additional level of complexity to their assembly. cbb3-type cytochrome c oxidases (cbb3-Cox) consist of the catalytic subunit CcoN, the membrane-bound c-type cytochrome subunits CcoO and CcoP, and the CcoQ subunit, which is required for cbb3-Cox stability. Biogenesis of cbb3-Cox proceeds via CcoQP and CcoNO subcomplexes, which assemble into the active cbb3-Cox. Most bacteria expressing cbb3-Cox also contain the ccoGHIS genes, which encode putative cbb3-Cox assembly factors. Their exact function, however, has remained unknown. Here we analyzed the role of CcoH in cbb3-Cox assembly and showed that CcoH is a single spanning-membrane protein with an N-terminus-out-C-terminus-in (Nout-Cin) topology. In its absence, neither the fully assembled cbb3-Cox nor the CcoQP or CcoNO subcomplex was detectable. By chemical cross-linking, we demonstrated that CcoH binds primarily via its transmembrane domain to the CcoP subunit of cbb3-Cox. A second hydrophobic stretch, which is located at the C terminus of CcoH, appears not to be required for contacting CcoP, but deleting it prevents the formation of the active cbb3-Cox. This suggests that the second hydrophobic domain is required for merging the CcoNO and CcoPQ subcomplexes into the active cbb3-Cox. Surprisingly, CcoH does not seem to interact only transiently with the cbb3-Cox but appears to stay tightly associated with the active, fully assembled complex. Thus, CcoH behaves more like a bona fide subunit of the cbb3-Cox than an assembly factor per se. PMID:20952576

  5. Genome-wide Association of Yorkie with Chromatin and Chromatin-Remodeling Complexes

    Directory of Open Access Journals (Sweden)

    Hyangyee Oh

    2013-02-01

    Full Text Available The Hippo pathway regulates growth through the transcriptional coactivator Yorkie, but how Yorkie promotes transcription remains poorly understood. We address this by characterizing Yorkie’s association with chromatin and by identifying nuclear partners that effect transcriptional activation. Coimmunoprecipitation and mass spectrometry identify GAGA factor (GAF, the Brahma complex, and the Mediator complex as Yorkie-associated nuclear protein complexes. All three are required for Yorkie’s transcriptional activation of downstream genes, and GAF and the Brahma complex subunit Moira interact directly with Yorkie. Genome-wide chromatin-binding experiments identify thousands of Yorkie sites, most of which are associated with elevated transcription, based on genome-wide analysis of messenger RNA and histone H3K4Me3 modification. Chromatin binding also supports extensive functional overlap between Yorkie and GAF. Our studies suggest a widespread role for Yorkie as a regulator of transcription and identify recruitment of the chromatin-modifying GAF protein and BRM complex as a molecular mechanism for transcriptional activation by Yorkie.

  6. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements)

    OpenAIRE

    Giresi, Paul G.; Lieb, Jason D.

    2009-01-01

    The binding of sequence-specific regulatory factors and the recruitment of chromatin remodeling activities cause nucleosomes to be evicted from chromatin in eukaryotic cells. Traditionally, these active sites have been identified experimentally through their sensitivity to nucleases. Here we describe the details of a simple procedure for the genome-wide isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). We also pro...

  7. Single Molecule Studies of Chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  8. Interplay of Dynamic Transcription and Chromatin Remodeling: Lessons from Yeast

    Directory of Open Access Journals (Sweden)

    Eva Klopf

    2011-07-01

    Full Text Available Regulation of transcription involves dynamic rearrangements of chromatin structure. The budding yeast Saccharomyces cerevisiae has a variety of highly conserved factors necessary for these reconstructions. Chromatin remodelers, histone modifiers and histone chaperones directly associate to promoters and open reading frames of exposed genes and facilitate activation and repression of transcription. We compare two distinct patterns of induced transcription: Sustained transcribed genes switch to an activated state where they remain as long as the induction signal is present. In contrast, single pulsed transcribed genes show a quick and strong induction pulse resulting in high transcript levels followed by adaptation and repression to basal levels. We discuss intensively studied promoters and coding regions from both groups for their co-factor requirements during transcription. Interplay between chromatin restructuring factors and dynamic transcription is highly variable and locus dependent.

  9. Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer.

    Science.gov (United States)

    Weissman, Bernard; Knudsen, Karen E

    2009-11-01

    There is increasing evidence that alterations in chromatin remodeling play a significant role in human disease. The SWI/SNF chromatin remodeling complex family mobilizes nucleosomes and functions as a master regulator of gene expression and chromatin dynamics whose functional specificity is driven by combinatorial assembly of a central ATPase and association with 10 to 12 unique subunits. Although the biochemical consequence of SWI/SNF in model systems has been extensively reviewed, the present article focuses on the evidence linking SWI/SNF perturbations to cancer initiation and tumor progression in human disease.

  10. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster.

    Science.gov (United States)

    Chereji, Răzvan V; Kan, Tsung-Wai; Grudniewska, Magda K; Romashchenko, Alexander V; Berezikov, Eugene; Zhimulev, Igor F; Guryev, Victor; Morozov, Alexandre V; Moshkin, Yuri M

    2016-02-18

    Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to 'phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models.

  11. Chromatin Remodeling and Plant Immunity.

    Science.gov (United States)

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    2017-01-01

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

  12. Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Tomas Grousl

    Full Text Available In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs. Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p and eEF1Bγ2 (Tef4p as well as translation termination factors eRF1 (Sup45p and eRF3 (Sup35p. Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.

  13. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow

    Directory of Open Access Journals (Sweden)

    Vinken Mathieu

    2007-04-01

    Full Text Available Abstract Background The capability of human mesenchymal stem cells (hMSC derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4, hepatocyte growth factor (HGF, insulin-transferrin-sodium-selenite (ITS and dexamethasone] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone, however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK18 expression. Additional exposure of the cells to trichostatin A (TSA considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF-3β, alpha-fetoprotein (AFP, CK18, albumin (ALB, HNF1α, multidrug resistance-associated protein (MRP2 and CCAAT-enhancer binding protein (C/EBPα, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells.

  14. Effects of Topographic and Soil Factors on Woody Species Assembly in a Chinese Subtropical Evergreen Broadleaved Forest

    Directory of Open Access Journals (Sweden)

    Lijuan Zhao

    2015-03-01

    Full Text Available Evergreen broadleaved forests in subtropical China contain a complicated structure of diverse species. The impact of topographic and soil factors on the assembly of woody species in the forest has been poorly understood. We used Ripley’s K(t function to analyze the spatial patterns and associations of dominant species and residual analysis (RDA to quantify the contribution of topography and soil to species assembly. The 1 ha plot investigated had 4797 stems with a diameter at breast height (dbh larger than 1 cm that belong to 73 species, 55 genera, and 38 families. All stems of the entire forest and four late successional species exhibited a reversed J shape for dbh distribution, while two early successional species showed a unimodal shape. Aggregation was the major spatial pattern for entire forests and dominant species across vertical layers. Spatial associations between inter- and intra-species were mostly independent. Topographic and soil factors explained 28.1% of species assembly. The forest was close to late succession and showed the characteristics of diverse woody species, high regeneration capacity, and aggregated spatial patterns. Topographic and soil factors affected species assembly, but together they could only explain a small part of total variance.

  15. RNA is an integral component of chromatin that contributes to its structural organization.

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez-Campos

    Full Text Available Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%-5% of total chromatin-associated nucleic acids, are polyA(- and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with alpha-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity.

  16. Cytosolic iron-sulfur cluster assembly (CIA) system: factors, mechanism, and relevance to cellular iron regulation.

    Science.gov (United States)

    Sharma, Anil K; Pallesen, Leif J; Spang, Robert J; Walden, William E

    2010-08-27

    FeS cluster biogenesis is an essential process in virtually all forms of life. Complex protein machineries that are conserved from bacteria through higher eukaryotes facilitate assembly of the FeS cofactor in proteins. In the last several years, significant strides have been made in our understanding of FeS cluster assembly and the functional overlap of this process with cellular iron homeostasis. This minireview summarizes the present understanding of the cytosolic iron-sulfur cluster assembly (CIA) system in eukaryotes, with a focus on information gained from studies in budding yeast and mammalian systems.

  17. Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast.

    Science.gov (United States)

    Hirota, Kouji; Steiner, Walter W; Shibata, Takehiko; Ohta, Kunihiro

    2007-11-01

    The ade6-M26 meiotic recombination hot spot of fission yeast is defined by a cyclic AMP-responsive element (CRE)-like heptanucleotide sequence, 5'-ATGACGT-3', which acts as a binding site for the Atf1/Pcr1 heterodimeric transcription factor required for hot spot activation. We previously demonstrated that the local chromatin around the M26 sequence motif alters to exhibit higher sensitivity to micrococcal nuclease before the initiation of meiotic recombination. In this study, we have examined whether or not such alterations in chromatin occur at natural meiotic DNA double-strand break (DSB) sites in Schizosaccharomyces pombe. At one of the most prominent DSB sites, mbs1 (meiotic break site 1), the chromatin structure has a constitutively accessible configuration at or near the DSB sites. The establishment of the open chromatin state and DSB formation are independent of the CRE-binding transcription factor, Atf1. Analysis of the chromatin configuration at CRE-dependent DSB sites revealed both differences from and similarities to mbs1. For example, the tdh1+ locus, which harbors a CRE consensus sequence near the DSB site, shows a meiotically induced open chromatin configuration, similar to ade6-M26. In contrast, the cds1+ locus is similar to mbs1 in that it exhibits a constitutive open configuration. Importantly, Atf1 is required for the open chromatin formation in both tdh1+ and cds1+. These results suggest that CRE-dependent meiotic chromatin changes are intrinsic processes related to DSB formation in fission yeast meiosis. In addition, the results suggest that the chromatin configuration in natural meiotic recombination hot spots can be classified into at least three distinct categories: (i) an Atf1-CRE-independent constitutively open chromatin configuration, (ii) an Atf1-CRE-dependent meiotically induced open chromatin configuration, and (iii) an Atf1-CRE-dependent constitutively open chromatin configuration.

  18. Guarding against Collateral Damage during Chromatin Transactions

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Lukas, Jiri

    2013-01-01

    Signal amplifications are vital for chromatin function, yet they also bear the risk of transforming into unrestrained, self-escalating, and potentially harmful responses. Examples of inbuilt limitations are emerging, revealing how chromatin transactions are confined within physiological boundaries....

  19. Biophysical studies of cholesterol effects on chromatin.

    Science.gov (United States)

    Silva, Isabel T G; Fernandes, Vinicius; Souza, Caio; Treptow, Werner; Santos, Guilherme Martins

    2017-03-22

    Changes in chromatin structure regulate gene expression and genome maintenance. Molecules that bind to the nucleosome, the complex of DNA and histone proteins, are key modulators of chromatin structure. Previous work indicated that cholesterol, a ubiquitous cellular lipid, may bind to chromatin in vivo, suggesting a potential function for lipids in modulating chromatin architecture. However, the molecular mechanisms of cholesterol action on chromatin structure have remained unclear. Here, we explored the biophysical impact of cholesterol on nucleosome and chromatin fibers reconstituted in vitro and characterized in silico the cholesterol binding to nucleosome. Our findings support that cholesterol assists 10nm and 30nm chromatin formation and induces folding of long chromatin fibers as a result of direct interaction of the cholesterol to six nucleosomal binding sites.

  20. Chromatin structure regulates gene conversion.

    Directory of Open Access Journals (Sweden)

    W Jason Cummings

    2007-10-01

    Full Text Available Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vlambda pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205, expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vlambda donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vlambda array, and altered the outcome of Vlambda diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences.

  1. Alternative pre-mRNA splicing in Drosophila spliceosomal assembly factor RNP-4F during development.

    Science.gov (United States)

    Fetherson, Rebecca A; Strock, Stephen B; White, Kristen N; Vaughn, Jack C

    2006-04-26

    The 5'- and 3'-UTR regions in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation. Here we report the results of a systematic study of alternative splicing in rnp-4f, which encodes a Drosophila spliceosomal assembly factor. We show that most of the nine introns are constitutively spliced, but several patterns of alternative splicing are observed in two pre-mRNA regions including the 5'-UTR. Intron V is shown to be of recent evolutionary origin and is infrequently spliced, resulting in generation of an in-frame stop codon and a predicted truncated protein lacking a nuclear localization signal, so that alternative splicing regulates its subcellular localization. Intron 0, located in the 5'-UTR, is subject to three different splicing decisions in D. melanogaster. Northern analysis of poly(A+) mRNAs reveals two differently sized rnp-4f mRNA isoforms in this species. A switch in relative isoform abundance occurs during mid-embryo stages, when the larger isoform becomes more abundant. This isoform is shown to represent intron 0 unspliced mRNA, whereas the smaller transcript represents the product of alternative splicing. Comparative genomic analysis predicts that intron 0 is present in diverse Drosophila species. Intron 0 splicing results in loss of an evolutionarily conserved stem-loop constituting a potential cis-regulatory element at the 3'-splice site. A model is proposed for the role of this element both in 5'-UTR alternative splicing decisions and in RNP-4F translational modulation. Preliminary evidences in support of our model are discussed.

  2. Ephemeral protein binding to DNA shapes stable nuclear bodies and chromatin domains

    CERN Document Server

    Brackley, C A; Michieletto, D; Mouvet, F; Cook, P R; Marenduzzo, D

    2016-01-01

    Fluorescence microscopy reveals that the contents of many (membrane-free) nuclear "bodies" exchange rapidly with the soluble pool whilst the underlying structure persists; such observations await a satisfactory biophysical explanation. To shed light on this, we perform large-scale Brownian dynamics simulations of a chromatin fiber interacting with an ensemble of (multivalent) DNA-binding proteins; these proteins switch between two states -- active (binding) and inactive (non-binding). This system provides a model for any DNA-binding protein that can be modified post-translationally to change its affinity for DNA (e.g., like the phosphorylation of a transcription factor). Due to this out-of-equilibrium process, proteins spontaneously assemble into clusters of self-limiting size, as individual proteins in a cluster exchange with the soluble pool with kinetics like those seen in photo-bleaching experiments. This behavior contrasts sharply with that exhibited by "equilibrium", or non-switching, proteins that exis...

  3. The Chd Family of Chromatin Remodelers

    OpenAIRE

    Marfella, Concetta G.A.; Imbalzano, Anthony N.

    2007-01-01

    Chromatin remodeling enzymes contribute to the dynamic changes that occur in chromatin structure during cellular processes such as transcription, recombination, repair, and replication. Members of the chromodomain helicase DNA-binding (Chd) family of enzymes belong to the SNF2 superfamily of ATP-dependent chromatin remodelers. The Chd proteins are distinguished by the presence of two N-terminal chromodomains that function as interaction surfaces for a variety of chromatin components. Genetic,...

  4. Impact of chromatin structure on PR signaling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Hager, Gordon L

    2012-01-01

    The progesterone receptor (PR) interacts with chromatin in a highly dynamic manner that requires ongoing chromatin remodeling, interaction with chaparones and activity of the proteasome. Here we discuss dynamic interaction of steroid receptor with chromatin, with special attention not only to PR...

  5. Extremely Long-Range Chromatin Loops Link Topological Domains to Facilitate a Diverse Antibody Repertoire

    Directory of Open Access Journals (Sweden)

    Lindsey Montefiori

    2016-02-01

    Full Text Available Early B cell development is characterized by large-scale Igh locus contraction prior to V(DJ recombination to facilitate a highly diverse Ig repertoire. However, an understanding of the molecular architecture that mediates locus contraction remains unclear. We have combined high-resolution chromosome conformation capture (3C techniques with 3D DNA FISH to identify three conserved topological subdomains. Each of these topological folds encompasses a major VH gene family that become juxtaposed in pro-B cells via megabase-scale chromatin looping. The transcription factor Pax5 organizes the subdomain that spans the VHJ558 gene family. In its absence, the J558 VH genes fail to associate with the proximal VH genes, thereby providing a plausible explanation for reduced VHJ558 gene rearrangements in Pax5-deficient pro-B cells. We propose that Igh locus contraction is the cumulative effect of several independently controlled chromatin subdomains that provide the structural infrastructure to coordinate optimal antigen receptor assembly.

  6. Chromatin remodeling pathways in smooth muscle cell differentiation, and evidence for an integral role for p300.

    Directory of Open Access Journals (Sweden)

    Joshua M Spin

    Full Text Available BACKGROUND: Phenotypic alteration of vascular smooth muscle cells (SMC in response to injury or inflammation is an essential component of vascular disease. Evidence suggests that this process is dependent on epigenetic regulatory processes. P300, a histone acetyltransferase (HAT, activates crucial muscle-specific promoters in terminal (non-SMC myocyte differentiation, and may be essential to SMC modulation as well. RESULTS: We performed a subanalysis examining transcriptional time-course microarray data obtained using the A404 model of SMC differentiation. Numerous chromatin remodeling genes (up to 62% of such genes on our array platform showed significant regulation during differentiation. Members of several chromatin-remodeling families demonstrated involvement, including factors instrumental in histone modification, chromatin assembly-disassembly and DNA silencing, suggesting complex, multi-level systemic epigenetic regulation. Further, trichostatin A, a histone deacetylase inhibitor, accelerated expression of SMC differentiation markers in this model. Ontology analysis indicated a high degree of p300 involvement in SMC differentiation, with 60.7% of the known p300 interactome showing significant expression changes. Knockdown of p300 expression accelerated SMC differentiation in A404 cells and human SMCs, while inhibition of p300 HAT activity blunted SMC differentiation. The results suggest a central but complex role for p300 in SMC phenotypic modulation. CONCLUSIONS: Our results support the hypothesis that chromatin remodeling is important for SMC phenotypic switching, and detail wide-ranging involvement of several epigenetic modification families. Additionally, the transcriptional coactivator p300 may be partially degraded during SMC differentiation, leaving an activated subpopulation with increased HAT activity and SMC differentiation-gene specificity.

  7. Modeling and Finite Element Analysis of Load-Carrying Performance of a Wind Turbine Considering the Influence of Assembly Factors

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2017-03-01

    Full Text Available In this work, a wind turbine shrink disk is used as the research object to investigate load-carrying performance of a multi-layer interference fit, and the theoretical model and finite element model are constructed. According to those models, a MW-level turbine shrink disk is designed, and a test device is developed to apply torque to this turbine shrink disk by hydraulic jack. Then, the circumferential slip between the contact surfaces is monitored and the slip of all contact surfaces is zero. This conclusion verifies the reasonability of the proposed models. The effect of the key influencing factors, such as machining deviation, assembly clearance and propel stroke, were analyzed. The contact pressure and load torque of the mating surfaces were obtained by building typical models with different parameters using finite element analysis (FEA. The results show that the minimum assembly clearance and the machining deviation within the machining range have little influence on load-carrying performance of multi-layer interference fit, while having a greater influence on the maximum assembly clearance and the propel stroke. The results also show that the load-carrying performance of a multiple-layer interference fit can be ensured only if the key factors are set within a reasonable design range. To avoid the abnormal operation of equipment caused by insufficient load torque, the propel stroke during practical assembly should be at least 0.95 times the designed propel stroke, which is significant in guiding the design and assembly of the multi-layer interference fit.

  8. Chromatin Modifications and the DNA Damage Response to Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Tej K Pandita

    2013-01-01

    Full Text Available In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double strand breaks (DSBs, that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: 1 non-homologous end-joining (NHEJ, which re-ligates the broken ends of the DNA and 2 homologous recombination (HR, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but posttranslational modification (PTMs of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modification by t

  9. Defining the multivalent functions of CTCF from chromatin state and three-dimensional chromatin interactions.

    Science.gov (United States)

    Lu, Yiming; Shan, Guangyu; Xue, Jiguo; Chen, Changsheng; Zhang, Chenggang

    2016-07-27

    CCCTC-binding factor (CTCF) is a multi-functional protein that is assigned various, even contradictory roles in the genome. High-throughput sequencing-based technologies such as ChIP-seq and Hi-C provided us the opportunity to assess the multivalent functions of CTCF in the human genome. The location of CTCF-binding sites with respect to genomic features provides insights into the possible roles of this protein. Here we present the first genome-wide survey and characterization of three important functions of CTCF: enhancer insulator, chromatin barrier and enhancer linker. We developed a novel computational framework to discover the multivalent functions of CTCF based on chromatin state and three-dimensional chromatin architecture. We applied our method to five human cell lines and identified ∼46 000 non-redundant CTCF sites related to the three functions. Disparate effects of these functions on gene expression were found and distinct genomic features of these CTCF sites were characterized in GM12878 cells. Finally, we investigated the cell-type specificities of CTCF sites related to these functions across five cell types. Our study provides new insights into the multivalent functions of CTCF in the human genome.

  10. Evolution and genetic architecture of chromatin accessibility and function in yeast.

    Directory of Open Access Journals (Sweden)

    Caitlin F Connelly

    2014-07-01

    Full Text Available Chromatin accessibility is an important functional genomics phenotype that influences transcription factor binding and gene expression. Genome-scale technologies allow chromatin accessibility to be mapped with high-resolution, facilitating detailed analyses into the genetic architecture and evolution of chromatin structure within and between species. We performed Formaldehyde-Assisted Isolation of Regulatory Elements sequencing (FAIRE-Seq to map chromatin accessibility in two parental haploid yeast species, Saccharomyces cerevisiae and Saccharomyces paradoxus and their diploid hybrid. We show that although broad-scale characteristics of the chromatin landscape are well conserved between these species, accessibility is significantly different for 947 regions upstream of genes that are enriched for GO terms such as intracellular transport and protein localization exhibit. We also develop new statistical methods to investigate the genetic architecture of variation in chromatin accessibility between species, and find that cis effects are more common and of greater magnitude than trans effects. Interestingly, we find that cis and trans effects at individual genes are often negatively correlated, suggesting widespread compensatory evolution to stabilize levels of chromatin accessibility. Finally, we demonstrate that the relationship between chromatin accessibility and gene expression levels is complex, and a significant proportion of differences in chromatin accessibility might be functionally benign.

  11. Absence of canonical active chromatin marks in developmentally regulated genes

    Science.gov (United States)

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  12. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair

    DEFF Research Database (Denmark)

    McCord, Ronald A; Michishita, Eriko; Hong, Tao

    2009-01-01

    The Sir2 chromatin regulatory factor links maintenance of genomic stability to life span extension in yeast. The mammalian Sir2 family member SIRT6 has been proposed to have analogous functions, because SIRT6-deficiency leads to shortened life span and an aging-like degenerative phenotype in mice...... with chromatin impacts on the efficiency of repair, and establish a link between chromatin regulation, DNA repair, and a mammalian Sir2 factor....

  13. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP

    DEFF Research Database (Denmark)

    Muratcioglu, Serena; Presman, Diego M; Pooley, John R

    2015-01-01

    The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow...... interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate...

  14. Akirin: a context-dependent link between transcription and chromatin remodeling.

    Science.gov (United States)

    Nowak, Scott J; Baylies, Mary K

    2012-01-01

    Embryonic patterning relies upon an exquisitely timed program of gene regulation. While the regulation of this process via the action of transcription factor networks is well understood, new lines of study have highlighted the importance of a concurrently regulated program of chromatin remodeling during development. Chromatin remodeling refers to the manipulation of the chromatin architecture through rearrangement, repositioning, or restructuring of nucleosomes to either favor or hinder the expression of associated genes. While the role of chromatin remodeling pathways during tumor development and cancer progression are beginning to be clarified, the roles of these pathways in the course of tissue specification, morphogenesis and patterning remains relatively unknown. Further, relatively little is understood as to the mechanism whereby developmentally critical transcription factors coordinate with chromatin remodeling factors to optimize target gene loci for gene expression. Such a mechanism might involve direct transcription factor/chromatin remodeling factor interactions, or could likely be mediated via an unknown intermediary. Our group has identified the relatively unknown protein Akirin as a putative member of this latter group: a secondary cofactor that serves as an interface between a developmentally critical transcription factor and the chromatin remodeling machinery. This role for the Akirin protein suggests a novel regulatory mode for regulating gene expression during development.

  15. Organisation of subunits in chromatin.

    Science.gov (United States)

    Carpenter, B G; Baldwin, J P; Bradbury, E M; Ibel, K

    1976-07-01

    There is considerable current interest in the organisation of nucleosomes in chromatin. A strong X-ray and neutron semi-meridional diffraction peak at approximately 10 nm had previously been attributed to the interparticle specing of a linear array of nucleosomes. This diffraction peak could also result from a close packed helical array of nucleosomes. A direct test of these proposals is whether the 10 nm peak is truly meridional as would be expected for a linear array of nucleosomes or is slightly off the meridian as expected for a helical array. Neutron diffraction studies of H1-depleted chromatin support the latter alternative. The 10 nm peak has maxima which form a cross-pattern with semi-meridional angle of 8 to 9 degrees. This is consistent with a coil of nucleosomes of pitch 10 nm and outer diameter of approximately 30 nm. These dimensions correspond to about six nucleosomes per turn of the coli.

  16. How the cell cycle impacts chromatin architecture and influences cell fate

    Directory of Open Access Journals (Sweden)

    Yiqin eMa

    2015-02-01

    Full Text Available Since the earliest observations of cells undergoing mitosis, it has been clear that there is an intimate relationship between the cell cycle and nuclear chromatin architecture. The nuclear envelope and chromatin undergo robust assembly and disassembly during the cell cycle, and transcriptional and post-transcriptional regulation of histone biogenesis and chromatin modification is controlled in a cell cycle-dependent manner. Chromatin binding proteins and chromatin modifications in turn influence the expression of critical cell cycle regulators, the accessibility of origins for DNA replication, DNA repair, and cell fate. In this review we aim to provide an integrated discussion of how the cell cycle machinery impacts nuclear architecture and vice-versa. We highlight recent advances in understanding cell cycle-dependent histone biogenesis and histone modification deposition, how cell cycle regulators control histone modifier activities, the contribution of chromatin modifications to origin firing for DNA replication, and newly identified roles for nucleoporins in regulating cell cycle gene expression, gene expression memory and differentiation. We close with a discussion of how cell cycle status may impact chromatin to influence cell fate decisions, under normal contexts of differentiation as well as in instances of cell fate re-programming.

  17. Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis Shows that WhiB Is a Transcription Factor That Cocontrols Its Regulon with WhiA To Initiate Developmental Cell Division in Streptomyces

    Directory of Open Access Journals (Sweden)

    Matthew J. Bush

    2016-04-01

    Full Text Available WhiB is the founding member of a family of proteins (the WhiB-like [Wbl] family that carry a [4Fe-4S] iron-sulfur cluster and play key roles in diverse aspects of the biology of actinomycetes, including pathogenesis, antibiotic resistance, and the control of development. In Streptomyces, WhiB is essential for the process of developmentally controlled cell division that leads to sporulation. The biochemical function of Wbl proteins has been controversial; here, we set out to determine unambiguously if WhiB functions as a transcription factor using chromatin immunoprecipitation sequencing (ChIP-seq in Streptomyces venezuelae. In the first demonstration of in vivo genome-wide Wbl binding, we showed that WhiB regulates the expression of key genes required for sporulation by binding upstream of ~240 transcription units. Strikingly, the WhiB regulon is identical to the previously characterized WhiA regulon, providing an explanation for the identical phenotypes of whiA and whiB mutants. Using ChIP-seq, we demonstrated that in vivo DNA binding by WhiA depends on WhiB and vice versa, showing that WhiA and WhiB function cooperatively to control expression of a common set of WhiAB target genes. Finally, we show that mutation of the cysteine residues that coordinate the [4Fe-4S] cluster in WhiB prevents DNA binding by both WhiB and WhiA in vivo.

  18. Regulation of chromatin structure by poly(ADP-ribosylation

    Directory of Open Access Journals (Sweden)

    Sascha eBeneke

    2012-09-01

    Full Text Available The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose, the zinc-finger protein poly(ADP-ribose polymerase-1 (PARP1, was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.

  19. Self-perceived depression, anxiety, stress and their relationships with psychosocial job factors in male automotive assembly workers.

    Science.gov (United States)

    Edimansyah, Bin Abdin; Rusli, Bin Nordin; Naing, Lin; Mohamed Rusli, Bin Abdullah; Winn, Than; Tengku Mohamed Ariff, Bin Raja Hussin

    2008-01-01

    Depression, anxiety and stress have been recognized as important mental outcome measures in stressful working settings. The present study explores the prevalence of self-perceived depression, anxiety and stress; and their relationships with psychosocial job factors. A cross-sectional study involving 728 male automotive assembly workers was conducted in two major automotive assembly plants in Malaysia using the validated Malay versions of the Depression Anxiety Stress Scales (DASS) and Job Content Questionnaire (JCQ). Based on the DASS cut-off of > or =78 percentile scores, the prevalence of self-perceived depression, anxiety and stress was 35.4%, 47.2% and 31.1%, respectively. Four (0.5%), 29 (4.0%) and 2 (0.3%) workers, respectively, reported extremely severe self-perceived depression, anxiety and stress. Multiple linear regression analyses, controlling for age, education, salary, duration of work and marital status, revealed that psychological job demand, job insecurity and hazardous condition were positively associated with DASS-Depression, DASS-Anxiety and DASS-Stress; supervisor support was inversely associated with DASS-Depression and DASS-Stress. We suggest that reducing psychological job demand, job insecurity and hazardous condition factors may improve the self-perceived depression, anxiety and stress in male automotive assembly workers. Supervisor support is protective for self-perceived depression and stress.

  20. Gene Expression Control by Chromatin Binding Factors

    NARCIS (Netherlands)

    O. Voets (Olaf)

    2013-01-01

    textabstractIn nature, the hereditary material that contains the instructions for making all living matter is known as deoxyribonucleic acid (DNA). Almost all the cells in our body, except mature red blood cells, have DNA of which the vast majority is located in the nucleus. DNA is composed of long

  1. Minichromosome replication in vitro: inhibition of re-replication by replicatively assembled nucleosomes.

    Science.gov (United States)

    Krude, T; Knippers, R

    1994-08-19

    Single-stranded circular DNA, containing the SV40 origin sequence, was used as a template for complementary DNA strand synthesis in cytosolic extracts from HeLa cells. In the presence of the replication-dependent chromatin assembly factor CAF-1, defined numbers of nucleosomes were assembled during complementary DNA strand synthesis. These minichromosomes were then induced to semiconservatively replicate by the addition of the SV40 initiator protein T antigen (re-replication). The results indicate that re-replication of minichromosomes appears to be inhibited by two independent mechanisms. One acts at the initiation of minichromosome re-replication, and the other affects replicative chain elongation. To directly demonstrate the inhibitory effect of replicatively assembled nucleosomes, two types of minichromosomes were prepared: (i) post-replicative minichromosomes were assembled in a reaction coupled to replication as above; (ii) pre-replicative minichromosomes were assembled independently of replication on double-stranded DNA. Both types of minichromosomes were used as templates for DNA replication under identical conditions. Replicative fork movement was found to be impeded only on post-replicative minichromosome templates. In contrast, pre-replicative minichromosomes allowed one unconstrained replication cycle, but re-replication was inhibited due to a block in fork movement. Thus, replicatively assembled chromatin may have a profound influence on the re-replication of DNA.

  2. Interrelationships between yeast ribosomal protein assembly events and transient ribosome biogenesis factors interactions in early pre-ribosomes.

    Directory of Open Access Journals (Sweden)

    Steffen Jakob

    Full Text Available Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA. Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins and ribosome precursors (pre-ribosomes are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains.

  3. A dual inhibitory mechanism sufficient to maintain cell cycle restricted CENP-A assembly

    Science.gov (United States)

    Stankovic, Ana; Guo, Lucie Y.; Mata, João F.; Bodor, Dani L.; Cao, Xing-Jun; Bailey, Aaron O.; Shabanowitz, Jeffrey; Hunt, Donald F.; Garcia, Benjamin A.; Black, Ben E.; Jansen, Lars E.T

    2017-01-01

    Summary Chromatin featuring the H3 variant CENP-A at the centromere is critical for its mitotic function and epigenetic maintenance. Assembly of centromeric chromatin is restricted to G1 phase through inhibitory action of Cdk1/2 kinases in other phases of the cell cycle. Here, we identify the two key targets sufficient to maintain cell cycle control of CENP-A assembly. We uncovered a single phosphorylation site in the licensing factor M18BP1 and a cyclin A binding site in the CENP-A chaperone, HJURP, mediating specific inhibitory phosphorylation. Simultaneous expression of mutant proteins lacking these residues, results in complete uncoupling from the cell cycle. Consequently, CENP-A assembly is fully recapitulated under high Cdk activities, indistinguishable from G1 assembly. We find that Cdk-mediated inhibition is exerted by sequestering active factors away from the centromere. Finally, we show that displacement of M18BP1 from the centromere is critical for the assembly mechanism of CENP-A. PMID:28017591

  4. The chromatin response to DNA breaks: leaving a mark on genome integrity.

    Science.gov (United States)

    Smeenk, Godelieve; van Attikum, Haico

    2013-01-01

    Genetic, biochemical, and cellular studies have uncovered many of the molecular mechanisms underlying the signaling and repair of chromosomal DNA breaks. However, efficient repair of DNA damage is complicated in that genomic DNA is packaged, through histone and nonhistone proteins, into chromatin. The DNA repair machinery has to overcome this physical barrier to gain access to damaged DNA and repair DNA lesions. Posttranslational modifications of chromatin as well as ATP-dependent chromatin remodeling factors help to overcome this barrier and facilitate access to damaged DNA by altering chromatin structure at sites of DNA damage. Here we review and discuss our current knowledge of and recent advances in chromatin changes induced by chromosome breakage in mammalian cells and their implications for genome stability and human disease.

  5. Proteomics of a fuzzy organelle: interphase chromatin

    Science.gov (United States)

    Kustatscher, Georg; Hégarat, Nadia; Wills, Karen L H; Furlan, Cristina; Bukowski-Wills, Jimi-Carlo; Hochegger, Helfrid; Rappsilber, Juri

    2014-01-01

    Chromatin proteins mediate replication, regulate expression, and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle, it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead, we propose a new approach that provides a quantitative assessment of a protein's probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of cyclin-dependent kinase (CDK) regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology. PMID:24534090

  6. Efficient cell migration requires global chromatin condensation.

    Science.gov (United States)

    Gerlitz, Gabi; Bustin, Michael

    2010-07-01

    Cell migration is a fundamental process that is necessary for the development and survival of multicellular organisms. Here, we show that cell migration is contingent on global condensation of the chromatin fiber. Induction of directed cell migration by the scratch-wound assay leads to decreased DNaseI sensitivity, alterations in the chromatin binding of architectural proteins and elevated levels of H4K20me1, H3K27me3 and methylated DNA. All these global changes are indicative of increased chromatin condensation in response to induction of directed cell migration. Conversely, chromatin decondensation inhibited the rate of cell migration, in a transcription-independent manner. We suggest that global chromatin condensation facilitates nuclear movement and reshaping, which are important for cell migration. Our results support a role for the chromatin fiber that is distinct from its known functions in genetic processes.

  7. Phosphorylation of both nucleoplasmin domains is required for activation of its chromatin decondensation activity

    DEFF Research Database (Denmark)

    Bañuelos, Sonia; Omaetxebarria, Miren J; Ramos, Isbaal;

    2007-01-01

    Nucleoplasmin (NP) is a histone chaperone involved in nucleosome assembly, chromatin decondensation at fertilization, and apoptosis. To carry out these activities NP has to interact with different types of histones, an interaction that is regulated by phosphorylation. Here we have identified...

  8. Enhancement of fill factor in air-processed inverted organic solar cells using self-assembled monolayer of fullerene catechol

    Science.gov (United States)

    Jeon, Il; Ogumi, Keisuke; Nakagawa, Takafumi; Matsuo, Yutaka

    2016-08-01

    [60]Fullerene catechol self-assembled monolayers were prepared and applied to inverted organic solar cells by an immersion method, and their energy conversion properties were measured. By introducing fullerenes at the surface, we improved the hole-blocking capability of electron-transporting metal oxide, as shown by the fill factor enhancement. The fullerene catechol-treated TiO x -containing device gave a power conversion efficiency (PCE) of 2.81% with a fill factor of 0.56 while the non treated device gave a PCE of 2.46% with a fill factor of 0.49. The solar cell efficiency improved by 13% compared with the non treated reference device.

  9. The ING tumor suppressors in cellular senescence and chromatin.

    Science.gov (United States)

    Ludwig, Susann; Klitzsch, Alexandra; Baniahmad, Aria

    2011-07-18

    The Inhibitor of Growth (ING) proteins represent a type II tumor suppressor family comprising five conserved genes, ING1 to ING5. While ING1, ING2 and ING3 proteins are stable components of the mSIN3a-HDAC complexes, the association of ING1, ING4 and ING5 with HAT protein complexes was also reported. Among these the ING1 and ING2 have been analyzed more deeply. Similar to other tumor suppressor factors the ING proteins are also involved in many cellular pathways linked to cancer and cell proliferation such as cell cycle regulation, cellular senescence, DNA repair, apoptosis, inhibition of angiogenesis and modulation of chromatin.A common structural feature of ING factors is the conserved plant homeodomain (PHD), which can bind directly to the histone mark trimethylated lysine of histone H3 (H3K4me3). PHD mutants lose the ability to undergo cellular senescence linking chromatin mark recognition with cellular senescence. ING1 and ING2 are localized in the cell nucleus and associated with chromatin modifying enzymes, linking tumor suppression directly to chromatin regulation. In line with this, the expression of ING1 in tumors is aberrant or identified point mutations are mostly localized in the PHD finger and affect histone binding. Interestingly, ING1 protein levels increase in replicative senescent cells, latter representing an efficient pathway to inhibit cancer proliferation. In association with this, suppression of p33ING1 expression prolongs replicative life span and is also sufficient to bypass oncogene-induced senescence. Recent analyses of ING1- and ING2-deficient mice confirm a tumor suppressive role of ING1 and ING2 and also indicate an essential role of ING2 in meiosis.Here we summarize the activity of ING1 and ING2 as tumor suppressors, chromatin factors and in development.

  10. Novel Coiled-Coil Cell Division Factor ZapB Stimulates Z Ring Assembly and Cell Division

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Galli, Elizabeth; Møller-Jensen, Jakob

    2008-01-01

    exhibited a synthetic sick phenotype and aberrant cell divisions. The crystal structure showed that ZapB exists as a dimer that is 100% coiled-coil. In vitro, ZapB self-assembled into long filaments and bundles. These results raise the possibility that ZapB stimulates Z ring formation directly via its......Formation of the Z ring is the first known event in bacterial cell division. However, it is not yet known how the assembly and contraction of the Z ring is regulated. Here, we identify a novel cell division factor ZapB in Escherichia coli that simultaneously stimulates Z ring assembly and cell...... division. Deletion of zapB resulted in delayed cell division and the formation of ectopic Z rings and spirals whereas overexpression of ZapB resulted in nucleoid condensation and aberrant cell divisions. Localization of ZapB to the divisome depended on FtsZ but not FtsA, ZipA or FtsI and ZapB interacted...

  11. The Tomato MIXTA-Like Transcription Factor Coordinates Fruit Epidermis Conical Cell Development and Cuticular Lipid Biosynthesis and Assembly.

    Science.gov (United States)

    Lashbrooke, Justin; Adato, Avital; Lotan, Orfa; Alkan, Noam; Tsimbalist, Tatiana; Rechav, Katya; Fernandez-Moreno, Josefina-Patricia; Widemann, Emilie; Grausem, Bernard; Pinot, Franck; Granell, Antonio; Costa, Fabrizio; Aharoni, Asaph

    2015-12-01

    The epidermis of aerial plant organs is the primary source of building blocks forming the outer surface cuticular layer. To examine the relationship between epidermal cell development and cuticle assembly in the context of fruit surface, we investigated the tomato (Solanum lycopersicum) MIXTA-like gene. MIXTA/MIXTA-like proteins, initially described in snapdragon (Antirrhinum majus) petals, are known regulators of epidermal cell differentiation. Fruit of transgenically silenced SlMIXTA-like tomato plants displayed defects in patterning of conical epidermal cells. They also showed altered postharvest water loss and resistance to pathogens. Transcriptome and cuticular lipids profiling coupled with comprehensive microscopy revealed significant modifications to cuticle assembly and suggested SlMIXTA-like to regulate cutin biosynthesis. Candidate genes likely acting downstream of SlMIXTA-like included cytochrome P450s (CYPs) of the CYP77A and CYP86A subfamilies, LONG-CHAIN ACYL-COA SYNTHETASE2, GLYCEROL-3-PHOSPHATE SN-2-ACYLTRANSFERASE4, and the ATP-BINDING CASSETTE11 cuticular lipids transporter. As part of a larger regulatory network of epidermal cell patterning and L1-layer identity, we found that SlMIXTA-like acts downstream of SlSHINE3 and possibly cooperates with homeodomain Leu zipper IV transcription factors. Hence, SlMIXTA-like is a positive regulator of both cuticle and conical epidermal cell formation in tomato fruit, acting as a mediator of the tight association between fruit cutin polymer formation, cuticle assembly, and epidermal cell patterning.

  12. Unlocking the milk protein gene loci during mammary gland development and differentiation; a role for chromatin

    Science.gov (United States)

    Mammary gland development and differentiation occur mostly postnatally. Chromatin organization plays a key role in transcriptional and epigenetic regulation during development and differentiation. Considerable knowledge of the systemic hormones and local growth factors important for development and ...

  13. Translocation of histone H1 subtypes between chromatin and cytoplasm during mitosis in normal human fibroblasts.

    Science.gov (United States)

    Gréen, Anna; Lönn, Anita; Peterson, Kajsa Holmgren; Ollinger, Karin; Rundquist, Ingemar

    2010-05-01

    Histone H1 is an important constituent of chromatin, which undergoes major structural rearrangements during mitosis. However, the role of H1, multiple H1 subtypes, and H1 phosphorylation is still unclear. In normal human fibroblasts, phosphorylated H1 was found located in nuclei during prophase and in both cytoplasm and condensed chromosomes during metaphase, anaphase, and telophase as detected by immunocytochemistry. Moreover, we detected remarkable differences in the distribution of the histone H1 subtypes H1.2, H1.3, and H1.5 during mitosis. H1.2 was found in chromatin during prophase and almost solely in the cytoplasm of metaphase and early anaphase cells. In late anaphase, it appeared in both chromatin and cytoplasm and again in chromatin during telophase. H1.5 distribution pattern resembled that of H1.2, but H1.5 was partitioned between chromatin and cytoplasm during metaphase and early anaphase. H1.3 was detected in chromatin in all cell cycle phases. We propose therefore, that H1 subtype translocation during mitosis is controlled by phosphorylation, in combination with H1 subtype inherent affinity. We conclude that H1 subtypes, or theirphosphorylated forms, may leave chromatin in a regulated way to give access for chromatin condensing factors or transcriptional regulators during mitosis.

  14. Chromatin remodeling and human disease.

    Science.gov (United States)

    Huang, Cheng; Sloan, Emily A; Boerkoel, Cornelius F

    2003-06-01

    In the past few years, there has been a nascent convergence of scientific understanding of inherited human diseases with epigenetics. Identified epigenetic processes involved in human disease include covalent DNA modifications, covalent histone modifications, and histone relocation. Each of these processes influences chromatin structure and thereby regulates gene expression and DNA methylation, replication, recombination, and repair. The importance of these processes for nearly all aspects of normal growth and development is illustrated by the array of multi-system disorders and neoplasias caused by their dysregulation.

  15. Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly

    KAUST Repository

    Lee, Olivia P.

    2011-10-21

    Efficient organic photovoltaic (OPV) materials are constructed by attaching completely planar, symmetric end-groups to donor-acceptor electroactive small molecules. Appending C2-pyrene as the small molecule end-group to a diketopyrrolopyrrole core leads to materials with a tight, aligned crystal packing and favorable morphology dictated by π-π interactions, resulting in high power conversion efficiencies and high fill factors. The use of end-groups to direct molecular self-assembly is an effective strategy for designing high-performance small molecule OPV devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rsc4 Connects the Chromatin Remodeler RSC to RNA Polymerases‡

    Science.gov (United States)

    Soutourina, Julie; Bordas-Le Floch, Véronique; Gendrel, Gabrielle; Flores, Amando; Ducrot, Cécile; Dumay-Odelot, Hélène; Soularue, Pascal; Navarro, Francisco; Cairns, Bradley R.; Lefebvre, Olivier; Werner, Michel

    2006-01-01

    RSC is an essential, multisubunit chromatin remodeling complex. We show here that the Rsc4 subunit of RSC interacted via its C terminus with Rpb5, a conserved subunit shared by all three nuclear RNA polymerases (Pol). Furthermore, the RSC complex coimmunoprecipitated with all three RNA polymerases. Mutations in the C terminus of Rsc4 conferred a thermosensitive phenotype and the loss of interaction with Rpb5. Certain thermosensitive rpb5 mutations were lethal in combination with an rsc4 mutation, supporting the physiological significance of the interaction. Pol II transcription of ca. 12% of the yeast genome was increased or decreased twofold or more in a rsc4 C-terminal mutant. The transcription of the Pol III-transcribed genes SNR6 and RPR1 was also reduced, in agreement with the observed localization of RSC near many class III genes. Rsc4 C-terminal mutations did not alter the stability or assembly of the RSC complex, suggesting an impact on Rsc4 function. Strikingly, a C-terminal mutation of Rsc4 did not impair RSC recruitment to the RSC-responsive genes DUT1 and SMX3 but rather changed the chromatin accessibility of DNases to their promoter regions, suggesting that the altered transcription of DUT1 and SMX3 was the consequence of altered chromatin remodeling. PMID:16782880

  17. L-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis.

    Science.gov (United States)

    Schimmeyer, Joram; Bock, Ralph; Meyer, Etienne H

    2016-01-01

    L-Galactono-1,4-lactone dehydrogenase (GLDH) catalyses the last enzymatic step of the ascorbate biosynthetic pathway in plants. GLDH is localised to mitochondria and several reports have shown that GLDH is associated with complex I of the respiratory chain. In a gldh knock-out mutant, complex I is not detectable, suggesting that GLDH is essential for complex I assembly or stability. GLDH has not been identified as a genuine complex I subunit, instead, it is present in a smaller, lowly abundant version of complex I called complex I*. In addition, GLDH activity has also been detected in smaller protein complexes within mitochondria membranes. Here, we investigated the role of GLDH during complex I assembly. We identified GLDH in complexes co-localising with some complex I assembly intermediates. Using a mutant that accumulates complex I assembly intermediates, we confirmed that GLDH is associated with the complex I assembly intermediates of 400 and 450 kDa. In addition, we detected accumulation of the 200 kDa complex I assembly intermediate in the gldh mutant. Taken together, our data suggest that GLDH is an assembly factor of the membrane arm of complex I. This function appears to be independent of the role of GLDH in ascorbate synthesis, as evidenced by the ascorbate-deficient mutant vtc2-1 accumulating wild-type levels of complex I. Therefore, we propose that GLDH is a dual-function protein that has a second, non-enzymatic function in complex I assembly as a plant-specific assembly factor. We propose an updated model for complex I assembly that includes complex I* as an assembly intermediate.

  18. Ubiquitous Over-Expression of Chromatin Remodeling Factor SRG3 Ameliorates the T Cell-Mediated Exacerbation of EAE by Modulating the Phenotypes of both Dendritic Cells and Macrophages.

    Science.gov (United States)

    Lee, Sung Won; Park, Hyun Jung; Jeon, Sung Ho; Lee, Changjin; Seong, Rho Hyun; Park, Se-Ho; Hong, Seokmann

    2015-01-01

    Although SWI3-related gene (SRG3), a chromatin remodeling factor, is critical for various biological processes including early embryogenesis and thymocyte development, it is unclear whether SRG3 is involved in the differentiation of CD4+ T cells, the key mediator of adaptive immune responses. Because it is known that experimental autoimmune encephalomyelitis (EAE) development is determined by the activation of CD4+ T helper cells, here, we investigated the role of SRG3 in EAE development using SRG3 transgenic mouse models exhibiting two distinct SRG3 expression patterns: SRG3 expression driven by either the CD2 or β-actin promoter. We found that the outcome of EAE development was completely different depending on the expression pattern of SRG3. The specific over-expression of SRG3 using the CD2 promoter facilitated EAE via the induction of Th1 and Th17 cells, whereas the ubiquitous over-expression of SRG3 using the β-actin promoter inhibited EAE by promoting Th2 differentiation and suppressing Th1 and Th17 differentiation. In addition, the ubiquitous over-expression of SRG3 polarized CD4+ T cell differentiation towards the Th2 phenotype by converting dendritic cells (DCs) or macrophages to Th2 types. SRG3 over-expression not only reduced pro-inflammatory cytokine production by DCs but also shifted macrophages from the inducible nitric oxide synthase (iNOS)-expressing M1 phenotype to the arginase-1-expressing M2 phenotype during EAE. In addition, Th2 differentiation in β-actin-SRG3 Tg mice during EAE was associated with an increase in the basophil and mast cell populations and in IL4 production. Furthermore, the increased frequency of Treg cells in the spinal cord of β-actin-SRG3 Tg mice might induce the suppression of and accelerate the recovery from EAE symptoms. Taken together, our results provide the first evidence supporting the development of a new therapeutic strategy for EAE involving the modulation of SRG3 expression to induce M2 and Th2 polarization

  19. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components

    DEFF Research Database (Denmark)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Po

    2014-01-01

    To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use nascent chromatin capture (NCC) to profile chromatin proteome dynamics durin...

  20. The architects of crenarchaeal chromatin : A biophysical characterization of chromatin proteins from Sulfolobus solfataricus

    NARCIS (Netherlands)

    Driessen, Rosalie Paula Catharina

    2014-01-01

    Understanding of chromatin organization and compaction in Archaea is currently limited. The genome of several megabasepairs long is folded by a set of small chromatin proteins to fit into the micron-sized cell. A first step in understanding archaeal chromatin organization is to study the action of i

  1. Analysis of chromatin structure at meiotic DSB sites in yeasts.

    Science.gov (United States)

    Hirota, Kouji; Fukuda, Tomoyuki; Yamada, Takatomi; Ohta, Kunihiro

    2009-01-01

    One of the major features of meiosis is a high frequency of homologous recombination that not only confers genetic diversity to a successive generation but also ensures proper segregation of chromosomes. Meiotic recombination is initiated by DNA double-strand breaks that require many proteins including the catalytic core, Spo11. In this regard, like transcription and repair, etc., recombination is hindered by a compacted chromatin structure because trans-acting factors cannot easily access the DNA. Such inhibitory effects must be alleviated prior to recombination initiation. Indeed, a number of groups showed that chromatin around recombination hotspots is less condensed, by using nucleases as a probe to assess local DNA accessibility. Here we describe a method to analyze chromatin structure of a recombination hotspot in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This method, combining micrococcal nuclease (MNase) digestion ofchromatin DNA and subsequent Southern blotting, is expected to provide information as to chromatin context around a hotspot. Moreover, by virtue of MNase preferentially targeting linker DNA, positions of several nucleosomes surrounding a hotspot can also be determined. Our protocol is a very powerful way to analyze several-kb regions of interest and can be applied to other purposes.

  2. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.

    Science.gov (United States)

    Lo, Stanley M; McElroy, Kyle A; Francis, Nicole J

    2012-01-01

    Chromatin architecture is regulated through both enzymatic and non-enzymatic activities. For example, the Polycomb Group (PcG) proteins maintain developmental gene silencing using an array of chromatin-based mechanisms. The essential Drosophila PcG protein, Posterior Sex Combs (PSC), compacts chromatin and inhibits chromatin remodeling and transcription through a non-enzymatic mechanism involving nucleosome bridging. Nucleosome bridging is achieved through a combination of nucleosome binding and self-interaction. Precisely how PSC interacts with chromatin to bridge nucleosomes is not known and is the subject of this work. We determine the stoichiometry of PSC-chromatin interactions in compact chromatin (in which nucleosomes are bridged) using Scanning Transmission Electron Microscopy (STEM). We find that full compaction occurs with one PSC per nucleosome. In addition to compacting chromatin, we show that PSC oligomerizes nucleosome arrays. PSC-mediated oligomerization of chromatin occurs at similar stoichiometry as compaction suggesting it may also involve nucleosome bridging. Interactions between the tail of histone H4 and the acidic patch of histone H2A are important for chromatin folding and oligomerization, and several chromatin proteins bind the histone H2A acidic patch. However, mutation of the acidic patch of histone H2A does not affect PSC's ability to inhibit chromatin remodeling or bridge nucleosomes. In fact, PSC does not require nucleosomes for bridging activity but can bridge naked DNA segments. PSC clusters nucleosomes on sparsely assembled templates, suggesting it interacts preferentially with nucleosomes over bare DNA. This may be due to the ability of PSC to bind free histones. Our data are consistent with a model in which each PSC binds a nucleosome and at least one other PSC to directly bridge nucleosomes and compact chromatin, but also suggest that naked DNA can be included in compacted structures. We discuss how our data highlight the diversity

  3. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.

    Directory of Open Access Journals (Sweden)

    Stanley M Lo

    Full Text Available Chromatin architecture is regulated through both enzymatic and non-enzymatic activities. For example, the Polycomb Group (PcG proteins maintain developmental gene silencing using an array of chromatin-based mechanisms. The essential Drosophila PcG protein, Posterior Sex Combs (PSC, compacts chromatin and inhibits chromatin remodeling and transcription through a non-enzymatic mechanism involving nucleosome bridging. Nucleosome bridging is achieved through a combination of nucleosome binding and self-interaction. Precisely how PSC interacts with chromatin to bridge nucleosomes is not known and is the subject of this work. We determine the stoichiometry of PSC-chromatin interactions in compact chromatin (in which nucleosomes are bridged using Scanning Transmission Electron Microscopy (STEM. We find that full compaction occurs with one PSC per nucleosome. In addition to compacting chromatin, we show that PSC oligomerizes nucleosome arrays. PSC-mediated oligomerization of chromatin occurs at similar stoichiometry as compaction suggesting it may also involve nucleosome bridging. Interactions between the tail of histone H4 and the acidic patch of histone H2A are important for chromatin folding and oligomerization, and several chromatin proteins bind the histone H2A acidic patch. However, mutation of the acidic patch of histone H2A does not affect PSC's ability to inhibit chromatin remodeling or bridge nucleosomes. In fact, PSC does not require nucleosomes for bridging activity but can bridge naked DNA segments. PSC clusters nucleosomes on sparsely assembled templates, suggesting it interacts preferentially with nucleosomes over bare DNA. This may be due to the ability of PSC to bind free histones. Our data are consistent with a model in which each PSC binds a nucleosome and at least one other PSC to directly bridge nucleosomes and compact chromatin, but also suggest that naked DNA can be included in compacted structures. We discuss how our data

  4. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling.

    Science.gov (United States)

    Toiber, Debra; Erdel, Fabian; Bouazoune, Karim; Silberman, Dafne M; Zhong, Lei; Mulligan, Peter; Sebastian, Carlos; Cosentino, Claudia; Martinez-Pastor, Barbara; Giacosa, Sofia; D'Urso, Agustina; Näär, Anders M; Kingston, Robert; Rippe, Karsten; Mostoslavsky, Raul

    2013-08-22

    DNA damage is linked to multiple human diseases, such as cancer, neurodegeneration, and aging. Little is known about the role of chromatin accessibility in DNA repair. Here, we find that the deacetylase sirtuin 6 (SIRT6) is one of the earliest factors recruited to double-strand breaks (DSBs). SIRT6 recruits the chromatin remodeler SNF2H to DSBs and focally deacetylates histone H3K56. Lack of SIRT6 and SNF2H impairs chromatin remodeling, increasing sensitivity to genotoxic damage and recruitment of downstream factors such as 53BP1 and breast cancer 1 (BRCA1). Remarkably, SIRT6-deficient mice exhibit lower levels of chromatin-associated SNF2H in specific tissues, a phenotype accompanied by DNA damage. We demonstrate that SIRT6 is critical for recruitment of a chromatin remodeler as an early step in the DNA damage response, indicating that proper unfolding of chromatin plays a rate-limiting role. We present a unique crosstalk between a histone modifier and a chromatin remodeler, regulating a coordinated response to prevent DNA damage.

  5. Assembly of the intrinsic factor domains and oligomerization of the protein in the presence of cobalamin

    DEFF Research Database (Denmark)

    Fedosov, Sergey N; Fedosova, Natalya U; Berglund, Lars;

    2004-01-01

    oligomerized. A mixture of two fragments IF(30) + IF(20) and Cbl produced a firm complex, IF(30+20).Cbl, which could not associate to dimers. In contrast to IF(30+20).Cbl, the saturated full-length monomers IF(50).Cbl dimerized with K(d) approximately 1 microM. We suggest a two-domain organization of the full......-length protein, where two distant units, IF(30) and IF(20), can be assembled only by Cbl. They are connected by a protease-sensitive link, whose native structure is likely to be important for dimerization. However, linkage between two domains is not compulsory for Cbl binding. Advantages of the two...

  6. Expression-dependent folding of interphase chromatin.

    Directory of Open Access Journals (Sweden)

    Hansjoerg Jerabek

    Full Text Available Multiple studies suggest that chromatin looping might play a crucial role in organizing eukaryotic genomes. To investigate the interplay between the conformation of interphase chromatin and its transcriptional activity, we include information from gene expression profiles into a polymer model for chromatin that incorporates genomic loops. By relating loop formation to transcriptional activity, we are able to generate chromosome conformations whose structural and topological properties are consistent with experimental data. The model particularly allows to reproduce the conformational variations that are known to occur between highly and lowly expressed chromatin regions. As previously observed in experiments, lowly expressed regions of the simulated polymers are much more compact. Due to the changes in loop formation, the distributions of chromatin loops are also expression-dependent and exhibit a steeper decay in highly active regions. As a results of entropic interaction between differently looped parts of the chromosome, we observe topological alterations leading to a preferential positioning of highly transcribed loci closer to the surface of the chromosome territory. Considering the diffusional behavior of the chromatin fibre, the simulations furthermore show that the higher the expression level of specific parts of the chromatin fibre is, the more dynamic they are. The results exhibit that variations of loop formation along the chromatin fibre, and the entropic changes that come along with it, do not only influence the structural parameters on the local scale, but also effect the global chromosome conformation and topology.

  7. Chromatin dynamics resolved with force spectroscopy

    NARCIS (Netherlands)

    Chien, Fan-Tso

    2011-01-01

    In eukaryotic cells, genomic DNA is organized in chromatin fibers composed of nucleosomes as structural units. A nucleosome contains 1.7 turns of DNA wrapped around a histone octamer and is connected to the adjacent nucleosomes with linker DNA. The folding of chromatin fibers effectively increases t

  8. Chromatin Remodelers: From Function to Dysfunction

    Directory of Open Access Journals (Sweden)

    Gernot Längst

    2015-06-01

    Full Text Available Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development.

  9. Chromatin-modifying proteins in cancer

    DEFF Research Database (Denmark)

    Fog, Cathrine K; Jensen, Klaus T; Lund, Anders Henrik

    2007-01-01

    -despite the fact that all cells in the organism contain the same genetic information. A large amount of data gathered over the last decades has demonstrated that deregulation of chromatin-modifying proteins is etiologically involved in the development and progression of cancer. Here we discuss how epigenetic...... alterations influence cancer development and review known cancer-associated alterations in chromatin-modifying proteins....

  10. Chromatin roadblocks to reprogramming 50 years on.

    Science.gov (United States)

    Skene, Peter J; Henikoff, Steven

    2012-10-29

    A half century after John Gurdon demonstrated nuclear reprogramming, for which he was awarded the 2012 Nobel Prize in Physiology or Medicine, his group provides insights into the molecular mechanisms whereby chromatin remodeling is required for nuclear reprogramming. Among the issues addressed in Gurdon's latest work are the chromatin impediments to artificially induced reprogramming, discovered by Shinya Yamanaka, who shared the award with Gurdon.

  11. Chromatin domain boundaries: insulators and beyond

    Institute of Scientific and Technical Information of China (English)

    Gong Hong WEI; De Pei LIU; Chih Chuan LIANG

    2005-01-01

    The eukaryotic genome is organized into functionally and structurally distinct domains, representing regulatory units for gene expression and chromosome behavior. DNA sequences that mark the border between adjacent domains are the insulators or boundary elements, which are required in maintenance of the function of different domains. Some insulators need others enable to play insulation activity. Chromatin domains are defined by distinct sets of post-translationally modified histones. Recent studies show that these histone modifications are also involved in establishment of sharp chromatin boundaries in order to prevent the spreading of distinct domains. Additionally, in some loci, the high-order chromatin structures for long-range looping interactions also have boundary activities, suggesting a correlation between insulators and chromatin loop domains. In this review, we will discuss recent progress in the field of chromatin domain boundaries.

  12. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage

    DEFF Research Database (Denmark)

    Hendriks, Ivo A; Treffers, Louise W; Verlaan-de Vries, Matty

    2015-01-01

    with the DNA damaging agent methyl methanesulfonate (MMS). We have uncovered a dynamic set of 20 upregulated and 33 downregulated SUMO-2 conjugates, and 755 SUMO-2 sites, of which 362 were dynamic in response to MMS. In contrast to yeast, where a response is centered on homologous recombination, we identified......Small ubiquitin-like modifiers play critical roles in the DNA damage response (DDR). To increase our understanding of SUMOylation in the mammalian DDR, we employed a quantitative proteomics approach in order to identify dynamically regulated SUMO-2 conjugates and modification sites upon treatment...... dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO...

  13. Computational strategies to address chromatin structure problems

    Science.gov (United States)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  14. The nuclear matrix and the regulation of chromatin organization and function.

    Science.gov (United States)

    Davie, J R

    1995-01-01

    Nuclear DNA is organized into loop domains, with the base of the loop being bound to the nuclear matrix. Loops with transcriptionally active and/or potentially active genes have a DNase I-sensitive chromatin structure, while repressed chromatin loops have a condensed configuration that is essentially invisible to the transcription machinery. Core histone acetylation and torsional stress appear to be responsible for the generation and/or maintenance of the open potentially active chromatin loops. The transcriptionally active region of the loop makes several dynamic attachments with the nuclear matrix and is associated with core histones that are dynamically acetylated. Histone acetyltransferase and deacetylase, which catalyze this rapid acetylation and deacetylation, are bound to the nuclear matrix. Several transcription factors are components of the nuclear matrix. Histone acetyltransferase, deacetylase, and transcription factors may contribute to the dynamic attachment of the active chromatin domains with the nuclear matrix at sites of ongoing transcription.

  15. Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells.

    Science.gov (United States)

    Therizols, Pierre; Illingworth, Robert S; Courilleau, Celine; Boyle, Shelagh; Wood, Andrew J; Bickmore, Wendy A

    2014-12-05

    During differentiation, thousands of genes are repositioned toward or away from the nuclear envelope. These movements correlate with changes in transcription and replication timing. Using synthetic (TALE) transcription factors, we found that transcriptional activation of endogenous genes by a viral trans-activator is sufficient to induce gene repositioning toward the nuclear interior in embryonic stem cells. However, gene relocation was also induced by recruitment of an acidic peptide that decondenses chromatin without affecting transcription, indicating that nuclear reorganization is driven by chromatin remodeling rather than transcription. We identified an epigenetic inheritance of chromatin decondensation that maintained central nuclear positioning through mitosis even after the TALE transcription factor was lost. Our results also demonstrate that transcriptional activation, but not chromatin decondensation, is sufficient to change replication timing.

  16. Remodelers organize cellular chromatin by counteracting intrinsic histone-DNA sequence preferences in a class-specific manner

    NARCIS (Netherlands)

    Y.M. Moshkin (Yuri); G.E. Chalkley (Gillian); T.W. Kan (Tsung Wai); B.A. Reddy (Ashok); Z. Özgür (Zeliha); W.F.J. van IJcken (Wilfred); D.H. Dekkers (Dick); J.A.A. Demmers (Jeroen); A.A. Travers (Andrew); C.P. Verrijzer (Peter)

    2012-01-01

    textabstractThe nucleosome is the fundamental repeating unit of eukaryotic chromatin. Here, we assessed the interplay between DNA sequence and ATP-dependent chromatin-remodeling factors (remodelers) in the nucleosomal organization of a eukaryotic genome. We compared the genome-wide distribution of D

  17. Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly

    Science.gov (United States)

    Bloomekatz, Joshua; Singh, Reena; Prall, Owen WJ; Dunn, Ariel C; Vaughan, Megan; Loo, Chin-San; Harvey, Richard P; Yelon, Deborah

    2017-01-01

    Communication between neighboring tissues plays a central role in guiding organ morphogenesis. During heart tube assembly, interactions with the adjacent endoderm control the medial movement of cardiomyocytes, a process referred to as cardiac fusion. However, the molecular underpinnings of this endodermal-myocardial relationship remain unclear. Here, we show an essential role for platelet-derived growth factor receptor alpha (Pdgfra) in directing cardiac fusion. Mutation of pdgfra disrupts heart tube assembly in both zebrafish and mouse. Timelapse analysis of individual cardiomyocyte trajectories reveals misdirected cells in zebrafish pdgfra mutants, suggesting that PDGF signaling steers cardiomyocytes toward the midline during cardiac fusion. Intriguingly, the ligand pdgfaa is expressed in the endoderm medial to the pdgfra-expressing myocardial precursors. Ectopic expression of pdgfaa interferes with cardiac fusion, consistent with an instructive role for PDGF signaling. Together, these data uncover a novel mechanism through which endodermal-myocardial communication can guide the cell movements that initiate cardiac morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.21172.001 PMID:28098558

  18. Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).

    Science.gov (United States)

    Soyer, Jessica L; Möller, Mareike; Schotanus, Klaas; Connolly, Lanelle R; Galazka, Jonathan M; Freitag, Michael; Stukenbrock, Eva H

    2015-06-01

    The presence or absence of specific transcription factors, chromatin remodeling machineries, chromatin modification enzymes, post-translational histone modifications and histone variants all play crucial roles in the regulation of pathogenicity genes. Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) provides an important tool to study genome-wide protein-DNA interactions to help understand gene regulation in the context of native chromatin. ChIP-seq is a convenient in vivo technique to identify, map and characterize occupancy of specific DNA fragments with proteins against which specific antibodies exist or which can be epitope-tagged in vivo. We optimized existing ChIP protocols for use in the wheat pathogen Zymoseptoria tritici and closely related sister species. Here, we provide a detailed method, underscoring which aspects of the technique are organism-specific. Library preparation for Illumina sequencing is described, as this is currently the most widely used ChIP-seq method. One approach for the analysis and visualization of representative sequence is described; improved tools for these analyses are constantly being developed. Using ChIP-seq with antibodies against H3K4me2, which is considered a mark for euchromatin or H3K9me3 and H3K27me3, which are considered marks for heterochromatin, the overall distribution of euchromatin and heterochromatin in the genome of Z. tritici can be determined. Our ChIP-seq protocol was also successfully applied to Z. tritici strains with high levels of melanization or aberrant colony morphology, and to different species of the genus (Z. ardabiliae and Z. pseudotritici), suggesting that our technique is robust. The methods described here provide a powerful framework to study new aspects of chromatin biology and gene regulation in this prominent wheat pathogen.

  19. Non coding RNA: sequence-specific guide for chromatin modification and DNA damage signaling

    Directory of Open Access Journals (Sweden)

    Sofia eFrancia

    2015-11-01

    Full Text Available Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports suggest that ncRNAs are involved in DDR signaling and homology-mediated DNA repair. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.

  20. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements).

    Science.gov (United States)

    Giresi, Paul G; Lieb, Jason D

    2009-07-01

    The binding of sequence-specific regulatory factors and the recruitment of chromatin remodeling activities cause nucleosomes to be evicted from chromatin in eukaryotic cells. Traditionally, these active sites have been identified experimentally through their sensitivity to nucleases. Here we describe the details of a simple procedure for the genome-wide isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). We also provide protocols for different methods of detecting FAIRE-enriched DNA, including use of PCR, DNA microarrays, and next-generation sequencing. FAIRE works on all eukaryotic chromatin tested to date. To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared by sonication, and phenol-chloroform extracted. Most genomic DNA is crosslinked to nucleosomes and is sequestered to the interphase, whereas DNA recovered in the aqueous phase corresponds to nucleosome-depleted regions of the genome. The isolated regions are largely coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, enhancers, insulators, and active promoters. Given its speed and simplicity, FAIRE has utility in establishing chromatin profiles of diverse cell types in health and disease, isolating DNA regulatory elements en masse for further characterization, and as a screening assay for the effects of small molecules on chromatin organization.

  1. Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling.

    Science.gov (United States)

    Francia, Sofia

    2015-01-01

    Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi) machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs) and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports show their involvement in DDR. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.

  2. Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes.

    Science.gov (United States)

    Simon, Jeffrey A; Tamkun, John W

    2002-04-01

    Polycomb and trithorax group proteins are evolutionarily conserved chromatin components that maintain stable states of gene expression. Recent studies have identified and characterized several multiprotein complexes containing these transcriptional regulators. Advances in understanding molecular activities of these complexes in vitro, and functional domains present in their subunits, suggest that they control transcription through multistep mechanisms that involve nucleosome modification, chromatin remodeling, and interaction with general transcription factors.

  3. Activation of DNA damage response signaling by condensed chromatin.

    Science.gov (United States)

    Burgess, Rebecca C; Burman, Bharat; Kruhlak, Michael J; Misteli, Tom

    2014-12-11

    The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.

  4. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    Science.gov (United States)

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic.

  5. Chromatin Fiber Dynamics under Tension and Torsion

    Directory of Open Access Journals (Sweden)

    Christophe Lavelle

    2010-04-01

    Full Text Available Genetic and epigenetic information in eukaryotic cells is carried on chromosomes, basically consisting of large compact supercoiled chromatin fibers. Micromanipulations have recently led to great advances in the knowledge of the complex mechanisms underlying the regulation of DNA transaction events by nucleosome and chromatin structural changes. Indeed, magnetic and optical tweezers have allowed opportunities to handle single nucleosomal particles or nucleosomal arrays and measure their response to forces and torques, mimicking the molecular constraints imposed in vivo by various molecular motors acting on the DNA. These challenging technical approaches provide us with deeper understanding of the way chromatin dynamically packages our genome and participates in the regulation of cellular metabolism.

  6. Chromatin targeting drugs in cancer and immunity.

    Science.gov (United States)

    Prinjha, Rab; Tarakhovsky, Alexander

    2013-08-15

    Recent advances in the enzymology of transcription and chromatin regulation have led to the discovery of proteins that play a prominent role in cell differentiation and the maintenance of specialized cell functions. Knowledge about post-synthetic DNA and histone modifications as well as information about the rules that guide the formation of multimolecular chromatin-bound complexes have helped to delineate gene-regulating pathways and describe how these pathways are altered in various pathological conditions. The present review focuses on the emerging area of therapeutic interference with chromatin function for the purpose of cancer treatment and immunomodulation.

  7. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo.

    Science.gov (United States)

    Ricci, Maria Aurelia; Manzo, Carlo; García-Parajo, María Filomena; Lakadamyali, Melike; Cosma, Maria Pia

    2015-03-12

    Nucleosomes help structure chromosomes by compacting DNA into fibers. To gain insight into how nucleosomes are arranged in vivo, we combined quantitative super-resolution nanoscopy with computer simulations to visualize and count nucleosomes along the chromatin fiber in single nuclei. Nucleosomes assembled in heterogeneous groups of varying sizes, here termed "clutches," and these were interspersed with nucleosome-depleted regions. The median number of nucleosomes inside clutches and their compaction defined as nucleosome density were cell-type-specific. Ground-state pluripotent stem cells had, on average, less dense clutches containing fewer nucleosomes and clutch size strongly correlated with the pluripotency potential of induced pluripotent stem cells. RNA polymerase II preferentially associated with the smallest clutches while linker histone H1 and heterochromatin were enriched in the largest ones. Our results reveal how the chromatin fiber is formed at nanoscale level and link chromatin fiber architecture to stem cell state.

  8. Assembly of neuronal connectivity by neurotrophic factors and leucine-rich repeat proteins

    Directory of Open Access Journals (Sweden)

    Fernanda Ledda

    2016-08-01

    Full Text Available Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders.

  9. Chromatin structure and ATRX function in mouse oocytes.

    Science.gov (United States)

    De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M

    2012-01-01

    Differentiation of chromatin structure and function during oogenesis is essential to confer the mammalian oocyte with meiotic and developmental potential. Errors in chromosome segregation during female meiosis and subsequent transmission of an abnormal chromosome complement (aneuploidy) to the early conceptus are one of the leading causes of pregnancy loss in women. The chromatin remodeling protein ATRX (α-thalassemia mental retardation X-linked) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres during meiosis. In mammalian oocytes, ATRX binds to centromeric heterochromatin domains where it is required for accurate chromosome segregation. Loss of ATRX function induces abnormal meiotic chromosome morphology, reduces histone H3 phosphorylation, and promotes a high incidence of aneuploidy associated with severely reduced fertility. The presence of centromeric breaks during the transition to the first mitosis in the early embryo indicates that the role of ATRX in chromosome segregation is mediated through an epigenetic mechanism involving the maintenance of chromatin modifications associated with pericentric heterochromatin (PCH) formation and chromosome condensation. This is consistent with the existence of a potential molecular link between centromeric and PCH in the epigenetic control of centromere function and maintenance of chromosome stability in mammalian oocytes. Dissecting the molecular mechanisms of ATRX function during meiosis will have important clinical implications towards uncovering the epigenetic factors contributing to the onset of aneuploidy in the human oocyte.

  10. The chromatin remodeller ATRX: a repeat offender in human disease.

    Science.gov (United States)

    Clynes, David; Higgs, Douglas R; Gibbons, Richard J

    2013-09-01

    The regulation of chromatin structure is of paramount importance for a variety of fundamental nuclear processes, including gene expression, DNA repair, replication, and recombination. The ATP-dependent chromatin-remodelling factor ATRX (α thalassaemia/mental retardation X-linked) has emerged as a key player in each of these processes. Exciting recent developments suggest that ATRX plays a variety of key roles at tandem repeat sequences within the genome, including the deposition of a histone variant, prevention of replication fork stalling, and the suppression of a homologous recombination-based pathway of telomere maintenance. Here, we provide a mechanistic overview of the role of ATRX in each of these processes, and propose how they may be connected to give rise to seemingly disparate human diseases.

  11. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  12. Chromatin proteins and modifications as drug targets

    DEFF Research Database (Denmark)

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control...

  13. Protocol: fine-tuning of a Chromatin Immunoprecipitation (ChIP protocol in tomato

    Directory of Open Access Journals (Sweden)

    Iusem Norberto D

    2010-04-01

    Full Text Available Abstract Background Searching thoroughly for plant cis-elements corresponding to transcription factors is worthwhile to reveal novel gene activation cascades. At the same time, a great deal of research is currently focused on epigenetic events in plants. A widely used method serving both purposes is chromatin immunoprecipitation, which was developed for Arabidopsis and other plants but is not yet operational for tomato (Solanum lycopersicum, a model plant species for a group of economically important crops. Results We developed a chromatin immunoprecipitation protocol suitable for tomato by adjusting the parameters to optimise in vivo crosslinking, purification of nuclei, chromatin extraction, DNA shearing and precipitate analysis using real-time PCR. Results were obtained with two different antibodies, five control loci and two normalisation criteria. Conclusion Here we provide a chromatin immunoprecipitation procedure for tomato leaves that could be combined with high-throughput sequencing to generate a detailed map of epigenetic modifications or genome-wide nucleosome positioning data.

  14. Absence of canonical marks of active chromatin in developmentally regulated genes.

    Science.gov (United States)

    Pérez-Lluch, Sílvia; Blanco, Enrique; Tilgner, Hagen; Curado, Joao; Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-10-01

    The interplay of active and repressive histone modifications is assumed to have a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that the transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated with the stable production of RNA, whereas unmarked chromatin would permit rapid gene activation and deactivation during development. In the latter case, regulation by transcription factors would have a comparatively more important regulatory role than chromatin marks.

  15. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes.

    Science.gov (United States)

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-07-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran's eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For

  16. Chromatin roadblocks to reprogramming 50 years on

    Directory of Open Access Journals (Sweden)

    Skene Peter J

    2012-10-01

    Full Text Available Abstract A half century after John Gurdon demonstrated nuclear reprogramming, for which he was awarded the 2012 Nobel Prize in Physiology or Medicine, his group provides insights into the molecular mechanisms whereby chromatin remodeling is required for nuclear reprogramming. Among the issues addressed in Gurdon's latest work are the chromatin impediments to artificially induced reprogramming, discovered by Shinya Yamanaka, who shared the award with Gurdon. See research article: http://www.epigeneticsandchromatin.com/content/5/1/17

  17. Etiology and Evaluation of Sperm Chromatin Anomalies

    Directory of Open Access Journals (Sweden)

    Marziyeh Tavalaee

    2008-01-01

    Full Text Available Evidence suggests that human sperm chromatin anomalies adversely affect reproductive outcomesand infertile men possess substantially amount of sperm with chromatin anomalies than fertilemen.Routine semen analysis evaluates parameters such as sperm motility and morphology, but doesnot examine the nuclear DNA integrity of spermatozoa. It has been suggested that altered nuclearchromatin structure or damaged DNA in spermatozoa could modify the special cellular functionsof human spermatozoa, and thereby affect the fertility potential. Intra-cytoplasmic sperm injection(ICSI bypass the barriers to fertilization for such a sperm, then the effect of chromatin anomalies onthe development remains a concern. Therefore, it is essential to develop and use accurate diagnostictests, which may provide better prognostic capabilities than the standard sperm assessments. Thisreview discusses our current understanding of the structure and organization of sperm DNA,the different procedures for assessment of sperm chromatin anomalies including comet assay,Chromomycin A3 (CMA3, sperm chromatin structure assay (SCSA, acridine orange test (AOT,terminal TdT-mediated dUTP-nick-end labelling (TUNEL assay, aniline blue and sperm chromatindispersion (SCD test and the impact of chromatin anomalies on reproductive outcome.

  18. Multiple functions of the von Willebrand Factor A domain in matrilins: secretion, assembly, and proteolysis

    Directory of Open Access Journals (Sweden)

    Kanbe Katsuaki

    2008-06-01

    Full Text Available Abstract The von Willebrand Factor A (vWF A domain is one of the most widely distributed structural modules in cell-matrix adhesive molecules such as intergrins and extracellular matrix proteins. Mutations in the vWF A domain of matrilin-3 cause multiple epiphyseal dysplasia (MED, however the pathological mechanism remains to be determined. Previously we showed that the vWF A domain in matrilin-1 mediates formation of a filamentous matrix network through metal-ion dependent adhesion sites in the domain. Here we show two new functions of the vWF A domain in cartilage-specific matrilins (1 and 3. First, vWF A domain regulates oligomerization of matrilins. Insertion of a vWF A domain into matrilin-3 converts the formation of a mixture of matrilin-3 tetramer, trimer, and dimer into a tetramer only, while deletion of a vWF A domain from matrilin-1 converts the formation of the native matrilin-1 trimer into a mixture of trimer and dimer. Second, the vWF A domain protects matrilin-1 from proteolysis. We identified a latent proteolytic site next to the vWF A2 domain in matrilin-1, which is sensitive to the inhibitors of matrix proteases. Deletion of the abutting vWF A domain results in degradation of matrilin-1, presumably by exposing the adjacent proteolytic site. In addition, we also confirmed the vWF A domain is vital for the secretion of matrilin-3. Secretion of the mutant matrilin-3 harbouring a point mutation within the vWF A domain, as occurred in MED patients, is markedly reduced and delayed, resulting from intracellular retention of the mutant matrilin-3. Taken together, our data suggest that different mutations/deletions of the vWF A domain in matrilins may lead to distinct pathological mechanisms due to the multiple functions of the vWF A domain.

  19. Distributed probing of chromatin structure in vivo reveals pervasive chromatin accessibility for expressed and non-expressed genes during tissue differentiation in C. elegans

    Directory of Open Access Journals (Sweden)

    Sha Ky

    2010-08-01

    Full Text Available Abstract Background Tissue differentiation is accompanied by genome-wide changes in the underlying chromatin structure and dynamics, or epigenome. By controlling when, where, and what regulatory factors have access to the underlying genomic DNA, the epigenome influences the cell's transcriptome and ultimately its function. Existing genomic methods for analyzing cell-type-specific changes in chromatin generally involve two elements: (i a source for purified cells (or nuclei of distinct types, and (ii a specific treatment that partitions or degrades chromatin by activity or structural features. For many cell types of great interest, such assays are limited by our inability to isolate the relevant cell populations in an organism or complex tissue containing an intertwined mixture of other cells. This limitation has confined available knowledge of chromatin dynamics to a narrow range of biological systems (cell types that can be sorted/separated/dissected in large numbers and tissue culture models or to amalgamations of diverse cell types (tissue chunks, whole organisms. Results Transgene-driven expression of DNA/chromatin modifying enzymes provides one opportunity to query chromatin structures in expression-defined cell subsets. In this work we combine in vivo expression of a bacterial DNA adenine methyltransferase (DAM with high throughput sequencing to sample tissue-specific chromatin accessibility on a genome-wide scale. We have applied the method (DALEC: Direct Asymmetric Ligation End Capture towards mapping a cell-type-specific view of genome accessibility as a function of differentiated state. Taking advantage of C. elegans strains expressing the DAM enzyme in diverse tissues (body wall muscle, gut, and hypodermis, our efforts yield a genome-wide dataset measuring chromatin accessibility at each of 538,000 DAM target sites in the C. elegans (diploid genome. Conclusions Validating the DALEC mapping results, we observe a strong association

  20. Chromatin domains and prediction of MAR sequences.

    Science.gov (United States)

    Boulikas, T

    1995-01-01

    Polynuceosomes are constrained into loops or domains and are insulated from the effects of chromatin structure and torsional strain from flanking domains by the cross-complexation of matrix-attached regions (MARs) and matrix proteins. MARs or SARs have an average size of 500 bp, are spaced about every 30 kb, and are control elements maintaining independent realms of gene activity. A fraction of MARs may cohabit with core origin replication (ORIs) and another fraction might cohabit with transcriptional enhancers. DNA replication, transcription, repair, splicing, and recombination seem to take place on the nuclear matrix. Classical AT-rich MARs have been proposed to anchor the core enhancers and core origins complexed with low abundancy transcription factors to the nuclear matrix via the cooperative binding to MARs of abundant classical matrix proteins (topoisomerase II, histone H1, lamins, SP120, ARBP, SATB1); this creates a unique nuclear microenvironment rich in regulatory proteins able to sustain transcription, replication, repair, and recombination. Theoretical searches and experimental data strongly support a model of activation of MARs and ORIs by transcription factors. A set of 21 characteristics are deduced or proposed for MAR/ORI sequences including their enrichment in inverted repeats, AT tracts, DNA unwinding elements, replication initiator protein sites, homooligonucleotide repeats (i.e., AAA, TTT, CCC), curved DNA, DNase I-hypersensitive sites, nucleosome-free stretches, polypurine stretches, and motifs with a potential for left-handed and triplex structures. We are establishing Banks of ORI and MAR sequences and have undertaken a large project of sequencing a large number of MARs in an effort to determine classes of DNA sequences in these regulatory elements and to understand their role at the origins of replication and transcriptional enhancers.

  1. Chromatin Dynamics in Vivo: A Game of Musical Chairs

    Directory of Open Access Journals (Sweden)

    Daniël P. Melters

    2015-08-01

    Full Text Available Histones are a major component of chromatin, the nucleoprotein complex fundamental to regulating transcription, facilitating cell division, and maintaining genome integrity in almost all eukaryotes. In addition to canonical, replication-dependent histones, replication-independent histone variants exist in most eukaryotes. In recent years, steady progress has been made in understanding how histone variants assemble, their involvement in development, mitosis, transcription, and genome repair. In this review, we will focus on the localization of the major histone variants H3.3, CENP-A, H2A.Z, and macroH2A, as well as how these variants have evolved, their structural differences, and their functional significance in vivo.

  2. Telomere Chromatin Condensation Assay (TCCA): a novel approach to study structural telomere integrity.

    Science.gov (United States)

    Gonzalez-Vasconcellos, Iria; Alonso-Rodríguez, Silvia; López-Baltar, Isidoro; Fernández, José Luis

    2015-01-01

    Telomeres, the DNA-protein complexes located at the end of linear eukaryotic chromosomes are essential for genome stability. Improper higher-order chromatin organization at the chromosome ends can give rise to telomeric recombination and genomic instability. We report the development of an assay to quantify differences in the condensation of telomeric chromatin, thereby offering new opportunities to study telomere biology and stability. We have combined a DNA nuclease digestion with a quantitative PCR (qPCR) assay of telomeric DNA, which we term the Telomere Chromatin Condensation Assay (TCCA). By quantifying the relative quantities of telomeric DNA that are progressively digested with the exonuclease Bal 31 the method can discriminate between different levels of telomeric chromatin condensation. The structural chromatin packaging at telomeres shielded against exonuclease digestion delivered an estimate, which we term Chromatin Protection Factor (CPF) that ranged from 1.7 to 2.3 fold greater than that present in unpacked DNA. The CPF was significantly decreased when cell cultures were incubated with the DNA hypomethylating agent 5-azacytidine, demonstrating the ability of the TCCA assay to discriminate between packaging levels of telomeric DNA.

  3. Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis

    Directory of Open Access Journals (Sweden)

    Alexandre A.S.F. Raposo

    2015-03-01

    Full Text Available The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.

  4. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.

    Directory of Open Access Journals (Sweden)

    Gary Hon

    2008-10-01

    Full Text Available Computational methods to identify functional genomic elements using genetic information have been very successful in determining gene structure and in identifying a handful of cis-regulatory elements. But the vast majority of regulatory elements have yet to be discovered, and it has become increasingly apparent that their discovery will not come from using genetic information alone. Recently, high-throughput technologies have enabled the creation of information-rich epigenetic maps, most notably for histone modifications. However, tools that search for functional elements using this epigenetic information have been lacking. Here, we describe an unsupervised learning method called ChromaSig to find, in an unbiased fashion, commonly occurring chromatin signatures in both tiling microarray and sequencing data. Applying this algorithm to nine chromatin marks across a 1% sampling of the human genome in HeLa cells, we recover eight clusters of distinct chromatin signatures, five of which correspond to known patterns associated with transcriptional promoters and enhancers. Interestingly, we observe that the distinct chromatin signatures found at enhancers mark distinct functional classes of enhancers in terms of transcription factor and coactivator binding. In addition, we identify three clusters of novel chromatin signatures that contain evolutionarily conserved sequences and potential cis-regulatory elements. Applying ChromaSig to a panel of 21 chromatin marks mapped genomewide by ChIP-Seq reveals 16 classes of genomic elements marked by distinct chromatin signatures. Interestingly, four classes containing enrichment for repressive histone modifications appear to be locally heterochromatic sites and are enriched in quickly evolving regions of the genome. The utility of this approach in uncovering novel, functionally significant genomic elements will aid future efforts of genome annotation via chromatin modifications.

  5. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes.

    Science.gov (United States)

    Thijssen, Peter E; Tobi, Elmar W; Balog, Judit; Schouten, Suzanne G; Kremer, Dennis; El Bouazzaoui, Fatiha; Henneman, Peter; Putter, Hein; Eline Slagboom, P; Heijmans, Bastiaan T; van der Maarel, Silvère M

    2013-05-01

    Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence.

  6. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence

    Science.gov (United States)

    Thijssen, Peter E.; Tobi, Elmar W.; Balog, Judit; Schouten, Suzanne G.; Kremer, Dennis; El Bouazzaoui, Fatiha; Henneman, Peter; Putter, Hein; Eline Slagboom, P.; Heijmans, Bastiaan T.; Van der Maarel, Silvère M.

    2013-01-01

    Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence. PMID:23644601

  7. A Review of Two Multiscale Methods for the Simulation of Macromolecular Assemblies: Multiscale Perturbation and Multiscale Factorization

    Directory of Open Access Journals (Sweden)

    Stephen Pankavich

    2015-02-01

    Full Text Available Many mesoscopic N-atom systems derive their structural and dynamical properties from processes coupled across multiple scales in space and time. That is, they simultaneously deform or display collective behaviors, while experiencing atomic scale vibrations and collisions. Due to the large number of atoms involved and the need to simulate over long time periods of biological interest, traditional computational tools, like molecular dynamics, are often infeasible for such systems. Hence, in the current review article, we present and discuss two recent multiscale methods, stemming from the N-atom formulation and an underlying scale separation, that can be used to study such systems in a friction-dominated regime: multiscale perturbation theory and multiscale factorization. These novel analytic foundations provide a self-consistent approach to yield accurate and feasible long-time simulations with atomic detail for a variety of multiscale phenomena, such as viral structural transitions and macromolecular self-assembly. As such, the accuracy and efficiency of the associated algorithms are demonstrated for a few representative biological systems, including satellite tobacco mosaic virus (STMV and lactoferrin.

  8. Chromatin associations in Arabidopsis interphase nuclei

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2014-11-01

    Full Text Available The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analysed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fibre movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns.Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its ten centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.

  9. Chromatin ring formation at plant centromeres

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2016-02-01

    Full Text Available We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.

  10. Functions of the Proteasome on Chromatin

    Science.gov (United States)

    McCann, Tyler S.; Tansey, William P.

    2014-01-01

    The proteasome is a large self-compartmentalized protease complex that recognizes, unfolds, and destroys ubiquitylated substrates. Proteasome activities are required for a host of cellular functions, and it has become clear in recent years that one set of critical actions of the proteasome occur on chromatin. In this review, we discuss some of the ways in which proteasomes directly regulate the structure and function of chromatin and chromatin regulatory proteins, and how this influences gene transcription. We discuss lingering controversies in the field, the relative importance of proteolytic versus non-proteolytic proteasome activities in this process, and highlight areas that require further investigation. Our intention is to show that proteasomes are involved in major steps controlling the expression of the genetic information, that proteasomes use both proteolytic mechanisms and ATP-dependent protein remodeling to accomplish this task, and that much is yet to be learned about the full spectrum of ways that proteasomes influence the genome. PMID:25422899

  11. Functions of the Proteasome on Chromatin

    Directory of Open Access Journals (Sweden)

    Tyler S. McCann

    2014-11-01

    Full Text Available The proteasome is a large self-compartmentalized protease complex that recognizes, unfolds, and destroys ubiquitylated substrates. Proteasome activities are required for a host of cellular functions, and it has become clear in recent years that one set of critical actions of the proteasome occur on chromatin. In this review, we discuss some of the ways in which proteasomes directly regulate the structure and function of chromatin and chromatin regulatory proteins, and how this influences gene transcription. We discuss lingering controversies in the field, the relative importance of proteolytic versus non-proteolytic proteasome activities in this process, and highlight areas that require further investigation. Our intention is to show that proteasomes are involved in major steps controlling the expression of the genetic information, that proteasomes use both proteolytic mechanisms and ATP-dependent protein remodeling to accomplish this task, and that much is yet to be learned about the full spectrum of ways that proteasomes influence the genome.

  12. Evaluation of sperm chromatin structure in boar semen

    Directory of Open Access Journals (Sweden)

    Banaszewska Dorota

    2015-06-01

    Full Text Available This study was an attempt to evaluate sperm chromatin structure in the semen of insemination boars. Preparations of semen were stained with acridine orange, aniline blue, and chromomycin A3. Abnormal protamination occurred more frequently in young individuals whose sexual development was not yet complete, but may also be an individual trait. This possibility is important to factor into the decision regarding further exploitation of insemination boars. Thus a precise assessment of abnormalities in the protamination process would seem to be expedient as a tool supplementing morphological and molecular evaluation of semen. Disruptions in nucleoprotein structure can be treated as indicators of the biological value of sperm cells.

  13. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP.

    Science.gov (United States)

    Muratcioglu, Serena; Presman, Diego M; Pooley, John R; Grøntved, Lars; Hager, Gordon L; Nussinov, Ruth; Keskin, Ozlem; Gursoy, Attila

    2015-09-15

    The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate to regulate gene expression. This study suggests models for the assembly of the SWI/SNF-A (SWItch/Sucrose-NonFermentable) complex and its interaction with the GR. We used the PRISM algorithm (PRotein Interactions by Structural Matching) to predict the three-dimensional complex structures of the target proteins. The structural models indicate that BAF57 and/or BAF250 mediate the interaction between the GR and the SWI/SNF-A complex, corroborating experimental data. They further suggest that a BAF60a/BAF155 and/or BAF60a/BAF170 interaction is critical for association between the core and variant subunits. Further, we model the interaction between GR and CCAAT-enhancer-binding proteins (C/EBPs), since the GR can regulate gene expression indirectly by interacting with other transcription factors like C/EBPs. We observe that GR can bind to bZip domains of the C/EBPα homodimer as both a monomer and dimer of the DNA-binding domain. In silico mutagenesis of the predicted interface residues confirm the importance of these residues in binding. In vivo analysis of the computationally suggested mutations reveals that double mutations of the leucine residues (L317D+L335D) may disrupt the interaction between GR and C/EBPα. Determination of the complex structures of the GR is of fundamental relevance to understanding its interactions and functions, since the function of a protein or a

  14. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...... framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures...... reassembly on nascent DNA strands. The aim of this review is to discuss how histones - new and old - are handled at the replication fork, highlighting new mechanistic insights and revisiting old paradigms....

  15. Chromatin proteins and modifications as drug targets

    DEFF Research Database (Denmark)

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control...... is a frequent event in disease, and the first epigenetic-based therapies for cancer treatment have been approved. A generation of new classes of potent and specific inhibitors for several chromatin-associated proteins have shown promise in preclinical trials. Although the biology of epigenetic regulation...

  16. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    OpenAIRE

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the rece...

  17. Statistical-mechanical lattice models for protein-DNA binding in chromatin

    CERN Document Server

    Teif, Vladimir B

    2010-01-01

    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibriums measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quant...

  18. The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T cell activation.

    Science.gov (United States)

    Attema, Joanne L; Reeves, Raymond; Murray, Vincent; Levichkin, Ilya; Temple, Mark D; Tremethick, David J; Shannon, M Frances

    2002-09-01

    Controlled production of the cytokine IL-2 plays a key role in the mammalian immune system. Expression from the gene is tightly regulated with no detectable expression in resting T cells and a strong induction following T cell activation. The IL-2 proximal promoter (+1 to -300) contains many well-defined transcriptional activation elements that respond to T cell stimulation. To determine the role of chromatin structure in the regulation of interleukin-2 gene transcription, nucleosome assembly across the IL-2 promoter region was examined using in vitro chromatin reconstitution assays. The IL-2 promoter assembles a nucleosome that is both translationally and rotationally positioned, spanning some of the major functional control elements. The binding of transcription factors to these elements, with the exception of the architectural protein HMGA1, was occluded by the presence of the nucleosome. Analysis of the chromatin architecture of the IL-2 gene in Jurkat T cells provided evidence for the presence of a similarly positioned nucleosome in vivo. The region encompassed by this nucleosome becomes remodeled following activation of Jurkat T cells. These observations suggest that the presence of a positioned nucleosome across the IL-2 proximal promoter may play an important role in maintaining an inactive gene in resting T cells and that remodeling of this nucleosome is important for gene activation.

  19. The interplay among chromatin dynamics, cell cycle checkpoints and repair mechanisms modulates the cellular response to DNA damage.

    Science.gov (United States)

    Lazzaro, Federico; Giannattasio, Michele; Muzi-Falconi, Marco; Plevani, Paolo

    2007-06-01

    Cells are continuously under the assault of endogenous and exogenous genotoxic stress that challenges the integrity of DNA. To cope with such a formidable task cells have evolved surveillance mechanisms, known as checkpoints, and a variety of DNA repair systems responding to different types of DNA lesions. These lesions occur in the context of the chromatin structure and, as expected for all DNA transactions, the cellular response to DNA damage is going to be influenced by the chromatin enviroment. In this review, we will discuss recent studies implicating chromatin remodelling factors and histone modifications in the response to DNA double-strand breaks (DSBs) and in checkpoint activation in response to UV lesions.

  20. Chromatin compaction protects genomic DNA from radiation damage.

    Directory of Open Access Journals (Sweden)

    Hideaki Takata

    Full Text Available Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs in compact chromatin after ionizing irradiation was 5-50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.

  1. Rapid genome-scale mapping of chromatin accessibility in tissue

    DEFF Research Database (Denmark)

    Grøntved, Lars; Bandle, Russell; John, Sam;

    2012-01-01

    BACKGROUND: The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant...

  2. Research Discovers Frequent Mutations of Chromatin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the support of National Natural Science Foundation of China, BGI, the largest genomics organization in the world, and Peking University Shenzhen Hospital, published online in Nature Geneticsics that the study on frequent mutations of chromatin remodeling genes in transitional cell carcinoma (TCC) of thebladder on August 8th, 2011. Their study provides a valuable genetic basis for future studies on TCC,

  3. Chromatin and epigenetics in all their states

    NARCIS (Netherlands)

    Bey, Till; Jamge, Suraj; Klemme, Sonja; Komar, Dorota Natalia; Gall, Le Sabine; Mikulski, Pawel; Schmidt, Martin; Zicola, Johan; Berr, Alexandre

    2016-01-01

    In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a meetin

  4. Epigenetic chromatin silencing: bistability and front propagation

    Science.gov (United States)

    Sedighi, Mohammad; Sengupta, Anirvan M.

    2007-12-01

    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.

  5. Histone variants: key players of chromatin.

    Science.gov (United States)

    Biterge, Burcu; Schneider, Robert

    2014-06-01

    Histones are fundamental structural components of chromatin. Eukaryotic DNA is wound around an octamer of the core histones H2A, H2B, H3, and H4. Binding of linker histone H1 promotes higher order chromatin organization. In addition to their structural role, histones impact chromatin function and dynamics by, e.g., post-translational histone modifications or the presence of specific histone variants. Histone variants exhibit differential expression timings (DNA replication-independent) and mRNA characteristics compared to canonical histones. Replacement of canonical histones with histone variants can affect nucleosome stability and help to create functionally distinct chromatin domains. In line with this, several histone variants have been implicated in the regulation of cellular processes such as DNA repair and transcriptional activity. In this review, we focus on recent progress in the study of core histone variants H2A.X, H2A.Z, macroH2A, H3.3, and CENP-A, as well as linker histone H1 variants, their functions and their links to development and disease.

  6. Chromatin conformation capture strategies in molecular diagnostics

    NARCIS (Netherlands)

    Vree, P.J.P. de

    2015-01-01

    In this thesis I have explored the clinical potential of the 4C-technology and worked on development of a novel chromatin conformation capture based technology, called TLA. In chapter 2 I describe how the 4C-technology can be applied as a targeted strategy to identify putative fusion-genes or chromo

  7. The great repression: chromatin and cryptic transcription.

    Science.gov (United States)

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  8. A study of the interaction between ethidium bromide and rye chromatin: comparison with calf thymus chromatin.

    Science.gov (United States)

    LaRue, H; Pallotta, D

    1976-09-01

    We studied the interaction of ethidium bromide with rye and calf thymus chromatin. Both types of chromatin have the same dye accessibility, which is about 50% of that of DNA. From this result we conclude that the molecular structure of these two chromatins is similar. For rye, the extraction of H1 produces no change in the binding of ethidium bromide. The subsequent extraction of H2A and H2B produces a 14% increase in the binding, and the removal of H3 and H4, another 54% increase. At this stage, the number of binding sites is still less than that of DNA. This is presumably due to the presence of some tightly bound non-histones. Thus, the arginine-rich histones and the tightly bound non-histones are most responsible for limiting the binding of ethidium bromide to rye chromatin.

  9. FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription.

    Directory of Open Access Journals (Sweden)

    Nishal S Patel

    Full Text Available Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR signalling in Raldh2-/- embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that

  10. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

    Science.gov (United States)

    Olcese, Chiara; Patel, Mitali P.; Shoemark, Amelia; Kiviluoto, Santeri; Legendre, Marie; Williams, Hywel J.; Vaughan, Cara K.; Hayward, Jane; Goldenberg, Alice; Emes, Richard D.; Munye, Mustafa M.; Dyer, Laura; Cahill, Thomas; Bevillard, Jeremy; Gehrig, Corinne; Guipponi, Michel; Chantot, Sandra; Duquesnoy, Philippe; Thomas, Lucie; Jeanson, Ludovic; Copin, Bruno; Tamalet, Aline; Thauvin-Robinet, Christel; Papon, Jean- François; Garin, Antoine; Pin, Isabelle; Vera, Gabriella; Aurora, Paul; Fassad, Mahmoud R.; Jenkins, Lucy; Boustred, Christopher; Cullup, Thomas; Dixon, Mellisa; Onoufriadis, Alexandros; Bush, Andrew; Chung, Eddie M. K.; Antonarakis, Stylianos E.; Loebinger, Michael R.; Wilson, Robert; Armengot, Miguel; Escudier, Estelle; Hogg, Claire; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Beales, Philip L.; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Allan, Daly; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; McCarthy, Shane; Muddyman, Dawn; Muntoni, Francesco; Parker, Victoria; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter J.; Schmidts, Miriam; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Amselem, Serge; Sun, Zhaoxia; Bartoloni, Lucia; Blouin, Jean-Louis; Mitchison, Hannah M.

    2017-01-01

    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins. PMID:28176794

  11. Direct chromatin PCR (DC-PCR: hypotonic conditions allow differentiation of chromatin states during thermal cycling.

    Directory of Open Access Journals (Sweden)

    Sergei Vatolin

    Full Text Available Current methods to study chromatin configuration are not well suited for high throughput drug screening since they require large cell numbers and multiple experimental steps that include centrifugation for isolation of nuclei or DNA. Here we show that site specific chromatin analysis can be achieved in one step by simply performing direct chromatin PCR (DC-PCR on cells. The basic underlying observation was that standard hypotonic PCR buffers prevent global cellular chromatin solubilization during thermal cycling while more loosely organized chromatin can be amplified. Despite repeated heating to >90 °C, 41 of 61 tested 5' sequences of silenced genes (CDKN2A, PU.1, IRF4, FOSB, CD34 were not amplifiable while 47 could be amplified from expressing cells. Two gene regions (IRF4, FOSB even required pre-heating of cells in isotonic media to allow this differentiation; otherwise none of 19 assayed sequences yielded PCR products. Cells with baseline expression or epigenetic reactivation gave similar DC-PCR results. Silencing during differentiation of CD34 positive cord blood cells closed respective chromatin while treatment of myeloma cells with an IRF4 transcriptional inhibitor opened a site to DC-PCR that was occupied by RNA polymerase II and NFκB as determined by ChIP. Translation into real-time PCR can not be achieved with commercial real-time PCR buffers which potently open chromatin, but even with simple ethidium bromide addition to standard PCR mastermix we were able to identify hits in small molecules screens that suppressed IRF4 expression or reactivated CDKN2A in myeloma cells using densitometry or visual inspection of PCR plates under UV light. While need in drug development inspired this work, application to genome-wide analysis appears feasible using phi29 for selective amplification of open cellular chromatin followed by library construction from supernatants since such supernatants yielded similar results as gene specific DC-PCR.

  12. The many faces of plant chromatin: Meeting summary of the 4th European workshop on plant chromatin 2015, Uppsala, Sweden.

    Science.gov (United States)

    Mozgová, Iva; Köhler, Claudia; Gaudin, Valérie; Hennig, Lars

    2015-01-01

    In June 2015, the fourth European Workshop on Plant Chromatin took place in Uppsala, Sweden, bringing together 80 researchers studying various aspects of plant chromatin and epigenetics. The intricate relationships between plant chromatin dynamics and gene expression change, chromatin organization within the plant cell nucleus, and the impact of chromatin structure on plant development were discussed. Among the main highlights of the meeting were an ever-growing list of newly identified players in chromatin structure establishment and the development of novel tools and approaches to foster our understanding of chromatin-mediated gene regulation, taking into account the context of the plant cell nucleus and its architecture. In this report, we summarize some of the main advances and prospects of plant chromatin research presented at this meeting.

  13. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae.

    Science.gov (United States)

    Czaja, Wioletta; Mao, Peng; Smerdon, Michael J

    2014-04-01

    The base excision repair (BER) pathway is a conserved DNA repair system required to maintain genomic integrity and prevent mutagenesis in all eukaryotic cells. Nevertheless, how BER operates in vivo (i.e. in the context of chromatin) is poorly understood. We have investigated the role of an essential ATP-dependent chromatin remodelling (ACR) complex RSC (Remodels the Structure of Chromatin) in BER of intact yeast cells. We show that depletion of STH1, the ATPase subunit of RSC, causes enhanced sensitivity to the DNA alkylating agent methyl methanesulfonate (MMS) and results in a substantial inhibition of BER, at the GAL1 locus and in the genome overall. Consistent with this observation, the DNA in chromatin is less accessible to micrococcal nuclease digestion in the absence of RSC. Quantitative PCR results indicate that repair deficiency in STH1 depleted cells is not due to changes in the expression of BER genes. Collectively, our data indicates the RSC complex promotes efficient BER in chromatin. These results provide, for the first time, a link between ATP-dependent chromatin remodelling and BER in living cells.

  14. Impact of gain compression factor on modulation characteristics of InGaAs/GaAs self-assembled quantum dot lasers

    Science.gov (United States)

    Kariminezhad, Farzaneh; Rajaei, Esfandiar; Fali, Alireza; Mirzaei, Reyhaneh

    2016-12-01

    This paper investigates the influence of gain compression factor on the modulation response of InGaAs/GaAs self-assembled quantum dot laser based on rate equations. For different gain compression factors the output power-current characteristics, light emissions of quantum dot laser have been simulated and effect of gain compression factor changes on quantum dot laser is illustrated. Also, small and large-signal response of quantum dot lasers is studied and the impact of the gain compression factor is presented. It explains that increase of gain compression factor, decreases small-signal modulation characteristics, nevertheless, improves large-signal response of quantum dot lasers. It helps to generate better laser signal quality, higher eye and smaller jitter. The large-signal behavior of a laser diode determines its capability for digital data transfer. The modulation speed of quantum dot lasers is of specific importance if such lasers are considered for optical communication systems.

  15. Studies on Differential Nuclear Translocation Mechanism and Assembly of the Three Subunits of the Arabidopsis thaliana Transcription Factor NF-Y

    Institute of Scientific and Technical Information of China (English)

    Dieter Hackenberg; Yanfang Wu; Andrea Voigt; Robert Adams; Peter Schramm; Bernhard Grimm

    2012-01-01

    The eukaryotic transcription factor NF-Y consists of three subunits(A,B,and C),which are encoded in Arabidopsis thaliana in multigene families consisting of 10,13,and 13 genes,respectively.In principle,all potential combinations of the subunits are possible for the assembly of the heterotrimeric complex.We aimed at assessing the probability of each subunit to participate in the assembly of NF-Y.The evaluation of physical interactions among all members of the NF-Y subunit families indicate a strong requirement for NF-YB/NF-YC heterodimerization before the entire complex can be accomplished.By means of a modified yeast two-hybrid system assembly of all three subunits to a heterotrimeric complex was demonstrated.Using GFP fusion constructs,NF-YA and NF-YC localization in the nucleus was demonstrated,while NFYB is solely imported into the nucleus as a NF-YC-associated heterodimer NF-YC.This piggyback transport of the two Arabidopsis subunits differs from the import of the NF-Y heterotrimer of heterotrophic organisms.Based on a peptide structure model of the histone-fold-motifs,disulfide bonding among intramolecular conserved cysteine residues of NF-YB,which is responsible for the redox-regulated assembly of NF-YB and NF-YC in human and Aspergillus nidulans,can be excluded for Arabidopsis NF-YB.

  16. Cavity preparation/assembly techniques and impact on Q, realistic Q-factors in a module, review of modules

    Science.gov (United States)

    Kneisel, Peter

    2006-02-01

    This contribution summarizes the surface preparation procedures for niobium cavities presently used both in laboratory experiments and for modules, such as buffered chemical polishing (BCP), electropolishing (EP), high pressure ultrapure water rinsing (HPR), CO 2 snow cleaning and high temperature heat treatments for hydrogen degassing or post-purification. The impact of surface treatments and the degree of cleanliness during assembly procedures on cavity performance ( Q-value and accelerating gradient Eacc) will be discussed. In addition, an attempt will be made to summarize the experiences made in module assemblies in different labs/projects such as DESY (TTF), Jlab (Upgrade) and SNS.

  17. Cavity preparation/assembly techniques and impact on Q, realistic Q-factors in a module, review of modules

    Energy Technology Data Exchange (ETDEWEB)

    Kneisel, Peter [Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: kneisel@jlab.org

    2006-02-01

    This contribution summarizes the surface preparation procedures for niobium cavities presently used both in laboratory experiments and for modules, such as buffered chemical polishing (BCP), electropolishing (EP), high pressure ultrapure water rinsing (HPR), CO{sub 2} snow cleaning and high temperature heat treatments for hydrogen degassing or post-purification. The impact of surface treatments and the degree of cleanliness during assembly procedures on cavity performance (Q-value and accelerating gradient E {sub acc}) will be discussed. In addition, an attempt will be made to summarize the experiences made in module assemblies in different labs/projects such as DESY (TTF), Jlab (Upgrade) and SNS.

  18. Cavity Preparation/assembly Techniques and Impact on Q, Realistic Q - Factors in a Module, Review of Modules

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel

    2005-03-19

    This contribution summarizes the surface preparation procedures for niobium cavities presently used both in laboratory experiments and for modules, such as buffered chemical polishing (BCP), electropolishing (EP), high pressure ultrapure water rinsing (HPR), CO{sub 2} snow cleaning and high temperature heat treatments for hydrogen degassing or postpurification. The impact of surface treatments and the degree of cleanliness during assembly procedures on cavity performance (Q - value and accelerating gradient E{sub acc}) will be discussed. In addition, an attempt will be made to summarize the experiences made in module assemblies in different labs/projects such as DESY(TTF), Jlab (Upgrade) and SNS.

  19. Analysis of Myc-induced histone modifications on target chromatin.

    Directory of Open Access Journals (Sweden)

    Francesca Martinato

    Full Text Available The c-myc proto-oncogene is induced by mitogens and is a central regulator of cell growth and differentiation. The c-myc product, Myc, is a transcription factor that binds a multitude of genomic sites, estimated to be over 10-15% of all promoter regions. Target promoters generally pre-exist in an active or poised chromatin state that is further modified by Myc, contributing to fine transcriptional regulation (activation or repression of the afferent gene. Among other mechanisms, Myc recruits histone acetyl-transferases to target chromatin and locally promotes hyper-acetylation of multiple lysines on histones H3 and H4, although the identity and combination of the modified lysines is unknown. Whether Myc dynamically regulates other histone modifications (or marks at its binding sites also remains to be addressed. Here, we used quantitative chromatin immunoprecipitation (qChIP to profile a total of 24 lysine-acetylation and -methylation marks modulated by Myc at target promoters in a human B-cell line with a regulatable c-myc transgene. Myc binding promoted acetylation of multiple lysines, primarily of H3K9, H3K14, H3K18, H4K5 and H4K12, but significantly also of H4K8, H4K91 and H2AK5. Dimethylation of H3K79 was also selectively induced at target promoters. A majority of target promoters showed co-induction of multiple marks - in various combinations - correlating with recruitment of the two HATs tested (Tip60 and HBO1, incorporation of the histone variant H2A.Z and transcriptional activation. Based on this and previous findings, we surmise that Myc recruits the Tip60/p400 complex to achieve a coordinated histone acetylation/exchange reaction at activated promoters. Our data are also consistent with the additive and redundant role of multiple acetylation events in transcriptional activation.

  20. 染色质重塑因子ARID1A的肿瘤抑制作用%Tumor suppressor role of chromatin-remodeling factor ARID1A

    Institute of Scientific and Technical Information of China (English)

    郭晓强; 张巧霞; 黄卫人; 段相林; 蔡志明

    2013-01-01

    The mammalian SWI/SNF complex is one of ATP-dependent chromatin-remodeling complexes, which plays important roles in cell proliferation, differentiation, development and tumor suppression. ARID 1A (AT-rich interactive domain-containing protein 1A) is a large subunit of SWI/SNF complex, and also an ARID family member with non-sequence-specific DNA binding activity. ARIDIA is a tumor suppressor gene which is frequently mutated in many cancers, such as ovarian, bladder and gastric cancers. ARIDIA can suppress cell proliferation through the up-regulation of p21 and the down-regulation of E2F-responsive genes. These findings on ARIDIA and its role of tumor suppression contribute to understanding the mechanism of cancer development and developing new therapy for cancer.lt is introduced in the review that ARIDIA basic characteristic, related to cancer development, and biological role for full understanding of ARIDIA%哺乳动物SWI/SNF复合物是一种ATP依赖的染色质重塑复合物,在细胞增殖、分化、发育和肿瘤抑制过程中发挥着重要作用.ARID 1A是一种SWI/SNF复合物亚基,此外还是一种ARID家族成员,具有非序列特异性DNA结合活性.ARID 1A发挥着肿瘤抑制作用,在多种肿瘤如卵巢癌、膀胱癌和胃癌等存在频繁基因突变.ARID1A可通过上调p21和下调E2F-反应基因表达而抑制细胞增殖.ARID1A与肿瘤抑制作用的发现对癌症发生的理解和癌症新治疗有重要裨益.文章介绍了ARID 1A的基本特征、肿瘤发生的关联及生物学作用,以期对ARID 1A有一个全面理解.

  1. Standardizing chromatin research: a simple and universal method for ChIP-seq.

    Science.gov (United States)

    Arrigoni, Laura; Richter, Andreas S; Betancourt, Emily; Bruder, Kerstin; Diehl, Sarah; Manke, Thomas; Bönisch, Ulrike

    2016-04-20

    Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is a key technique in chromatin research. Although heavily applied, existing ChIP-seq protocols are often highly fine-tuned workflows, optimized for specific experimental requirements. Especially the initial steps of ChIP-seq, particularly chromatin shearing, are deemed to be exceedingly cell-type-specific, thus impeding any protocol standardization efforts. Here we demonstrate that harmonization of ChIP-seq workflows across cell types and conditions is possible when obtaining chromatin from properly isolated nuclei. We established an ultrasound-based nuclei extraction method (NEXSON: Nuclei EXtraction by SONication) that is highly effective across various organisms, cell types and cell numbers. The described method has the potential to replace complex cell-type-specific, but largely ineffective, nuclei isolation protocols. By including NEXSON in ChIP-seq workflows, we completely eliminate the need for extensive optimization and sample-dependent adjustments. Apart from this significant simplification, our approach also provides the basis for a fully standardized ChIP-seq and yields highly reproducible transcription factor and histone modifications maps for a wide range of different cell types. Even small cell numbers (∼10,000 cells per ChIP) can be easily processed without application of modified chromatin or library preparation protocols.

  2. Restriction of histone gene transcription to S phase by phosphorylation of a chromatin boundary protein.

    Science.gov (United States)

    Kurat, Christoph F; Lambert, Jean-Philippe; van Dyk, Dewald; Tsui, Kyle; van Bakel, Harm; Kaluarachchi, Supipi; Friesen, Helena; Kainth, Pinay; Nislow, Corey; Figeys, Daniel; Fillingham, Jeffrey; Andrews, Brenda J

    2011-12-01

    The cell cycle-regulated expression of core histone genes is required for DNA replication and proper cell cycle progression in eukaryotic cells. Although some factors involved in histone gene transcription are known, the molecular mechanisms that ensure proper induction of histone gene expression during S phase remain enigmatic. Here we demonstrate that S-phase transcription of the model histone gene HTA1 in yeast is regulated by a novel attach-release mechanism involving phosphorylation of the conserved chromatin boundary protein Yta7 by both cyclin-dependent kinase 1 (Cdk1) and casein kinase 2 (CK2). Outside S phase, integrity of the AAA-ATPase domain is required for Yta7 boundary function, as defined by correct positioning of the histone chaperone Rtt106 and the chromatin remodeling complex RSC. Conversely, in S phase, Yta7 is hyperphosphorylated, causing its release from HTA1 chromatin and productive transcription. Most importantly, abrogation of Yta7 phosphorylation results in constitutive attachment of Yta7 to HTA1 chromatin, preventing efficient transcription post-recruitment of RNA polymerase II (RNAPII). Our study identified the chromatin boundary protein Yta7 as a key regulator that links S-phase kinases with RNAPII function at cell cycle-regulated histone gene promoters.

  3. Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin

    Science.gov (United States)

    Yu, Shirong; Evans, Katie; Bennett, Mark; Webster, Richard M.; Leadbitter, Matthew; Teng, Yumin; Waters, Raymond

    2016-01-01

    The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome–NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome. PMID:27470111

  4. Evaluation of chromatin condensation in human spermatozoa: a flow cytometric assay using acridine orange staining.

    Science.gov (United States)

    Golan, R; Shochat, L; Weissenberg, R; Soffer, Y; Marcus, Z; Oschry, Y; Lewin, L M

    1997-01-01

    The quality of sperm chromatin is an important factor in fertilization and is especially critical where one spermatozoon is artificially selected for fertilizing an egg (as in intracytoplasmic sperm injection). In this study, flow cytometry after staining of human spermatozoa with Acridine Orange was used to study chromatin structure. A method is described for estimating the percentage of cells in a human sperm sample that have completed epididymal maturation in regard to chromatin condensation. Of the 121 samples of the semen that were examined, nine contained a higher percentage of hypocondensed spermatozoa and six samples contained elevated amounts of hypercondensed spermatozoa. In addition to aberrancies in chromatin condensation other defects showed up as satellite populations of spermatozoa with higher than normal ratios of red/green fluorescence after Acridine Orange staining. Such defects were found in 15 semen samples. The use of swim-up and Percoll gradient centrifugation methods was shown to improve the percentage of spermatozoa with normal chromatin structure in some samples with poor initial quality.

  5. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer

    Institute of Scientific and Technical Information of China (English)

    Jiang I. Wu

    2012-01-01

    Mammalian SWI/SNF like Brg1/Brm associated factors (BAF) chromatin-remodeling complexes are able to use energy derived from adenosine triphosphate (ATP) hydrolysis to change chromatin structures and regulate nuclear processes such as transcription.BAF complexes contain multiple subunits and the diverse subunit compositions provide functional specificities to BAF complexes.In this review,we summarize the functions of BAF subunits during mammalian development and in progression of various cancers.The mechanisms underlying the functional diversity and specificities of BAF complexes will be discussed.

  6. Protocol: methodology for chromatin immunoprecipitation (ChIP in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Strenkert Daniela

    2011-11-01

    Full Text Available Abstract We report on a detailed chromatin immunoprecipitation (ChIP protocol for the unicellular green alga Chlamydomonas reinhardtii. The protocol is suitable for the analysis of nucleosome occupancy, histone modifications and transcription factor binding sites at the level of mononucleosomes for targeted and genome-wide studies. We describe the optimization of conditions for crosslinking, chromatin fragmentation and antibody titer determination and provide recommendations and an example for the normalization of ChIP results as determined by real-time PCR.

  7. The Cyclophilin AtCYP71 Interacts with CAF-1 and LHP1 and Functions in Multiple Chromatin Remodeling Processes

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Sheng Luan

    2011-01-01

    Chromatin is the primary carrier of epigenetic information in higher eukaryotes. AtCYP71 contains both cyclo-philin domain and WD40 repeats. Loss of AtCYP71 function causes drastic pleiotropic phenotypic defects. Here, we show that AtCYP71 physically interacts with FAS1 and LHP1, respectively, to modulate their distribution on chromatin. The Ihpl cyp71 double mutant showed more severe phenotypes than the single mutants, suggesting that AtCYP71 and LHP1 syn-ergistically control plant development. Such synergism was in part illustrated by the observation that LHP1 association with its specific target loci requires AtCYP71 function. We also demonstrate that AtCYP71 physically interacts with FAS1and is indispensable for FAS1 targeting to the KNAT1 locus. Together, our data suggest that AtCYP71 is involved in fun-damental processes of chromatin assembly and histone modification in plants.

  8. Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro.

    Science.gov (United States)

    Kuryan, Benjamin G; Kim, Jessica; Tran, Nancy Nga H; Lombardo, Sarah R; Venkatesh, Swaminathan; Workman, Jerry L; Carey, Michael

    2012-02-01

    ATPases and histone chaperones facilitate RNA polymerase II (pol II) elongation on chromatin. In vivo, the coordinated action of these enzymes is necessary to permit pol II passage through a nucleosome while restoring histone density afterward. We have developed a biochemical system recapitulating this basic process. Transcription through a nucleosome in vitro requires the ATPase remodels structure of chromatin (RSC) and the histone chaperone nucleosome assembly protein 1 (NAP1). In the presence of NAP1, RSC generates a hexasome. Despite the propensity of RSC to evict histones, NAP1 reprograms the reaction such that the hexasome is retained on the template during multiple rounds of transcription. This work has implications toward understanding the mechanism of pol II elongation on chromatin.

  9. Mathematical model of the chromatin structure of the nuclei of blood cells

    Science.gov (United States)

    Nikitaev, V. G.; Nagornov, O. V.; Pronichev, A. N.; Dmitrieva, V. V.; Polyakov, E. V.

    2017-01-01

    This paper describes the model of images of the nuclei of blood cells for research informative texture features in the diagnostics of acute leukemias on the basis of computer microscopy. The proposed model allows to simulate the structure of chromatin and factors distorting the signal in the formation of image.

  10. Knockdown Brm and Baf170, components of chromatin remodeling complex, facilitates reprogramming of somatic cells

    Science.gov (United States)

    The SWI/SNF (SWItch/Sucrose NonFermentable or BAF, Brg/Brahma-associated factors) complexes are epigenetic modifiers of chromatin structure and undergo progressive changes in subunit composition during cellular differentiation. For example, in embryonic stem cells (ESCs) esBAF contains Brg1 and Baf...

  11. Steroid Receptors Reprogram FoxA1 Occupancy through Dynamic Chromatin Transitions

    DEFF Research Database (Denmark)

    Swinstead, Erin E; Miranda, Tina B; Paakinaho, Ville;

    2016-01-01

    between ER, GR, and FoxA1 requires further investigation. Here we show that ER and GR both have the ability to alter the genomic distribution of the FoxA1 pioneer factor. Single-molecule tracking experiments in live cells reveal a highly dynamic interaction of FoxA1 with chromatin in vivo. Furthermore...

  12. RBPJ, the major transcriptional effector of Notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2014-03-01

    Full Text Available Mechanisms that maintain transcriptional memory through cell division are important to maintain cell identity, and sequence-specific transcription factors that remain associated with mitotic chromatin are emerging as key players in transcriptional memory propagation. Here, we show that the major transcriptional effector of Notch signaling, RBPJ, is retained on mitotic chromatin, and that this mitotic chromatin association is mediated through the direct association of RBPJ with DNA. We further demonstrate that RBPJ binds directly to nucleosomal DNA in vitro, with a preference for sites close to the entry/exit position of the nucleosomal DNA. Genome-wide analysis in the murine embryonal-carcinoma cell line F9 revealed that roughly 60% of the sites occupied by RBPJ in asynchronous cells were also occupied in mitotic cells. Among them, we found that a fraction of RBPJ occupancy sites shifted between interphase and mitosis, suggesting that RBPJ can be retained on mitotic chromatin by sliding on DNA rather than disengaging from chromatin during mitotic chromatin condensation. We propose that RBPJ can function as a mitotic bookmark, marking genes for efficient transcriptional activation or repression upon mitotic exit. Strikingly, we found that sites of RBPJ occupancy were enriched for CTCF-binding motifs in addition to RBPJ-binding motifs, and that RBPJ and CTCF interact. Given that CTCF regulates transcription and bridges long-range chromatin interactions, our results raise the intriguing hypothesis that by collaborating with CTCF, RBPJ may participate in establishing chromatin domains and/or long-range chromatin interactions that could be propagated through cell division to maintain gene expression programs.

  13. Isolation of chromatin DNA tightly bound to the nuclear envelope of HeLa cells.

    Science.gov (United States)

    Kuvichkin, Vasily Vladimirovich

    2012-11-01

    Recent discovery of the role of nuclear pores in transcription, predicted by our early DNA-membrane complex (DMC) model, makes membrane-bound DNA (MBD) isolation from the cell nucleus and analysis of the MBD actual. The method of MBD isolation proposed by us retains DMC integrity during isolation. We used HeLa cells for DMC extraction. Changing the ionic composition of the isolation medium and replacing DNase I, used commonly for chromatin destruction, with a set of restriction enzymes allowed us to isolate the MBD. Treatment of a nuclear membrane with proteinase K and ultrasound has been used to increase the yield of MBD. Electron microscopic analysis of the purified fraction of isolated DMC supports our previous model of nuclear envelope lipid-chromatin interaction in the nuclear pore assembly.

  14. Layer by layer assembly of albumin nanoparticles with selective recognition of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Science.gov (United States)

    Cui, Wei; Wang, Anhe; Zhao, Jie; Yang, Xiaoke; Cai, Peng; Li, Junbai

    2016-03-01

    Crosslinked albumin nanoparticles which loaded with doxorubicin (DOX) were fabricated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and biocompatible polysaccharide, alginate (ALG), using layer-by-layer technique. Albumin nanoparticles exhibited narrow size distribution and fluorescent property. The assembled core/shell structure of the nanoparticles can be internalized more easily with the cancer cells, which attributes to TRAIL binding with death receptors. TRAIL still hold bioactive properties after assembled onto the particles. In addition, after loaded into the albumin core nanoparticles, DOX (as the chemotherapeutics) display a synergistic cytotoxic effect on cytotoxicity in combination with TRAIL in vitro. The core/shell nanostructured nanoparticles realized in this study would be used as a promising candidate for novel drug carriers.

  15. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  16. Chromatin structure and DNA damage repair

    Directory of Open Access Journals (Sweden)

    Dinant Christoffel

    2008-11-01

    Full Text Available Abstract The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks, single strand breaks, oxidative lesions and pyrimidine dimers. The cell has evolved intricate DNA damage response mechanisms to counteract the genotoxic effects of these lesions. The two main features of the DNA damage response mechanisms are cell-cycle checkpoint activation and, at the heart of the response, DNA repair. For both damage signalling and repair, chromatin remodelling is most likely a prerequisite. Here, we discuss current knowledge on chromatin remodelling with respect to the cellular response to DNA damage, with emphasis on the response to lesions resolved by nucleotide excision repair. We will discuss the role of histone modifications as well as their displacement or exchange in nucleotide excision repair and make a comparison with their requirement in transcription and double strand break repair.

  17. Chromatin Remodeling in Stem Cell Maintenance in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Lin Xu; Wen-Hui Shen

    2009-01-01

    Pluripotent stem cells are able to both self-renew and generate undifferentiated cells for the formation of new tissues and organs.In higher plants,stem cells found in the shoot apical meristem (SAM) and the root apical meristem (RAM) are origins of organogenesis occurring post-embryonically.It is important to understand how the regulation of stem cell fate is coordinated to enable the meristem to constantly generate different types of lateral organs.Much knowledge has accumulated on specific transcription factors controlling SAM and RAM activity.Here,we review recent evidences for a role of chromatin remodeling in the maintenance of stable expression states of transcription factor genes and the control of stem cell activity in Arabidopsis.

  18. Keystone Symposia on Epigenomics and Chromatin Dynamics

    DEFF Research Database (Denmark)

    Ravnskjær, Kim

    2012-01-01

    Keystone Symposia kicked off the start of 2012 with two joint meetings on Epigenomics and Chromatin Dynamics and a star-studded list of speakers. Held in Keystone, CO, January 17-22, and organized by Steven Jacobsen and Steven Henikoff and by Bradley Cairns and Geneviève Almouzni, respectively, t......, there was plenty happening in these sessions that it did not seem to matter that the ski-slope conditions were not ideal....

  19. De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles.

    Science.gov (United States)

    Chen, Yong; Wang, Yunfei; Xuan, Zhenyu; Chen, Min; Zhang, Michael Q

    2016-06-20

    Defining chromatin interaction frequencies and topological domains is a great challenge for the annotations of genome structures. Although the chromosome conformation capture (3C) and its derivative methods have been developed for exploring the global interactome, they are limited by high experimental complexity and costs. Here we describe a novel computational method, called CITD, for de novo prediction of the chromatin interaction map by integrating histone modification data. We used the public epigenomic data from human fibroblast IMR90 cell and embryonic stem cell (H1) to develop and test CITD, which can not only successfully reconstruct the chromatin interaction frequencies discovered by the Hi-C technology, but also provide additional novel details of chromosomal organizations. We predicted the chromatin interaction frequencies, topological domains and their states (e.g. active or repressive) for 98 additional cell types from Roadmap Epigenomics and ENCODE projects. A total of 131 protein-coding genes located near 78 preserved boundaries among 100 cell types are found to be significantly enriched in functional categories of the nucleosome organization and chromatin assembly. CITD and its predicted results can be used for complementing the topological domains derived from limited Hi-C data and facilitating the understanding of spatial principles underlying the chromosomal organization.

  20. Isolation of Chromatin from Dysfunctional Telomeres Reveals an Important Role for Ring1b in NHEJ-Mediated Chromosome Fusions

    Directory of Open Access Journals (Sweden)

    Cristina Bartocci

    2014-05-01

    Full Text Available When telomeres become critically short, DNA damage response factors are recruited at chromosome ends, initiating a cellular response to DNA damage. We performed proteomic isolation of chromatin fragments (PICh in order to define changes in chromatin composition that occur upon onset of acute telomere dysfunction triggered by depletion of the telomere-associated factor TRF2. This unbiased purification of telomere-associated proteins in functional or dysfunctional conditions revealed the dynamic changes in chromatin composition that take place at telomeres upon DNA damage induction. On the basis of our results, we describe a critical role for the polycomb group protein Ring1b in nonhomologous end-joining (NHEJ-mediated end-to-end chromosome fusions. We show that cells with reduced levels of Ring1b have a reduced ability to repair uncapped telomeric chromatin. Our data represent an unbiased isolation of chromatin undergoing DNA damage and are a valuable resource to map the changes in chromatin composition in response to DNA damage activation.

  1. A Model of DNA Repeat-Assembled Mitotic Chromosomal Skeleton

    Directory of Open Access Journals (Sweden)

    Shao-Jun Tang

    2011-09-01

    Full Text Available Despite intensive investigation for decades, the principle of higher-order organization of mitotic chromosomes is unclear. Here, I describe a novel model that emphasizes a critical role of interactions of homologous DNA repeats (repetitive elements; repetitive sequences in mitotic chromosome architecture. According to the model, DNA repeats are assembled, via repeat interactions (pairing, into compact core structures that govern the arrangement of chromatins in mitotic chromosomes. Tandem repeat assemblies form a chromosomal axis to coordinate chromatins in the longitudinal dimension, while dispersed repeat assemblies form chromosomal nodes around the axis to organize chromatins in the halo. The chromosomal axis and nodes constitute a firm skeleton on which non-skeletal chromatins can be anchored, folded, and supercoiled.

  2. A model of DNA repeat-assembled mitotic chromosomal skeleton.

    Science.gov (United States)

    Tang, Shao-Jun

    2011-01-01

    Despite intensive investigation for decades, the principle of higher-order organization of mitotic chromosomes is unclear. Here, I describe a novel model that emphasizes a critical role of interactions of homologous DNA repeats (repetitive elements; repetitive sequences) in mitotic chromosome architecture. According to the model, DNA repeats are assembled, via repeat interactions (pairing), into compact core structures that govern the arrangement of chromatins in mitotic chromosomes. Tandem repeat assemblies form a chromosomal axis to coordinate chromatins in the longitudinal dimension, while dispersed repeat assemblies form chromosomal nodes around the axis to organize chromatins in the halo. The chromosomal axis and nodes constitute a firm skeleton on which non-skeletal chromatins can be anchored, folded, and supercoiled.

  3. Spectroscopic study of fast-neutron-irradiated chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [V. Babes National Inst., Dept. of Molecular Genetics, Bucharest (Romania)]. E-mail: serbanradu@pcnet.ro; Gazdaru, D. [Bucharest Univ., Dept. of Biophysics, Physics Faculty, Bucharest (Romania); Constantinescu, B. [H. Hulubei National Inst., Dept. of Cyclotron, Bucharest (Romania)

    2004-02-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [{sup 1}H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [{sup 1}H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  4. PTEN Interacts with Histone H1 and Controls Chromatin Condensation

    Directory of Open Access Journals (Sweden)

    Zhu Hong Chen

    2014-09-01

    Full Text Available Chromatin organization and dynamics are integral to global gene transcription. Histone modification influences chromatin status and gene expression. PTEN plays multiple roles in tumor suppression, development, and metabolism. Here, we report on the interplay of PTEN, histone H1, and chromatin. We show that loss of PTEN leads to dissociation of histone H1 from chromatin and decondensation of chromatin. PTEN deletion also results in elevation of histone H4 acetylation at lysine 16, an epigenetic marker for chromatin activation. We found that PTEN and histone H1 physically interact through their C-terminal domains. Disruption of the PTEN C terminus promotes the chromatin association of MOF acetyltransferase and induces H4K16 acetylation. Hyperacetylation of H4K16 impairs the association of PTEN with histone H1, which constitutes regulatory feedback that may reduce chromatin stability. Our results demonstrate that PTEN controls chromatin condensation, thus influencing gene expression. We propose that PTEN regulates global gene transcription profiling through histones and chromatin remodeling.

  5. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  6. Impact of chromatin structures on DNA processing for genomic analyses.

    Directory of Open Access Journals (Sweden)

    Leonid Teytelman

    Full Text Available Chromatin has an impact on recombination, repair, replication, and evolution of DNA. Here we report that chromatin structure also affects laboratory DNA manipulation in ways that distort the results of chromatin immunoprecipitation (ChIP experiments. We initially discovered this effect at the Saccharomyces cerevisiae HMR locus, where we found that silenced chromatin was refractory to shearing, relative to euchromatin. Using input samples from ChIP-Seq studies, we detected a similar bias throughout the heterochromatic portions of the yeast genome. We also observed significant chromatin-related effects at telomeres, protein binding sites, and genes, reflected in the variation of input-Seq coverage. Experimental tests of candidate regions showed that chromatin influenced shearing at some loci, and that chromatin could also lead to enriched or depleted DNA levels in prepared samples, independently of shearing effects. Our results suggested that assays relying on immunoprecipitation of chromatin will be biased by intrinsic differences between regions packaged into different chromatin structures - biases which have been largely ignored to date. These results established the pervasiveness of this bias genome-wide, and suggested that this bias can be used to detect differences in chromatin structures across the genome.

  7. Diffusion-driven looping provides a consistent framework for chromatin organization.

    Directory of Open Access Journals (Sweden)

    Manfred Bohn

    Full Text Available Chromatin folding inside the interphase nucleus of eukaryotic cells is done on multiple scales of length and time. Despite recent progress in understanding the folding motifs of chromatin, the higher-order structure still remains elusive. Various experimental studies reveal a tight connection between genome folding and function. Chromosomes fold into a confined subspace of the nucleus and form distinct territories. Chromatin looping seems to play a dominant role both in transcriptional regulation as well as in chromatin organization and has been assumed to be mediated by long-range interactions in many polymer models. However, it remains a crucial question which mechanisms are necessary to make two chromatin regions become co-located, i.e. have them in spatial proximity. We demonstrate that the formation of loops can be accomplished solely on the basis of diffusional motion. The probabilistic nature of temporary contacts mimics the effects of proteins, e.g. transcription factors, in the solvent. We establish testable quantitative predictions by deriving scale-independent measures for comparison to experimental data. In this Dynamic Loop (DL model, the co-localization probability of distant elements is strongly increased compared to linear non-looping chains. The model correctly describes folding into a confined space as well as the experimentally observed cell-to-cell variation. Most importantly, at biological densities, model chromosomes occupy distinct territories showing less inter-chromosomal contacts than linear chains. Thus, dynamic diffusion-based looping, i.e. gene co-localization, provides a consistent framework for chromatin organization in eukaryotic interphase nuclei.

  8. Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling.

    Directory of Open Access Journals (Sweden)

    Mariliis Tark-Dame

    2014-10-01

    Full Text Available Folding of the chromosomal fibre in interphase nuclei is an important element in the regulation of gene expression. For instance, physical contacts between promoters and enhancers are a key element in cell-type-specific transcription. We know remarkably little about the principles that control chromosome folding. Here we explore the view that intrachromosomal interactions, forming a complex pattern of loops, are a key element in chromosome folding. CTCF and cohesin are two abundant looping proteins of interphase chromosomes of higher eukaryotes. To investigate the role of looping in large-scale (supra Mb folding of human chromosomes, we knocked down the gene that codes for CTCF and the one coding for Rad21, an essential subunit of cohesin. We measured the effect on chromosome folding using systematic 3D fluorescent in situ hybridization (FISH. Results show that chromatin becomes more compact after reducing the concentration of these two looping proteins. The molecular basis for this counter-intuitive behaviour is explored by polymer modelling usingy the Dynamic Loop model (Bohn M, Heermann DW (2010 Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS ONE 5: e12218.. We show that compaction can be explained by selectively decreasing the number of short-range loops, leaving long-range looping unchanged. In support of this model prediction it has recently been shown by others that CTCF and cohesin indeed are responsible primarily for short-range looping. Our results suggest that the local and the overall changes in of chromosome structure are controlled by a delicate balance between short-range and long-range loops, allowing easy switching between, for instance, open and more compact chromatin states.

  9. Cellular Nuclear Export Factors TAP and Aly Are Required for HDAg-L-mediated Assembly of Hepatitis Delta Virus.

    Science.gov (United States)

    Huang, Hsiu-Chen; Lee, Chung-Pei; Liu, Hui-Kang; Chang, Ming-Fu; Lai, Yu-Heng; Lee, Yu-Ching; Huang, Cheng

    2016-12-09

    Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus (HBV). HDV genome encodes two forms of hepatitis delta antigen (HDAg), small HDAg (HDAg-S), which is required for viral replication, and large HDAg (HDAg-L), which is essential for viral assembly. HDAg-L is identical to HDAg-S except that it bears a 19-amino acid extension at the C terminus. Both HDAgs contain a nuclear localization signal (NLS), but only HDAg-L contains a CRM1-independent nuclear export signal at its C terminus. The nuclear export activity of HDAg-L is important for HDV particle formation. However, the mechanisms of HDAg-L-mediated nuclear export of HDV ribonucleoprotein are not clear. In this study, the host cellular RNA export complex TAP-Aly was found to form a complex with HDAg-L, but not with an export-defective HDAg-L mutant, in which Pro(205) was replaced by Ala. HDAg-L was found to colocalize with TAP and Aly in the nucleus. The C-terminal domain of HDAg-L was shown to directly interact with the N terminus of TAP, whereas an HDAg-L mutant lacking the NLS failed to interact with full-length TAP. In addition, small hairpin RNA-mediated down-regulation of TAP or Aly reduced nuclear export of HDAg-L and assembly of HDV virions. Furthermore, a peptide, TAT-HDAg-L(198-210), containing the 10-amino acid TAT peptide and HDAg-L(198-210), inhibited the interaction between HDAg-L and TAP and blocked HDV virion assembly and secretion. These data demonstrate that formation and release of HDV particles are mediated by TAP and Aly.

  10. A Macrohistone Variant Links Dynamic Chromatin Compaction to BRCA1-Dependent Genome Maintenance

    Directory of Open Access Journals (Sweden)

    Simran Khurana

    2014-08-01

    Full Text Available Appropriate DNA double-strand break (DSB repair factor choice is essential for ensuring accurate repair outcome and genomic integrity. The factors that regulate this process remain poorly understood. Here, we identify two repressive chromatin components, the macrohistone variant macroH2A1 and the H3K9 methyltransferase and tumor suppressor PRDM2, which together direct the choice between the antagonistic DSB repair mediators BRCA1 and 53BP1. The macroH2A1/PRDM2 module mediates an unexpected shift from accessible to condensed chromatin that requires the ataxia telangiectasia mutated (ATM-dependent accumulation of both proteins at DSBs in order to promote DSB-flanking H3K9 dimethylation. Remarkably, loss of macroH2A1 or PRDM2, as well as experimentally induced chromatin decondensation, impairs the retention of BRCA1, but not 53BP1, at DSBs. As a result, macroH2A1 and/or PRDM2 depletion causes epistatic defects in DSB end resection, homology-directed repair, and the resistance to poly(ADP-ribose polymerase (PARP inhibition—all hallmarks of BRCA1-deficient tumors. Together, these findings identify dynamic, DSB-associated chromatin reorganization as a critical modulator of BRCA1-dependent genome maintenance.

  11. Inverstigation of chromatin folding patterns by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANGYi; OUYANGZhenqian; 等

    1999-01-01

    The chromatin folding patterns in air and liquid were studied by atomic force microscopy(AFM),A gentle water-air interface method was adopted to spread chromatin from interphase nucleus of chicken erythrocyte.The chromatin was absorbed on APS-mica surface and studied with AFM,Beads-on a-string were observed and many higher-order structrues such as superbeads with dimensions 40-60nm in diameter and 4-7nm in height were found to string together to make chromation fibers.When sample spreading and absorbing time were shortened.higher-order chromatin fibers with 60-120nm in width were observed in air as well as under water environment.These chromatin structures may reflect chromatin folding patterns in the living cells.

  12. A role for chromatin topology in imprinted domain regulation.

    Science.gov (United States)

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  13. Characterization of the Cytochrome C Oxidase Assembly Factor Cox19 of 'Saccharomyces Cerevisiae'

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, K.; Zhang, L.; Cobine, P.A.; George, G.N.; Winge, D.R.; /Utah U. /Saskatchewan U.

    2007-07-12

    Cox19 is an important accessory protein in the assembly of cytochrome c oxidase in yeast. The protein is functional when tethered to the mitochondrial inner membrane, suggesting its functional role within the intermembrane space. Cox19 resembles Cox17 in having a twin CX{sub 9}C sequence motif that adopts a helical hairpin in Cox17. The function of Cox17 appears to be a Cu(I) donor protein in the assembly of the copper centers in cytochrome c oxidase. Cox19 also resembles Cox17 in its ability to coordinate Cu(I). Recombinant Cox19 binds 1 mol eq of Cu(I) per monomer and exists as a dimeric protein. Cox19 isolated from the mitochondrial intermembrane space contains variable quantities of copper, suggesting that Cu(I) binding may be a transient property. Cysteinyl residues important for Cu(I) binding are also shown to be important for the in vivo function of Cox19. Thus, a correlation exists in the ability to bind Cu(I) and in vivo function.

  14. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus.

    Directory of Open Access Journals (Sweden)

    Raffaella Nativio

    2009-11-01

    Full Text Available Cohesin is a chromatin-associated protein complex that mediates sister chromatid cohesion by connecting replicated DNA molecules. Cohesin also has important roles in gene regulation, but the mechanistic basis of this function is poorly understood. In mammalian genomes, cohesin co-localizes with CCCTC binding factor (CTCF, a zinc finger protein implicated in multiple gene regulatory events. At the imprinted IGF2-H19 locus, CTCF plays an important role in organizing allele-specific higher-order chromatin conformation and functions as an enhancer blocking transcriptional insulator. Here we have used chromosome conformation capture (3C assays and RNAi-mediated depletion of cohesin to address whether cohesin affects higher order chromatin conformation at the IGF2-H19 locus in human cells. Our data show that cohesin has a critical role in maintaining CTCF-mediated chromatin conformation at the locus and that disruption of this conformation coincides with changes in IGF2 expression. We show that the cohesin-dependent, higher-order chromatin conformation of the locus exists in both G1 and G2 phases of the cell cycle and is therefore independent of cohesin's function in sister chromatid cohesion. We propose that cohesin can mediate interactions between DNA molecules in cis to insulate genes through the formation of chromatin loops, analogous to the cohesin mediated interaction with sister chromatids in trans to establish cohesion.

  15. Long Noncoding RNAs, Chromatin, and Development

    Directory of Open Access Journals (Sweden)

    Daniel P. Caley

    2010-01-01

    Full Text Available The way in which the genome of a multicellular organism can orchestrate the differentiation of trillions of cells and many organs, all from a single fertilized egg, is the subject of intense study. Different cell types can be defined by the networks of genes they express. This differential expression is regulated at the epigenetic level by chromatin modifications, such as DNA and histone methylation, which interact with structural and enzymatic proteins, resulting in the activation or silencing of any given gene. While detailed mechanisms are emerging on the role of different chromatin modifications and how these functions are effected at the molecular level, it is still unclear how their deposition across the epigenomic landscape is regulated in different cells. A raft of recent evidence is accumulating that implicates long noncoding RNAs (lncRNAs in these processes. Most genomes studied to date undergo widespread transcription, the majority of which is not translated into proteins. In this review, we will describe recent work suggesting that lncRNAs are more than transcriptional "noise", but instead play a functional role by acting as tethers and guides to bind proteins responsible for modifying chromatin and mediating their deposition at specific genomic locations. We suggest that lncRNAs are at the heart of developmental regulation, determining the epigenetic status and transcriptional network in any given cell type, and that they provide a means to integrate external differentiation cues with dynamic nuclear responses through the regulation of a metastable epigenome. Better characterization of the lncRNA-protein "interactome" may eventually lead to a new molecular toolkit, allowing researchers and clinicians to modulate the genome at the epigenetic level to treat conditions such as cancer.

  16. Integration host factor assembly at the cohesive end site of the bacteriophage lambda genome: implications for viral DNA packaging and bacterial gene regulation.

    Science.gov (United States)

    Sanyal, Saurarshi J; Yang, Teng-Chieh; Catalano, Carlos Enrique

    2014-12-09

    Integration host factor (IHF) is an Escherichia coli protein involved in (i) condensation of the bacterial nucleoid and (ii) regulation of a variety of cellular functions. In its regulatory role, IHF binds to a specific sequence to introduce a strong bend into the DNA; this provides a duplex architecture conducive to the assembly of site-specific nucleoprotein complexes. Alternatively, the protein can bind in a sequence-independent manner that weakly bends and wraps the duplex to promote nucleoid formation. IHF is also required for the development of several viruses, including bacteriophage lambda, where it promotes site-specific assembly of a genome packaging motor required for lytic development. Multiple IHF consensus sequences have been identified within the packaging initiation site (cos), and we here interrogate IHF-cos binding interactions using complementary electrophoretic mobility shift (EMS) and analytical ultracentrifugation (AUC) approaches. IHF recognizes a single consensus sequence within cos (I1) to afford a strongly bent nucleoprotein complex. In contrast, IHF binds weakly but with positive cooperativity to nonspecific DNA to afford an ensemble of complexes with increasing masses and levels of condensation. Global analysis of the EMS and AUC data provides constrained thermodynamic binding constants and nearest neighbor cooperativity factors for binding of IHF to I1 and to nonspecific DNA substrates. At elevated IHF concentrations, the nucleoprotein complexes undergo a transition from a condensed to an extended rodlike conformation; specific binding of IHF to I1 imparts a significant energy barrier to the transition. The results provide insight into how IHF can assemble specific regulatory complexes in the background of extensive nonspecific DNA condensation.

  17. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  18. Sustained release of hepatocyte growth factor by cationic self-assembling peptide/heparin hybrid hydrogel improves β-cell survival and function through modulating inflammatory response

    Science.gov (United States)

    Liu, Shuyun; Zhang, Lanlan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping

    2016-01-01

    Inflammatory response is a major cause of grafts dysfunction in islet transplantation. Hepatocyte growth factor (HGF) had shown anti-inflammatory activity in multiple diseases. In this study, we aim to deliver HGF by self-assembling peptide/heparin (SAP/Hep) hybrid gel to protect β-cell from inflammatory injury. The morphological and slow release properties of SAPs were analyzed. Rat INS-1 β-cell line was treated with tumor necrosis factor α in vitro and transplanted into rat kidney capsule in vivo, and the viability, apoptosis, function, and inflammation of β-cells were evaluated. Cationic KLD1R and KLD2R self-assembled to nanofiber hydrogel, which showed higher binding affinity for Hep and HGF because of electrostatic interaction. Slow release of HGF from cationic SAP/Hep gel is a two-step mechanism involving binding affinity with Hep and molecular diffusion. In vitro and in vivo results showed that HGF-loaded KLD2R/Hep gel promoted β-cell survival and insulin secretion, and inhibited cell apoptosis, cytokine release, T-cell infiltration, and activation of NFκB/p38 MAPK pathways in β-cells. This study suggested that SAP/Hep gel is a promising carrier for local delivery of bioactive proteins in islet transplantation. PMID:27729786

  19. Interaction of sulfur mustard with rat liver salt fractionated chromatin.

    Science.gov (United States)

    Jafari, Mahvash; Nateghi, M; Rabbani, A

    2010-01-01

    In this study, the interaction of an alkylating agent, sulfur mustard (SM) with rat liver active (S1 and S2) and inactive (P2) chromatin was investigated employing UV/vis spectroscopy and gel electrophoreses. The results show that SM affects the chromatin structure in a dose-dependent manner. The binding of SM to fractions is different. At lower concentrations (<500 microM), SM seems to unfold the structure and at higher concentrations, it induces aggregation and condensation of chromatin possibly via forming cross-links between the chromatin components. The extent of condensation in S2 is higher when compared to the P2 fraction.

  20. Distribution of intercalative dye binding sites in chromatin.

    Science.gov (United States)

    Lurquin, P F; Seligy, V L

    1976-04-01

    Actinomycin D (AMD) and ethidium bromide (EB) were found to bind to chromatin isolated from a variety of gander tissues according to a strong and weak process analogous to that found for deproteinized DNA. Distribution of the dye intercalation sites in chromatin and DNA were evaluated at low r-values (dye bound per nucleotide) by following the appearance of free dye released from chromatin and DNA during thermal denaturation. The AMD dissociation profiles closely resembled the DNA or chromatin-DNA denaturation profiles; whereas the EB derivative dissociation profiles, indicated 3 major transitions for transcriptionally active chromatin with the main component corresponding to the single component which characterizes DNA. The DNA-like component was greatly reduced for mature erythrocyte chromatin but could be generated by removal of histone I and V. Removal of residual non acid-soluble proteins from dehistonized chromatin, urea treatment or dissociation and reconstitution of chromatin favoured conversion to the DNA-like component with loss of the other two. This study indicates that more than one type of binding exists generally in chromatin.

  1. The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome.

    Science.gov (United States)

    Kitagawa, Hirochika; Fujiki, Ryoji; Yoshimura, Kimihiro; Mezaki, Yoshihiro; Uematsu, Yoshikatsu; Matsui, Daisuke; Ogawa, Satoko; Unno, Kiyoe; Okubo, Mataichi; Tokita, Akifumi; Nakagawa, Takeya; Ito, Takashi; Ishimi, Yukio; Nagasawa, Hiromichi; Matsumoto, Toshio; Yanagisawa, Junn; Kato, Shigeaki

    2003-06-27

    We identified a human multiprotein complex (WINAC) that directly interacts with the vitamin D receptor (VDR) through the Williams syndrome transcription factor (WSTF). WINAC has ATP-dependent chromatin-remodeling activity and contains both SWI/SNF components and DNA replication-related factors. The latter might explain a WINAC requirement for normal S phase progression. WINAC mediates the recruitment of unliganded VDR to VDR target sites in promoters, while subsequent binding of coregulators requires ligand binding. This recruitment order exemplifies that an interaction of a sequence-specific regulator with a chromatin-remodeling complex can organize nucleosomal arrays at specific local sites in order to make promoters accessible for coregulators. Furthermore, overexpression of WSTF could restore the impaired recruitment of VDR to vitamin D regulated promoters in fibroblasts from Williams syndrome patients. This suggests that WINAC dysfunction contributes to Williams syndrome, which could therefore be considered, at least in part, a chromatin-remodeling factor disease.

  2. Chromatin Landscape of the IRF Genes and Role of the Epigenetic Reader BRD4.

    Science.gov (United States)

    Bachu, Mahesh; Dey, Anup; Ozato, Keiko

    2016-07-01

    Histone post-translational modification patterns represent epigenetic states of genomic genes and denote the state of their transcription, past history, and future potential in gene expression. Genome-wide chromatin modification patterns reported from various laboratories are assembled in the ENCODE database, providing a fertile ground for understanding epigenetic regulation of any genes of interest across many cell types. The IRF family genes critically control innate immunity as they direct expression and activities of interferons. While these genes have similar structural and functional traits, their chromatin landscapes and epigenetic features have not been systematically evaluated. Here, by mining ENCODE database using an imputational approach, we summarize chromatin modification patterns for 6 of 9 IRF genes and show characteristic features that connote their epigenetic states. BRD4 is a BET bromodomain protein that "reads and translates" epigenetic marks into transcription. We review recent findings that BRD4 controls constitutive and signal-dependent transcription of many genes, including IRF genes. BRD4 dynamically binds to various genomic genes with a spatial and temporal specificity. Of particular importance, BRD4 is shown to critically regulate IRF-dependent anti-pathogen protection, inflammatory responses triggered by NF-κB, and the growth and spread of many cancers. The advent of small molecule inhibitors that disrupt binding of BET bromdomain to acetylated histone marks has opened new therapeutic possibilities for cancer and inflammatory diseases.

  3. Structure and function insights into the NuRD chromatin remodeling complex.

    Science.gov (United States)

    Torchy, Morgan P; Hamiche, Ali; Klaholz, Bruno P

    2015-07-01

    Transcription regulation through chromatin compaction and decompaction is regulated through various chromatin-remodeling complexes such as nucleosome remodeling and histone deacetylation (NuRD) complex. NuRD is a 1 MDa multi-subunit protein complex which comprises many different subunits, among which histone deacetylases HDAC1/2, ATP-dependent remodeling enzymes CHD3/4, histone chaperones RbAp46/48, CpG-binding proteins MBD2/3, the GATAD2a (p66α) and/or GATAD2b (p66β) and specific DNA-binding proteins MTA1/2/3. Here, we review the currently known crystal and NMR structures of these subunits, the functional data and their relevance for biomedical research considering the implication of NuRD subunits in cancer and various other diseases. The complexity of this macromolecular assembly, and its poorly understood mode of interaction with the nucleosome, the repeating unit of chromatin, illustrate that this complex is a major challenge for structure-function relationship studies which will be tackled best by an integrated biology approach.

  4. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification.

    Science.gov (United States)

    Nguyen, Ngoc-Thuy-Trinh; Saguez, Cyril; Conesa, Christine; Lefebvre, Olivier; Acker, Joël

    2015-02-01

    To identify the proteins associated with the RNA polymerase III (Pol III) machinery in exponentially growing yeast cells, we developed our own tandem chromatin affinity purification procedure (TChAP) after in vivo cross-link, allowing a reproducible and good recovery of the protein bait and its associated partners. In contrast to TFIIIA that could only be purified as a free protein, this protocol allows us to capture free Pol III together with Pol III bound on its target genes. Transcription factors, elongation factors, RNA-associated proteins and proteins involved in Pol III biogenesis were identified by mass spectrometry. Interestingly, the presence of all the TFIIIB subunits found associated with Pol III together with the absence of TFIIIC and chromatin factors including histones suggest that DNA-bound Pol III purified using TChAP is mainly engaged in transcription reinitiation.

  5. Assembling Fe/S-clusters and modifying tRNAs: ancient co-factors meet ancient adaptors.

    Science.gov (United States)

    Alfonzo, Juan D; Lukeš, Julius

    2011-06-01

    Trypanosoma brucei undergoes two clearly distinct develomental stages: in the insect vector (procyclic stage) the cells generate the bulk of their energy through respiration, whereas in the bloodstream of the mammalian host (bloodstream stage) they grow mostly glycolytically. Several mitochondrial respiratory proteins require iron-sulfur clusters for activity, and their activation coincides with developmental changes. Likewise some tRNA modification enzymes either require iron-sulfur clusters or use components of the iron-sulfur cluster assembly pathway for activity. These enzymes affect the anticodon loop of various tRNAs and can impact protein synthesis. Herein, the possibility of these pathways being integrated and exploited by T. brucei to carefully coordinate energy demands to translational rates in response to enviromental changes is examined.

  6. Investigation of Viral and Host Chromatin by ChIP-PCR or ChIP-Seq Analysis.

    Science.gov (United States)

    Günther, Thomas; Theiss, Juliane M; Fischer, Nicole; Grundhoff, Adam

    2016-02-08

    Complex regulation of viral transcription patterns and DNA replication levels is a feature of many DNA viruses. This is especially true for those viruses which establish latent or persistent infections (e.g., herpesviruses, papillomaviruses, polyomaviruses, or adenovirus), as long-term persistence often requires adaptation of gene expression programs and/or replication levels to the cellular milieu. A key factor in the control of such processes is the establishment of a specific chromatin state on promoters or replication origins, which in turn will determine whether or not the underlying DNA is accessible for other factors that mediate downstream processes. Chromatin immunoprecipitation (ChIP) is a powerful technique to investigate viral chromatin, in particular to study binding patterns of modified histones, transcription factors or other DNA-/chromatin-binding proteins that regulate the viral lifecycle. Here, we provide protocols that are suitable for performing ChIP-PCR and ChIP-Seq studies on chromatin of large and small viral genomes.

  7. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber

    DEFF Research Database (Denmark)

    Comet, Itys; Schuettengruber, Bernd; Sexton, Tom;

    2011-01-01

    to insulate genes from regulatory elements or to take part in long-distance interactions. Using a high-resolution chromatin conformation capture (H3C) method, we show that the Drosophila gypsy insulator behaves as a conformational chromatin border that is able to prohibit contacts between a Polycomb response...... element (PRE) and a distal promoter. On the other hand, two spaced gypsy elements form a chromatin loop that is able to bring an upstream PRE in contact with a downstream gene to mediate its repression. Chromatin immunoprecipitation (ChIP) profiles of the Polycomb protein and its associated H3K27me3...

  8. The fractal globule as a model of chromatin architecture in the cell.

    Science.gov (United States)

    Mirny, Leonid A

    2011-01-01

    The fractal globule is a compact polymer state that emerges during polymer condensation as a result of topological constraints which prevent one region of the chain from passing across another one. This long-lived intermediate state was introduced in 1988 (Grosberg et al. 1988) and has not been observed in experiments or simulations until recently (Lieberman-Aiden et al. 2009). Recent characterization of human chromatin using a novel chromosome conformational capture technique brought the fractal globule into the spotlight as a structural model of human chromosome on the scale of up to 10 Mb (Lieberman-Aiden et al. 2009). Here, we present the concept of the fractal globule, comparing it to other states of a polymer and focusing on its properties relevant for the biophysics of chromatin. We then discuss properties of the fractal globule that make it an attractive model for chromatin organization inside a cell. Next, we connect the fractal globule to recent studies that emphasize topological constraints as a primary factor driving formation of chromosomal territories. We discuss how theoretical predictions, made on the basis of the fractal globule model, can be tested experimentally. Finally, we discuss whether fractal globule architecture can be relevant for chromatin packing in other organisms such as yeast and bacteria.

  9. Chromatin-based epigenetics of adult subventricular zone neural stem cells

    Directory of Open Access Journals (Sweden)

    Gabriel eGonzales-Roybal

    2013-10-01

    Full Text Available In specific regions of the adult mammalian brain, neural stem cells (NSCs generate new neurons throughout life. Emerging evidence indicate that chromatin-based transcriptional regulation is a key epigenetic mechanism for the life-long function of adult NSCs. In the adult mouse brain, NSCs in the subventricular zone (SVZ retain the ability to produce both neurons and glia for the life of the animal. In this review, we discuss the origin and function of SVZ NSCs as they relate to key epigenetic concepts of development and potential underlying mechanism of chromatin-based transcriptional regulation. A central point of discussion is how SVZ NSCs – which possess many characteristics of mature, non-neurogenic astrocytes – maintain a youthful ability to produce both neuronal and glial lineages. In addition to reviewing data regarding the function of chromatin-modifying factors in SVZ neurogenesis, we incorporate our growing understanding that long noncoding RNAs (lncRNAs serve as an important element to chromatin-based transcriptional regulation, including that of SVZ NSCs. Discoveries regarding the epigenetic mechanisms of adult SVZ NSCs may provide key insights into fundamental principles of adult stem cell biology as well as the more complex and dynamic developmental environment of the embryonic brain.

  10. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

    Science.gov (United States)

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Bou Dargham, Daria; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B Franklin; Gérard, Matthieu

    2016-02-01

    ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.

  11. Put your 3D glasses on: plant chromatin is on show

    KAUST Repository

    Rodriguez-Granados, Natalia Y.

    2016-04-30

    The three-dimensional organization of the eukaryotic nucleus and its chromosomal conformation have emerged as important features in the complex network of mechanisms behind gene activity and genome connectivity dynamics, which can be evidenced in the regionalized chromosomal spatial distribution and the clustering of diverse genomic regions with similar expression patterns. The development of chromatin conformation capture (3C) techniques has permitted the elucidation of commonalities between the eukaryotic phyla, as well as important differences among them. The growing number of studies in the field performed in plants has shed light on the structural and regulatory features of these organisms. For instance, it has been proposed that plant chromatin can be arranged into different conformations such as Rabl, Rosette-like, and Bouquet, and that both short- and long-range chromatin interactions occur in Arabidopsis. In this review, we compile the current knowledge about chromosome architecture characteristics in plants, as well as the molecular events and elements (including long non-coding RNAs, histone and DNA modifications, chromatin remodeling complexes, and transcription factors) shaping the genome three-dimensional conformation. Furthermore, we discuss the developmental outputs of genome topology-mediated gene expression regulation. It is becoming increasingly clear that new tools and techniques with higher resolution need to be developed and implemented in Arabidopsis and other model plants in order to better understand chromosome architecture dynamics, from an integrative perspective with other fields of plant biology such as development, stress biology, and finally agriculture. © 2016 The Author 2016.

  12. Epigenetic phenomena, chromatin dynamics, and gene expression. New theoretical approaches in the study of living systems.

    Science.gov (United States)

    Boi, Luciano

    2008-01-01

    This paper is aimed at exploring the genome at the level beyond that of DNA sequence alone. We stress the fact that the level of genes is not the sole "reality" in the living world, for there are different epigenetic processes that profoundly affect change in living systems. Moreover, epigenetics very likely influences the course of evolution and the unfolding of life. We further attempt to investigate how the genome is dynamically organized into the nuclear space within the cell. We mainly focus on analyses of higher order nuclear architecture and the dynamic interactions of chromatin with other nuclear components. We especially want to know how epigenetic phenomena influences genes expression and chromosome functions. The proper understanding of these processes require new concepts and approaches be introduced and developed. In particular, we think that research in biology has to shift from only describing molecular and local features of living systems to studying the regulatory networks of interactions among gene pathways, the folding and dynamics of chromatin structure and how environmental factors affects the behavior of organisms. There are essential components of biological information on living organisms which cannot be portrayed in the DNA sequence alone. In a post-genomic era, the importance of chromatin/epigenetic interface has become increasingly apparent. One of the purposes of current research should be to highlight the enormous impact of chromatin organization and dynamics on epigenetic phenomena, and, conversely, to emphasize the important role that epigenetic phenomena play in gene expression and cell regulation.

  13. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    Science.gov (United States)

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  14. Human sperm chromatin stabilization: a proposed model including zinc bridges.

    Science.gov (United States)

    Björndahl, Lars; Kvist, Ulrik

    2010-01-01

    The primary focus of this review is to challenge the current concepts on sperm chromatin stability. The observations (i) that zinc depletion at ejaculation allows a rapid and total sperm chromatin decondensation without the addition of exogenous disulfide cleaving agents and (ii) that the human sperm chromatin contains one zinc for every protamine for every turn of the DNA helix suggest an alternative model for sperm chromatin structure may be plausible. An alternative model is therefore proposed, that the human spermatozoon could at ejaculation have a rapidly reversible zinc dependent chromatin stability: Zn(2+) stabilizes the structure and prevents the formation of excess disulfide bridges by a single mechanism, the formation of zinc bridges with protamine thiols of cysteine and potentially imidazole groups of histidine. Extraction of zinc enables two biologically totally different outcomes: immediate decondensation if chromatin fibers are concomitantly induced to repel (e.g. by phosphorylation in the ooplasm); otherwise freed thiols become committed into disulfide bridges creating a superstabilized chromatin. Spermatozoa in the zinc rich prostatic fluid (normally the first expelled ejaculate fraction) represent the physiological situation. Extraction of chromatin zinc can be accomplished by the seminal vesicular fluid. Collection of the ejaculate in one single container causes abnormal contact between spermatozoa and seminal vesicular fluid affecting the sperm chromatin stability. There are men in infertile couples with low content of sperm chromatin zinc due to loss of zinc during ejaculation and liquefaction. Tests for sperm DNA integrity may give false negative results due to decreased access for the assay to the DNA in superstabilized chromatin.

  15. The developmental and pathogenic roles of BAF57, a special subunit of the BAF chromatin-remodeling complex.

    Science.gov (United States)

    Lomelí, Hilda; Castillo-Robles, Jorge

    2016-06-01

    Mammalian SWI/SNF or BAF chromatin-remodeling complexes are polymorphic assemblies of homologous subunit families that remodel nucleosomes. BAF57 is a subunit of the BAF complexes; it is encoded only in higher eukaryotes and is present in all mammalian assemblies. Its main structural feature is a high-mobility group domain, the DNA-binding properties of which suggest that BAF57 may play topological roles as the BAF complex enters or exits the nucleosome. BAF57 displays specific interactions with a number of proteins outside the BAF complex. Through these interactions, it can accomplish specific functions. In the embryo, BAF57 is responsible for the silencing of the CD4 gene during T-cell differentiation, and during the repression of neuronal genes in non-neuronal cells, BAF57 interacts with the transcriptional corepressor, Co-REST, and facilitates repression. Extensive work has demonstrated a specific role of BAF57 in regulating the interactions between BAF and nuclear hormone receptors. Despite its involvement in oncogenic pathways, new generation sequencing studies do not support a prominent role for BAF57 in the initiation of cancer. On the other hand, evidence has emerged to support a role for BAF57 as a metastasis factor, a prognosis marker and a therapeutic target. In humans, BAF57 is associated with disease, as mutations in this gene predispose to important congenital disorders, including menigioma disease or the Coffin-Siris syndrome. In this article, we present an exhaustive analysis of the BAF57 molecular and biochemical properties, cellular functions, loss-of-function phenotypes in living organisms and pathological manifestations in cases of human mutations.

  16. A model for the importance of zinc in the dynamics of human sperm chromatin stabilization after ejaculation in relation to sperm DNA vulnerability.

    Science.gov (United States)

    Björndahl, Lars; Kvist, Ulrik

    2011-02-01

    The focus of this review is the dual functions of the sperm chromatin stabilization and how external factors can interfere with these functions. Zinc depletion after ejaculation allows for rapid and total sperm chromatin decondensation without addition of exogenous disulfide cleaving agents. Zinc depletion without concomitant repulsion of chromatin fibers induces another type of stability that requires exogenous disulfide cleaving agents to allow decondensation. It is essential to extend the present concept, that the sperm chromatin stability is based on disulfide bridges only, to include also the functions of Zn(2+). It is suggested that the chromatin stability of the ejaculated human spermatozoon is rapidly reversible due to the dual function of Zn(2+) that stabilizes the structure and prevents the formation of excess disulfide bridges by a single mechanism: the formation of zinc bridges involving protamine thiols of cysteine and potentially also imidazole groups of histidine. Extraction of zinc from the freshly ejaculated spermatozoon allows two totally different biological results: (1) immediate decondensation if chromatin fibers concomitantly are induced to repel (e.g., through phosphorylation in the ooplasm) and (2) thiols freed from Zn(2+) are available to form disulfide bridges creating a superstabilized chromatin. Spermatozoa in the zinc rich prostatic fluid (in first ejaculated fraction) represent physiology. Extraction of chromatin zinc can be caused by unphysiological exposure of spermatozoa to the zinc chelating and oxidative seminal vesicular fluid, a situation common to most assisted reproductive techniques (ART) laboratories where the entire ejaculate is collected into a single container in which spermatozoa and secretions are mixed during at least 30 min. Some men in infertile couples have low content of sperm chromatin zinc due to loss of zinc during ejaculation and liquefaction. Tests for sperm DNA integrity may give false negative results due to

  17. Dispersion of the electron g factor anisotropy in InAs/InP self-assembled quantum dots

    Science.gov (United States)

    Belykh, V. V.; Yakovlev, D. R.; Schindler, J. J.; van Bree, J.; Koenraad, P. M.; Averkiev, N. S.; Bayer, M.; Silov, A. Yu.

    2016-08-01

    The electron g factor in an ensemble of InAs/InP quantum dots with emission wavelengths around 1.4 μm is measured using time-resolved pump-probe Faraday rotation spectroscopy in different magnetic field orientations. Thereby, we can extend recent single dot photoluminescence measurements significantly towards lower optical transition energies through 0.86 eV. This allows us to obtain detailed insight into the dispersion of the recently discovered g factor anisotropy in these infrared emitting quantum dots. We find with decreasing transition energy over a range of 50 meV a strong enhancement of the g factor difference between magnetic field normal and along the dot growth axis, namely, from 1 to 1.7. We argue that the g factor cannot be solely determined by the confinement energy, but the dot asymmetry underlying this anisotropy therefore has to increase with increasing dot size.

  18. Chromatin architecture and gene expression in Escherichia coli

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2004-01-01

    Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli.......Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli....

  19. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum).

    Science.gov (United States)

    Li, Meng-Yao; Tan, Hua-Wei; Wang, Feng; Jiang, Qian; Xu, Zhi-Sheng; Tian, Chang; Xiong, Ai-Sheng

    2014-01-01

    Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.

  20. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum.

    Directory of Open Access Journals (Sweden)

    Meng-Yao Li

    Full Text Available Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.

  1. Expression and purification of a natural N-terminal pre-ligand assembly domain of tumor necrosis factor receptor 1 (TNFR1 PLAD) and preliminary activity determination.

    Science.gov (United States)

    Cao, Jin; Meng, Fang; Gao, Xiangdong; Dong, Hongxia; Yao, Wenbing

    2011-04-01

    A domain at the NH(2) terminal (N-terminal) of tumor necrosis factor receptor (TNFR) termed the pre-ligand binding assembly domain (PLAD). The finding that PLAD can mediate a selective TNFR assembly in previously researches provides a novel target to the prevention of TNFR signaling in immune-mediated inflammatory diseases (IMID). In this study, a natural N-terminal TNFR1 PLAD was obtained for the first time through the methods of GST-tag fusion protein expression and enterokinase cleavage. After purification with a Q Sepharose Fast Flow column, a natural N-terminal TNFR1 PLAD which purity was up to 95%, was obtained and was identified using Nano LC-ECI-MS/MS. Secondary structure analysis of PLAD was carried out using circular dichroism spectra (CD). After that, the TNFR1 PLAD in vitro anti-TNFα activity and the specific TNFR1 affinity were determined. The results proved that the natural N-terminal TNFR1 PLAD can selectively inhibit TNFα bioactivity mainly through TNFR1. It infers an effective and safe strategy for treating variety of IMID with a low risk of side effects in future.

  2. Trait-Based Community Assembly along an Elevational Gradient in Subalpine Forests: Quantifying the Roles of Environmental Factors in Inter- and Intraspecific Variability.

    Directory of Open Access Journals (Sweden)

    Ya-Huang Luo

    Full Text Available Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA, leaf carbon concentration (LCC, leaf nitrogen concentration (LNC and leaf phosphorus concentration (LPC for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables. Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%-76.3% in three other traits (height, LNC and LPC despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change.

  3. De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation.

    Science.gov (United States)

    Huang, Ya-Yi; Lee, Chueh-Pai; Fu, Jason L; Chang, Bill Chia-Han; Matzke, Antonius J M; Matzke, Marjori

    2014-09-04

    Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop.

  4. The Oligomeric Outer Dynein Arm Assembly Factor CCDC103 Is Tightly Integrated within the Ciliary Axoneme and Exhibits Periodic Binding to Microtubules*

    Science.gov (United States)

    King, Stephen M.; Patel-King, Ramila S.

    2015-01-01

    CCDC103 is an ∼29-kDa protein consisting of a central RPAP3_C domain flanked by N- and C-terminal coiled coils. Defects in CCDC103 lead to primary ciliary dyskinesia caused by the loss of outer dynein arms. This protein is present along the entire length of the ciliary axoneme and does not require other dynein or docking complex components for its integration. Unlike other known dynein assembly factors within the axoneme, CCDC103 is not solubilized by 0.6 m NaCl and requires more chaotropic conditions, such as 0.5 m KI. Alternatively, it can be extracted using 0.3% sarkosyl. CCDC103 forms stable dimers and other oligomers in solution through interactions involving the central domain. The smallest particle observed by dynamic light scattering has a hydrodynamic diameter of ∼25 nm. Furthermore, CCDC103 binds microtubules directly, forming ∼9-nm diameter particles that exhibit a 12-nm spacing on the microtubule lattice, suggesting that there may be two CCDC103 units per outer arm dynein repeat. Although the outer dynein arm docking complex is necessary to form arrays of dyneins along microtubules, it is not sufficient to set up a single array in a precise location on each axonemal doublet. We propose that CCDC103 helps generate a high-affinity site on the doublets for outer arm assembly, either through direct interactions or indirectly, perhaps by modifying the underlying microtubule lattice. PMID:25572396

  5. The conserved RGxxE motif of the bacterial FAD assembly factor SdhE is required for succinate dehydrogenase flavinylation and activity.

    Science.gov (United States)

    McNeil, Matthew B; Fineran, Peter C

    2013-10-29

    Succinate dehydrogenase (SDH) is an important respiratory enzyme that plays a critical role in the generation of energy in the majority of eukaryotes, bacteria, and archaea. The activity of SDH is dependent on the covalent attachment of the redox cofactor FAD to the flavoprotein subunit SdhA. In the Gram-negative bacteria Escherichia coli and Serratia sp. ATCC 39006, the covalent attachment of FAD to SdhA is dependent on the FAD assembly factor SdhE (YgfY). Although mechanisms have been proposed, experimental evidence that elucidates the molecular details of SdhE-mediated flavinylation are scarce. In this study, truncation and alanine swap mutagenesis of SdhE identified a highly conserved RGxxE motif that was important for SdhE function. Interestingly, RGxxE site-directed variants were not impaired in terms of protein folding or interactions with SdhA. Purification and analysis of SdhA from different mutant backgrounds demonstrated that SdhE interacts with and flavinylates folded SdhA without a requirement for the assembly of the entire SDH complex. SdhA was also partially active in the absence of SdhE, suggesting that SdhA is able to attach FAD through an inefficient autocatalytic mechanism. The results presented are of widespread relevance because SdhE and SDH are required for bacterial pathogenesis and mutations in the eukaryotic homologues of SdhE and SDH are associated with cancer in humans.

  6. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus.

    Science.gov (United States)

    Yoshida, Junko; Akagi, Keiko; Misawa, Ryo; Kokubu, Chikara; Takeda, Junji; Horie, Kyoji

    2017-03-02

    DNA transposons and retroviruses are versatile tools in functional genomics and gene therapy. To facilitate their application, we conducted a genome-wide insertion site profiling of the piggyBac (PB), Tol2 and Sleeping Beauty (SB) transposons and the murine leukemia virus (MLV) in mouse embryonic stem cells (ESCs). PB and MLV preferred highly expressed genes, whereas Tol2 and SB preferred weakly expressed genes. However, correlations with DNase I hypersensitive sites were different for all vectors, indicating that chromatin accessibility is not the sole determinant. Therefore, we analysed various chromatin states. PB and MLV highly correlated with Cohesin, Mediator and ESC-specific transcription factors. Notably, CTCF sites were correlated with PB but not with MLV, suggesting MLV prefers smaller promoter-enhancer loops, whereas PB insertion encompasses larger chromatin loops termed topologically associating domains. Tol2 also correlated with Cohesin and CTCF. However, correlations with ESC-specific transcription factors were weaker, suggesting that Tol2 prefers transcriptionally weak chromatin loops. Consistently, Tol2 insertions were associated with bivalent histone modifications characteristic of silent and inducible loci. SB showed minimum preference to all chromatin states, suggesting the least adverse effect on adjacent genes. These results will be useful for vector selection for various applications.

  7. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus

    Science.gov (United States)

    Yoshida, Junko; Akagi, Keiko; Misawa, Ryo; Kokubu, Chikara; Takeda, Junji; Horie, Kyoji

    2017-01-01

    DNA transposons and retroviruses are versatile tools in functional genomics and gene therapy. To facilitate their application, we conducted a genome-wide insertion site profiling of the piggyBac (PB), Tol2 and Sleeping Beauty (SB) transposons and the murine leukemia virus (MLV) in mouse embryonic stem cells (ESCs). PB and MLV preferred highly expressed genes, whereas Tol2 and SB preferred weakly expressed genes. However, correlations with DNase I hypersensitive sites were different for all vectors, indicating that chromatin accessibility is not the sole determinant. Therefore, we analysed various chromatin states. PB and MLV highly correlated with Cohesin, Mediator and ESC-specific transcription factors. Notably, CTCF sites were correlated with PB but not with MLV, suggesting MLV prefers smaller promoter–enhancer loops, whereas PB insertion encompasses larger chromatin loops termed topologically associating domains. Tol2 also correlated with Cohesin and CTCF. However, correlations with ESC-specific transcription factors were weaker, suggesting that Tol2 prefers transcriptionally weak chromatin loops. Consistently, Tol2 insertions were associated with bivalent histone modifications characteristic of silent and inducible loci. SB showed minimum preference to all chromatin states, suggesting the least adverse effect on adjacent genes. These results will be useful for vector selection for various applications. PMID:28252665

  8. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling

    DEFF Research Database (Denmark)

    Smeenk, G.; Wiegant, W.W.; Luijsterburg, M.S.

    2013-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) arising in native chromatin elicit an RNF8/RNF168-dependent ubiquitylation response, which triggers the recruitment of various repair factors. Precisely how this response is regulated in the context of chromatin remains largely unexp...... to IR and results in DSB repair defects. Our study unveils a functional link between DNA damage-induced poly(ADP-ribosyl)ation, SMARCA5- mediated chromatin remodeling and RNF168-dependent signaling and repair of DSBs. © 2013. Published by The Company of Biologists Ltd....

  9. Transcription upregulation via force-induced direct stretching of chromatin

    Science.gov (United States)

    Tajik, Arash; Zhang, Yuejin; Wei, Fuxiang; Sun, Jian; Jia, Qiong; Zhou, Wenwen; Singh, Rishi; Khanna, Nimish; Belmont, Andrew S.; Wang, Ning

    2016-12-01

    Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green fluorescent protein (GFP)-tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina-chromatin interactions to directly stretch chromatin and upregulate transcription.

  10. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation......Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  11. Effect of DNA groove binder distamycin A upon chromatin structure.

    Directory of Open Access Journals (Sweden)

    Parijat Majumder

    Full Text Available BACKGROUND: Distamycin A is a prototype minor groove binder, which binds to B-form DNA, preferentially at A/T rich sites. Extensive work in the past few decades has characterized the binding at the level of double stranded DNA. However, effect of the same on physiological DNA, i.e. DNA complexed in chromatin, has not been well studied. Here we elucidate from a structural perspective, the interaction of distamycin with soluble chromatin, isolated from Sprague-Dawley rat. METHODOLOGY/PRINCIPAL FINDINGS: Chromatin is a hierarchical assemblage of DNA and protein. Therefore, in order to characterize the interaction of the same with distamycin, we have classified the system into various levels, according to the requirements of the method adopted, and the information to be obtained. Isothermal titration calorimetry has been employed to characterize the binding at the levels of chromatin, chromatosome and chromosomal DNA. Thermodynamic parameters obtained thereof, identify enthalpy as the driving force for the association, with comparable binding affinity and free energy for chromatin and chromosomal DNA. Reaction enthalpies at different temperatures were utilized to evaluate the change in specific heat capacity (ΔCp, which, in turn, indicated a possible binding associated structural change. Ligand induced structural alterations have been monitored by two complementary methods--dynamic light scattering, and transmission electron microscopy. They indicate compaction of chromatin. Using transmission electron microscopy, we have visualized the effect of distamycin upon chromatin architecture at di- and trinucleosome levels. Our results elucidate the simultaneous involvement of linker bending and internucleosomal angle contraction in compaction process induced by distamycin. CONCLUSIONS/SIGNIFICANCE: We summarize here, for the first time, the thermodynamic parameters for the interaction of distamycin with soluble chromatin, and elucidate its effect on

  12. Brd4 Marks Select Genes on Mitotic Chromatin and Directs Postmitotic Transcription

    OpenAIRE

    Dey, Anup; Nishiyama, Akira; Karpova, Tatiana; McNally, James; Ozato, Keiko

    2009-01-01

    On entry into mitosis, many transcription factors dissociate from chromatin, resulting in global transcriptional shutdown. During mitosis, some genes are marked to ensure the inheritance of their expression in the next generation of cells. The nature of mitotic gene marking, however, has been obscure. Brd4 is a double bromodomain protein that localizes to chromosomes during mitosis and is implicated in holding mitotic memory. In interphase, Brd4 interacts with P-TEFb and functions as a global...

  13. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis.

    Directory of Open Access Journals (Sweden)

    Nancy A Turner

    Full Text Available BACKGROUND: Vascular endothelial cells (ECs express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF multimers in long string-like structures that initiate platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP is an important non-antibody-requiring host defense system. Thrombotic microangiopathies can be associated with defective regulation of the AP (atypical hemolytic-uremic syndrome or with inadequate cleavage by ADAMTS-13 of ULVWF multimeric strings secreted by/anchored to ECs (thrombotic thrombocytopenic purpura. Our goal was to determine if EC-anchored ULVWF strings caused the assembly and activation of AP components, thereby linking two essential defense mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We quantified gene expression of these complement components in cultured human umbilical vein endothelial cells (HUVECs by real-time PCR: C3 and C5; complement factor (CF B, CFD, CFP, CFH and CFI of the AP; and C4 of the classical and lectin (but not alternative complement pathways. We used fluorescent microscopy, monospecific antibodies against complement components, fluorescent secondary antibodies, and the analysis of >150 images to quantify the attachment of HUVEC-released complement proteins to ULVWF strings secreted by, and anchored to, the HUVECs (under conditions of ADAMTS-13 inhibition. We found that HUVEC-released C4 did not attach to ULVWF strings, ruling out activation of the classical and lectin pathways by the strings. In contrast, C3, FB, FD, FP and C5, FH and FI attached to ULVWF strings in quantitative patterns consistent with assembly of the AP components into active complexes. This was verified when non-functional FB blocked the formation of AP C3 convertase complexes (C3bBb on ULVWF strings. CONCLUSIONS/SIGNIFICANCE: AP components are assembled and activated on EC-secreted/anchored ULVWF multimeric

  14. The dynamic characteristics and linewidth enhancement factor of quasi-supercontinuum self-assembled quantum dot lasers

    KAUST Repository

    Tan, Cheeloon

    2009-09-01

    The theoretical analysis of optical gain and chirp characteristics of a semiconductor quantum dot (Qdot) broadband laser is presented. The model based on population rate equations, has been developed to investigate the multiple states lasing or quasi-supercontinuum lasing in InGaAs/GaAs Qdot laser. The model takes into account factors such as Qdot size fluctuation, finite carrier lifetime in each confined energy states, wetting layer induced nonconfined states and the presence of continuum states. Hence, calculation of the linewidth enhancement factor together with the variation of optical gain and index change across the spectrum of interest becomes critical to yield a basic understanding on the limitation of this new class of lasers. Such findings are important for the design of a practical single broadband laser diode for applications in low coherence interferometry sensing and optical fiber communications. Calculation results show that the linewidth enhancement factor from the ground state of broadband Qdot lasers (α ∼ 3) is slightly larger but in the same order of magnitude as compared to that of conventional Qdot lasers. The gain spectrum of the quasi-supercontinuum lasing system exhibits almost twice the bandwidth than conventional lasers but with comparable material differential gain (∼ 10-16 cm2) and material differential refractive index (∼ 10sup>-20 cm3 ) near current threshold. © 2009 IEEE.

  15. A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes.

    Science.gov (United States)

    Oswald, Franz; Rodriguez, Patrick; Giaimo, Benedetto Daniele; Antonello, Zeus A; Mira, Laura; Mittler, Gerhard; Thiel, Verena N; Collins, Kelly J; Tabaja, Nassif; Cizelsky, Wiebke; Rothe, Melanie; Kühl, Susanne J; Kühl, Michael; Ferrante, Francesca; Hein, Kerstin; Kovall, Rhett A; Dominguez, Maria; Borggrefe, Tilman

    2016-06-02

    The transcriptional shift from repression to activation of target genes is crucial for the fidelity of Notch responses through incompletely understood mechanisms that likely involve chromatin-based control. To activate silenced genes, repressive chromatin marks are removed and active marks must be acquired. Histone H3 lysine-4 (H3K4) demethylases are key chromatin modifiers that establish the repressive chromatin state at Notch target genes. However, the counteracting histone methyltransferase required for the active chromatin state remained elusive. Here, we show that the RBP-J interacting factor SHARP is not only able to interact with the NCoR corepressor complex, but also with the H3K4 methyltransferase KMT2D coactivator complex. KMT2D and NCoR compete for the C-terminal SPOC-domain of SHARP. We reveal that the SPOC-domain exclusively binds to phosphorylated NCoR. The balance between NCoR and KMT2D binding is shifted upon mutating the phosphorylation sites of NCoR or upon inhibition of the NCoR kinase CK2β. Furthermore, we show that the homologs of SHARP and KMT2D in Drosophila also physically interact and control Notch-mediated functions in vivo Together, our findings reveal how signaling can fine-tune a committed chromatin state by phosphorylation of a pivotal chromatin-modifier.

  16. PML bodies provide an important platform for the maintenance of telomeric chromatin integrity in embryonic stem cells.

    Science.gov (United States)

    Chang, Fiona T M; McGhie, James D; Chan, F Lyn; Tang, Michelle C; Anderson, Melissa A; Mann, Jeffrey R; Andy Choo, K H; Wong, Lee H

    2013-04-01

    We have previously shown that α-thalassemia mental retardation X-linked (ATRX) and histone H3.3 are key regulators of telomeric chromatin in mouse embryonic stem cells. The function of ATRX and H3.3 in the maintenance of telomere chromatin integrity is further demonstrated by recent studies that show the strong association of ATRX/H3.3 mutations with alternative lengthening of telomeres in telomerase-negative human cancer cells. Here, we demonstrate that ATRX and H3.3 co-localize with the telomeric DNA and associated proteins within the promyelocytic leukemia (PML) bodies in mouse ES cells. The assembly of these telomere-associated PML bodies is most prominent at S phase. RNA interference (RNAi)-mediated knockdown of PML expression induces the disassembly of these nuclear bodies and a telomere dysfunction phenotype in mouse ES cells. Loss of function of PML bodies in mouse ES cells also disrupts binding of ATRX/H3.3 and proper establishment of histone methylation pattern at the telomere. Our study demonstrates that PML bodies act as epigenetic regulators by serving as platforms for the assembly of the telomeric chromatin to ensure a faithful inheritance of epigenetic information at the telomere.

  17. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes.

    Science.gov (United States)

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy; Groitl, Peter; Wimmer, Peter; Kinkley, Sarah; Mund, Andreas; Everett, Roger D; Dobner, Thomas

    2013-04-01

    Death domain-associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein-protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling.

  18. Fractal Characterization of Chromatin Decompaction in Live Cells.

    Science.gov (United States)

    Yi, Ji; Stypula-Cyrus, Yolanda; Blaha, Catherine S; Roy, Hemant K; Backman, Vadim

    2015-12-01

    Chromatin organization has a fundamental impact on the whole spectrum of genomic functions. Quantitative characterization of the chromatin structure, particularly at submicron length scales where chromatin fractal globules are formed, is critical to understanding this structure-function relationship. Such analysis is currently challenging due to the diffraction-limited resolution of conventional light microscopy. We herein present an optical approach termed inverse spectroscopic optical coherence tomography to characterize the mass density fractality of chromatin, and we apply the technique to observe chromatin decompaction in live cells. The technique makes it possible for the first time, to our knowledge, to sense intracellular morphology with length-scale sensitivity from ∼30 to 450 nm, thus primarily probing the higher-order chromatin structure, without resolving the actual structures. We used chromatin decompaction due to inhibition of histone deacytelases and measured the subsequent changes in the fractal dimension of the intracellular structure. The results were confirmed by transmission electron microscopy and confocal fluorescence microscopy.

  19. PREDICTION OF CHROMATIN STATES USING DNA SEQUENCE PROPERTIES

    KAUST Repository

    Bahabri, Rihab R.

    2013-06-01

    Activities of DNA are to a great extent controlled epigenetically through the internal struc- ture of chromatin. This structure is dynamic and is influenced by different modifications of histone proteins. Various combinations of epigenetic modification of histones pinpoint to different functional regions of the DNA determining the so-called chromatin states. How- ever, the characterization of chromatin states by the DNA sequence properties remains largely unknown. In this study we aim to explore whether DNA sequence patterns in the human genome can characterize different chromatin states. Using DNA sequence motifs we built binary classifiers for each chromatic state to eval- uate whether a given genomic sequence is a good candidate for belonging to a particular chromatin state. Of four classification algorithms (C4.5, Naive Bayes, Random Forest, and SVM) used for this purpose, the decision tree based classifiers (C4.5 and Random Forest) yielded best results among those we evaluated. Our results suggest that in general these models lack sufficient predictive power, although for four chromatin states (insulators, het- erochromatin, and two types of copy number variation) we found that presence of certain motifs in DNA sequences does imply an increased probability that such a sequence is one of these chromatin states.

  20. Anti-chromatin antibodies in juvenile rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    V. Gerloni

    2011-09-01

    Full Text Available Objective: to evaluate the prevalence and clinical significance of anti-chromatin antibodies (Abs in juvenile rheumatoid arthritis (JRA. Methods: IgG anti-chromatin Abs were detected by an enzyme-linked immunosorbent assay (ELISA, in sera of 94 children with JRA (10 children with systemic, 38 with polyarticular and 46 with oligoarticular disease onset. As control group, 33 age- and-sex-matched healthy children (HC were also examined. Results: Abs to chromatin were detected in 24/94 (25,5% of children suffering from JRA. Particularly, the higher prevalence of anti-chromatin Abs has been found in children with oligoarticular (30,4% and polyarticular (23,7% onset JRA. In these groups Abs titers were significantly higher compared to systemic JRA and HC (p=0.003. Anti-chromatin Abs were observed more frequently in patients with oligoarticular disease and chronic uveitis (21,7%. Furthermore, higher levels of anti-chromatin Abs has been found in all the patients treated with anti-TNFα therapy (p<0.0001. Conclusions: our results confirm previous data about the prevalence of anti-chromatin Abs in JRA. These Abs were significantly higher in the group of patients with oligoarticular onset with past or present hystory of ocular involvement and in the group with polyarticular JRA treated with biologic therapy. A long-term follow-up study could be useful to evaluate the potential utility of these autoantibodies.

  1. Exclusion of NFAT5 from mitotic chromatin resets its nucleo-cytoplasmic distribution in interphase.

    Directory of Open Access Journals (Sweden)

    Anaïs Estrada-Gelonch

    Full Text Available BACKGROUND: The transcription factor NFAT5 is a major inducer of osmoprotective genes and is required to maintain the proliferative capacity of cells exposed to hypertonic stress. In response to hypertonicity, NFAT5 translocates to the nucleus, binds to regulatory regions of osmoprotective genes and activates their transcription. Besides stimulus-specific regulatory mechanisms, the activity of transcription factors in cycling cells is also regulated by the passage through mitosis, when most transcriptional processes are downregulated. It was not known whether mitosis could be a point of control for NFAT5. METHODOLOGY/PRINCIPAL FINDINGS: Using confocal microscopy we observed that NFAT5 was excluded from chromatin during mitosis in both isotonic and hypertonic conditions. Analysis of NFAT5 deletions showed that exclusion was mediated by the carboxy-terminal domain (CTD. NFAT5 mutants lacking this domain showed constitutive binding to mitotic chromatin independent of tonicity, which caused them to localize in the nucleus and remain bound to chromatin in the subsequent interphase without hypertonic stimulation. We analyzed the contribution of the CTD, DNA binding, and nuclear import and export signals to the subcellular localization of this factor. Our results indicated that cytoplasmic localization of NFAT5 in isotonic conditions required both the exclusion from mitotic DNA and active nuclear export in interphase. Finally, we identified several regions within the CTD of NFAT5, some of them overlapping with transactivation domains, which were separately capable of causing its exclusion from mitotic chromatin. CONCLUSIONS/SIGNIFICANCE: Our results reveal a multipart mechanism regulating the subcellular localization of NFAT5. The transactivating module of NFAT5 switches its function from an stimulus-specific activator of transcription in interphase to an stimulus-independent repressor of binding to DNA in mitosis. This mechanism, together with export

  2. Sperm chromatin structure and male fertility: biological and clinical aspects

    Institute of Scientific and Technical Information of China (English)

    J. Erenpreiss; M. Spano; J. Erenpreisa; M. Bungum; A. Giwercman

    2006-01-01

    Aim: Sperm chromatin/DNA integrity is essential for the accurate transmission of paternal genetic information, and normal sperm chromatin structure is important for sperm fertilizing ability. The routine examination of semen, which includes sperm concentration, motility and morphology, does not identify defects in sperm chromatin structure. The origin of sperm DNA damage and a variety of methods for its assessment are described. Evaluation of sperm DNA damage appears to be a useful tool for assessing male fertility potential both in vivo and in vitro. The possible impact of sperm DNA defects on the offspring is also discussed.

  3. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure

    DEFF Research Database (Denmark)

    Luijsterburg, Martijn S; Acs, Klara; Ackermann, Leena;

    2012-01-01

    The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensatio...

  4. JMJD1C demethylates MDC1 to regulate the RNF8 and BRCA1-mediated chromatin response to DNA breaks

    DEFF Research Database (Denmark)

    Watanabe, Sugiko; Watanabe, Kenji; Akimov, Vyacheslav;

    2013-01-01

    Chromatin ubiquitylation flanking DNA double-strand breaks (DSBs), mediated by RNF8 and RNF168 ubiquitin ligases, orchestrates a two-branch pathway, recruiting repair factors 53BP1 or the RAP80-BRCA1 complex. We report that human demethylase JMJD1C regulates the RAP80-BRCA1 branch of this DNA...

  5. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements

    DEFF Research Database (Denmark)

    Grøntved, Lars; John, Sam; Baek, Songjoon

    2013-01-01

    Mechanisms regulating transcription factor interaction with chromatin in intact mammalian tissues are poorly understood. Exploiting an adrenalectomized mouse model with depleted endogenous glucocorticoids, we monitor changes of the chromatin landscape in intact liver tissue following glucocorticoid...... injection. Upon activation of the glucocorticoid receptor (GR), proximal regions of activated and repressed genes are remodelled, and these remodelling events correlate with RNA polymerase II occupancy of regulated genes. GR is exclusively associated with accessible chromatin and 62% percent of GR...... remodelling specifically at sites co-occupied by GR and C/EBPβ. Collectively, we demonstrate a highly cooperative mechanism by which C/EBPβ regulates selective GR binding to the genome in liver tissue. We suggest that selective targeting of GR in other tissues is likely mediated by the combined action of cell...

  6. Dynein Light Chain LC8 Is Required for RNA Polymerase I-Mediated Transcription in Trypanosoma brucei, Facilitating Assembly and Promoter Binding of Class I Transcription Factor A.

    Science.gov (United States)

    Kirkham, Justin K; Park, Sung Hee; Nguyen, Tu N; Lee, Ju Huck; Günzl, Arthur

    2016-01-01

    Dynein light chain LC8 is highly conserved among eukaryotes and has both dynein-dependent and dynein-independent functions. Interestingly, LC8 was identified as a subunit of the class I transcription factor A (CITFA), which is essential for transcription by RNA polymerase I (Pol I) in the parasite Trypanosoma brucei. Given that LC8 has never been identified with a basal transcription factor and that T. brucei relies on RNA Pol I for expressing the variant surface glycoprotein (VSG), the key protein in antigenic variation, we investigated the CITFA-specific role of LC8. Depletion of LC8 from mammalian-infective bloodstream trypanosomes affected cell cycle progression, reduced the abundances of rRNA and VSG mRNA, and resulted in rapid cell death. Sedimentation analysis, coimmunoprecipitation of recombinant proteins, and bioinformatic analysis revealed an LC8 binding site near the N terminus of the subunit CITFA2. Mutation of this site prevented the formation of a CITFA2-LC8 heterotetramer and, in vivo, was lethal, affecting assembly of a functional CITFA complex. Gel shift assays and UV cross-linking experiments identified CITFA2 as a promoter-binding CITFA subunit. Accordingly, silencing of LC8 or CITFA2 resulted in a loss of CITFA from RNA Pol I promoters. Hence, we discovered an LC8 interaction that, unprecedentedly, has a basal function in transcription.

  7. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular iron levels.

    Science.gov (United States)

    Miles, Anna L; Burr, Stephen P; Grice, Guinevere L; Nathan, James A

    2017-03-15

    Hypoxia Inducible transcription Factors (HIFs) are principally regulated by the 2-oxoglutarate and Iron(II) prolyl hydroxylase (PHD) enzymes, which hydroxylate the HIFα subunit, facilitating its proteasome-mediated degradation. Observations that HIFα hydroxylation can be impaired even when oxygen is sufficient emphasise the importance of understanding the complex nature of PHD regulation. Here, we use an unbiased genome-wide genetic screen in near-haploid human cells to uncover cellular processes that regulate HIF1α. We identify that genetic disruption of the Vacuolar H+ ATPase (V-ATPase), the key proton pump for endo-lysosomal acidification, and two previously uncharacterised V-ATPase assembly factors, TMEM199 and CCDC115, stabilise HIF1α in aerobic conditions. Rather than preventing the lysosomal degradation of HIF1α, disrupting the V-ATPase results in intracellular iron depletion, thereby impairing PHD activity and leading to HIF activation. Iron supplementation directly restores PHD catalytic activity following V-ATPase inhibition, revealing important links between the V-ATPase, iron metabolism and HIFs.

  8. Making Sense of the Tangle: Insights into Chromatin Folding and Gene Regulation

    Directory of Open Access Journals (Sweden)

    Ill-Min Chung

    2016-09-01

    Full Text Available Proximity ligation assays such as circularized chromosome conformation capture and high-throughput chromosome capture assays have shed light on the structural organization of the interphase genome. Functional topologically associating domains (TADs that constitute the building blocks of genomic organization are disrupted and reconstructed during the cell cycle. Epigenetic memory, as well as the sequence of chromosomes, regulate TAD reconstitution. Sub-TAD domains that are invariant across cell types have been identified, and contacts between these domains, rather than looping, are speculated to drive chromatin folding. Replication domains are established simultaneously with TADs during the cell cycle and the two correlate well in terms of characteristic features, such as lamin association and histone modifications. CCCTC-binding factor (CTCF and cohesin cooperate across different cell types to regulate genes and genome organization. CTCF elements that demarcate TAD boundaries are commonly disrupted in cancer and promote oncogene activation. Chromatin looping facilitates interactions between distant promoters and enhancers, and the resulting enhanceosome complex promotes gene expression. Deciphering the chromatin tangle requires comprehensive integrative analyses of DNA- and protein-dependent factors that regulate genomic organization.

  9. Chromatin Folding, Fragile Sites, and Chromosome Aberrations Induced by Low- and High- LET Radiation

    Science.gov (United States)

    Zhang, Ye; Cox, Bradley; Asaithamby, Aroumougame; Chen, David J.; Wu, Honglu

    2013-01-01

    We previously demonstrated non-random distributions of breaks involved in chromosome aberrations induced by low- and high-LET radiation. To investigate the factors contributing to the break point distribution in radiation-induced chromosome aberrations, human epithelial cells were fixed in G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome in separate colors. After the images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multimega base pair scale. Specific locations of the chromosome, in interphase, were also analyzed with bacterial artificial chromosome (BAC) probes. Both mBAND and BAC studies revealed non-random folding of chromatin in interphase, and suggested association of interphase chromatin folding to the radiation-induced chromosome aberration hotspots. We further investigated the distribution of genes, as well as the distribution of breaks found in tumor cells. Comparisons of these distributions to the radiation hotspots showed that some of the radiation hotspots coincide with the frequent breaks found in solid tumors and with the fragile sites for other environmental toxins. Our results suggest that multiple factors, including the chromatin structure and the gene distribution, can contribute to radiation-induced chromosome aberrations.

  10. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.

    Science.gov (United States)

    Schep, Alicia N; Buenrostro, Jason D; Denny, Sarah K; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J

    2015-11-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal "fingerprint" as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding.

  11. A chromatin link to caste identity in the carpenter ant Camponotus floridanus.

    Science.gov (United States)

    Simola, Daniel F; Ye, Chaoyang; Mutti, Navdeep S; Dolezal, Kelly; Bonasio, Roberto; Liebig, Jürgen; Reinberg, Danny; Berger, Shelley L

    2013-03-01

    In many ant species, sibling larvae follow alternative ontogenetic trajectories that generate striking variation in morphology and behavior among adults. These organism-level outcomes are often determined by environmental rather than genetic factors. Therefore, epigenetic mechanisms may mediate the expression of adult polyphenisms. We produced the first genome-wide maps of chromatin structure in a eusocial insect and found that gene-proximal changes in histone modifications, notably H3K27 acetylation, discriminate two female worker and male castes in Camponotus floridanus ants and partially explain differential gene expression between castes. Genes showing coordinated changes in H3K27ac and RNA implicate muscle development, neuronal regulation, and sensory responses in modulating caste identity. Binding sites of the acetyltransferase CBP harbor the greatest caste variation in H3K27ac, are enriched with motifs for conserved transcription factors, and show evolutionary expansion near developmental and neuronal genes. These results suggest that environmental effects on caste identity may be mediated by differential recruitment of CBP to chromatin. We propose that epigenetic mechanisms that modify chromatin structure may help orchestrate the generation and maintenance of polyphenic caste morphology and social behavior in ants.

  12. Spatially confined polymer chains: implications of chromatin fibre flexibility and peripheral anchoring on telomere telomere interaction

    Science.gov (United States)

    Gehlen, L. R.; Rosa, A.; Klenin, K.; Langowski, J.; Gasser, S. M.; Bystricky, K.

    2006-04-01

    We simulate the extension of spatially confined chromatin fibres modelled as polymer chains and examine the effect of the flexibility of the fibre and its degree of freedom. The developed formalism was used to analyse experimental data of telomere-telomere distances in living yeast cells in the absence of confining factors as identified by the proteins Sir4 and yKu70. Our analysis indicates that intrinsic properties of the chromatin fibre, in particular its elastic properties and flexibility, can influence the juxtaposition of the telomeric ends of chromosomes. However, measurements in intact yeast cells showed that the telomeres of chromosomes 3 and 6 come even closer together than the parameters of constraint imposed on the simulations would predict. This juxtaposition was specific to telomeres on one contiguous chromosome and overrode a tendency for separation that is imposed by anchoring.

  13. Lamin C and chromatin organization in Drosophila

    Indian Academy of Sciences (India)

    B. V. Gurudatta; L. S. Shashidhara; Veena K. Parnaik

    2010-04-01

    Drosophila lamin C (LamC) is a developmentally regulated component of the nuclear lamina. The lamC gene is situated in the fifth intron of the essential gene tout velu (ttv). We carried out genetic analysis of lamC during development. Phenotypic analyses of RNAi-mediated downregulation of lamC expression as well as targeted misexpression of lamin C suggest a role for lamC in cell survival. Of particular interest in the context of laminopathies is the caspase-dependent apoptosis induced by the overexpression of lamin C. Interestingly, misexpression of lamin C in the central nervous system, where it is not normally expressed, did not affect organization of the nuclear lamina. lamC mutant alleles suppressed position effect variegation normally displayed at near-centromeric and telomeric regions. Further, both downregulation and misexpression of lamin C affected the distribution of heterochromatin protein 1. Our results suggest that Drosophila lamC has a tissue-specific role during development and is required for chromatin organization.

  14. DNA-binding factors assemble in a sequence-specific manner on the maize mitochondrial atpA promoter.

    Science.gov (United States)

    Chang, C C; Stern, D B

    1999-06-01

    The maize mitochondrial atpA promoter has been well-characterized using in vitro transcription. The functional elements of this promoter comprise a central domain extending from -7 to +5 relative to the transcription start site, and an upstream domain of 1-3 bp that is purine-rich and centered around positions -11 to -12. As a first step in characterizing the transcriptional machinery, exonuclease-III mapping (toeprinting) was used to map the borders of DNA-protein interactions using either a 107-bp wild-type template or transcriptionally-inactive templates containing linker-scanning mutations. These experiments revealed that, with a wild-type promoter, protein factors occupy as much as 36 bp, from positions -20 to +16 relative to the transcription initiation site. Protein-binding patterns were altered when the linker-scanning mutants were used, suggesting that either the number or conformation of DNA-binding proteins could account for their inability to promote transcription initiation.

  15. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  16. FACT facilitates chromatin transcription by RNA polymerases I and III

    DEFF Research Database (Denmark)

    Birch, Joanna L; Tan, Bertrand C-M; Panov, Kostya I

    2009-01-01

    Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle. ...

  17. Neutron scattering studies on chromatin higher-order structure

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.

  18. Chromatin remodeling and cancer, Part I: Covalent histone modifications.

    Science.gov (United States)

    Wang, Gang G; Allis, C David; Chi, Ping

    2007-09-01

    Dynamic chromatin remodeling underlies many, if not all, DNA-templated biological processes, including gene transcription; DNA replication and repair; chromosome condensation; and segregation and apoptosis. Disruption of these processes has been linked to the development and progression of cancer. The mechanisms of dynamic chromatin remodeling include the use of covalent histone modifications, histone variants, ATP-dependent complexes and DNA methylation. Together, these mechanisms impart variation into the chromatin fiber, and this variation gives rise to an 'epigenetic landscape' that extends the biological output of DNA alone. Here, we review recent advances in chromatin remodeling, and pay particular attention to mechanisms that appear to be linked to human cancer. Where possible, we discuss the implications of these advances for disease-management strategies.

  19. Distinct roles of Ser-764 and Lys-773 at the N terminus of von Willebrand factor in complex assembly with coagulation factor VIII.

    Science.gov (United States)

    Castro-Núñez, Lydia; Bloem, Esther; Boon-Spijker, Mariëtte G; van der Zwaan, Carmen; van den Biggelaar, Maartje; Mertens, Koen; Meijer, Alexander B

    2013-01-04

    Complex formation between coagulation factor VIII (FVIII) and von Willebrand factor (VWF) is of critical importance to protect FVIII from rapid in vivo clearance and degradation. We have now employed a chemical footprinting approach to identify regions on VWF involved in FVIII binding. To this end, lysine amino acid residues of VWF were chemically modified in the presence of FVIII or activated FVIII, which does not bind VWF. Nano-LC-MS analysis showed that the lysine residues of almost all identified VWF peptides were not differentially modified upon incubation of VWF with FVIII or activated FVIII. However, Lys-773 of peptide Ser-766-Leu-774 was protected from chemical modification in the presence of FVIII. In addition, peptide Ser-764-Arg-782, which comprises the first 19 amino acid residues of mature VWF, showed a differential modification of both Lys-773 and the α-amino group of Ser-764. To verify the role of Lys-773 and the N-terminal Ser-764 in FVIII binding, we employed VWF variants in which either Lys-773 or Ser-764 was replaced with Ala. Surface plasmon resonance analysis and competition studies revealed that VWF(K773A) exhibited reduced binding to FVIII and the FVIII light chain, which harbors the VWF-binding site. In contrast, VWF(S764A) revealed more effective binding to FVIII and the FVIII light chain compared with WT VWF. The results of our study show that the N terminus of VWF is critical for the interaction with FVIII and that Ser-764 and Lys-773 have opposite roles in the binding mechanism.

  20. First Exon Length Controls Active Chromatin Signatures and Transcription

    Directory of Open Access Journals (Sweden)

    Nicole I. Bieberstein

    2012-07-01

    Full Text Available Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.

  1. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Nicolas M Berbenetz

    2010-09-01

    Full Text Available Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers positions nucleosomes adjacent to the origin to promote replication origin function.

  2. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    Science.gov (United States)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  3. The Interplay of Chromatin Landscape and DNA-Binding Context Suggests Distinct Modes of EIN3 Regulation in Arabidopsis thaliana

    Science.gov (United States)

    Zemlyanskaya, Elena V.; Levitsky, Victor G.; Oshchepkov, Dmitry Y.; Grosse, Ivo; Mironova, Victoria V.

    2017-01-01

    The plant hormone ethylene regulates numerous developmental processes and stress responses. Ethylene signaling proceeds via a linear pathway, which activates transcription factor (TF) EIN3, a primary transcriptional regulator of ethylene response. EIN3 influences gene expression upon binding to a specific sequence in gene promoters. This interaction, however, might be considerably affected by additional co-factors. In this work, we perform whole genome bioinformatics study to identify the impact of epigenetic factors in EIN3 functioning. The analysis of publicly available ChIP-Seq data on EIN3 binding in Arabidopsis thaliana showed bimodality of distribution of EIN3 binding regions (EBRs) in gene promoters. Besides a sharp peak in close proximity to transcription start site, which is a common binding region for a wide variety of TFs, we found an additional extended peak in the distal promoter region. We characterized all EBRs with respect to the epigenetic status appealing to previously published genome-wide map of nine chromatin states in A. thaliana. We found that the implicit distal peak was associated with a specific chromatin state (referred to as chromatin state 4 in the primary source), which was just poorly represented in the pronounced proximal peak. Intriguingly, EBRs corresponding to this chromatin state 4 were significantly associated with ethylene response, unlike the others representing the overwhelming majority of EBRs related to the explicit proximal peak. Moreover, we found that specific EIN3 binding sequences predicted with previously described model were enriched in the EBRs mapped to the chromatin state 4, but not to the rest ones. These results allow us to conclude that the interplay of genetic and epigenetic factors might cause the distinct modes of EIN3 regulation. PMID:28119721

  4. The intrinsic factor-vitamin B12 receptor, cubilin, is assembled into trimers via a coiled-coil alpha-helix.

    Science.gov (United States)

    Lindblom, A; Quadt, N; Marsh, T; Aeschlimann, D; Mörgelin, M; Mann, K; Maurer, P; Paulsson, M

    1999-03-05

    A large protein was purified from bovine kidney, using selective extraction with EDTA to solubilize proteins anchored by divalent cation-dependent interactions. An antiserum raised against the purified protein labeled the apical cell surface of the epithelial cells in proximal tubules and the luminal surface of small intestine. Ten peptide sequences, derived from the protein, all matched the recently published sequences for rat (Moestrup, S. K., Kozyraki, R., Kristiansen, M., Kaysen, J. H., Holm Rasmussen, H., Brault, D., Pontillon, F., Goda, F. O., Christensen, E. I., Hammond, T. G., and Verroust, P. J. (1998) J. Biol. Chem. 273, 5235-5242) and human cubilin, a receptor for intrinsic factor-vitamin B12 complexes, identifying the protein as bovine cubilin. In electron microscopy, a three-armed structure was seen, indicating an oligomerization of three identical subunits. This model was supported by the Mr values of about 1,500,000 for the intact protein and 440,000 for its subunits obtained by analytical ultracentrifugation. In a search for a potential assembly domain, we identified a region of heptad repeats in the N-terminal part of the cubilin sequence. Computer-assisted analysis supported the presence of a coiled-coil alpha-helix between amino acids 103 and 132 of the human cubilin sequence and predicted the formation of a triple coiled-coil. We therefore conclude that cubilin forms a noncovalent trimer of identical subunits connected by an N-terminal coiled-coil alpha-helix.

  5. Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly.

    Science.gov (United States)

    Reyon, Deepak; Maeder, Morgan L; Khayter, Cyd; Tsai, Shengdar Q; Foley, Jonathan E; Sander, Jeffry D; Joung, J Keith

    2013-07-01

    Customized DNA-binding domains made using transcription activator-like effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in various organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or downregulate expression of endogenous genes in human cells and plants. This unit describes a detailed protocol for the recently described fast ligation-based automatable solid-phase high-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multichannel pipet. Using the automated approach, a single researcher can construct up to 96 DNA fragments encoding TALE repeat arrays of various lengths in a single day, and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in a week or less. Plasmids required for FLASH are available by request from the Joung lab (http://eGenome.org). This unit also describes improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) web server (http://ZiFiT.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high throughput.

  6. Sabot assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bzorgi, Fariborz

    2016-11-08

    A sabot assembly includes a projectile and a housing dimensioned and configured for receiving the projectile. An air pressure cavity having a cavity diameter is disposed between a front end and a rear end of the housing. Air intake nozzles are in fluid communication with the air pressure cavity and each has a nozzle diameter less than the cavity diameter. In operation, air flows through the plurality of air intake nozzles and into the air pressure cavity upon firing of the projectile from a gun barrel to pressurize the air pressure cavity for assisting in separation of the housing from the projectile upon the sabot assembly exiting the gun barrel.

  7. On Constraints in Assembly Planning

    Energy Technology Data Exchange (ETDEWEB)

    Calton, T.L.; Jones, R.E.; Wilson, R.H.

    1998-12-17

    Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. Assembly costs and other measures to optimize vary just as widely. To be effective, computer-aided assembly planning systems must allow users to express the plan selection criteria that appIy to their products and production environments. We begin this article by surveying the types of user criteria, both constraints and quality measures, that have been accepted by assembly planning systems to date. The survey is organized along several dimensions, including strategic vs. tactical criteria; manufacturing requirements VS. requirements of the automated planning process itself and the information needed to assess compliance with each criterion. The latter strongly influences the efficiency of planning. We then focus on constraints. We describe a framework to support a wide variety of user constraints for intuitive and efficient assembly planning. Our framework expresses all constraints on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. Constraints are implemented as simple procedures that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables an interactive plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to a number of complex assemblies, including one with 472 parts.

  8. ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs in human cells.

    Directory of Open Access Journals (Sweden)

    Annabelle Becker

    Full Text Available Ionizing radiation induces DNA double strand breaks (DSBs which can lead to the formation of chromosome rearrangements through error prone repair. In mammalian cells the positional stability of chromatin contributes to the maintenance of genome integrity. DSBs exhibit only a small, submicron scale diffusive mobility, but a slight increase in the mobility of chromatin domains by the induction of DSBs might influence repair fidelity and the formation of translocations. The radiation-induced local DNA decondensation in the vicinity of DSBs is one factor potentially enhancing the mobility of DSB-containing chromatin domains. Therefore in this study we focus on the influence of different chromatin modifying proteins, known to be activated by the DNA damage response, on the mobility of DSBs. IRIF (ionizing radiation induced foci in U2OS cells stably expressing 53BP1-GFP were used as a surrogate marker of DSBs. Low angle charged particle irradiation, known to trigger a pronounced DNA decondensation, was used for the defined induction of linear tracks of IRIF. Our results show that movement of IRIF is independent of the investigated chromatin modifying proteins like ACF1 or PARP1 and PARG. Also depletion of proteins that tether DNA strands like MRE11 and cohesin did not alter IRIF dynamics significantly. Inhibition of ATM, a key component of DNA damage response signaling, resulted in a pronounced confinement of DSB mobility, which might be attributed to a diminished radiation induced decondensation. This confinement following ATM inhibition was confirmed using X-rays, proving that this effect is not restricted to densely ionizing radiation. In conclusion, repair sites of DSBs exhibit a limited mobility on a small spatial scale that is mainly unaffected by depletion of single remodeling or DNA tethering proteins. However, it relies on functional ATM kinase which is considered to influence the chromatin structure after irradiation.

  9. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription.

    Science.gov (United States)

    Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Szalaj, Przemyslaw; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Penrad-Mobayed, May; Sachs, Laurent M; Ruan, Xiaoan; Wei, Chia-Lin; Liu, Edison T; Wilczynski, Grzegorz M; Plewczynski, Dariusz; Li, Guoliang; Ruan, Yijun

    2015-12-17

    Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.

  10. Induction of systemic lupus erythematosus syndrome in BALB/c mice by immunization with active chromatin

    Institute of Scientific and Technical Information of China (English)

    Hong LI; Yun-yi ZHANG; Ya-nan SUN; Xi-yi HUANG; Yong-feng JIA; Duan LI

    2004-01-01

    AIM: To establish an animal model for systemic lupus erythematosus (SLE)-like syndrome in mice. METHODS:BALB/c mice were immunized with active chromatin isolated from ConA-actived syngeneic spleno-lymphocytes.Plasma samples of mice were tested by enzyme-linked immunosorbent assays (ELISA) for the presence of IgG anti-dsDNA, -ssDNA, and anti-histone antibodies. Tumor necrosis factor-α (TNF-α) in serum was measured by ELISA. Spleno-lymphocyte proliferation assays and the levels of interferon-γ (IFN-γ) in supernatants were tested respectively. Proteinuria was measured. Kidneys were examined by direct immunohistochemical method and light microscopy. RESULTS: Anti-ds DNA, ssDNA, and histone antibodies were induced in active chromatin-immunized mice, the proliferation response of splenocytes to ConA and LPS were reduced, levels of interferon-γ in supernatants and TNF-α in serum were lowered. Lupus nephritis was assessed by the presence of Ig deposits,glomerular pathology and proteinuria. CONCLUSION: The active chromatin-induced SLE-like mouse model was similar to idiopathic SLE in human.

  11. Impaired methylation modifications of FZD3 alter chromatin accessibility and are involved in congenital hydrocephalus pathogenesis.

    Science.gov (United States)

    Wang, Li; Shangguan, Shaofang; Chang, Shaoyan; Wang, Zhen; Lu, Xiaolin; Wu, Lihua; Li, Rui; Bao, Yihua; Qiu, Zhiyong; Niu, Bo; Zhang, Ting

    2014-06-20

    Congenital hydrocephalus is heterogeneous in its etiology, and in addition to a genetic component, has been shown to be caused by environmental factors. Until now, however, no methylation alterations of target genes have been connected with congenital hydrocephalus in humans. Frizzled 3(FZD3) is a planar cell polarity (PCP) gene required for PCP signaling. Partial restoration of frizzled 3 activities in FZD3 mutant mice results in hydrocephalus. To analyze the possible roles of epigenetic modifications of the FZD3 gene in congenital hydrocephalus pathogenesis, DNA methylation in the promoter region of FZD3 was assayed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Gene expression and chromatin accessibility were also determined to assess the role of methylation alterations. Our study found methylation levels of the FZD3 gene were increased in congenital hydrocephalus, especially in males (10.57 ± 3.90 vs. 7.08 ± 0.94, p=0.001). Hypermethylation of FZD3 increased congenital hydrocephalus risk, with an odds ratio of 10.125 (p=0.003). Aberrant methylation modification of FZD3 altered both chromatin structure in this region and FZD3 expression levels. Totally, aberrant methylation modification of the FZD3 gene increases the risk of congenital hydrocephalus by altering chromatin structure and disturbing gene expression.

  12. Increased exchange rate of histone H1 on chromatin by exogenous myogenin expression

    Institute of Scientific and Technical Information of China (English)

    MING; GONG; JU; HUA; NI; HONG; TI; JIA

    2002-01-01

    To explore the molecular mechanism of chromatin remodeling involved in the regulation of transcriptionalactivation of specific genes by a myogenic regulatory factor Myogenin, we used NIH3T3 fibroblasts with astably integrated H1.1-GFP fusion protein to monitor histone H1 movement directly by fluorescence recov-ery after photobleaching (FRAP) in living cells. The observation from FRAP experiments with myogenintransfected fibroblasts showed that the exchange rate of histone H1 in chromatin was obviously increased,indicating that forced expression of exogenous Myogenin can induce chromatin remodeling. The hyper-acetylation of histones H3 and H4 from myogenin transfected fibroblasts was detected by triton-acid-urea(TAU)/SDS (2-D) electrophoresis and Western blot with specific antibodies against acetylated N-termini ofhistones H3 and H4. RT-PCR analysis indicated that the nAChR α-subunit gene was expressed in the trans-fected fibroblasts. These results suggest that the expression of exogenous Myogenin can induce chromatinremodeling and activate the transcription of Myogenin-targeted gene in non-muscle cells.

  13. Wolbachia-mediated male killing is associated with defective chromatin remodeling.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Riparbelli

    Full Text Available Male killing, induced by different bacterial taxa of maternally inherited microorganisms, resulting in highly distorted female-biased sex-ratios, is a common phenomenon among arthropods. Some strains of the endosymbiont bacteria Wolbachia have been shown to induce this phenotype in particular insect hosts. High altitude populations of Drosophila bifasciata infected with Wolbachia show selective male killing during embryonic development. However, since this was first reported, circa 60 years ago, the interaction between Wolbachia and its host has remained unclear. Herein we show that D. bifasciata male embryos display defective chromatin remodeling, improper chromatid segregation and chromosome bridging, as well as abnormal mitotic spindles and gradual loss of their centrosomes. These defects occur at different times in the early development of male embryos leading to death during early nuclear division cycles or large defective areas of the cellular blastoderm, culminating in abnormal embryos that die before eclosion. We propose that Wolbachia affects the development of male embryos by specifically targeting male chromatin remodeling and thus disturbing mitotic spindle assembly and chromosome behavior. These are the first observations that demonstrate fundamental aspects of the cytological mechanism of male killing and represent a solid base for further molecular studies of this phenomenon.

  14. Ephemeral Protein Binding to DNA Shapes Stable Nuclear Bodies and Chromatin Domains.

    Science.gov (United States)

    Brackley, Chris A; Liebchen, Benno; Michieletto, Davide; Mouvet, Francois; Cook, Peter R; Marenduzzo, Davide

    2017-03-28

    Fluorescence microscopy reveals that the contents of many (membrane-free) nuclear bodies exchange rapidly with the soluble pool while the underlying structure persists; such observations await a satisfactory biophysical explanation. To shed light on this, we perform large-scale Brownian dynamics simulations of a chromatin fiber interacting with an ensemble of (multivalent) DNA-binding proteins able to switch between an "on" (binding) and an "off" (nonbinding) state. This system provides a model for any DNA-binding protein that can be posttranslationally modified to change its affinity for DNA (e.g., through phosphorylation). Protein switching is a nonequilibrium process, and it leads to the formation of clusters of self-limiting size, where individual proteins in a cluster exchange with the soluble pool with kinetics similar to those seen in photobleaching experiments. This behavior contrasts sharply with that exhibited by nonswitching proteins, which are permanently in the on-state; when these bind to DNA nonspecifically, they form clusters that grow indefinitely in size. To explain these findings, we propose a mean-field theory from which we obtain a scaling relation between the typical cluster size and the protein switching rate. Protein switching also reshapes intrachromatin contacts to give networks resembling those seen in topologically associating domains, as switching markedly favors local (short-range) contacts over distant ones. Our results point to posttranslational modification of chromatin-bridging proteins as a generic mechanism driving the self-assembly of highly dynamic, nonequilibrium, protein clusters with the properties of nuclear bodies.

  15. Human Assisted Assembly Processes

    Energy Technology Data Exchange (ETDEWEB)

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  16. Using oocyte nuclei for studies on chromatin structure and gene expression.

    Science.gov (United States)

    Sommerville, John

    2010-05-01

    The giant nucleus of amphibian oocytes is generally referred to as the germinal vesicle (GV). Its size allows relatively easy manual isolation from the rest of the oocyte and also presents a large target in situ for microinjection of macromolecules including plasmid DNA, RNA species, antibodies and other proteins and even whole organelles, including somatic cell nuclei. Thus the use of GVs is excellent for two major types of study: the function of endogenous nuclear processes such as gene transcription, RNA processing and intra-nuclear dynamics; and the use of the nuclear components to effect processes such as chromatin assembly, expression of foreign genes and nucleocytoplasmic transport of injected biomolecules. This article outlines some basic techniques appropriate for GV studies, particularly the preparation of oocytes for microinjection and the isolation of germinal vesicles into an oil phase. As an aid to the targeting of the GV within the nucleus, descriptions are given of the use of oocytes from albino animals.

  17. The RSC Chromatin Remodeling Complex Bears an Essential Fungal-Specific Protein Module With Broad Functional Roles

    OpenAIRE

    Wilson, Boris; Erdjument-Bromage, Hediye; Tempst, Paul; Bradley R Cairns

    2006-01-01

    RSC is an essential and abundant ATP-dependent chromatin remodeling complex from Saccharomyces cerevisiae. Here we show that the RSC components Rsc7/Npl6 and Rsc14/Ldb7 interact physically and/or functionally with Rsc3, Rsc30, and Htl1 to form a module important for a broad range of RSC functions. A strain lacking Rsc7 fails to properly assemble RSC, which confers sensitivity to temperature and to agents that cause DNA damage, microtubule depolymerization, or cell wall stress (likely via tran...

  18. SWI/SNF Protein Component BAF250a Regulates Cardiac Progenitor Cell Differentiation by Modulating Chromatin Accessibility during Second Heart Field Development*

    Science.gov (United States)

    Lei, Ienglam; Gao, Xiaolin; Sham, Mai Har; Wang, Zhong

    2012-01-01

    ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation. PMID:22621927

  19. SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development.

    Science.gov (United States)

    Lei, Ienglam; Gao, Xiaolin; Sham, Mai Har; Wang, Zhong

    2012-07-13

    ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation.

  20. The dynamics of individual nucleosomes controls the chromatin condensation pathway: direct AFM visualization of variant chromatin

    CERN Document Server

    Montel, Fabien; Castelnovo, Martin; Bednar, Jan; Dimitrov, Stefan; Angelov, Dimitar; Faivre-Moskalenko, Cendrine

    2009-01-01

    Chromatin organization and dynamics is studied in this work at scales ranging from single nucleosome to nucleosomal array by using a unique combination of biochemical assays, single molecule imaging technique and numerical modeling. We demonstrate that a subtle modification in the nucleosome structure induced by the histone variant H2A.Bbd drastically modifies the higher order organization of the nucleosomal arrays. Importantly, as directly visualized by AFM, conventional H2A nucleosomal arrays exhibit specific local organization, in contrast to H2A.Bbd arrays, which show ?beads on a string? structure. The combination of systematic image analysis and theoretical modeling allows a quantitative description relating the observed gross structural changes of the arrays to their local organization. Our results strongly suggest that higher-order organization of H1-free nucleosomal arrays is mainly determined by the fluctuation properties of individual nucleosomes. Moreover, numerical simulations suggest the existenc...

  1. Chromatin dynamics at DNA breaks: what, how and why?

    Directory of Open Access Journals (Sweden)

    Théo Lebeaupin

    2015-09-01

    Full Text Available Chromatin has a complex, dynamic architecture in the interphase nucleus, which regulates the accessibility of the underlying DNA and plays a key regulatory role in all the cellular functions using DNA as a template, such as replication, transcription or DNA damage repair. Here, we review the recent progresses in the understanding of the interplay between chromatin architecture and DNA repair mechanisms. Several reports based on live cell fluorescence imaging show that the activation of the DNA repair machinery is associated with major changes in the compaction state and the mobility of chromatin. We discuss the functional consequences of these changes in yeast and mammals in the light of the different repair pathways utilized by these organisms. In the final section of this review, we show how future developments in high-resolution light microscopy and chromatin modelling by polymer physics should contribute to a better understanding of the relationship between the structural changes in chromatin and the activity of the repair processes.

  2. The structure of the core NuRD repression complex provides insights into its interaction with chromatin.

    Science.gov (United States)

    Millard, Christopher J; Varma, Niranjan; Saleh, Almutasem; Morris, Kyle; Watson, Peter J; Bottrill, Andrew R; Fairall, Louise; Smith, Corinne J; Schwabe, John W R

    2016-04-21

    The NuRD complex is a multi-protein transcriptional corepressor that couples histone deacetylase and ATP-dependent chromatin remodelling activities. The complex regulates the higher-order structure of chromatin, and has important roles in the regulation of gene expression, DNA damage repair and cell differentiation. HDACs 1 and 2 are recruited by the MTA1 corepressor to form the catalytic core of the complex. The histone chaperone protein RBBP4, has previously been shown to bind to the carboxy-terminal tail of MTA1. We show that MTA1 recruits a second copy of RBBP4. The crystal structure reveals an extensive interface between MTA1 and RBBP4. An EM structure, supported by SAXS and crosslinking, reveals the architecture of the dimeric HDAC1:MTA1:RBBP4 assembly which forms the core of the NuRD complex. We find evidence that in this complex RBBP4 mediates interaction with histone H3 tails, but not histone H4, suggesting a mechanism for recruitment of the NuRD complex to chromatin.

  3. Focal Plane Image Assembly of Subpixel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper describes the scanning assembly principle and construction of scanning assembly sample.The factors that affect assembly accuracy are analyzed.There are two steps in CCD focal plane scanning assembly.The first is rough assembly,and the second is accurate assembly.In this paper,the moiré fringe is introduced in judging assembly accuracy directly and accurately.The equation for optical transmission characteristics of CCD Moiré fringes is presented.The measurement of Moiré fringes can be completed when some conditions are satisfied.2D-assembly error can be obtained by using digital correlation filtering technique.Finally,the result of focal plane scanning assembly is presented.The result is in good accordance with theory.

  4. Poxvirus tumor necrosis factor receptor (TNFR)-like T2 proteins contain a conserved preligand assembly domain that inhibits cellular TNFR1-induced cell death.

    Science.gov (United States)

    Sedger, Lisa M; Osvath, Sarah R; Xu, Xiao-Ming; Li, Grace; Chan, Francis K-M; Barrett, John W; McFadden, Grant

    2006-09-01

    The poxvirus tumor necrosis factor receptor (TNFR) homologue T2 has immunomodulatory properties; secreted myxoma virus T2 (M-T2) protein binds and inhibits rabbit TNF-alpha, while intracellular M-T2 blocks virus-induced lymphocyte apoptosis. Here, we define the antiapoptotic function as inhibition of TNFR-mediated death via a highly conserved viral preligand assembly domain (vPLAD). Jurkat cell lines constitutively expressing M-T2 were generated and shown to be resistant to UV irradiation-, etoposide-, and cycloheximide-induced death. These cells were also resistant to human TNF-alpha, but M-T2 expression did not alter surface expression levels of TNFRs. Previous studies indicated that T2's antiapoptotic function was conferred by the N-terminal region of the protein, and further examination of this region revealed a highly conserved N-terminal vPLAD, which is present in all poxvirus T2-like molecules. In cellular TNFRs and TNF-alpha-related apoptosis-inducing ligand (TRAIL) receptors (TRAILRs), PLAD controls receptor signaling competency prior to ligand binding. Here, we show that M-T2 potently inhibits TNFR1-induced death in a manner requiring the M-T2 vPLAD. Furthermore, we demonstrate that M-T2 physically associates with and colocalizes with human TNFRs but does not prevent human TNF-alpha binding to cellular receptors. Thus, M-T2 vPLAD is a species-nonspecific dominant-negative inhibitor of cellular TNFR1 function. Given that the PLAD is conserved in all known poxvirus T2-like molecules, we predict that it plays an important function in each of these proteins. Moreover, that the vPLAD confers an important antiapoptotic function confirms this domain as a potential target in the development of the next generation of TNF-alpha/TNFR therapeutics.

  5. A unique missense allele of BAF155, a core BAF chromatin remodeling complex protein, causes neural tube closure defects in mice.

    Science.gov (United States)

    Harmacek, Laura; Watkins-Chow, Dawn E; Chen, Jianfu; Jones, Kenneth L; Pavan, William J; Salbaum, J Michael; Niswander, Lee

    2014-05-01

    Failure of embryonic neural tube closure results in the second most common class of birth defects known as neural tube defects (NTDs). While NTDs are likely the result of complex multigenic dysfunction, it is not known whether polymorphisms in epigenetic regulators may be risk factors for NTDs. Here we characterized Baf155(msp3) , a unique ENU-induced allele in mice. Homozygous Baf155(mps3) embryos exhibit highly penetrant exencephaly, allowing us to investigate the roles of an assembled, but malfunctional BAF chromatin remodeling complex in vivo at the time of neural tube closure. Evidence of defects in proliferation and apoptosis were found within the neural tube. RNA-Seq analysis revealed that surprisingly few genes showed altered expression in Baf155 mutant neural tissue, given the broad epigenetic role of the BAF complex, but included genes involved in neural development and cell survival. Moreover, gene expression changes between individual mutants were variable even though the NTD was consistently observed. This suggests that inconsistent gene regulation contributes to failed neural tube closure. These results shed light on the role of the BAF complex in the process of neural tube closure and highlight the importance of studying missense alleles to understand epigenetic regulation during critical phases of development.

  6. Dump assembly

    Science.gov (United States)

    Goldmann, Louis H.

    1986-01-01

    A dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough.

  7. United assembly algorithm for optical burst switching

    Institute of Scientific and Technical Information of China (English)

    Jinhui Yu(于金辉); Yijun Yang(杨教军); Yuehua Chen(陈月华); Ge Fan(范戈)

    2003-01-01

    Optical burst switching (OBS) is a promising optical switching technology. The burst assembly algorithm controls burst assembly, which significantly impacts performance of OBS network. This paper provides a new assembly algorithm, united assembly algorithm, which has more practicability than conventional algorithms. In addition, some factors impacting selections of parameters of this algorithm are discussed and the performance of this algorithm is studied by computer simulation.

  8. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  9. Spatial organization of chromatin domains and compartments in single chromosomes.

    Science.gov (United States)

    Wang, Siyuan; Su, Jun-Han; Beliveau, Brian J; Bintu, Bogdan; Moffitt, Jeffrey R; Wu, Chao-ting; Zhuang, Xiaowei

    2016-08-05

    The spatial organization of chromatin critically affects genome function. Recent chromosome-conformation-capture studies have revealed topologically associating domains (TADs) as a conserved feature of chromatin organization, but how TADs are spatially organized in individual chromosomes remains unknown. Here, we developed an imaging method for mapping the spatial positions of numerous genomic regions along individual chromosomes and traced the positions of TADs in human interphase autosomes and X chromosomes. We observed that chromosome folding deviates from the ideal fractal-globule model at large length scales and that TADs are largely organized into two compartments spatially arranged in a polarized manner in individual chromosomes. Active and inactive X chromosomes adopt different folding and compartmentalization configurations. These results suggest that the spatial organization of chromatin domains can change in response to regulation.

  10. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis.

    Science.gov (United States)

    Hu, Jialei; Donahue, Greg; Dorsey, Jean; Govin, Jérôme; Yuan, Zuofei; Garcia, Benjamin A; Shah, Parisha P; Berger, Shelley L

    2015-12-01

    Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  11. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  12. Sliding and peeling of histone during chromatin remodelling

    CERN Document Server

    Garai, Ashok; Chowdhury, Debashish

    2011-01-01

    ATP-dependent chromatin remodeling enzymes (CRE) are bio-molecular motors in eukaryotic cells. These are driven by a chemical fuel, namely, adenosine triphosphate (ATP). CREs actively participate in many cellular processes that require accessibility of specific stretches of DNA which are packaged as chromatin. The basic unit of chromatin is a nucleosome where 146 bp $\\sim$ 50 nm of a double stranded DNA (dsDNA) is wrapped around a spool formed by histone proteins. We investigate the mechanism of peeling of the histone spool, and its complete detachment, from the dsDNA by a CRE. Our two-state model of a CRE captures effectively two distinct chemical (or conformational) states in the mechano-chemical cycle of each ATP-dependent CRE. We calculate the mean times for histone detachment. Our predictions on the ATP-dependence of the measurable quantities can be tested by carrying out {\\it in-vitro} experiments.

  13. Human pescadillo induces large-scale chromatin unfolding

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; FANG Yan; HUANG Cuifen; YANG Xiao; YE Qinong

    2005-01-01

    The human pescadillo gene encodes a protein with a BRCT domain. Pescadillo plays an important role in DNA synthesis, cell proliferation and transformation. Since BRCT domains have been shown to induce chromatin large-scale unfolding, we tested the role of Pescadillo in regulation of large-scale chromatin unfolding. To this end, we isolated the coding region of Pescadillo from human mammary MCF10A cells. Compared with the reported sequence, the isolated Pescadillo contains in-frame deletion from amino acid 580 to 582. Targeting the Pescadillo to an amplified, lac operator-containing chromosome region in the mammalian genome results in large-scale chromatin decondensation. This unfolding activity maps to the BRCT domain of Pescadillo. These data provide a new clue to understanding the vital role of Pescadillo.

  14. TALE proteins bind to both active and inactive chromatin.

    Science.gov (United States)

    Scott, James N F; Kupinski, Adam P; Kirkham, Christopher M; Tuma, Roman; Boyes, Joan

    2014-02-15

    TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.

  15. Differential nuclease sensitivity profiling of chromatin reveals biochemical footprints coupled to gene expression and functional DNA elements in maize.

    Science.gov (United States)

    Vera, Daniel L; Madzima, Thelma F; Labonne, Jonathan D; Alam, Mohammad P; Hoffman, Gregg G; Girimurugan, S B; Zhang, Jinfeng; McGinnis, Karen M; Dennis, Jonathan H; Bass, Hank W

    2014-10-01

    The eukaryotic genome is organized into nucleosomes, the fundamental units of chromatin. The positions of nucleosomes on DNA regulate protein-DNA interactions and in turn influence DNA-templated events. Despite the increasing number of genome-wide maps of nucleosome position, how global changes in gene expression relate to changes in nucleosome position is poorly understood. We show that in nucleosome occupancy mapping experiments in maize (Zea mays), particular genomic regions are highly susceptible to variation introduced by differences in the extent to which chromatin is digested with micrococcal nuclease (MNase). We exploited this digestion-linked variation to identify protein footprints that are hypersensitive to MNase digestion, an approach we term differential nuclease sensitivity profiling (DNS-chip). Hypersensitive footprints were enriched at the 5' and 3' ends of genes, associated with gene expression levels, and significantly overlapped with conserved noncoding sequences and the binding sites of the transcription factor KNOTTED1. We also found that the tissue-specific regulation of gene expression was linked to tissue-specific hypersensitive footprints. These results reveal biochemical features of nucleosome organization that correlate with gene expression levels and colocalize with functional DNA elements. This approach to chromatin profiling should be broadly applicable to other species and should shed light on the relationships among chromatin organization, protein-DNA interactions, and genome regulation.

  16. TIP48/Reptin and H2A.Z requirement for initiating chromatin remodeling in estrogen-activated transcription.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    2013-04-01

    Full Text Available Histone variants, including histone H2A.Z, are incorporated into specific genomic sites and participate in transcription regulation. The role of H2A.Z at these sites remains poorly characterized. Our study investigates changes in the chromatin environment at the Cyclin D1 gene (CCND1 during transcriptional initiation in response to estradiol in estrogen receptor positive mammary tumour cells. We show that H2A.Z is present at the transcription start-site and downstream enhancer sequences of CCND1 when the gene is poorly transcribed. Stimulation of CCND1 expression required release of H2A.Z concomitantly from both these DNA elements. The AAA+ family members TIP48/reptin and the histone variant H2A.Z are required to remodel the chromatin environment at CCND1 as a prerequisite for binding of the estrogen receptor (ERα in the presence of hormone. TIP48 promotes acetylation and exchange of H2A.Z, which triggers a dissociation of the CCND1 3' enhancer from the promoter, thereby releasing a repressive intragenic loop. This release then enables the estrogen receptor to bind to the CCND1 promoter. Our findings provide new insight into the priming of chromatin required for transcription factor access to their target sequence. Dynamic release of gene loops could be a rapid means to remodel chromatin and to stimulate transcription in response to hormones.

  17. Loss of BAF (mSWI/SNF Complexes Causes Global Transcriptional and Chromatin State Changes in Forebrain Development

    Directory of Open Access Journals (Sweden)

    Ramanathan Narayanan

    2015-12-01

    Full Text Available BAF (Brg/Brm-associated factors complexes play important roles in development and are linked to chromatin plasticity at selected genomic loci. Nevertheless, a full understanding of their role in development and chromatin remodeling has been hindered by the absence of mutants completely lacking BAF complexes. Here, we report that the loss of BAF155/BAF170 in double-conditional knockout (dcKO mice eliminates all known BAF subunits, resulting in an overall reduction in active chromatin marks (H3K9Ac, a global increase in repressive marks (H3K27me2/3, and downregulation of gene expression. We demonstrate that BAF complexes interact with H3K27 demethylases (JMJD3 and UTX and potentiate their activity. Importantly, BAF complexes are indispensable for forebrain development, including proliferation, differentiation, and cell survival of neural progenitor cells. Our findings reveal a molecular mechanism mediated by BAF complexes that controls the global transcriptional program and chromatin state in development.

  18. The telomere binding protein TRF2 induces chromatin compaction.

    Directory of Open Access Journals (Sweden)

    Asmaa M Baker

    Full Text Available Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures.

  19. Dicer is associated with ribosomal DNA chromatin in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Lasse Sinkkonen

    Full Text Available BACKGROUND: RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA repeats. Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse embryonic stem (ES cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer(-/- ES cells. Instead, we found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed cell lines. CONCLUSION/SIGNIFICANCE: We found that Dicer, a key component of RNA silencing pathways, can be detected in association with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since the enzyme is associated with rDNA genes regardless of their transcriptional activity. However, localization of Dicer to the transcribed region suggests that transcription may contribute to the Dicer deposition at rDNA chromatin. We hypothesize that Dicer functions in maintaining integrity of rDNA arrays.

  20. Rapid genome-scale mapping of chromatin accessibility in tissue

    Science.gov (United States)

    2012-01-01

    Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh). The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied across a broad range of

  1. Single-epitope recognition imaging of native chromatin

    Directory of Open Access Journals (Sweden)

    Wang Hongda

    2008-12-01

    Full Text Available Abstract Background Direct visualization of chromatin has the potential to provide important insights into epigenetic processes. In particular, atomic force microscopy (AFM can visualize single nucleosomes under physiological ionic conditions. However, AFM has mostly been applied to chromatin that has been reconstituted in vitro, and its potential as a tool for the dissection of native nucleosomes has not been explored. Recently we applied AFM to native Drosophila chromatin containing the centromere-specific histone 3 (CenH3, showing that it is greatly enriched in smaller particles. Taken together with biochemical analyses of CenH3 nucleosomes, we propose that centromeric nucleosomes are hemisomes, with one turn of DNA wrapped around a particle consisting of one molecule each of centromere-specific CenH3, H4, H2A and H2B. Results Here we apply a recognition mode of AFM imaging to directly identify CenH3 within histone core particles released from native centromeric chromatin. More than 90% of these particles were found to be tetrameric in height. The specificity of recognition was confirmed by blocking with a CenH3 peptide, and the strength of the interaction was quantified by force measurements. These results imply that the particles imaged by AFM are indeed mature CenH3-containing hemisomes. Conclusion Efficient and highly specific recognition of CenH3 in histone core particles isolated from native centromeric chromatin demonstrates that tetramers are the predominant form of centromeric nucleosomes in mature tetramers. Our findings provide proof of principle that this approach can yield insights into chromatin biology using direct and rapid detection of native nucleosomes in physiological salt concentrations.

  2. Rapid genome-scale mapping of chromatin accessibility in tissue

    Directory of Open Access Journals (Sweden)

    Grøntved Lars

    2012-06-01

    Full Text Available Abstract Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh. The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied

  3. Cancer bioinformatics: detection of chromatin states,SNP-containing motifs, and functional enrichment modules

    Institute of Scientific and Technical Information of China (English)

    Xiaobo Zhou

    2013-01-01

    In this editorial preface,I briefly review cancer bioinformatics and introduce the four articles in this special issue highlighting important applications of the field:detection of chromatin states; detection of SNP-containing motifs and association with transcription factor-binding sites; improvements in functional enrichment modules; and gene association studies on aging and cancer.We expect this issue to provide bioinformatics scientists,cancer biologists,and clinical doctors with a better understanding of how cancer bioinformatics can be used to identify candidate biomarkers and targets and to conduct functional analysis.

  4. Modulations of prolactin and growth hormone gene expression and chromatin structure in cultured rat pituitary cells.

    OpenAIRE

    Levy-Wilson, B

    1983-01-01

    I have measured the effect of hormones and other regulatory factors present in the serum component of the culture medium on the levels of growth hormone and prolactin mRNAs in rat pituitary (GH4) cells. Hybridization of cytoplasmic RNA with growth hormone or prolactin cDNA clones indicate that serum depletion reduces significantly the amount of these two mRNAs. The localization of these two genes in chromatin was also analysed using micrococcal nuclease as a probe. At intermediate levels of d...

  5. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  6. SANS spectra of the fractal supernucleosomal chromatin structure models

    Science.gov (United States)

    Ilatovskiy, Andrey V.; Lebedev, Dmitry V.; Filatov, Michael V.; Petukhov, Michael G.; Isaev-Ivanov, Vladimir V.

    2012-03-01

    The eukaryotic genome consists of chromatin—a nucleoprotein complex with hierarchical architecture based on nucleosomes, the organization of higher-order chromatin structures still remains unknown. Available experimental data, including SANS spectra we had obtained for whole nuclei, suggested fractal nature of chromatin. Previously we had built random-walk supernucleosomal models (up to 106 nucleosomes) to interpret our SANS spectra. Here we report a new method to build fractal supernucleosomal structure of a given fractal dimension or two different dimensions. Agreement between calculated and experimental SANS spectra was significantly improved, especially for model with two fractal dimensions—3 and 2.

  7. The human chromosome. Electron microscopic observations on chromatin fiber organization.

    Science.gov (United States)

    Abuelo, J G; Moore, D E

    1969-04-01

    Human lymphocytes were grown in short-term tissue culture and were arrested in metaphase with Colcemid. Their chromosomes were prepared by the Langmuir trough-critical point drying technique and were examined under the electron microscope. In addition, some chromosomes were digested with trypsin, Pronase, or DNase. The chromosomes consist entirely of tightly packed, 240 +/- 50-A chromatin fibers. Trypsin and Pronase treatments induce relaxation of fiber packing and reveal certain underlying fiber arrangements. Furthermore, trypsin treatment demonstrates that the chromatin fiber has a 25-50 A trypsin-resistant core surrounded by a trypsin-sensitive sheath. DNase digestion suggests that this core contains DNA.

  8. Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives.

    Science.gov (United States)

    Croken, Matthew M; Nardelli, Sheila C; Kim, Kami

    2012-05-01

    Chromatin structure plays a vital role in epigenetic regulation of protozoan parasite gene expression. Epigenetic gene regulation impacts upon parasite virulence, differentiation and cell-cycle control. Recent work in many laboratories has elucidated the functions of proteins that regulate parasite gene expression by chemical modification of constituent nucleosomes. A major focus of investigation has been the characterization of post-translational modifications (PTMs) of histones and the identification of the enzymes responsible. Despite conserved features and specificity common to all eukaryotes, parasite enzymes involved in chromatin modification have unique functions that regulate unique aspects of parasite biology.

  9. Chromatin remodelling: the industrial revolution of DNA around histones.

    Science.gov (United States)

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  10. Chromatin versus pathogens: the function of epigenetics in plant immunity

    Directory of Open Access Journals (Sweden)

    Bo eDing

    2015-09-01

    Full Text Available To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed.

  11. Retention of the Native Epigenome in Purified Mammalian Chromatin.

    Directory of Open Access Journals (Sweden)

    Andreas H Ehrensberger

    Full Text Available A protocol is presented for the isolation of native mammalian chromatin as fibers of 25-250 nucleosomes under conditions that preserve the natural epigenetic signature. The material is composed almost exclusively of histones and DNA and conforms to the structure expected by electron microscopy. All sequences probed for were retained, indicating that the material is representative of the majority of the genome. DNA methylation marks and histone marks resembled the patterns observed in vivo. Importantly, nucleosome positions also remained largely unchanged, except on CpG islands, where nucleosomes were found to be unstable. The technical challenges of reconstituting biochemical reactions with native mammalian chromatin are discussed.

  12. Instability of trinucleotidic repeats during chromatin remodeling in spermatids.

    Science.gov (United States)

    Simard, Olivier; Grégoire, Marie-Chantal; Arguin, Mélina; Brazeau, Marc-André; Leduc, Frédéric; Marois, Isabelle; Richter, Martin V; Boissonneault, Guylain

    2014-11-01

    Transient DNA breaks and evidence of DNA damage response have recently been reported during the chromatin remodeling process in haploid spermatids, creating a potential window of enhanced genetic instability. We used flow cytometry to achieve separation of differentiating spermatids into four highly purified populations using transgenic mice harboring 160 CAG repeats within exon 1 of the human Huntington disease gene (HTT). Trinucleotic repeat expansion was found to occur immediately following the chromatin remodeling steps, confirming the genetic instability of the process and pointing to the origin of paternal anticipation observed in some trinucleotidic repeats diseases.

  13. Chromatin Repressive Complexes in Stem Cells, Development, and Cancer

    DEFF Research Database (Denmark)

    Laugesen, Anne; Helin, Kristian

    2014-01-01

    of the polycomb repressive complexes, PRC1 and PRC2, and the HDAC1- and HDAC2-containing complexes, NuRD, Sin3, and CoREST, in stem cells, development, and cancer, as well as the ongoing efforts to develop therapies targeting these complexes in human cancer. Furthermore, we discuss the role of repressive......The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles...... complexes in modulating thresholds for gene activation and their importance for specification and maintenance of cell fate....

  14. The importance of topoisomerases for chromatin regulated genes

    DEFF Research Database (Denmark)

    Fredsøe, Jacob Christian; Pedersen, Jakob Madsen; Rødgaard, Morten Terpager;

    2013-01-01

    DNA topoisomerases are enzymes, which function to relieve torsional stress in the DNA helix by introducing transient breaks into the DNA molecule. By use of Saccharomyces cerevisiae and microarray technology we have previously shown that topoisomerases are required for the activation of chromatin...... topoisomerases for optimal activation, but in contrast to the PHO5 gene, topoisomerases are not required for chromatin remodeling of the GAL1/10 promoter region, indicating a different role of the enzymes. We are currently performing a detailed investigation of the GAL genes to elucidate the precise role...

  15. Barrier to Autointegration Factor (BANF1): interwoven roles in nuclear structure, genome integrity, innate immunity, stress responses and progeria.

    Science.gov (United States)

    Jamin, Augusta; Wiebe, Matthew S

    2015-06-01

    The Barrier to Autointegration Factor (BAF or BANF1) is an abundant, highly conserved DNA binding protein. BAF is involved in multiple pathways including mitosis, nuclear assembly, viral infection, chromatin and gene regulation and the DNA damage response. BAF is also essential for early development in metazoans and relevant to human physiology; BANF1 mutations cause a progeroid syndrome, placing BAF within the laminopathy disease spectrum. This review summarizes previous knowledge about BAF in the context of recent discoveries about its protein partners, posttranslational regulation, dynamic subcellular localizations and roles in disease, innate immunity, transposable elements and genome integrity.

  16. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter

    Energy Technology Data Exchange (ETDEWEB)

    Astrand, Carolina, E-mail: ca340@cam.ac.uk [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Belikov, Sergey, E-mail: Sergey.Belikov@ki.se [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Wrange, Orjan, E-mail: Orjan.Wrange@ki.se [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden)

    2009-09-10

    Transcription from the mouse mammary tumor virus (MMTV) promoter is induced by the glucocorticoid receptor (GR). This switch was reconstituted in Xenopus oocytes. Previously, we showed that Nuclear Factor 1 (NF1) and Octamer Transcription Factor 1 (Oct1) bind constitutively to the MMTV promoter and thereby induce translational nucleosome positioning representing an intermediary, i.e. preset, state of nucleosome organization. Here we further characterize this NF1 and Oct1 induced preset chromatin in relation to the inactive and the hormone-activated state. The preset chromatin exhibits increased histone acetylation but does not cause dissociation of histone H1 as oppose to the hormone-activated state. Furthermore, upon hormone induction the preset MMTV chromatin displays an enhanced and prolonged GR binding capacity and transcription during an intrinsic and time-dependent silencing of the injected template. The silencing process correlates with a reduced histone acetylation. However, a histone deacetylase inhibitor, trichostatin A (TSA), does not counteract silencing in spite of its distinct stimulation of GR-DNA binding. The latter indicates the importance of histone acetylation to maintain DNA access for inducible factor binding. We discuss how constitutively bound factors such as NF1 and Oct1 may participate in the maintenance of tissue specificity of hormone responsive genes.

  17. Assembling consumption

    DEFF Research Database (Denmark)

    Assembling Consumption marks a definitive step in the institutionalisation of qualitative business research. By gathering leading scholars and educators who study markets, marketing and consumption through the lenses of philosophy, sociology and anthropology, this book clarifies and applies...... the investigative tools offered by assemblage theory, actor-network theory and non-representational theory. Clear theoretical explanation and methodological innovation, alongside empirical applications of these emerging frameworks will offer readers new and refreshing perspectives on consumer culture and market...... societies. This is an essential reading for both seasoned scholars and advanced students of markets, economies and social forms of consumption....

  18. Regulation of pairing between broken DNA-containing chromatin regions by Ku80, DNA-PKcs, ATM, and 53BP1

    Science.gov (United States)

    Yamauchi, Motohiro; Shibata, Atsushi; Suzuki, Keiji; Suzuki, Masatoshi; Niimi, Atsuko; Kondo, Hisayoshi; Miura, Miwa; Hirakawa, Miyako; Tsujita, Keiko; Yamashita, Shunichi; Matsuda, Naoki

    2017-01-01

    Chromosome rearrangement is clinically and physiologically important because it can produce oncogenic fusion genes. Chromosome rearrangement requires DNA double-strand breaks (DSBs) at two genomic locations and misrejoining between the DSBs. Before DSB misrejoining, two DSB-containing chromatin regions move and pair with each other; however, the molecular mechanism underlying this process is largely unknown. We performed a spatiotemporal analysis of ionizing radiation-induced foci of p53-binding protein 1 (53BP1), a marker for DSB-containing chromatin. We found that some 53BP1 foci were paired, indicating that the two damaged chromatin regions neighboured one another. We searched for factors regulating the foci pairing and found that the number of paired foci increased when Ku80, DNA-PKcs, or ATM was absent. In contrast, 53BP1 depletion reduced the number of paired foci and dicentric chromosomes—an interchromosomal rearrangement. Foci were paired more frequently in heterochromatin than in euchromatin in control cells. Additionally, the reduced foci pairing in 53BP1-depleted cells was rescued by concomitant depletion of a heterochromatin building factor such as Krüppel-associated box-associated protein 1 or chromodomain helicase DNA-binding protein 3. These findings indicate that pairing between DSB-containing chromatin regions was suppressed by Ku80, DNA-PKcs, and ATM, and this pairing was promoted by 53BP1 through chromatin relaxation. PMID:28155885

  19. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes.

    Science.gov (United States)

    Lee, Kenneth K; Sardiu, Mihaela E; Swanson, Selene K; Gilmore, Joshua M; Torok, Michael; Grant, Patrick A; Florens, Laurence; Workman, Jerry L; Washburn, Michael P

    2011-07-05

    Despite the availability of several large-scale proteomics studies aiming to identify protein interactions on a global scale, little is known about how proteins interact and are organized within macromolecular complexes. Here, we describe a technique that consists of a combination of biochemistry approaches, quantitative proteomics and computational methods using wild-type and deletion strains to investigate the organization of proteins within macromolecular protein complexes. We applied this technique to determine the organization of two well-studied complexes, Spt-Ada-Gcn5 histone acetyltransferase (SAGA) and ADA, for which no comprehensive high-resolution structures exist. This approach revealed that SAGA/ADA is composed of five distinct functional modules, which can persist separately. Furthermore, we identified a novel subunit of the ADA complex, termed Ahc2, and characterized Sgf29 as an ADA family protein present in all Gcn5 histone acetyltransferase complexes. Finally, we propose a model for the architecture of the SAGA and ADA complexes, which predicts novel functional associations within the SAGA complex and provides mechanistic insights into phenotypical observations in SAGA mutants.

  20. Total globozoospermia associated with increased frequency of immature spermatozoa with chromatin defects and aneuploidy: a case report.

    Science.gov (United States)

    Vozdova, M; Rybar, R; Kloudova, S; Prinosilova, P; Texl, P; Rubes, J

    2014-10-01

    Globozoospermia, characterised by the presence of round spermatozoa lacking acrosomes in an ejaculate, is a known cause of male infertility. Semen analysis, including sperm chromatin structure assay, toluidine blue, chromomycin A3 and aniline blue staining and fluorescence in situ hybridisation, was performed in an infertile globozoospermic patient to establish to which extent these genetic factors contributed to his infertility. No spermatozoa capable of hyaluronan (HA) binding were detected in the HA binding assay. Increased rates of immature spermatozoa with defective replacement of histones by protamines, DNA breaks and disturbed chromatin integrity and sperm aneuploid for the sex chromosomes were observed. Intracytoplasmic sperm injection (ICSI) was used in three in vitro fertilisation (IVF) cycles, and enough morphologically well-developing embryos were obtained in each cycle. However, no pregnancy was achieved. The infertility of our couple, resistant to IVF/ICSI treatment, was most probably caused by a combination of male and female factors.

  1. Job Satisfaction and Its Influential Factors in Assembly Line Workers%流水线作业工人工作满意感及其影响因素

    Institute of Scientific and Technical Information of China (English)

    王芳芳; 余善法

    2011-01-01

    目的 探讨流水线作业工人工作满意感与职业应激相关因素的关系.方法采取整群抽样方法对某电器厂流水线178名作业工人进行调查.使用问卷调查人口统计学特征、工作满意感、职业紧张因素、身心健康状况和个性特征.结果 t检验结果显示,初中文化程度者的工作满意感评分比高中及以上文化程度者均较高,工龄≤1.75 a的工人比工龄1.75 a的工人工作满意感得分高,差异有统计学意义(P<0.05).协方差分析结果显示,工作满意感高水平组工作心理需求、工作躯体需求、外在付出、工作心理控制源、抑郁症状、每日紧张感评分低于低水平组,而上级支持、回报、决策自由度、提升机会、组织忠诚度、情绪平衡评分高于低水平组,差异有统计学意义(P<0.05或P<0.01).pearson相关结果显示,工作满意感与工作心理需求、外在付出、工作心理控制源、抑郁症状、每日紧张感呈负相关(P<0.01),与上级支持、同事支持、回报、组织忠诚度、心理卫生、情绪平衡呈正相关(P<0.05或P<0.01).多因素logistic回归结果表明,文化程度与工作满意感有关,上级支持(OR=0.24)、回报(OR=0.25)、情绪平衡(OR=0.31)、组织忠诚度(OR=0.39)是工作满意感的保护因素.结论 文化程度、工龄、职业应激相关因素对工作满意感有较大影响.%Objective To explore the correlation between the job satisfaction and related factors of occupational stress in assembly line workers. Methods 178 assembly line workers were investigated by group sampling method. The questionnaire used in investigation included demographics, job satisfaction,occupational stressors, physical and mental health status, and personalities. Results 1) t tests showed that the job satisfaction scores of workers with junior high school education were higher than those with high school education; the workers with working age≤ 1.75 years had higher job

  2. SwissProt search result: AK241918 [KOME

    Lifescience Database Archive (English)

    Full Text Available (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (ATP-dependent chromatin remodelling prot...ein) (Williams syndrome transcription factor-related chromatin remodeli BAZ1A_HUMAN 2e-11 ...

  3. SwissProt search result: AK067393 [KOME

    Lifescience Database Archive (English)

    Full Text Available (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (ATP-dependent chromatin remodelling prot...ein) (Williams syndrome transcription factor-related chromatin remodeli BAZ1A_HUMAN 2e-19 ...

  4. SwissProt search result: AK101745 [KOME

    Lifescience Database Archive (English)

    Full Text Available (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (ATP-dependent chromatin remodelling prot...ein) (Williams syndrome transcription factor-related chromatin remodeli BAZ1A_HUMAN 3e-18 ...

  5. SwissProt search result: AK063555 [KOME

    Lifescience Database Archive (English)

    Full Text Available (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (ATP-dependent chromatin remodelling pro...tein) (Williams syndrome transcription factor-related chromatin remodeli BAZ1A_HUMAN 1e-19 ...

  6. Individual Bromodomains of Polybromo-1 Contribute to Chromatin Association and Tumor Suppression in Clear Cell Renal Carcinoma.

    Science.gov (United States)

    Porter, Elizabeth G; Dykhuizen, Emily C

    2017-02-17

    The architecture of chromatin is governed, in part, by ATP-dependent chromatin remodelers. These multiprotein complexes contain targeting domains that recognize post-translational marks on histones. One such targeting domain is the bromodomain (BD), which recognizes acetyl-lysines and recruits proteins to sites of acetylation across the genome. Polybromo1 (PBRM1), a subunit of the Polybromo-associated BRG1- or hBRM-associated factors (PBAF) chromatin remodeler, contains six tandem BDs and is frequently mutated in clear cell renal cell carcinoma (ccRCC). Mutations in the PBRM1 gene often lead to the loss of protein expression; however, missense mutations in PBRM1 have been identified and tend to cluster in the BDs, particularly BD2 and BD4, suggesting that individual BDs are critical for PBRM1 function. To study the role of these six BDs, we inactivated each of the six BDs of PBRM1 and re-expressed these mutants in Caki2 cells (ccRCC cells with the loss of function mutation in PBRM1). Four of the six BDs abrogated PBRM1 tumor suppressor function, gene regulation, and chromatin affinity with the degree of importance correlating strongly to the rate of missense mutations in patients. Furthermore, we identified BD2 as the most critical for PBRM1 and confirmed BD2-mediated association to histone H3 peptides acetylated at lysine 14 (H3K14Ac), validating the importance of this specific acetylation mark for PBRM1 binding. From these data, we conclude that four of the BDs act together to target PBRM1 to sites on chromatin; when a single BD is mutated, PBRM1 no longer controls gene expression properly, leading to increased cell proliferation.

  7. Characterization of monoclonal antibodies to histone 2B. Localization of epitopes and analysis of binding to chromatin.

    Science.gov (United States)

    Whitfield, W G; Fellows, G; Turner, B M

    1986-06-16

    Two mouse monoclonal IgM antibodies have been isolated which bind to histone 2B (H2B), as shown by protein blotting and immunostaining and by solid-phase radioimmunoassay (RIA). One of these (HBC-7) was specific for H2B by both techniques whereas the other (2F8) cross-reacted with histone H1 by RIA. Both antibodies failed to recognize H2B limit peptides from trypsin-digested chromatin and did not bind to Drosophila H2B, which differs extensively from vertebrate H2B only in the N-terminal region. These findings indicate that both antibodies recognize epitopes within the trypsin-sensitive, N-terminal region comprising residues 1-20. Binding of antibody HBC-7 was inhibited by in vitro ADP-ribosylation of H2B at glutamic acid residue 2. This strongly suggests that the epitope recognized by HBC-7 is located at the N-terminus of H2B, probably between residues 1 and 8. We have used solid-phase radioimmunoassay to investigate factors which influence the accessibility of this epitope in chromatin. Removal of H1 ('stripping') from high-molecular-mass chromatin had no effect on HBC-7 binding, nor was any difference observed between binding to stripped chromatin and to 146-base-pair (bp) core particles derived from it by nuclease digestion. These results suggest that accessibility of the N-terminal region of H2B is not influenced by H1 itself or by the size or conformation of linker DNA. In contrast, binding of antibody HBC-7 to 146-bp core particles derived from unstripped chromatin was reduced by up to 70%. Binding was restored by exposure of these core particles to the conditions used for stripping. Analysis of the protein content of core particle preparations from stripped and unstripped chromatin suggests that these findings may be attributable to redistribution of non-histone proteins during nuclease digestion. Pre-treatment of high-molecular-mass chromatin or 146-bp core particles with the intercalating dye ethidium bromide resulted in a severalfold increase in binding

  8. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism.

    Science.gov (United States)

    Parnell, Timothy J; Schlichter, Alisha; Wilson, Boris G; Cairns, Bradley R

    2015-01-01

    ISWI family chromatin remodelers typically organize nucleosome arrays, while SWI/SNF family remodelers (RSC) typically disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex or mutations in the 'basic patch' of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. RSC and ISW1a largely co-localize, and genomic nucleosome studies using rsc isw1 mutant combinations revealed opposing functions: promoters classified with a nucleosome-deficient region (NDR) gain nucleosome occupancy in rsc mutants, but this gain is attenuated in rsc isw1 double mutants. Furthermore, promoters lacking NDRs have the highest occupancy of both remodelers, consistent with regulation by nucleosome occupancy, and decreased transcription in rsc mutants. Taken together, we provide the first genetic and genomic evidence for RSC-ISW1a antagonism and reveal different mechanisms at two different promoter architectures.

  9. General Assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : 1- Adoption de l’ordre du jour. 2- Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. 3- Présentation et approbation du rapport d’activités 2014. 4- Présentation et approbation du rapport financier 2014. 5- Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. 6- Programme 2015. 7- Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. 8- Pas de modifications aux Statuts de l'Association du personnel proposée. 9- Élections des membres de la Commission é...

  10. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    Mardi 5 avril à 11 h 00 BE Auditorium Meyrin (6-2-024) Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 mai 2015. Présentation et approbation du rapport d’activités 2015. Présentation et approbation du rapport financier 2015. Présentation et approbation du rapport des vérificateurs aux comptes pour 2015. Programme de travail 2016. Présentation et approbation du projet de budget 2016 Approbation du taux de cotisation pour 2017. Modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commissio...

  11. General assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. Présentation et approbation du rapport d’activités 2014. Présentation et approbation du rapport financier 2014. Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. Programme 2015. Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. Pas de modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commission électorale. &am...

  12. Generation of bivalent chromatin domains during cell fate decisions

    Directory of Open Access Journals (Sweden)

    De Gobbi Marco

    2011-06-01

    Full Text Available Abstract Background In self-renewing, pluripotent cells, bivalent chromatin modification is thought to silence (H3K27me3 lineage control genes while 'poising' (H3K4me3 them for subsequent activation during differentiation, implying an important role for epigenetic modification in directing cell fate decisions. However, rather than representing an equivalently balanced epigenetic mark, the patterns and levels of histone modifications at bivalent genes can vary widely and the criteria for identifying this chromatin signature are poorly defined. Results Here, we initially show how chromatin status alters during lineage commitment and differentiation at a single well characterised bivalent locus. In addition we have determined how chromatin modifications at this locus change with gene expression in both ensemble and single cell analyses. We also show, on a global scale, how mRNA expression may be reflected in the ratio of H3K4me3/H3K27me3. Conclusions While truly 'poised' bivalently modified genes may exist, the original hypothesis that all bivalent genes are epigenetically premarked for subsequent expression might be oversimplistic. In fact, from the data presented in the present work, it is equally possible that many genes that appear to be bivalent in pluripotent and multipotent cells may simply be stochastically expressed at low levels in the process of multilineage priming. Although both situations could be considered to be forms of 'poising', the underlying mechanisms and the associated implications are clearly different.

  13. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization

    Directory of Open Access Journals (Sweden)

    Peterhansel Christoph

    2007-09-01

    Full Text Available Abstract Background Chromatin remodeling, histone modifications and other chromatin-related processes play a crucial role in gene regulation. A very useful technique to study these processes is chromatin immunoprecipitation (ChIP. ChIP is widely used for a few model systems, including Arabidopsis, but establishment of the technique for other organisms is still remarkably challenging. Furthermore, quantitative analysis of the precipitated material and normalization of the data is often underestimated, negatively affecting data quality. Results We developed a robust ChIP protocol, using maize (Zea mays as a model system, and present a general strategy to systematically optimize this protocol for any type of tissue. We propose endogenous controls for active and for repressed chromatin, and discuss various other controls that are essential for successful ChIP experiments. We experienced that the use of quantitative PCR (QPCR is crucial for obtaining high quality ChIP data and we explain why. The method of data normalization has a major impact on the quality of ChIP analyses. Therefore, we analyzed different normalization strategies, resulting in a thorough discussion of the advantages and drawbacks of the various approaches. Conclusion Here we provide a robust ChIP protocol and strategy to optimize the protocol for any type of tissue; we argue that quantitative real-time PCR (QPCR is the best method to analyze the precipitates, and present comprehensive insights into data normalization.

  14. Control of the Transition to Flowering by Chromatin Modifications

    Institute of Scientific and Technical Information of China (English)

    Yuehui He

    2009-01-01

    The timing of floral transition is critical to reproductive success in angiosperms and is genetically controlled by a network of flowering genes.In Arabidopsis,expression of certain flowering genes is regulated by various chromatin modifications,among which are two central regulators of flowering,namely FLOWERING LOCUS C(FLC) and FLOWERING LOCUS T(FT).Recent studies have revealed that a number of chromatin-modifying components are involved in activation or repression of FLC expression.Activation of FLC expression is associated with various 'active' chromatin modifications including acetylation of core histone tails,histone H3 lysine-4 (H3K4) methylation,H2B monoubiquitination,H3 lysine-36 (H3K36) di- and tri-methylation and deposition of the histone variant H2A.Z,whereas various 'repressive' histone modifications are associated with FLC repression,including histone deacetylation,H3K4 demethylation,histone H3 lysine-9(H3Kg) and H3 lysine-27 (H3K27) methylation,and histone arginine methylation.In addition,recent studies have revealed that Polycomb group gene-mediated transcriptional-silencing mechanism not only represses FLC expression,but also directly represses FT expression.Regulation of FLC expression provides a paradigm for control of the expression of other developmental genes in plants through chromatin mechanisms.

  15. Chromatin Structure in Cell Differentiation, Aging and Cancer

    NARCIS (Netherlands)

    S. Kheradmand Kia (Sima)

    2009-01-01

    textabstractChromatin is the structure that the eukaryotic genome is packaged into, allowing over a metre of DNA to fit into the small volume of the nucleus. It is composed of DNA and proteins, most of which are histones. This DNA-protein complex is the template for a number of essential cell proces

  16. Interaction of maize chromatin-associated HMG proteins with mononucleosomes

    DEFF Research Database (Denmark)

    Lichota, J.; Grasser, Klaus D.

    2003-01-01

    maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA...

  17. Epigenetic regulation and chromatin remodeling in learning and memory

    Science.gov (United States)

    Kim, Somi; Kaang, Bong-Kiun

    2017-01-01

    Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms. PMID:28082740

  18. Chromatin remodelers in the DNA double strand break response

    NARCIS (Netherlands)

    Smeenk, Godelieve

    2012-01-01

    During my PhD project, I studied the role of several chromatin remodelers in the DNA double strand break (DSB) response. We discovered that both CHD4 and SMARCA5 are required for ubiquitin signaling through the E3 ubiquitin ligases RNF8 and RNF168, which is a central signaling event in the response

  19. Is chromatin remodeling required to build sister-chromatid cohesion?

    NARCIS (Netherlands)

    Riedel, Christian G; Gregan, Juraj; Gruber, Stephan; Nasmyth, Kim

    2004-01-01

    Chromosome segregation during mitosis and meiosis depends on the linkage of sister DNA molecules after replication. These links, known as sister-chromatid cohesion, are provided by a multi-subunit complex called cohesin. Recent papers suggest that chromatin-remodeling complexes also have a role in t

  20. Functional Insights into Chromatin Remodelling from Studies on CHARGE Syndrome

    NARCIS (Netherlands)

    Basson, M. Albert; van Ravenswaaij-Arts, Conny

    2015-01-01

    CHARGE syndrome is a rare genetic syndrome characterised by a unique combination of multiple organ anomalies. Dominant loss-of-function mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7), which is an ATP-dependent chromatin remodeller, have been identified as the cause