WorldWideScience

Sample records for chondroitin sulfate expression

  1. Chondroitin sulfate

    Science.gov (United States)

    ... in combination with glucosamine sulfate, shark cartilage, and camphor. Some people also inject chondroitin sulfate into the ... in combination with glucosamine sulfate, shark cartilage, and camphor seems to reduce arthritis symptoms. However, any symptom ...

  2. Holothurian Fucosylated Chondroitin Sulfate

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2014-01-01

    Full Text Available Fucosylated chondroitin sulfate (FucCS is a structurally distinct glycosaminoglycan found in sea cucumber species. It has the same backbone composition of alternating 4-linked glucuronic acid and 3-linked N-acetyl galactosamine residues within disaccharide repeating units as regularly found in mammalian chondroitin sulfates. However, FucCS has also sulfated fucosyl branching units 3-O-linked to the acid residues. The sulfation patterns of these branches vary accordingly with holothurian species and account for different biological actions and responses. FucCSs may exhibit anticoagulant, antithrombotic, anti-inflammatory, anticancer, antiviral, and pro-angiogenic activities, besides its beneficial effects in hemodialysis, cellular growth modulation, fibrosis and hyperglycemia. Through an historical overview, this document covers most of the science regarding the holothurian FucCS. Both structural and medical properties of this unique GAG, investigated during the last 25 years, are systematically discussed herein.

  3. Orbitrap mass spectrometry characterization of hybrid chondroitin/dermatan sulfate hexasaccharide domains expressed in brain.

    Science.gov (United States)

    Robu, Adrian C; Popescu, Laurentiu; Munteanu, Cristian V A; Seidler, Daniela G; Zamfir, Alina D

    2015-09-15

    In the central nervous system, chondroitin/dermatan sulfate (CS/DS) glycosaminoglycans (GAGs) modulate neurotrophic effects and glial cell maturation during brain development. Previous reports revealed that GAG composition could be responsible for CS/DS activities in brain. In this work, for the structural characterization of DS- and CS-rich domains in hybrid GAG chains extracted from neural tissue, we have developed an advanced approach based on high-resolution mass spectrometry (MS) using nanoelectrospray ionization Orbitrap in the negative ion mode. Our high-resolution MS and multistage MS approach was developed and applied to hexasaccharides obtained from 4- and 14-week-old mouse brains by GAG digestion with chondroitin B and in parallel with AC I lyase. The expression of DS- and CS-rich domains in the two tissues was assessed comparatively. The analyses indicated an age-related structural variability of the CS/DS motifs. The older brain was found to contain more structures and a higher sulfation of DS-rich regions, whereas the younger brain was found to be characterized by a higher sulfation of CS-rich regions. By multistage MS using collision-induced dissociation, we also demonstrated the incidence in mouse brain of an atypical [4,5-Δ-GlcAGalNAc(IdoAGalNAc)2], presenting a bisulfated CS disaccharide formed by 3-O-sulfate-4,5-Δ-GlcA and 6-O-sulfate-GalNAc moieties. PMID:26123275

  4. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.;

    2006-01-01

    disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional to the...... content of the 4,6-disulfated disaccharide in the different cartilage extracts, with growth plate cartilage glycosaminoglycan being the most efficient enhancer. These findings demonstrate a role for perlecan chondroitin sulfate side chains in cartilage extracellular matrix assembly and provide an...... collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...

  5. Extracellular matrix of cultured glial cells: Selective expression of chondroitin 4-sulfate by type-2 astrocytes and their progenitors

    International Nuclear Information System (INIS)

    We have studied the extracellular matrix composition of cultured glial cells by immunocytochemistry with different monoclonal and polyclonal antibodies. Double immunofluorescence experiments and metabolic labeling with [3H]glucosamine performed in different types of cerebellar and cortical cultures showed that bipotential progenitors for type-2 astrocytes and for oligodendrocytes synthesize chondroitin sulfate (CS) and deposit this proteoglycan in their extracellular matrix. The distribution of the various [3H]glucosamine-labeled glycosaminoglycans between the intracellular and the extracellular space was different. CS was present both within the cells and in the culture medium, although in different amounts. Bi-potential progenitors became also O4-positive during their development in vitro. At the stage of O4-positivity they were still stained with antibodies against CS. However, when the progenitor cells were maintained in serum-free medium and differentiated into Gal-C-positive oligodendrocytes, they became CS-negative. In the presence of fetal calf serum in the culture medium, the bipotential progenitors differentiated into GFAP-positive type-2 astrocytes. These cells still expressed CS: their Golgi area and their surface were stained with anti-CS antibodies. Staining with monoclonal antibodies specific for different types of CS (4-sulfate, 6-sulfate, and unsulfated) revealed that both bipotential progenitors and type-2 astrocytes synthesized only chondroitin 4-sulfate. Type-1 astrocytes were negative for both the polyclonal and the monoclonal anti-CS antibodies. Finally, type-2 astrocytes and their progenitors were weakly stained with anti-laminin antibodies and unstained with anti-fibronectin. Type-1 astrocytes were positive for both anti-laminin and anti-fibronectin antibodies and appeared to secrete fibronectin in the extracellular space

  6. Expression of N-Acetylgalactosamine 4-Sulfate 6-O-Sulfotransferase Involved in Chondroitin Sulfate Synthesis Is Responsible for Pulmonary Metastasis

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2013-01-01

    Full Text Available Chondroitin sulfate (CS containing E-disaccharide units, glucuronic acid-N-acetylgalactosamine(4, 6-O-disulfate, at surfaces of tumor cells plays a key role in tumor metastasis. However, the molecular mechanism of the metastasis involving the CS chain-containing E-units is not fully understood. In this study, to clarify the role of E-units in the metastasis and to search for potential molecular targets for anticancer drugs, the isolation and characterization of Lewis lung carcinoma (LLC cells stably downregulated by the knockdown for the gene encoding N-acetylgalactosamine 4-O-sulfate 6-O-sulfotransferase (GalNAc4S-6ST, which is responsible for the formation of E-units in CS chains, were performed. Knockdown of GalNAc4S-6ST in LLC cells resulted in a reduction in the proportion of E-units, in adhesiveness to extracellular matrix adhesion molecules and in proliferation in vitro. Furthermore, the stable downregulation of GalNAc4S-6ST expression in LLC cells markedly inhibited the colonization of the lungs by inoculated LLC cells and invasive capacity of LLC cells. These results provide clear evidence that CS chain-containing E-units and/or GalNAc4S-6ST play a crucial role in pulmonary metastasis at least through the increased adhesion and the invasive capacity of LLC cells and also provides insights into future drug targets for anticancer treatment.

  7. Structum (chondroitin sulfate) in treatment of osteoarthritis

    OpenAIRE

    O J Varga; V K Ignatjev; N N Vesikova; I M Marusenko

    2003-01-01

    Objective. To assess Structum (chondroitin sulfate) efficacy in treatment of osteoarthritis in Republic of Karelia. Methods. 34 pts with osteoarthritis (mean disease duration 6,44±0,67 years) were included. Functional Leken score (FLS), pain at rest and at walk on visual analog scale (VAS), pts nonsteroidal anti-inflammatory drugs (NSAID) requirement (diclofenac daily requirement in mg), percent of pts refused NSAID treatment, achievement of clinically significant improvement (40% decrease of...

  8. Multistage Tandem Mass Spectrometry of Chondroitin Sulfate and Dermatan Sulfate

    OpenAIRE

    Bielik, Alicia M.; Zaia, Joseph

    2011-01-01

    Chondroitin/dermatan sulfate (CS/DS) is a glycosaminoglycan (GAG) found in abundance in extracellular matrices. In connective tissue, CS/DS proteoglycans play structural roles in maintaining viscoelasticity through the large number of immobilized sulfate groups on CS/DS chains. CS/DS chains also bind protein families including growth factors and growth factor receptors. Through such interactions, CS/DS chains play important roles in neurobiochemical processes, connective tissue homeostasis, c...

  9. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    International Nuclear Information System (INIS)

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent

  10. The chondroitin/dermatan sulfate synthesizing and modifying enzymes in laryngeal cancer: Expressional and epigenetic studies

    OpenAIRE

    Kalathas, Dimitrios; Triantaphyllidou, Irene-Eva; Mastronikolis, Nicholas S; Goumas, Panos D; Papadas, Thoedore A; Tsiropoulos, Gabriel; Vynios, Demitrios H.

    2010-01-01

    Background Significant biochemical changes are observed in glycosaminoglycans in squamous cell laryngeal carcinoma. The most characteristics are in chondroitin/dermatan sulfate fine structure and proportion, which might be due to differential expression of the enzymes involved in their biosynthesis. The aim of the present work was the investigation in expressional and epigenetic level of the enzymes involved in chondroitin/dermatan sulfate biosynthesis in laryngeal cancer. Methods Tissues sub...

  11. Structum (chondroitin sulfate in treatment of osteoarthritis

    Directory of Open Access Journals (Sweden)

    O J Varga

    2003-01-01

    Full Text Available Objective. To assess Structum (chondroitin sulfate efficacy in treatment of osteoarthritis in Republic of Karelia. Methods. 34 pts with osteoarthritis (mean disease duration 6,44±0,67 years were included. Functional Leken score (FLS, pain at rest and at walk on visual analog scale (VAS, pts nonsteroidal anti-inflammatory drugs (NSAID requirement (diclofenac daily requirement in mg, percent of pts refused NSAID treatment, achievement of clinically significant improvement (40% decrease of FLS and/or 50% decrease of NSAID requirement were regarded as variables for the evaluation of therapy efficacy. Results. Structum administration in pts with osteoarthritis provided reduction of FLS, pain at rest and at walk, NSAID requirement and in some cases allowed to withdraw of NSAID completely. Structum has good safety and is effective in doctor and pts opinion. Conclusion. Structum is an effective drug for treatment of osteoarthritis.

  12. Biological functions of iduronic acid in chondroitin/dermatan sulfate

    OpenAIRE

    Thelin, Martin A.; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-01-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse...

  13. Increased activity of chondroitin sulfate-synthesizing enzymes during proliferation of arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Cultured arterial smooth muscle cells incorporate [35S]sulfate into the extracellular chondroitin sulfate/dermatan sulfate containing proteoglycans at a higher rate in the phase of logarithmic growth than do non-dividing cells. The cell growth-dependent decrease in 35S incorporation with increasing cell density is accompanied by a decrease in the activity of chondroitin sulfate-synthesizing enzymes. The specific activity of xylosyl transferase, N-acetylgalactosaminyl transferase I and chondroitin sulfotransferase declines as the cells proceed from low to high densities. The corresponding correlation coefficients are 0.86, 0.91 and 0.89. The ratio of C-60H/C-40H sulfation of chondroitin shows a cell proliferation-dependent decrease indicating an inverse correlation of chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase activity. The observed changes in the expression of enzyme activities are thought to have some implications in the pathogenesis of arteriosclerosis, the initial stages of which are characterized by proliferation of arterial smooth muscle cells

  14. Increased activity of chondroitin sulfate-synthesizing enzymes during proliferation of arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, J.; Thiel, J.; Schmidt, A.; Buddecke, E.

    1986-12-01

    Cultured arterial smooth muscle cells incorporate (/sup 35/S)sulfate into the extracellular chondroitin sulfate/dermatan sulfate containing proteoglycans at a higher rate in the phase of logarithmic growth than do non-dividing cells. The cell growth-dependent decrease in /sup 35/S incorporation with increasing cell density is accompanied by a decrease in the activity of chondroitin sulfate-synthesizing enzymes. The specific activity of xylosyl transferase, N-acetylgalactosaminyl transferase I and chondroitin sulfotransferase declines as the cells proceed from low to high densities. The corresponding correlation coefficients are 0.86, 0.91 and 0.89. The ratio of C-60H/C-40H sulfation of chondroitin shows a cell proliferation-dependent decrease indicating an inverse correlation of chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase activity. The observed changes in the expression of enzyme activities are thought to have some implications in the pathogenesis of arteriosclerosis, the initial stages of which are characterized by proliferation of arterial smooth muscle cells.

  15. Elastic chitosan/chondroitin sulfate multilayer membranes.

    Science.gov (United States)

    Sousa, M P; Cleymand, F; Mano, J F

    2016-01-01

    Freestanding multilayered films were obtained using layer-by-layer (LbL) technology from the assembly of natural polyelectrolytes, namely chitosan (CHT) and chondroitin sulfate (CS). The morphology and the transparency of the membranes were evaluated. The influence of genipin (1 and 2 mg ml(-1)), a naturally-derived crosslinker agent, was also investigated in the control of the mechanical properties of the CHT/CS membranes. The water uptake ability can be tailored by changing the crosslinker concentration that also controls the Young's modulus and ultimate tensile strength. The maximum extension tends to decrease upon crosslinking with the highest genipin concentration, compromising the elastic properties of CHT/CS membranes: nevertheless, when using a lower genipin concentration, the ultimate tensile stress is similar to the non-crosslinked one, but exhibits a significantly higher modulus. Moreover, the crosslinked multilayer membranes exhibited shape memory properties, through a simple hydration action. The in vitro biological assays showed better L929 cell adhesion and proliferation when using the crosslinked membranes and confirmed the non-cytotoxicity of the developed CHT/CS membranes. Within this research work, we were able to construct freestanding biomimetic multilayer structures with tailored swelling, mechanical and biological properties that could find applicability in a variety of biomedical applications. PMID:27200488

  16. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    Directory of Open Access Journals (Sweden)

    Hiroyasu Ogawa

    Full Text Available Chondroitin sulfate (CS is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/- mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/- chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  17. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production and...... characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution of...... epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan...

  18. BIOCOMPATIBILITY EVALUATION OF XANTHAN/CHONDROITIN SULFATE HYDROGELS

    Directory of Open Access Journals (Sweden)

    Ana-Maria Oprea

    2012-03-01

    Full Text Available The in vitro and in vivo biocompatibility of xanthan/chondroitin sulfate hydrogels (X/CS in differentmixing ratios was investigated. The in vitro biocompatibility evaluation was performed by a chemiluminescent assayusing microorganisms such as Saccharomyces pombe. The cellular growth of S. pombe in presence of thexanthan/chondroitin sulfate hydrogels containing up to 20 % chondroitin sulfate was examinated comparatively withxanthan hydrogel.The in vivo evaluation was performed by toxicity test and subcutaneously implantation in rats. It has been establisheda lethal dose (LD50 bigger than 3200 mg/kg for all studied hydrogels, therefore they are nontoxic materials.The in vivo 30 days testing performed by subcutaneous implantation showed that the X/CS matrices were easilyabsorbed without side-effects, demonstrating their biocompatibility and effectiveness as potential drug delivery systems.

  19. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling

    OpenAIRE

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T.; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2013-01-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high p...

  20. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS) from Sea Cucumber Cucumaria frondosa

    OpenAIRE

    Xiaoxiao Liu; Yong Liu; Jiejie Hao; Xiaoliang Zhao; Yinzhi Lang; Fei Fan; Chao Cai; Guoyun Li; Lijuan Zhang; Guangli Yu

    2016-01-01

    The low-molecular-weight fucosylated chondroitin sulfate (LFCS) was prepared from native fucosylated chondroitin sulfate (FCS), which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC) was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of ca...

  1. Chondroitin / Dermatan Sulfate Modification Enzymes in Zebrafish Development

    OpenAIRE

    Habicher, Judith; Haitina, Tatjana; Eriksson, Inger; Holmborn, Katarina; Dierker, Tabea; Ahlberg, Per E.; Ledin, Johan

    2015-01-01

    Chondroitin/dermatan sulfate (CS/DS) proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in...

  2. A Large Chondroitin Sulfate Proteoglycan, Versican, in Porcine Predentin

    OpenAIRE

    Okahata, Saori; Yamamoto, Ryuji; Yamakoshi, Yasuo; Fukae, Makoto

    2011-01-01

    Proteoglycans and their constituent glycosaminoglycan (GAG) have been proposed to be involved in the inhibition of mineralization in unmineralized tissue, predentin. Among the proteoglycans secreted by odontoblasts, we focused on the large chondroitin sulfate proteoglycan, versican, for its large binding capacity for calcium ions. The aims of this study were the determination of the full-length sequence and splicing variants of the porcine versican, and the detection of versican in the porcin...

  3. Chondroitin sulfate proteoglycan synthesis and reutilization of beta-D-xyloside-initiated chondroitin/dermatan sulfate glycosaminoglycans in fetal kidney branching morphogenesis

    International Nuclear Information System (INIS)

    Branching morphogenesis and chondroitin sulfate proteoglycan synthesis by explanted fetal mouse kidneys were previously shown to be inhibited by p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside) while glomerular development and heparan sulfate proteoglycan synthesis were unaffected. The metabolic fate of fetal kidney explant proteoglycans was investigated to determine whether or not recovery of proteoglycan synthesis and morphogenesis occur after exposure to beta-D-xyloside. Chondroitin sulfate proteoglycan synthesis resumed within 4 hr of removal of beta-D-xyloside and was enhanced once beta-D-xyloside-initiated chondroitin/dermatan-35SO4 glycosaminoglycans (GAGs) were released from the tissue. Radioactivity incorporated into beta-D-xyloside-initiated chondroitin/dermatan-35SO4 GAGs during labeling in the presence of beta-D-xyloside was reutilized in the synthesis of chondroitin-35SO4 proteoglycan during a 24-hr chase in nonradioactive medium without beta-D-xyloside. Further, highly purified beta-D-xyloside-initiated chondroitin/dermatan-35SO4 GAGs were taken up by kidneys more avidly than was free [35S]sulfate. These 35S-GAGs were degraded and reutilized in the synthesis of chondroitin-35SO4 proteoglycan. Ureteric bud branching resumed 48 hr after beta-D-xyloside was removed from the incubation medium. These findings support the idea that both chondroitin sulfate proteoglycan synthesis and proteoglycan processing may be involved in branching morphogenesis

  4. Application of Chondroitin Sulfate on Organogenesis of Two Cymbidium spp. under Different Sources of Lights

    Directory of Open Access Journals (Sweden)

    Syeda Jabun NAHAR

    2016-06-01

    Full Text Available The aim of this study was to present chondroitin sulfate as a plant growth regulator and to give an overview about light effects on PLBs (protocorm like bodies culture of Cymbidium dayanum and Cymbidium finlaysonianum cultured in vitro. Chondroitin sulfate is a sulfated glycosaminoglycan (GAG composed of a chain of alternating sugars N-acetylgalactosamine and glucuronic acid. It is widely used as a material for food ingredients, cosmetics and medicine. PLBs were cultured on modified MS medium containing different concentration of chondroitin sulfate (0, 0.1, 1 and 10 mg/l, under four sources of lights: conventional white fluorescent tube, red LED, green LED and blue LED. In C. dayanum, 100% PLBs formation rate was observed at 0.1 mg/l chondroitin sulfate with modified MS medium under green LED and 1 mg/l chondroitin sulfate under blue LED; the maximum shoots and roots formation were observed under green LEDs (93% and 80% respectively when media contained 0.1 mg/l chondroitin sulfate. In C. finlaysonianum, every concentrations of chondroitin sulfate enhanced the growth rate of PLBs when compared to control treatment, under all four sources of lights. The highest values were recorded with 0.1 mg/l chondroitin sulfate which induced 100% PLBs formation under blue LED, while 10 mg/l chondroitin sulfate had induced 100% PLBs formation under green LED. The highest percentage of shoots (73% was initiated in the medium containing 10 mg/l chondroitin sulfate under green LED. Plant development was strongly influenced by the light quality and plant growth regulator functions as chemical messengers for intercellular communication of plant. The results demonstrated that low concentrations of chondroitin sulfate could promote PLBs, shoots and roots formation of Cymbidium spp. under green and blue LED.

  5. Perlecan and basement membrane-chondroitin sulfate proteoglycan (bamacan) are two basement membrane chondroitin/dermatan sulfate proteoglycans in the Engelbreth-Holm-Swarm tumor matrix

    DEFF Research Database (Denmark)

    Couchman, J R; Kapoor, R; Sthanam, M; Wu, R R

    1996-01-01

    perlecan but, in addition to being present as a heparan sulfate proteoglycan, it is also present as a hybrid molecule, with dermatan sulfate chains. A minor population of perlecan apparently lacks heparan sulfate chains totally, and some of this is substituted with chondroitin sulfate. The second species...... heparan sulfate proteoglycan, widespread in many basement membranes and connective tissues. We now identify two distinct proteoglycan species from this tumor source, which are substituted with galactosaminoglycans and which show basement membrane localization by immunohistochemistry. One species is...... is immunologically related to basement membrane-chondroitin sulfate proteoglycan (BM-CSPG) and bears chondroitin sulfate chains. No BM-CSPG was detectable which was substituted with heparan sulfate chains. A combination of immunological and molecular approaches, including cDNA cloning, showed that...

  6. Reduced Sulfation of Chondroitin Sulfate but Not Heparan Sulfate in Kidneys of Diabetic db/db Mice

    OpenAIRE

    Reine, Trine M.; Grøndahl, Frøy; Jenssen, Trond G.; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O.

    2013-01-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were redu...

  7. A tandem mass spectrometric approach to determination of chondroitin/dermatan sulfate oligosaccharide glycoforms

    OpenAIRE

    Miller, May Joy C.; Costello, Catherine E.; Malmström, Anders; Zaia, Joseph

    2006-01-01

    Dermatan sulfate (DS) chains are variants of chondroitin sulfate (CS) that are expressed in mammalian extracellular matrices and are particularly prevalent in skin. DS has been implicated in varied biological processes including wound repair, infection, cardiovascular disease, tumorigenesis, and fibrosis. The biological activities of DS have been attributed to its high content of IdoA(α1-3)GalNAc4S(β1-4) disaccharide units. Mature CS/DS chains consist of blocks with high and low GlcA/IdoA rat...

  8. Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity.

    Science.gov (United States)

    Galus, Aurélia; Mallet, Jean-Maurice; Lembo, David; Cagno, Valeria; Djabourov, Madeleine; Lortat-Jacob, Hugues; Bouchemal, Kawthar

    2016-01-20

    The initial step in mucosal infection by the herpes simplex virus type 2 (HSV-2) requires its binding to certain glycosaminoglycans naturally present on host cell membranes. We took advantage of this interaction to design biomimetic supramolecular hexagonal-shaped nanoassemblies composed of chondroitin sulfate having exalted anti-HSV-2 activity in comparison with native chondroitin sulfate. Nanoassemblies were formed by mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin in water. Optimization of alkyl chain length grafted on chondroitin sulfate and the ratio between hydrophobically-modified chondroitin sulfate and α-cyclodextrin showed that more cohesive and well-structured nanoassemblies were obtained using higher α-cyclodextrin concentration and longer alkyl chain lengths. A structure-activity relationship was found between anti-HSV-2 activity and the amphiphilic nature of hydrophobically-modified chondroitin sulfate. Also, antiviral activity of hexagonal nanoassemblies against HSV-2 was further improved in comparison with hydrophobically-modified chondroitin sulfate. This work suggests a new biomimetic formulation approach that can be extended to other heparan-sulfate-dependent viruses. PMID:26572336

  9. Discrepancies in Composition and Biological Effects of Different Formulations of Chondroitin Sulfate

    OpenAIRE

    Martel-Pelletier, Johanne; Farran D??az Cano, Aina; Montell, Eul??lia; Verg??s, Josep; Pelletier, Jean-Pierre

    2015-01-01

    Osteoarthritis is a common, progressive joint disease, and treatments generally aim for symptomatic improvement. However, SYmptomatic Slow-Acting Drugs in Osteoarthritis (SYSADOAs) not only reduce joint pain, but slow structural disease progression. One such agent is chondroitin sulfate-a complex, heterogeneous polysaccharide. It is extracted from various animal cartilages, thus has a wide range of molecular weights and different amounts and patterns of sulfation. Chondroitin sulfate has an e...

  10. Chondroitin sulfate proteoglycan synthesis and reutilization of beta-D-xyloside-initiated chondroitin/dermatan sulfate glycosaminoglycans in fetal kidney branching morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Klein, D.J.; Brown, D.M.; Moran, A.; Oegema, T.R. Jr.; Platt, J.L.

    1989-06-01

    Branching morphogenesis and chondroitin sulfate proteoglycan synthesis by explanted fetal mouse kidneys were previously shown to be inhibited by p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside) while glomerular development and heparan sulfate proteoglycan synthesis were unaffected. The metabolic fate of fetal kidney explant proteoglycans was investigated to determine whether or not recovery of proteoglycan synthesis and morphogenesis occur after exposure to beta-D-xyloside. Chondroitin sulfate proteoglycan synthesis resumed within 4 hr of removal of beta-D-xyloside and was enhanced once beta-D-xyloside-initiated chondroitin/dermatan-/sup 35/SO/sub 4/ glycosaminoglycans (GAGs) were released from the tissue. Radioactivity incorporated into beta-D-xyloside-initiated chondroitin/dermatan-/sup 35/SO/sub 4/ GAGs during labeling in the presence of beta-D-xyloside was reutilized in the synthesis of chondroitin-/sup 35/SO/sub 4/ proteoglycan during a 24-hr chase in nonradioactive medium without beta-D-xyloside. Further, highly purified beta-D-xyloside-initiated chondroitin/dermatan-/sup 35/SO/sub 4/ GAGs were taken up by kidneys more avidly than was free (/sup 35/S)sulfate. These /sup 35/S-GAGs were degraded and reutilized in the synthesis of chondroitin-/sup 35/SO/sub 4/ proteoglycan. Ureteric bud branching resumed 48 hr after beta-D-xyloside was removed from the incubation medium. These findings support the idea that both chondroitin sulfate proteoglycan synthesis and proteoglycan processing may be involved in branching morphogenesis.

  11. Effects of chondroitin sulfate and glucosamine in adult patients with Kaschin-Beck disease

    DEFF Research Database (Denmark)

    Zhang, Ya-xu; Dong, Wei; Liu, Hui; Cicuttini, Flavia; de Courten, Maximilian; Yang, Jian-bai

    2010-01-01

    The purpose is to investigate the effects of chondroitin sulfate and glucosamine on adult patients with Kaschin-Beck disease (KBD). A total of 80 patients, aged over 40 years, were randomized into two groups receiving either 1,600 mg oral mixture of chondroitin sulfate and glucosamine or placebo...... overall mean change in joint space was significant between the two groups (P <0.0001). Knee joint space of the experimental group narrowed slowly compared to the control group. Therefore, chondroitin sulfate and glucosamine might play a protective role in preserving articular cartilage and provide...

  12. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Robert D Prinz

    Full Text Available The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  13. Osmotic Pressure of Aqueous Chondroitin Sulfate Solution: A Molecular Modeling Investigation

    OpenAIRE

    Bathe, Mark; Rutledge, Gregory C.; Grodzinsky, Alan J.; TIDOR, BRUCE

    2005-01-01

    The osmotic pressure of chondroitin sulfate (CS) solution in contact with an aqueous 1:1 salt reservoir of fixed ionic strength is studied using a recently developed coarse-grained molecular model. The effects of sulfation type (4- vs. 6-sulfation), sulfation pattern (statistical distribution of sulfate groups along a chain), ionic strength, CS intrinsic stiffness, and steric interactions on CS osmotic pressure are investigated. At physiological ionic strength (0.15 M NaCl), the sulfation typ...

  14. Biosynthesis of dermatan sulfate: Chondroitin glucuronate C5-epimerase is identical to SART2.

    OpenAIRE

    Maccarana, Marco; Olander, Benny; Malmstrom, Johan; Tiedemann, Kerstin; Aebersold, Ruedi; Lindahl, Ulf; Li, Jin-Ping; Malmström, Anders

    2006-01-01

    We identified the gene encoding chondroitin-glucuronate C5-epimerase (EC 5.1.3.19 [EC] ) that converts D-glucuronic acid to L-iduronic acid residues in dermatan sulfate biosynthesis. The enzyme was solubilized from bovine spleen, and an ~43,000-fold purified preparation containing a major 89-kDa candidate component was subjected to mass spectrometry analysis of tryptic peptides. SART2 (squamous cell carcinoma antigen recognized by T cell 2), a protein with unknown function highly expressed in...

  15. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt;

    2012-01-01

    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...... higher levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element...

  16. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    International Nuclear Information System (INIS)

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of [3H]chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics

  17. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Silbert, C.K.; Humphries, D.E.; Palmer, M.E.; Silbert, J.E. (Veterans Administration Outpatient Clinic, Boston, MA (USA))

    1991-02-15

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with (3H)glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of (3H)chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics.

  18. Discrepancies in Composition and Biological Effects of Different Formulations of Chondroitin Sulfate

    OpenAIRE

    Johanne Martel-Pelletier; Aina Farran; Eulàlia Montell; Josep Vergés; Jean-Pierre Pelletier

    2015-01-01

    Osteoarthritis is a common, progressive joint disease, and treatments generally aim for symptomatic improvement. However, SYmptomatic Slow-Acting Drugs in Osteoarthritis (SYSADOAs) not only reduce joint pain, but slow structural disease progression. One such agent is chondroitin sulfate—a complex, heterogeneous polysaccharide. It is extracted from various animal cartilages, thus has a wide range of molecular weights and different amounts and patterns of sulfation. Chondroitin sulfate has an e...

  19. Sugar-Dependent Modulation of Neuronal Development, Regeneration, and Plasticity by Chondroitin Sulfate Proteoglycans

    OpenAIRE

    Miller, Gregory M.; Hsieh-Wilson, Linda C.

    2015-01-01

    Chondroitin sulfate proteoglycans (CSPGs) play important roles in the developing and mature nervous system, where they guide axons, maintain stable connections, restrict synaptic plasticity, and prevent axon regeneration following CNS injury. The chondroitin sulfate glycosaminoglycan (CS GAG) chains that decorate CSPGs are essential for their functions. Through these sugar chains, CSPGs are able to bind and regulate the activity of a diverse range of proteins. CSPGs have been found both to pr...

  20. Discrepancies in Composition and Biological Effects of Different Formulations of Chondroitin Sulfate

    Directory of Open Access Journals (Sweden)

    Johanne Martel-Pelletier

    2015-03-01

    Full Text Available Osteoarthritis is a common, progressive joint disease, and treatments generally aim for symptomatic improvement. However, SYmptomatic Slow-Acting Drugs in Osteoarthritis (SYSADOAs not only reduce joint pain, but slow structural disease progression. One such agent is chondroitin sulfate—a complex, heterogeneous polysaccharide. It is extracted from various animal cartilages, thus has a wide range of molecular weights and different amounts and patterns of sulfation. Chondroitin sulfate has an excellent safety profile, and although various meta-analyses have concluded that it has a beneficial effect on symptoms and structure, others have concluded little or no benefit. This may be due, at least partly, to variations in the quality of the chondroitin sulfate used for a particular study. Chondroitin sulfate is available as pharmaceutical- and nutraceutical-grade products, and the latter have great variations in preparation, composition, purity and effects. Moreover, some products contain a negligible amount of chondroitin sulfate and among samples with reasonable amounts, in vitro testing showed widely varying effects. Of importance, although some showed anti-inflammatory effects, others demonstrated weak effects, and some instances were even pro-inflammatory. This could be related to contaminants, which depend on the origin, production and purification process. It is therefore vitally important that only pharmaceutical-grade chondroitin sulfate be used for treating osteoarthritis patients.

  1. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS) from Sea Cucumber Cucumaria frondosa.

    Science.gov (United States)

    Liu, Xiaoxiao; Liu, Yong; Hao, Jiejie; Zhao, Xiaoliang; Lang, Yinzhi; Fan, Fei; Cai, Chao; Li, Guoyun; Zhang, Lijuan; Yu, Guangli

    2016-01-01

    The low-molecular-weight fucosylated chondroitin sulfate (LFCS) was prepared from native fucosylated chondroitin sulfate (FCS), which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC) was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of caspase-3 activity in LLC cells. Meanwhile, LFCS suppressed the expression of vascular endothelial growth factor (VEGF), increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and downregulated the matrix metalloproteinases (MMPs) level. Furthermore, LFCS significantly suppressed the activation of ERK1/2/p38 MAPK/NF-κB pathway, which played a prime role in expression of MMPs. All of these data indicate LFCS may be used as anti-cancer drug candidates and deserve further study. PMID:27187337

  2. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS from Sea Cucumber Cucumaria frondosa

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Liu

    2016-05-01

    Full Text Available The low-molecular-weight fucosylated chondroitin sulfate (LFCS was prepared from native fucosylated chondroitin sulfate (FCS, which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of caspase-3 activity in LLC cells. Meanwhile, LFCS suppressed the expression of vascular endothelial growth factor (VEGF, increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1 and downregulated the matrix metalloproteinases (MMPs level. Furthermore, LFCS significantly suppressed the activation of ERK1/2/p38 MAPK/NF-κB pathway, which played a prime role in expression of MMPs. All of these data indicate LFCS may be used as anti-cancer drug candidates and deserve further study.

  3. Development of a rapid method for simultaneous separation of hyaluronic acid, chondroitin sulfate, dermatan sulfate and heparin by capillary electrophoresis.

    Science.gov (United States)

    Zhao, Ting; Song, Xinlei; Tan, Xiaoqing; Xu, Linghua; Yu, Mingxiu; Wang, Siyi; Liu, Xiumei; Wang, Fengshan

    2016-05-01

    This study reports the use of diethylenetriamine as background electrolyte for the simultaneous separation of hyaluronan acid, chondroitin sulfate, dermatan sulfate and heparin. The analytes were baseline separated by using an uncoated fused silica capillary at 37°C with a run time of 23min. The migration order, with hyaluronan acid at first and heparin at last, was related to the sulfation degree. The effect of salt concentration on resolution and migration order was also investigated. The developed method was applied to the simultaneous determination of hyaluronan acid and chondroitin sulfate in mouse plasma. Interferences in plasma were removed by protein precipitation and glycosaminoglycans were further purified by ethanol precipitation. The method was validated over the concentration range from 50 to 600μg/mL for hyaluronan acid and 500 to 6000μg/mL for chondroitin sulfate in mouse plasma. Results from assay validations showed that the method was selective and robust. PMID:26877013

  4. Global analysis of neuronal phosphoproteome regulation by chondroitin sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Panpan Yu

    Full Text Available Chondroitin sulfate proteoglycans (CSPGs are major components of the extracellular matrix which mediate inhibition of axonal regeneration after injury to the central nervous system (CNS. Several neuronal receptors for CSPGs have recently been identified; however, the signaling pathways by which CSPGs restrict axonal growth are still largely unknown. In this study, we applied quantitative phosphoproteomics to investigate the global changes in protein phosphorylation induced by CSPGs in primary neurons. In combination with isobaric Tags for Relative and Absolute Quantitation (iTRAQ labeling, strong cation exchange chromatography (SCX fractionation, immobilized metal affinity chromatography (IMAC and LC-MS/MS, we identified and quantified 2214 unique phosphopeptides corresponding to 1118 phosphoproteins, with 118 changing significantly in abundance with CSPG treatment. The proteins that were regulated by CSPGs included key components of synaptic vesicle trafficking, axon guidance mediated by semaphorins, integrin signaling, cadherin signaling and EGF receptor signaling pathways. A significant number of the regulated proteins are cytoskeletal and related proteins that have been implicated in regulating neurite growth. Another highly represented protein category regulated by CSPGs is nucleic acid binding proteins involved in RNA post-transcriptional regulation. Together, by screening the overall phosphoproteome changes induced by CSPGs, this data expand our understanding of CSPG signaling, which provides new insights into development of strategies for overcoming CSPG inhibition and promoting axonal regeneration after CNS injury.

  5. Oversulfated chondroitin sulfate interaction with heparin-binding proteins: New insights into adverse reactions from contaminated heparins

    OpenAIRE

    Li, Boyangzi; Suwan, Jiraporn; Martin, Jeffrey G.; Zhang, Fuming; Zhang, Zhenqing; Hoppensteadt, Debra; Clark, Melanie; Fareed, Jawed; Linhardt, Robert J.

    2009-01-01

    An oversulfated chondroitin sulfate (OSCS) was identified as a contaminant to pharmaceutical heparin and severe anaphylactoid reactions were ascribed to this contaminant. An examination of the biochemistry underlying both the anticoagulant activity and the toxic effects of oversulfated chondroitin sulfate was undertaken. This study demonstrates that the anticoagulant activity of this oversulfated chondroitin sulfate is primarily dependent on heparin cofactor II mediated inhibition of thrombin...

  6. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate.

    Science.gov (United States)

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo

    2016-08-20

    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug. PMID:27178902

  7. Photorefractive keratectomy: measuring the matrix metalloproteinase activity and chondroitin sulfate concentration in tear fluid

    Directory of Open Access Journals (Sweden)

    Tetsuya Mutoh

    2010-09-01

    Full Text Available Tetsuya Mutoh, Masaya Nishio, Yukihiro Matsumoto, Kiyomi Arai, Makoto ChikudaDepartment of Ophthalmology, Dokkyo Medical University Koshigaya Hospital, Saitama, JapanAbstract: We herein report the case of a 20-year-old man who underwent a photorefractive keratectomy (PRK. We measured matrix metalloproteinase-9 (MMP-9 activity and chondroitin 4 sulfate and chondroitin 6 sulfate concentrations in tear fluid. Tear fluid was collected preoperatively via microcapillary tube, and was collected postoperatively on the first and fourth days, and after one week, one month, three months, and six months. Samples were formulated by dilution with 200 µL of saline. MMP-9 activity was analyzed by an enzyme immunocapture activity assay, and the concentrations of chondroitin sulfate were analyzed by enzyme-linked immunosorbent assay. No complications were observed after surgery, except for a minimal subepithelial haze. Although MMP-9 activity changed on the fourth postoperative day, the activity changed only minimally at this time. Chondroitin 4 sulfate concentrations in tear fluid increased dramatically from one week to one month, decreased transiently at three months, and increased by six months. The chondroitin 6 sulfate concentration did not normalize within one week, and decreased from one week to three months compared with the preoperative score, and was close to the preoperative score at six months. We conclude that corneal wound healing was still incomplete six months after PRK, and chondroitin 4 sulfate appears to be critical in this process.Keywords: matrix metalloproteinase, chondroitin sulfate, human tear fluid, photorefractive keratectomy, corneal wound healing

  8. Pretreatment procedure for the microdetermination of chondroitin sulfate in plasma and urine.

    Science.gov (United States)

    Sakai, Shinobu; Onose, Jun-ichi; Nakamura, Haruka; Toyoda, Hidenao; Toida, Toshihiko; Imanari, Toshio; Linhardt, Robert J

    2002-03-15

    A new, simple, and rapid pretreatment method for the determination of chondroitin sulfate, dermatan sulfate, and hyaluronan from urine and blood plasma samples has been developed. Plasma proteins were first converted into small peptides by digestion using a nonspecific protease, actinase E, and the resulting small peptides were removed by centrifugal filtration. The retained, residual crude glycosaminoglycans, including chondroitin/dermatan sulfates and hyaluronan, were converted into unsaturated disaccharides through the action of chondroitin sulfate lyses. Next, these disaccharides were recovered and purified using centrifugal filtration together with DeltaDi-UA2S, added as an internal standard. The filtered disaccharide mixture was analyzed by HPLC with fluorometric postcolumn derivatization using 2-cyanoacetamide as a fluorogenic reagent. This method was applied to a pharmacokinetic study of chondroitin sulfate administered intravenously to mice. The half-life of the administered chondroitin sulfates, having molecular masses from 6 to 50 kDa, varied depending on their molecular sizes. This new method should be useful for studies on the metabolic fate of exogenously administered glycosaminoglycans in small experimental animals. PMID:11878794

  9. A Large Chondroitin Sulfate Proteoglycan, Versican, in Porcine Predentin.

    Science.gov (United States)

    Okahata, Saori; Yamamoto, Ryuji; Yamakoshi, Yasuo; Fukae, Makoto

    2011-01-01

    Proteoglycans and their constituent glycosaminoglycan (GAG) have been proposed to be involved in the inhibition of mineralization in unmineralized tissue, predentin. Among the proteoglycans secreted by odontoblasts, we focused on the large chondroitin sulfate proteoglycan, versican, for its large binding capacity for calcium ions. The aims of this study were the determination of the full-length sequence and splicing variants of the porcine versican, and the detection of versican in the porcine predentin. The complete coding sequence of the porcine versican mRNA was cloned to be 11,775 nucleotides long and encode 3,924 amino acids, and four splicing variants, V0, V1, V2 and V3, were characterized in the isolated porcine cartilage cells. The number of potential GAG attachment sites was 15 in the V0 variant, 13 in the V1 variant, 2 in the V2 variant and 0 in the V3 variant. They were deposited in DDBJ. The V1 variant was determined by RT-PCR in the odontoblasts, dental papilla cells, dental follicle cells, periodontal ligament cells, dental pulp cells, and gingival cells of pigs, although a small amount of the V0 valiant was found in the dental papilla cells. The predentin was prepared from developing porcine permanent incisor tooth germs and its soluble proteins were extracted in order to be partially characterized by protein and proteinase profiles. The versican V1 cleavage products were detected in the predentin extract by Western blotting analysis. These results suggested that the versican splice variant V1 implicates both the control of the mineralization and the activities of the predentin metalloproteinases, because it has 13 GAG chains that bind a large amount of calcium. PMID:22200993

  10. Synthesis of selective inhibitors of heparan sulfate and chondroitin sulfate proteoglycan biosynthesis.

    Science.gov (United States)

    Mencio, Caitlin; Garud, Dinesh R; Kuberan, Balagurunathan; Koketsu, Mamoru

    2015-01-01

    Glycosaminoglycan (GAG) side chains of proteoglycans are involved in a wide variety of developmental and pathophysiological functions. Similar to a gene knockout, the ability to inhibit GAG biosynthesis would allow us to examine the function of endogenous GAG chains. However, ubiquitously and irreversibly knocking out all GAG biosynthesis would cause multiple effects making it difficult to attribute a specific biological role to a specific GAG structure in spatiotemporal manner. Reversible and selective inhibition of GAG biosynthesis would allow us to examine the importance of endogenous GAGs to specific cellular, tissue, or organ systems. In this chapter, we describe the chemical synthesis and biological evaluation of 4-deoxy-4-fluoro-xylosides as selective inhibitors of heparan sulfate and chondroitin/dermatan sulfate proteoglycan biosynthesis. PMID:25325945

  11. Cloning and characterization of a novel chondroitin sulfate/dermatan sulfate 4-O-endosulfatase from a marine bacterium.

    Science.gov (United States)

    Wang, Wenshuang; Han, Wenjun; Cai, Xingya; Zheng, Xiaoyu; Sugahara, Kazuyuki; Li, Fuchuan

    2015-03-20

    Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886-27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17-65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications. PMID:25648894

  12. Chondroitin-6-sulfate-containing proteoglycan: a new component of human skin dermoepidermal junction

    DEFF Research Database (Denmark)

    Fine, J D; Couchman, J R

    1988-01-01

    chondroitin sulfate proteoglycan is present in adult, neonatal, and/or fetal skin, and if present, its ultrastructural localization. Indirect immunofluorescence was performed on human adult, neonatal, and fetal skin. To detect the antigen, specimens were pretreated with chondroitinase ABC; absence of enzyme...... treatment served as negative control. Chondroitin sulfate proteoglycan was detectable in linear homogeneous array along the dermoepidermal junction and within vascular (and when present, adnexal) basement membranes in both adult and neonatal skin. In fetal skin, basement membrane staining was noted as early...... as 54 gestational days. Indirect immunoelectron microscopy and NaCl-split skin studies were performed to ultrastructurally localize the antigen; immune deposits were detectable within the lamina densa in chondroitinase-treated skin. These findings demonstrate that chondroitin sulfate proteoglycan is...

  13. Xanthan/chondroitin sulfate hydrogels as carrier for drug delivery applications

    OpenAIRE

    Ana-Maria Oprea; Andrei Neamtu; Cornelia Vasile

    2010-01-01

    Preparation, characterization and in vitro release studies of codeine from xanthan/chondroitin sulfate (X/CS) hydrogels prepared through a crosslinking technique are reported. Swelling and drug delivery studies were conducted in phosphate buffer solution (pH=7.4) which simulates the pH of the intestinal fluid, at 37 °C. The in vitro release test revealed that the percentage of codeine released in phosphate buffer solution increases with increasing the amount of chondroitin sulfate in the comp...

  14. THE EFFICASY OF STRUCTUM (CHONDROITIN SULFATE ON BIOENERGETIC CHARACTERISTICS OF OA SYNOVIAL FLUID

    Directory of Open Access Journals (Sweden)

    V I Shishkin

    2001-01-01

    Full Text Available Clinical and laboratory study was carried out including 30 pts with definite diagnosis of osteoarthritis (OA of knee joint. The effect of chondroitin sulfate (Structum on basic bio-energetic indices of synovial fluid was studied. The obtained results testify to the fact that the expressed local hypoxia of cartilage tissue favoring the development, conserving and chronization of inflammatory process in synovial environment of knee joint in О A is successfully arrested by the above drug. Simultaneously bio-energetic parameters of synovial fluid were normalized: the level of oxygen absorption by synovial cells, the activity of a number of enzymes of hydrogen-phosphor (energetic metabolism as well as of glucuronidaze and gialuronidaze,

  15. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    International Nuclear Information System (INIS)

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. (paper)

  16. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  17. Ionic Liquid Matrix for Direct UV-MALDI-TOF-MS Analysis of Dermatan Sulfate and Chondroitin Sulfate Oligosaccharides

    OpenAIRE

    Laremore, Tatiana N.; Zhang, Fuming; Linhardt, Robert J.

    2007-01-01

    Polyanionic oligosaccharides such as dermatan sulfate (DS) and chondroitin sulfate (CS) exhibit poor ionization efficiencies and tend to undergo thermal fragmentation through the loss of SO3 under conventional ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) conditions. A new ionic liquid matrix (ILM), a guanidinium salt of α-cyano-4-hydroxycinnamic acid, facilitates direct UV-MALDI mass spectrometric (MS) analysis of underivatized DS and CS oligosaccharides up to a decasacc...

  18. Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates, and related N-acetyl glycosamines

    DEFF Research Database (Denmark)

    Rees, Martin D; Hawkins, Clare L; Davies, Michael Jonathan

    2003-01-01

    Myeloperoxidase released from activated phagocytes reacts with H(2)O(2) in the presence of chloride ions to give hypochlorous acid. This oxidant has been implicated in the fragmentation of glycosaminoglycans, such as hyaluronan and chondroitin sulfates. In this study it is shown that reaction of ...

  19. Partial Hydrolysis of the Fucosylated Chondroitin Sulfate from Sea Cucumber Isostichopus badionotus and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi-Guo; LI Guo-Yun; YE Xing-Qian; XUE Chang-Hu

    2012-01-01

    The method for preparing low molecular weight fucosylated chondroitin sulfate from sea cucumber lsostichopus badionotus using partial acid hydrolysis was reported, and its hydrolysis mechanism was also investigated. The sea cucumber chondroitin sulfate FCS was hydrolyzed under different conditions (80℃3 h and 6 h), then isolated and purified on a Bio-P-4 geltration to prepare low molecular weight fractions (LMWF-FCS). The chemical compositions of LMWF-FCS showed the branched fucose (Fuc) was cleaved during acid hydrolysis process, whereas the mole ratio of acetyl-galactosamine (GalNAc) and glucuronic acid (GlcA) in the backbone remained the same, which indicated the backbone was a typical chondroitin sulfate structure. The disaccharide composition analysis of LMWF-FCS suggested that the sulfation patterns of GalNAc in the backbone chain changed and the substitution value was reduced. Furthermore, the 1D NMR analysis illustrated the branched-Fuc was cleaved during acid hydrolysis, but their substitution patterns were not influenced, which was distinct from the previous reports that the substitutions of branched-Fuc in FCS were easy to change. Simultaneously, the sulfation pattern of GalNAc in backbone chain changed obviously in the acid hydrolysis process. The anticoagulant activity in vitro illuminated the anticoagulant activity of the degradation products over time in the acid hydrolysis are gradually declined, but still kept good. Therefore, the LMWF-FCS prepared could be developed as a new anticoagulant and antithrombotic drug like low molecular weight heparin.

  20. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    Science.gov (United States)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  1. Synthesis of chondroitin/dermatan sulfate-like oligosaccharides and evaluation of their protein affinity by fluorescence polarization

    OpenAIRE

    Maza, Susana; Kayser, M. Mar; Macchione, Giuseppe; López-Prados, Javier; Angulo, Jesús; de Paz, José L.; Nieto, Pedro M.

    2013-01-01

    Here, we present a novel approach for the chemical synthesis of chondroitin and dermatan sulfate oligosaccharides. A key point of this strategy is the preparation and use of an N-trifluoroacetyl galactosamine building block containing a 4,6-O-di-tert-butylsilylene group. Glycosylation reactions proceeded in good yields (74-91%) with our protecting group distribution. Using this approach, we have synthesized, for the first time, a chondroitin/dermatan sulfate-like tetrasaccharide that contains...

  2. Oversulfated Chondroitin Sulfate: Impact of a Heparin Impurity, Associated with Adverse Clinical Events, on Low-Molecular-Weight Heparin Preparation

    OpenAIRE

    Zhang, Zhenqing; Weïwer, Michel; Li, Boyangzi; Kemp, Melissa M.; Daman, Tyler H.; Linhardt, Robert J.

    2008-01-01

    Heparin, a widely used anticoagulant, is being rapidly displaced by low-molecular-weight heparins. Recently, certain lots of heparin have been associated with anaphylactoid-type reactions resulting from contamination with oversulfated chondroitin sulfate. This impurity has also contaminated low-molecular-weight heparins obtained by chemical and enzymatic depolymerization of heparin. The sensitivity of oversulfated chondroitin sulfate to five different depolymerization processes similar to one...

  3. Incorporation of 35S-sulfate and 3H-glucosamine into heparan and chondroitin sulfates during the cell cycle of B16-F10 cells

    International Nuclear Information System (INIS)

    Changes in glycosaminoglycan composition occurring during the cell cycle were determined in B16-F10 cells sorted flow cytometrically with respect to DNA content. Incorporation of 35S-sulfate into heparan sulfate and chondroitin sulfate of unsorted and G1,S, and G2 +M sorted cells was determined following chondroitinase ABC or nitrous acid treatment; the incorporation into surface material was measured as the difference between the radioactivity of control and trypsin-treated cells. Incorporation of 35S-sulfate and 3H-glucosamine into cetyl pyridinium chloride (CPC)-precipitable material was characterized before and after chondroitinase or nitrous acid treatment by Sephadex G50 chromatography. Long-term (48 h) and short-term (1 h) labeling studies demonstrate that (a) the amount of total cellular chondroitin sulfate is greater than that of heparan sulfate, with larger amounts of unsulfated heparan than chondroitin being present; (b) the rate of turnover of heparan sulfate is greater than that of chondroitin sulfate; (c) greatest short-term incorporation of 3H-glucosamine into CPC-precipitable material occurs during S phase; and (d) the rate of turnover of both heparan sulfate and chondroitin sulfate is decreased in S phase relative to G1 and G2 + M

  4. Preparation and Characterization of PDLLA/ Chondroitin Sulfate/Chitosan Scaffold for Peripheral Nerve Regeneration

    Institute of Scientific and Technical Information of China (English)

    XU Haixing; YAN Yuhua; WAN Tao; LI Shipu

    2008-01-01

    A novel bioactive and bioresorbable PDLLA/chondroitin sulfate/chitosan scaffold was prepared via layer-by-layer(LBL) electrostatic-self-assembly (ESA) and the thermally induced phase separation (TIPS) technique. Chondroitin sulfate and chitosan were alternately deposited on the activated PDLLA substrate.The deposition process was monitored by UV-Vis absorbance spectroscopy. After frozen and lyophilized, the scaffold was characterized by attenuated total reflection (ATR)-FT-IR, XPS, SEM and AFM. The results showed that the scaffold was modified uniformly with a dense inner layer with few detectable pores and a porous sponge outer layer with the pore size about 5 μm, there was an obvious across section and the average thickness of each layer was about 9.4 nm.

  5. A Novel Polybrene/Chondroitin Sulfate C Double Coated Capillary and Its Application in Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    DU,Ying-Xiang(杜迎翔); HONDA,Susumu; TAGA,Atsushi; LIU,Wen-Ying(刘文英); SUZUKI,Shigeo

    2002-01-01

    A new capillary coated by double polymer, polybrene/chondroitin sulfate C (P/CC), was developed using a simple procedure. The P/CC double coated capillary showed long lifetime,strong chemical stability and good reproducibility. It endured during more than 100 replicated analyses and was also tolerant to HCl (1 mol/L), NaOH (0.01 mol/L), CH3OH and CH3CN. The P/CC double coated capillary can be applied to basic drug analyses. The adsorption of basic drugs to the capillary wall was suppressed and the peak tailing greatly decreased. The use of the P/CC double coated capillary allowed excelent separation of the enantiomers of some basic drugs by using chondroitin sulfate C as the chiral selector, ami the peak symmetry of basic drugs was further improved under these conditions.

  6. Xanthan/chondroitin sulfate hydrogels as carrier for drug delivery applications

    Directory of Open Access Journals (Sweden)

    Ana-Maria Oprea

    2010-06-01

    Full Text Available Preparation, characterization and in vitro release studies of codeine from xanthan/chondroitin sulfate (X/CS hydrogels prepared through a crosslinking technique are reported. Swelling and drug delivery studies were conducted in phosphate buffer solution (pH=7.4 which simulates the pH of the intestinal fluid, at 37 °C. The in vitro release test revealed that the percentage of codeine released in phosphate buffer solution increases with increasing the amount of chondroitin sulfate in the composition of hydrogels. The drug release behaviour of the hydrogels loaded with codeine fitted well with case II transport mechanism for all formulations. The biocompatibility testing was made by hemolisys (plasma hemoglobin technique.

  7. Effect of introduction of chondroitin sulfate into polymer-peptide conjugate responding to intracellular signals

    Science.gov (United States)

    Tomiyama, Tetsuro; Toita, Riki; Kang, Jeong-Hun; Koga, Haruka; Shiosaki, Shujiro; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki

    2011-09-01

    We recently developed a novel tumor-targeted gene delivery system responding to hyperactivated intracellular signals. Polymeric carrier for gene delivery consists of hydrophilic neutral polymer as main chains and cationic peptide substrate for target enzyme as side chains, and was named polymer-peptide conjugate (PPC). Introduction of chondroitin sulfate (CS), which induces receptor-medicated endocytosis, into polymers mainly with a high cationic charge density such as polyethylenimine can increase tumor-targeted gene delivery. In the present study, we examined whether introduction of CS into PPC containing five cationic amino acids can increase gene expression in tumor cells. Size and zeta potential of plasmid DNA (pDNA)/PPC/CS complex were stability and gene regulation, compared with that of pDNA/PPC. Moreover, no difference in gene expression was identified between positive and negative polymer. These results were caused by fast disintegration of pDNA/PPC/CS complexes in the presence of serum. Thus, we suggest that introduction of negatively charged CS into polymers with a low charge density may lead to low stability and gene regulation of complexes.

  8. Development of a Biomimetic Chondroitin Sulfate-modified Hydrogel to Enhance the Metastasis of Tumor Cells

    Science.gov (United States)

    Liu, Yang; Wang, Shujun; Sun, Dongsheng; Liu, Yongdong; Liu, Yang; Wang, Yang; Liu, Chang; Wu, Hao; Lv, Yan; Ren, Ying; Guo, Xin; Sun, Guangwei; Ma, Xiaojun

    2016-01-01

    Tumor metastasis with resistance to anticancer therapies is the main cause of death in cancer patients. It is necessary to develop reliable tumor metastasis models that can closely recapitulate the pathophysiological features of the native tumor tissue. In this study, chondroitin sulfate (CS)-modified alginate hydrogel beads (ALG-CS) are developed to mimic the in vivo tumor microenvironment with an abnormally increased expression of CS for the promotion of tumor cell metastasis. The modification mechanism of CS on alginate hydrogel is due to the cross-linking between CS and alginate molecules via coordination of calcium ions, which enables ALG-CS to possess significantly different physical characteristics than the traditional alginate beads (ALG). And quantum chemistry calculations show that in addition to the traditional egg-box structure, novel asymmetric egg-box-like structures based on the interaction between these two kinds of polymers are also formed within ALG-CS. Moreover, tumor cell metastasis is significantly enhanced in ALG-CS compared with that in ALG, as confirmed by the increased expression of MMP genes and proteins and greater in vitro invasion ability. Therefore, ALG-CS could be a convenient and effective 3D biomimetic scaffold that would be used to construct standardized tumor metastasis models for tumor research and anticancer drug screening. PMID:27432752

  9. Ultrastructural immunocytochemical localization of chondroitin sulfate proteoglycan in Bruch's membrane of the rat

    DEFF Research Database (Denmark)

    Lin, W L; Essner, E; McCarthy, K J;

    1992-01-01

    Two monoclonal antibodies (Mab 4D5 and 2D6) raised against the core protein of a basement membrane chondroitin sulfate proteoglycan from Reichert's membrane of the rat, were used for ultrastructural immunoperoxidase localization of this protein in Bruch's membrane of the rat. Immunoreactivity for...... both antibodies was found in the basal lamina (basement membrane) of the choriocapillary endothelium and retinal pigment epithelium, in collagen fibers in the collagenous zones, and surrounding the elastic layer....

  10. Glucosamine and chondroitin sulfate supplementation to treat symptomatic disc degeneration: Biochemical rationale and case report

    OpenAIRE

    van de Nes Jos CM; Wuisman Paul IJM; van Blitterswijk Wim J

    2003-01-01

    Abstract Background Glucosamine and chondroitin sulfate preparations are widely used as food supplements against osteoarthritis, but critics are skeptical about their efficacy, because of the lack of convincing clinical trials and a reasonable scientific rationale for the use of these nutraceuticals. Most trials were on osteoarthritis of the knee, while virtually no documentation exists on spinal disc degeneration. The purpose of this article is to highlight the potential of these food additi...

  11. Preparation and Characterization of O-Acylated Fucosylated Chondroitin Sulfate from Sea Cucumber

    OpenAIRE

    Na Gao; Mingyi Wu; Shao Liu; Wu Lian; Zi Li; Jinhua Zhao

    2012-01-01

    Fucosylated chondroitin sulfate (FuCS), a kind of complex glycosaminoglycan from sea cucumber, has potent anticoagulant activity. In order to understand the relationship between structures and activity, the depolymerized FuCS (dFuCS) was chosen to prepare its derivates by selective substitution at OH groups. Its O-acylation was carried out in a homogeneous way using carboxylic acid anhydrides. The structures of O-acylated derivatives were characterize...

  12. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate

    OpenAIRE

    Gupta, Vineet; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Extracellular matrix (ECM) components, such as chondroitin sulfate (CS) and tricalcium phosphate, serve as raw materials, and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical, and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(d,l-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds would enhance differ...

  13. Analysis of the chondroitin sulfate proteoglycan core protein (CSPGCP) gene in achondroplasia and pseudoachondroplasia.

    OpenAIRE

    Finkelstein, J E; Doege, K; Yamada, Y; Pyeritz, R E; Graham, J M; Moeschler, J.B.; Pauli, R. M.; Hecht, J T; Francomano, C A

    1991-01-01

    Achondroplasia and pseudoachondroplasia are autosomal dominant skeletal dysplasias resulting in short-limbed dwarfism. Histologic and ultrastructural studies of the cartilage in pseudoachondroplasia and in homozygous achondroplasia have suggested a structural abnormality in chondroitin sulfate proteoglycan (CSPG), a major structural protein in the extra-cellular matrix. The gene encoding CSPG core protein (CSPGCP) is thus a logical "candidate gene" for analysis in these conditions. cDNA probe...

  14. Intestinal mucosal mast cells from rats infected with Nippostrongylus brasiliensis contain protease-resistant chondroitin sulfate di-B proteoglycans

    International Nuclear Information System (INIS)

    Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of [35S] sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the 35S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The isolated proteoglycans were of approx. 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched populations of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leumekia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans are all highly sulfated, protease-resistant proteoglycans

  15. Intestinal mucosal mast cells from rats infected with Nippostrongylus brasiliensis contain protease-resistant chondroitin sulfate di-B proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R.L.; Lee, T.D.G.; Seldin, D.C.; Austen, K.F.; Befus, A.D.; Bienenstock, J.

    1986-07-01

    Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of (/sup 35/S) sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the /sup 35/S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The isolated proteoglycans were of approx. 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched populations of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leumekia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans are all highly sulfated, protease-resistant proteoglycans.

  16. Local increase level of chondroitin sulfate induces changes in the rhombencephalic neural crest migration.

    Science.gov (United States)

    Moro Balbás, J A; Gato, A; Alonso, M; Barbosa, E

    1998-03-01

    Numerous studies suggest that chondroitin sulfate proteoglycan (CSPG) inhibits neural crest cells (NCC) migration at the trunk level. However, its action on the cephalic neural crest is not clear. To determine this action, we have microinjected 0.5 nl of different concentrations of chondroitin sulfate (CS) at the anterior rhombencephalon level in 9 stage chick embryos, as well as subgerminally administering beta-D-xyloside to 8 stage chick embryos. Beta-D-xyloside disrupts CSPG synthesis, producing an increase in CS free chains in several embryonal anlages. Chondroitin sulfate microinjected embryos and beta-D xyloside treated embryos were reincubated until attaining 12 stage. Results obtained for both experimental groups were similar. Immunoreactivity with HNK-1 antibody revealed that NCC did not migrate, remaining near the rhombencephalon dorsal wall; in addition, several NCC did not separate from the neural fold, becoming invaginated towards the rhombencephalon cavity. Our findings indicate that an increase in CS free chains in cephalic neural crest migratory routes not only disrupts their migration, but also impedes delamination and detachment of the rhombencephalic neuroepithelium NCC. These data suggest that the inhibitory action upon the neural crest migration attributed to CSPG may rest on its glycosaminoglycan (GAG). We cannot, however, rule out the possibility that increases in other GAGs apart from CS, may produce similar effects on neural crest migration. PMID:9551866

  17. Chondroitin 6-Sulfate as a Novel Biomarker for Mucopolysaccharidosis IVA and VII

    OpenAIRE

    Shimada, Tsutomu; Tomatsu, Shunji; Yasuda, Eriko; Robert W. Mason; Mackenzie, William G.; Shibata, Yuniko; Kubaski, Francyne; Giugliani, Roberto; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji; Orii, Tadao

    2014-01-01

    Chondroitin 6-sulfate (C6S), a glycosaminoglycan (GAG), is distributed mainly in the growth plates, aorta, and cornea; however, the physiological function of C6S is not fully understood. One of the limitations is that no rapid, accurate quantitative method to measure C6S has been established. Mucopolysaccharidosis IVA and VII (MPS IVA and VII) are caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase and β-d-glucuronidase, respectively, resulting in accumulation of C6S and oth...

  18. Differential Expression of Specific Dermatan Sulfate Domains in Renal Pathology

    OpenAIRE

    Lensen, J.F.M.; van der Vlag, J; Versteeg, E.M.M.; Wetzels, J.F.M.; Heuvel, L.P.W.J. van den; Berden, J.H.M.; Kuppevelt, T.H. van; Rops, A.

    2015-01-01

    Dermatan sulfate (DS), also known as chondroitin sulfate (CS)-B, is a member of the linear polysaccharides called glycosaminoglycans (GAGs). The expression of CS/DS and DS proteoglycans is increased in several fibrotic renal diseases, including interstitial fibrosis, diabetic nephropathy, mesangial sclerosis and nephrosclerosis. Little, however, is known about structural alterations in DS in renal diseases. The aim of this study was to evaluate the renal expression of two different DS domains...

  19. Structure and biological activity of a fucosylated chondroitin sulfate from the sea cucumber Cucumaria japonica.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Bilan, Maria I; Dmitrenok, Andrey S; Shashkov, Alexander S; Kusaykin, Mikhail I; Stonik, Valentin A; Nifantiev, Nikolay E; Usov, Anatolii I

    2016-05-01

    A fucosylated chondroitin sulfate (FCS) was isolated from the body wall of Pacific sea cucumber Cucumaria japonicaby extraction in the presence of papain followed by Cetavlon precipitation and anion-exchange chromatography. FCS was shown to contain D-GalNAc, D-GlcA, L-Fuc and sulfate in molar proportions of about 1:1:1:4.5. Structure of FCS was elucidated using NMR spectroscopy and methylation analysis of the native polysaccharide and products of its desulfation and carboxyl reduction. The polysaccharide was shown to contain a typical chondroitin core → 3)-β-D-GalNAc-(1 → 4)-β-D-GlcA-(1 →. Sulfate groups in this core occupy O-4 and the majority of O-6 of GalNAc. Fucosyl branches are represented by 3,4- and 2,4-disulfated units in a ratio of 4:1 and are linked to O-3 of GlcA. In addition, ∼ 33% of GlcA are 3-O-sulfated, and hence, the presence of short fucooligosaccharide chains side by side with monofucosyl branches cannot be excluded. FCS was shown to inhibit platelets aggregation in vitro mediated by collagen and ristocetin, but not adenosine diphosphate, and demonstrated significant anticoagulant activity, which is connected with its ability to enhance inhibition of thrombin and factor Xa by antithrombin III, as well as to influence von Willebrand factor activity. The latest property significantly distinguished FCS from low-molecular-weight heparin. PMID:26681734

  20. Facile analysis of contents and compositions of the chondroitin sulfate/dermatan sulfate hybrid chain in shark and ray tissues.

    Science.gov (United States)

    Takeda, Naoko; Horai, Sawako; Tamura, Jun-ichi

    2016-04-01

    The chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chain was extracted from specific tissues of several kinds of sharks and rays. The contents and sulfation patterns of the CS/DS hybrid chain were precisely analyzed by digestion with chondroitinases ABC and AC. All samples predominantly contained the A- and C-units. Furthermore, all samples characteristically contained the D-unit. Species-specific differences were observed in the contents of the CS/DS hybrid chain, which were the highest in Mako and Blue sharks and Sharpspine skates, but were lower in Hammerhead sharks. Marked differences were observed in the ratio of the C-unit/A-unit between sharks and rays. The contents of the CS/DS hybrid chain and the ratio of the C-unit/A-unit may be related to an oxidative stress-decreasing ability. PMID:26986023

  1. Extraction and application of chondroitin sulfate%硫酸软骨素的提取与应用

    Institute of Scientific and Technical Information of China (English)

    龙峥; 李煜; 于福满; 符绍辉

    2014-01-01

    Chondroitin sulfate is a kind of polyanionic glycosaminoglycan and widely exists in trache-a, larynx, nasal bone, hyoid bone and shank of the mammals. The extracting principle of chondroitin sul-fate is that utilizing the difference of solubility characteristics between protein and chondroitin sulfate to separate chondroitin sulfate from protein. The different extract methods were compared and its difference on the yield and production cycle was analyzed. The application of chondroitin sulfate was introduced and it would provide reference for different trades.%硫酸软骨素,是一种聚阴离子酸性粘多糖,广泛存在于哺乳动物的气管、喉骨、鼻骨、舌骨和腿骨。硫酸软骨素的提取原理是,利用不同条件下其与蛋白质溶解性存在差异的特性,达到将其从蛋白质上分离出来的目的。。通过对硫酸软骨素提取方法比较,分析各种提取方法在得率、生产周期方面的差异,及对硫酸软骨素应用的介绍,为不同行业提供参考。

  2. Overproduction, purification and crystallization of a chondroitin sulfate A-binding DBL domain from a Plasmodium falciparum var2csa-encoded PfEMP1 protein

    International Nuclear Information System (INIS)

    A chondroitin sulfate A-binding DBL important in placental malaria has been overproduced, purified and crystallized. Diffraction data were collected to 1.9 Å resolution. The PfEMP1 proteins of the malaria parasite Plasmodium falciparum are inserted into the membrane of infected red blood cells, where they mediate adhesion to a variety of human receptors. The DBL domains of the var2csa-encoded PfEMP1 protein play a critical role in malaria of pregnancy, tethering infected cells to the surface of the placenta through interactions with the glycosaminoglycan carbohydrate chondroitin sulfate A (CSA). A CSA-binding DBL domain has been overproduced in a bacterial expression system, purified and crystallized. Native data sets extending to 1.9 Å resolution have been collected and phasing is under way

  3. Glucosamine and chondroitin sulfate supplementation to treat symptomatic disc degeneration: Biochemical rationale and case report

    Directory of Open Access Journals (Sweden)

    van de Nes Jos CM

    2003-06-01

    Full Text Available Abstract Background Glucosamine and chondroitin sulfate preparations are widely used as food supplements against osteoarthritis, but critics are skeptical about their efficacy, because of the lack of convincing clinical trials and a reasonable scientific rationale for the use of these nutraceuticals. Most trials were on osteoarthritis of the knee, while virtually no documentation exists on spinal disc degeneration. The purpose of this article is to highlight the potential of these food additives against cartilage degeneration in general, and against symptomatic spinal disc degeneration in particular, as is illustrated by a case report. The water content of the intervertebral disc is a reliable measure of its degeneration/ regeneration status, and can be objectively determined by Magnetic Resonance Imaging (MRI signals. Case presentation Oral intake of glucosamine and chondroitin sulfate for two years associated with disk recovery (brightening of MRI signal in a case of symptomatic spinal disc degeneration. We provide a biochemical explanation for the possible efficacy of these nutraceuticals. They are bioavailable to cartilage chondrocytes, may stimulate the biosynthesis and inhibit the breakdown of their extracellular matrix proteoglycans. Conclusion The case suggests that long-term glucosamine and chondroitin sulfate intake may counteract symptomatic spinal disc degeneration, particularly at an early stage. However, definite proof requires well-conducted clinical trials with these food supplements, in which disc de-/regeneration can be objectively determined by MRI. A number of biochemical reasons (that mechanistically need to be further resolved explain why these agents may have cartilage structure- and symptom-modifying effects, suggesting their therapeutic efficacy against osteoarthritis in general.

  4. Conformational Analysis of the Oligosaccharides Related to Side Chains of Holothurian Fucosylated Chondroitin Sulfates

    Directory of Open Access Journals (Sweden)

    Alexey G. Gerbst

    2015-02-01

    Full Text Available Anionic polysaccharides fucosylated chondroitin sulfates (FCS from holothurian species were shown to affect various biological processes, such as metastasis, angiogenesis, clot formation, thrombosis, inflammation, and some others. To understand the mechanism of FCSs action, knowledge about their spatial arrangement is required. We have started the systematic synthesis, conformational analysis, and study of biological activity of the oligosaccharides related to various fragments of these types of natural polysaccharides. In this communication, five molecules representing distinct structural fragments of chondroitin sulfate have been studied by means of molecular modeling and NMR. These are three disaccharides and two trisaccharides containing fucose and glucuronic acid residues with one sulfate group per each fucose residue or without it. Long-range C–H coupling constants were used for the verification of the theoretical models. The presence of two conformers for both linkage types was revealed. For the Fuc–GlA linkage, the dominant conformer was the same as described previously in a literature as the molecular dynamics (MD average in a dodechasaccharide FCS fragment representing the backbone chain of the polysaccharide including GalNAc residues. This shows that the studied oligosaccharides, in addition to larger ones, may be considered as reliable models for Quantitative Structure-Activity Relationship (QSAR studies to reveal pharmacophore fragments of FCS.

  5. Roles of chondroitin sulfate and dermatan sulfate in the formation of a lesion scar and axonal regeneration after traumatic injury of the mouse brain

    NARCIS (Netherlands)

    Li, H.P.; Komuta, Y.; Kimura-Kuroda, J.; Kuppevelt, A.H.M.S.M. van; Kawano, H.

    2013-01-01

    Abstract Dermatan sulfate (DS) is synthesized from chondroitin sulfate (CS) by epimerization of glucuronic acid of CS to yield iduronic acid. In the present study, the role of CS and DS was examined in mice that received transection of nigrostriatal dopaminergic pathway followed by injection of glyc

  6. Iduronic Acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells

    OpenAIRE

    B. Bartolini; Thelin, M.A.; Svensson, L; Ghiselli, G.; Kuppevelt, T.H. van; Malmstrom, A.; Maccarana, M.

    2013-01-01

    Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS) proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA), catalyzed by two DS epimerases. Functional ablation of DS-epi1, the main epimerase in these cells, resulted in a major reduction of IdoA both on cell surface and in secreted CS/DS proteoglycans. Downregulation of IdoA led to ...

  7. Unusual case of drug-induced cholestasis due to glucosamine and chondroitin sulfate

    Institute of Scientific and Technical Information of China (English)

    Stephen; Ip; Rachel; Jeong; David; F; Schaeffer; Eric; M; Yoshida

    2015-01-01

    Glucosamine(GS) and chondroitin sulfate(CS) are common over-the-counter(OTC) supplements used in the treatment of osteoarthritis. These medications are seemingly safe, but there are increasing reports of hepatotoxicity with these supplements. We reported a unique case of drug-induced cholestasis caused by GS and CS in a combination tablet. The etiology of the jaundice was overlooked despite extensive investigations over a three-month period. Unlike drug-induced hepatocellular injury, drug-induced cholestatic jaundice with GS and CS has only been reported twice before. This case emphasizes the importance of a complete medication history, especially OTC supplements, in the assessment of cholestasis.

  8. Iduronic Acid in Chondroitin/Dermatan Sulfate: Biosynthesis and Biological Function

    OpenAIRE

    Malmström, Anders; Bartolini, Barbara; Thelin, Martin A.; Pacheco, Benny; Maccarana, Marco

    2012-01-01

    The ability of chondroitin/dermatan sulfate (CS/DS) to convey biological information is enriched by the presence of iduronic acid. DS-epimerases 1 and 2 (DS-epi1 and 2), in conjunction with DS-4-O-sulfotransferase 1, are the enzymes responsible for iduronic acid biosynthesis and will be the major focus of this review. CS/DS proteoglycans (CS/DS-PGs) are ubiquitously found in connective tissues, basement membranes, and cell surfaces or are stored intracellularly. Such wide distr...

  9. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering

    Science.gov (United States)

    Recha-Sancho, Lourdes; Semino, Carlos E.

    2016-01-01

    Cartilage injury and degenerative tissue progression remain poorly understood by the medical community. Therefore, various tissue engineering strategies aim to recover areas of damaged cartilage by using non-traditional approaches. To this end, the use of biomimetic scaffolds for recreating the complex in vivo cartilage microenvironment has become of increasing interest in the field. In the present study, we report the development of two novel biomaterials for cartilage tissue engineering (CTE) with bioactive motifs, aiming to emulate the native cartilage extracellular matrix (ECM). We employed a simple mixture of the self-assembling peptide RAD16-I with either Chondroitin Sulfate (CS) or Decorin molecules, taking advantage of the versatility of RAD16-I. After evaluating the structural stability of the bi-component scaffolds at a physiological pH, we characterized these materials using two different in vitro assessments: re-differentiation of human articular chondrocytes (AC) and induction of human adipose derived stem cells (ADSC) to a chondrogenic commitment. Interestingly, differences in cellular morphology and viability were observed between cell types and culture conditions (control and chondrogenic). In addition, both cell types underwent a chondrogenic commitment under inductive media conditions, and this did not occur under control conditions. Remarkably, the synthesis of important ECM constituents of mature cartilage, such as type II collagen and proteoglycans, was confirmed by gene and protein expression analyses and toluidine blue staining. Furthermore, the viscoelastic behavior of ADSC constructs after 4 weeks of culture was more similar to that of native articular cartilage than to that of AC constructs. Altogether, this comparative study between two cell types demonstrates the versatility of our novel biomaterials and suggests a potential 3D culture system suitable for promoting chondrogenic differentiation. PMID:27315119

  10. Preparation and characterization of hydroxyapatite/chondroitin sulfate composites by biomimetic synthesis

    International Nuclear Information System (INIS)

    Based on the principles of biomineralization, flakelike hydroxyapatite/chondroitin sulfate composites were synthesized through biomimetic method using Ca(NO3)2.4H2O and (NH4)3PO4.3H2O as reagents and chondroitin sulfate as template. The crystalline phase, microstructure, chemical composition, morphology and thermal behavior of the composites obtained in the experiment were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), transmission electron microscope (TEM), Thermogravimetry-Differential thermal analyzer (TG-DTA) and Elemental analyzer, respectively. The interaction between the functional groups of ChS and HA was investigated by electrical conductivity and UV-vis spectrum. The results demonstrate that the as-prepared powders with small amount of carbonate have the component similar to human bone. It can be concluded that the nucleation and growth of HA crystals occurred through the chemical interactions between the HA crystals and preorganized functional groups of the ChS template. Furthermore, the concentration of ChS significantly affects the morphology of the composites. Short fiberlike crystals could be obtained at a low concentration of ChS, but flakelike crystals could be synthesized using a high concentration (≥0.5 wt%) of ChS as template

  11. SRPX2 is a novel chondroitin sulfate proteoglycan that is overexpressed in gastrointestinal cancer.

    Directory of Open Access Journals (Sweden)

    Kaoru Tanaka

    Full Text Available SRPX2 (Sushi repeat-containing protein, X-linked 2 has recently emerged as a multifunctional protein that is involved in seizure disorders, angiogenesis and cellular adhesion. Here, we analyzed this protein biochemically. SRPX2 protein was secreted with a highly posttranslational modification. Chondroitinase ABC treatment completely decreased the molecular mass of purified SRPX2 protein to its predicted size, whereas heparitinase, keratanase and hyaluroinidase did not. Secreted SRPX2 protein was also detected using an anti-chondroitin sulfate antibody. These results indicate that SRPX2 is a novel chondroitin sulfate proteoglycan (CSPG. Furthermore, a binding assay revealed that hepatocyte growth factor dose-dependently binds to SRPX2 protein, and a ligand-glycosaminoglycans interaction was speculated to be likely in proteoglycans. Regarding its molecular architecture, SRPX2 has sushi repeat modules similar to four other CSPGs/lecticans; however, the molecular architecture of SRPX2 seems to be quite different from that of the lecticans. Taken together, we found that SRPX2 is a novel CSPG that is overexpressed in gastrointestinal cancer cells. Our findings provide key glycobiological insight into SRPX2 in cancer cells and demonstrate that SRPX2 is a new member of the cancer-related proteoglycan family.

  12. Oversulfated chondroitin sulfate inhibits the complement classical pathway by potentiating C1 inhibitor.

    Science.gov (United States)

    Zhou, Zhao-Hua; Rajabi, Mohsen; Chen, Trina; Karnaukhova, Elena; Kozlowski, Steven

    2012-01-01

    Oversulfated chondroitin sulfate (OSCS) has become the subject of multidisciplinary investigation as a non-traditional contaminant in the heparin therapeutic preparations that were linked to severe adverse events. In this study, it was found that OSCS inhibited complement fixation on bacteria and bacterial lysis mediated by the complement classical pathway. The inhibition of complement by OSCS is not due to interference with antibody/antigen interaction or due to consumption of C3 associated with FXII-dependent contact system activation. However, OSCS complement inhibition is dependent on C1 inhibitor (C1inh) since the depletion of C1inh from either normal or FXII-deficient complement plasma prevents OSCS inhibition of complement activity. Surface plasmon resonance measurements revealed that immobilized C1inhibitor bound greater than 5-fold more C1s in the presence of OSCS than in presence of heparin. Although heparin can also inhibit complement, OSCS and OSCS contaminated heparin are more potent inhibitors of complement. Furthermore, polysulfated glycosaminoglycan (PSGAG), an anti-inflammatory veterinary medicine with a similar structure to OSCS, also inhibited complement in the plasma of dogs and farm animals. This study provides a new insight that in addition to the FXII-dependent activation of contact system, oversulfated and polysulfated chondroitin-sulfate can inhibit complement activity by potentiating the classical complement pathway regulator C1inh. This effect on C1inh may play a role in inhibiting inflammation as well as impacting bacterial clearance. PMID:23077587

  13. Oversulfated chondroitin sulfate inhibits the complement classical pathway by potentiating C1 inhibitor.

    Directory of Open Access Journals (Sweden)

    Zhao-Hua Zhou

    Full Text Available Oversulfated chondroitin sulfate (OSCS has become the subject of multidisciplinary investigation as a non-traditional contaminant in the heparin therapeutic preparations that were linked to severe adverse events. In this study, it was found that OSCS inhibited complement fixation on bacteria and bacterial lysis mediated by the complement classical pathway. The inhibition of complement by OSCS is not due to interference with antibody/antigen interaction or due to consumption of C3 associated with FXII-dependent contact system activation. However, OSCS complement inhibition is dependent on C1 inhibitor (C1inh since the depletion of C1inh from either normal or FXII-deficient complement plasma prevents OSCS inhibition of complement activity. Surface plasmon resonance measurements revealed that immobilized C1inhibitor bound greater than 5-fold more C1s in the presence of OSCS than in presence of heparin. Although heparin can also inhibit complement, OSCS and OSCS contaminated heparin are more potent inhibitors of complement. Furthermore, polysulfated glycosaminoglycan (PSGAG, an anti-inflammatory veterinary medicine with a similar structure to OSCS, also inhibited complement in the plasma of dogs and farm animals. This study provides a new insight that in addition to the FXII-dependent activation of contact system, oversulfated and polysulfated chondroitin-sulfate can inhibit complement activity by potentiating the classical complement pathway regulator C1inh. This effect on C1inh may play a role in inhibiting inflammation as well as impacting bacterial clearance.

  14. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    Science.gov (United States)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  15. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins.

    Science.gov (United States)

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-10-01

    Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis. PMID:26164146

  16. Comparison of the ability of chondroitin sulfate derived from bovine, fish and pigs to suppress human osteoclast activity in vitro.

    Science.gov (United States)

    Cantley, M D; Rainsford, K D; Haynes, D R

    2013-12-01

    Chondroitin sulfate (CS) compounds are commonly used to manage OA symptoms. Recent literature has indicated that abnormal subchondral bone metabolism may have a role in the pathogenesis of OA. The aim of this study was to access the effects of chondroitin sulfate obtained from bovine, fish and porcine sources on human osteoclast formation and activity in vitro. Human osteoclasts were generated from blood mononuclear cells. Cells were cultured over 17 days with the addition of macrophage colony stimulating factor (M-CSF) and then stimulated with receptor activator of nuclear factor kappa B ligand from day 7. Cells were treated with the CS commencing from day 7 onwards. To assess effects on osteoclasts, tartrate resistant acid phosphatate (TRAP) expression and resorption of whale dentine assays were used. Bovine-derived CS consistently suppressed osteoclast activity at concentrations as low as 1 μg/ml. Fish and porcine CS was less consistent in their effects varying with different donor cells. All CS compounds had little effect on TRAP activity. mRNA analysis using real-time PCR of bovine CS treated cells indicated that the inhibition of activity was not due to inhibition of the late stage NFATc1 transcription factor (p > 0.05). These results are consistent with CS inhibition of mature osteoclast activity rather than the formation of mature osteoclasts. It would appear that there are differences in activity of the different CS compounds with bovine-derived CS being the most consistently effective inhibitor of osteoclast resorption, but the results need to be confirmed. PMID:23644893

  17. Safety assessment of non-animal chondroitin sulfate sodium: Subchronic study in rats, genotoxicity tests and human bioavailability.

    Science.gov (United States)

    Miraglia, Niccolò; Bianchi, Davide; Trentin, Antonella; Volpi, Nicola; Soni, Madhu G

    2016-07-01

    Chondroitin sulfate, an amino sugar polymer made of glucuronic acid and N-acetyl-galactosamine, is used in dietary supplements to promote joint health. Commonly used chondroitin sulfate is of animal origin and can pose potential safety problems including bovine spongiform encephalopathy (BSE). The objective of the present study was to investigate potential adverse effects, if any, of microbial derived chondroitin sulfate sodium (CSS) in subchronic toxicity, genotoxicity and bioavailability studies. In the toxicity study, Sprague Dawley rats (10/sex/group) were gavaged with CSS at dose levels of 0, 250, 500 and 1000 mg/kg body weight (bw)/day for 90-days. No mortality or significant changes in clinical signs, body weights, body weight gain or feed consumption were noted. Similarly, no toxicologically relevant treatment-related changes in hematological, clinical chemistry, urinalysis and organ weights were noted. Macroscopic and microscopic examinations did not reveal treatment-related abnormalities. In vitro mutagenic and clastogenic potentials as evaluated by Ames assay, chromosomal aberration test and micronucleus assay did not reveal genotoxicity of CSS. In pharmacokinetic study in human, CSS showed higher absorption as compared to chondroitin sulfate of animal origin. The results of subchronic toxicity study supports the no-observed-adverse-effect level (NOAEL) for CSS as 1000 mg/kg bw/day, the highest dose tested. PMID:27108107

  18. The chondroitin sulfate A-binding site of the VAR2CSA protein involves multiple N-terminal domains

    DEFF Research Database (Denmark)

    Dahlbäck, Madeleine; Jørgensen, Lars M; Nielsen, Morten A;

    2011-01-01

    Malaria during pregnancy is a major health problem for African women. The disease is caused by Plasmodium falciparum malaria parasites, which accumulate in the placenta by adhering to chondroitin sulfate A (CSA). The interaction between infected erythrocytes and the placental receptor is mediated...

  19. Preparation and Characterization of O-Acylated Fucosylated Chondroitin Sulfate from Sea Cucumber

    Directory of Open Access Journals (Sweden)

    Na Gao

    2012-08-01

    Full Text Available Fucosylated chondroitin sulfate (FuCS, a kind of complex glycosaminoglycan from sea cucumber, has potent anticoagulant activity. In order to understand the relationship between structures and activity, the depolymerized FuCS (dFuCS was chosen to prepare its derivates by selective substitution at OH groups. Its O-acylation was carried out in a homogeneous way using carboxylic acid anhydrides. The structures of O-acylated derivatives were characterized by NMR. The results indicated that the 4-O-sulfated fucose residues may be easier to be acylated than the other ones in the sulfated fucose branches. But the O-acylation was always accompanied by the β-elimination, and the degree of elimination was higher as that of acylation was higher. The results of clotting assay indicated that the effect of partial O-acylation of the dFuCS on their anticoagulant potency was not significant and the O-acylation of 2-OH groups of 4-O-sulfated fucose units did not affect the anticoagulant activity.

  20. Chondroitin Sulfate “Wobble Motifs” Modulate Maintenance and Differentiation of Neural Stem Cells and Their Progeny*

    OpenAIRE

    Purushothaman, Anurag; Sugahara, Kazuyuki; Faissner, Andreas

    2011-01-01

    Chondroitin sulfate/dermatan sulfate (CS/DS) proteoglycans, major components of the central nervous system, have the potential to interact with a wide range of growth factors and neurotrophic factors that influence neuronal migration, axon guidance pathways, and neurite outgrowth. Recent studies have also revealed the role of CS/DS chains in the orchestration of the neural stem/progenitor cell micromilieu. Individual functional proteins recognize a set of multiple overlapping oligosaccharide ...

  1. Microdetermination of chondroitin sulfate in normal human plasma by fluorophore-assisted carbohydrate electrophoresis (FACE).

    Science.gov (United States)

    Volpi, Nicola; Maccari, Francesca

    2005-06-01

    An inexpensive, simple, sensitive and reproducible analytical method for the quantitative and qualitative evaluation of chondroitin sulfate (CS) from human blood plasma samples by using fluorophore-assisted carbohydrate electrophoresis (FACE) has been developed. After treatment with a nonspecific protease to convert proteins into small peptides, CS from 100 microl of normal human plasma was extracted by using a filter membrane (molecular mass cut-off of 3000 Da) or purification by using an anion-exchange resin. The recovered CS was converted into unsaturated disaccharides through the action of chondroitin ABC lyase, derivatized with 2-aminoacridone by reductive amination in the presence of cyanoborohydride and separated by FACE. The procedure using the purification of plasma CS on the anion-exchange resin produced a cleaner separation and a better resolution of Delta-disaccharides then using microfiltration. The linearity, sensitivity and reproducibility of the method were determined in comparison with HPLC equipped with postcolumn derivatization and fluorescence detection using 2-cyanoacetamide as a fluorogenic reagent. The detection limit was calculated to be 50 ng of CS with a linear response from 50 to 2000 ng. The recovery was found greater than 85% (from 2 to 10 microg CS) with a variation coefficient of approx. 10%. Furthermore, the results obtained from 100 microl plasma were almost identical to those obtained using 20 microl, 50 microl and 200 microl. This method was applied to the characterization of CS in 33 healthy human subjects ageing from 30 to 63 years old. PMID:15936308

  2. Preparation and Characterization of a Novel PDLLA/Chondroitin Sulfate/Chitosan Asymmetry Film

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel bioactive and bioresorbabie asymmetry film was prepared. The PDLLA membrane was activated by 1, 6-hexanediamine to obtain a stable positive charge surface. Chondroitin sulfate and chitosan were then deposited on activated PDLLA membrane via layer-by-layer (LBL) electro-static assembly(ESA) technique. The deposition process was monitored by UV-Vis absorbance spectroscopy. The composite membrane was frozen lyophilized to form the asymmetry film and characterized by attenuated total reflecti( )(ATR)-FT-IR, XPS and SEM. The experimental results show that a stable 1, 6-hexanediamine layer on PDLLA substrate based on the aminolysis of the polyester and the layer thickness increase linearly first with the increase of the deposited layers, and then increases slowly due to the layer interpenetration. The test results of ATR-FT-IR and SEM show the asymmetry film is modified uniformly with a dense inner layer and a porous sponge outer layer.

  3. Smart hollow microspheres of chondroitin sulfate conjugates and magnetite nanoparticles for magnetic vector.

    Science.gov (United States)

    Guilherme, Marcos R; Reis, Adriano V; Alves, Bruno R V; Kunita, Marcos H; Rubira, Adley F; Tambourgi, Elias B

    2010-12-01

    Smart hollow microspheres composed of vinyled-chondroitin sulfate conjugates (CSπ) and magnetite nanoparticles were obtained by the intermediate of a multiple emulsion in absence of a surfactant, attributable to stabilizing properties of the CS. It was formed an oil-water multiple emulsion in which the CS played a role as an anionic stabilizer for magnetite nanoparticles via complexation. Iron oxides were bonded to the microspheres by the formation of a complex of Fe(3+) ions on the crystalline phase with oxygen atoms at the carboxyl groups without their magnetic properties being affected. The average crystal size of embedded magnetite nanoparticles was approximately 16.5nm, indicative of a good dispersion in microspheres. Furthermore, the introduction of iron oxides resulted in microspheres with a higher diameter and a narrower particle size distribution. PMID:20832809

  4. An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination.

    Science.gov (United States)

    Keough, Michael B; Rogers, James A; Zhang, Ping; Jensen, Samuel K; Stephenson, Erin L; Chen, Tieyu; Hurlbert, Mitchel G; Lau, Lorraine W; Rawji, Khalil S; Plemel, Jason R; Koch, Marcus; Ling, Chang-Chun; Yong, V Wee

    2016-01-01

    Remyelination is the generation of new myelin sheaths after injury facilitated by processes of differentiating oligodendrocyte precursor cells (OPCs). Although this repair phenomenon occurs in lesions of multiple sclerosis patients, many lesions fail to completely remyelinate. A number of factors have been identified that contribute to remyelination failure, including the upregulated chondroitin sulfate proteoglycans (CSPGs) that comprise part of the astrogliotic scar. We show that in vitro, OPCs have dramatically reduced process outgrowth in the presence of CSPGs, and a medication library that includes a number of recently reported OPC differentiation drugs failed to rescue this inhibitory phenotype on CSPGs. We introduce a novel CSPG synthesis inhibitor to reduce CSPG content and find rescued process outgrowth from OPCs in vitro and accelerated remyelination following focal demyelination in mice. Preventing CSPG deposition into the lesion microenvironment may be a useful strategy to promote repair in multiple sclerosis and other neurological disorders. PMID:27115988

  5. Synthesis and detection of N-sulfonated oversulfated chondroitin sulfate in marketplace heparin.

    Science.gov (United States)

    Mans, Daniel J; Ye, Hongping; Dunn, Jamie D; Kolinski, Richard E; Long, Dianna S; Phatak, Nisarga L; Ghasriani, Houman; Buhse, Lucinda F; Kauffman, John F; Keire, David A

    2015-12-01

    N-sulfonated oversulfated chondroitin sulfate (NS-OSCS), recently reported as a potential threat to the heparin supply, was prepared along with its intermediate derivatives. All compounds were spiked into marketplace heparin and subjected to United States Pharmacopeia (USP) identification assays for heparin (proton nuclear magnetic resonance [(1)H NMR], chromatographic identity, % galactosamine [%GalN], anti-factor IIa potency, and anti-factor Xa/IIa ratio). The U.S. Food and Drug Administration (FDA) strong-anionic exchange high-performance liquid chromatography (SAX-HPLC) method resolved NS-OSCS from heparin and OSCS and had a limit of detection of 0.26% (w/w) NS-OSCS. The %GalN test was sensitive to the presence of NS-OSCS in heparin. Therefore, current USP heparin monograph tests (i.e., SAX-HPLC and %GalN) detect the presence of NS-OSCS in heparin. PMID:26278168

  6. One-pot synthesis of α,β-unsaturated polyaldehyde of chondroitin sulfate.

    Science.gov (United States)

    Bobula, Tomáš; Buffa, Radovan; Procházková, Pavlína; Vágnerová, Hana; Moravcová, Veronika; Šuláková, Romana; Židek, Ondřej; Velebný, Vladimír

    2016-01-20

    Chondroitin sulfate (CS) was chemoselectively oxidized by Tempo/NaClO to C-6 aldehyde of a D-galactosamine subunit (GalNAc). The subsequent, spontaneous desulfatation of oxidized CS gave rise to α,β-unsaturated aldehyde. A new derivative of CS was fully characterized and a degree of oxidation was determined by spectroscopic analysis. The optimization of reaction conditions showed a proportional degree of oxidation to an amount of sodium hypochlorite. The utility of α,β-unsaturated aldehyde for crosslinking and conjugation was demonstrated by a seamless condensation with various N-nucleophiles. We also demonstrated pH-dependent release of biologically active agents from oxidized CS. A live-dead assay in the presence of α,β-unsaturated aldehyde revealed unaffected viability of NIH 3T3 fibroblasts, which made this precursor promising for several biomedical applications including drug delivery and tissue engineering. PMID:26572440

  7. Effect of chondroitin sulfate on osteogenetic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Schneiders, Wolfgang, E-mail: schneidersw@gmx.de; Rentsch, Claudia; Rehberg, Sebastian; Rein, Susanne; Zwipp, Hans; Rammelt, Stefan

    2012-10-01

    Chondroitin sulfate (CS) has anti-inflammatory properties and increases the regeneration ability of injured bone. In different in vivo investigations on bone defects the addition of CS to calcium phosphate bone cement has lead to an enhanced bone remodeling and increased new bone formation. The goal of this study was to evaluate the cellular effects of CS on human mesenchymal stem cells (hMSCs). In cell culture experiments hMSCs were incubated on calcium phosphate bone cements with and without CS and cultivated in a proliferation and an osteogenetic differentiation media. Alkaline phosphatase and the proliferation rate were determined on days 1, 7 and 14. Concerning the proliferation rates, no significant differences were detected. On days 1, 7 and 14 a significantly higher activity of alkaline phosphatase, an early marker of osteogenesis, was detected around CS modified cements in both types of media. The addition of CS leads to a significant increase of osteogenetic differentiation of hMSCs. To evaluate the influence of the osteoconductive potency of CS in twelve adult male Wistar rats, the interface reaction of cancellous bone to a nanocrystalline hydroxyapatite cement containing type I collagen (CDHA/Coll) without and with CS (CDHA/Coll/CS) was evaluated. Cylindrical implants were inserted press-fit into a defect of the tibial head. 28 days after the operation the direct bone contact and the percentage of newly formed bone were significantly higher on CDHA/Coll/CS-implants (p < 0.05). The addition of CS appears to enhance new bone formation on CDHA/Coll-composites in the early stages of bone healing. Possible mechanisms are discussed. - Highlights: Black-Right-Pointing-Pointer The influence of chondroitin sulfate (CS) on bone metabolism was evaluated. Black-Right-Pointing-Pointer CS leads to a significant increase of osteogenetic differentiation of hMSCs. Black-Right-Pointing-Pointer In small animal investigation CS seems to enhance osteogenesis in bone healing.

  8. Effect of chondroitin sulfate on osteogenetic differentiation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Chondroitin sulfate (CS) has anti-inflammatory properties and increases the regeneration ability of injured bone. In different in vivo investigations on bone defects the addition of CS to calcium phosphate bone cement has lead to an enhanced bone remodeling and increased new bone formation. The goal of this study was to evaluate the cellular effects of CS on human mesenchymal stem cells (hMSCs). In cell culture experiments hMSCs were incubated on calcium phosphate bone cements with and without CS and cultivated in a proliferation and an osteogenetic differentiation media. Alkaline phosphatase and the proliferation rate were determined on days 1, 7 and 14. Concerning the proliferation rates, no significant differences were detected. On days 1, 7 and 14 a significantly higher activity of alkaline phosphatase, an early marker of osteogenesis, was detected around CS modified cements in both types of media. The addition of CS leads to a significant increase of osteogenetic differentiation of hMSCs. To evaluate the influence of the osteoconductive potency of CS in twelve adult male Wistar rats, the interface reaction of cancellous bone to a nanocrystalline hydroxyapatite cement containing type I collagen (CDHA/Coll) without and with CS (CDHA/Coll/CS) was evaluated. Cylindrical implants were inserted press-fit into a defect of the tibial head. 28 days after the operation the direct bone contact and the percentage of newly formed bone were significantly higher on CDHA/Coll/CS-implants (p < 0.05). The addition of CS appears to enhance new bone formation on CDHA/Coll-composites in the early stages of bone healing. Possible mechanisms are discussed. - Highlights: ► The influence of chondroitin sulfate (CS) on bone metabolism was evaluated. ► CS leads to a significant increase of osteogenetic differentiation of hMSCs. ► In small animal investigation CS seems to enhance osteogenesis in bone healing.

  9. Isolation and characterization of monoclonal antibodies specific for chondroitin sulfate E.

    Science.gov (United States)

    Watanabe, Ippei; Hikita, Tomoya; Mizuno, Haruka; Sekita, Risa; Minami, Akira; Ishii, Ami; Minamisawa, Yuka; Suzuki, Kiyoshi; Maeda, Hiroshi; Hidari, Kazuya I P J; Suzuki, Takashi

    2015-09-01

    Chondroitin sulfate E (CSE) is a polysaccharide containing mainly disaccharide units of D-glucuronic acid (GlcA) and 4,6-O-disulfated N-acetyl-D-galactosamine (GalNAc) residues (E-unit) in the amount of ∼ 60%. CSE is involved in many biological and pathological processes. In this study, we established new monoclonal antibodies, termed E-12C and E-18H, by using CSE that contained more than 70% of E-units as an immunogen. These antibodies recognized CSE but not other CSs isomers or dermatan sulfate (DS). We evaluated the reactivities of the antibodies to 6-O-sulfated CSA (6S-CSA) and DS (6S-DS) that possessed ∼ 60% of GalNAc (4S, 6S) moieties in their structures. Neither of the antibodies reacted with 6S-DS. The antibodies strictly distinguished the structural difference of GlcA and L-iduronic acid in the polysaccharide. Binding affinities of the antibodies were determined by a surface plasmon resonance assay using CSE and 6S-CSA. The binding affinities were strongly associated with the molecular weight of CSE and the E-unit content of 6S-CSA. Moreover, we demonstrated that the antibodies are applicable to histochemical analysis. In conclusion, the new anti-CSE monoclonal antibodies specifically recognize the E-unit of CSE. The antibodies will become useful tools for the investigation of the biological and pathological significance of CSE. PMID:26036195

  10. The NTS-DBL2X region of VAR2CSA Induces cross-reactive antibodies that inhibit adhesion of several Plasmodium falciparum isolates to chondroitin sulfate A

    DEFF Research Database (Denmark)

    Bigey, Pascal; Gnidehou, Sédami; Doritchamou, Justin;

    2011-01-01

    -adapted parasite lines and field isolates expressing VAR2CSA. Competition enzyme-linked immunosorbent assay (ELISA) was employed to analyze functional resemblance between antibodies induced in animals and those naturally acquired by immune multigravidae. Results. Antibodies targeting the N-terminal sequence (NTS......) up to DBL2X (NTS-DBL2X) efficiently blocked parasite adhesion to chondroitin sulfate A in a manner similar to that of antibodies raised against the entire VAR2CSA extracellular domain. Interestingly, naturally acquired antibodies and those induced by vaccination against NTS-DBL2X target overlapping...

  11. Chondroitin sulfate is involved in the hypercalcification of the organic matrix of bovine peritubular dentin.

    Science.gov (United States)

    Dorvee, Jason R; Gerkowicz, Lauren; Bahmanyar, Sara; Deymier-Black, Alix; Veis, Arthur

    2016-02-01

    Apatitic mineral of dentin forms within the collagenous matrix (intertubular dentin, ITD) secreted from the odontoblastic processes (OP). Highly calcified mineral (peritubular dentin, PTD) is deposited at the interface between the ITD and each process membrane, creating a tubular system penetrating the dentin that extends from the dentino-enamel junction to the predentin-dentin junction. We focus on determining the composition of the PTD both with regard to its organic matrix and the inorganic phase. A laser capture technique has been adapted for the isolation of the mineralized PTD free from the ITD, and for the analysis of the PTD by SEM, TEM, and energy dispersive spectrometry (EDS), these data were subsequently compared with similar analyses of intact dentin slices containing ITD bounded-PTD annuli. Elemental line scans reveal clearly marked boundaries between ITD, PTD, and OP components, and illustrate the differences in composition, and topographical surface roughness. The organic matrix of the PTD was shown to be sulfur rich, and further antibody labeling showed the sulfated organic component to be chondroitin sulfate B. In this PTD organic matrix the S/Ca and Ca/P ratios were distinctly higher than in the ITD, indicating that polysaccharide bound S supplies the anionic counterion facilitating the formation of the apatitic PTD mineral. PMID:26656507

  12. Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias

    OpenAIRE

    Shuji Mizumoto; Shuhei Yamada; Kazuyuki Sugahara

    2015-01-01

    Glycosaminoglycans, including chondroitin, dermatan, and heparan sulfate, have various roles in a wide range of biological events such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Their polysaccharides covalently attach to the serine residues on specific core proteins through the common linker region tetrasaccharide, -xylose-galactose-galactose-glucuronic acid, which is produced through the stepwise addition of respective monosacch...

  13. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds Improved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration

    OpenAIRE

    Sorina Dinescu; Bianca Gălăţeanu; Mădălina Albu; Adriana Lungu; Eugen Radu; Anca Hermenean; Marieta Costache

    2013-01-01

    Cartilage tissue engineering (CTE) applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA) and chondroitin sulfate (CS) were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs) were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffol...

  14. Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. I. Adult brain, retina, and peripheral nerve

    OpenAIRE

    1984-01-01

    Monospecific antibodies were prepared to a previously characterized chondroitin sulfate proteoglycan of brain and used in conjunction with the peroxidase-antiperoxidase technique to localize the proteoglycan by immunoelectron microscopy. The proteoglycan was found to be exclusively intracellular in adult cerebellum, cerebrum, brain stem, and spinal cord. Some neurons and astrocytes (including Golgi epithelial cells and Bergmann fibers) showed strong cytoplasmic staining. Although in the centr...

  15. Synthesis, characterization and application in biomedicine of a novel chondroitin sulfate based hydrogel and bioadhesive

    Science.gov (United States)

    Strehin, Iossif

    Clinically, there exists a need for adhesive biomaterials. There is room to improve upon what is currently on the market as it is either too toxic, lacks the required adhesive strength and/or lacks the desired degradation properties. The general goals of this thesis all focused on designing a biomaterial which would improve upon these shortcomings while at the same time allow for modifications to meet the needs for the specific application of interest. To accomplish this task, it was important to choose the appropriate composition and crosslinking chemistry which will allow the most flexibility. Chondroitin sulfate (CS) was chosen as the principle component of the hydrogel because it is a ubiquitous glycosaminoglycan (GAG) found in almost all tissues in the body. Many variants of CS exist with each one possessing unique biological activity allowing for tight control over these properties of the material. To modulate cell migration through the adhesive, polyethylene glycol (PEG) or blood was used as the second constituent. The former made the scaffold act as a cell barrier while the ladder could be used in varying concentrations to modulate cell adhesion and migration into the biomaterial. Also, the CS and blood components are both biodegradable and degradation can be controlled using various methods. While the constituents were chosen to allow flexibility in the biological activity and cell migration into the scaffold, the crosslinking chemistry was chosen to allow control over the mechanical properties as well as to increase tissue adhesion. By functionalizing the carboxyl groups of the GAG with N-hydroxysuccinimide (NHS), the resulting chondroitin sulfate succinimidyl succinate (CS-NHS) molecule could react with primary amines on polymers to form a hydrogel as well as the primary amines on proteins comprising tissue to anchor the hydrogel to the tissue. The material has been characterized and optimized for several applications. The applications described here

  16. Improving the moisturizing properties of collagen film by surface grafting of chondroitin sulfate for corneal tissue engineering.

    Science.gov (United States)

    Liu, Yang; Lv, Huilin; Ren, Li; Xue, Guanhua; Wang, Yingjun

    2016-06-01

    Cornea disease is the second cause of blindness and keratoplasty is the most commonly performed option for visual rehabilitation of patients with corneal blindness. However, the clinical treatment has been drastically limited due to a severe shortage of high-quality donor corneas. Although collagen film with outstanding biocompatibility has promising application in corneal tissue engineering, the moisturizing properties of collagen-based materials must be further improved to satisfy the requirements of clinical applications. This paper describes a novel collagen-based film with high moisture capacity reinforced by surface grafting of chondroitin sulfate. The collagen-chondroitin sulfate (abbreviated as Col-CS) film was analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy and its hydrophilic property, moisture retention, optical property, and mechanical performance had been tested. The moisture-retaining capacity is found to be improved with the introduction of chondroitin sulfate, and the Col-CS membrane performs better mechanical properties than the collagen film. Moreover, the modified film proves excellent biocompatibility for the proliferation of human corneal epithelial cells in vitro. This Col-CS film with good moisturizing properties can reduce the risk of xerophthalmia and is expected to increase the implant success rate in clinic patients with corneal defects. PMID:26948819

  17. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1.

    Science.gov (United States)

    Ayres Pereira, Marina; Mandel Clausen, Thomas; Pehrson, Caroline; Mao, Yang; Resende, Mafalda; Daugaard, Mads; Riis Kristensen, Anders; Spliid, Charlotte; Mathiesen, Line; E Knudsen, Lisbeth; Damm, Peter; G Theander, Thor; R Hansson, Stefan; A Nielsen, Morten; Salanti, Ali

    2016-08-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. PMID:27556547

  18. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1

    Science.gov (United States)

    Mao, Yang; Resende, Mafalda; Daugaard, Mads; Riis Kristensen, Anders; Damm, Peter; G. Theander, Thor; R. Hansson, Stefan; Salanti, Ali

    2016-01-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. PMID:27556547

  19. Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway

    Directory of Open Access Journals (Sweden)

    Lü He-Zuo

    2009-10-01

    Full Text Available Abstract Background Neural precursor cells (NPCs are defined by their ability to proliferate, self-renew, and retain the potential to differentiate into neurons and glia. Deciphering the factors that regulate their behaviors will greatly aid in their use as potential therapeutic agents or targets. Chondroitin sulfate proteoglycans (CSPGs are prominent components of the extracellular matrix (ECM in the central nervous system (CNS and are assumed to play important roles in controlling neuronal differentiation and development. Results In the present study, we demonstrated that CSPGs were constitutively expressed on the NPCs isolated from the E16 rat embryonic brain. When chondroitinase ABC was used to abolish the function of endogenous CSPGs on NPCs, it induced a series of biological responses including the proliferation, differentiation and migration of NPCs, indicating that CSPGs may play a critical role in NPC development and differentiation. Finally, we provided evidence suggesting that integrin signaling pathway may be involved in the effects of CSPGs on NPCs. Conclusion The present study investigating the influence and mechanisms of CSPGs on the differentiation and migration of NPCs should help us to understand the basic biology of NPCs during CNS development and provide new insights into developing new strategies for the treatment of the neurological disorders in the CNS.

  20. Polyethylene glycol-conjugated chondroitin sulfate A derivative nanoparticles for tumor-targeted delivery of anticancer drugs.

    Science.gov (United States)

    Lee, Jae-Young; Park, Ju-Hwan; Lee, Jeong-Jun; Lee, Song Yi; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

    2016-10-20

    Polyethylene glycol (PEG)-decorated chondroitin sulfate A-deoxycholic acid (CSD) nanoparticles (NPs) were fabricated for the selective delivery of doxorubicin (DOX) to ovarian cancer. CSD-PEG was synthesized via amide bond formation between the NH2 group of methoxypolyethylene glycol amine and the COOH group of CSD. CSD-PEG/DOX NPs with a 247nm mean diameter, negative zeta potential, and >90% drug encapsulation efficiency were prepared. Sustained and pH-dependent DOX release profiles from CSD-PEG NPs were observed in dissolution tests. Endocytosis of NPs by SKOV-3 cells (CD44 receptor-positive human ovarian cancer cells), based on the CSA-CD44 receptor interaction, was determined by flow cytometry and confocal laser scanning microscopy (CLSM) studies. PEGylation of NPs also resulted in reduced drug clearance (CL) in vivo and improved relative bioavailability, compared to non-PEGylated NPs, as determined by the pharmacokinetic study performed after intravenous administration in rats. Developed CSD-PEG NPs can be a promising delivery vehicle for the therapy of CD44 receptor-expressing ovarian cancers. PMID:27474544

  1. Chondroitin Sulfate Proteoglycans: Structure-Function Relationship with Implication in Neural Development and Brain Disorders

    Directory of Open Access Journals (Sweden)

    Speranta Avram

    2014-01-01

    Full Text Available Chondroitin sulfate proteoglycans (CSPGs are extracellular matrix components that contain two structural parts with distinct functions: a protein core and glycosaminoglycan (GAG side chains. CSPGs are known to be involved in important cell processes like cell adhesion and growth, receptor binding, or cell migration. It is recognized that the presence of CSPGs is critical in neuronal growth mechanisms including axon guidance following injury of nervous system components such as spinal cord and brain. CSPGs are upregulated in the central nervous system after injury and participate in the inhibition of axon regeneration mainly through their GAG side chains. Recently, it was shown that some CSPGs members like aggrecan, versican, and neurocan were strongly involved in brain disorders like bipolar disorder (BD, schizophrenia, and ADHD. In this paper, we present the chemical structure-biological functions relationship of CSPGs, both in health state and in genetic disorders, addressing methods represented by genome-wide and crystallographic data as well as molecular modeling and quantitative structure-activity relationship.

  2. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    Science.gov (United States)

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). PMID:27474599

  3. Degradation of chondroitin sulfate by the gut microbiota of Chinese individuals.

    Science.gov (United States)

    Shang, Qingsen; Yin, Yeshi; Zhu, Liying; Li, Guoyun; Yu, Guangli; Wang, Xin

    2016-05-01

    Oral preparations of chondroitin sulfate (CS) have long been used as anti-osteoarthritis (anti-OA) drugs. However, little is known about the degradation of CS by human gut microbiota. In the present study, degradation profiles of CSA (the main constituent of CS drugs) by the human gut microbiota from six healthy subjects were investigated. Each individual's microbiota had differing degradation activities, but ΔUA-GalNAc4S was the end product in all cases. To elucidate the mechanisms underlying this phenomenon, different CSA-degrading bacteria were isolated from each individual's microbiota and tested for CSA degradation. In addition to Bacteroides thetaiotaomicron J1, Bacteroides thetaiotaomicron 82 and Bacteroides ovatus E3, a new CSA-degrading bacterium, Clostridium hathewayi R4, was isolated and characterized. Interestingly, at least two different CSA-degrading species were identified from each individual's gut microbiota. Predictably, these functional bacteria also had differing degradation rates, but still generated the same end product, ΔUA-GalNAc4S. In addition, the human fecal isolates produced different degradation profiles for CSC, CSD, and CSE, suggesting that CS could be readily metabolized to varying extents by diverse microbial consortiums, which may help to explain the poor bioavailability and unequal efficacy of CS among individuals in OA treatment. PMID:26800901

  4. Conformational and physicochemical properties of fucosylated chondroitin sulfate from sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Xu, Xiaoqi; Xue, Changhu; Chang, Yaoguang; Chen, Feng; Wang, Jun

    2016-11-01

    This study aimed at investigating the chain conformation and physicochemical properties of fucosylated chondroitin sulfate extracted from sea cucumber Apostichopus japonicas (Aj-fCS). By using HPSEC-MALLS-Visc-RI, Mw, z(1/2), Rh and [η] for Aj-fCS were determined as 58.0±4.4kDa, 21.8±1.3nm, 12.5±1.3nm and 27.8±0.5mL/g respectively. Conformation parameter αs derived from the relationship of Mw-z(1/2) (0.39) and structure-sensitive parameter ρ (1.74) consistently indicated that Aj-fCS adopted a random coil conformation in solution, which was also supported by atomic force microscopy. Stiffness parameters of Aj-fCS chains including q (2.72nm), d (1.03nm) and C∞ (5.28) were furthermore deduced from the worm-like cylinder model. Aj-fCS demonstrated a shear-thinning rheological behavior, relatively low apparent viscosity, negative charge in wide pH and ionic strength ranges, and favorable thermostability. These results have important implications for designing and fabricating functional foods or drugs based on Aj-fCS. PMID:27516246

  5. Structural modulation of gut microbiota by chondroitin sulfate and its oligosaccharide.

    Science.gov (United States)

    Shang, Qingsen; Shi, Jingjing; Song, Guanrui; Zhang, Meifang; Cai, Chao; Hao, Jiejie; Li, Guoyun; Yu, Guangli

    2016-08-01

    Chondroitin sulfate (CS) as a dietary supplement and a symptomatic slow acting (SYSA) drug has been used for years. Recently, CS has been demonstrated to be readily degraded and fermented in vitro by specific human gut microbes, hinting that dietary CS may pose a potential effect on gut microbiota composition in vivo. However, until now, little information is available on modulations of gut microbiota by CS. In the present study, modulations of gut microbiota in Kunming mice by CS and its oligosaccharide (CSO) were investigated by high-throughput sequencing. As evidenced by Heatmap and principal component analysis (PCA), the female microbiota were more vulnerable than the male microbiota to CS and CSO treatment. Besides, it is of interest to found that CS and CSO had differing effects on the abundance of Bacteroidales S24-7, Bacteroides, Helicobacter, Odoribacter, Prevotellaceae and Lactobacillus in male mice versus female mice. Collectively, we demonstrated a sex-dependent effect on gut microbiota of CS and CSO. In addition, since gut microbiota exerts a major effect on host physiology, our study highlighted that certain beneficial effects of CS may be associated with modulations of gut microbiota, which merits further investigation. PMID:27164502

  6. Comparison of chondroitin sulfate and hyaluronic Acid doped conductive polypyrrole films for adipose stem cells.

    Science.gov (United States)

    Björninen, Miina; Siljander, Aliisa; Pelto, Jani; Hyttinen, Jari; Kellomäki, Minna; Miettinen, Susanna; Seppänen, Riitta; Haimi, Suvi

    2014-09-01

    Polypyrrole (PPy) is a conductive polymer that has aroused interest due to its biocompatibility with several cell types and high tailorability as an electroconductive scaffold coating. This study compares the effect of hyaluronic acid (HA) and chondroitin sulfate (CS) doped PPy films on human adipose stem cells (hASCs) under electrical stimulation. The PPy films were synthetized electrochemically. The surface morphology of PPy-HA and PPy-CS was characterized by an atomic force microscope. A pulsed biphasic electric current (BEC) was applied via PPy films non-stimulated samples acting as controls. Viability, attachment, proliferation and osteogenic differentiation of hASCs were evaluated by live/dead staining, DNA content, Alkaline phosphatase activity and mineralization assays. Human ASCs grew as a homogenous cell sheet on PPy-CS surfaces, whereas on PPy-HA cells clustered into small spherical structures. PPy-CS supported hASC proliferation significantly better than PPy-HA at the 7 day time point. Both substrates equally triggered early osteogenic differentiation of hASCs, although mineralization was significantly induced on PPy-CS compared to PPy-HA under BEC. These differences may be due to different surface morphologies originating from the CS and HA dopants. Our results suggest that PPy-CS in particular is a potential osteogenic scaffold coating for bone tissue engineering. PMID:24823653

  7. Quantification of hyaluronan and chondroitin/dermatan sulfates in the tissue sections on glass slides.

    Science.gov (United States)

    Koshiishi, I; Horikoshi, E; Imanari, T

    1999-02-01

    The method for the determination of hyaluronan and chondroitin/dermatan sulfates in the tissue sections on a glass slide, which were prepared by histological technique, was established by applying to porcine skin. The degradation of these glycosaminoglycans to the unsaturated disaccharides in porcine skin sections on a glass slide was achieved by chondroitinase ABC and ACII in the presence of highly purified bacterial collagenase. Subsequently, the resulting unsaturated disaccharides were determined by HPLC with fluorometric postcolumn derivatization using 2-cyanoacetamide as a reagent. So far, the determination of the glycosaminoglycans in the tissues has taken up more than 5 days, whereas the determination of the glycosaminoglycans in the frozen sections by the present method was completed within a day. In addition, applications of the present method to the serial polyester wax sections processed with a small surgical knife made it possible to determine the glycosaminoglycans in a local part in the tissue section. The present method should open a way for the clinical analysis of glycosaminoglycans in the pathological tissue samples. PMID:9918675

  8. Spectral study of interaction between chondroitin sulfate and nanoparticles and its application in quantitative analysis

    Science.gov (United States)

    Ma, Yi; Wei, Maojie; Zhang, Xiao; Zhao, Ting; Liu, Xiumei; Zhou, Guanglian

    2016-01-01

    In this work, the interaction between chondroitin sulfate (CS) and gold nanoparticles (GNPs) and silver nanoparticles (SNPs) was characterized for the first time. Plasma resonance scattering (PRS) and plasma resonance absorption (PRA) were used to investigate the characteristics of their spectrum. The results suggested that the CS with negative charge could interact with metal nanoparticles with negative charge and the adsorption of CS on the surface of SNPs was more regular than that of GNPs. The resonance scattering spectra also further confirmed the interaction between CS and SNPs. A new method for detection of CS based on the interaction was developed. CS concentrations in the range of 0.02-3.5 μg/mL were proportional to the decreases of absorbance of SNPs. Compared with other reported methods, the proposed method is simple and workable without complex process, high consumption and expensive equipments. The developed method was applied to the determination of the CS contents from different biological origins and the results were compared with those obtained by the method of Chinese Pharmacopeia. The effects of matrix in plasma and other glycosaminoglycans on the determination of CS were also investigated. The results showed that a small quantity of blood plasma had no effect on the determination of CS and when the concentration ratio of CS to heparin was more than 10:1, the influence of heparin on the detection of CS could be ignored. This work gave a specific research direction for the detection of CS in the presence of metal nanoparticles.

  9. Tough and elastic hydrogel of hyaluronic acid and chondroitin sulfate as potential cell scaffold materials.

    Science.gov (United States)

    Ni, Yilu; Tang, Zhurong; Cao, Wanxu; Lin, Hai; Fan, Yujiang; Guo, Likun; Zhang, Xingdong

    2015-03-01

    Natural polysaccharides are extensively investigated as cell scaffold materials for cellular adhesion, proliferation, and differentiation due to their excellent biocompatibility, biodegradability, and biofunctions. However, their application is often severely limited by their mechanical behavior. In this study, a tough and elastic hydrogel scaffold was prepared with hyaluronic acid (HA) and chondroitin sulfate (CS). HA and CS were conjugated with tyramine (TA) and the degree of substitution (DS) was 10.7% and 11.3%, respectively, as calculated by (1)H NMR spectra. The hydrogel was prepared by mixing HA-TA and CS-TA in presence of H2O2 and HRP. The sectional morphology of hydrogels was observed by SEM, static and dynamic mechanical properties were analyzed by Shimadzu electromechanical testing machine and dynamic mechanical thermal analyzer Q800. All samples showed good ability to recover their appearances after deformation, the storage modulus (E') of hydrogels became higher as the testing frequency went up. Hydrogels also showed fatigue resistance to cyclic compression. Mesenchymal stem cells encapsulated in hydrogels showed good cell viability as detected by CLSM. This study suggests that the hydrogels have both good mechanical properties and biocompatibility, and may serve as model systems to explore mechanisms of deformation and energy dissipation or find some applications in tissue engineering. PMID:25445680

  10. Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates.

    Science.gov (United States)

    Ajisaka, Katsumi; Oyanagi, Yutaka; Miyazaki, Tatsuo; Suzuki, Yasuhiro

    2016-06-01

    The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca(2+), Mg(2+), Mn(2+), or Zn(2+) were prepared, and their antioxidant potencies were compared. CS chelating with Ca(2+) or Mg(2+) ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H(+) form. In contrast, CS chelating with Ca(2+) or Mg(2+) ion showed remarkably enhanced superoxide radical scavenging activity than CS of H(+) or Na(+) form. Moreover, CS chelating with divalent metal ions, Ca(2+), Mg(2+), Mn(2+), or Zn(2+), showed noticeably higher hydroxyl radical scavenging activity than CS of H(+) or Na(+) form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions. PMID:26856546

  11. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates. PMID:26895544

  12. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate

    Directory of Open Access Journals (Sweden)

    Vineet eGupta

    2015-07-01

    Full Text Available Extracellular matrix (ECM components such as chondroitin sulfate (CS and tricalcium phosphate (TCP serve as raw materials and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(D,L-lactic-co-glycolic acid (PLGA microsphere-based scaffolds would enhance differentiation of rat bone marrow stromal cells (rBMSCs. The raw material encapsulation altered the microstructure of the microspheres and also influenced the cellular morphology that depended on the type of material encapsulated. Moreover, the mechanical properties of the raw material encapsulating microsphere-based scaffolds initially relied on the composition of the scaffolds and later on were primarily governed by the degradation of the polymer phase and newly synthesized extracellular matrix by the seeded cells. Furthermore, raw materials had a mitogenic effect on the seeded cells and led to increased glycosaminoglycan (GAG, collagen, and calcium content. Interestingly, the initial effects of raw material encapsulation on a per-cell basis might have been overshadowed by medium-regulated environment that appeared to favor osteogenesis. However, it is to be noted that in vivo, differentiation of the cells would be governed by the surrounding native environment. Thus, the results of this study demonstrated the potential of the raw materials in facilitating neo-tissue synthesis in microsphere-based scaffolds and perhaps in combination with bioactive signals, these raw materials may be able to achieve intricate cell differentiation profiles required for regenerating the osteochondral interface.

  13. Fabrication of chondroitin sulfate-chitosan composite artificial extracellular matrix for stabilization of fibroblast growth factor.

    Science.gov (United States)

    Mi, Fwu-Long; Shyu, Shin-Shing; Peng, Chih-Kang; Wu, Yu-Bey; Sung, Hsing-Wen; Wang, Pei-Shan; Huang, Chi-Chuan

    2006-01-01

    The development of a novel, three-dimensional, macroporous artificial extracellular matrix (AECM) based on chondroitin sulfate (ChS)-chitosan (Chito) combination is reported. The composite AECM composed of ChS-Chito conjugated network was prepared by a homogenizing interpolyelectrolyte complex/covalent conjugation technique through co-crosslinked with N,N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide (EDC) and N-hydroxysuccinimide (NHS). In contrast to EDC/NHS, two different reagents, calcium ion and glutaraldehyde, were used to react with ChS or Chito for the preparation of ChS-Chito composites containing crosslinked ChS or Chito network in the matrix. The stability and in vitro enzymatic degradability of the glutaraldehyde-, EDC/NHS-, and Ca2+ -crosslinked ChS-Chito composite AECMs were all investigated in this study. The results showed that crosslinking improved the stability of prepared ChS-Chito AECMs in physiological buffer solution (PBS) and provided superior protective effect against the enzymatic hydrolysis of ChS, compared with their non-crosslinked counterpart. Because ChS was a heparin-like glycosaminoglycan (GAG), the ChS-Chito composite AECMs appeared to promote binding efficiency for basic fibroblast growth factor (bFGF). The bFGF releasing from the ChS-Chito composite AECMs retained its biological activity as examined by the in vitro proliferation of human fibroblast, depending on the crosslinking mode for the preparation of these composite AECMs. Histological assay showed that the EDC/NHS-crosslinked ChS-Chito composite AECM, after incorporated with bFGF, was biodegradable and could result in a significantly enhanced vascularization effect and tissue penetration. These results suggest that the ChS-Chito composite AECMs fabricated in this study may be a promising approach for tissue-engineering application. PMID:16224775

  14. Synthesis and Characterization of a Chondroitin Sulfate Based Hybrid Bio/Synthetic Biomimetic Aggrecan Macromolecule

    Science.gov (United States)

    Sarkar, Sumona

    Lower back pain resulting from intervertebral disc degeneration is one of the leading musculoskeletal disorders confronting our health system. In order to mechanically stabilize the disc early in the degenerative cascade and prevent the need for spinal fusion surgeries, we have proposed the development of a hybrid-bio/synthetic biomimetic proteoglycan macromolecule for injection into the disc in the early stages of degeneration. The goal of this thesis was to incorporate natural chondroitin sulfate (CS) chains into bottle brush polymer synthesis strategies for the fabrication of CS-macromolecules which mimic the proteoglycan structure and function while resisting enzymatic degradation. Both the "grafting-to" and "grafting-through" techniques of bottle brush synthesis were explored. CS was immobilized via a terminal primary amine onto a model polymeric backbone (polyacrylic acid) for investigation of the "grafting-to" strategy and an epoxy-amine step-growth polymerization technique was utilized for the "grafting-through" synthesis of CS-macromolecules with polyethylene glycol backbone segments. Incorporation of a synthetic polymeric backbone at the terminal amine of CS was confirmed via biochemical assays, 1H-NMR and FTIR spectroscopy, and CS-macromolecule size was demonstrated to be higher than that of natural CS via gel permeation chromatography, transmission electron microscopy and viscosity measurements. Further analysis of CS-macromolecule functionality indicated maintenance of natural CS properties such as high fixed charge density, high osmotic potential and low cytotoxicity with nucleus pulposus cells. These studies are the first attempt at the incorporation of natural CS into biomimetic bottle brush structures. CS-macromolecules synthesized via the methods developed in these studies may be utilized in the treatment and prevention of debilitating back pain as well as act as mimetics for other proteoglycans implicated in cartilage, heart valve, and nervous

  15. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications.

    Science.gov (United States)

    Abbadessa, A; Blokzijl, M M; Mouser, V H M; Marica, P; Malda, J; Hennink, W E; Vermonden, T

    2016-09-20

    The aim of this study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA was synthesized by reaction of chondroitin sulfate with glycidyl methacrylate (GMA) in dimethylsulfoxide at 50°C and its degree of methacrylation was tunable up to 48.5%, by changing reaction time and GMA feed. Unlike polymer solutions composed of CSMA alone (20% w/w), mixtures based on 2% w/w of CSMA and 18% of M15P10 showed strain-softening, thermo-sensitive and shear-thinning properties more pronounced than those found for polymer solutions based on M15P10 alone. Additionally, they displayed a yield stress of 19.2±7.0Pa. The 3D printing of this hydrogel resulted in the generation of constructs with tailorable porosity and good handling properties. Finally, embedded chondrogenic cells remained viable and proliferating over a culture period of 6days. The hydrogel described herein represents a promising biomaterial for cartilage 3D printing applications. PMID:27261741

  16. Structural determination of novel sulfated octasaccharides isolated from chondroitin sulfate of shark cartilage and their application for characterizing monoclonal antibody epitopes.

    Science.gov (United States)

    Deepa, Sarama S; Yamada, Shuhei; Fukui, Shigeyuki; Sugahara, Kazuyuki

    2007-06-01

    Twelve octasaccharide fractions were obtained from chondroitin sulfate C derived from shark cartilage after hyaluronidase digestion. Their sugar and sulfate composition was assigned by matrix-assisted laser desorption ionization time of flight mass spectrometry. The sequences were determined at low picomole amounts by a combination of enzymatic digestions with high-performance liquid chromatography, and were composed of disaccharide building units including O [GlcUAbeta1-3GalNAc], C [GlcUAbeta1-3GalNAc(6S)], A [GlcUAbeta1-3GalNAc(4S)], and/or D [GlcUA(2S)beta1-3GalNAc(6S)], where 2S, 4S, and 6S represent 2-O-, 4-O-, and 6-O-sulfate, respectively. As many as 24 different sequences including minor ones were revealed, exhibiting a high degree of structural diversity reflecting the enormous heterogeneity of the parent polysaccharides. Nineteen of them were novel, with the other four reported previously as unsaturated counterparts obtained after digestion with chondroitinase. Microarrays of these structurally defined octasaccharide fractions were prepared using low picomole amounts of their lipid-derivatives to investigate the binding specificity of four commercial anti-chondroitin sulfate antibodies CS-56, MO-225, 2H6, and LY111. The results revealed that multiple unique sequences were recognized by each antibody, which implies that the common conformation shared by the multiple primary sequences in the intact chondroitin sulfate chains is important as an epitope for each monoclonal antibody. Comparison of the specificity of the tested antibodies indicates that CS-56 and MO-225 specifically recognize octasaccharides containing an A-D tetrasaccharide sequence, whereas 2H6 and LY111 require a hexasaccharide as a minimum size for their binding, and prefer sequences with A- and C-units such as C-C-A-C (2H6) or C-C-A-O, C-C-A-A, and C-C-A-C (LY111) for strong binding but require no D-unit. PMID:17317718

  17. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury

    NARCIS (Netherlands)

    Bartus, Katalin; James, Nicholas D; Didangelos, Athanasios; Bosch, Karen D; Verhaagen, J.; Yáñez-Muñoz, Rafael J; Rogers, John H; Schneider, Bernard L; Muir, Elizabeth M; Bradbury, Elizabeth J

    2014-01-01

    Chondroitin sulfate proteoglycans (CSPGs) inhibit repair following spinal cord injury. Here we use mammalian-compatible engineered chondroitinase ABC (ChABC) delivered via lentiviral vector (LV-ChABC) to explore the consequences of large-scale CSPG digestion for spinal cord repair. We demonstrate si

  18. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    International Nuclear Information System (INIS)

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  19. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhao [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Nooeaid, Patcharakamon [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Kohl, Benjamin [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Roether, Judith A.; Schubert, Dirk W. [Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Meier, Carola [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Boccaccini, Aldo R. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Godkin, Owen; Ertel, Wolfgang; Arens, Stephan [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Schulze-Tanzil, Gundula, E-mail: gundula.schulze@pmu.ac.at [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Institute of Anatomy, Paracelsus Medical University, Nuremberg (Germany)

    2015-05-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  20. Differentiating chondroitin sulfate glycosaminoglycans using collision-induced dissociation; uronic acid cross-ring diagnostic fragments in a single stage of tandem mass spectrometry.

    Science.gov (United States)

    Kailemia, Muchena J; Patel, Anish B; Johnson, Dane T; Li, Lingyun; Linhardt, Robert J; Amster, I Jonathan

    2015-01-01

    The stereochemistry of the hexuronic acid residues of the structure of glycosaminoglycans (GAGs) is a key feature that affects their interactions with proteins and other biological functions. Electron based tandem mass spectrometry methods, in particular electron detachment dissociation (EDD), have been able to distinguish glucuronic acid (GlcA) from iduronic acid (IdoA) residues in some heparan sulfate tetrasaccharides by producing epimer-specific fragments. Similarly, the relative abundance of glycosidic fragment ions produced by collision-induced dissociation (CID) or EDD has been shown to correlate with the type of hexuronic acid present in chondroitin sulfate GAGs. The present work examines the effect of charge state and degree of sodium cationization on the CID fragmentation products that can be used to distinguish GlcA and IdoA containing chondroitin sulfate A and dermatan sulfate chains. The cross-ring fragments (2,4)A(n) and (0,2)X(n) formed within the hexuronic acid residues are highly preferential for chains containing GlcA, distinguishing it from IdoA. The diagnostic capability of the fragments requires the selection of a molecular ion and fragment ions with specific ionization characteristics, namely charge state and number of ionizable protons. The ions with the appropriate characteristics display diagnostic properties for all the chondroitin sulfate and dermatan sulfate chains (degree of polymerization of 4-10) studied. PMID:26307707

  1. Establishment of chondroitin B lyase-based analytical methods for sensitive and quantitative detection of dermatan sulfate in heparin.

    Science.gov (United States)

    Wu, Jingjun; Ji, Yang; Su, Nan; Li, Ye; Liu, Xinxin; Mei, Xiang; Zhou, Qianqian; Zhang, Chong; Xing, Xin-Hui

    2016-06-25

    Dermatan sulfate (DS) is one of the hardest impurities to remove from heparin products due to their high structural similarity. The development of a sensitive and feasible method for quantitative detection of DS in heparin is essential to ensure the clinical safety of heparin pharmaceuticals. In the current study, based on the substrate specificity of chondroitin B lyase, ultraviolet spectrophotometric and strong anion-exchange high-performance liquid chromatographic methods were established for detection of DS in heparin. The former method facilitated analysis in heparin with DS concentrations greater than 0.1mgmL(-1) at 232nm, with good linearity, precision and recovery. The latter method allowed sensitive and accurate detection of DS at concentrations lower than 0.1mgmL(-1), exhibiting good linearity, precision and recovery. The linear range of DS detection using the latter method was between 0.01 and 0.5mgmL(-1). PMID:27083825

  2. Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias.

    Science.gov (United States)

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-01-01

    Glycosaminoglycans, including chondroitin, dermatan, and heparan sulfate, have various roles in a wide range of biological events such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Their polysaccharides covalently attach to the serine residues on specific core proteins through the common linker region tetrasaccharide, -xylose-galactose-galactose-glucuronic acid, which is produced through the stepwise addition of respective monosaccharides by four distinct glycosyltransferases. Mutations in the human genes encoding the glycosyltransferases responsible for the biosynthesis of the linker region tetrasaccharide cause a number of genetic disorders, called glycosaminoglycan linkeropathies, including Desbuquois dysplasia type 2, spondyloepimetaphyseal dysplasia, Ehlers-Danlos syndrome, and Larsen syndrome. This review focused on recent studies on genetic diseases caused by defects in the biosynthesis of the common linker region tetrasaccharide. PMID:26582078

  3. Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2015-01-01

    Full Text Available Glycosaminoglycans, including chondroitin, dermatan, and heparan sulfate, have various roles in a wide range of biological events such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Their polysaccharides covalently attach to the serine residues on specific core proteins through the common linker region tetrasaccharide, -xylose-galactose-galactose-glucuronic acid, which is produced through the stepwise addition of respective monosaccharides by four distinct glycosyltransferases. Mutations in the human genes encoding the glycosyltransferases responsible for the biosynthesis of the linker region tetrasaccharide cause a number of genetic disorders, called glycosaminoglycan linkeropathies, including Desbuquois dysplasia type 2, spondyloepimetaphyseal dysplasia, Ehlers-Danlos syndrome, and Larsen syndrome. This review focused on recent studies on genetic diseases caused by defects in the biosynthesis of the common linker region tetrasaccharide.

  4. Cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced

    DEFF Research Database (Denmark)

    Rieger, Harden; Yoshikawa, Hiroshi Y; Quadt, Katharina;

    2015-01-01

    effect of the receptor/ligand arrangement on cytoadhesion, using artificial membranes with different CSA spacing intervals. We found that cytoadhesion is strongly dependent on the CSA distance, with half-maximal adhesion occurring at a CSA distance of 9 ± 1 nm at all hydrodynamic conditions. Moreover......, binding to CSA was cooperative and shear stress induced. These findings suggest that the CSA density, together with allosteric effects in VAR2CSA, aid in discriminating between different CSA milieus....... of the parasite-encoded adhesin VAR2CSA with chondroitin-4-sulfate (CSA) present on placental proteoglycans. CSA presented elsewhere in the microvasculature does not afford VAR2CSA-mediated cytoadhesion of parasitized erythrocytes. To address the placenta-specific binding tropism, we investigated the...

  5. Structural characterization of the epitopes of the monoclonal antibodies 473HD, CS-56, and MO-225 specific for chondroitin sulfate D-type using the oligosaccharide library.

    Science.gov (United States)

    Ito, Yumi; Hikino, Megumi; Yajima, Yuki; Mikami, Tadahisa; Sirko, Swetlana; von Holst, Alexer; Faissner, Andreas; Fukui, Shigeyuki; Sugahara, Kazuyuki

    2005-06-01

    The variation in the sulfation profile of chondroitin sulfate (CS)/dermatan sulfate (DS) chains regulates central nervous system development in vertebrates. Notably, the disulfated disaccharide D-unit, GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate), correlates with the promotion of neurite outgrowth through the DSD-1 epitope that is embedded in the CS moiety of the proteoglycan DSD-1-PG/phosphacan. Monoclonal antibody (mAb) 473HD inhibits the DSD-1-dependent neuritogenesis and also recognizes shark cartilage CS-D, which is characterized by the prominent D-unit and is also recognized by two other mAbs, CS-56 and MO-225. We investigate the oligosaccharide epitope structures of these CS-D-reactive mAbs by ELISA and oligosaccharide microarrays using lipid-derivatized CS oligosaccharides. CS-56 and MO-225 recognized the octa- and larger oligosaccharides, though the latter also bound one unique hexasaccharide D-A-D, where A denotes the disaccharide A-unit GlcUA-GalNAc(4-O-sulfate). The octasaccharides reactive with CS-56 and MO-225 shared a core A-D tetrasaccharide, whereas the neighboring structural elements located on the reducing and/or nonreducing sides of the A-D gave a differential preference additionally to the recognition sequence for each antibody. In contrast, 473HD reacted with multiple hexa- and larger oligosaccharides, which also contained A-D or D-A tetrasaccharide sequences. Consistent with the distinct specificity of 473HD as compared with CS-56 and MO-225, the 473HD epitope displayed a different expression pattern in peripheral mouse organs as revealed by immunohistology, extending the previously reported CNS-restricted expression. The epitope of 473HD, but not of CS-56 or MO-225, was eliminated from DSD-1-PG by digestion with chondroitinase B, suggesting the close association of L-iduronic acid with the 473HD epitope. Despite such supplemental information, the integral epitope remains to be isolated for identification and comprehensive analytical

  6. 发酵法生产硫酸软骨素的研究进展%Microbial production of chondroitin sulfate:a review

    Institute of Scientific and Technical Information of China (English)

    吴秋林; 刘立明; 陈坚

    2012-01-01

    硫酸软骨素是一种典型的硫酸化糖胺聚糖,具有多种药物活性,广泛应用于药品、保健品及化妆品行业.硫酸软骨素是动物软骨中蛋白聚糖的主要成分和少数几种细菌的荚膜多糖,因此可利用动物提取法和发酵法进行生产.以下综述了硫酸软骨素的发酵生产及其合成机制的研究进展,并对其发展趋势进行了展望.%Chondroitin sulfate (CS) is the typical sulfation glycosaminoglycan and widely applied in the industries of pharmaceutical, health products and cosmetic for its peculiar properties. CS is the main component of cartilage proteoglycans in animal and capsular polysaccharide in a few bacteria. CS can be extracted from animal sources and produced via microbial fermentation. In this article, development of chondroitin sulfate by fermentation, biosynthesis and regulating mechanisms of CS in bacteria are described. Furthermore, prospect and tendency of chondroitin sulfate from bacterial fermentation are addressed.

  7. Gold nanomaterials based pseudostationary phases in capillary electrophoresis: a brand-new attempt at chondroitin sulfate isomers separation.

    Science.gov (United States)

    Zhao, Ting; Zhou, Guanglian; Wu, Yuanhong; Liu, Xiumei; Wang, Fengshan

    2015-02-01

    In this work, a CE method with bare gold nanorods (GNRs) based pseudostationary phase was developed and applied for the separation of chondroitin sulfate (CS) isomers, CS, and dermatan sulfate (DS). The separation efficiency was investigated by varying the experimental parameters such as concentration and pH of the BGE, separation voltage, internal diameter of capillary, different size, and morphology of gold nanomaterials. Results showed that different size and morphology of gold nanomaterials had different effects on the separation of CS and DS. The best separation of CS and DS was achieved in the BGE composed of aqueous 150 mmol/L (mM) ethylenediamine + 20 mM sodium dihydrogen phosphate + 30% v/v GNRs, pH 4.5, at the separation voltage of -10 kV. Capillary was 59.2 cm in length (effective length 49 cm), 50 μm id capillary thermostated at 25°C. CE with bare GNRs used as pseudostationary phase was shown to be a suitable technique for the separation of CS and DS mixtures with wider peaks. RSD of migration time and peak area of CS and DS were 0.13, 0.14 and 0.86, 1.07%, respectively. PMID:25395164

  8. Fractal analysis of extra-embryonic vessels of chick embryos under the effect of glucosamine and chondroitin sulfates.

    Science.gov (United States)

    de Souza Lins Borba, Fernanda Katharine; Felix, Giovanni Loos Queiroz; Costa, Edbhergue Ventura Lola; Silva, Lisie; Dias, Paulo Fernando; de Albuquerque Nogueira, Romildo

    2016-05-01

    Like heparan sulfate proteoglycans, some monosaccharides and glycosaminoglycans, such as sulfated glucosamine (GS) and chondroitin (CS), integrate the vascular extracellular matrix and may influence vascular endothelial cell growth. To assess the effects of these substances on blood vessel formation, we used the chick yolk sac membrane (YSM) model and fractal geometry quantification, which provided an objective in vivo method for testing potential agents that promote vasculogenesis and angiogenesis. An image processing method was developed to evaluate YSM capillary vessels after they were implanted in a methylcellulose disk of GS or CS at a concentration between 0.001-0.1mg/disk (performed on 2-day old embryos). This method resulted in a binary image of the microvascular network (white vessels on a black background). Fractal box-counting (DBC) and information (DINF) dimensions were used to quantify the activity of GS and CS in vasculogenesis and angiogenesis. YSM treated with GS (0.001-0.1mg) and CS (0.03-0.1mg) showed an increase in fractal dimensions that corresponded to vitelline vessel growth compared to the control group (vehicle), with GS displaying higher fractal dimension values. PMID:26873109

  9. Chondroitin sulfate β-1,4-N-acetylgalactosaminyltransferase-1 (ChGn-1) polymorphism: Association with progression of multiple sclerosis.

    Science.gov (United States)

    Saigoh, Kazumasa; Yoshimura, Satoshi; Izumikawa, Tomomi; Miyata, Shinji; Tabara, Yasuharu; Matsushita, Takuya; Miki, Tetsuro; Miyamoto, Katsuichi; Hirano, Makito; Kitagawa, Hiroshi; Kira, Jun-Ichi; Kusunoki, Susumu

    2016-07-01

    Chondroitin sulfate proteoglycans (CSPGs) are a constituent of the matrix of the central nervous system (CNS), likely participating as regulatory molecules in the process of demyelination, remyelination, axonal degeneration and regeneration in the CNS. ChGn-1 is a key enzyme for production of CSPGs and knock-out mice of this gene showed better recovery from spinal cord injury. We hypothesized that the clinical course of multiple sclerosis (MS) is influenced by the level of expression of ChGn-1 gene. We recruited 147 patients with MS and 181 healthy control subjects and analyzed single nucleotide polymorphisms (SNPs) of this gene. We found the coding SNP (cSNP: rs140161612) in approximately 10% of patients with MS as well as normal controls. The cSNP is changed from serine to leucine at position 126 (p.S126L). The expressed ChGn-1 mutant proteins exhibited no enzyme activities in COS-1 cells. In men, patients who had MS with S126L had a slower disease progression. This cSNP might be associated with the sex differences in clinical course of MS. PMID:26806424

  10. 99mTc-labeled chondroitin sulfate-uptake by chondrocytes and cartilage. Potential agent for osteoarthritis imaging?

    International Nuclear Information System (INIS)

    Aim: Chondroitin sulfate (CS) is an endogenous component of cartilage proteoglycan which could monitor osteoarthritic cartilage degradation after radiolabeling. This substance is used in the treatment of human osteoarthritis as a slow acting symptomatic drug (CONDROSULF; Sanova Pharma, Vienna; Ibsa, Switzerland). Material and Methods: Radiolabeling of CS was performed using 99mTcO4-/stannous chloride in 0.50 M sodium acetate buffer at pH 5.0. The quality control of the tracer was performed using ITLC-SG chromatography and 0.2 M saline in 10% ethanol as solvent to detect colloid content. Aluminium oxide IB-F TLC-sheets and ethanol as solvent were used to estimate free pertechnetate. For uptake studies cultured human chondrocytes and age-matched cartilage were used. Uptake of the tracer in chondrocytes was studied in monolayer and in suspension cultures at 370C. Uptake was monitored for a total of 120-180 minutes, samples being drawn every 10 minutes. Because the commercially available drug Condrosulf contains calcium stearate as additive to improve the resorption of the drug, we investigated also the uptake with and without additive. Results: The tracer was stable over 6h period after labeling (95% of the radiochemical purity). In plasma the stability was lower amounting to 75%. Viability of chondrocytes after incubation with either CS-preparation was found by trypan blue exclusion to be above 95 %. Uptake of the tracer performed in monolayer ± additives was low and amounted to 0.5%±0.05%, n=6. The cells were saturated already after an incubation interval of 10 minutes. In suspension cultures a maximal uptake of 1.0%±0.1%, n=6 and 5.9%±0.65%, n=6 was found, without and with additives, respectively, the saturation was achieved after 100 min. Thus, not only the resorption of the drug is enhanced by Ca-stearate, but also uptake increases in presence of this additive. Using human rib cartilage the uptake of the tracer was much higher amounting to 4.9%±2.3%, n=6

  11. FACE Analysis as a Fast and Reliable Methodology to Monitor the Sulfation and Total Amount of Chondroitin Sulfate in Biological Samples of Clinical Importance

    Directory of Open Access Journals (Sweden)

    Evgenia Karousou

    2014-06-01

    Full Text Available Glycosaminoglycans (GAGs due to their hydrophilic character and high anionic charge densities play important roles in various (pathophysiological processes. The identification and quantification of GAGs in biological samples and tissues could be useful prognostic and diagnostic tools in pathological conditions. Despite the noteworthy progress in the development of sensitive and accurate methodologies for the determination of GAGs, there is a significant lack in methodologies regarding sample preparation and reliable fast analysis methods enabling the simultaneous analysis of several biological samples. In this report, developed protocols for the isolation of GAGs in biological samples were applied to analyze various sulfated chondroitin sulfate- and hyaluronan-derived disaccharides using fluorophore-assisted carbohydrate electrophoresis (FACE. Applications to biologic samples of clinical importance include blood serum, lens capsule tissue and urine. The sample preparation protocol followed by FACE analysis allows quantification with an optimal linearity over the concentration range 1.0–220.0 µg/mL, affording a limit of quantitation of 50 ng of disaccharides. Validation of FACE results was performed by capillary electrophoresis and high performance liquid chromatography techniques.

  12. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E.

    Directory of Open Access Journals (Sweden)

    Panisadee Avirutnan

    2007-11-01

    Full Text Available Dengue virus (DENV nonstructural protein-1 (NS1 is a secreted glycoprotein that is absent from viral particles but accumulates in the supernatant and on the plasma membrane of cells during infection. Immune recognition of cell surface NS1 on endothelial cells has been hypothesized as a mechanism for the vascular leakage that occurs during severe DENV infection. However, it has remained unclear how NS1 becomes associated with the plasma membrane, as it contains no membrane-spanning sequence motif. Using flow cytometric and ELISA-based binding assays and mutant cell lines lacking selective glycosaminoglycans, we show that soluble NS1 binds back to the surface of uninfected cells primarily via interactions with heparan sulfate and chondroitin sulfate E. DENV NS1 binds directly to the surface of many types of epithelial and mesenchymal cells yet attaches poorly to most peripheral blood cells. Moreover, DENV NS1 preferentially binds to cultured human microvascular compared to aortic or umbilical cord vein endothelial cells. This binding specificity was confirmed in situ as DENV NS1 bound to lung and liver but not intestine or brain endothelium of mouse tissues. Differential binding of soluble NS1 by tissue endothelium and subsequent recognition by anti-NS1 antibodies could contribute to the selective vascular leakage syndrome that occurs during severe secondary DENV infection.

  13. Development of a mouse monoclonal antibody against the chondroitin sulfate-protein linkage region derived from shark cartilage.

    Science.gov (United States)

    Akatsu, Chizuru; Fongmoon, Duriya; Mizumoto, Shuji; Jacquinet, Jean-Claude; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki

    2010-05-01

    Glycosaminoglycans (GAGs) like chondroitin sulfate (CS) and heparan sulfate (HS) are synthesized on the tetrasaccharide linkage region, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser, of proteoglycans. The Xyl can be modified by 2-O-phosphate in both CS and HS, whereas the Gal residues can be sulfated at C-4 and/or C-6 in CS but not in HS. To study the roles of these modifications, monoclonal antibodies were developed against linkage glycopeptides of shark cartilage CS proteoglycans, and one was characterized in detail. This antibody bound hexa- and pentasaccharide-peptides more strongly than unsaturated tetrasaccharide-peptides with the unnatural fourth sugar residue (unsaturated hexuronic acid), suggesting the importance of the fifth and/or fourth saccharide residue GalNAc-5 and/or GlcA-4. Its reactivity was not affected by treatment with chondro-4-sulfatase or alkaline phosphatase, suggesting that 4-O-sulfate on the Gal residues and 2-O-phosphate on the Xyl residue were not recognized. Treatment with weak alkali to cleave the Xyl-Ser linkage completely abolished the binding activity, suggesting the importance of the peptide moiety of the hexasaccharide-peptide for the binding. Based on the amino acid composition and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analyses, it was revealed that the peptide moiety is composed of four amino acids, Ser, Pro, Gly, and Glu. Furthermore, the antibody stained wild-type CHO cells significantly, but much weakly mutant cells deficient in xylosyl- or galactosyltransferase-I required for the biosynthesis of the linkage region. These results suggest that the antibody recognizes the structure GalNAc(+/-6-O-sulfate)-GlcA-Gal-Gal-Xyl-Ser-(Pro, Gly, Glu). The antibody will be a useful tool for investigating the significance of the linkage region in the biosynthesis and/or intracellular transport of different GAG chains especially since such tools to study the linkage region are lacking. PMID:20336366

  14. The efficacy and tolerability of the slow-acting combined agent glucosamine and chondroitin sulfate in gonarthrosis patients tacking no nonsteroidal anti-inflammatory drugs

    OpenAIRE

    A P Rebrov; Romanova, I.A.; I. Z. Gaydukova

    2015-01-01

    Objective: to evaluate the efficacy and tolerability of the combined symptomatic slow-acting combined agent Theraflex in gonarthrosis patients untreated with nonsteroidal antiinflammatory drugs (NSAIDs).Patients and methods. The investigation enrolled 84 patients (78 women and 6 men) aged 55.23±7.36 years with knee arthritis lasting 6.2±0.98 years who were blindly randomized into 2 groups. A study group took Theraflex (chondroitin sulfate 400 mg and glucosamine sulfate 500 mg) with or without...

  15. Preparation and Characterization of a Collagen-Liposome-Chondroitin Sulfate Matrix with Potential Application for Inflammatory Disorders Treatment

    Directory of Open Access Journals (Sweden)

    Oana Craciunescu

    2014-01-01

    Full Text Available Smart drug delivery systems with controllable properties play an important role in targeted therapy and tissue regeneration. The aim of our study was the preparation and in vitro evaluation of a collagen (Col matrix embedding a liposomal formulation of chondroitin sulfate (L-CS for the treatment of inflammatory disorders. Structural studies using Oil Red O specific staining for lipids and scanning electron microscopy showed an alveolar network of nanosized Col fibrils decorated with deposits of L-CS at both periphery and inner of the matrix. The porosity and density of Col-L-CS matrix were similar to those of Col matrix, while its mean pore size and biodegradability had significantly higher and lower values (P<0.05, respectively. In vitro cytotoxicity assays showed that the matrix system induced high cell viability and stimulated cell metabolism in L929 fibroblast cell culture. Light and electron micrographs of the cell-matrix construct showed that cells clustered into the porous structure at 72 h of cultivation. In vitro diffusion test indicated that the quantity of released CS was significantly lower (P<0.05 after embedment of L-CS within Col matrix. All these results indicated that the biocompatible and biodegradable Col-L-CS matrix might be a promising delivery system for local treatment of inflamed site.

  16. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin.

    Science.gov (United States)

    Grijalva-Bustamante, G A; Evans-Villegas, A G; Del Castillo-Castro, T; Castillo-Ortega, M M; Cruz-Silva, R; Huerta, F; Morallón, E

    2016-06-01

    Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection. PMID:27040261

  17. Mechanism of Formation and Stabilization of Nanoparticles Produced by Heating Electrostatic Complexes of WPI-Dextran Conjugate and Chondroitin Sulfate.

    Science.gov (United States)

    Dai, Qingyuan; Zhu, Xiuling; Yu, Jingyang; Karangwa, Eric; Xia, Shuqin; Zhang, Xiaoming; Jia, Chengsheng

    2016-07-13

    Protein conformational changes were demonstrated in biopolymer nanoparticles, and molecular forces were studied to elucidate the formation and stabilization mechanism of biopolymer nanoparticles. The biopolymer nanoparticles were prepared by heating electrostatic complexes of whey protein isolate (WPI)-dextran conjugate (WD) and chondroitin sulfate (ChS) above the denaturation temperature and near the isoelectric point of WPI. The internal characteristics of biopolymer nanoparticles were analyzed by several spectroscopic techniques. Results showed that grafted dextran significantly (p protein conformational changes in WD and ChS (WDC) during heat treatment. In addition, hydrophobic bonds were the major molecular force for the formation and stabilization of biopolymer nanoparticles. However, hydrogen bonds slightly influenced their formation and stabilization. Ionic bonds only promoted the formation of biopolymer nanoparticles, while disulfide bonds partly contributed to their stability. This work will be beneficial to understand protein conformational changes and molecular forces in biopolymer nanoparticles, and to prepare the stable biopolymer nanoparticles from heating electrostatic complexes of native or glycosylated protein and polysaccharide. PMID:27329490

  18. PH-DEPENDENT MECHANISM OF ENERGY TRANSFORMATION IN SYNOVIAL FLUID CELLS IN KNEE OSTEOARTHRITIS AND EFFECT OF CHONDROITIN SULFATE

    Directory of Open Access Journals (Sweden)

    VI Shishkin

    2007-10-01

    Full Text Available Objective. To study features of bioenergetic processes in synovial fluid (SF in osteoarthritis (OA and to reveal influence of chondroitin sulfate (Structum on these processes. Material and methods. SF bioenergetic parameters were analyzed in 15 pts with knee OA receiving structum. SF bioenergetics was assessed with classic enzyme tests and polarographic analysis of oxygen consumption speed by SF cells. Physiological biochemical measures were compared during exacerbation and after treatment. Results. SF pH in OA is significantly shifted to the acidic diapason and bioenergetic processes are transformed with decrease of synovial tissue cells energetic potential (decrease of ATP level and engaging reserve energetic mechanism of creatine phosphate spending. Pharmacological correction of SF cells energetic metabolism can be achieved with chondroprotector structum. Conclusion. SF bioenergetics in OA is changed with glycolysis activation, engaging reserve bioenergetic mechanisms, creatine phosphate catabolism up regulation, and increase of dissociation between respiration and oxidative phosphorylation. pH shift to more acidic zone (from normal 7,4 to 6,85 in OA is a trigger of OA exacerbation. Substitutive therapy with polyanionic drug structum normalizes SF pH and bioenergetic parameters already after three months.

  19. FABRICATION AND IN VITRO EVALUATION OF 5-FLOROURACIL LOADED CHONDROITIN SULFATE-SODIUM ALGINATE MICROSPHERES FOR COLON SPECIFIC DELIVERY.

    Science.gov (United States)

    Raza, Hina; Ranjha, Nazar Muhammad; Razzaq, Rabia; Ansari, Mehvish; Mahmood, Asif; Rashid, Zermina

    2016-01-01

    Chondroitin sulfate and sodium alginate were incorporated in different ratios to prepare glutaraldehyde (GA) crosslinked microspheres by water-in-oil emulsion crosslinking method for delivery of 5-flurouracil (5-FU) to colon. Chemical interaction, surface morphology, thermal degradability, crystallinity evaluation, elemental analysis and drug release results were computed by using FTIR, SEM, DSC and TGA, PXRD, EXD and dissolution studies at pH 1.2, pH 6.8 and pH 7.4, respectively. Results revealed an acetal ring formation, non-porous surfaces, stability up to 450 degrees C with mass loss of 84.31%, variation in carbon and oxygen contents and targeted release at pH 7.4. Different kinetic models were applied on release studies i.e., zero order, first order, Higuchi and Korsmeyer-Peppas. Higuchi model was declared as best fit model based on r2 value (0.99) and mechanism of release was non-Fickian diffusion. A potential approach for colonic delivery of 5-FU was successfully developed. PMID:27180443

  20. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds Improved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration

    Science.gov (United States)

    Gălăţeanu, Bianca; Albu, Mădălina

    2013-01-01

    Cartilage tissue engineering (CTE) applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA) and chondroitin sulfate (CS) were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs) were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffolds based on natural compounds but also to evaluate their in vitro biological performances. Therefore, for prospective CTE, collagen-sericin (Coll-SS) scaffolds improved with HA (5% or 10%) and CS (5% or 10%) were used as temporary physical supports for ASCs and were analyzed in terms of structural, thermal, morphological, and swelling properties and cytotoxic potential. To complete biocompatibility data, ASCs viability and proliferation potential were also assessed. Our studies revealed that Coll-SS hydrogels improved with 10% HA and 5% CS displayed the best biological performances in terms of cell viability, proliferation, morphology, and distribution. Thus, further work will address a novel 3D system including both HA 10% and CS 5% glycoproteins, which will probably be exposed to prochondrogenic conditions in order to assess its potential use in CTE applications. PMID:24308001

  1. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds Improved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Sorina Dinescu

    2013-01-01

    Full Text Available Cartilage tissue engineering (CTE applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA and chondroitin sulfate (CS were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffolds based on natural compounds but also to evaluate their in vitro biological performances. Therefore, for prospective CTE, collagen-sericin (Coll-SS scaffolds improved with HA (5% or 10% and CS (5% or 10% were used as temporary physical supports for ASCs and were analyzed in terms of structural, thermal, morphological, and swelling properties and cytotoxic potential. To complete biocompatibility data, ASCs viability and proliferation potential were also assessed. Our studies revealed that Coll-SS hydrogels improved with 10% HA and 5% CS displayed the best biological performances in terms of cell viability, proliferation, morphology, and distribution. Thus, further work will address a novel 3D system including both HA 10% and CS 5% glycoproteins, which will probably be exposed to prochondrogenic conditions in order to assess its potential use in CTE applications.

  2. Chondroitin sulphate sulphation motif expression in the ontogeny of the intervertebral disc

    Directory of Open Access Journals (Sweden)

    AJ Hayes

    2011-01-01

    Full Text Available Chondroitin sulphate chains on cell and extracellular matrix proteoglycans play important regulatory roles in developing systems. Specific, developmentally regulated, sulphation motifs within the chondroitin glycosaminoglycan structure may help bind, sequester or present bioactive signalling molecules to cells thus modulating their behaviour. Using monoclonal antibodies 3B3(-, 4C3, 6C3 and 7D4, we have mapped the distribution of different chondroitin sulphation epitopes in a rat intervertebral disc developmental series. The sulphation epitopes had complex, dynamic and specific distributions in the disc and vertebral tissues during their differentiation, growth and ageing. At embryonic day [E]15, prior to disc differentiation, 4C3 and 7D4 occurred within the cellular disc condensations whilst 6C3 was present in the notochordal sheath. At E17, post disc differentiation, 4C3 and 7D4 occurred within the nucleus pulposus, inner annulus and vertebral bodies; 3B3(- in the nucleus, inner annulus, annulus/vertebral body interface and perichondrium; and 6C3, ventrally, within the perichondrium. At E19, 3B3(-, 4C3 and 7D4 became further restricted to the nucleus, inner annulus, annulus/vertebral body interface and perichondrium. Prior to birth, all four epitopes occurred within the inner annulus and nucleus, with 6C3 and 7D4 also occurring within the future end-plate. Postnatal expression of the sulphation epitopes was more widespread in the disc and also within the growth plate. At 4 months, the epitopes were associated with chondrocyte clusters within the nucleus; and at 24 months, with annular lesions. Overall, our data suggests that differential sulphation of chondroitin correlates with significant events in development, growth and aging of the rat intervertebral disc.

  3. Chondroitin sulphate sulphation motif expression in the ontogeny of the intervertebral disc.

    Science.gov (United States)

    Hayes, A J; Hughes, C E; Ralphs, J R; Caterson, B

    2011-01-01

    Chondroitin sulphate chains on cell and extracellular matrix proteoglycans play important regulatory roles in developing systems. Specific, developmentally regulated, sulphation motifs within the chondroitin glycosaminoglycan structure may help bind, sequester or present bioactive signalling molecules to cells thus modulating their behaviour. Using monoclonal antibodies 3B3(-), 4C3, 6C3 and 7D4, we have mapped the distribution of different chondroitin sulphation epitopes in a rat intervertebral disc developmental series. The sulphation epitopes had complex, dynamic and specific distributions in the disc and vertebral tissues during their differentiation, growth and ageing. At embryonic day [E]15, prior to disc differentiation, 4C3 and 7D4 occurred within the cellular disc condensations whilst 6C3 was present in the notochordal sheath. At E17, post disc differentiation, 4C3 and 7D4 occurred within the nucleus pulposus, inner annulus and vertebral bodies; 3B3(-) in the nucleus, inner annulus, annulus/vertebral body interface and perichondrium; and 6C3, ventrally, within the perichondrium. At E19, 3B3(-), 4C3 and 7D4 became further restricted to the nucleus, inner annulus, annulus/vertebral body interface and perichondrium. Prior to birth, all four epitopes occurred within the inner annulus and nucleus, with 6C3 and 7D4 also occurring within the future end-plate. Postnatal expression of the sulphation epitopes was more widespread in the disc and also within the growth plate. At 4 months, the epitopes were associated with chondrocyte clusters within the nucleus; and at 24 months, with annular lesions. Overall, our data suggests that differential sulphation of chondroitin correlates with significant events in development, growth and aging of the rat intervertebral disc. PMID:21213210

  4. Differentiation of 3T3-L1 preadipocytes with 3-isobutyl-1-methylxanthine and dexamethasone stimulates cell-associated and soluble chondroitin 4-sulfate proteoglycans

    International Nuclear Information System (INIS)

    The proteoglycans (cell-associated and culture media) in 3T3-L1 preadipocytes in culture were analyzed before and during differentiation into adipocytes. Cells were metabolically labeled with [35S]sulfate and [3H] glucosamine for 24 h and then extracted and analyzed. There was a 1.68 ± 0.07-fold increase in the 35S in medium proteoglycan during differentiation, whereas cell-associated proteoglycan radioactivity showed no increase. Analyses of radiolabeled molecules using ion-exchange chromatography, gel filtration, and high performance liquid chromatography after enzymatic or alkaline digestion indicated that all of the 35S label was recovered as two major species of chondroitin 4-sulfate proteoglycans (CSPG-I and CSPG-II) and 7% as heparan sulfate proteoglycan. CSPG-I has a mass of ∼ 970 kDa with multiple chondroitin sulfate chains (average of 50 kDa each) and a core protein of ∼ 370 kDa including oligosaccharides. CSPG-II has a mass of 140 kDa with one or two chondroitin sulfate chains (average of 68 kDa each) and a core protein of 41 kDa including oligosaccharides. CSPG-I appears to be similar to versican, whereas CSPG-II is similar to decorin and/or biglycan, found in other fibroblastic cells. Cell differentiation was associated with a specific increase in CSPG-I (4.0 ± 0.2-fold in media and 3.2 ± 0.5-fold in the cell-associated form). This system should facilitate study of the functional roles of proteoglycans during growth and differentiation

  5. Differential Expression of Specific Dermatan Sulfate Domains in Renal Pathology.

    Directory of Open Access Journals (Sweden)

    Joost F M Lensen

    Full Text Available Dermatan sulfate (DS, also known as chondroitin sulfate (CS-B, is a member of the linear polysaccharides called glycosaminoglycans (GAGs. The expression of CS/DS and DS proteoglycans is increased in several fibrotic renal diseases, including interstitial fibrosis, diabetic nephropathy, mesangial sclerosis and nephrosclerosis. Little, however, is known about structural alterations in DS in renal diseases. The aim of this study was to evaluate the renal expression of two different DS domains in renal transplant rejection and glomerular pathologies. DS expression was evaluated in normal renal tissue and in kidney biopsies obtained from patients with acute interstitial or vascular renal allograft rejection, patients with interstitial fibrosis and tubular atrophy (IF/TA, and from patients with focal segmental glomerulosclerosis (FSGS, membranous glomerulopathy (MGP or systemic lupus erythematosus (SLE, using our unique specific anti-DS antibodies LKN1 and GD3A12. Expression of the 4/2,4-di-O-sulfated DS domain recognized by antibody LKN1 was decreased in the interstitium of transplant kidneys with IF/TA, which was accompanied by an increased expression of type I collagen, decorin and transforming growth factor beta (TGF-β, while its expression was increased in the interstitium in FSGS, MGP and SLE. Importantly, all patients showed glomerular LKN1 staining in contrast to the controls. Expression of the IdoA-Gal-NAc4SDS domain recognized by GD3A12 was similar in controls and patients. Our data suggest a role for the DS domain recognized by antibody LKN1 in renal diseases with early fibrosis. Further research is required to delineate the exact role of different DS domains in renal fibrosis.

  6. The effects of chondroitin sulfate and serum albumin on the fibrillation of human islet amyloid polypeptide at phospholipid membranes.

    Science.gov (United States)

    Li, Yang; Wang, Li; Lu, Tong; Wei, Ying; Li, Fei

    2016-04-28

    Glycosaminoglycans and serum albumin are important cellular components that regulate the fibril formation of proteins. Whereas the effects of cellular components on the fibrillation of amyloid proteins in bulk solution are widely studied, less attention has been paid to the effects of cellular components on amyloidogenesis occurring at cellular membranes. In this study, we focus on the impacts of chondroitin sulfate A (CSA) and bovine serum albumin (BSA) on the amyloidogenic behaviors of human islet amyloid polypeptide (hIAPP) at phospholipid membranes consisting of neutral POPC and anionic POPG. Using the thioflavin T fluorescence assay, atomic force microscopy, circular dichroism and nuclear magnetic resonance measurements, we demonstrate that CSA has an intensive promotion effect on the fibrillation of hIAPP at the POPC membrane, which is larger than the total effect of CSA alone and POPC alone. The further enhanced promotion of the fibrillation of hIAPP by CSA at the neutral membrane is associated with a specific interaction of CSA with POPC. In contrast, the activity of BSA as an inhibitor of hIAPP fibrillation observed in bulk solution decreases dramatically in the presence of POPG vesicles. The dramatic loss of the inhibition efficiency of BSA arises essentially from a specific interaction with the POPG component, but not simply from suppression by an opposite effect of the anionic membrane. The findings in this study suggest that the interactions between membranes and cellular components may have a significant effect on the activity of the cellular components in regulating the fibrillation of hIAPP. PMID:27067251

  7. Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: cartilage regeneration.

    Science.gov (United States)

    Lee, Paul; Tran, Katelyn; Chang, Wei; Shelke, Namdev B; Kumbar, Sangamesh G; Yu, Xiaojun

    2014-08-01

    Cartilage degeneration is the major cause of disability and poses several challenges to repair and regenerate. Conventional surgical treatments often induce fibrous tissues and compromise its function. Alternative tissue engineering strategies utilized scaffolds, factors and cells alone or in combination with some degree of success. This study reports the use of nanostructured biomimetic scaffold system in regulating the rat bone marrow stem cells (rBMSCs) differentiation into chondrogenic lineage in vitro. The biometric scaffold is essentially a micro-porous polycaprolactone (PCL) spiral structure decorated with sparsely spaced bioactive PCL nanofibers. The bioactivity stems from the use of two major components of hyaline cartilage extracellular matrix (ECM) namely chondroitin sulfate (CS) and hyaluronic acid (HYA). The PCL spiral structure was surface functionalized with PCL nanofibers encapsulated with CS (20% (w/w)) and HYA (0.2% (w/w)). In order to retain and sustain the release of CS and HYA nanofibers were cross-linked using carbodiimide chemistry. This study also evaluated the effect of nanofiber alignment on rBMSCs differentiation and evaluated the production of characteristic hyaline cartilage proteins namely collagen type II and aggrecan in vitro up to 28 days. Rat bone marrow derived stem cells cultured on the aligned nanofibers expressed significantly elevated levels of collagen type II and aggrecan secretions (western blots) as compared to scaffolds decorated with random fibers and tissue culture polystyrene (TCPS). This fiber alignment dependent expression of collagen type II and aggrecan secretion were further confirmed through immunofluorescence staining. This biomimetic and bioactive scaffold may serve as a serve as an efficient scaffold system for cartilage regeneration. PMID:25016647

  8. Chondroitin sulfate in normal human plasma is modified depending on the age. Its evaluation in patients with pseudoxanthoma elasticum.

    Science.gov (United States)

    Volpi, Nicola; Maccari, Francesca

    2006-08-01

    Plasma chondroitin sulfate (CS) amount and charge density were determined in 45 healthy volunteers (control group), 45 pseudoxanthoma elasticum (PXE)-affected patients and 19 healthy carriers by using fluorophore-assisted carbohydrate electrophoresis (FACE) and HPLC equipped with postcolumn derivatization and fluorescence detection. The mean values of CS amount were 4.9+/-1.21 for volunteers, 4.7+/-1.40 for PXE subjects and 4.4+/-1.44 for the carriers. No significant differences were found for the three human subjects groups. On the contrary, by considering the age of normal volunteers, a significant increase of plasma CS amount was measured. In fact, the volunteers aging from 17 to 40 years (mean 32.1) showed a CS concentration of 4.3+/-1.30 while the group ranging from 50 to 74 years (mean 56.9) had a value of 5.6+/-1.16 with a significant increase of +30.2%. The same significant increase in CS plasma content with increasing age was measured for PXE-affected and healthy carriers group. Extracted plasma CS was evaluated for the main two unsaturated disaccharides, non-sulfated and 4-monosulfated, and the charge density determined. The mean values were 0.54+/-0.13 for volunteers, 0.60+/-0.15 for PXE subjects and 0.50+/-0.15 for the carriers. A significant increase of +11.1% was found between the PXE patients and healthy human group but no differences were calculated between the control group and the carriers. Furthermore, besides a CS amount, the volunteers aging from 17 to 40 years (mean 32.1) showed a charge density of 0.53+/-0.14 while the group ranging from 50 to 74 years (mean 56.9) had a value of 0.58+/-0.17 with a significant increase of +9.4%. The same trend was measured for the healthy carriers group. The CS charge density of PXE-affected subjects was found to increase significantly more than healthy controls depending on the age. In fact, the PXE patients aging from 10 to 40 years (mean 29.3) showed a charge density of 0.56+/-0.14 while the group ranging

  9. POSSIBLE ADVERSE EFFECTS OF ONCE-DAILY ORAL THERAPEUTIC DOSE OF EITHER GLUCOSAMINE SULFATE OR GLUCOSAMINE/CHONDROITIN SULFATE ON BLOOD CELLS COUNT IN RATS

    Directory of Open Access Journals (Sweden)

    Noushi Abeer Amer

    2013-10-01

    Full Text Available This study was designed to investigate the possible adverse effects that may be induced by once-daily therapeutic doses of either glucosamine sulfate or glucosamine/chondroitin sulfate administered orally to rats for 30 days on blood cells (RBCs, WBCs and platelets counts. Forty three white healthy adult Albino rats of both sexes were selected randomly for this study. They were divided into three groups (І, ІІ, ІІІ. Group І received 0.05 ml distilled water, group ІІ received once daily therapeutic dose of glucosamine sulphate and group ІІІ received once daily therapeutic dose of glucosamine sulphate/chondroitin sulphate orally. The treatment period was for 30 days. At day 31, the animals were subjected to light ether anaesthesia and blood was withdrawn from the eye by retro-orbital puncture for the estimation of blood cells (RBCs, WBCs and platelets count. Treatment with single daily therapeutic dose of either GS alone or GS/CS for 30 days on blood cells count in rats produced a non significant change in RBCs counts compared to control and to each other. There were no statistically significant differences in total WBCs count at day 31 in animals administered once daily therapeutic dose of either GS or GS/CS orally compared to control group. In contrast, there was a statistically significant elevation in total WBCs count in GS/CS- treated rats compared to that in the GS-treated rats. The results of this study also showed that there was statistically significant decrease in neutrophils percentage in both drug treatment groups compared to control group. A statistically significant reduction in the percentage of monocytes was observed in GS/CS group compared to the corresponding percentage in animals of control group; while, there were non-significant differences in the percentage of monocytes in GS treated rats compared to that in the control group. There were no significant differences in the percentage of monocytes at day 31 of GS

  10. [Sensitive Determination of Chondroitin Sulfate by Fluorescence Recovery of an Anionic Aluminum Phthalocyanine-Cationic Surfactant Ion-Association Complex Used as a Fluorescent Probe Emitting at Red Region].

    Science.gov (United States)

    Chen, Lin; Huang, Ping; Yang, Hui-qing; Deng, Ya-bin; Guo, Meng-lin; Li, Dong-hui

    2015-08-01

    Determination of chondroitin sulfate in the biomedical field has an important value. The conventional methods for the assay of chondroitin sulfate are still unsatisfactory in sensitivity, selectivity or simplicity. This work aimed at developing a novel method for sensitive and selective determination of chondroitin sulfate by fluorimetry. We found that some kinds of cationic surfactants have the ability to quench the fluorescence of tetrasulfonated aluminum phthalocyanine (AlS4Pc), a strongly fluorescent compound which emits at red region, with high efficiency. But, the fluorescence of the above-mentioned fluorescence quenching system recovered significantly when chondroitin sulfate (CS) exits. Tetradecyl dimethyl benzyl ammonium chloride(TDBAC) which was screened from all of the candidates of cationic surfactants was chosen as the quencher because it shows the most efficient quenching effect. It was found that the fluorescence of AlS4Pc was extremely quenched by TDBAC because of the formation of association complex between AlS4Pc and TDBAC. Fluorescence of the association complex recovered dramatically after the addition of chondroitin sulfate (CS) due to the ability of chondroitin sulfate to shift the association equilibrium of the association, leading to the release of AlS4Pc, thus resulting in an increase in the fluorescence of the reaction system. Based on this phenomenon, a novel method with simplicity, accuracy and sensitivity was developed for quantitative determination of CS. Factors including the reaction time, influencing factors and the effect of coexisting substances were investigated and discussed. Under optimum conditions the linear range of the calibration curve was 0.20~10.0 μg · mL(-1). The detection limit for CS was 0.070 μg · mL(-1). The method has been applied to the analysis of practical samples with satisfied results. This work expands the applications of AlS4Pc in biomedical area. PMID:26672294

  11. Optimization of enzymatic hydrolysis of chondroitin sulfate extraction by response surface methodology%响应面法优化硫酸软骨素提取的酶解工艺

    Institute of Scientific and Technical Information of China (English)

    陈亚; 徐晓燕

    2012-01-01

    目的 以猪喉软骨为原料,提取硫酸软骨素,优化酶解工艺条件.方法 采用碱提-酶解-醇沉的方法提取硫酸软骨素,在单因素试验的基础上,通过响应面分析优化酶解工艺.结果 酶解最佳工艺组合为:胰酶浓度1.0%、pH值8.6、酶解温度46℃、酶解时间2.8h.结论 采用上述组合,以氨基葡萄糖含量为指标,氨基葡萄糖含量达25.94%.研究结果具有工业应用价值.%Purpose The chondroitin sulfate was isolated from pig laryngeal cartilage. The technique of enzymatic hydrolysis of chondroitin sulfate extraction was improved. Methods The chondroitin sulfate was isolated through the process of alkali extraction-enzymatic hydrolysis-alcohol precipitation. Based on the single factor tests, the technique of enzymatic hydrolysis of chondroitin sulfate extraction was improved by response surface methodology. Results To extract the chondroitin sulfate from pig laryngeal cartilage in enzymatic hydrolysis, the best combination of extracting technique was; the enzyme concentration of 1.0% ,8. 6 of pH, the temperature of 46℃ , and the time of 2. 8 h. Conclusion The content of glu-cosamine in the chondroitin sulfate was 25. 94% after the optimization of the technique. The results can be calculated for industrial use.

  12. Influence of chondroitin 6-sulfate oligosaccharide unit addition on the immunopathogenicity of human thyroglobulin in cba/j(h-2k) mice. Multiple effects on antigen processing and t cell responses

    OpenAIRE

    Conte, Marisa

    2006-01-01

    The site of type D (chondroitin 6-sulfate) oligosaccharide unit addition to human thyroglobulin (hTg) was localized. Furthermore, hTg and its fractions endowed with chondroitin 6-sulfate oligosaccaride units (hTg-CS) and devoid of it (hTg-CS-), were compared, with respect to their ability to induce experimental autoimmune thyroiditis (EAT) in CBA/J(H-2k) mice, by subcutaneous administration, in the presence of complete adjuvant. HTg was chromatographically separated into hTg-CS and hTg-CS-...

  13. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91–93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability. - Highlights: • HA/CS/PAAc hydrogels were synthesized by gamma-ray irradiation. • HA/CS/PAAc hydrogels exhibited 91–93% gel fractions under 15 kGy radiation. • All of the HA/CS/PAAc hydrogels exhibited high water contents of over 90%. • The hydrogel samples showed relatively high cell viabilities of more than

  14. Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans.

    Science.gov (United States)

    Martinez, Pierre; Denys, Agnès; Delos, Maxime; Sikora, Anne-Sophie; Carpentier, Mathieu; Julien, Sylvain; Pestel, Joël; Allain, Fabrice

    2015-05-01

    Macrophages are major cells of inflammatory process and take part in a large number of physiological and pathological processes. According to tissue environment, they can polarize into pro-inflammatory (M1) or alternative (M2) cells. Although many evidences have hinted to a potential role of cell-surface glycosaminoglycans (GAGs) in the functions of macrophages, the effect of M1 or M2 polarization on the biosynthesis of these polysaccharides has not been investigated so far. GAGs are composed of repeat sulfated disaccharide units. Heparan (HS) and chondroitin/dermatan sulfates (CS/DS) are the major GAGs expressed at the cell membrane. They are involved in numerous biological processes, which rely on their ability to selectively interact with a large panel of proteins. More than 20 genes encoding sulfotransferases have been implicated in HS and CS/DS biosynthesis, and the functional repertoire of HS and CS/DS has been related to the expression of these isoenzymes. In this study, we analyzed the expression of sulfotransferases as a response to macrophage polarization. We found that M1 and M2 activation drastically modified the profiles of expression of numerous HS and CS/DS sulfotransferases. This was accompanied by the expression of GAGs with distinct structural features. We then demonstrated that GAGs of M2 macrophages were efficient to present fibroblast growth factor-2 in an assay of tumor cell proliferation, thus indicating that changes in GAG structure may contribute to the functions of polarized macrophages. Altogether, our findings suggest a regulatory mechanism in which fine modifications in GAG biosynthesis may participate to the plasticity of macrophage functions. PMID:25504800

  15. cDNA cloning of the basement membrane chondroitin sulfate proteoglycan core protein, bamacan: a five domain structure including coiled-coil motifs

    DEFF Research Database (Denmark)

    Wu, R R; Couchman, J R

    1997-01-01

    Basement membranes contain several proteoglycans, and those bearing heparan sulfate glycosaminoglycans such as perlecan and agrin usually predominate. Most mammalian basement membranes also contain chondroitin sulfate, and a core protein, bamacan, has been partially characterized. We have now...... obtained cDNA clones encoding the entire bamacan core protein of Mr = 138 kD, which reveal a five domain, head-rod-tail configuration. The head and tail are potentially globular, while the central large rod probably forms coiled-coil structures, with one large central and several very short interruptions....... This molecular architecture is novel for an extracellular matrix molecule, but it resembles that of a group of intracellular proteins, including some proposed to stabilize the mitotic chromosome scaffold. We have previously proposed a similar stabilizing role for bamacan in the basement membrane matrix...

  16. Luminescence response of an osmium(II) complex to macromolecular polyanions for the detection of heparin and chondroitin sulfate in biomedical preparations.

    Science.gov (United States)

    Wu, Hao; Wu, Jain; Saez, Christopher; Campana, Maria; Megehee, Elise G; Wang, Enju

    2013-12-01

    Heparin, dextran sulfate (DS), chondroitin sulfate (CS), and carrageenan are found to enhance the luminescence intensity of an osmium(II) carbonyl complex with phenanthroline (phen) and 4-phenylpyridine (4-phpy) ligands in aqueous and ethanol solutions. The enhancing effect of the polyanions on the luminescence of the complex is heavily dependent on the sulfate content and other factors such as structure, solubility, and counter ions of the polyanion. The highly sulfated dextran and ι-carrageenan have the most profound effect, while the low charged κ-carrageenan and CS have the least response in aqueous solution. All polyanions exhibited enhanced luminescence intensity of the complex in ethanol solutions, and even the low charged CS and κ-carrageenan enhanced the luminescence more than 4 times. DS contamination of the sodium heparin at 5% can show a significant increase in luminescence response. The osmium complex is found to be highly successful in the fast and sensitive detection of heparin in commercial injectable samples with various backgrounds as well as the detection of CS in over the counter food supplement tablets. PMID:24267085

  17. Impaired elastin fiber assembly related to reduced 67-kD elastin-binding protein in fetal lamb ductus arteriosus and in cultured aortic smooth muscle cells treated with chondroitin sulfate.

    OpenAIRE

    Hinek, A; Mecham, R. P.; Keeley, F; M. Rabinovitch

    1991-01-01

    In the fetal ductus arteriosus (DA) disruption in the assembly of elastin fibers is associated with intimal thickening and we previously reported that fetal lamb DA smooth muscle cells incubated with endothelial conditioned medium produce two-fold more chondroitin sulfate (CS) compared with aorta (Ao) cells (Boudreau, N., and M. Rabinovitch. 1991. Lab. Invest. 64:187-199). We hypothesized that CS or dermatan sulfate (DS), both N-acetylgalactosamine glycosaminoglycans (GAGs), may be similar to...

  18. A straightforward, quantitative ultra-performance liquid chromatography-tandem mass spectrometric method for heparan sulfate, dermatan sulfate and chondroitin sulfate in urine: an improved clinical screening test for the mucopolysaccharidoses.

    Science.gov (United States)

    Zhang, Haoyue; Wood, Tim; Young, Sarah P; Millington, David S

    2015-02-01

    Mucopolysaccharidoses (MPS) are complex storage disorders that result in the accumulation of glycosaminoglycans (GAGs) in urine, blood, brain and other tissues. Symptomatic patients are typically screened for MPS by analysis of GAG in urine. Current screening methods used in clinical laboratories are based on colorimetric assays that lack the sensitivity and specificity to reliably detect mild GAG elevations that occur in some patients with MPS. We have developed a straightforward, reliable method to quantify chondroitin sulfate (CS), dermatan sulfate (DS) and heparan sulfate (HS) in urine by stable isotope dilution tandem mass spectrometry. The GAGs were methanolyzed to uronic acid-N-acetylhexosamine or iduronic acid-N-glucosamine dimers and mixed with stable isotope labeled internal standards derived from deuteriomethanolysis of GAG standards. Specific dimers derived from HS, DS and CS were separated by ultra-performance liquid chromatography and analyzed by electrospray ionization tandem mass spectrometry using selected reaction monitoring for each targeted GAG product and its corresponding internal standard. The method was robust with a mean inaccuracy from 1 to 15%, imprecision below 11%, and a lower limit of quantification of 0.4mg/L for CS, DS and HS. We demonstrate that the method has the required sensitivity and specificity to discriminate patients with MPS III, MPS IVA and MPS VI from those with MPS I or MPS II and can detect mildly elevated GAG species relative to age-specific reference intervals. This assay may also be used for the monitoring of patients following therapeutic intervention. Patients with MPS IVB are, however, not detectable by this method. PMID:25458519

  19. Structure of the DBL3x domain of pregnancy-associated malaria protein VAR2CSA complexed with chondroitin sulfate A

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K.; Gittis, A.G.; Nguyen, P.; Gowda, D.C.; Miller, L.H.; Garboczi, D.N. (NIH); (Penn)

    2008-09-19

    Plasmodium falciparum-infected erythrocytes bind to chondroitin sulfate A (CSA) in the placenta via the VAR2CSA protein, a member of the P. falciparum erythrocyte membrane protein-1 family, leading to life-threatening malaria in pregnant women with severe effects on their fetuses and newborns. Here we describe the structure of the CSA binding DBL3x domain, a Duffy binding-like (DBL) domain of VAR2CSA. By forming a complex of DBL3x with CSA oligosaccharides and determining its structure, we have identified the CSA binding site to be a cluster of conserved positively charged residues on subdomain 2 and subdomain 3. Mutation or chemical modification of lysine residues at the site markedly diminished CSA binding to DBL3x. The location of the CSA binding site is an important step forward in the molecular understanding of pregnancy-associated malaria and offers a new target for vaccine development.

  20. Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery

    Science.gov (United States)

    Lo, Yu-Lun; Chou, Han-Lin; Liao, Zi-Xian; Huang, Shih-Jer; Ke, Jyun-Han; Liu, Yu-Sheng; Chiu, Chien-Chih; Wang, Li-Fang

    2015-04-01

    MicroRNA-128 (miR-128) is an attractive therapeutic molecule with powerful glioblastoma regulation properties. However, miR-128 lacks biological stability and leads to poor delivery efficacy in clinical applications. In our previous study, we demonstrated two effective transgene carriers, including polyethylenimine (PEI)-decorated superparamagnetic iron oxide nanoparticles (SPIONs) as well as chemically-conjugated chondroitin sulfate-PEI copolymers (CPs). In this contribution, we report optimized conditions for coating CPs onto the surfaces of SPIONs, forming CPIOs, for magneto-gene delivery systems. The optimized weight ratio of the CPs and SPIONs is 2 : 1, which resulted in the formation of a stable particle as a good transgene carrier. The hydrodynamic diameter of the CPIOs is ~136 nm. The gel electrophoresis results demonstrate that the weight ratio of CPIO/DNA required to completely encapsulate pDNA is >=3. The in vitro tests of CPIO/DNA were done in 293 T, CRL5802, and U87-MG cells in the presence and absence of an external magnetic field. The magnetofection efficiency of CPIO/DNA was measured in the three cell lines with or without fetal bovine serum (FBS). CPIO/DNA exhibited remarkably improved gene expression in the presence of the magnetic field and 10% FBS as compared with a gold non-viral standard, PEI/DNA, and a commercial magnetofection reagent, PolyMag/DNA. In addition, CPIO/DNA showed less cytotoxicity than PEI/DNA and PolyMag/DNA against the three cell lines. The transfection efficiency of the magnetoplex improved significantly with an assisted magnetic field. In miR-128 delivery, a microRNA plate array and fluorescence in situ hybridization were used to demonstrate that CPIO/pMIRNA-128 indeed expresses more miR-128 with the assisted magnetic field than without. In a biodistribution test, CPIO/Cy5-DNA showed higher accumulation at the tumor site where an external magnet is placed nearby.MicroRNA-128 (miR-128) is an attractive therapeutic molecule

  1. Layer-by-layer assembly of type I collagen and chondroitin sulfate on aminolyzed PU for potential cartilage tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    He Xianyun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China) and National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China) and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wu Gang, E-mail: imwugang@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable polyurethane (PU) was successfully synthesized. Black-Right-Pointing-Pointer Surface aminolyzing of the PU was performed by reacting it with 1,3-propanediamine. Black-Right-Pointing-Pointer Collagen and chondroitin sulfate were deposited alternately on the PU surface. - Abstract: In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly({epsilon}-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and {sup 1}H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.

  2. Layer-by-layer assembly of type I collagen and chondroitin sulfate on aminolyzed PU for potential cartilage tissue engineering application

    International Nuclear Information System (INIS)

    Highlights: ► A novel biodegradable polyurethane (PU) was successfully synthesized. ► Surface aminolyzing of the PU was performed by reacting it with 1,3-propanediamine. ► Collagen and chondroitin sulfate were deposited alternately on the PU surface. - Abstract: In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly(ε-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and 1H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.

  3. Synthesis of heparan and chondroitin sulfate proteoglycans by human endothelial cells is differentially affected by herpes simplex virus type I (HSV-1)

    Energy Technology Data Exchange (ETDEWEB)

    Kaner, R.J.; Iozzo, R.V.; Ziaie, Z.; Kefalides, N.A.

    1987-05-01

    Effects of HSV-1 infection on proteoglycan (PG) synthesis by human EC were studied as a model of EC injury. Confluent cultures of early passage umbilical vein EC were infected with HSV-1 at multiplicities of infection (MOI) from 0.001 to 1.0. In uninfected cultures, over 90% of the total (/sup 35/S)sulfate-labeled macromolecules were divided into two major peaks on ion-exchange chromatography. One contained heparan sulfate (HSPG) and the other chondroitin/dermatan sulfate (CS/DSPG) proteoglycan. HSV-1 infection produced a dose-dependent inhibition of total PG synthesis of up to 75%. There were widely divergent effects on individual PG species. Inhibition of CS/DSPG synthesis was much more marked than that of the HSPG. At a MOI of 1.0, CS/DSPG was present at 13% of control values, compared to 30% for HSPG. There was about one log difference in the dose of virus required to produce 50% inhibition of cell/matrix HSPG relative to CS/DSPG. HSV-1 did not inhibit the generation of an undersulfated HSPG, which contained shorter glycosaminoglycan chains than the predominant species. The authors conclude that HSV-1 infection of human EC produces complex differential effects on proteoglycan synthesis.

  4. Synthesis of heparan and chondroitin sulfate proteoglycans by human endothelial cells is differentially affected by herpes simplex virus type I (HSV-1)

    International Nuclear Information System (INIS)

    Effects of HSV-1 infection on proteoglycan (PG) synthesis by human EC were studied as a model of EC injury. Confluent cultures of early passage umbilical vein EC were infected with HSV-1 at multiplicities of infection (MOI) from 0.001 to 1.0. In uninfected cultures, over 90% of the total [35S]sulfate-labeled macromolecules were divided into two major peaks on ion-exchange chromatography. One contained heparan sulfate (HSPG) and the other chondroitin/dermatan sulfate (CS/DSPG) proteoglycan. HSV-1 infection produced a dose-dependent inhibition of total PG synthesis of up to 75%. There were widely divergent effects on individual PG species. Inhibition of CS/DSPG synthesis was much more marked than that of the HSPG. At a MOI of 1.0, CS/DSPG was present at 13% of control values, compared to 30% for HSPG. There was about one log difference in the dose of virus required to produce 50% inhibition of cell/matrix HSPG relative to CS/DSPG. HSV-1 did not inhibit the generation of an undersulfated HSPG, which contained shorter glycosaminoglycan chains than the predominant species. The authors conclude that HSV-1 infection of human EC produces complex differential effects on proteoglycan synthesis

  5. Glucosamine sulfate

    Science.gov (United States)

    ... to control arthritis pain. These creams usually contain camphor and other ingredients in addition to glucosamine. Glucosamine ... in combination with chondroitin sulfate, shark cartilage, and camphor for up to 8 weeks. Glucosamine sulfate can ...

  6. The efficacy and tolerability of the slow-acting combined agent glucosamine and chondroitin sulfate in gonarthrosis patients tacking no nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    A. P. Rebrov

    2015-01-01

    Full Text Available Objective: to evaluate the efficacy and tolerability of the combined symptomatic slow-acting combined agent Theraflex in gonarthrosis patients untreated with nonsteroidal antiinflammatory drugs (NSAIDs.Patients and methods. The investigation enrolled 84 patients (78 women and 6 men aged 55.23±7.36 years with knee arthritis lasting 6.2±0.98 years who were blindly randomized into 2 groups. A study group took Theraflex (chondroitin sulfate 400 mg and glucosamine sulfate 500 mg with or without acetaminophen. A comparison group received acetaminophen only. At baseline and 3 and 6 months after treatment, the investigators assessed changes in the magnitude of osteoarthritis (OA using WOMAC and Lequen's indices, evaluated the therapeutic efficiency rated by a patient and a physician according to the visual analogue scale, and took into account adverse reactions (AR.Results. All the patients taking Theraflex for 6 months showed a positive effect in substantially lowering WOMAC and Lequen's indices and reducing pain and needs for analgesics as compared to both the values at baseline and those obtained in the patients receiving acetaminophen only.Conclusion. In osteoarthritis patients untreated with NSAIDs, Theraflex treatment was associated with a reduction in pain syndrome and stiffness and with better function and lower needs for analgesics. Six-month Theraflex therapy did not cause serious ARs, as well as in patients having controlled gastrointestinal and renal diseases and hypertension

  7. Mice Deficient in N-Acetylgalactosamine 4-Sulfate 6-O-Sulfotransferase Are Unable to Synthesize Chondroitin/Dermatan Sulfate containing N-Acetylgalactosamine 4,6-Bissulfate Residues and Exhibit Decreased Protease Activity in Bone Marrow-derived Mast Cells*

    OpenAIRE

    Ohtake-Niimi, Shiori; Kondo, Sachiko; Ito, Tatsuro; Kakehi, Saori; Ohta, Tadayuki; Habuchi, Hiroko; Kimata, Koji; Habuchi, Osami

    2010-01-01

    Chondroitin sulfate (CS) and dermatan sulfate (DS) containing N-acetylgalactosamine 4,6-bissulfate (GalNAc(4,6-SO4)) show various physiological activities through interacting with numerous functional proteins. N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3′-phosphoadenosine 5′-phosphosulfate to position 6 of N-acetylgalactosamine 4-sulfate in CS or DS to yield GalNAc(4,6-SO4) residues. We here report generation of transgenic mice that lack GalNAc4...

  8. [Reactivity of antibodies to collagen types I to IV and antibodies to chondroitin sulfate in the spleen].

    Science.gov (United States)

    Galbavý, S; Ruzicková, M; Surmíková, E; Danihel, L; Porubský, J; Papincák, J; Holesa, S; Trnka, J

    1996-02-01

    Antibodies to collagen type I and III reacted negatively, antibodies to collagen type IV positively with reticulin, trabeculae and circumferent reticulum of lymphatic sheaths, poorly positively with capsula, strongly positively with subcapsular zone. Antibodies to collagen type II reacted positively with capsula, poorly with subcapsular zone, strongly with sinus wall and poorly with trabeculae. They did not react with circumferent reticulum of periarterial lymphoid sheaths. Antibodies to collagen type II and IV reacted positively with central arteries. Antibodies to chondroitinsulphate C reacted poorly and antibodies to chondroitinsulphate B strongly positively with sinus walls and oval cells spread in the white and red pulpa. Antibodies to chondroitin sulphate A reacted similarly as antibodies to chondroitinsulphate B. PMID:9560890

  9. Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria.

    Science.gov (United States)

    Clausen, Thomas M; Christoffersen, Stig; Dahlbäck, Madeleine; Langkilde, Annette Eva; Jensen, Kamilla E; Resende, Mafalda; Agerbæk, Mette Ø; Andersen, Daniel; Berisha, Besim; Ditlev, Sisse B; Pinto, Vera V; Nielsen, Morten A; Theander, Thor G; Larsen, Sine; Salanti, Ali

    2012-07-01

    Malaria is a major global health problem. Pregnant women are susceptible to infection regardless of previously acquired immunity. Placental malaria is caused by parasites capable of sequestering in the placenta. This is mediated by VAR2CSA, a parasite antigen that interacts with chondroitin sulfate A (CSA). One vaccine strategy is to block this interaction with VAR2CSA-specific antibodies. It is a priority to define a small VAR2CSA fragment that can be used in an adhesion blocking vaccine. In this, the obvious approach is to define regions of VAR2CSA involved in receptor binding. It has been shown that full-length recombinant VAR2CSA binds specifically to CSA with nanomolar affinity, and that the CSA-binding site lies in the N-terminal part of the protein. In this study we define the minimal binding region by truncating VAR2CSA and analyzing CSA binding using biosensor technology. We show that the core CSA-binding site lies within the DBL2X domain and parts of the flanking interdomain regions. This is in contrast to the idea that single domains do not possess the structural requirements for specific CSA binding. Small-angle x-ray scattering measurements enabled modeling of VAR2CSA and showed that the CSA-binding DBL2X domain is situated in the center of the structure. Mutating classic sulfate-binding sites in VAR2CSA, along with testing dependence of ionic interactions, suggest that the CSA binding is not solely dependent on the sulfated CSA structure. Based on these novel PfEMP1 structure-function studies, we have constructed a small VAR2CSA antigen that has the capacity to induce highly adhesion-blocking antibodies. PMID:22570492

  10. Structural and Functional Insight into How the Plasmodium falciparum VAR2CSA Protein Mediates Binding to Chondroitin Sulfate A in Placental Malaria*

    Science.gov (United States)

    Clausen, Thomas M.; Christoffersen, Stig; Dahlbäck, Madeleine; Langkilde, Annette Eva; Jensen, Kamilla E.; Resende, Mafalda; Agerbæk, Mette Ø.; Andersen, Daniel; Berisha, Besim; Ditlev, Sisse B.; Pinto, Vera V.; Nielsen, Morten A.; Theander, Thor G.; Larsen, Sine; Salanti, Ali

    2012-01-01

    Malaria is a major global health problem. Pregnant women are susceptible to infection regardless of previously acquired immunity. Placental malaria is caused by parasites capable of sequestering in the placenta. This is mediated by VAR2CSA, a parasite antigen that interacts with chondroitin sulfate A (CSA). One vaccine strategy is to block this interaction with VAR2CSA-specific antibodies. It is a priority to define a small VAR2CSA fragment that can be used in an adhesion blocking vaccine. In this, the obvious approach is to define regions of VAR2CSA involved in receptor binding. It has been shown that full-length recombinant VAR2CSA binds specifically to CSA with nanomolar affinity, and that the CSA-binding site lies in the N-terminal part of the protein. In this study we define the minimal binding region by truncating VAR2CSA and analyzing CSA binding using biosensor technology. We show that the core CSA-binding site lies within the DBL2X domain and parts of the flanking interdomain regions. This is in contrast to the idea that single domains do not possess the structural requirements for specific CSA binding. Small-angle x-ray scattering measurements enabled modeling of VAR2CSA and showed that the CSA-binding DBL2X domain is situated in the center of the structure. Mutating classic sulfate-binding sites in VAR2CSA, along with testing dependence of ionic interactions, suggest that the CSA binding is not solely dependent on the sulfated CSA structure. Based on these novel PfEMP1 structure-function studies, we have constructed a small VAR2CSA antigen that has the capacity to induce highly adhesion-blocking antibodies. PMID:22570492

  11. Influence of charge on FITC-BSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers

    Directory of Open Access Journals (Sweden)

    Hu CS

    2012-09-01

    Full Text Available Chieh-shen Hu,1 Chiao-hsi Chiang,2 Po-da Hong,1,4,* Ming-kung Yeh1–3,*1Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology; 2School of Pharmacy, National Defence Medical Center; 3Bureau of Pharmaceutical Affairs, Ministry of National Defence Medical Affairs Bureau; 4Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan, Republic of China*These authors contributed equally to this workBackground and methods: Chondroitin sulfate-chitosan (ChS-CS nanoparticles and positively and negatively charged fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA-loaded ChS-CS nanoparticles were prepared and characterized. The properties of ChS-CS nanoparticles, including cellular uptake, cytotoxicity, and transepithelial transport, as well as findings on field emission-scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy were evaluated in human epithelial colorectal adenocarcinoma (Caco-2 fibroblasts. ChS-CS nanoparticles with a mean particle size of 250 nm and zeta potentials ranging from –30 to +18 mV were prepared using an ionic gelation method.Results: Standard cell viability assays demonstrated that cells incubated with ChS-CS and FITC-BSA-loaded ChS-CS nanoparticles remained more than 95% viable at particle concentrations up to 0.1 mg/mL. Endocytosis of nanoparticles was confirmed by confocal laser scanning microscopy and measured by flow cytometry. Ex vivo transepithelial transport studies using Caco-2 cells indicated that the nanoparticles were effectively transported into Caco-2 cells via endocytosis. The uptake of positively charged FITC-BSA-loaded ChS-CS nanoparticles across the epithelial membrane was more efficient than that of the negatively charged nanoparticles.Conclusion: The ChS-CS nanoparticles fabricated in this study were

  12. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study.

    Science.gov (United States)

    Bhowmick, Sirsendu; Scharnweber, Dieter; Koul, Veena

    2016-05-01

    Fortifying the scaffold with bioactive molecules and glycosaminoglycans (GAGs), is an efficient way to design new generation tissue engineered biomaterials. In this study, we evaluated the synergistic effect of electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) loaded with sericin and, contact co-culture of human mesenchymal stem cells (hMSCs)-keratinocytes on hMSCs' differentiation towards epithelial lineage. Cationic gelatin is prepared with one step novel synthesis process by grafting quaternary ammonium salts to the backbone of gelatin. Release kinetics studies showed that Fickian diffusion is the major release mechanism for both GAGs and sericin/gelatin. In vitro biocompatibility of the electrospun scaffold was evaluated in terms of LDH and DNA quantification assay on human foreskin fibroblast, human keratinocyte and hMSC. Significant proliferation (∼ 4-6 fold) was detected after culturing all three cell on the electrospun scaffold containing sericin. After 5 days of contact co-culture, results revealed that electrospun scaffold containing sericin promote epithelial differentiation of hMSC in terms of several protein markers (keratin 14, ΔNp63α and Pan-cytokeratin) and gene expression of some dermal proteins (keratin 14, ΔNp63α). Findings of this study will foster the progress of current skin tissue engineering scaffolds by understanding the skin regeneration and wound healing process. PMID:26946262

  13. Reorganization of the 3D matrix of polyelectrolytes complexes of chitosan/chondroitin sulfate swollen in different conditions of pH and immersion time

    International Nuclear Information System (INIS)

    The chitosan (CT), a polysaccharide that has excellent properties for use as biomaterials, shows cationic nature and properties of high charge density in acidic solutions, thus CT can form complex polyelectrolyte (PEC) with polyanionic moieties such as the chondroitin sulfate (CS), a key component of cartilage matrix. We studied the reorganization of chains on 3D matrix of CT/CS PEC at swollen state in different conditions of pH and immersion time. It was verified that this PEC (QT/CS) has the capacity to reorganize its 3D matrix but it depends of the pH of the medium in which it is swelled and the time that remains immersed. The reorganization of the 3D matrix is caused by the reordering of the chains forming the PEC after the release of the CS, that occurs mainly at pH values higher than or close to the pKa of CT (pKa CT) . Such reorganization was detected by X-ray diffraction profiles and allows an increase in crystallinity, thermal stability and pore size of the PEC. This shows that the PEC produced can be processed to suit its use as bio material, applied i.e. as drugs release devices. (author)

  14. Characterization of injectable hydrogels based on poly(N-isopropylacrylamide)-g-chondroitin sulfate with adhesive properties for nucleus pulposus tissue engineering.

    Science.gov (United States)

    Wiltsey, Craig; Kubinski, Pamela; Christiani, Thomas; Toomer, Katelynn; Sheehan, Joseph; Branda, Amanda; Kadlowec, Jennifer; Iftode, Cristina; Vernengo, Jennifer

    2013-04-01

    The goal of this work is to develop an injectable nucleus pulposus (NP) tissue engineering scaffold with the ability to form an adhesive interface with surrounding disc tissue. A family of in situ forming hydrogels based on poly(N-isopropylacrylamide)-graft-chondroitin sulfate (PNIPAAm-g-CS) were evaluated for their mechanical properties, bioadhesive strength, and cytocompatibility. It was shown experimentally and computationally with the Neo-hookean hyperelastic model that increasing the crosslink density and decreasing the CS concentration increased mechanical properties at 37 °C, generating several hydrogel formulations with unconfined compressive modulus values similar to what has been reported for the native NP. The adhesive tensile strength of PNIPAAm increased significantly with CS incorporation (p < 0.05), ranging from 0.4 to 1 kPa. Live/Dead and XTT assay results indicate that the copolymer is not cytotoxic to human embryonic kidney (HEK) 293 cells. Taken together, these data indicate the potential of PNIPAAm-g-CS to function as a scaffold for NP regeneration. PMID:23371764

  15. Ultrastructural localization of the core protein of a basement membrane-specific chondroitin sulfate proteoglycan in adult rat skin

    DEFF Research Database (Denmark)

    McCarthy, K J; Horiguchi, Y; Couchman, J R;

    1990-01-01

    Basement membranes are complex extracellular matrices present at epithelial/mesenchymal interfaces of tissues. The dermal-epidermal junction has been shown to contain numerous components, some of the most well known being laminin, types IV and VII collagens, heparan sulfate proteoglycan, fibronec...... primarily within the basal lamina, apparently concentrated in the lamina densa. In addition, some of the proteoglycan was also present beneath the lamina densa, associated with the reticular lamina collagen fibrils....

  16. Intravesical administration of combined hyaluronic acid (HA) and chondroitin sulfate (CS) for the treatment of female recurrent urinary tract infections: a European multicentre nested case–control study

    Science.gov (United States)

    Ciani, Oriana; Arendsen, Erik; Romancik, Martin; Lunik, Richard; Costantini, Elisabetta; Di Biase, Manuel; Morgia, Giuseppe; Fragalà, Eugenia; Roman, Tomaskin; Bernat, Marian; Guazzoni, Giorgio; Tarricone, Rosanna; Lazzeri, Massimo

    2016-01-01

    Objectives To compare the clinical effectiveness of the intravesical administration of combined hyaluronic acid and chondroitin sulfate (HA+CS) versus current standard management in adult women with recurrent urinary tract infections (RUTIs). Setting A European Union-based multicentre, retrospective nested case–control study. Participants 276 adult women treated for RUTIs starting from 2009 to 2013. Interventions Patients treated with either intravesical administration of HA+CS or standard of care (antimicrobial/immunoactive prophylaxis/probiotics/cranberry). Primary and secondary outcome measures The primary outcome was occurrence of bacteriologically confirmed recurrence within 12 months. Secondary outcomes were time to recurrence, total number of recurrences, health-related quality of life and healthcare resource consumption. Crude and adjusted results for unbalanced characteristics are presented. Results 181 patients treated with HA+CS and 95 patients treated with standard of care from 7 centres were included. The crude and adjusted ORs (95% CI) for the primary end point were 0.77 (0.46 to 1.28) and 0.51 (0.27 to 0.96), respectively. However, no evidence of improvement in terms of total number of recurrences (incidence rate ratio (95% CI), 0.99 (0.69 to 1.43)) or time to first recurrence was seen (HR (95% CI), 0.99 (0.61 to 1.61)). The benefit of intravesical HA+CS therapy improves when the number of instillations is ≥5. Conclusions Our results show that bladder instillations of combined HA+CS reduce the risk of bacteriologically confirmed recurrences compared with the current standard management of RUTIs. Total incidence rates and hazard rates were instead non-significantly different between the 2 groups after adjusting for unbalanced factors. In contrast to what happens with antibiotic prophylaxis, the effectiveness of the HA+CS reinstatement therapy improves over time. Trial registration number NCT02016118. PMID:27033958

  17. Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer

    International Nuclear Information System (INIS)

    The expression of a specific set of genes controls the different structures of heparan sulfate proteoglycans (HSPGs), which are involved in the growth, invasion and metastatic properties of cancerous cells. The purpose of this study is to increase knowledge of HSPG alterations in breast cancer. Twenty-three infiltrating ductal adenocarcinomas (IDCs), both metastatic and non-metastatic were studied. A transcriptomic approach to the structure of heparan sulfate (HS) chains was used, employing qPCR to analyze both the expression of the enzymes involved in their biosynthesis and editing, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate chains, we extended the study to include the genes involved in the biosynthesis of these glycosaminoglycans. Histochemical techniques were also used to analyze tissular expression of particular genes showing significant expression differences, of potential interest. No significant change in transcription was detected in approximately 70% of analyzed genes. However, 13 demonstrated changes in both tumor types (40% showing more intense deregulation in the metastatic), while 5 genes showed changes only in non-metastatic tumors. Changes were related to 3 core proteins: overexpression of syndecan-1 and underexpression of glypican-3 and perlecan. HS synthesis was affected by lower levels of some 3-O-sulfotransferase transcripts, the expression of NDST4 and, only in non metastatic tumors, higher levels of extracellular sulfatases. Furthermore, the expression of chondroitin sulfate also was considerably affected, involving both the synthesis of the saccharidic chains and sulfations at all locations. However, the pro-metastatic enzyme heparanase did not exhibit significant changes in mRNA expression, although in metastatic tumors it appeared related to increased levels of the most stable form of mRNA. Finally, the expression of heparanase 2, which displays anti-metastatic features

  18. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis.

    Science.gov (United States)

    Jin, Peng; Zhang, Linpei; Yuan, Panhong; Kang, Zhen; Du, Guocheng; Chen, Jian

    2016-04-20

    Chondroitin and heparosan, important polysaccharides and key precursors of chondroitin sulfate and heparin/heparan sulfate, have drawn much attention due to their wide applications in many aspects. In this study, we designed two independent synthetic pathways of chondroitin and heparosan in food-grade Bacillus subtilis, integrating critical synthases genes derived from Escherichia coli into B. subtilis genome. By RT-PCR analysis, we confirmed that synthases genes transcripted an integral mRNA chain, suggesting co-expression. In shaken flask, chondroitin and heparosan were produced at a level of 1.83gL(-1) and 1.71gL(-1), respectively. Since B. subtilis endogenous tuaD gene encodes the limiting factor of biosynthesis, overexpressing tuaD resulted in enhanced chondroitin and heparosan titers, namely 2.54gL(-1) and 2.65gL(-1). Moreover, production reached the highest peaks of 5.22gL(-1) and 5.82gL(-1) in 3-L fed-batch fermentation, respectively, allowed to double the production that in shaken flask. The weight-average molecular weight of chondroitin and heparosan from B. subtilis E168C/pP43-D and E168H/pP43-D were 114.07 and 67.70kDa, respectively. This work provided alternative safer synthetic pathways for metabolic engineering of chondroitin and heparosan in B. subtilis and a useful approach for enhancing production, which can be optimized for further improvement. PMID:26876870

  19. Influência do sulfato de condroitina na formação de filmes isolados de polimetacrilato: avaliação do índice de intumescimento e permeabilidade ao vapor d'água The influence of chondroitin sulfate in the formation of isolated polymethacrylate films: evaluation of swelling index and permeability to water vapor

    Directory of Open Access Journals (Sweden)

    Élcio José Bunhak

    2007-04-01

    Full Text Available Natural or modified chondroitin sulfate was incorporated in to polymethacrylate to obtain isolated films. The addition of polysaccharide to synthetic polymers occurred at different rates. Isolated films were micro and macroscopically characterized and swelling index and water vapor transmission were determined. Results indicated changed transparency and flexibility, coupled to their dependence on increase in polysaccharide concentration. A similar occurrence was reported in the permeability to water vapor and swelling degree. Films composed of modified chondroitin sulfate, 90:10 concentration, showed hydration levels, permeability and morphological properties which allow them to be applied as excipients in the development of new drug delivery systems.

  20. Melanoma-associated Chondroitin Sulfate Proteoglycan (MCSP-targeted delivery of soluble TRAIL potently inhibits melanoma outgrowth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    van Waarde Aren

    2010-11-01

    Full Text Available Abstract Background Advanced melanoma is characterized by a pronounced resistance to therapy leading to a limited patient survival of ~6 - 9 months. Here, we report on a novel bifunctional therapeutic fusion protein, designated anti-MCSP:TRAIL, that is comprised of a melanoma-associated chondroitin sulfate proteoglycan (MCSP-specific antibody fragment (scFv fused to soluble human TRAIL. MCSP is a well-established target for melanoma immunotherapy and has recently been shown to provide important tumorigenic signals to melanoma cells. TRAIL is a highly promising tumoricidal cytokine with no or minimal toxicity towards normal cells. Anti-MCSP:TRAIL was designed to 1. selectively accrete at the cell surface of MCSP-positive melanoma cells and inhibit MCSP tumorigenic signaling and 2. activate apoptotic TRAIL-signaling. Results Treatment of a panel of MCSP-positive melanoma cell lines with anti-MCSP:TRAIL induced TRAIL-mediated apoptotic cell death within 16 h. Of note, treatment with anti-MCSP:sTRAIL was also characterized by a rapid dephosphorylation of key proteins, such as FAK, implicated in MCSP-mediated malignant behavior. Importantly, anti-MCSP:TRAIL treatment already inhibited anchorage-independent growth by 50% at low picomolar concentrations, whereas > 100 fold higher concentrations of non-targeted TRAIL failed to reduce colony formation. Daily i.v. treatment with a low dose of anti-MCSP:TRAIL (0.14 mg/kg resulted in a significant growth retardation of established A375 M xenografts. Anti-MCSP:TRAIL activity was further synergized by co-treatment with rimcazole, a σ-ligand currently in clinical trials for the treatment of various cancers. Conclusions Anti-MCSP:TRAIL has promising pre-clinical anti-melanoma activity that appears to result from combined inhibition of tumorigenic MCSP-signaling and concordant activation of TRAIL-apoptotic signaling. Anti-MCSP:TRAIL alone, or in combination with rimcazole, may be of potential value for the

  1. Neuritogenic activity of chondroitin/dermatan sulfate hybrid chains of embryonic pig brain and their mimicry from shark liver. Involvement of the pleiotrophin and hepatocyte growth factor signaling pathways.

    Science.gov (United States)

    Li, Fuchuan; Shetty, Ajaya Kumar; Sugahara, Kazuyuki

    2007-02-01

    Accumulating evidence suggests the involvement of chondroitin sulfate (CS) and dermatan sulfate (DS) hybrid chains in the brain's development and critical roles for oversulfated disaccharides and IdoUA residues in the growth factor-binding and neuritogenic activities of these chains. In the pursuit of sources of CS/DS with unique structures, neuritogenic activity, and therapeutic potential, two novel CS/DS preparations were isolated from shark liver by anion exchange chromatography. The major (80%) low sulfated and minor (20%) highly sulfated fractions had an average molecular mass of 3.8-38.9 and 75.7 kDa, respectively. Digestion with various chondroitinases (CSases) revealed a large panel of disaccharides with either GlcUA or IdoUA scattered along the polysaccharide chains in both of the fractions. The higher M(r) fraction, richer in IdoUA(2-O-sulfate)alpha1-3GalNAc(4-O-sulfate) and GlcUAbeta/IdoUAalpha1-3GalNAc(4,6-O-disulfate) units, exerted greater neurite outgrowth-promoting (NOP) activity and better promoted the binding of various heparin-binding growth factors, including pleiotrophin (PTN), midkine, recombinant human heparin-binding epidermal growth factor-like growth factor, VEGF(165), fibroblast growth factor-2, fibroblast growth factor-7, and hepatocyte growth factor (HGF). These activities were largely abolished by digestion with CSase ABC or B but only moderately affected by a mixture of CSases AC-I and AC-II. In addition, the NOP activity of the larger fraction was markedly reduced by desulfation with alkali, suggesting a role for the 2-O-sulfate of IdoUA(2-O-sulfate)alpha1-3GalNAc(4-O-sulfate). The NOP activity of the higher molecular weight fraction and that of the embryonic pig brain-derived CS/DS fraction were also sup pressed to a large extent by antibodies against HGF, PTN, and their individual receptors cMet and anaplastic lymphoma kinase, revealing the involvement of the HGF and PTN signaling pathways in the activity. PMID:17145750

  2. Expression of Hyaluronan and the Hyaluronan-Binding Proteoglycans Neurocan, Aggrecan and Versican by Neural Stem Cells and Neural Cells Derived from Embryonic Stem Cells

    OpenAIRE

    Abaskharoun, Mary; Bellemare, Marie; Lau, Elizabeth; Margolis, Richard U

    2010-01-01

    We have examined the expression and localization patterns of hyaluronan and hyaluronan-binding chondroitin sulfate proteoglycans in neural stem cells and differentiated neural cells derived from mouse embryonic stem cells. Expression of proteoglycans and hyaluronan was weak in the SSEA1-positive embryonic stem cells but increased noticeably after retinoic acid induction to nestin-positive neural stem cells. After subsequent plating, the hyaluronan-binding chondroitin sulfate proteoglycans agg...

  3. Cartilage tissue engineering by collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells in vitro%大鼠脂肪干细胞复合胶原-壳聚糖-硫酸软骨素三维支架构建组织工程软骨

    Institute of Scientific and Technical Information of China (English)

    张涛; 付勤; 于志永

    2009-01-01

    Objective To evaluate the character of the collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells. Methods A dipose tissue were harvested from 6 weeks old Wistar rats and the stromal cells were harvested by type Ⅰ collagenase and then cultured in vitro. Type Ⅰ collagen was fully mixed with chitosan, freeze-dried and cross-linked with chondroitin sulfate, then freeze-dried again and sterilized by ethylene oxide. The pore diameter, water content, porosity of the scaffold were tested. The adipose tissue-derived stromal cells were digested, seeded into the plates, scaffold, and cen-trifuged into pellet, and then induced into cartilage. MTT detection for cell proliferation was done. After 3 weeks, the cell morphology, and cell proliferation and adhesion were observed, and chondrngenic differenti-ation was also analyzed. Results The pore diameter, water content, porosity tested for the scaffold showed an appropriate form. Cell proliferation showed faster in the scaffold and pellet culture system after 5 day, there was still cell proliferation in the scaffold system after 14 days but no obvious changes in the pellet cul-ture system; ceils on the scaffold proliferated densely showed by histological staining, but there was a scaf-fold structure residues in the inner layer. The finding of type Ⅱ immunohistochemistry stain showed that cells express strong positive for type Ⅱ collagen in the scaffold and pellet culture system whereas it was weakly positive in the plate culture system; the specific mRNA for cartilage, type Ⅱ collagen, aggrecan and SOX-9 were expressed in all three systems showed by RT-PCR, but type X collagen was expressed continu-ously in the plate culture system and expressed after 21 days in the pellet culture system, whereas it was not detected in the collagen-chitosan-chondroitin sulfate scaffold system. Conclusion The parameters of the collagen-chitosan-chondroitin sulfate scaffold were suitable in

  4. Congenital fibrosarcoma in complete remission with Somatostatin, Bromocriptine, Retinoids, Vitamin D3, Vitamin E, Vitamin C, Melatonin, Calcium, Chondroitin sulfate associated with low doses of Cyclophosphamide in a 14-year Follow up.

    Science.gov (United States)

    Di Bella, Giuseppe; Toscano, Rosilde; Ricchi, Alessandro; Colori, Biagio

    2015-01-01

    At birth, a male child presented a 6 cm tumour in the right leg. The tumour was partially removed after just 12 days. Histology showed a congenital fibrosarcoma associated with reactive lymphadenitis. A first cycle of adjuvant chemotherapy did not prevent the rapid progression of the disease. Subsequent evaluation for surgical removal raised serious concerns due to the need for a major operation involving total amputation of the right leg and hemipelvectomy. Since surgery could not exclude the possibility of disease recurrence and since the traditional cycles of chemotherapy did not offer any possibility of a cure, the parents opted for the Di Bella Method. The combined use of Somatostatin, Melatonin, Retinoids solubilized in Vit. E, Vit. C, Vit. D3, Calcium, and Chondroitin sulfate associated with low doses of Cyclophosphamide resulted in a complete objective response, still present 14 years later, with no toxicity and without the need for hospitalization, allowing a normal quality of life and perfectly normal adolescent psycho-physical development. PMID:26921571

  5. Intra-articular use of a medical device composed of hyaluronic acid and chondroitin sulfate (Structovial CS: effects on clinical, ultrasonographic and biological parameters

    Directory of Open Access Journals (Sweden)

    Henrotin Yves

    2012-08-01

    Full Text Available Abstract Background This pilot open noncontrolled study was designed to assess the efficacy of intra-articular injections of a solution combining hyaluronic acid (HA and chondroitin sulphate (CS in the treatment of outpatients affected by knee osteoarthrosis. Findings Thirty patients with knee OA have been included. The primary objective was to assess clinical efficacy as measured by pain and Lequesne’s index. Secondary objectives were to assess potential effect of the treatment on ultrasound parameters, safety and biomarkers of cartilage metabolism and joint inflammation. After a selection visit (V1, the study treatment was administered 3 times on a weekly basis (V2, V3, V4. Follow-up was planned 6 (V5 and 12 weeks (V6 after the first intra-articular injection. Efficacy results showed a reduction in mean pain at V3 and V6 and in functional impairment, the most marked changes being measured at the two follow-up visits (V5 and V6. Although statistical significance was not achieved due to small sample size, a clear tendency towards improvement was detectable for ultrasound assessments as well as biomarkers. Except for a mild injection site hematoma for which the drug causal relationship could not be excluded, no adverse effect of clinical relevance was recorded during the study. Conclusion Although this pilot study was performed according to an open design only, the ultrasound as well as biomarkers changes strongly suggest a non-placebo effect. These preliminary results call now for a randomized controlled study to confirm the clinical relevance of the observed results. Trial registration #ISRCTN91883031

  6. Sulfated glycans in inflammation.

    Science.gov (United States)

    Pomin, Vitor H

    2015-03-01

    Sulfated glycans such as glycosaminoglycans on proteoglycans are key players in both molecular and cellular events of inflammation. They participate in leukocyte rolling along the endothelial surface of inflamed sites; chemokine regulation and its consequential functions in leukocyte guidance, migration and activation; leukocyte transendothelial migration; and structural assembly of the subendothelial basement membrane responsible to control tissue entry of cells. Due to these and other functions, exogenous sulfated glycans of various structures and origins can be used to interventionally down-regulate inflammation processes. In this review article, discussion is given primarily on the anti-inflammatory functions of mammalian heparins, heparan sulfate, chondroitin sulfate, dermatan sulfate and related compounds as well as the holothurian fucosylated chondroitin sulfate and the brown algal fucoidans. Understanding the underlying mechanisms of action of these sulfated glycans in inflammation, helps research programs involved in developing new carbohydrate-based drugs aimed to combat acute and chronic inflammatory disorders. PMID:25576741

  7. Binding of heparan sulfate to Staphylococcus aureus.

    OpenAIRE

    Liang, O D; Ascencio, F; Fransson, L A; Wadström, T

    1992-01-01

    Heparan sulfate binds to proteins present on the surface of Staphylococcus aureus cells. Binding of 125I-heparan sulfate to S. aureus was time dependent, saturable, and influenced by pH and ionic strength, and cell-bound 125I-heparan sulfate was displaced by unlabelled heparan sulfate or heparin. Other glycosaminoglycans of comparable size (chondroitin sulfate and dermatan sulfate), highly glycosylated glycoprotein (hog gastric mucin), and some anionic polysaccharides (dextran sulfate and RNA...

  8. Chondroitin 6-sulfate proteoglycan but not heparan sulfate proteoglycan is abnormally expressed in skin basement membrane from patients with dominant and recessive dystrophic epidermolysis bullosa

    DEFF Research Database (Denmark)

    Fine, J D; Couchman, J R

    1989-01-01

    or more forms of epidermolysis bullosa (EB), a disease known to have specific alterations in skin BM, we have examined by indirect immunofluorescence 31 specimens of clinically normal skin from 28 EB patients (simplex, 5; junctional, 8; dominant dystrophic [DDEB], 9; recessive dystrophic [RDEB], 9...

  9. Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans*

    OpenAIRE

    Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki

    2013-01-01

    A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and derm...

  10. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin▿

    OpenAIRE

    Maccarana, Marco; Kalamajski, Sebastian; Kongsgaard, Mads; Magnusson, S. Peter; Oldberg, Åke; Malmström, Anders

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated struct...

  11. Surfen, a small molecule antagonist of heparan sulfate

    OpenAIRE

    Schuksz, Manuela; Fuster, Mark M.; Brown, Jillian R.; Crawford, Brett E.; Ditto, David P.; Lawrence, Roger; Glass, Charles A; Wang, Lianchun; Tor, Yitzhak; Esko, Jeffrey D

    2008-01-01

    In a search for small molecule antagonists of heparan sulfate, we examined the activity of bis-2-methyl-4-amino-quinolyl-6-carbamide, also known as surfen. Fluorescence-based titrations indicated that surfen bound to glycosaminoglycans, and the extent of binding increased according to charge density in the order heparin > dermatan sulfate > heparan sulfate > chondroitin sulfate. All charged groups in heparin (N-sulfates, O-sulfates, and carboxyl groups) contributed to binding, consistent with...

  12. 冰岛刺参岩藻糖基化硫酸软骨素对高脂饮食诱导的糖尿病小鼠肾脏的保护作用%Protective Effect of Fucolysated Chondroitin Sulfate from the Sea Cucumber Cucumaria frondosa on Kidney of High Fat Diet-Induced Diabetic Mice

    Institute of Scientific and Technical Information of China (English)

    周晓春; 王静凤; 胡世伟; 石迪; 薛长湖

    2014-01-01

    目的:研究冰岛刺参岩藻糖基化硫酸软骨素(fucolysated chondroitin sulfate from Cucumaria frondosa,Cf-CHS)对高脂饮食诱导的糖尿病小鼠肾脏的保护作用.方法:以高脂高糖饲料饲喂诱导Ⅱ型糖尿病小鼠模型,饲喂含不同剂量Cf-CHS的高脂高糖饲料连续19周,检测空腹血糖并收集尿液,分别检测小鼠尿液中尿糖、微量白蛋白(microalbumin,mAlb)、尿总蛋白、尿素氮(urea nitrogen,UN)、尿酸(uric acid,UA)、肌酐(creatinine,Cr)浓度和β-N-乙酰葡萄糖苷酶(N-acetyl-β-glucosaminidase,NAG)排泄率,摘取肾脏观察肾脏组织的显微结构.结果:Cf-CHS可显著降低糖尿病小鼠的尿糖、mAlb、尿总蛋白、UN、UA、Cr浓度和NAG排泄率(P<0.01),改善肾脏组织的显微结构.结论:Cf-CHS可显著改善糖尿病小鼠的肾脏功能.

  13. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.; Magnusson, S.P.; Oldberg, A.; Malmstrom, A.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in...... versican-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We...

  14. Disaccharide analysis of chondroitin and heparin from farmed Atlantic salmon.

    Science.gov (United States)

    Flengsrud, Ragnar

    2016-04-01

    The heparin disaccharides detected in farmed Atlantic salmon (Salmo salar) gills and intestines have, with one exception, been reported in porcine heparin. The relative amounts of disaccharides appear to be very different in the two species. Two chondroitin disaccharides with a proposed essential role in the zebrafish (Danio rerio) development and differentiation are detected in farmed Atlantic salmon. In addition, most of the chondroitin/dermatan sulfate and heparin disaccharides detected here have been reported in zebrafish, in support of the claims of the heparin presence in fish. The same chondroitin/dermatan disaccharides were detected in the bones of bony fishes. The rare disaccharide UA2S-GalNAc that was found in trace amounts in all 5 bony fishes was found in relative high amounts in gills and in significant amounts in intestines. The rare heparin disaccharide UA2S-GlcN was in relative highest amounts both in gills and intestines. In context with our previous reports, this communication suggests that glycosaminoglycans in farmed Atlantic salmon heparin need further studies in order to clarify structure and function. PMID:26993287

  15. Biotechnological Chondroitin a Novel Glycosamminoglycan With Remarkable Biological Function on Human Primary Chondrocytes.

    Science.gov (United States)

    Stellavato, Antonietta; Tirino, Virginia; de Novellis, Francesca; Della Vecchia, Antonella; Cinquegrani, Fabio; De Rosa, Mario; Papaccio, Gianpaolo; Schiraldi, Chiara

    2016-09-01

    Cartilage tissue engineering, with in vitro expansion of autologus chondrocytes, is a promising technique for tissue regeneration and is a new potential strategy to prevent and/or treat cartilage damage (e.g., osteoarthritis). The aim of this study was (i) to investigate and compare the effects of new biotechnological chondroitin (BC) and a commercial extractive chondroitin sulfate (CS) on human chondrocytes in vitro culture; (ii) to evaluate the anti-inflammatory effects of the innovative BC compared to extractive CS. A chondrogenic cell population was isolated from human nasoseptal cartilage and in vitro cultures were studied through time-lapse video microscopy (TLVM), immunohistochemical staining and cytometry. In order to investigate the effect of BC and CS on phenotype maintainance, chondrogenic gene expression of aggrecan (AGN), of the transcriptor factor SOX9, of the types I and II collagen (COL1A1 and COL1A2), were quantified through transcriptional and protein evaluation at increasing cultivation time and passages. In addition to resemble the osteoarthritis-like in vitro model, chondrocytes were treated with IL-1β and the anti-inflammatory activity of BC and CS was assessed using cytokines quantification by multiplex array. BC significantly enhances cell proliferation also preserving chondrocyte phenotype increasing type II collagen expression up to 10 days of treatment and reduces inflammatory response in IL-1β treated chondrocytes respect to CS treated cells. Our results, taken together, suggest that this new BC is of foremost importance in translational medicine because it can be applied in novel scaffolds and pharmaceutical preparations aiming at cartilage pathology treatments such as the osteoarthritis. J. Cell. Biochem. 117: 2158-2169, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:27018169

  16. Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence.

    Science.gov (United States)

    Li, Nan; Qin, Ting; Zhang, Xiao Lin; Huang, Bei; Liu, Zhi Xin; Xie, Hai Xia; Zhang, Jin; McBride, Mark J; Nie, Pin

    2015-11-01

    Flavobacterium columnare is an important bacterial pathogen of freshwater fish that causes high mortality of infected fish and heavy economic losses in aquaculture. The pathogenesis of this bacterium is poorly understood, in part due to the lack of efficient methods for genetic manipulation. In this study, a gene deletion strategy was developed and used to determine the relationship between the production of chondroitin lyases and virulence. The F. johnsoniae ompA promoter (PompA) was fused to sacB to construct a counterselectable marker for F. columnare. F. columnare carrying PompA-sacB failed to grow on media containing 10% sucrose. A suicide vector carrying PompA-sacB was constructed, and a gene deletion strategy was developed. Using this approach, the chondroitin lyase-encoding genes, cslA and cslB, were deleted. The ΔcslA and ΔcslB mutants were both partially deficient in digestion of chondroitin sulfate A, whereas a double mutant (ΔcslA ΔcslB) was completely deficient in chondroitin lyase activity. Cells of F. columnare wild-type strain G4 and of the chondroitin lyase-deficient ΔcslA ΔcslB mutant exhibited similar levels of virulence toward grass carp in single-strain infections. Coinfections, however, revealed a competitive advantage for the wild type over the chondroitin lyase mutant. The results indicate that chondroitin lyases are not essential virulence factors of F. columnare but may contribute to the ability of the pathogen to compete and cause disease in natural infections. The gene deletion method developed in this study may be employed to investigate the virulence factors of this bacterium and may have wide application in many other members of the phylum Bacteroidetes. PMID:26253667

  17. The Development and Activity-Dependent Expression of Aggrecan in the Cat Visual Cortex

    OpenAIRE

    Kind, P. C.; Sengpiel, F.; Beaver, C. J.; Crocker-Buque, A.; Kelly, G. M.; R. T. Matthews; Mitchell, D E

    2012-01-01

    The Cat-301 monoclonal antibody identifies aggrecan, a chondroitin sulfate proteoglycan in the cat visual cortex and dorsal lateral geniculate nucleus (dLGN). During development, aggrecan expression increases in the dLGN with a time course that matches the decline in plasticity. Moreover, examination of tissue from selectively visually deprived cats shows that expression is activity dependent, suggesting a role for aggrecan in the termination of the sensitive period. Here, we demonstrate for ...

  18. Sulfated polyanions block Chlamydia trachomatis infection of cervix-derived human epithelia.

    OpenAIRE

    Zaretzky, F R; Pearce-Pratt, R; Phillips, D M

    1995-01-01

    Using a cell line derived from the human cervix and a rapid fluorescence cytotoxicity assay, we have shown that Chlamydia trachomatis infection can be blocked by certain sulfated polysaccharides (carrageenan, pentosan polysulfate, fucoidan, and dextran sulfate) and glycosaminoglycans (heparin, heparan sulfate, and dermatan sulfate) but not by other glycosaminoglycans (chondroitin sulfate A or C, keratan sulfate, and hyaluronic acid). The most negatively charged molecules are the most effectiv...

  19. Effects of Ligustrazine on Expression of Bone Marrow Heparan Sulfates in Syngeneic Bone Marrow Transplantation Mice

    Institute of Scientific and Technical Information of China (English)

    任天华; 刘文励; 孙汉英; 戴琪琳; 孙岚

    2003-01-01

    To explore the effects of ligustrazine on bone marrow heparan sulfates (HS) expression in bone marrow transplantation (BMT) mice, the syngeneic BMT mice were orally given 2 mg ligustrazine twice a day. On the 7th, 10th, 14th, 18th day after BMT, peripheral blood cells and bone marrow nuclear cells (BMNC) were counted, and the expression levels of HS in bone marrow and on the stromal cell surfaces were detected by immunohistochemistry and flow cytometry assay respectively. In ligustrazine-treated group, the white blood cells (WBC) and BMNC on the 7th, 10th, 14th, 18th day and platelets (PLT) on the 7th, 10th day were all significantly more than those in control group (P<0.05). The bone marrow HS expression levels in ligustrazine-treated group were higher than those in control group (P<0. 05) on the 7th, 10th, 14th, 18th day. However, the HS expression levels on the stromal cell surfaces showed no significant difference between the two groups on the 18th day (P>0. 05). It was concluded that ligustrazine could up-regulate HS expression in bone marrow, which might be one of the mechanisms contributing to ligustrazine promoting hematopoietic reconstitution after BMT.

  20. The use of cationic nanogels to deliver proteins to myeloma cells and primary T lymphocytes that poorly express heparan sulfate.

    Science.gov (United States)

    Watanabe, Kozo; Tsuchiya, Yumiko; Kawaguchi, Yoshinori; Sawada, Shin-ichi; Ayame, Hirohito; Akiyoshi, Kazunari; Tsubata, Takeshi

    2011-09-01

    Fusion proteins containing protein transduction domain (PTD) are widely used for intracellular delivery of exogenous proteins. PTD-mediated delivery requires expression of heparan sulfate on the surface of the target cells. However, some of metastatic tumor cells and primary lymphocytes poorly express heparan sulfate. Here we demonstrate that proteins complexed with nanosize hydrogels formed by cationic cholesteryl group-bearing pullulans (cCHP) are efficiently delivered to myeloma cells and primary CD4(+) T lymphocytes probably by induction of macropinocytosis, although these cells are resistant to PTD-mediated protein delivery as a consequence of poor heparan sulfate expression. The anti-apoptotic protein Bcl-xL delivered by cCHP nanogels efficiently blocked apoptosis of these cells, establishing functional regulation of cells by proteins delivered by cCHP nanogels. Thus, cCHP nanogel is a useful tool to deliver proteins for development of new cancer therapy and immune regulation. PMID:21605901

  1. 冰岛刺参岩藻糖基化硫酸软骨素降血糖及改善胰岛素抵抗的研究%Study of fucosylated chondroitin sulfate from Cucumaria frondosa on hyperglycemic effects and insulin resistance improvement

    Institute of Scientific and Technical Information of China (English)

    田迎樱; 胡世伟; 薛长湖; 李兆杰

    2014-01-01

    以高脂高糖饲料(high-fat high-sucrose,HFSD)饲喂法建立胰岛素抵抗小鼠模型.研究了冰岛刺参岩藻糖基化硫酸软骨素(fucosylated chondroitin sulfate from the sea cucumber Cucumaria frondosa,Cf-CHS)对胰岛素抵抗小鼠的降血糖及改善胰岛素抵抗作用.雄性C57BL/6J小鼠随机分为正常对照(标准饲料)、模型对照(HFSD)、阳性对照(HFSD+ rosiglitazone (RSG),1 mg·(kg·d)-)、Cf-CHS组(HFSD+ Cf-CHS,80mg·(kg· d)-)及Cf-CHS+ RSG组(HFSD+ Cf-CHS+ RSG,80+ 1mg·(kg·d)-1).各组小鼠自由摄食摄水19周.实验结束后,称重小鼠白色脂肪质量,检测空腹血糖、血清胰岛素及血清脂联素、抵抗素、瘦素、肿瘤坏死因子-α(TNF-α)水平.实验结果表明:Cf-CHS可显著降低胰岛素抵抗小鼠的脂肪积累(p<0.01),降低血糖(p<0.01)和胰岛素(p<0.05)水平,改善胰岛素抵抗(p<0.05),提高血清脂联素含量(p<0.05),降低抵抗素(p<0.01)、瘦素(p<0.01)和TNF-α (p <0.05)含量.Cf-CHS与RSG复配使用,效果更显著(p <0.05,p<0.01).Cf-CHS能显著改善胰岛素抵抗小鼠的高血糖症状及胰岛素抵抗程度,其作用机制可能与改善肥胖引起的脂肪细胞因子的分泌紊乱有关.

  2. Source of peritoneal proteoglycans. Human peritoneal mesothelial cells synthesize and secrete mainly small dermatan sulfate proteoglycans.

    OpenAIRE

    Yung, S; Thomas, G. J.; Stylianou, E; Williams, J D; Coles, G. A.; Davies, M.

    1995-01-01

    This study describes experiments that compare the proteoglycans (PGs) extracted from the dialysate from patients receiving continuous peritoneal ambulatory dialysis (CAPD) with those secreted by metabolically labeled human peritoneal mesothelial cells in vitro. The PGs isolated from both sources were predominantly small chondroitin sulfate/dermatan sulfate PGs. Western blot of the core proteins obtained after chondroitin ABC lyase treatment with specific antibodies identified decorin and bigl...

  3. Purification of chondroitin precursor from Escherichia coli K4 fermentation broth using membrane processing.

    Science.gov (United States)

    Schiraldi, Chiara; Carcarino, Immacolata Loredana; Alfano, Alberto; Restaino, Odile Francesca; Panariello, Andrea; De Rosa, Mario

    2011-04-01

    Recently the possibility of producing the capsular polysaccharide K4, a fructosylated chondroitin, in fed-batch experiments was assessed. In the present study, a novel downstream process to obtain chondroitin from Escherichia coli K4 fermentation broth was developed. The process is simple, scalable and economical. In particular, downstream procedures were optimized with a particular aim of purifying a product suitable for further chemical modifications, in an attempt to develop a biotechnological platform for chondroitin sulfate production. During process development, membrane devices (ultrafiltration/diafiltration) were exploited, selecting the right cassette cut-offs for different phases of purification. The operational conditions (cross-flow rate and transmembrane pressure) used for the process were determined on an ÄKTA cross-flow instrument (GE Healthcare, USA), a lab-scale automatic tangential flow filtration system. In addition, parameters such as selectivity and throughput were calculated based on the analytical quantification of K4 and defructosylated K4, as well as the major contaminants. The complete downstream procedure yielded about 75% chondroitin with a purity higher than 90%. PMID:21381202

  4. Heparin cofactor II is degraded by heparan sulfate and dextran sulfate.

    Science.gov (United States)

    Saito, Akio

    2015-02-20

    Heparan sulfate normally binds to heparin cofactor II and modulates the coagulation pathway by inhibiting thrombin. However, when human heparin cofactor II was incubated with heparan sulfate, heparin cofactor II became degraded. Other glycosaminoglycans were tested, including hyaluronic acid, chondroitin sulfates, dermatan sulfate, and heparin, but only dextran sulfate also degraded heparin cofactor II. Pretreatment of heparan sulfate with heparinase reduced its heparin cofactor II-degrading activity. Heparan sulfate and dextran sulfate diminished the thrombin inhibitory activity of heparin cofactor II. Other serpins, including antithrombin III and pigment epithelium-derived factor, were also degraded by heparan sulfate. This is the first evidence of acidic polysaccharides exhibiting protein-degrading activity without the aid of other proteins. PMID:25600805

  5. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate.

    OpenAIRE

    WuDunn, D; Spear, P G

    1989-01-01

    We have shown that cell surface heparan sulfate serves as the initial receptor for both serotypes of herpes simplex virus (HSV). We found that virions could bind to heparin, a related glycosaminoglycan, and that heparin blocked virus adsorption. Agents known to bind to cell surface heparan sulfate blocked viral adsorption and infection. Enzymatic digestion of cell surface heparan sulfate but not of dermatan sulfate or chondroitin sulfate concomitantly reduced the binding of virus to the cells...

  6. Identification and tissue-specific distribution of sulfated glycosaminoglycans in the blood-sucking bug Rhodnius prolixus (Linnaeus).

    Science.gov (United States)

    Costa-Filho, Adilson; Souza, Maisa L S; Martins, Rita C L; dos Santos, André V F; Silva, Gabriela V; Comaru, Michele W; Moreira, Mônica F; Atella, Georgia C; Allodi, Silvana; Nasciutti, Luiz E; Masuda, Hatisaburo; Silva, Luiz-Claudio F

    2004-03-01

    We have previously characterized heparan sulfate (HS) as the major ovarian sulfated glycosaminoglycan (GAG) in females of Rhodnius prolixus, while chondroitin sulfate (CS) was the minor component. Using histochemical procedures we found that GAGs were concentrated in the ovarian tissue but not found inside the oocytes. Here, we extend our initial observations of GAG expression in R. prolixus by characterizing these molecules in other organs: the fat body, intestinal tract, and the reproductive tracts. Only HS and CS were found in the three organs analyzed, however CS was the major GAG species in these tissues. We also determined the compartmental distribution of GAGs in these organs by histochemical analysis using 1,9-dimethylmethylene blue, and evaluated the specific distribution of CS within both male and female reproductive tracts by immunohistochemistry using an anti-CS antibody. We also determined the GAG composition in eggs at days 0 and 6 of embryonic development. Only HS and CS were found in eggs at day 6, while no sulfated GAGs were detected at day 0. Our results demonstrate that HS and CS are the only sulfated GAG species expressed in the fat body and in the intestinal and reproductive tracts of Rhodnius male and female adults. Both sulfated GAGs were also identified in Rhodnius embryos. Altogether, these results show no qualitative differences in the sulfated GAG composition regarding tissue-specific or development-specific distribution. PMID:14871621

  7. Renal localization of heparan sulfate proteoglycan by immunohistochemistry.

    OpenAIRE

    Klein, D. J.; Oegema, T.R.; Eisenstein, R.; Furcht, L.; Michael, A. F.; Brown, D M

    1983-01-01

    Glomerular localization of heparan sulfate proteoglycan (HS-proteoglycan) has been studied immunohistochemically with a highly purified antiserum to bovine aorta HS-proteoglycan core protein. The specificity of the antiserum was enhanced by consecutive fibronectin and chondroitin sulfate-dermatan sulfate proteoglycan (CS-DS proteoglycan) affinity chromatography. The affinity-purified HS-proteoglycan antibody lacked cross-reactivity by enzyme-linked immunosorbent assays (ELISA) with CS-DS prot...

  8. Human Papillomavirus Infection Requires Cell Surface Heparan Sulfate

    OpenAIRE

    Giroglou, Tzenan; Florin, Luise; Schäfer, Frank; Streeck, Rolf E.; Sapp, Martin

    2001-01-01

    Using pseudoinfection of cell lines, we demonstrate that cell surface heparan sulfate is required for infection by human papillomavirus type 16 (HPV-16) and HPV-33 pseudovirions. Pseudoinfection was inhibited by heparin but not dermatan or chondroitin sulfate, reduced by reducing the level of surface sulfation, and abolished by heparinase treatment. Carboxy-terminally deleted HPV-33 virus-like particles still bound efficiently to heparin. The kinetics of postattachment neutralization by antis...

  9. Toxicity Biosensor for Sodium Dodecyl Sulfate Using Immobilized Green Fluorescent Protein Expressing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lia Ooi

    2015-01-01

    Full Text Available Green fluorescent protein (GFP is suitable as a toxicity sensor due to its ability to work alone without cofactors or substrates. Its reaction with toxicants can be determined with fluorometric approaches. GFP mutant gene (C48S/S147C/Q204C/S65T/Q80R is used because it has higher sensitivity compared to others GFP variants. A novel sodium dodecyl sulfate (SDS toxicity detection biosensor was built by immobilizing GFP expressing Escherichia coli in k-Carrageenan matrix. Cytotoxicity effect took place in the toxicity biosensor which leads to the decrease in the fluorescence intensity. The fabricated E. coli GFP toxicity biosensor has a wide dynamic range of 4–100 ppm, with LOD of 1.7 ppm. Besides, it possesses short response time (0.98, and long-term stability (46 days. E. coli GFP toxicity biosensor has been applied to detect toxicity induced by SDS in tap water, river water, and drinking water. High recovery levels of SDS indicated the applicability of E. coli GFP toxicity biosensor in real water samples toxicity evaluation.

  10. Composite active site of chondroitin lyase ABC accepting both epimers of uronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shaya, D.; Hahn, Bum-Soo; Bjerkan, Tonje Marita; Kim, Wan Seok; Park, Nam Young; Sim, Joon-Soo; Kim, Yeong-Shik; Cygler, M. (Catholic Univ of Korea); (NUST); (McGill); (Nat); (Natural Products Res Inst, Korea)

    2008-03-19

    Enzymes have evolved as catalysts with high degrees of stereospecificity. When both enantiomers are biologically important, enzymes with two different folds usually catalyze reactions with the individual enantiomers. In rare cases a single enzyme can process both enantiomers efficiently, but no molecular basis for such catalysis has been established. The family of bacterial chondroitin lyases ABC comprises such enzymes. They can degrade both chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans at the nonreducing end of either glucuronic acid (CS) or its epimer iduronic acid (DS) by a {beta}-elimination mechanism, which commences with the removal of the C-5 proton from the uronic acid. Two other structural folds evolved to perform these reactions in an epimer-specific fashion: ({alpha}/{alpha}){sub 5} for CS (chondroitin lyases AC) and {beta}-helix for DS (chondroitin lyases B); their catalytic mechanisms have been established at the molecular level. The structure of chondroitinase ABC from Proteus vulgaris showed surprising similarity to chondroitinase AC, including the presence of a Tyr-His-Glu-Arg catalytic tetrad, which provided a possible mechanism for CS degradation but not for DS degradation. We determined the structure of a distantly related Bacteroides thetaiotaomicron chondroitinase ABC to identify additional structurally conserved residues potentially involved in catalysis. We found a conserved cluster located {approx}12 {angstrom} from the catalytic tetrad. We demonstrate that a histidine in this cluster is essential for catalysis of DS but not CS. The enzyme utilizes a single substrate-binding site while having two partially overlapping active sites catalyzing the respective reactions. The spatial separation of the two sets of residues suggests a substrate-induced conformational change that brings all catalytically essential residues close together.

  11. Deregulation of the carbohydrate (chondroitin 4) sulfotransferase 11 (CHST11) gene in a B-cell chronic lymphocytic leukemia with a t(12;14)(q23;q32).

    Science.gov (United States)

    Schmidt, Helmut H; Dyomin, Vadim G; Palanisamy, Nallasivam; Itoyama, Takahiro; Nanjangud, Gouri; Pirc-Danoewinata, Hendrati; Haas, Oskar A; Chaganti, R S K

    2004-09-01

    The t(12;14)(q23;q32) breakpoints in a case of B-cell chronic lymphocytic leukemia (B-CLL) were mapped by fluorescence in situ hybridization (FISH) and Southern blot analysis and cloned using an IGH switch-gamma probe. The translocation affected a productively rearranged IGH allele and the carbohydrate (chondroitin 4) sulfotransferase 11 (CHST11) locus at 12q23, with a reciprocal break in intron 2 of the CHST11 gene. CHST11 belongs to the HNK1 family of Golgi-associated sulfotransferases, a group of glycosaminoglycan-modifying enzymes, and is expressed mainly in the hematopoietic lineage. Northern Blot analysis of tumor RNA using CHST11-specific probes showed expression of two CHST11 forms of abnormal size. 5'- and 3'-Rapid Amplification of cDNA Ends (RACE) revealed IGH/CHST11 as well as CHST11/IGH fusion RNAs expressed from the der(14) and der(12) chromosomes. Both fusion species contained open reading frames making possible the translation of two truncated forms of CHST11 protein. The biological consequence of t(12;14)(q23;q32) in this case presumably is a disturbance of the cellular distribution of CHST11 leading to deregulation of a chondroitin-sulfate-dependent pathway specific to the hematopoietic lineage. PMID:15273723

  12. Effects of Platelet Factor 4 on Expression of Bone Marrow Heparan Sulfate in Syngenic Bone Marrow Transplantation Mice

    Institute of Scientific and Technical Information of China (English)

    孟凡凯; 孙汉英; 刘文励; 袁慧玲; 徐惠珍; 孙岚; 周银莉; 任天华

    2002-01-01

    Summary: To explore the effects of platelet factor 4(PF4) on hematopoietic reconstitution and its mechanism in syngenic bone marrow transplantation (BMT). The syngenic BMT mice models were established. 20 and 26 h before irradiation, the mice were injected 20 μg/kg PF4 or PBS twice into abdominal cavity, then the donor bone marrow nuclear cells (BMNC) were transplanted. On the 7th day, spleen clone forming units (CFU-S) were counted. On the 7th, 14th and 21st day after BMT, the BMNC and megakaryoryocytes in bone marrow tissue were counted and the percentage of hematopoietic tissue and expression level of heparan sulfate in bone marrow tissue were assessed. In PF4-treated groups, the CFU-S counts on the 7th day were higher than those in BMT groups after BMT. The BMNC and megakaryoryocyte counts and the percentage of hematopoietic tissue and heparan sulfate expression level were higher than those in BMT group on the 7th, 14th and 21st day after BMT (P<0. 01 or P<0. 05). PF4 could accelerate hematopoietic reconstitution of syngenic bone marrow transplantation. The promotion of the heparan sulfate expression in bone marrow may be one of mechanisms of PF4.

  13. The sulphation of chondroitin sulphate in embryonic chicken cartilage

    Science.gov (United States)

    Robinson, H. C.

    1969-01-01

    1. Whole tissue preparations and subcellular fractions from embryonic chicken cartilage were used to measure the rate of incorporation of inorganic sulphate into chondroitin sulphate in vitro. 2. In cartilage from 14-day-old embryos, [35S]sulphate is incorporated to an equal extent into chondroitin 4-sulphate and chondroitin 6-sulphate at a rate of 1·5nmoles of sulphate/hr./mg. dry wt. of cartilage. 3. Microsomal and soluble enzyme preparations from embryonic cartilage catalyse the transfer of sulphate from adenosine 3′-phosphate 5′-sulphatophosphate into both chondroitin 4-sulphate and chondroitin 6-sulphate. 4. The effects of pH, ionic strength, adenosine 3′-phosphate 5′-sulphatophosphate concentration and acceptor chondroitin sulphate concentration on the soluble sulphotransferase activity were examined. These factors all influence the activity of the sulphotransferase, and pH and incubation time also influence the percentage of chondroitin 4-sulphate formed. PMID:5807213

  14. Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate

    Directory of Open Access Journals (Sweden)

    Sugie Shigeyuki

    2007-05-01

    Full Text Available Abstract Background Chronic inflammation is well known to be a risk factor for colon cancer. Previously we established a novel mouse model of inflammation-related colon carcinogenesis, which is useful to examine the involvement of inflammation in colon carcinogenesis. To shed light on the alterations in global gene expression in the background of inflammation-related colon cancer and gain further insights into the molecular mechanisms underlying inflammation-related colon carcinogenesis, we conducted a comprehensive DNA microarray analysis using our model. Methods Male ICR mice were given a single ip injection of azoxymethane (AOM, 10 mg/kg body weight, followed by the addition of 2% (w/v dextran sodium sulfate (DSS to their drinking water for 7 days, starting 1 week after the AOM injection. We performed DNA microarray analysis (Affymetrix GeneChip on non-tumorous mucosa obtained from mice that received AOM/DSS, AOM alone, and DSS alone, and untreated mice at wks 5 and 10. Results Markedly up-regulated genes in the colonic mucosa given AOM/DSS at wk 5 or 10 included Wnt inhibitory factor 1 (Wif1, 48.5-fold increase at wk 5 and 5.7-fold increase at wk 10 and plasminogen activator, tissue (Plat, 48.5-fold increase at wk 5, myelocytomatosis oncogene (Myc, 3.0-fold increase at wk 5, and phospholipase A2, group IIA (platelets, synovial fluid (Plscr2, 8.0-fold increase at wk 10. The notable down-regulated genes in the colonic mucosa of mice treated with AOM/DSS were the peroxisome proliferator activated receptor binding protein (Pparbp, 0.06-fold decrease at wk 10 and the transforming growth factor, beta 3 (Tgfb3, 0.14-fold decrease at wk 10. The inflammation-related gene, peroxisome proliferator activated receptor γ (Pparγ 0.38-fold decrease at wk 5, was also down-regulated in the colonic mucosa of mice that received AOM/DSS. Conclusion This is the first report describing global gene expression analysis of an AOM/DSS-induced mouse colon

  15. Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate

    International Nuclear Information System (INIS)

    Chronic inflammation is well known to be a risk factor for colon cancer. Previously we established a novel mouse model of inflammation-related colon carcinogenesis, which is useful to examine the involvement of inflammation in colon carcinogenesis. To shed light on the alterations in global gene expression in the background of inflammation-related colon cancer and gain further insights into the molecular mechanisms underlying inflammation-related colon carcinogenesis, we conducted a comprehensive DNA microarray analysis using our model. Male ICR mice were given a single ip injection of azoxymethane (AOM, 10 mg/kg body weight), followed by the addition of 2% (w/v) dextran sodium sulfate (DSS) to their drinking water for 7 days, starting 1 week after the AOM injection. We performed DNA microarray analysis (Affymetrix GeneChip) on non-tumorous mucosa obtained from mice that received AOM/DSS, AOM alone, and DSS alone, and untreated mice at wks 5 and 10. Markedly up-regulated genes in the colonic mucosa given AOM/DSS at wk 5 or 10 included Wnt inhibitory factor 1 (Wif1, 48.5-fold increase at wk 5 and 5.7-fold increase at wk 10) and plasminogen activator, tissue (Plat, 48.5-fold increase at wk 5), myelocytomatosis oncogene (Myc, 3.0-fold increase at wk 5), and phospholipase A2, group IIA (platelets, synovial fluid) (Plscr2, 8.0-fold increase at wk 10). The notable down-regulated genes in the colonic mucosa of mice treated with AOM/DSS were the peroxisome proliferator activated receptor binding protein (Pparbp, 0.06-fold decrease at wk 10) and the transforming growth factor, beta 3 (Tgfb3, 0.14-fold decrease at wk 10). The inflammation-related gene, peroxisome proliferator activated receptor γ (Pparγ 0.38-fold decrease at wk 5), was also down-regulated in the colonic mucosa of mice that received AOM/DSS. This is the first report describing global gene expression analysis of an AOM/DSS-induced mouse colon carcinogenesis model, and our findings provide new insights into

  16. Characterization of a dermatan sulfate proteoglycan synthesized by murine parietal yolk sac (PYS-2) cells

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A; Höök, M;

    1985-01-01

    carry sulfate residues predominantly attached to C-4 of the galactosamine unit; less than 10% of the sulfate groups occur as 6-sulfated galactosamine units. About 60% of the uronic acid residues are of the glucuronic configuration, the rest being iduronic acid. Analysis by sodium dodecyl sulfate......A dermatan sulfate proteoglycan has been isolated from a murine parietal yolk sac cell line, which in culture synthesizes basement membrane components. The proteoglycan has a molecular weight of 200,000-300,000 with 10-15 dermatan sulfate chains of Mr = 14,000-16,000. The glycosaminoglycan chains...... protein (Mr = 8,000). This proteoglycan is distinctly different from the large cartilage proteoglycan in the smaller size of its core protein, and its relationship to other small chondroitin and dermatan sulfate proteoglycans and to the chondroitin sulfate proteoglycan recently located in rat tissue...

  17. Critical appraisal of the role of glucosamine and chondroitin in the management of osteoarthritis of the knee

    Directory of Open Access Journals (Sweden)

    Steven J Narvy

    2010-02-01

    Full Text Available Steven J Narvy1, C Thomas Vangsness Jr21Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 2Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USAAbstract: Osteoarthritis (OA is the most common musculoskeletal disease in the United States, with rising prevalence. Medical management of OA involves acetaminophen, nonsteroidal anti-inflammatory drugs, and other analgesics, all of which are of variable efficacy and are associated with significant side effects and toxicities. The purpose of this review is to critically evaluate the efficacy of glucosamine and chondroitin, both as single agents and in combination, for the treatment of knee OA. Also evaluated were the level of evidence and funding support of the included articles. Almost every included trial of glucosamine sulfate, glucosamine hydrochloride, and chondroitin sulfate has found the safety of these compounds to be equal to that of placebo, though their therapeutic efficacy in decreasing knee OA pain and improving joint function is variable. Additionally, there are data to support a role of these agents in reducing radiographic progression of knee OA. Industry involvement, however, remains prominent. Further, more comprehensive study by independent researchers free of industry ties is necessary to identify a subset of patients in whom the use of glucosamine and/or chondroitin would be most beneficial. These agents may be safely tried as an initial therapy in select OA patients prior to initiating therapy with nonsteroidal anti-inflammatory drugs, acetaminophen, and other traditional medications.Keywords: glucosamine sulfate, glucosamine hydrochloride, chondroitin sulfate, knee osteoarthritis, nutritional supplement, nutraceutical

  18. Fibroblast invasive migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-CD44 proteoglycan

    DEFF Research Database (Denmark)

    Clark, Richard A F; Lin, Fubao; Greiling, Doris;

    2004-01-01

    After tissue injury, fibroblast migration from the peri-wound collagenous stroma into the fibrin-laden wound is critical for granulation tissue formation and subsequent healing. Recently we found that fibroblast transmigration from a collagen matrix into a fibrin matrix required the presence of...... migration into a fibronectin/fibrin gel. This conclusion was based on beta-xyloside inhibition of glycanation and specific glycosaminoglycan degradation. CD44, a cell surface receptor known to bind hyaluronan, not infrequently exists as a proteoglycan, decorated with various glycosaminoglycan chains...... including heparan sulfate and chondroitin sulfate, and as such can bind fibronectin. We found that CD44H, the non-spliced isoform of CD44, was necessary for fibroblast invasion into fibronectin/fibrin gels. Resting fibroblasts expressed mostly nonglycanated CD44H core protein, which became glycanated with...

  19. The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells

    Directory of Open Access Journals (Sweden)

    Rekdal Øystein

    2009-06-01

    Full Text Available Abstract Background Cationic antimicrobial peptides (CAPs with antitumor activity constitute a promising group of novel anticancer agents. These peptides induce lysis of cancer cells through interactions with the plasma membrane. It is not known which cancer cell membrane components influence their susceptibility to CAPs. We have previously shown that CAPs interact with the two glycosaminoglycans (GAGs, heparan sulfate (HS and chondroitin sulfate (CS, which are present on the surface of most cells. The purpose of this study was to investigate the role of the two GAGs in the cytotoxic activity of CAPs. Methods Various cell lines, expressing different levels of cell surface GAGs, were exposed to bovine lactoferricin (LfcinB and the designer peptide, KW5. The cytotoxic effect of the peptides was investigated by use of the colorimetric MTT viability assay. The cytotoxic effect on wild type CHO cells, expressing normal amounts of GAGs on the cell surface, and the mutant pgsA-745, that has no expression of GAGs on the cell surface, was also investigated. Results We show that cells not expressing HS were more susceptible to CAPs than cells expressing HS at the cell surface. Further, exogenously added heparin inhibited the cytotoxic effect of the peptides. Chondroitin sulfate had no effect on the cytotoxic activity of KW5 and only minor effects on LfcinB cytotoxicity. Conclusion Our results show for the first time that negatively charged molecules at the surface of cancer cells inhibit the cytotoxic activity of CAPs. Our results indicate that HS at the surface of cancer cells sequesters CAPs away from the phospholipid bilayer and thereby impede their ability to induce cytolysis.

  20. Gene expression signatures in CD34+-progenitor-derived dendritic cells exposed to the chemical contact allergen nickel sulfate

    International Nuclear Information System (INIS)

    The detection of the sensitizing potential of chemicals is of great importance to industry. A promising in vitro alternative to the currently applied animal assays for sensitization testing makes use of dendritic cells (DCs) that have the capability to process and present antigens to naive T cells and induce their proliferation. Here, we studied changes in gene expression profiles after exposing DCs to the contact allergen nickel sulfate. CD34+-progenitor-derived DCs, initiated from 3 different donors, were exposed to 60 μM nickel sulfate, during 0.5, 1, 3, 6, 12 and 24 h. cDNA microarrays were used to assess the transcriptional activity of about 11,000 genes. Significant changes in the expression of 283 genes were observed; 178 genes were up-regulated and 93 down-regulated. These genes were involved in metabolism, cell structure, immune response, transcription, signal transduction, transport, and apoptosis. No functional information was found for 74 genes. Real-time RT-PCR was used to confirm the microarray results of 12 genes. In addition, 3 DC maturation markers not present on the microarrays (DEC205, DC LAMP and CCR7) were analyzed using real-time RT-PCR and found to be up-regulated at several time points. Our data indicate that a broad range of biological processes is influenced by nickel. Some processes are clearly linked to the immune response and DC maturation, others may indicate a toxic effect of nickel

  1. Mosquito Heparan Sulfate and Its Potential Role in Malaria Infection and Transmission*

    OpenAIRE

    Sinnis, Photini; Coppi, Alida; Toida, Toshihiko; Toyoda, Hidenao; Kinoshita-Toyoda, Akiko; Xie, Jin; Kemp, Melissa M.; Linhardt, Robert J.

    2007-01-01

    Heparan sulfate has been isolated for the first time from the mosquito Anopheles stephensi, a known vector for Plasmodium parasites, the causative agents of malaria. Chondroitin sulfate, but not dermatan sulfate or hyaluronan, was also present in the mosquito. The glycosaminoglycans were isolated, from salivary glands and midguts of the mosquito in quantities sufficient for disaccharide microanalysis. Both of these organs are invaded at different stages of the Plasmodium life cycle. Mosquito ...

  2. Glycosaminoglycan modifications in Duchenne muscular dystrophy: specific remodeling of chondroitin sulfate/dermatan sulfate

    NARCIS (Netherlands)

    Negroni, E.; Henault, E.; Chevalier, F.; Gilbert-Sirieix, M.; Kuppevelt, T.H. van; Papy-Garcia, D.; Uzan, G.; Albanese, P.

    2014-01-01

    Widespread skeletal muscle degeneration and impaired regeneration lead to progressive muscle weakness and premature death in patients with Duchenne muscular dystrophy (DMD). Dystrophic muscles are progressively replaced by nonfunctional tissue because of exhaustion of muscle precursor cells and exce

  3. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J;

    1993-01-01

    -CSPG stained alveolar, airway, and vascular BMs, in addition to smooth muscle external laminae (EL), in the adult and developing rat. Immunostaining for CSPG required hyaluronidase digestion, whereas CS staining was lost with the same treatment. A polyclonal antibody to the core protein of HSPG was found to be...

  4. Exogenous expression of human SGLT1 exhibits aggregations in sodium dodecyl sulfate polyacrylamide gel electrophoresis

    OpenAIRE

    Huang, Wei-Chien; Hsu, Sheng-Chie; Huang, Shyh-Jer; Chen, Yun-Ju; Hsiao, Yu-Chun; Zhang, Weihua; Isaiah J. Fidler; Hung, Mien-Chie

    2013-01-01

    Sodium/glucose co-transporter 1 (SGLT1), which actively and energy-dependently uptakes glucose, plays critical roles in the development of various diseases including diabetes mellitus and cancer, and has been viewed as a promising therapeutic target for these diseases. Protein-protein interaction with EGFR has been shown to regulate the expression and activity of SGLT1. Exogenous expression of SGLT1 is one of the essential approaches to characterize its functions; however, exogenously express...

  5. Heparan sulfate proteoglycans mediate factor XIIa binding to the cell surface.

    Science.gov (United States)

    Wujak, Lukasz; Didiasova, Miroslava; Zakrzewicz, Dariusz; Frey, Helena; Schaefer, Liliana; Wygrecka, Malgorzata

    2015-03-13

    Hageman factor (FXIIa) initiates the intrinsic coagulation pathway and triggers the kallikrein-kinin and the complement systems. In addition, it functions as a growth factor by expressing promitogenic activities toward several cell types. FXIIa binds to the cell surface via a number of structurally unrelated surface receptors; however, the underlying mechanisms are not yet fully understood. Here, we demonstrate that FXIIa utilizes cell membrane-bound glycosaminoglycans to interact with the cell surface of human lung fibroblasts (HLF). The combination of enzymatic, inhibitory, and overexpression approaches identified a heparan sulfate (HS) component of proteoglycans as an important determinant of the FXIIa binding capacity of HLF. Moreover, cell-free assays and competition experiments revealed preferential binding of FXIIa to HS and heparin over dextran sulfate, dermatan sulfate, and chondroitin sulfate A and C. Finally, we demonstrate that fibroblasts isolated from the lungs of the patients suffering from idiopathic pulmonary fibrosis (IPF) exhibit enhanced FXIIa binding capacity. Increased sulfation of HS resulting from elevated HS 6-O-sulfotransferase-1 expression in IPF HLF accounted, in part, for this phenomenon. Application of RNA interference technology and inhibitors of intracellular sulfation revealed the cooperative action of cell surface-associated HS and urokinase-type plasminogen activator receptor in the accumulation of FXIIa on the cell surface of IPF HLF. Moreover, FXIIa stimulated IPF HLF migration, which was abrogated by pretreatment of cells with heparinase I. Collectively, our study uncovers a novel role of HS-type glycosaminoglycans in a local accumulation of FXIIa on the cell membrane. The enhanced association of FXIIa with IPF HLF suggests its contribution to fibrogenesis. PMID:25589788

  6. Propolis modulates vitronectin, laminin, and heparan sulfate/heparin expression during experimental burn healing

    Institute of Scientific and Technical Information of China (English)

    Pawel OLCZYK; Katarzyna KOMOSI(N)SKA-VASSEV; Katarzyna WINSZ-SZCZOTKA; Ewa M.KO(Z)MA; Grzegorz WISOWSKI; Jerzy STOJKO; Katarzyna KLIMEK; Krystyna OLCZYK

    2012-01-01

    Objective:This study was aimed at assessing the dynamics of vitronectin (VN),laminin (LN),and heparan sulfate/heparin (HS/HP) content changes during experimental burn healing.Methods:VN,LN,and HS/HP were isolated and purified from normal and injured skin of domestic pigs,on the 3rd,5th,10th,15th,and 21st days following thermal damage.The wounds were treated with apitherapeutic agent (propolis),silver sulfadiazine (SSD),physiological salt solution,and propolis vehicle.VN and LN were quantified using an immunoenzymatic assay and HS/HP was estimated by densitometric analysis.Results:Propolis treatment stimulated significant increases in VN,LN,and HS/HP contents during the initial phase of study,followed by a reduction in the estimated extracellular matrix molecules.Similar patterns,although less extreme,were observed after treatment with SSD.Conclusions:The beneficial effects of propolis on experimental wounds make it a potential apitherapeutic agent in topical burn management.

  7. Effects of dermatan sulfate derivatives on platelet surface P-selectin expression and protein C activity in blood of inflammatory bowel disease patients

    OpenAIRE

    Ji, Sheng-Li; Du, Hai-Yan; Chi, Yan-Qing; Cui, Hui-Fei; Cao, Ji-Chao; Geng, Mei-yu; Guan, Hua-Shi

    2004-01-01

    AIM: To investigate the effect of dermatan sulfate (DS) derivatives on platelet surface P-selectin expression and blood activated protein C (APC) activity in patients with inflammatory bowel disease (IBD), and to clarity the anti-inflammatory mechanism of DS derivatives.

  8. Genome-Wide Expression Analysis of Human In Vivo Irritated Epidermis: Differential Profiles Induced by Sodium Lauryl Sulfate and Nonanoic Acid

    DEFF Research Database (Denmark)

    Clemmensen, Anders; Andersen, Klaus E; Clemmensen, Ole;

    2010-01-01

    differential molecular events induced in the epidermis by different irritants, we collected sequential biopsies ((1/2), 4, and 24 hours after a single exposure and at day 11 after repeated exposure) from human volunteers exposed to either sodium lauryl sulfate (SLS) or nonanoic acid (NON). Gene expression...

  9. Chondroitin sulphate proteoglycans in the central nervous system: changes and synthesis after injury.

    Science.gov (United States)

    Properzi, F; Asher, R A; Fawcett, J W

    2003-04-01

    Chondroitin sulphate proteoglycans (CSPGs) are up-regulated in the central nervous system after injury, specifically around the lesion site where the glial scar forms. This structure contains astrocytes, oligodendrocyte precursor cells, microglia and meningeal cells, and forms an inhibitory substrate for axon re-growth. CSPGs have been shown to be closely involved in this neuronal growth inhibition, specifically through their sugar chains. These chains are composed of repeats of the same disaccharide unit carrying sulphate groups in different positions. The sulphation pattern directly influences the CSPG binding properties and function; the specific sulphation pattern required for the inhibitory activity of these molecules on axon growth is unknown at present. The expression of the chondroitin sulphotransferases, which sulphate the disaccharide residues of CSPGs and thus are responsible for the structural diversity of the chondroitin sulphate sugar chains, is regulated differently in central nervous system during development and after injury, suggesting the implication of a specific sulphation pattern in the inhibitory activity of CSPGs. PMID:12653631

  10. Changes in cardiac heparan sulfate proteoglycan expression and streptozotocin-induced diastolic dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Cestari Ismar N

    2011-04-01

    Full Text Available Abstract Background Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ-induced diabetes. Methods Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the following groups: control (sham injection, after 24 hours, 10 days, or 30 days of STZ administration. Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day groups to correlate the observed mRNA changes to the protein expression. Results In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic dysfunction with alterations in the peak velocity of early (E diastolic filling and isovolumic relaxation time (IVRT indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower than that in the control group. The same results were obtained from immunohistochemistry analysis. Conclusion Our data suggest that membrane proteoglycans participate in the sequence of events triggered by diabetes and inflicted on cardiac and skeletal muscles.

  11. Identification of Chemically Sulfated/desulfated Glycosaminoglycans in Contaminated Heparins and Development of a Simple Assay for the Detection of Most Contaminants in Heparin

    OpenAIRE

    Pan, Jing; Qian, Yi; Zhou, Xiaodong; Pazandak, Andrew; Frazier, Sarah B.; Weiser, Peter; Lu, Hong; Zhang, Lijuan

    2010-01-01

    Contaminated heparin was linked to at least 149 deaths and hundreds of adverse reactions. Published report indicates that heparin contaminants were a natural impurity, dermatan sulfate, and a contaminant, oversulfated chondroitin sulfate (OSCS). OSCS was assumed to derive from animal cartilage. By analyzing 26 contaminated heparin lots from different sources, our data indicate that the heparin contaminants were chemically sulfated or chemically sulfated/desulfated glycosaminoglycans (GAGs) co...

  12. Barium Sulfate

    Science.gov (United States)

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  13. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis

    OpenAIRE

    Stachtea, X.N.; Tykesson, E.; Kuppevelt, T.H. van; Feinstein, R.; Malmstrom, A.; Reijmers, R.M.; Maccarana, M.

    2015-01-01

    The epimerization of glucuronic acid into iduronic acid adds structural variability to chondroitin/dermatan sulfate polysaccharides. Iduronic acid-containing domains play essential roles in processes such as coagulation, chemokine and morphogen modulation, collagen maturation, and neurite sprouting. Therefore, we generated and characterized, for the first time, mice deficient in dermatan sulfate epimerase 1 and 2, two enzymes uniquely involved in dermatan sulfate biosynthesis. The resulting m...

  14. Cell surface heparan sulfate proteoglycans contribute to intracellular lipid accumulation in adipocytes

    Directory of Open Access Journals (Sweden)

    Orlando Robert A

    2005-01-01

    Full Text Available Abstract Background Transport of fatty acids within the cytosol of adipocytes and their subsequent assimilation into lipid droplets has been thoroughly investigated; however, the mechanism by which fatty acids are transported across the plasma membrane from the extracellular environment remains unclear. Since triacylglycerol-rich lipoproteins represent an abundant source of fatty acids for adipocyte utilization, we have investigated the expression levels of cell surface lipoprotein receptors and their functional contributions toward intracellular lipid accumulation; these include very low density lipoprotein receptor (VLDL-R, low density lipoprotein receptor-related protein (LRP, and heparan sulfate proteoglycans (HSPG. Results We found that expression of these three lipoprotein receptors increased 5-fold, 2-fold, and 2.5-fold, respectively, during adipocyte differentiation. The major proteoglycans expressed by mature adipocytes are of high molecular weight (>500 kD and contain both heparan and chondroitin sulfate moieties. Using ligand binding antagonists, we observed that HSPG, rather than VLDL-R or LRP, play a primary role in the uptake of DiI-lableled apoE-VLDL by mature adipocytes. In addition, inhibitors of HSPG maturation resulted in a significant reduction (>85% in intracellular lipid accumulation. Conclusions These results suggest that cell surface HSPG is required for fatty acid transport across the plasma membrane of adipocytes.

  15. Dextran Sodium Sulfate-Induced Inflammation Alters the Expression of Proteins by Intestinal Escherichia coli Strains in a Gnotobiotic Mouse Model

    OpenAIRE

    Schumann, Sara; Alpert, Carl; Engst, Wolfram; Loh, Gunnar; Blaut, Michael

    2012-01-01

    To identify Escherichia coli proteins involved in adaptation to intestinal inflammation, mice were monoassociated with the colitogenic E. coli strain UNC or with the probiotic E. coli strain Nissle. Intestinal inflammation was induced by treating the mice with 3.5% dextran sodium sulfate (DSS). Differentially expressed proteins in E. coli strains collected from cecal contents were identified by 2-dimensional difference gel electrophoresis. In both strains, acute inflammation led to the downre...

  16. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... apparatus has not been carried out in a detailed way using high-resolution microscopy. We have begun this process, using well-known markers for the various Golgi compartments, coupled with the use of characterized antibodies and cDNA expression. Laser scanning confocal microscopy coupled with line scanning...

  17. Dermatan sulfate activates nuclear factor-κb and induces endothelial and circulating intercellular adhesion molecule-1

    OpenAIRE

    Penc, Stanley F.; Pomahac, Bohdan; Eriksson, Elof; Detmar, Michael; Gallo, Richard L

    1999-01-01

    Proteoglycans (PGs) can influence cell behaviors through binding events mediated by their glycosaminoglycan (GAG) chains. This report demonstrates that chondroitin sulfate B, also known as dermatan sulfate (DS), a major GAG released during the inflammatory phase of wound repair, directly activates cells at the physiologic concentrations of DS found in wounds. Cultured human dermal microvascular endothelial cells exposed to DS responded with rapid nuclear translocation of nuclear factor-κB (NF...

  18. Label-Free Detection of Chondroitin Sulphate Proteoglycan 4 by a Polyaniline/Graphene Nanocomposite Functionalized Impedimetric Immunosensor

    OpenAIRE

    JingJing Fu; ZhuanZhuan Shi; Man Li; Yangyang Wang; Ling Yu

    2016-01-01

    The chondroitin sulphate proteoglycan 4 (CSPG4), also known as high molecular weight-melanoma associated antigen (HMW-MAA), is a tumor-associated antigen that is expressed in more than 85% of surgically removed melanoma lesions but has restricted distribution in normal tissues. The diagnostic and therapeutic value of CSPG4 drives a need for sensitive and low-cost detection approaches. To this end, we developed a polyaniline/graphene oxide nanocomposite (PANI@GO) that was electrochemically cod...

  19. Effects of dermatan sulfate derivatives on platelet surface P-selectin expression and protein C activity in blood of inflammatory bowel disease patients

    Institute of Scientific and Technical Information of China (English)

    Sheng-Li Ji; Hai-Yan Du; Yan-Qing Chi; Hui-Fei Cui; Ji-Chao Cao; Mei-Yu Geng; Hua-Shi Guan

    2004-01-01

    AIM: To investigate the effect of dermatan sulfate (DS)derivatives on platelet surface P-selectin expression and blood activated protein C (APC) activity in patients with inflammatory bowel disease (IBD), and to clarity the antiinflammatory mechanism of DS derivatives.METHODS: Dermatan sulfate (DS) was sulfated with chlorosulfonic acid to prepare polysulfated dermatan sulfate (PSDS). The major disaccharides of DS and PSDS were determined by 1H nuclear magnetic resonance spectroscopy (1H-NMR) and 13C-NMR. Both DS and PSDS were depolymerized with hydrogen peroxide. The fragments were separated by gel filtration chromatography. The effects of DS derivatives on P-selectin expression were assayed by ELISA method,and blood APC activity was assayed by the synthetic chromogenic substrate method.RESULTS: The major disaccharides of DS and PSDS were IdoA-1→3-GalNAc-4-SO3 and IdoA-2SO3-1→3-GalNAc4, 6-diSO3, respectively. Compared with the adenosine diphosphate stimulated group and IBD control group, DS and its derivatives all had significant inhibitory effects on P-selectin expression (P<0.01), but there was no difference between DS-derived oligosaccharides (DSOSs) and PSDS-derived oligosaccharides (PSDSOSs). The experiments on APC activity showed that DS and its derivatives all enhanced APC activity. The most active DSOS was the one with a relative molecular weight (Mr) of 4 825, which enhanced the APC activity from 106.5±11.5% to 181.8±22.3% (P<0.01). With the decrease of Mr, the activity of DSOSs decreased gradually. The effect of PSDS on APC activity enhancement was more significant than that of DS, and the APC activity was raised to 205.2±22.1% (P<0.01). All the PSDSOSs were more active than DSOSs on the basis of comparable Mr. With the decrease of Mr, the activity of PSDSOSs increased gradually, and the most active PSDSOS was PSDSOS3 with Mr of 2 749, which enhanced the APC activity to 331.2±27.8% (P<0.01), then the activity of PSDSOSs decreased gradually

  20. Regulation of the Expression of Heparan Sulfate 3-O-Sulfotransferase 3B (HS3ST3B) by Inflammatory Stimuli in Human Monocytes.

    Science.gov (United States)

    Sikora, Anne-Sophie; Delos, Maxime; Martinez, Pierre; Carpentier, Mathieu; Allain, Fabrice; Denys, Agnès

    2016-07-01

    Heparan sulfate (HS) is recognized as an important player in a wide range of dynamic steps of inflammatory reactions. Thereby, structural HS remodeling is likely to play an important role in the regulation of inflammatory and immune responses; however, little is known about underlying mechanism. In this study, we analyzed the regulation of expression of HS 3-O-sulfotransferases (HS3STs) in response to inflammatory stimuli. We found that among the seven HS3ST isoenzymes, only the expression of HS3ST3B was markedly up-regulated in human primary monocytes and the related cell line THP1 after exposure to TLR agonists. TNF-α was also efficient, to a lesser extent, to increase HS3ST3B expression, while IL-6, IL-4, and IFN-γ were poor inducers. We then analyzed the molecular mechanisms that regulate the high expression of HS3ST3B in response to LPS. Based on the expression of HS3ST3B transcripts and on the response of a reporter gene containing the HS3ST3B1 promoter, we provide evidence that LPS induces a rapid and strong transcription of HS3ST3B1 gene, which was mainly dependent on the activation of NF-κB and JNK signaling pathways. Additionally, active p38 MAPK and de novo synthesized proteins are involved in post-transcriptional mechanisms to maintain a high level of HS3ST3B mRNA to a steady state. Altogether, our findings indicate that HS3ST3B1 gene behaves as a primary response gene, suggesting that it may play an important role in making 3-O-sulfated HS with specific functions in the regulation of inflammatory and immune responses. J. Cell. Biochem. 117: 1529-1542, 2016. © 2015 Wiley Periodicals, Inc. PMID:26575945

  1. Synergistic Chondroprotective Effect of α-Tocopherol, Ascorbic Acid, and Selenium as well as Glucosamine and Chondroitin on Oxidant Induced Cell Death and Inhibition of Matrix Metalloproteinase-3—Studies in Cultured Chondrocytes

    Directory of Open Access Journals (Sweden)

    Anne-Christi Graeser

    2009-12-01

    Full Text Available Overproduction of reactive oxygen species and impaired antioxidant defence accompanied by chronic inflammatory processes may impair joint health. Pro-inflammatory cytokines such as interleukin-1β (IL-1β and tumor necrosis factor alpha (TNF-α stimulate the expression of metalloproteinases which degrade the extracellular matrix. Little is known regarding the potential synergistic effects of natural compounds such as α-tocopherol (α-toc, ascorbic acid (AA and selenium (Se on oxidant induced cell death. Furthermore studies regarding the metalloproteinase-3 inhibitory activity of glucosamine sulfate (GS and chondroitin sulfate (CS are scarce. Therefore we have studied the effect of α-toc (0.1–2.5 µmol/L, AA (10–50 µmol/L and Se (1–50 nmol/L on t-butyl hydroperoxide (t-BHP, 100–500 µmol/L-induced cell death in SW1353 chondrocytes. Furthermore we have determined the effect of GS and CS alone (100–500 µmol/L each and in combination on MMP3 mRNA levels and MMP3 secretion in IL-1β stimulated chondrocytes. A combination of α-toc, AA, and Se was more potent in counteracting t-BHP-induced cytotoxicity as compared to the single compounds. Similarly a combination of CS and GS was more effective in inhibiting MMP3 gene expression and secretion than the single components. The inhibition of MMP3 secretion due to GS plus CS was accompanied by a decrease in TNF-α production. Combining natural compounds such as α-toc, AA, and Se as well as GS and CS seems to be a promising strategy to combat oxidative stress and cytokine induced matrix degradation in chondrocytes.

  2. Barium Sulfate

    Science.gov (United States)

    ... using x-rays or computed tomography (CAT scan, CT scan; a type of body scan that uses ... be clearly seen by x-ray examination or CT scan. ... more times before an x-ray examination or CT scan.If you are using a barium sulfate ...

  3. Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes

    DEFF Research Database (Denmark)

    Heinonen, J; Taipaleenmäki, H; Roering, P; Takatalo, M; Harkness, L; Sandholm, J; Uusitalo-Järvinen, H; Kassem, M; Kiviranta, I; Laitala-Leinonen, T; Säämänen, A-M

    2011-01-01

    expressed in Cos7 cells, and the cell lysate was studied for putative glycosaminoglycan attachment by digestion with chondroitinase ABC and Western blotting. RESULTS: The predicted molecule is a small, 121 amino acids long type I single-pass transmembrane chondroitin sulfate proteoglycan, that contains ER...... signal peptide, lumenal/extracellular domain with several threonines/serines prone to O-N-acetylgalactosamine modification, and a cytoplasmic tail with a Ying-yang site prone to phosphorylation or O-N-acetylglucosamine modification. It is highly conserved in mammals with orthologs in all vertebrate...... models demonstrated similar expression profiles with Sox9, Acan and Col2a1 and up-regulation by BMP-2. Based on its cartilage specific expression, the molecule was named Snorc, (Small NOvel Rich in Cartilage). CONCLUSION: A novel cartilage specific molecule was identified which marks the differentiating...

  4. Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration.

    Science.gov (United States)

    Bhattacharjee, Maumita; Chawla, Shikha; Chameettachal, Shibu; Murab, Sumit; Bhavesh, Neel Sarovar; Ghosh, Sourabh

    2016-04-01

    Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes. Covalent attachment of chondroitin sulfate (CS) to silk is characterized. CS-conjugated silk constructs demonstrate enhanced cellular metabolic activity and chondrogenic redifferentiation potential with significantly improved mechanical properties over silk-only constructs. A matrix-assisted laser desorption ionization-time of flight analysis and protein-protein interaction studies help to generate insights into how CS conjugation can facilitate the production of disc associated matrix proteins, compared to a silk-only based construct. An in-depth understanding of the interplay between such extra cellular matrix associated proteins should help in designing more rational scaffolds for cartilaginous disc regeneration needs. PMID:27068621

  5. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells

    Directory of Open Access Journals (Sweden)

    Lindin Inger

    2011-03-01

    Full Text Available Abstract Background Several naturally occurring cationic antimicrobial peptides (CAPs, including bovine lactoferricin (LfcinB, display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms and have been shown to induce a protective immune response against solid tumors, thus making them interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS on the surface of tumor cells. Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides have been constructed. In the present study, we have investigated the anticancer activity of three chemically modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS on their cytotoxic activity. Methods Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the peptides and the peptides' affinity for HS and CS were also investigated. Results The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides. Conclusions In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that the cytotoxic activity of small lytic peptides was increased or not affected by cell surface HS.

  6. Targeting the expression of glutathione- and sulfate-dependent detoxification enzymes in HepG2 cells by oxygen in minimal and amino acid enriched medium.

    Science.gov (United States)

    Usarek, Ewa; Graboń, Wojciech; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2016-02-01

    Cancer cells exhibit specific metabolism allowing them to survive and proliferate in various oxygen conditions and nutrients' availability. Hepatocytes are highly active metabolically and thus very sensitive to hypoxia. The purpose of the study was to investigate the effect of oxygen on the expression of phase II detoxification enzymes in hepatocellular carcinoma cells (HepG2) cultured in minimal and rich media (with nonessential amino acids and GSH). The cells were cultured at 1% hypoxia, 10% tissue normoxia, and 21% atmospheric normoxia. The total cell count was determined by trypan blue exclusion dye and the expression on mRNA level by RT-PCR. The result indicated that the expression of glutathione-dependent enzymes (GSTA, M, P, and GPX2) was sensitive to oxygen and medium type. At 1% hypoxia the enzyme expression (with the exception of GSTA) was higher in minimal compared to rich medium, whereas at 10% normoxia it was higher in the rich medium. The expression was oxygen-dependent in both types of medium. Among phenol sulfotransferase SULT1A1 was not sensitive to studied factors, whereas the expression of SULT1A3 was depended on oxygen only in minimal medium. It can be concluded that in HepG2 cells, the detoxification by conjugation with glutathione and, to a lower extent with sulfate, may be affected by hypoxia and/or limited nutrients' availability. Besides, because the data obtained at 10% oxygen significantly differ from those at 21%, the comparative studies on hypoxia should be performed in relation to 10% but not 21% oxygen. PMID:26599691

  7. SRPX2 Is a Novel Chondroitin Sulfate Proteoglycan That Is Overexpressed in Gastrointestinal Cancer

    OpenAIRE

    Tanaka, Kaoru; Arao, Tokuzo; Tamura, Daisuke; Aomatsu, Keiichi; Furuta, Kazuyuki; Matsumoto, Kazuko; Kaneda, Hiroyasu; Kudo, Kanae; Fujita, Yoshihiko; Kimura, Hideharu; Yanagihara, Kazuyoshi; Yamada, Yasuhide; Okamoto, Isamu; Nakagawa, Kazuhiko; Nishio, Kazuto

    2012-01-01

    SRPX2 (Sushi repeat-containing protein, X-linked 2) has recently emerged as a multifunctional protein that is involved in seizure disorders, angiogenesis and cellular adhesion. Here, we analyzed this protein biochemically. SRPX2 protein was secreted with a highly posttranslational modification. Chondroitinase ABC treatment completely decreased the molecular mass of purified SRPX2 protein to its predicted size, whereas heparitinase, keratanase and hyaluroinidase did not. Secreted SRPX2 protein...

  8. Basement membrane proteoglycans in glomerular morphogenesis: chondroitin sulfate proteoglycan is temporally and spatially restricted during development

    DEFF Research Database (Denmark)

    McCarthy, K J; Bynum, K; St John, P L; Abrahamson, D R; Couchman, J R

    1993-01-01

    basement membrane (GBM) but present in other basement membranes of the nephron, including collecting ducts, tubules, Bowman's capsule, and the glomerular mesangium. In light of this unique pattern of distribution and of the complex histoarchitectural reorganization occurring during nephrogenesis, the...... vasculature and ureteric buds, its first appearance in nephron basement membrane occurs during the late comma stage. In capillary loop-stage glomeruli of prenatal animals, BM-CSPG is present in the presumptive mesangial matrix but undetectable in the GBM. However, as postnatal glomerular maturation progresses...... BM-CSPG is also found in both the lamina rara interna and lamina densa of the GBM in progressively increasing amounts, being most evident in the GBM of 21-day-old animals. Micrographs of glomeruli from 42-day-old animals show that BM-CSPG gradually disappears from the GBM and, by 56 days after birth...

  9. Immunological characterization of a basement membrane-specific chondroitin sulfate proteoglycan

    DEFF Research Database (Denmark)

    McCarthy, K J; Accavitti, M A; Couchman, J R

    1989-01-01

    Reichert's membrane, an extraembryonic membrane present in developing rodents, has been proposed as an in vivo model for the study of basement membranes. We have used this membrane as a source for isolation of basement membrane proteoglycans. Reichert's membranes were extracted in a guanidine/3-[...

  10. Role for chondroitin sulfate glycosaminoglycan in NEDD9-mediated breast cancer cell growth

    NARCIS (Netherlands)

    Iida, J.; Dorchak, J.; Clancy, R.; Slavik, J.; Ellsworth, R.; Katagiri, Y.; Pugacheva, E.N.; Kuppevelt, T.H. van; Mural, R.J.; Cutler, M.L.; Shriver, C.D.

    2015-01-01

    There are lines of evidence demonstrating that NEDD9 (Cas-L, HEF-1) plays a key role in the development, progression, and metastasis of breast cancer cells. We previously reported that NEDD9 plays a critical role for promoting migration and growth of MDA-MB-231. In order to further characterize the

  11. Effectiveness of Glucosamine and Chondroitin Sulfate Combination in Patients with Primary Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Laszlo IRSAY

    2010-12-01

    Full Text Available Purpose: Studying the effectiveness of chondroprotective agents for patients with primary knee arthritis or primary generalized osteoarthritis, according to the American College of Rheumatology 2000 criteria. Material and Methods: comparative study, the groups were constituted out of 25 patients in the study group and 15 patients in the control group. The patients were evaluated with the WOMAC test, Lequesne, cross-linked C-terminal (CTX telopeptide of type I collagen on inclusion, at 6 and 12 months and through bilateral- knee radiography, using the Kellgren-Lawrence classification on inclusion and 12 months later. Patients from the study group received a chondroprotectiv agent orally for 12 months. Results: WOMAC score was improved in the study group at 6 and 12 months -4.1 (CI -6.1 to -2.1 and -5.9 (CI -8 to -3.8 compared to the control group 1.5 (CI -0.7 to 3.7 and 2 (CI -0.2 to 4.2, with a statistical significance p=0.02. There has also been an amelioration of the Lequesne score in the study group at 6 and 12 months -3.8 (CI -6.3 to -1.3 and -6.2 (CI -9.1 to -3.3, and the control group 1.3 (CI -1.5 to 4.1 to 6 months and 1.9 (CI -0.8 to 4.6 to 12 months, with a statistical significance p=0.03. No adverse reactions were registered. Conclusions: The chondroprotective agent was effective in improving the function of patients with osteoarthritis, the studied marker cannot be used to monitor the treatment effectiveness, and the radiological modifications in the knee are statistically insignificant after 12 months of monitoring.

  12. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen.

    Directory of Open Access Journals (Sweden)

    Zhong-Dong Shi

    Full Text Available BACKGROUND: Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP expression in rat vascular smooth muscle cells (SMCs and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D. METHODOLOGY/PRINCIPAL FINDINGS: Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS chains from proteoglycan (PG core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1 suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13 expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity. CONCLUSIONS/SIGNIFICANCE: We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D

  13. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    DEFF Research Database (Denmark)

    Beavan, L A; Davies, M; Couchman, J R;

    1989-01-01

    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at...... methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of [35S]heparan sulfate proteoglycans had a...... metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-[(cholamidopropyl)dimethy-lammonio]-1...

  14. DcR3 binds to ovarian cancer via heparan sulfate proteoglycans and modulates tumor cells response to platinum with corresponding alteration in the expression of BRCA1

    International Nuclear Information System (INIS)

    Overcoming platinum resistance is a major obstacle in the treatment of Epithelial Ovarian Cancer (EOC). In our previous work Decoy Receptor 3 (DcR3) was found to be related to platinum resistance. The major objective of this work was to define the cellular interaction of DcR3 with EOC and to explore its effects on platinum responsiveness. We studied cell lines and primary cultures for the expression of and the cells ability to bind DcR3. Cells were cultured with DcR3 and then exposed to platinum. Cell viability was determined by MTT assay. Finally, the cells molecular response to DcR3 was studied using real time RT-PCR based differential expression arrays, standard RT-PCR, and Western blot. High DcR3 in the peritoneal cavity of women with EOC is associated with significantly shorter time to first recurrence after platinum based therapy (p = 0.02). None-malignant cells contribute DcR3 in the peritoneal cavity. The cell lines studied do not secrete DcR3; however they all bind exogenous DcR3 to their surface implying that they can be effected by DcR3 from other sources. DcR3s protein binding partners are minimally expressed or negative, however, all cells expressed the DcR3 binding Heparan Sulfate Proteoglycans (HSPGs) Syndecans-2, and CD44v3. DcR3 binding was inhibited by heparin and heparinase. After DcR3 exposure both SKOV-3 and OVCAR-3 became more resistant to platinum with 15% more cells surviving at high doses. On the contrary CaOV3 became more sensitive to platinum with 20–25% more cell death. PCR array analysis showed increase expression of BRCA1 mRNA in SKOV-3 and OVCAR-3 and decreased BRCA1 expression in CaOV-3 after exposure to DcR3. This was confirmed by gene specific real time PCR and Western blot analysis. Non-malignant cells contribute to the high levels of DcR3 in ovarian cancer. DcR3 binds readily to EOC cells via HSPGs and alter their responsiveness to platinum chemotherapy. The paradoxical responses seen were related to the expression pattern of

  15. Effects of retinal growth factor and of the increase of the number of subcultures on sulfated glycosaminoglycans of bovine lens epithelial cells

    International Nuclear Information System (INIS)

    Sulfated glycosaminoglycans of cultured bovine lens epithelial cells grown in the presence and in the absence of a retinal growth factor were investigated comparatively. The newly formed [35S] sulfate-labeled glycosaminoglycans were analysed in the extra-, peri- and intracellular compartments of early (4-5th) and late (17-18h) subcultures. The following results were obtained: (1) Cultured lens epithelial cells grown in the presence or in the absence of the growth factor synthesize chondroitin 4- and 6-sulfates and dermatan sulfate, with heparan sulfate as the main component, the pericellular compartments were particularly rich in heparan sulfate; (2) The distribution pattern of the glycosaminoglycans changes during successive subcultures; the proportion of heparan sulfate increases in the pericellular compartment, the dermatan sulfate to chondroitin sulfate ratio increases in all three compartments; (3) In contrast to the drastic decrease in the fibronectin levels in the presence of growth factor in the early subcultures, only minor differences were found between the glycosaminoglycan patterns for the treated and non-treated cells. ( orig.)

  16. Decorin is one of the proteoglycans expressed in Walker 256 rat mammary carcinoma

    Directory of Open Access Journals (Sweden)

    S.M. Oba-Shinjo

    2003-08-01

    Full Text Available Proteoglycan and glycosaminoglycan content was analyzed in a model of rat mammary carcinoma to study the roles of these compounds in tumorigenesis. Hyaluronic acid and proteoglycans bearing chondroitin and/or dermatan sulfate chains were detected in solid tumors obtained after subcutaneous inoculation of Walker 256 rat carcinoma cells. About 10% of sulfated glycosaminoglycan chains corresponded to heparan sulfate. The small leucine-rich proteoglycan, decorin, was identified as one of the proteoglycans, in addition to others of higher molecular weight, by cross-reaction with an antiserum raised against pig laryngeal decorin and by N-terminal amino acid sequencing. Decorin was separated from other proteoglycans by hydrophobic chromatography and its complete structure was determined. It has a molecular weight of about 85 kDa and a dermatan chain of 45 kDa with 4-sulfated disaccharides. After degradation of the glycosaminoglycan chain, three core proteins of different molecular weight (36, 46 and 56 kDa were identified. The presence of hyaluronic acid and decorin has been reported in a variety of tumors and tumor cells. In the Walker 256 mammary carcinoma model, hyaluronic acid may play an important role in tumor progression, since it provides a more hydrated extracellular matrix. On the other hand, decorin, which is expressed by stromal cells, represents a host defense response to tumor growth.

  17. Sulfates on Mars: Indicators of Aqueous Processes

    Science.gov (United States)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  18. Transmembrane proteoglycans syndecan-2, 4, receptor candidates for the impact of HGF and FGF2 on semaphorin 3A expression in early-differentiated myoblasts.

    Science.gov (United States)

    Do, Mai-Khoi Q; Shimizu, Naomi; Suzuki, Takahiro; Ohtsubo, Hideaki; Mizunoya, Wataru; Nakamura, Mako; Sawano, Shoko; Furuse, Mitsuhiro; Ikeuchi, Yoshihide; Anderson, Judy E; Tatsumi, Ryuichi

    2015-09-01

    Regenerative mechanisms that regulate intramuscular motor innervation are thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies proposed an unexplored role of resident myogenic stem cell (satellite cell)-derived myoblasts as a key presenter of a secreted neural chemorepellent semaphorin 3A (Sema3A); hepatocyte growth factor (HGF) and basic fibroblast growth factor (FGF2) triggered its expression exclusively at the early differentiation phase. In order to advance this concept, the present study described that transmembrane heparan/chondroitin sulfate proteoglycans syndecan-2, 4 may be the plausible receptor candidates for HGF and FGF2 to signal Sema3A expression. Results showed that mRNA expression of syndecan-2, 4 was abundant (two magnitudes higher than syndecan-1, 3) in early-differentiated myoblasts and their in vitro knockdown diminished the HGF/FGF2-induced expression of Sema3A down to a baseline level. Pretreatment with heparitinase and chondroitinase ABC decreased the HGF and FGF2 responses, respectively, in non-knockdown cultures, supporting a possible model that HGF and FGF2 may bind to heparan and chondroitin sulfate chains of syndecan-2, 4 to signal Sema3A expression. The findings, therefore, extend our understanding that HGF/FGF2-syndecan-2, 4 association may stimulate a burst of Sema3A secretion by myoblasts recruited to the site of muscle injury; this would ensure a coordinated delay in the attachment of motoneuron terminals onto fibers early in muscle regeneration, and thus synchronize the recovery of muscle fiber integrity and the early resolution of inflammation after injury with reinnervation toward functional recovery. PMID:26381016

  19. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, I.J.; Wagner, W.D.; Owens, R.T. (Wake Forest Univ., Winston-Salem, NC (USA))

    1990-03-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with (35S)sulfate and (3H)serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in (35S)sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of (3H)serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion.

  20. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with [35S]sulfate and [3H]serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in [35S]sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of [3H]serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion

  1. "On-The-Spot" Arresting of Chondroitin Sulphate Proteoglycans: Implications for Ovarian Adenocarcinoma Recognition and Intervention.

    Science.gov (United States)

    Pradeep, Priyamvada; Choonara, Yahya E; Kumar, Pradeep; Pillay, Viness

    2016-01-01

    Ovarian Cancer (OC) is one of the leading causes of cancer-associated death among women. The underlying biochemical cause of OC proliferation is usually attributed to the over-expression of Chondroitin Sulphate Proteoglycans (CSPGs) wherein the CS-E subgroup plays a major role in tumor cell proliferation by over-expressing vascular endothelial growth factor (VEGF). We hereby hypothesize that by targeting the OC extracellular matrix using a CS-E-specific antibody, GD3G7, we could provide spatial delivery of crosslinkers and anti-VEGF agents to firstly induce in vivo crosslinking and complexation (arresting) of CS-E into a "biogel mass" for efficient and effective detection, detachment and reduction of tumorous tissue, and secondly inhibit angiogenesis in OC. It is further proposed that the antibody-assisted targeted delivery of CS-E crosslinkers can bind to highly anionic CS-E to form a polyelectrolyte complex to inhibit the formation of ovarian tumor spheroids that are responsible for spheroid-induced mesothelial clearance and progression of OC. The hypothesis also describes the potential in vivo "On-The-Spot" CSPG crosslinkers such as sodium trimetaphosphate (physical crosslinker), 1,12-diaminododecane (chemical crosslinker), poly(ethylene glycol) diglycidyl ether (synthetic polymer), and chitosan (natural polyelectrolyte-forming agent). In conclusion, this hypothesis proposes in vivo spatial crosslinking of CSPGs as a potential theranostic intervention strategy for OC-a first in the field of cancer research. PMID:27438831

  2. Regulation of RPTPbeta/phosphacan expression and glycosaminoglycan epitopes in injured brain and cytokine-treated glia.

    Science.gov (United States)

    Dobbertin, Alexandre; Rhodes, Kate E; Garwood, Jeremy; Properzi, Francesca; Heck, Nicolas; Rogers, John H; Fawcett, James W; Faissner, Andreas

    2003-12-01

    Several chondroitin sulfate proteoglycans (CSPGs) are upregulated after CNS injury and are thought to limit axonal regeneration in the adult mammalian CNS. Therefore, we examined the expression of the CSPG, receptor protein tyrosine phosphatase beta (RPTPbeta)/phosphacan, after a knife lesion to the cerebral cortex and after treatment of glial cultures with regulatory factors. The three splice variants of this CSPG gene, the secreted isoform, phosphacan, and the two transmembrane isoforms, the long and short RPTPbeta, were examined. Western blot and immunostaining analysis of injured and uninjured tissue revealed a transient decrease of phosphacan protein levels, but not of short RPTPbeta, in the injured tissue from 1 to 7 days postlesion (dpl). By real time RT-PCR, we show that phosphacan and long RPTPbeta mRNA levels are transiently down-regulated at 2 dpl, unlike those of short RPTPbeta which increased after 4 dpl. In contrast to the core glycoprotein, the phosphacan chondroitin sulfate (CS) glycosaminoglycan epitope DSD-1 was up-regulated after 7 dpl. Phosphacan was expressed by cultivated astrocytes and oligodendrocyte precursors but was more glycanated in oligodendrocyte precursors, which produce more of DSD-1 epitope than astrocytes. Epidermal growth factor/transforming growth factor alpha strongly increased the astrocytic expression of long RPTPbeta and phosphacan and slightly the short RPTPbeta protein levels, while interferon gamma and tumor necrosis factor alpha reduced astrocytic levels of phosphacan, but not of the receptor forms. Examining the effects of phosphacan on axon growth from rat E17 cortical neurons, we found that phosphacan stimulates outgrowth in a largely CS dependent manner, while it blocks the outgrowth-promoting effects of laminin through an interaction that is not affected by removal of the CS chains. These results demonstrate complex injury-induced modifications in phosphacan expression and glycanation that may well influence axonal

  3. Changes in the Expression and Distribution of Claudins, Increased Epithelial Apoptosis, and a Mannan-Binding Lectin-Associated Immune Response Lead to Barrier Dysfunction in Dextran Sodium Sulfate-Induced Rat Colitis

    OpenAIRE

    Yuan, Bosi; Zhou, Shuping; Lu, Youke; Liu, Jiong; Jin, Xinxin; Wan, Haijun; Wang, Fangyu

    2015-01-01

    Background/Aims This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. Methods Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic...

  4. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line

    OpenAIRE

    Cruz, M. Teresa; Gonçalo, Margarida; Figueiredo, Américo; Carvalho, Arsélio P.; Duarte, Carlos B.; Lopes, M. Celeste

    2004-01-01

    Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO4) and increases the ...

  5. Versican Expression during Synovial Joint Morphogenesis

    Directory of Open Access Journals (Sweden)

    John B. Shepard, Heidi A. Krug, Brooklynn A. LaFoon, Stanley Hoffman, Anthony A. Capehart

    2007-01-01

    Full Text Available The extracellular matrix (ECM plays a critical role in governing cell behavior and phenotype during limb skeletogenesis. Chondroitin sulfate proteoglycans (Cspgs are highly expressed in the ECM of precartilage mesenchymal condensations and are important to limb chondrogenesis and cartilage structure, but little is known regarding their involvement in formation of synovial joints in the embryonic limb. Matrix versican Cspg expression has previously been reported in the epiphysis of developing long bones and presumptive joint; however, detailed analysis has not yet been conducted. In the present study we immunolocalized versican and aggrecan Cspgs during chick elbow joint morphogenesis between HH st25-41 of development. In this study we show that versican and aggrecan expression initially overlapped in the incipient cartilage model of long bones in the wing, but versican was also highly expressed in the perichondrium and presumptive joint interzone during early stages of morphogenesis (HH st25-34. By HH st36-41 versican localization was restricted to the future articular surfaces of the developing joint and surrounding joint capsule while aggrecan localized in an immediately adjacent and predominately non-overlapping region of chondrogenic cells at the epiphyses. These results suggest a potential role for versican proteoglycan in development and maintenance of the synovial joint interzone.

  6. PG545, a heparan sulfate mimetic, reduces heparanase expression in vivo, blocks spontaneous metastases and enhances overall survival in the 4T1 breast carcinoma model.

    Directory of Open Access Journals (Sweden)

    Edward Hammond

    Full Text Available PG545 is a clinically relevant heparan sulfate (HS mimetic which, in addition to possessing anti-angiogenic properties, also acts as a heparanase inhibitor which may differentiate its mechanism(s of action from approved angiogenesis inhibitors. The degradation of HS by heparanase has been strongly implicated in cell dissemination and the metastatic process. Thus, the anti-metastatic activity of PG545 has been linked to the enzymatic function of heparanase - the only endoglycosidase known to cleave HS, an important component of the extracellular matrix (ECM which represents a potential avenue for therapeutic intervention for certain metastatic cancer indications. Recent concerns raised about the paucity of overall survival as an endpoint in mouse models of clinically relevant metastasis led us to examine the effect of PG545 on the progression of both primary tumor growth and the spontaneously metastasizing disease in the 4T1 syngeneic breast carcinoma model in a non-surgical and surgical (mastectomy setting. PG545 significantly inhibited primary tumor growth but importantly also inhibited lung metastasis in treated mice, an effect not observed with the tyrosine kinase inhibitor sorafenib. Importantly, PG545 significantly enhanced overall survival compared to vehicle control and the sorafenib group, suggesting PG545's inhibitory effect on heparanase is indeed a critical attribute to induce anti-metastatic activity. In addition to blocking a common angiogenic signalling pathway in tumor cells, the expression of heparanase in the primary tumor and lung was also significantly reduced by PG545 treatment. These results support the ongoing development of PG545 and highlight the potential utility in metastatic disease settings.

  7. Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling

    OpenAIRE

    Pichert, Annelie; Samsonov, Sergey A; Theisgen, Stephan; Thomas, Lars; Baumann, Lars; Schiller, Jürgen; Beck-Sickinger, Annette G.; Huster, Daniel; Pisabarro, M Teresa

    2011-01-01

    The interactions between glycosaminoglycans (GAGs), important components of the extracellular matrix, and proteins such as growth factors and chemokines play critical roles in cellular regulation processes. Therefore, the design of GAG derivatives for the development of innovative materials with bio-like properties in terms of their interaction with regulatory proteins is of great interest for tissue engineering and regenerative medicine. Previous work on the chemokine interleukin-8 (IL-8) ha...

  8. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line

    OpenAIRE

    Cruz, MT; Gonçalo, Margarida; A. Figueiredo; Carvalho, AP; Duarte, CB

    2004-01-01

    Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO(4)) and increases the expression of the i...

  9. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis

    Science.gov (United States)

    Stachtea, Xanthi N.; Tykesson, Emil; van Kuppevelt, Toin H.; Feinstein, Ricardo; Malmström, Anders; Reijmers, Rogier M.; Maccarana, Marco

    2015-01-01

    The epimerization of glucuronic acid into iduronic acid adds structural variability to chondroitin/dermatan sulfate polysaccharides. Iduronic acid-containing domains play essential roles in processes such as coagulation, chemokine and morphogen modulation, collagen maturation, and neurite sprouting. Therefore, we generated and characterized, for the first time, mice deficient in dermatan sulfate epimerase 1 and 2, two enzymes uniquely involved in dermatan sulfate biosynthesis. The resulting mice, termed DKO mice, were completely devoid of iduronic acid, and the resulting chondroitin sulfate chains were structurally different from the wild type chains, from which a different protein binding specificity can be expected. As a consequence, a vast majority of the DKO mice died perinatally, with greatly variable phenotypes at birth or late embryological stages such as umbilical hernia, exencephaly and a kinked tail. However, a minority of embryos were histologically unaffected, with apparently normal lung and bone/cartilage features. Interestingly, the binding of the chemokine CXCL13, an important modulator of lymphoid organogenesis, to mouse DKO embryonic fibroblasts was impaired. Nevertheless, the development of the secondary lymphoid organs, including the lymph nodes and spleen, was normal. Altogether, our results indicate an important role of dermatan sulfate in embryological development and perinatal survival. PMID:26488883

  10. Versican in the developing brain: lamina-specific expression in interneuronal subsets and role in presynaptic maturation.

    Science.gov (United States)

    Yamagata, Masahito; Sanes, Joshua R

    2005-09-14

    Chondroitin sulfate proteoglycans (CSPGs) of the extracellular matrix help stabilize synaptic connections in the postnatal brain and impede regeneration after injury. Here, we show that a CSPG of the lectican family, versican, also promotes presynaptic maturation in the developing brain. In the embryonic chick optic tectum, versican is expressed selectively by subsets of interneurons confined to the retinorecipient laminae, in which retinal axons arborize and form synapses. It is a major receptor for the Vicia villosa B4 lectin (VVA), shown previously to inhibit invasion of the retinorecipient lamina by retinal axons (Inoue and Sanes, 1997). In vitro, versican promotes enlargement of presynaptic varicosities in retinal axons. Depletion of versican in ovo, by RNA interference, results in retinal arbors with smaller than normal varicosities. We propose that versican provides a lamina-specific cue for presynaptic maturation and discuss the related but distinct effects of versican depletion and VVA blockade. PMID:16162928

  11. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawatjui, Nopporn [Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002 (Thailand); Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Damrongrungruang, Teerasak [Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002 (Thailand); Leeanansaksiri, Wilairat [Stem Cell Therapy and Transplantation Research Group, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); School of Microbiology, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jearanaikoon, Patcharee [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Hongeng, Suradej [Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400 (Thailand); Limpaiboon, Temduang, E-mail: temduang@kku.ac.th [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2015-07-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering.

  12. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering

  13. [35S]autoradiographic study of sulfated GAG accumulation and turnover in embryonic mouse tooth germs

    International Nuclear Information System (INIS)

    The accumulation of sulfated glycosaminoglycans(GAG) in embryonic mouse molars before, during, and after terminal differentiation of odontoblasts was localized by [35S]autoradiography combined with the use of chondroitin ABC lyase. Much more sulfated GAG were accumulated in the dental papilla than in the dental epithelium. High incorporation of [35S]sulfate occurred at the epithelio-mesenchymal junction, which is the site of dental basement membrane and predentin. Before terminal differentiation of odontoblasts, the distribution of sulfated GAG was uniform at the basement membrane. After the onset of terminal differentiation of odontoblasts, much more sulfated GAG accumulated at the tip of principal cusps than at the apical (inferior) parts of cusps, and sulfated GAG were then found to be degraded more rapidly at the epithelio-mesenchymal junction than at other parts of the tooth germ. Thus regional variation in the rate of degradation of GAG exists in the tooth germs. Trypsin-isolated dental epithelia cultured in vitro synthesized a new basement membrane that could be labeled with [3H]glucosamine but not with 35SO4(-2). The epithelial-derived basal lamina contains little or no sulfatated GAG

  14. Regulation of sulfated glycosaminoglycan production by prostaglandin E2 in cultured lung fibroblasts

    International Nuclear Information System (INIS)

    Prostaglandin E2 (PGE2) has been shown to increase the synthesis of hyaluronic acid in cultured fibroblasts by increasing the activity of hyaluronate synthetase, a group of plasma membrane-bound synthetic enzymes. We examined whether PGE2 also increased the activity of those enzyme systems involved in the synthesis of sulfated glycosaminoglycan in the human embryonic lung fibroblast. Exposure of cells to PGE2 resulted in dose-dependent increases in glucosamine incorporation into all sulfated glycosaminoglycan subtypes. PGE2 at 10(-7) mol/L increased total glycosaminoglycan per dish to 21.6 +/- 3.1 micrograms versus 12.0 +/- 2.5 micrograms in control untreated cultures. Stimulation of endogenous PGE2 production by bradykinin had a similar effect on glycosaminoglycan synthesis. To examine whether PGE2 affected sulfated glycosaminoglycan protein core production, cells were labeled with tritiated glucosamine in the presence of cycloheximide. Under these conditions, incorporation of radiolabel into all glycosaminoglycan subtypes was reduced. However, when exogenous sulfated glycosaminoglycan chain initiator (p-nitrophenyl beta-D-xyloside) was added, incorporation of tritiated glucosamine into sulfated glycosaminoglycan increased but not to levels found in control cultures. Application of PGE2 to cultures treated with cycloheximide alone, or to cultures treated with cycloheximide plus xyloside, increased tritiated glucosamine incorporation into chondroitin, dermatan sulfate, and to a lesser extent into heparan sulfate. We conclude that PGE2 stimulates synthesis of all sulfated glycosaminoglycan even in the absence of new protein core production, probably by increasing activities of sulfated glycosaminoglycan synthetase enzymes. PGE2 stimulation of heparan sulfate synthesis is partially dependent on the availability of heparan sulfate-specific protein core

  15. Regulation of sulfated glycosaminoglycan production by prostaglandin E2 in cultured lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Karlinsky, J.B.; Goldstein, R.H. (Boston Univ. School of Medicine, MA (USA))

    1989-08-01

    Prostaglandin E2 (PGE2) has been shown to increase the synthesis of hyaluronic acid in cultured fibroblasts by increasing the activity of hyaluronate synthetase, a group of plasma membrane-bound synthetic enzymes. We examined whether PGE2 also increased the activity of those enzyme systems involved in the synthesis of sulfated glycosaminoglycan in the human embryonic lung fibroblast. Exposure of cells to PGE2 resulted in dose-dependent increases in glucosamine incorporation into all sulfated glycosaminoglycan subtypes. PGE2 at 10(-7) mol/L increased total glycosaminoglycan per dish to 21.6 +/- 3.1 micrograms versus 12.0 +/- 2.5 micrograms in control untreated cultures. Stimulation of endogenous PGE2 production by bradykinin had a similar effect on glycosaminoglycan synthesis. To examine whether PGE2 affected sulfated glycosaminoglycan protein core production, cells were labeled with tritiated glucosamine in the presence of cycloheximide. Under these conditions, incorporation of radiolabel into all glycosaminoglycan subtypes was reduced. However, when exogenous sulfated glycosaminoglycan chain initiator (p-nitrophenyl beta-D-xyloside) was added, incorporation of tritiated glucosamine into sulfated glycosaminoglycan increased but not to levels found in control cultures. Application of PGE2 to cultures treated with cycloheximide alone, or to cultures treated with cycloheximide plus xyloside, increased tritiated glucosamine incorporation into chondroitin, dermatan sulfate, and to a lesser extent into heparan sulfate. We conclude that PGE2 stimulates synthesis of all sulfated glycosaminoglycan even in the absence of new protein core production, probably by increasing activities of sulfated glycosaminoglycan synthetase enzymes. PGE2 stimulation of heparan sulfate synthesis is partially dependent on the availability of heparan sulfate-specific protein core.

  16. Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia.

    Science.gov (United States)

    Properzi, Francesca; Carulli, Daniela; Asher, Richard A; Muir, Elizabeth; Camargo, Luiz M; van Kuppevelt, Toin H; ten Dam, Gerdy B; Furukawa, Yoko; Mikami, Tadishima; Sugahara, Kazuyuki; Toida, Toshihiko; Geller, Herbert M; Fawcett, James W

    2005-01-01

    Chondroitin sulphate proteoglycans (CSPGs) are up-regulated in the CNS after injury and inhibit axon regeneration mainly through their glycosaminoglycan (CS-GAG) chains. We have analysed the mRNA levels of the CS-GAG synthesizing enzymes and measured the CS-GAG disaccharide composition by chromatography and immunocytochemistry. Chondroitin 6-sulfotransferase 1 (C6ST1) is up-regulated in most glial types around cortical injuries, and its sulphated product CS-C is also selectively up-regulated. Treatment with TGFalpha and TGFbeta, which are released after brain injury, promotes the expression of C6ST1 and the synthesis of 6-sulphated CS-GAGs in primary astrocytes. Oligodendrocytes, oligodendrocyte precursors and meningeal cells are all inhibitory to axon regeneration, and all express high levels of CS-GAG, including high levels of 6-sulphated GAG. In axon growth-inhibitory Neu7 astrocytes C6ST1 and 6-sulphated GAGs are expressed at high levels, whereas in permissive A7 astrocytes they are not detectable. These results suggest that the up-regulation of CSPG after CNS injury is associated with a specific sulphation pattern on CS-GAGs, mediating the inhibitory properties of proteoglycans on axonal regeneration. PMID:15673437

  17. N-acetylneuraminlactose sulfate in milk and its role in the synthesis of glycosaminoglycans during development

    International Nuclear Information System (INIS)

    Mammals in early life are incapable of synthesizing inorganic sulfate, an important constituent of connective tissue glycosaminoglycans (GAGs). Studies have shown that [35S]Na2SO4 injected into lactating rats is secreted into the milk as [35S] N-acetylneuraminlactose sulfate (NLS); this compound accounts for ≥ 95% of the radioactivity found in milk. They have studied the metabolic fate of the sulfate moiety of NLS in the newborn rat. Lactating rat dams were injected with [35S] Na2SO4 at various times postpartum and pups were allowed to suckle for 48 hrs before sacrifice. Pups of varying ages (3 d. - 19 d.) were sacrificed and the GAGs were prepared from 9 different organs and tissues. Pups of all ages showed appreciable radiosulfate incorporated into all of the tissues and organs examined. In young pups (3 and 5 d old) a high of 75% of the total [35S] sulfate in the homogenate was found in the GAGs of bone, and a low of 27% in the GAGs of liver. Analysis of the composition of the GAGs by enzymatic degradation showed that bone GAGs consisted entirely of chondroitin 4/6 sulfate (C4/6S) while liver GAGs contained 50% C4/6S, 10% dermatan sulfate (DS), and 40% chondroitinase resistant material (probably heparan sulfate). These data show that sulfate in the form of NLS is incorporated in substantial amounts into the sulfated GAGs of the developing rat and support the hypothesis that NLS is an important source of nutrient sulfate during rat development

  18. N-acetylneuraminlactose sulfate in milk and its role in the synthesis of glycosaminoglycans during development

    Energy Technology Data Exchange (ETDEWEB)

    Kieras, F.J.; Kastin, S.; Rerecich, M.; Sturman, J.A.

    1986-05-01

    Mammals in early life are incapable of synthesizing inorganic sulfate, an important constituent of connective tissue glycosaminoglycans (GAGs). Studies have shown that (/sup 35/S)Na/sub 2/SO/sub 4/ injected into lactating rats is secreted into the milk as (/sup 35/S) N-acetylneuraminlactose sulfate (NLS); this compound accounts for greater than or equal to 95% of the radioactivity found in milk. They have studied the metabolic fate of the sulfate moiety of NLS in the newborn rat. Lactating rat dams were injected with (/sup 35/S) Na/sub 2/SO/sub 4/ at various times postpartum and pups were allowed to suckle for 48 hrs before sacrifice. Pups of varying ages (3 d. - 19 d.) were sacrificed and the GAGs were prepared from 9 different organs and tissues. Pups of all ages showed appreciable radiosulfate incorporated into all of the tissues and organs examined. In young pups (3 and 5 d old) a high of 75% of the total (/sup 35/S) sulfate in the homogenate was found in the GAGs of bone, and a low of 27% in the GAGs of liver. Analysis of the composition of the GAGs by enzymatic degradation showed that bone GAGs consisted entirely of chondroitin 4/6 sulfate (C4/6S) while liver GAGs contained 50% C4/6S, 10% dermatan sulfate (DS), and 40% chondroitinase resistant material (probably heparan sulfate). These data show that sulfate in the form of NLS is incorporated in substantial amounts into the sulfated GAGs of the developing rat and support the hypothesis that NLS is an important source of nutrient sulfate during rat development.

  19. Biosynthesis of promatrix metalloproteinase-9/chondroitin sulphate proteoglycan heteromer involves a Rottlerin-sensitive pathway.

    Directory of Open Access Journals (Sweden)

    Nabin Malla

    Full Text Available BACKGROUND: Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9 synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG. METHODOLOGY/PRINCIPAL FINDINGS: By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3 in both control and PMA exposed cells. CONCLUSIONS/SIGNIFICANCE: The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.

  20. Carpal tunnel syndrome, diabetic neuropathy, fibromyalgia, glucosamine and chondroitin, hypnosis in pain management, marijuana for pain.

    Science.gov (United States)

    Fishman, Scott M

    2007-01-01

    This feature presents information for patients in a question and answer format. It is written to simulate actual questions that many pain patients ask and to provide answers in a context and language that most pain patients will comprehend. Issues addressed in this issue are carpel tunnel syndrome, fibromyalgia, glucosamine and chondroitin, hypnosis, marijuana. PMID:17844729

  1. Glucosamine:chondroitin or ginger root extract have little effect on articular cartilage in swine

    Science.gov (United States)

    Sows are culled at a high rate from breeding herds due to musclo-skeletal problems and lameness. Research in our laboratory has shown that even first-parity sows have significant amounts of osteochondritic lesions of their articular cartilage. Glusoamine chondroitin and ginger root extract have both...

  2. Sulfate metabolism in mycobacteria.

    Science.gov (United States)

    Schelle, Michael W; Bertozzi, Carolyn R

    2006-10-01

    Pathogenic bacteria have developed numerous mechanisms to survive inside a hostile host environment. The human pathogen Mycobacterium tuberculosis (M. tb) is thought to control the human immune response with diverse biomolecules, including a variety of exotic lipids. One prevalent M. tb-specific sulfated metabolite, termed sulfolipid-1 (SL-1), has been correlated with virulence though its specific biological function is not known. Recent advances in our understanding of SL-1 biosynthesis will help elucidate the role of this curious metabolite in M. tb infection. Furthermore, the study of SL-1 has led to questions regarding the significance of sulfation in mycobacteria. Examples of sulfated metabolites as mediators of interactions between bacteria and plants suggest that sulfation is a key modulator of extracellular signaling between prokaryotes and eukaryotes. The discovery of novel sulfated metabolites in M. tb and related mycobacteria strengthens this hypothesis. Finally, mechanistic and structural data from sulfate-assimilation enzymes have revealed how M. tb controls the flux of sulfate in the cell. Mutants with defects in sulfate assimilation indicate that the fate of sulfur in M. tb is a critical survival determinant for the bacteria during infection and suggest novel targets for tuberculosis drug therapy. PMID:16933356

  3. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation. The...

  4. Dehydroepiandrosterone Sulfate Stimulates Expression of Blood-Testis-Barrier Proteins Claudin-3 and -5 and Tight Junction Formation via a Gnα11-Coupled Receptor in Sertoli Cells

    Science.gov (United States)

    Papadopoulos, Dimitrios; Dietze, Raimund; Shihan, Mazen; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2016-01-01

    Dehydroepiandrosterone sulfate (DHEAS) is a circulating sulfated steroid considered to be a pro-androgen in mammalian physiology. Here we show that at a physiological concentration (1 μM), DHEAS induces the phosphorylation of the kinase Erk1/2 and of the transcription factors CREB and ATF-1 in the murine Sertoli cell line TM4. This signaling cascade stimulates the expression of the tight junction (TJ) proteins claudin-3 and claudin-5. As a consequence of the increased expression, tight junction connections between neighboring Sertoli cells are augmented, as demonstrated by measurements of transepithelial resistance. Phosphorylation of Erk1/2, CREB, or ATF-1 is not affected by the presence of the steroid sulfatase inhibitor STX64. Erk1/2 phosphorylation was not observed when dehydroepiandrosterone (DHEA) was used instead of DHEAS. Abrogation of androgen receptor (AR) expression by siRNA did not affect DHEAS-stimulated Erk1/2 phosphorylation, nor did it change DHEAS-induced stimulation of claudin-3 and claudin-5 expression. All of the above indicate that desulfation and conversion of DHEAS into a different steroid hormone is not required to trigger the DHEAS-induced signaling cascade. All activating effects of DHEAS, however, are abolished when the expression of the G-protein Gnα11 is suppressed by siRNA, including claudin-3 and -5 expression and TJ formation between neighboring Sertoli cells as indicated by reduced transepithelial resistance. Taken together, these results are consistent with the effects of DHEAS being mediated through a membrane-bound G-protein-coupled receptor interacting with Gnα11 in a signaling pathway that resembles the non-classical signaling pathways of steroid hormones. Considering the fact that DHEAS is produced in reproductive organs, these findings also suggest that DHEAS, by acting as an autonomous steroid hormone and influencing the formation and dynamics of the TJ at the blood-testis barrier, might play a crucial role for the

  5. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin

    OpenAIRE

    Grijalva-Bustamante, Génesis Adilene; Evans-Villegas, Andrés Gerardo; Castillo-Castro, Teresa del; Castillo-Ortega, María Mónica; Cruz-Silva, Rodolfo; Huerta Arráez, Francisco; Morallón Núñez, Emilia

    2016-01-01

    Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy parti...

  6. Basement membrane-specific chondroitin sulfate proteoglycan is abnormally associated with the glomerular capillary basement membrane of diabetic rats

    DEFF Research Database (Denmark)

    McCarthy, K J; Abrahamson, D R; Bynum, K R; St John, P L; Couchman, J R

    1994-01-01

    exception being the normal glomerular capillary basement membrane (GBM), where it is absent. In the present study of mature kidneys we examined the distribution of BM-CSPG in streptozocin-induced diabetes mellitus in rats. We found BM-CSPG atypically associated with the GBM of diabetic animals as early as 1...... month after induction of diabetes mellitus. Immunoelectron microscopy (IEM) of affected capillary loops showed BM-CSPG present in the subendothelial matrix in areas of GBM thickening and absent in areas where the GBM appears to be of normal thickness. Moreover, the association of BM-CSPG with regions of...... the pericapillary GBM affects the morphology of the capillary endothelial cells within these areas, directly displacing the cell body from the GBM proper and causing loss of fenestrae. These new data on BM-CSPG distribution reflect abnormal glomerular extracellular matrix protein biosynthesis...

  7. Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro.

    NARCIS (Netherlands)

    Susante, J.L.C. van; Pieper, J.S.; Buma, P.; Kuppevelt, A.H.M.S.M. van; Beuningen, H.M. van; Kraan, P.M. van der; Veerkamp, J.H.; Berg, W.B. van den; Veth, R.P.H.

    2001-01-01

    An increasing amount of interest is focused on the potential use of tissue-engineered articular cartilage implants, for repair of defects in the joint surface. In this perspective, various biodegradable scaffolds have been evaluated as a vehicle to deliver chondrocytes into a cartilage defect. This

  8. Chondroitin sulfate activates B cells in vitro, expands CD138(+) cells in vivo, and interferes with established humoral immune responses

    Czech Academy of Sciences Publication Activity Database

    Bruhl, H.; Cihak, J.; Goebel, N.; Talke, Y.; Renner, K.; Hermann, F.; Rodriguez-Gomez, M.; Reich, B.; Plachý, Jiří; Stangassinger, M.; Mack, M.

    2014-01-01

    Roč. 96, č. 1 (2014), 65-72. ISSN 0741-5400 Institutional support: RVO:68378050 Keywords : glycosaminoglycans * plasma cells * collagen-induced arthritis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.289, year: 2014

  9. “On-The-Spot” Arresting of Chondroitin Sulphate Proteoglycans: Implications for Ovarian Adenocarcinoma Recognition and Intervention

    Directory of Open Access Journals (Sweden)

    Priyamvada Pradeep

    2016-07-01

    Full Text Available Ovarian Cancer (OC is one of the leading causes of cancer-associated death among women. The underlying biochemical cause of OC proliferation is usually attributed to the over-expression of Chondroitin Sulphate Proteoglycans (CSPGs wherein the CS-E subgroup plays a major role in tumor cell proliferation by over-expressing vascular endothelial growth factor (VEGF. We hereby hypothesize that by targeting the OC extracellular matrix using a CS-E-specific antibody, GD3G7, we could provide spatial delivery of crosslinkers and anti-VEGF agents to firstly induce in vivo crosslinking and complexation (arresting of CS-E into a “biogel mass” for efficient and effective detection, detachment and reduction of tumorous tissue, and secondly inhibit angiogenesis in OC. It is further proposed that the antibody-assisted targeted delivery of CS-E crosslinkers can bind to highly anionic CS-E to form a polyelectrolyte complex to inhibit the formation of ovarian tumor spheroids that are responsible for spheroid-induced mesothelial clearance and progression of OC. The hypothesis also describes the potential in vivo “On-The-Spot” CSPG crosslinkers such as sodium trimetaphosphate (physical crosslinker, 1,12-diaminododecane (chemical crosslinker, poly(ethylene glycol diglycidyl ether (synthetic polymer, and chitosan (natural polyelectrolyte-forming agent. In conclusion, this hypothesis proposes in vivo spatial crosslinking of CSPGs as a potential theranostic intervention strategy for OC—a first in the field of cancer research.

  10. Musculocontractural Ehlers–Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin

    Directory of Open Access Journals (Sweden)

    Nadège Gouignard

    2016-06-01

    Full Text Available Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC. Musculocontractural Ehlers–Danlos syndrome (MCEDS is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE. Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial–mesenchymal transition (EMT and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo. Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and

  11. (/sup 35/S)autoradiographic study of sulfated GAG accumulation and turnover in embryonic mouse tooth germs

    Energy Technology Data Exchange (ETDEWEB)

    Lau, E.C.; Boukari, A.; Arechaga, J.; Osman, M.; Ruch, J.V.

    1983-01-01

    The accumulation of sulfated glycosaminoglycans(GAG) in embryonic mouse molars before, during, and after terminal differentiation of odontoblasts was localized by (/sup 35/S)autoradiography combined with the use of chondroitin ABC lyase. Much more sulfated GAG were accumulated in the dental papilla than in the dental epithelium. High incorporation of (/sup 35/S)sulfate occurred at the epithelio-mesenchymal junction, which is the site of dental basement membrane and predentin. Before terminal differentiation of odontoblasts, the distribution of sulfated GAG was uniform at the basement membrane. After the onset of terminal differentiation of odontoblasts, much more sulfated GAG accumulated at the tip of principal cusps than at the apical (inferior) parts of cusps, and sulfated GAG were then found to be degraded more rapidly at the epithelio-mesenchymal junction than at other parts of the tooth germ. Thus regional variation in the rate of degradation of GAG exists in the tooth germs. Trypsin-isolated dental epithelia cultured in vitro synthesized a new basement membrane that could be labeled with (/sup 3/H)glucosamine but not with /sup 35/SO4(-2). The epithelial-derived basal lamina contains little or no sulfatated GAG.

  12. Extracellular matrix of smooth muscle cells: interaction of collagen type V with heparan sulfate proteoglycan

    Energy Technology Data Exchange (ETDEWEB)

    Gay, S.; Hoeoek, M.; Gay, R.E.; Magargal, W.W.; Reynertson, R.H.

    1986-03-05

    Alteration in the extracellular matrix produced by smooth muscle cells may play a role in the development of atherosclerotic lesions. Consequently the authors have initiated studies on the structural organization of the extracellular matrix produced by cultured smooth muscle cells. Immunohisotological examination of this matrix using well-characterized mono- and polyclonal antibodies showed a partial codistribution of heparan sulfate (HS) proteoglycans with a number of different matrix components including collagen types I, III, IV, V and VI, laminin and fibronectin. Subsequent binding studies between isolated matrix proteins and HS showed that the polysaccharide interacts strongly with type V collagen and to a lesser extent with fibronectin as well as collagen types III and VI. The interaction between type V and HS was readily inhibited by heparin and highly sulfated HS but not be dermatan sulfate, chondroitin sulfate or HS with a low sulfate content. Furthermore, (/sup 35/S)-HS proteoglycans isolated from cultured smooth muscle cells could be adsorbed on a column of sepharose conjugated with native type V collagen and eluted in a salt gradient. Hence, the interaction between type V and HS may play a major part in stabilizing the extracellular matrix of the vessel wall.

  13. Extracellular matrix of smooth muscle cells: interaction of collagen type V with heparan sulfate proteoglycan

    International Nuclear Information System (INIS)

    Alteration in the extracellular matrix produced by smooth muscle cells may play a role in the development of atherosclerotic lesions. Consequently the authors have initiated studies on the structural organization of the extracellular matrix produced by cultured smooth muscle cells. Immunohisotological examination of this matrix using well-characterized mono- and polyclonal antibodies showed a partial codistribution of heparan sulfate (HS) proteoglycans with a number of different matrix components including collagen types I, III, IV, V and VI, laminin and fibronectin. Subsequent binding studies between isolated matrix proteins and HS showed that the polysaccharide interacts strongly with type V collagen and to a lesser extent with fibronectin as well as collagen types III and VI. The interaction between type V and HS was readily inhibited by heparin and highly sulfated HS but not be dermatan sulfate, chondroitin sulfate or HS with a low sulfate content. Furthermore, [35S]-HS proteoglycans isolated from cultured smooth muscle cells could be adsorbed on a column of sepharose conjugated with native type V collagen and eluted in a salt gradient. Hence, the interaction between type V and HS may play a major part in stabilizing the extracellular matrix of the vessel wall

  14. Ethanol Extract of Cordyceps militaris Grown on Germinated Soybeans Attenuates Dextran-Sodium-Sulfate- (DSS- Induced Colitis by Suppressing the Expression of Matrix Metalloproteinases and Inflammatory Mediators

    Directory of Open Access Journals (Sweden)

    Dong Ki Park

    2013-01-01

    Full Text Available The effect of Cordyceps militaris (CM grown on germinated soybeans (GSC in the inflammatory bowel disease (IBD model was studied. To demonstrate the preventive effect of GSC extract in a dextran-sodium-sulfate- (DSS- induced acute colitis mouse model, GSC was administered 2 days before DSS coadministration. GSC significantly suppressed DSS-induced disease activity index (DAI as well as histopathological scores, compared to control or CM-treated group. To elucidate the anti-IBD activity of GSC, we checked the level of matrix metalloproteinases (MMPs and inflammatory mediators. GSC extract decreased the level of MMP-3 and -9 mRNAs and p53 proteins. The level and activity of LPS-induced MMP-9 were reduced in GSC-treated RAW264.7 cells. It also attenuated the level of inducible nitric oxide synthase (iNOS and tumor necrosis factor- (TNF- α mRNAs both in colon tissue and in macrophage cells. These results suggest that GSC can be applied as a protective agent against IBDs.

  15. Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Yu Shuqiong; Sun Zhengqi; Xie Xiucai; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032 (China); Fu Zhengwei, E-mail: azwfu2003@yahoo.com.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032 (China)

    2010-09-01

    Algal blooms have been increasing in prevalence all over the world, destroying ecosystems and placing other organisms at risk. Chemical remediation is one of most important methods of controlling algal bloom formation. The effects of copper sulfate, hydrogen peroxide (H{sub 2}O{sub 2}) and N-phenyl-2-naphthylamine on photosynthesis-related and microcystin-related gene transcription and physiological changes of Microcystis aeruginosa were analyzed. The results suggest that transcription of psaB, psbD1 and rbcL was inhibited by the three algaecides, which blocked the electron transport chain, significantly enhanced reactive oxygen species (ROS) accumulation and overwhelmed the antioxidant system. The increase in ROS destroyed pigment synthesis and membrane integrity, which inhibited or killed the algal cells. Furthermore, H{sub 2}O{sub 2} treatment down-regulated mcyD transcription, which indicated a decrease in the microcystin level in the cells. Our results demonstrate that H{sub 2}O{sub 2} has the greatest potential as an algaecide because it not only inhibits algae growth but may reduce microcystin synthesis.

  16. Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa.

    Science.gov (United States)

    Qian, Haifeng; Yu, Shuqiong; Sun, Zhengqi; Xie, Xiucai; Liu, Weiping; Fu, Zhengwei

    2010-09-01

    Algal blooms have been increasing in prevalence all over the world, destroying ecosystems and placing other organisms at risk. Chemical remediation is one of most important methods of controlling algal bloom formation. The effects of copper sulfate, hydrogen peroxide (H(2)O(2)) and N-phenyl-2-naphthylamine on photosynthesis-related and microcystin-related gene transcription and physiological changes of Microcystis aeruginosa were analyzed. The results suggest that transcription of psaB, psbD1 and rbcL was inhibited by the three algaecides, which blocked the electron transport chain, significantly enhanced reactive oxygen species (ROS) accumulation and overwhelmed the antioxidant system. The increase in ROS destroyed pigment synthesis and membrane integrity, which inhibited or killed the algal cells. Furthermore, H(2)O(2) treatment down-regulated mcyD transcription, which indicated a decrease in the microcystin level in the cells. Our results demonstrate that H(2)O(2) has the greatest potential as an algaecide because it not only inhibits algae growth but may reduce microcystin synthesis. PMID:20566224

  17. Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa

    International Nuclear Information System (INIS)

    Algal blooms have been increasing in prevalence all over the world, destroying ecosystems and placing other organisms at risk. Chemical remediation is one of most important methods of controlling algal bloom formation. The effects of copper sulfate, hydrogen peroxide (H2O2) and N-phenyl-2-naphthylamine on photosynthesis-related and microcystin-related gene transcription and physiological changes of Microcystis aeruginosa were analyzed. The results suggest that transcription of psaB, psbD1 and rbcL was inhibited by the three algaecides, which blocked the electron transport chain, significantly enhanced reactive oxygen species (ROS) accumulation and overwhelmed the antioxidant system. The increase in ROS destroyed pigment synthesis and membrane integrity, which inhibited or killed the algal cells. Furthermore, H2O2 treatment down-regulated mcyD transcription, which indicated a decrease in the microcystin level in the cells. Our results demonstrate that H2O2 has the greatest potential as an algaecide because it not only inhibits algae growth but may reduce microcystin synthesis.

  18. Use of glucosamine and chondroitin to treat osteoarthritis: a review of the literature

    Directory of Open Access Journals (Sweden)

    Osmar Valadao Lopes Junior

    2013-08-01

    Full Text Available To evaluate the current evidence that support or disprove the use of glucosamine and chondroitin in the treatment of patients with osteoarthritis. We performed a literature review using the databases of Medline, PubMed and the Cochrane Controlled Trial Register and Cochrane Databases Systematic Reviews (Cochrane Library.We considered only studies with high level of evidence.The study included analysis of randomized controlled trials that included at least 100 patients in each intervention group, meta-analyzes and systematic reviews. Seven meta-analysis, one systematic review and five randomized clinical trials fit inclusion criteria of this review. Considering the best evidences until now, the use of glucosamine and chondroitin does not provide clinical relevant benefits to patients with osteoarthritis of the knee or hip (Level I of evidence and grade A of recommendation. Further trials with adequate technology are necessaries to elucidate this question.

  19. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid......The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2 and...... CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...

  20. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation

  1. The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel

    Directory of Open Access Journals (Sweden)

    Christopher J. Little

    2014-09-01

    Full Text Available Osteoarthritis is a painful degenerative joint disease that could be better managed if tissue engineers can develop methods to create long-term engineered articular cartilage tissue substitutes. Many of the tissue engineered cartilage constructs currently available lack the chemical stimuli and cell-friendly environment that promote the matrix accumulation and cell proliferation needed for use in joint cartilage repair. The goal of this research was to test the efficacy of using a fibrin-alginate hydrogel containing hyaluronic acid (HA and/or chondroitin sulphate (CS supplements for chondrocyte culture. Neonatal porcine chondrocytes cultured in fibrin-alginate hydrogels retained their phenotype better than chondrocytes cultured in monolayer, as evidenced by analysis of their relative expression of type II versus type I collagen mRNA transcripts. HA or CS supplementation of the hydrogels increased matrix glycosaminoglycan (GAG production during the first week of culture. However, the effects of these supplements on matrix accumulation were not additive and were no longer observed after two weeks of culture. Supplementation of the hydrogels with CS or a combination of both CS and HA increased the chondrocyte cell population after two weeks of culture. Statistical analysis indicated that the HA and CS treatment effects on chondrocyte numbers may be additive. This research suggests that supplementation with CS and/or HA has positive effects on cartilage matrix production and chondrocyte proliferation in three-dimensional (3D fibrin-alginate hydrogels.

  2. Structural characterization of heparan sulfate proteoglycan subclasses isolated from bovine aortic endothelial cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Kinsella, M.G.; Wight, T.N.

    1988-03-22

    Labeled heparan sulfate proteoglycans (HSPG) were isolated from wounded and confluent cultures of bovine aortic endothelial cells by nondegradative extraction with 4 M guanidine hydrochloride and detergent. HSPG were separated from more highly charged chondroitin or dermatan sulfate proteoglycans by ion-exchange chromatography, and subclasses of different hydrodynamic size were isolated by gel filtration. Three major subclasses of HSPG were characterized structurally with respect to the presence and relative size of protein core, the presence and amount of nonsulfated oligosaccharide, and size and structure of heparan sulfate (HS) chains. The largest (600-800-kDa) HSPG subclass (I), isolated from cell layers and media of confluent cultures, bears 38-kDa HS chains on an apparently heterogeneous class of relatively large glycoprotein cores. HSPG II (150-200 kDa), isolated from cell layer or media, has 22-kDa HS chains and smaller core glycoproteins (less than 50 kDa). HSPG III, the subclass of smallest hydrodynamic size, has 13-kDa HS chains and a glycopeptide core of less than 15 kDa. All subclasses bear varying proportions of non-sulfated oligosaccharides of similar sizes. Comparisons of HS chain structure indicated that the different subclasses have similar proportions (49-55%) of N-sulfate, with both O-sulfate and highly N-sulfated blocks of disaccharide distributed similarly along HS chains. In addition, HS chains from subclasses II and III contain sequences that are insensitive to periodate oxidation or heparitinase digestion, suggesting that they contain increased proportions of iduronate.

  3. Structural characterization of heparan sulfate proteoglycan subclasses isolated from bovine aortic endothelial cell cultures

    International Nuclear Information System (INIS)

    Labeled heparan sulfate proteoglycans (HSPG) were isolated from wounded and confluent cultures of bovine aortic endothelial cells by nondegradative extraction with 4 M guanidine hydrochloride and detergent. HSPG were separated from more highly charged chondroitin or dermatan sulfate proteoglycans by ion-exchange chromatography, and subclasses of different hydrodynamic size were isolated by gel filtration. Three major subclasses of HSPG were characterized structurally with respect to the presence and relative size of protein core, the presence and amount of nonsulfated oligosaccharide, and size and structure of heparan sulfate (HS) chains. The largest (600-800-kDa) HSPG subclass (I), isolated from cell layers and media of confluent cultures, bears 38-kDa HS chains on an apparently heterogeneous class of relatively large glycoprotein cores. HSPG II (150-200 kDa), isolated from cell layer or media, has 22-kDa HS chains and smaller core glycoproteins (less than 50 kDa). HSPG III, the subclass of smallest hydrodynamic size, has 13-kDa HS chains and a glycopeptide core of less than 15 kDa. All subclasses bear varying proportions of non-sulfated oligosaccharides of similar sizes. Comparisons of HS chain structure indicated that the different subclasses have similar proportions (49-55%) of N-sulfate, with both O-sulfate and highly N-sulfated blocks of disaccharide distributed similarly along HS chains. In addition, HS chains from subclasses II and III contain sequences that are insensitive to periodate oxidation or heparitinase digestion, suggesting that they contain increased proportions of iduronate

  4. Sulfate attack expansion mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Müllauer, Wolfram, E-mail: wolf_m@gmx.at; Beddoe, Robin E.; Heinz, Detlef

    2013-10-15

    A specially constructed stress cell was used to measure the stress generated in thin-walled Portland cement mortar cylinders caused by external sulfate attack. The effects of sulfate concentration of the storage solution and C{sub 3}A content of the cement were studied. Changes in mineralogical composition and pore size distribution were investigated by X-ray diffraction and mercury intrusion porosimetry, respectively. Damage is due to the formation of ettringite in small pores (10–50 nm) which generates stresses up to 8 MPa exceeding the tensile strength of the binder matrix. Higher sulfate concentrations and C{sub 3}A contents result in higher stresses. The results can be understood in terms of the effect of crystal surface energy and size on supersaturation and crystal growth pressure.

  5. Influence of the sulfation degree of glycosaminoglycans on their multilayer assembly with poly-l-lysine.

    Science.gov (United States)

    Teixeira, Raquel; Reis, Rui L; Pashkuleva, Iva

    2016-09-01

    We report on the build-up and the intrinsic properties of polyelectrolyte multilayer films from poly-l-lysine and glycosaminoglycans (GAGs) with different sulfation degree, i.e. different charge. We used three complementary techniques, namely electrokinetic analysis (EKA), quartz-crystal microbalance with dissipation (QCM-D) and surface plasmon resonance (SPR), to characterize the assembly process and to assess the properties of the obtained films. EKA elucidated the contribution of the polymers charged groups to the net surface charge of the films and suggested that the assembly process is not solely driven by electrostatic interactions. The combined analysis of QCM-D and SPR data demonstrated that the mechanical properties of the films are dependent on the polymer charge: sulfated GAGs (heparin and chondroitin sulfate) form elastic films while hyaluronan (no sulfation) assembles into multilayer constructs with viscous behavior. The contribution of the water content to these distinct regimes is also discussed. Finally, we show that rather complete characterization of the film properties is possible by SPR employing the two-wavelength and two-media approach: thickness, adsorbed mass, refractive index, and interaction kinetics of the assembly process can be studied by SPR alone. PMID:27285729

  6. Effects of detergent on the sulphation of chondroitin by cell-free preparations from chick-embryo epiphyseal cartilage.

    Science.gov (United States)

    Sugumaran, G; Silbert, J E

    1992-07-15

    The effects of the non-ionic detergent Triton X-100 on 6-sulphation of two species of endogenous nascent proteochondroitin by a chick-embryo cartilage microsomal system was examined. Sulphation of the larger (Type I) species with adenosine 3'-phosphate 5'-phosphosulphate was slightly diminished when Triton X-100 was present, whereas sulphation of the smaller (Type II) species was slightly enhanced. An ordered rather than random pattern of sulphation was obtained for the smaller proteoglycan, but with a considerably lower degree of sulphation than that of the larger proteochondroitin. These differences were consistent with other differences between these two species as described previously. Sulphation of exogenous [14C]chondroitin and exogenous proteo[3H]chondroitin by the microsomal system with Triton X-100 present produced ordered rather than random sulphation patterns. When a 100,000 g supernatant fraction was utilized for sulphation of [14C]chondroitin or proteo[3H]chondroitin, Triton X-100 was not needed, and ordered sulphation was still obtained. When hexasaccharide was used, sulphation of multiple N-acetylgalactosamine residues of the individual hexasaccharides resulted. This was relatively independent of Triton X-100 or the concentration of the hexasaccharide acceptors. With soluble enzyme, sulphation of multiple N-acetylgalactosamine residues on the individual hexasaccharide molecules was even greater, so that tri-sulphated products were found. This suggests that ordered rather than random sulphation of chondroitin with these enzyme preparations is due to enzyme-substrate interaction rather than to membrane organization. PMID:1637348

  7. Crystal structure of tris­(piperidinium) hydrogen sulfate sulfate

    OpenAIRE

    Lukianova, Tamara J.; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-01-01

    A novel mixed hydrogen sulfate–sulfate piperidinium salt comprises three protonated piperidinium cations, one hydrogen sulfate anion and one sulfate anion in the asymmetric unit. Strong hydrogen bonds exist between the cations and the anions giving rise to a three-dimensional structure.

  8. Hydrazine Sulfate (PDQ)

    Science.gov (United States)

    ... use of hydrazine sulfate as a complementary or alternative treatment for cancer? It has been known since the early 1900s ... of CAM therapies originally considered to be purely alternative approaches are finding a place in cancer treatment—not as cures, but as complementary therapies that ...

  9. Aluminum Sulfate 18 Hydrate

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  10. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    Science.gov (United States)

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-10-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  11. Demonstration of immunogenic keratan sulphate in commercial chondroitin 6-sulphate from shark cartilage. Implications for ELISA assays

    DEFF Research Database (Denmark)

    Møller, H J; Møller-Pedersen, T; Damsgaard, T E;

    1995-01-01

    The prototype monoclonal keratan sulphate (KS) antibody 5D4 that is widely used for detection of KS in tissues and biological fluids reacts strongly with commercial low grade shark cartilage chondroitin 6-sulphate. Characterization of the immunogenic material by chondroitinase ABC digestion, ELISA...... inhibition studies, immunoblotting and HPLC analyses confirmed the presence of substantial amounts of KS, probably as a large proteoglycan (> 120 kDa). Commercial and heterogenic glycosaminoglycan preparations therefore must be used with great caution in immunological analyses. On the other hand the shark...... cartilage chondroitin 6-sulphate is an easy accessible source of immunogenic KS that can be used as a reference standard and as coating antigen in KS-ELISAs. The concentration of immunogenic KS in synovial fluid measured with an ELISA based solely on reagents of shark cartilage chondroitin 6-sulphate...

  12. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    International Nuclear Information System (INIS)

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H235SO4) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables

  13. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    International Nuclear Information System (INIS)

    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at defined times (0-163 h) the kidneys were perfused in situ with 0.01% cetylpyridinium chloride in phosphate-buffered saline to maximize the recovery of 35S-proteoglycans. Glomeruli were isolated from the renal cortex and analyzed for 35S-proteoglycans by autoradiographic, biochemical, and immunochemical methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of [35S]heparan sulfate proteoglycans had a metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-[(cholamidopropyl)dimethy-lammonio]-1-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane of rat glomeruli. Autoradiographic analysis showed that 18% of total radioactivity present at the end of the labeling period was associated with the glomerular basement membrane

  14. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    Energy Technology Data Exchange (ETDEWEB)

    Beavan, L.A.; Davies, M.; Couchman, J.R.; Williams, M.A.; Mason, R.M.

    1989-03-01

    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium (35S)sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at defined times (0-163 h) the kidneys were perfused in situ with 0.01% cetylpyridinium chloride in phosphate-buffered saline to maximize the recovery of 35S-proteoglycans. Glomeruli were isolated from the renal cortex and analyzed for 35S-proteoglycans by autoradiographic, biochemical, and immunochemical methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of (35S)heparan sulfate proteoglycans had a metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-((cholamidopropyl)dimethy-lammonio)-1-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane of rat glomeruli. Autoradiographic analysis showed that 18% of total radioactivity present at the end of the labeling period was associated with the glomerular basement membrane.

  15. Improvement of the Digestibility of Sulfated Hyaluronans by Bovine Testicular Hyaluronidase: A UV Spectroscopic and Mass Spectrometric Study

    Directory of Open Access Journals (Sweden)

    Katharina Lemmnitzer

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs such as hyaluronan (HA and chondroitin sulfate (CS are important, natural polysaccharides which occur in biological (connective tissues and have various biotechnological and medical applications. Additionally, there is increasing evidence that chemically (oversulfated GAGs possess promising properties and are useful as implant coatings. Unfortunately, a detailed characterization of these GAGs is challenging: although mass spectrometry (MS is one of the most powerful tools to elucidate the structures of (polysaccharides, MS is not applicable to high mass polysaccharides, but characteristic oligosaccharides are needed. These oligosaccharides are normally generated by enzymatic digestion. However, chemically modified (particularly sulfated GAGs are extremely refractive to enzymatic digestion. This study focuses on the investigation of the digestibility of GAGs with different degrees of sulfation by bovine testicular hyaluronidase (BTH. It will be shown by using an adapted spectrophotometric assay that all investigated GAGs can be basically digested if the reaction conditions are carefully adjusted. However, the oligosaccharide yield correlates reciprocally with the number of sulfate residues per polymer repeating unit. Finally, matrix-laser desorption and ionization (MALDI MS will be used to study the released oligosaccharides and their sulfation patterns.

  16. Radioimmunoassay of dehydroepiandrosterone sulfate

    International Nuclear Information System (INIS)

    The development of a radioimmunological method for the measurement of dehydroepiandrosterone sulfate in serum is described. For the immunization of rabbits, a DHA-3-hemissuccinate-bovine serum albumin conjugate was synthetized and a highly specific anti-serum was produced. The method developed requires only simple dilution prior to assay and the normal values for the different age groups were determined in 146 normal individuals. (Author)

  17. Radioprotective properties of the polysaccharide dextran sulfate

    International Nuclear Information System (INIS)

    Experiments have been conducted on mice-hydrides (SFUxS57BI)F1. Dextran sulfate (mol. w. 500000) has been injected once intraperitoneally at the dose of 60 mg/ml before exposure. The following conclusions are made: 1) highly molecular dextran sulfate injected during 1-3 days before exposure of mice at lethal doses of 9.57, 9 and 15.86 Gr at the corresponding dose rates of 8x10-3, 3x10-3 and 8x10-4 Gr/s increases radioresistance of animals increasing their 30 day survival up to 45-70%; 2) when injecting dextran sulfate a day before exposure increase of the organism radioresistance is followed by acceleration of postradiation restoration of the number of blood leukocytes, nucleus hearing cells of bone marrow and mass of spleen; 3) dextrain sulfate injected 3 days before irradiation does not produce any effect on expressiveness of postradiation leukopenia and bone marrow cytopenia

  18. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO42-) ratios. At a critical COD/SO42- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO42- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  19. Crystal structure of tris­(piperidinium) hydrogen sulfate sulfate

    OpenAIRE

    Tamara J. Lukianova; Vasyl Kinzhybalo; Adam Pietraszko

    2015-01-01

    In the title molecular salt, 3C5H12N+·HSO4−·SO42−, each cation adopts a chair conformation. In the crystal, the hydrogen sulfate ion is connected to the sulfate ion by a strong O—H...O hydrogen bond. The packing also features a number of N—H...O hydrogen bonds, which lead to a three-dimensional network structure. The hydrogen sulfate anion accepts four hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to five separate piperidinium cations, forming seven hydrogen ...

  20. Synthesis of highly anti-HIV active sulfated poly- and oligo-saccharides and analysis of their action mechanisms by NMR [nuclear magnetic resonance] spectroscopy

    International Nuclear Information System (INIS)

    . NMR studies on action mechanism of curdlan sulfate, chondroitin sulfate, and heparin. In order to elucidate in vivo interactions of curdlan sulfate with virus proteins, 1H and 13C NMR spectra were measured on mixtures of electronegatively charged curdlan sulfate (CS) and electropositively charged polylysine (PL) hydrobromide. When CS and PL were mixed in appropriate molar ratios, ion complexes between CS and PL were formed and detected by NMR. Large changes in NMR absorptions appeared around 20 - 50 ppm region due to the side chain of polylysine. Similarly, in the mixture of heparin and PL, absorptions around 55 - 101 ppm region due to heparin moiety changed to a large extent. Consequently, it is assumed that the occurrence of the antiHIV activity is started from the interaction between curdlan sulfate and virus proteins containing sequences rich in basic amino acids of lysine and arginine. Full text

  1. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    Science.gov (United States)

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa. PMID:26490939

  2. Coupled ferric oxides and sulfates on the Martian surface.

    Science.gov (United States)

    Bibring, J-P; Arvidson, R E; Gendrin, A; Gondet, B; Langevin, Y; Le Mouelic, S; Mangold, N; Morris, R V; Mustard, J F; Poulet, F; Quantin, C; Sotin, C

    2007-08-31

    The Mars Exploration Rover (MER), Opportunity, showed that layered sulfate deposits in Meridiani Planum formed during a period of rising acidic ground water. Crystalline hematite spherules formed in the deposits as a consequence of aqueous alteration and were concentrated on the surface as a lag deposit as wind eroded the softer sulfate rocks. On the basis of Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) orbital data, we demonstrate that crystalline hematite deposits are associated with layered sulfates in other areas on Mars, implying that Meridiani-like ground water systems were indeed widespread and representative of an extensive acid sulfate aqueous system. PMID:17673623

  3. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    Institute of Scientific and Technical Information of China (English)

    Jian-Huang Wu; Miao Li; Yan Liang; Tao Lu; Chun-Yue Duan

    2016-01-01

    Background:Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI).Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI,allowing stem cells to penetrate through the scar and promote recovery of nerve function.This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro.Methods:ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion.Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation.After successful culture,ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained.Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method,ChABC expression was verified using Western blotting,and the migration of ChABC-ADSCs was analyzed using the transwell assay.Results:Secondary collagenase digestion increased the isolation efficiency of primary ADSCs.Following transfection using lentiviral vectors,the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05).And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05).Moreover,ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05).Conclusions:Secondary collagenase digestion can be used to effectively isolate ADSCs.ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC,and ChABC expression significantly enhances the migratory capacity of ADSCs.

  4. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    Science.gov (United States)

    Wu, Jian-Huang; Li, Miao; Liang, Yan; Lu, Tao; Duan, Chun-Yue

    2016-01-01

    Background: Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI). Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI, allowing stem cells to penetrate through the scar and promote recovery of nerve function. This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro. Methods: ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion. Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation. After successful culture, ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained. Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method, ChABC expression was verified using Western blotting, and the migration of ChABC-ADSCs was analyzed using the transwell assay. Results: Secondary collagenase digestion increased the isolation efficiency of primary ADSCs. Following transfection using lentiviral vectors, the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05). And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05). Moreover, ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05). Conclusions: Secondary collagenase digestion can be used to effectively isolate ADSCs. ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC, and ChABC expression significantly enhances the migratory capacity of ADSCs. PMID:27364797

  5. Effects of diet type and supplementation of glucosamine, chondroitin, and MSM on body composition, functional status, and markers of health in women with knee osteoarthritis initiating a resistance-based exercise and weight loss program

    Directory of Open Access Journals (Sweden)

    Dugan Kristin

    2011-06-01

    Full Text Available Abstract Background The purpose of this study was to determine whether sedentary obese women with knee OA initiating an exercise and weight loss program may experience more beneficial changes in body composition, functional capacity, and/or markers of health following a higher protein diet compared to a higher carbohydrate diet with or without GCM supplementation. Methods Thirty sedentary women (54 ± 9 yrs, 163 ± 6 cm, 88.6 ± 13 kg, 46.1 ± 3% fat, 33.3 ± 5 kg/m2 with clinically diagnosed knee OA participated in a 14-week exercise and weight loss program. Participants followed an isoenergenic low fat higher carbohydrate (HC or higher protein (HP diet while participating in a supervised 30-minute circuit resistance-training program three times per week for 14-weeks. In a randomized and double blind manner, participants ingested supplements containing 1,500 mg/d of glucosamine (as d-glucosamine HCL, 1,200 mg/d of chondroitin sulfate (from chondroitin sulfate sodium, and 900 mg/d of methylsulfonylmethane or a placebo. At 0, 10, and 14-weeks, participants completed a battery of assessments. Data were analyzed by MANOVA with repeated measures. Results Participants in both groups experienced significant reductions in body mass (-2.4 ± 3%, fat mass (-6.0 ± 6%, and body fat (-3.5 ± 4% with no significant changes in fat free mass or resting energy expenditure. Perception of knee pain (-49 ± 39% and knee stiffness (-42 ± 37% was decreased while maximal strength (12%, muscular endurance (20%, balance indices (7% to 20%, lipid levels (-8% to -12%, homeostasis model assessment for estimating insulin resistance (-17%, leptin (-30%, and measures of physical functioning (59%, vitality (120%, and social function (66% were improved in both groups with no differences among groups. Functional aerobic capacity was increased to a greater degree for those in the HP and GCM groups while there were some trends suggesting that supplementation affected

  6. Sulphation of proteochondroitin and 4-methylumbelliferyl beta-D-xyloside-chondroitin formed by mouse mastocytoma cells cultured in sulphate-deficient medium.

    Science.gov (United States)

    Silbert, J E; Sugumaran, G; Cogburn, J N

    1993-11-15

    Mouse mastocytoma cells were cultured in medium containing [3H]GlcN and concentrations of [35S]sulphate varying from 0.01 to 0.5 mM. Intracellular [35S]sulphate incorporation increased severalfold from the lowest concentrations, reaching a maximum at 0.1-0.2 mM, whereas incorporation of [3H]hexosamine remained constant at all sulphate concentrations. Proteo[3H]-chondroitin [35S]sulphate was isolated and incubated with chondroitin ABC lyase, yielding 35S-labelled and/or 3H-labelled delta Di-0S and delta Di-4S disaccharide products. The increasing percentage of delta Di-4S was consistent with the increasing sulphate incorporation at each higher [35S]sulphate concentration. Examination of proteochondroitin [35S]sulphate size by Sepharose CL-6B chromatography indicated a range consistent with various numbers of glycosaminoglycan chains on the protease-resistant serglycin core protein. Alkali-cleaved chondroitin [35S]sulphate products indicated similar size distributions at all sulphate concentrations with no indication of preferential sulphation being related to smaller or larger size. DEAE-cellulose chromatography of [3H]chondroitin [35S]sulphate glycosaminoglycans indicated a random undersulphation as [35S]sulphate concentration was lowered. Addition of 4-methylumbelliferyl beta-D-xyloside to the cultures resulted in a 2-2.5-fold stimulation of [3H]chondroitin [35S]sulphate synthesis with formation of beta-xyloside-[3H]chondroitin [35S]sulphate which was much smaller, as estimated by Sepharose CL-6B chromatography, than the decreased amount of [3H]chondroitin [35S]sulphate derived from proteo[3H]chondroitin [35S]sulphate. Much higher concentrations of sulphate were necessary to produce sulphation of the beta-xyloside-[3H]chondroitin comparable with that of proteo[3H]-chondroitin, as indicated by chondroitin ABC lyase products and DEAE-cellulose chromatography. The specific radioactivities of the [3H]GalN in the proteo[3H]chondroitin [35S]sulphate and beta-xyloside-[3

  7. Effects of glucosamine, chondroitin, or placebo in patients with osteoarthritis of hip or knee: network meta-analysis

    DEFF Research Database (Denmark)

    Wandel, Simon; Jüni, Peter; Tendal, Britta;

    2010-01-01

    OBJECTIVE: To determine the effect of glucosamine, chondroitin, or the two in combination on joint pain and on radiological progression of disease in osteoarthritis of the hip or knee. Design Network meta-analysis. Direct comparisons within trials were combined with indirect evidence from other...... trials by using a Bayesian model that allowed the synthesis of multiple time points. MAIN OUTCOME MEASURE: Pain intensity. Secondary outcome was change in minimal width of joint space. The minimal clinically important difference between preparations and placebo was prespecified at -0.9 cm on a 10 cm...... compared glucosamine, chondroitin, or their combination with placebo or head to head. Results 10 trials in 3803 patients were included. On a 10 cm visual analogue scale the overall difference in pain intensity compared with placebo was -0.4 cm (95% credible interval -0.7 to -0.1 cm) for glucosamine, -0...

  8. Antibodies from malaria-exposed pregnant women recognize trypsin resistant epitopes on the surface of Plasmodium falciparum-infected erythrocytes selected for adhesion to chondroitin sulphate A

    Directory of Open Access Journals (Sweden)

    Staalsoe Trine

    2004-09-01

    Full Text Available Abstract Background The ability of Plasmodium falciparum-infected erythrocytes to adhere to the microvasculature endothelium is thought to play a causal role in malaria pathogenesis. Cytoadhesion to endothelial receptors is generally found to be highly sensitive to trypsinization of the infected erythrocyte surface. However, several studies have found that parasite adhesion to placental receptors can be markedly less sensitive to trypsin. This study investigates whether chondroitin sulphate A (CSA binding parasites express trypsin-resistant variant surface antigens (VSA that bind female-specific antibodies induced as a result of pregnancy associated malaria (PAM. Methods Fluorescence activated cell sorting (FACS was used to measure the levels of adult Scottish and Ghanaian male, and Ghanaian pregnant female plasma immunoglobulin G (IgG that bind to the surface of infected erythrocytes. P. falciparum clone FCR3 cultures were used to assay surface IgG binding before and after selection of the parasite for adhesion to CSA. The effect of proteolytic digestion of parasite erythrocyte surface antigens on surface IgG binding and adhesion to CSA and hyaluronic acid (HA was also studied. Results P. falciparum infected erythrocytes selected for adhesion to CSA were found to express trypsin-resistant VSA that are the target of naturally acquired antibodies from pregnant women living in a malaria endemic region of Ghana. However in vitro adhesion to CSA and HA was relatively trypsin sensitive. An improved labelling technique for the detection of VSA expressed by CSA binding isolates has also been described. Conclusion The VSA expressed by CSA binding P. falciparum isolates are currently considered potential targets for a vaccine against PAM. This study identifies discordance between the trypsin sensitivity of CSA binding and surface recognition of CSA selected parasites by serum IgG from malaria exposed pregnant women. Thus, the complete molecular

  9. The sulphation pattern in chondroitin sulphate chains investigated by chondroitinase ABC and ACII digestion and reactivity with monoclonal antibodies.

    Science.gov (United States)

    Hardingham, T E; Fosang, A J; Hey, N J; Hazell, P K; Kee, W J; Ewins, R J

    1994-03-01

    We have used progressive chondroitinase digestion of pig aggrecan in conjunction with ELISA assays and disaccharide analysis to derive information about the pattern of 4- and 6-sulphation in chondroitin sulphate chains. Digestion with chondroitinase ABC resulted in the release of mainly disaccharides from the nonreducing terminal of chondroitin sulphate chains but there was also the release of some tetra- and hexa-saccharides which were degraded to disaccharides with more extensive digestion. Chondroitinase ACII, in contrast, released only disaccharides. Analysis of the disaccharide composition of the intact and digested products at different stages of digestion showed that there was a slight increase in 6-sulphate content of the chains as they were shortened. Reaction of the partially digested proteoglycans with monoclonal antibodies 3-B-3 and 3-D-5 which recognise chains terminating in 6- or 4-sulphated disaccharides, respectively, showed major differences between chondroitinase ABC and ACII products. The results suggested that chondroitinase ABC preferentially cleaved next to 4-sulphated, rather than 6-sulphated disaccharides and this resulted in some oligosaccharides as well as disaccharide being released. Chondroitinase ACII also cleaved an additional disaccharide next to the linkage to protein of chondroitin sulphate, which was not removed by chondroitinase ABC and this disaccharide was mainly nonsulphated. PMID:7514097

  10. Determinação espectroscópica multivariada de glucosamina e condroitina em formulações farmacêuticas Multivariate spectroscopic determination of glucosamine and chondroitin in pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    Paula Rossignoli

    2008-01-01

    Full Text Available The objective of this study was to develop and validate an analytical method for quantification of glucosamine and chondroitin in pharmaceutical formulations. Multivariate calibration combined with infrared spectrophotometry allowed this analysis. 25 mixtures of glucosamine-6-sulphate and chondroitin-6-sulphate were used for calibration. Average errors found with this model during external validation were 1.37% for glucosamine sulphate and 1.30% for chondroitin sulphate. This method presented satisfactory results for assessed variables, what indicating that it is suitable for simultaneous quantification of glucosamine and chondroitin.

  11. Growth activity in human septal cartilage: age-dependent incorporation of labeled sulfate in different anatomic locations

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, U.; Pirsig, W.; Heinze, E.

    1983-02-01

    Growth activity in different areas of human septal cartilage was measured by the in vitro incorporation of /sup 35/S-labeled NaSO/sub 4/ into chondroitin sulfate. Septal cartilage without perichondrium was obtained during rhinoplasty from 36 patients aged 6 to 35 years. It could be shown that the anterior free end of the septum displays high growth activity in all age groups. The supra-premaxillary area displayed its highest growth activity during prepuberty, showing thereafter a continuous decline during puberty and adulthood. A similar age-dependent pattern in growth activity was found in the caudal prolongation of the septal cartilage. No age-dependent variations could be detected in the posterior area of the septal cartilage.

  12. Sulfated compounds from marine organisms.

    Science.gov (United States)

    Kornprobst, J M; Sallenave, C; Barnathan, G

    1998-01-01

    More than 500 sulfated compounds have been isolated from marine organisms so far but most of them originate from two phyla only, Spongia and Echinodermata. The sulfated compounds are presented according to the phyla they have been identified from and to their chemical structures. Biological activities, when available, are also given. Macromolecules have also been included in this review but without structural details. PMID:9530808

  13. The expression pattern and inhibitory influence of Tenascin-C on the growth of spiral ganglion neurons suggest a regulatory role as boundary formation molecule in the postnatal mouse inner ear.

    Science.gov (United States)

    Kwiatkowska, M; Reinhard, J; Roll, L; Kraft, N; Dazert, S; Faissner, A; Volkenstein, S

    2016-04-01

    Sensorineural hearing loss, as a consequence of acoustic trauma, aging, genetic defects or ototoxic drugs, is highly associated with irreversible damage of cochlear hair cells (HCs) and secondary degeneration of spiral ganglion (SG) cells. Cochlear implants (CIs), which bypass the lost HC function by direct electrical stimulation of the remaining auditory neurons, offer an effective therapy option. Several studies imply that components of the extracellular matrix (ECM) have a great impact on the adhesion and growth of spiral ganglion neurons (SGNs) during development. Based on these findings, ECM proteins might act as bioactive CI substrates to optimize the electrode-nerve interface and to improve efficacy of these implants. In the present study, we focused on the ECM glycoproteins Tenascin-C (TN-C), Laminin (LN), and Fibronectin (FN), which show a prominent expression along the growth route of SGNs and the niche around HCs during murine postnatal development in vivo. We compared their influence on adhesion, neurite length, and neurite number of SGNs in vitro. Moreover, we studied the expression of the chondroitin sulfate proteoglycan (CSPG) dermatan sulfate-dependent proteoglycan-1 (DSD-1-PG), an interaction partner of TN-C. In sum, our in vitro data suggest that TN-C acts as an anti-adhesive and inhibitory factor for the growth of SGNs. The DSD-1 carbohydrate epitope is specifically localized to HC stereocilia and SG fibers. Interestingly, TN-C and the DSD-1-PG exhibit a mutually exclusive expression pattern, with the exception of a very restricted region beneath the habenula perforata, where SG neurites grow through the basilar membrane (BM) toward the HCs. The complementary expression of TN-C, LN, FN, and the DSD-1 epitope suggests that TN-C may act as an important boundary formation molecule in the developing postnatal mouse inner ear, which makes it a promising candidate to regulate neurite outgrowth in the light of CIs. PMID:26812032

  14. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  15. Use of glucosamine and chondroitin supplements in relation to risk of colorectal cancer: Results from the Nurses' Health Study and Health Professionals follow-up study.

    Science.gov (United States)

    Kantor, Elizabeth D; Zhang, Xuehong; Wu, Kana; Signorello, Lisa B; Chan, Andrew T; Fuchs, Charles S; Giovannucci, Edward L

    2016-11-01

    Recent epidemiologic evidence has emerged to suggest that use of glucosamine and chondroitin supplements may be associated with reduced risk of colorectal cancer (CRC). We therefore evaluated the association between use of these non-vitamin, non-mineral supplements and risk of CRC in two prospective cohorts, the Nurses' Health Study and Health Professionals Follow-up Study. Regular use of glucosamine and chondroitin was first assessed in 2002 and participants were followed until 2010, over which time 672 CRC cases occurred. Cox proportional hazards regression was used to estimate relative risks (RRs) within each cohort, and results were pooled using a random effects meta-analysis. Associations were comparable across cohorts, with a RR of 0.79 (95% CI: 0.63-1.00) observed for any use of glucosamine and a RR of 0.77 (95% CI: 0.59-1.01) observed for any use of chondroitin. Use of glucosamine in the absence of chondroitin was not associated with risk of CRC, whereas use of glucosamine + chondroitin was significantly associated with risk (RR: 0.77; 95% CI: 0.58-0.999). The association between use of glucosamine + chondroitin and risk of CRC did not change markedly when accounting for change in exposure status over follow-up (RR: 0.75; 95% CI: 0.58-0.96), nor did the association significantly vary by sex, aspirin use, body mass index, or physical activity. The association was comparable for cancers of the colon and rectum. Results support a protective association between use of glucosamine and chondroitin and risk of CRC. Further study is needed to better understand the chemopreventive potential of these supplements. PMID:27357024

  16. Application of Image Analysis Based on SEM and Chemical Mapping on PC Mortars under Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    YU Cheng; SUN Wei; Scrivener Karen

    2014-01-01

    The degradation mechanisms of cementitious materials exposed to sulfate solutions have been controversial, despite considerable research. In this paper, two methodologies of image analysis based on scanning electron microscope and chemical mapping are used to analyse Portland cement mortars exposed to sodium sulfate solution. The effects of sulfate concentration in solution and water to cement ratio of mortar, which are considered as the most sensitive factors to sulfate attack, are investigated respectively by comparing the macro expansion with microstructure analysis. It is found that the sulfate concentration in pore solution, expressed as sulfate content in C-S-H, plays a critical role on the supersaturation with respect to ettringite and so on the expansion force generated.

  17. Genetic heterogeneity and clinical variability in musculocontractural Ehlers-Danlos syndrome caused by impaired dermatan sulfate biosynthesis.

    Science.gov (United States)

    Syx, Delfien; Van Damme, Tim; Symoens, Sofie; Maiburg, Merel C; van de Laar, Ingrid; Morton, Jenny; Suri, Mohnish; Del Campo, Miguel; Hausser, Ingrid; Hermanns-Lê, Trinh; De Paepe, Anne; Malfait, Fransiska

    2015-05-01

    Bi-allelic variants in CHST14, encoding dermatan 4-O-sulfotransferase-1 (D4ST1), cause musculocontractural Ehlers-Danlos syndrome (MC-EDS), a recessive disorder characterized by connective tissue fragility, craniofacial abnormalities, congenital contractures, and developmental anomalies. Recently, the identification of bi-allelic variants in DSE, encoding dermatan sulfate epimerase-1 (DS-epi1), in a child with MC-EDS features, suggested locus heterogeneity for this condition. DS-epi1 and D4ST1 are crucial for biosynthesis of dermatan sulfate (DS) moieties in the hybrid chondroitin sulfate (CS)/DS glycosaminoglycans (GAGs). Here, we report four novel families with severe MC-EDS caused by unique homozygous CHST14 variants and the second family with a homozygous DSE missense variant, presenting a somewhat milder MC-EDS phenotype. The glycanation of the dermal DS proteoglycan decorin is impaired in fibroblasts from D4ST1- as well as DS-epi1-deficient patients. However, in D4ST1-deficiency, the decorin GAG is completely replaced by CS, whereas in DS-epi1-deficiency, still some DS moieties are present. The multisystemic abnormalities observed in our patients support a tight spatiotemporal control of the balance between CS and DS, which is crucial for multiple processes including cell differentiation, organ development, cell migration, coagulation, and connective tissue integrity. PMID:25703627

  18. Chondroitin sulphate extracted from antler cartilage using high hydrostatic pressure and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Chong-Tai Kim

    2014-12-01

    Full Text Available Chondroitin sulphate (CS, a major glycosaminoglycan, is an essential component of the extracellular matrix in cartilaginous tissues. Wapiti velvet antlers are a rich source of these molecules. The purpose of the present study was to develop an effective isolation procedure of CS from fresh velvet antlers using a combination of high hydrostatic pressure (100 MPa and enzymatic hydrolysis (papain. High CS extractability (95.1 ± 2.5% of total uronic acid was obtained following incubation (4 h at 50 °C with papain at pH 6.0 in 100 MPa compared to low extractability (19 ± 1.1% in ambient pressure (0.1 MPa. Antler CS fractions were isolated by Sephacryl S-300 chromatography and identified by western blot using an anti-CS monoclonal antibody. The antler CS fraction did not aggregate with hyaluronic acid in CL-2B chromatography and possessed DPPH radical scavenging activity at 78.3 ± 1.5%. The results indicated that high hydrostatic pressure and enzymatic hydrolysis procedure may be a useful tool for the isolation of CS from antler cartilaginous tissues.

  19. Chondroitin sulphate-mediated fusion of brain neural folds in rat embryos.

    Science.gov (United States)

    Alonso, M I; Moro, J A; Martín, C; de la Mano, A; Carnicero, E; Martínez-Alvarez, C; Navarro, N; Cordero, J; Gato, A

    2009-01-01

    Previous studies have demonstrated that during neural fold fusion in different species, an apical extracellular material rich in glycoconjugates is involved. However, the composition and the biological role of this material remain undetermined. In this paper, we show that this extracellular matrix in rat increases notably prior to contact between the neural folds, suggesting the dynamic behaviour of the secretory process. Immunostaining has allowed us to demonstrate that this extracellular matrix contains chondroitin sulphate proteoglycan (CSPG), with a spatio-temporal distribution pattern, suggesting a direct relationship with the process of adhesion. The degree of CSPG involvement in cephalic neural fold fusion in rat embryos was determined by treatment with specific glycosidases.In vitro rat embryo culture and microinjection techniques were employed to carry out selective digestion, with chondroitinase AC, of the CSPG on the apical surface of the neural folds; this was done immediately prior to the bonding of the cephalic neural folds. In all the treated embryos, cephalic defects of neural fold fusion could be detected. These results show that CSPG plays an important role in the fusion of the cephalic neural folds in rat embryos, which implies that this proteoglycan could be involved in cellular recognition and adhesion. PMID:18836253

  20. The Structure of Chondroitin B Lyase Complexed with Glycosaminoglycan Oligosaccharides Unravels a Calcium-dependent Catalytic Machinery*

    OpenAIRE

    Michel, Gurvan; Pojasek, Kevin; Li, Yunge; Sulea, Traian; Linhardt, Robert J.; Raman, Rahul; Prabhakar, Vikas; Sasisekharan, Ram; Cygler, Miroslaw

    2004-01-01

    Chondroitinase B from Pedobacter heparinus is the only known enzyme strictly specific for dermatan sulfate and is a widely used enzymatic tool for the structural characterization of glycosaminoglycans. This β-helical polysaccharide lyase belongs to family PL-6 and cleaves the β(1,4) linkage of dermatan sulfate in a random manner, yielding 4,5-unsaturated dermatan sulfate disaccharides as the product. The previously reported structure of its complex with a dermatan sulfate disaccharide product...

  1. Bioengineered heparins and heparan sulfates.

    Science.gov (United States)

    Fu, Li; Suflita, Matthew; Linhardt, Robert J

    2016-02-01

    Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates. PMID:26555370

  2. Tris(diisopropylammonium hydrogensulfate sulfate

    Directory of Open Access Journals (Sweden)

    Gholamhossein Sh. Mohammadnezhad

    2008-08-01

    Full Text Available The cations and anions of the title salt, 3C6H16N+·HSO4−·SO42−, are linked by N—H...O and O—H...O hydrogen bonds into a three-dimensional network. The hydrogensulfate ion, with a single S—O(H bond of 1.563 (2 Å, forms a short O—H...O hydrogen bond [O...O = 2.609 (2 Å] to the sulfate ion. The hydrogensulfate ion accepts two hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to four cations. The sulfate ion is disordered approximately equally over two sites related by rotation around one of the O—S bonds.

  3. Sulfate reduction in freshwater peatlands

    International Nuclear Information System (INIS)

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO42- concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 μM. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 μM h-1 while in B and C they were 1 and 0.05 μM h-1, respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 μg d-1 g-1) were found 10 cm below the water table, in B (ca. 1.0 μg d-1 g-1) in the vicinity of the water table, and in C (0.75 μg d-1 g-1) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m-2 d-1, while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m-2 d-1, respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination paper. 67 refs, 6 figs, 3 tabs

  4. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  5. Application of a 22L scale membrane bioreactor and cross-flow ultrafiltration to obtain purified chondroitin.

    Science.gov (United States)

    Schiraldi, Chiara; Alfano, Alberto; Cimini, Donatella; Rosa, Mario De; Panariello, Andrea; Restaino, Odile F; Rosa, Mario De

    2012-07-01

    Recently, the possibility of producing fructosylated chondroitin from the capsular polysaccharide of Escherichia coli O5:K4:H4, in fed-batch and microfiltration experiments was assessed on a 2 L bioreactor. In this work, a first scale-up step was set on a 22 L membrane reactor with modified baffles to insert ad hoc designed microfiltration modules permanently inside the bioreactor vessel. Moreover, the downstream polysaccharide purification process, recently established on the A¨︁KTA cross-flow instrument, was translated to a UNIFLUX-10, a tangential flow filtration system suitable for prepilot scale. In particular, the microfiltered permeates obtained throughout the fermentation, and the supernatant recovered from the centrifuged broth at the end of the process, were treated as two separate samples in the following ultrafiltration procedure, and the differences in the two streams and how these affected the ultrafiltration/diafiltration process performance were analysed. The total amount of K4 capsular polysaccharide was about 85% in the broth and 15% in the microfiltered permeates. However, the downstream treatment was more efficient when applied to the latter. The major contaminant, the lipopolysaccharide, could easily be separated by a mild hydrolysis that also results in the elimination of the unwanted fructosyl residue, which is linked to the C-3 of glucuronic acid residues. The tangential ultrafiltration/diafiltration protocols developed in a previous work were effectively scaled-up, and therefore in this research proof of principle was established for the biotechnological production of chondroitin from the wild-type strain E. coli O5:K4:H4. The complete downstream procedure yielded about 80% chondroitin with 90% purity. PMID:22619212

  6. Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria

    DEFF Research Database (Denmark)

    Clausen, Thomas M; Christoffersen, Stig; Dahlbäck, Madeleine;

    2012-01-01

    shown that full-length recombinant VAR2CSA binds specifically to CSA with nanomolar affinity, and that the CSA-binding site lies in the N-terminal part of the protein. In this study we define the minimal binding region by truncating VAR2CSA and analyzing CSA binding using biosensor technology. We show...

  7. Human aggrecanase generated synovial fluid fragment levels are elevated directly after knee injuries due to proteolysis both in the inter globular and chondroitin sulfate domains

    DEFF Research Database (Denmark)

    Struglics, A; Hansson, M; Lohmander, Stefan

    2011-01-01

    To examine different aggrecanase generated fragments in synovial fluid (SF) from patients with acute and chronic knee injuries and from knee healthy subjects.......To examine different aggrecanase generated fragments in synovial fluid (SF) from patients with acute and chronic knee injuries and from knee healthy subjects....

  8. Targeted disruption of a ring-infected erythrocyte surface antigen (RESA)-like export protein gene in Plasmodium falciparum confers stable chondroitin 4-sulfate cytoadherence capacity

    DEFF Research Database (Denmark)

    Goel, Suchi; Muthusamy, Arivalagan; Miao, Jun;

    2014-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family proteins mediate the adherence of infected erythrocytes to microvascular endothelia of various organs, including the placenta, thereby contributing to cerebral, placental, and other severe malaria pathogenesis. Several paras...

  9. Chondroitin sulphate modification in the alpha4 chain of human recombinant laminin-8 (alpha4beta1gamma1).

    Science.gov (United States)

    Kortesmaa, Jarkko; Doi, Masayuki; Patarroyo, Manuel; Tryggvason, Karl

    2002-10-01

    We have produced human laminin-8 (alpha4beta1gamma1) using recombinant technology. Approximately half of the recombinant laminin-8 (rLN-8) molecules were found to have a chondroitin sulphate modification in the alpha4 chain. The substituted and non-substituted forms were separated and tested for cell adhesion activity. Lower cell adhesion promoting activity was seen for the substituted form, but the integrin receptor utilization was similar. We also found the human rLN-8 to behave identically in cell adhesion assays compared to a human/mouse hybrid variant of rLN-8. PMID:12392759

  10. Isolation, characterization and properties of the oversulphated chondroitin sulphate proteoglycan from squid skin with peculiar glycosaminoglycan sulphation pattern.

    Science.gov (United States)

    Karamanos, N K; Aletras, A J; Tsegenidis, T; Tsiganos, C P; Antonopoulos, C A

    1992-03-01

    Oversulphated chondroitin sulphate proteoglycan from squid skin was isolated from 4 M guanidine hydrochloride extract by ion-exchange chromatography, gel chromatography and density gradient centrifugation. The proteoglycan had Mr 3.5 x 10(5), contained on average six oversulphated chondroitin sulphate chains (Mr 4 x 10(4)) bound on a polypeptide of Mr 2.8 x 10(4), and oligosaccharides consisting of both hexosamines, glucuronic acid, sulphates and fucose as the only neutral monosaccharide. The major amino acids of the proteoglycan protein core are glycine (corresponding to about one third of the total amino acids), aspartic acid/asparagine and serine, together amounting to 50% of the total. The proteoglycan was resistant to the proteolytic enzymes V8 protease, trypsin (treated with diphenylcarbamoyl chloride), alpha-chymotrypsin and pronase, while it was completely degraded by papain and to a large extent by collagenase. Pretreated proteoglycan with chondroitinase AC was degraded by pronase to a large extent and slightly by V8 protease and trypsin. The proteoglycan did not interact with hyaluronic acid and did not form self-aggregates. Oversulphated chondroitin sulphate chains were composed of unusual sulphated disaccharide units which were isolated and characterized by HPLC. In particular, it contained 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose 4-sulphate (delta di-4S) and disulphated disaccharides (delta di-diS) [90% 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid 2/3-sulphate)-D-galactose 6-sulphate (delta di-diSD) and 10% 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid 2/3-sulphate)-D-galactose 4-sulphate (delta di-diSK)] as the major disaccharides, significant amounts of trisulphated disaccharides (delta di-triS) and small amounts of 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose 6-sulphate (delta di-6S) and 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4

  11. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions.

    Science.gov (United States)

    Krick, Wolfgang; Schnedler, Nina; Burckhardt, Gerhard; Burckhardt, Birgitta C

    2009-07-01

    Tubular reabsorption of sulfate is achieved by the sodium-dependent sulfate transporter, NaSi-1, located at the apical membrane, and the sulfate-anion exchanger, sat-1, located at the basolateral membrane. To delineate the physiological role of rat sat-1, [(35)S]sulfate and [(14)C]oxalate uptake into sat-1-expressing oocytes was determined under various experimental conditions. Influx of [(35)S]sulfate was inhibited by bicarbonate, thiosulfate, sulfite, and oxalate, but not by sulfamate and sulfide, in a competitive manner with K(i) values of 2.7 +/- 1.3 mM, 101.7 +/- 9.7 microM, 53.8 +/- 10.9 microM, and 63.5 +/- 38.7 microM, respectively. Vice versa, [(14)C]oxalate uptake was inhibited by sulfate with a K(i) of 85.9 +/- 9.5 microM. The competitive type of inhibition indicates that these compounds are most likely substrates of sat-1. Physiological plasma bicarbonate concentrations (25 mM) reduced sulfate and oxalate uptake by more than 75%. Simultaneous application of sulfate, bicarbonate, and oxalate abolished sulfate as well as oxalate uptake. These data and electrophysiological studies using a two-electrode voltage-clamp device provide evidence that sat-1 preferentially works as an electroneutral sulfate-bicarbonate or oxalate-bicarbonate exchanger. In kidney proximal tubule cells, sat-1 likely completes sulfate reabsorption from the ultrafiltrate across the basolateral membrane in exchange for bicarbonate. In hepatocytes, oxalate extrusion is most probably mediated either by an exchange for sulfate or bicarbonate. PMID:19369292

  12. Status of copper sulfate - 2008

    Science.gov (United States)

    This is brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for copper sulfate. Initial Label Claim (Ich on catfish): 1) Human Food Safety - Complete for all fin fish – February 2004. This includes human intestinal microflora issues,...

  13. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...... conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short...

  14. EXPRESS

    International Nuclear Information System (INIS)

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  15. Metabolic Flexibility of Sulfate-Reducing Bacteria

    OpenAIRE

    Plugge, Caroline M.; Zhang, Weiwen; Scholten, Johannes C. M.; Stams, Alfons J. M.

    2011-01-01

    Dissimilatory sulfate-reducing prokaryotes (SRB) are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas me...

  16. Sulfate reduction and methanogenesis in marine sediments

    Science.gov (United States)

    Oremland, R. S.; Taylor, B. F.

    1978-01-01

    Methanogenesis and sulfate-reduction were followed in laboratory incubations of sediments taken from tropical seagrass beds. Methanogenesis and sulfate-reduction occurred simultaneously in sediments incubated under N2, thereby indicating that the two processes are not mutually exclusive. Sediments incubated under an atmosphere of H2 developed negative pressures due to the oxidation of H2 by sulfate-respiring bacteria. H2 also stimulated methanogenesis, but methanogenic bacteria could not compete for H2 with the sulfate-respiring bacteria.

  17. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  18. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  19. 21 CFR 186.1797 - Sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  20. Sulfate-reducing prokaryotes in river floodplains

    NARCIS (Netherlands)

    Miletto, M.

    2007-01-01

    This thesis constitutes a pioneer attempt at elucidating the ecology of sulfate-reducing prokaryotes in river floodplains. These are non-typical sulfate-reducing environmental settings, given the generally low sulfate concentration that characterize freshwater habitats, and river flow regulation tha

  1. 21 CFR 582.5461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use....

  2. 21 CFR 184.1461 - Manganese sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... manganese compounds with sulfuric acid. It is also obtained as a byproduct in the manufacture...

  3. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to...

  4. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  5. Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development.

    Science.gov (United States)

    Melrose, James; Isaacs, Marc D; Smith, Susan M; Hughes, Clare E; Little, Christopher B; Caterson, Bruce; Hayes, Anthony J

    2012-09-01

    Novel sulphation motifs within the glycosaminoglycan chain structure of chondroitin sulphate (CS) containing proteoglycans (PGs) are associated with sites of growth, differentiation and repair in many biological systems and there is compelling evidence that they function as molecular recognition sites that are involved in the binding, sequestration or presentation of soluble signalling molecules (e.g. morphogens, growth factors and cytokines). Here, using monoclonal antibodies 3B3(-), 4C3 and 7D4, we examine the distribution of native CS sulphation motifs within the developing connective tissues of the human foetal knee joint, both during and after joint cavitation. We show that the CS motifs have broad, overlapping distributions within the differentiating connective tissues before the joint has fully cavitated; however, after cavitation, they all localise very specifically to the presumptive articular cartilage tissue. Comparisons with the labelling patterns of heparan sulphate (HS), HS-PGs (perlecan, syndecan-4 and glypican-6) and FGF-2, molecules with known signalling roles in development, indicate that these also become localised to the future articular cartilage tissue after joint cavitation. Furthermore, they display interesting, overlapping distributions with the CS motifs, reflective of early tissue zonation. The overlapping expression patterns of these molecules at this site suggests they are involved, or co-participate, in early morphogenetic events underlying articular cartilage formation; thus having potential clinical relevance to mechanisms involved in its repair/regeneration. We propose that these CS sulphation motifs are involved in modulating the signalling gradients responsible for the cellular behaviours (proliferation, differentiation, matrix turnover) that shape the zonal tissue architecture present in mature articular cartilage. PMID:22617995

  6. Extraction and structural properties of Acanthophora muscoides (Rhodophyceae extracellular matrix sulfated polysaccharides and their effects on coagulation

    Directory of Open Access Journals (Sweden)

    José Ariévilo Gurgel Rodrigues

    2016-06-01

    Full Text Available Acanthophora muscoides (Rhodophyta contains structurally heterogeneous sulfated polysaccharides (Am-SPs with pharmacological importance; however, its matrix SPs composition has not been still extensively investigated. This study sequentially extracted and compared the structural features and the in vitro anticoagulant effects of the Am-SPs. Papain-extraction sequence yielded Am.E-1, Am.E-2 and Am.E-3 containing differences among the relative proportions of sulfate (26.18-33% and hexoses (42.02-60.67% based on chemical analyses. One- (1H and two-dimensions (1H/13C nuclear magnetic resonance experiments showed very complex Am-SPs composed of alternating 4-linked-α-galactopyranosyl units and 3-linked-β-galactopyranosyl units presenting variable sulfation, CH3 substitutions and3,6-anhydro-α-L-galactose units and pyruvated-D-galactose residues, respectively, typical of agarocolloids. Different chromatographic profiles (DEAE-cellulose were observed, with fractions (Am I, Am II and Am III eluted with 0.5, 0.75 and/or 1 M of NaCl, respectively revealing charge density patterns and distinct mobility to heparin by agarose-electrophoresis and, when analyzed by polyacrylamide-electrophoresis, a dispersive migration and similar mobility as chondroitin-6-sulfate for Am I fractions were noted. Regarding the activated partial thromboplastin time test, fractions had no virtually anticoagulation (1.47→3.07 IU mg-1 in comparison with 193 IU mg-1 heparin. Therefore, Am-SPs show significantly lower anticoagulation than heparin.

  7. Conditional expression of CD44 isoforms in lymphoma cells: influence on hyaluronate binding and tumor growth

    International Nuclear Information System (INIS)

    CD44 describes a family of surface proteins consisting of many isoforms due to alternative splice of ten 'variant' exons. Members of this family are involved in various processes including hematopoiesis, lymphocyte activation and homing, limb development, wound healing and tumor progression. Clinically, CD44 has been shown to be a prognostic factor for several human cancers. To answer the question which isoform might be relevant for tumor progression and to gain an insight into the mechanism of its function, I established transfectants of the LB lymphoma cell line in which the expression of four CD44 isoforms, namely CD44v3-10, CD44v4-10, CD44v8-10 and CD44s, was controlled by the Tet-off promoter. In the presence of Doxycycline, the expression was repressed. Removal of Doxycycline switched on expression and the maximal CD44 amount was obtained within two days. The transfectants were characterized regarding their ability to bind to the extracellular matrix component hyaluronate (HA). Overexpression of all four CD44 isoforms conferred the ability to bind HA on LB cells. Other glycosaminoglycans (GAGs) were bound in an isotype-specific fashion. CD44v3-10, CD44v4-10 and CD44v8-10 showed high binding affinity to chondroitin A, B and C, and low affinity to heparin, heparan sulfate and keratan sulfate. CD44s could not bind to these GAGs. Among these three variants, the binding ability of CD44v3-10 was the strongest. CD44 clustering seemed to play a crucial role for HA binding. Both CD44s and CD44v8-10 formed reduction-sensitive complexes in LB cells. The complexes are homooligomers or heterooligomers composed of different isoforms. Cys286 in CD44 transmember domain was not responsible for the formation of reduction-sensitive oligomer or for the enhanced HA binding in LB cell line. Using a conditional dimerization system the requirement of CD44 oligomerization for HA binding was directly demonstrated. The induction of oligomerization increased HA binding. Finally, I

  8. Conditional expression of CD44 isoforms in lymphoma cells: influence on hyaluronate binding and tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Fu, J.

    2002-03-01

    CD44 describes a family of surface proteins consisting of many isoforms due to alternative splice of ten 'variant' exons. Members of this family are involved in various processes including hematopoiesis, lymphocyte activation and homing, limb development, wound healing and tumor progression. Clinically, CD44 has been shown to be a prognostic factor for several human cancers. To answer the question which isoform might be relevant for tumor progression and to gain an insight into the mechanism of its function, I established transfectants of the LB lymphoma cell line in which the expression of four CD44 isoforms, namely CD44v3-10, CD44v4-10, CD44v8-10 and CD44s, was controlled by the Tet-off promoter. In the presence of Doxycycline, the expression was repressed. Removal of Doxycycline switched on expression and the maximal CD44 amount was obtained within two days. The transfectants were characterized regarding their ability to bind to the extracellular matrix component hyaluronate (HA). Overexpression of all four CD44 isoforms conferred the ability to bind HA on LB cells. Other glycosaminoglycans (GAGs) were bound in an isotype-specific fashion. CD44v3-10, CD44v4-10 and CD44v8-10 showed high binding affinity to chondroitin A, B and C, and low affinity to heparin, heparan sulfate and keratan sulfate. CD44s could not bind to these GAGs. Among these three variants, the binding ability of CD44v3-10 was the strongest. CD44 clustering seemed to play a crucial role for HA binding. Both CD44s and CD44v8-10 formed reduction-sensitive complexes in LB cells. The complexes are homooligomers or heterooligomers composed of different isoforms. Cys286 in CD44 transmember domain was not responsible for the formation of reduction-sensitive oligomer or for the enhanced HA binding in LB cell line. Using a conditional dimerization system the requirement of CD44 oligomerization for HA binding was directly demonstrated. The induction of oligomerization increased HA binding

  9. Patterns of uronosyl epimerization and 4-/6-O-sulphation in chondroitin/dermatan sulphate from decorin and biglycan of various bovine tissues.

    Science.gov (United States)

    Cheng, F; Heinegård, D; Malmström, A; Schmidtchen, A; Yoshida, K; Fransson, L A

    1994-10-01

    Dermatan sulphate is a co-polymer of two types of disaccharide repeats: D-glucuronate-N-acetylgalactosamine and L-iduronate-N-acetylgalactosamine. The former can be O-sulphated at C-4 or C-6 of the galactosamine, whereas the latter contains almost exclusively 4-O-sulphated galactosamine. A minor proportion of the L-iduronate may be O-sulphated at C-2. Chondroitin sulphate has no L-iduronate-containing repeats. We have used our recently developed methods for sequence analysis of galactosaminoglycans to investigate the structure of dermatan/chondroitin sulphates of the proteoglycans decorin and biglycan derived from various bovine tissues, like dermis, sclera, tendon, aorta, cartilage and bone. The glycan chains, radioiodinated at the reducing end, were partially cleaved with specific enzymes (chondroitin lyases), and subjected to high-resolution polyacrylamide gel electrophoresis, blotting and autoradiography to identify fragments extending from the labelled reducing end to the point of cleavage. We used chondroitin B lyase to identify the location of L-iduronate, chondroitin AC-I lyase to locate D-glucuronate and chondroitin C lyase to cleave where D-glucuronate residues were succeeded by 6-O-sulphated N-acetylgalactosamine. We could demonstrate tissue-specific, periodic and wave-like patterns of distribution for the two epimeric uronic acids, as well as specific patterns of sulphation in dermatan sulphates derived from either decorin or biglycan. For example, some dermatan sulphates contained D-glucuronate-rich domains that were always 6-sulphated (scleral decorin), others were always 4-sulphated (decorin from bovine dermis, cartilage and bone; biglycan from aorta) or 6-sulphated near the linkage region, but 4-sulphated in more distal domains (decorin from porcine dermis and bovine tendon). Decorin from bone and articular cartilage, as well as biglycan from articular and nasal cartilage, carried largely chondroitin sulphate chains, but also some dermatan sulphate

  10. Sulfated proteoglycans as modulators of neuronal migration and axonal decussation in the developing midbrain

    Directory of Open Access Journals (Sweden)

    L.A. Cavalcante

    2003-08-01

    Full Text Available Proteoglycans are abundant in the developing brain and there is much circumstantial evidence for their roles in directional neuronal movements such as cell body migration and axonal growth. We have developed an in vitro model of astrocyte cultures of the lateral and medial sectors of the embryonic mouse midbrain, that differ in their ability to support neuritic growth of young midbrain neurons, and we have searched for the role of interactive proteins and proteoglycans in this model. Neurite production in co-cultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exert an inhibitory or nonpermissive effect on neuritic growth that is correlated to a higher content of both heparan and chondroitin sulfates (HS and CS. Treatment of astrocytes with chondroitinase ABC revealed a growth-promoting effect of CS on lateral glia but treatment with exogenous CS-4 indicated a U-shaped dose-response curve for CS. In contrast, the growth-inhibitory action of medial astrocytes was reversed by exogenous CS-4. Treatment of astrocytes with heparitinase indicated that the growth-inhibitory action of medial astrocytes may depend heavily on HS by an as yet unknown mechanism. The results are discussed in terms of available knowledge on the binding of HS proteoglycans to interactive proteins, with emphasis on the importance of unraveling the physiological functions of glial glycoconjugates for a better understanding of neuron-glial interactions.

  11. Sulfate Transport in Penicillium chrysogenum: Cloning and Characterization of the sutA and sutB Genes

    OpenAIRE

    Kamp, M.; Pizzinini, E.; de Vos, A.; van der Lende, T.R.; Schuurs, T. A.; Newbert, R.W.; G. Turner; Konings, W N; Driessen, A. J. M.

    1999-01-01

    In industrial fermentations, Penicillium chrysogenum uses sulfate as the source of sulfur for the biosynthesis of penicillin. By a PCR-based approach, two genes, sutA and sutB, whose encoded products belong to the SulP superfamily of sulfate permeases were isolated. Transformation of a sulfate uptake-negative sB3 mutant of Aspergillus nidulans with the sutB gene completely restored sulfate uptake activity. The sutA gene did not complement the A. nidulans sB3 mutation, even when expressed unde...

  12. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming;

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe the...... process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation and a...... model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  13. Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25.

    Science.gov (United States)

    Jay, G D; Tantravahi, U; Britt, D E; Barrach, H J; Cha, C J

    2001-07-01

    We have previously identified megakaryocyte stimulating factor (MSF) gene expression by synovial fibroblasts as the origin of lubricin in the synovial cavity. Lubricin is a mucinous glycoprotein responsible for the boundary lubrication of articular cartilage. MSF has a significant homology to vitronectin and is composed of 12 exons. RNA was purified from human synovial fibroblasts and articular chondrocytes grown in vitro from tissue explants obtained from subjects without degenerative joint disease. RT-PCR was used with multiple complimentary primer pairs spanning the central mucin expressing exon 6 of the MSF gene and individual exons on both the N- and C-terminal sides of exon 6. Exons 2, 4 and 5 appear to be variably expressed by synovial fibroblasts and articular chondrocytes. Lubricating mucin, in the form of MSF, is expressed by both chondrocytes and synovial fibroblasts in vitro. Both lubricin and superficial zone protein (SZP), a related proteoglycan, share a similar primary structure but could differ in post-translational modifications with O-linked oligosaccharides which are predominant in lubricin and with limited amounts chondroitin and keratan sulfate found in SZP. Since most of the MSF exons are involved in the expression of lubricating mucin, a strong homology to vitronectin persists. It is therefore appropriate to consider that both SZP and lubricin occupy a new class of biomolecules termed tribonectins. Screening of a human genome bacterial artificial chromsome (BAC) library with a cDNA primer pair complimentary for exon 6 identified two clones. Both clones were complimentary for chromosome 1q25 by in situ hybridization. This same locus was previously implicated in camptodactyl-arthropathy-pericarditis syndrome (CAP) by genetic mapping. It is hypothesized that CAP, a large joint arthropathy, may be associated with ineffective boundary lubrication provided by synovial fluid. PMID:11518279

  14. Association of cell surface heparan sulfate proteoglycans of Schwann cells with extracellular matrix proteins.

    Science.gov (United States)

    Carey, D J; Crumbling, D M; Stahl, R C; Evans, D M

    1990-11-25

    The terminal differentiation of Schwann cells is dependent on contact with basement membrane. The present study was undertaken to investigate the role of cell surface heparan sulfate proteoglycans (HSPGs) in mediating Schwann cell responses to extracellular matrix contact. Phosphatidylinositol-specific phospholipase C-releasable cell surface HSPGs purified from cultures of neonatal rat Schwann cells were subjected to affinity chromatography on immobilized laminin and fibronectin. Binding of the HSPG to both affinity matrices was observed. The strength of the association, however, was sensitive to the ionic strength of the buffer. In 0.1 M Tris-HCl, HSPG binding was essentially irreversible whereas in physiological ionic strength buffer (e.g. 0.142 M NaCl, 10 mM Tris), weaker binding was detected as a delay in elution of the HSPG from the affinity columns. Further studies of HSPG-laminin binding suggested that the binding was mediated by the glycosaminoglycan chains of the proteoglycans. Results of equilibrium gel filtration chromatography provided additional evidence for a reversible association of the HSPG and laminin with a Kd of approximately 1 x 10(-6) M. When Schwann cells were plated on plastic dishes coated with laminin, the cells attached and extended long slender processes. Inclusion of heparin, but not chondroitin sulfate, in the assay medium resulted in partial inhibition of process extension, but at concentrations of heparin which were higher than that needed to disrupt laminin-HSPG association in vitro. Addition of anti-integrin receptor antibodies resulted in more extensive inhibition of laminin-dependent process extension. Anti-integrin antibodies plus heparin essentially totally inhibited laminin-dependent process extension. These results demonstrate that cell surface HSPGs are capable of reversible association with extracellular matrix molecules and suggest that HSPG-laminin interactions play a role in laminin-dependent Schwann cell spreading. PMID

  15. The murine biglycan: Complete cDNA cloning, genomic organization, promoter function, and expression

    Energy Technology Data Exchange (ETDEWEB)

    Wegrowski, Y.; Pillarisetti, J.; Danielson, K.G.; Iozzo, R.V. [Thomas Jefferson Univ., Philadelphia, PA (United States); Suzuki, S. [Univ. of Southern California, Los Angeles, CA (United States)

    1995-11-01

    Biglycan is a ubiquitous chondroitin/dermatan sulfate proteoglycan that belongs to a growing family of proteins harboring leucine-rich repeats. We have cloned and sequenced the cDNA containing the complete murine biglycan, elucidated its genomic organization, and demonstrated functional promoter activity of its 5{prime} flanking region. The deduced biglycan protein core was highly conserved across species. However, the mouse biglycan (Bgn) gene was significantly larger than the human counterpart, primarily because of a large > 4.5-kb intron between exons 1 and 2. The mouse Bgn gene spanned over 9.5 kb of continuous DNA and comprised 8 exons, with a perfectly conserved intron/exon organization vis-a-vis the human counterpart. The promoter region was enriched in GC dinucleotide and contained numerous cis-acting elements including binding sites for SP-1, AP-1, and AP-2 factors. It lacked TATA and CAAT boxes typical of housekeeping genes. In support of this, primer extension analysis showed the existence of multiple transcription start sites. Transient cell transfection assays with a construct comprising the 548 hp upstream of the major transcription start site fused to the chloramphenicol acetyl transferase reporter gene showed functional promoter activity. Internal and 5{prime} deletion constructs showed that the distal promoter of the Bgn gene was required for full transcriptional activity. In contrast to the homologous proteoglycan decorin, the highest expression of biglycan mRNA was observed in lung, liver, and spleen of adult mouse and the lowest in skin, heart, and kidney. These results will be useful for the study of biglycan gene regulation and for the generation of mice with targeted null mutation of the Bgn gene. 56 refs., 7 figs., 1 tab.

  16. Evaluating Deterioration of Concrete by Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfate attack was used to evaluate the deterioration degree of concrete damaged by sulfate. The relationship between the resistance of concrete to sulfate attack and its permeability/porosity were analyzed as well as its responding mechanism. Results show that the depth of sulfate crystal attack from surface to inner of concrete can be reduced by decreasing w/c and addition of combining fly ash with silica fume. The variation of relative elastic modulus ratio and relative flexural strength ratio of various specimens before and after being subjected to sulfate attack was compared.

  17. Sulfate-reducing bacteria in anaerobic bioreactors.

    OpenAIRE

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrence of sulfate reduction was considered to be undesired. However, there are some recent developments in which sulfate reduction is optimized for the removal of sulfur compounds from waste streams. In...

  18. CLIMATE CHANGE ADAPTATION IN ACID SULFATE LANDSCAPES

    OpenAIRE

    Chuxia Lin

    2012-01-01

    Oxidation of sulfide minerals produces sulfuric acid and consequently creates Acid Sulfate Landscapes (ASLs), which represent one of the most degraded types of land-surface environments. Although acid sulfate-producing weathering is a naturally occurring process, it is markedly facilitated by human intervention. Mining is by far the dominant anthropogenic cause for the creation of inland acid sulfate footprints while land reclamation in coastal lowlands is the driver for the formation of coas...

  19. Methods for sulfate air quality management

    OpenAIRE

    Cass, Glen R.; McMurry, Pamela S.; Houseworth, James E

    1980-01-01

    Executive Summary Abstract: A study of methods for sulfate air quality control strategy design has been conducted. Analytical tools developed were tested within a case study of the nature and causes of the high sulfate concentrations observed in the Los Angeles area. A principal objective was to investigate the least costly means for sulfate air quality improvement in that locale. A long-run average emissions to air quality model was derived which computes pollutant concentrations fr...

  20. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  1. Alteration of gene expression by zinc oxide nanoparticles or zinc sulfate in vivo and comparison with in vitro data: A harmonious case.

    Science.gov (United States)

    Zhang, Wei-Dong; Zhao, Yong; Zhang, Hong-Fu; Wang, Shu-Kun; Hao, Zhi-Hui; Liu, Jing; Yuan, Yu-Qing; Zhang, Peng-Fei; Yang, Hong-Di; Shen, Wei; Li, Lan

    2016-08-01

    Granulosa cells (GCs) are those somatic cells closest to the female germ cell. GCs play a vital role in oocyte growth and development, and the oocyte is necessary for multiplication of a species. Zinc oxide (ZnO) nanoparticles (NPs) readily cross biologic barriers to be absorbed into biologic systems that make them promising candidates as food additives. The objective of the present investigation was to explore the impact of intact NPs on gene expression and the functional classification of altered genes in hen GCs in vivo, to compare the data from in vivo and in vitro studies, and finally to point out the adverse effects of ZnO NPs on the reproductive system. After a 24-week treatment, hen GCs were isolated and gene expression was quantified. Intact NPs were found in the ovary and other organs. Zn levels were similar in ZnO-NP-100 mg/kg- and ZnSO4-100 mg/kg-treated hen ovaries. ZnO-NP-100 mg/kg and ZnSO4-100 mg/kg regulated the expression of the same sets of genes, and they also altered the expression of different sets of genes individually. The number of genes altered by the ZnO-NP-100 mg/kg and ZnSO4-100 mg/kg treatments was different. Gene Ontology (GO) functional analysis reported that different results for the two treatments and, in Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, 12 pathways (out of the top 20 pathways) in each treatment were different. These results suggested that intact NPs and Zn(2+) had different effects on gene expression in GCs in vivo. In our recent publication, we noted that intact NPs and Zn(2+) differentially altered gene expression in GCs in vitro. However, GO functional classification and KEGG pathway enrichment analyses revealed close similarities for the changed genes in vivo and in vitro after ZnO NP treatment. Furthermore, close similarities were observed for the changed genes after ZnSO4 treatments in vivo and in vitro by GO functional classification and KEGG pathway enrichment analyses. Therefore

  2. Expanding the 3-O-Sulfate Proteome-Enhanced Binding of Neuropilin-1 to 3-O-Sulfated Heparan Sulfate Modulates Its Activity.

    Science.gov (United States)

    Thacker, Bryan E; Seamen, Emylie; Lawrence, Roger; Parker, Matthew W; Xu, Yongmei; Liu, Jian; Vander Kooi, Craig W; Esko, Jeffrey D

    2016-04-15

    Binding of proteins to heparan sulfate is driven predominantly by electrostatic interactions between positively charged amino acid residues in the protein and negatively charged sulfate groups located at various positions along the polysaccharide chain. Although many heparin/heparan-sulfate-binding proteins have been described, few exhibit preferential binding for heparan sulfates containing relatively rare 3-O-sulfated glucosamine residues. To expand the "3-O-sulfate proteome," affinity matrices were created from Chinese hamster ovary (CHO) cell heparan sulfate engineered in vitro with and without 3-O-sulfate groups. Fractionation of different animal sera yielded several proteins that bound specifically to columns containing 3-O-sulfated heparan sulfate modified by two members of the heparan sulfate 3-O-sulfotransferase superfamily, Hs3st1 and Hs3st2. Neuropilin-1 was analyzed in detail because it has been implicated in angiogenesis and axon guidance. We show that 3-O-sulfation enhanced the binding of neuropilin-1 to heparan sulfate immobilized on plastic plates and to heparan sulfate present on cultured cells. Chemoenzymatically synthesized 3-O-sulfated heparan sulfate dodecamers protected neuropilin-1 from thermal denaturation and inhibited neuropilin-1-dependent, semaphorin-3a-induced growth cone collapse of neurons derived from murine dorsal root ganglia. The effect of 3-O-sulfation was cell autonomous and specific to Hs3st2 based on collapse assays of neurons derived from Hs3st1- and Hs3st2-deficient mice. Finally, 3-O-sulfated heparan sulfate enhanced the inhibition of endothelial cell sprouting by exogenous heparan sulfate. These findings demonstrate a reliable method to identify members of the 3-O-sulfate proteome and that 3-O-sulfation of heparan sulfate can modulate axonal growth cone collapse and endothelial cell sprouting. PMID:26731579

  3. CLIMATE CHANGE ADAPTATION IN ACID SULFATE LANDSCAPES

    Directory of Open Access Journals (Sweden)

    Chuxia Lin

    2012-01-01

    Full Text Available Oxidation of sulfide minerals produces sulfuric acid and consequently creates Acid Sulfate Landscapes (ASLs, which represent one of the most degraded types of land-surface environments. Although acid sulfate-producing weathering is a naturally occurring process, it is markedly facilitated by human intervention. Mining is by far the dominant anthropogenic cause for the creation of inland acid sulfate footprints while land reclamation in coastal lowlands is the driver for the formation of coastal ASLs. The projected climate change highlights the possibility of an increase in the frequency and severity of extreme weather events such as droughts and heavy rains, which is likely to accelerate the acid generation in some circumstances and increase the frequency and magnitude of acid discharge. Sea level rise as a result of global warming will cause additional problems with the coastal ASLs. This is a review article. The following aspects are covered: (a the overriding biogeochemical processes leading to acid sulfate-producing weathering, (b a brief introduction to the inland acid sulfate landscapes, (c a brief introduction to the coastal acid sulfate landscapes, (d the likely impacts of climate change on ASLs and (e the possible measures to combat climate change-induced environmental degradation in the identified key acid sulfate footprints. The projected climate change is like to significantly affect the acid sulfate landscapes in different ways. Appropriate management strategies and cost-effective technologies need to be developed in order to minimize the climate change-induced ecological degradation.

  4. Rat pro-opiomelanocortin contains sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Hoshina, H.; Hortin, G.; Boime, I.

    1982-07-02

    Intermediate lobes isolated from rat pituitary glands incorporated (/sup 35/S)sulfate into pro-opiomelanocortin and other adrenocorticotropic hormone-containing peptides. Incubation of intermediate lobes in medium containing the arginine analog canavanine inhibited the cleavage of pro-opiomelanocortin into smaller products. Pro-opiomelanocortin that accumulated in the presence of canavanine was also sulfated.

  5. Scintillation properties of lead sulfate

    International Nuclear Information System (INIS)

    We report on the scintillation properties of lead sulfate (PbSO4), a scintillator that show promise as a high energy photon detector. It physical properties are well suited for gamma detection, as its has a density of 6.4 gm/cm3, a 1/e attenuation length for 511 keV photons of 1.2 cm, is not affected by air or moisture, and is cut and polished easily. In 99.998% pure PbSO4 crystals at room temperature excited by 511 keV annihilation photons, the fluorescence decay lifetime contains significant fast components having 1.8 ns (5%) and 19 ns (36%) decay times, but with longer components having 95 ns (36%) and 425 ns (23%) decays times. The peak emission wavelength is 335 nm, which is transmitted by borosilicate glass windowed photomultiplier tubes. The total scintillation light output increases with decreasing temperature fro 3,200 photons/MeV at +45 degrees C to 4, 900 photons/MeV at room temperature (+25 degrees C) and 68,500 photons/MeV at -145 degrees C. In an imperfect, 3 mm cube of a naturally occurring mineral form of PbSO4 (anglesite) at room temperature, a 511 keV photopeak is seen with a total light output of 60% that BGO. There are significant sample to sample variations of the light output among anglesite samples, so the light output of lead sulfate may improve when large synthetic crystals become available. 10 refs

  6. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.; Rehfeld, Jens Frederik

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the...... to demonstrate the presence of radioactively labeled tyrosine. These techniques have been described in detail previously. The aim of this chapter is to present alternative analytical methods of Tyr sulfation than radioisotope incorporation before analysis Udgivelsesdato: 2008...

  7. Gaseous Sulfate Solubility in Glass: Experimental Method

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature to guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.

  8. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti;

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... order to simulate the sulfation of KCl by ferric sulfate addition during grate-firing of biomass. The simulation results show good agreements with the experimental data obtained in a pilot-scale biomass grate-firing reactor, where different amounts of ferric sulfate was injected on the grate or into the...... freeboard. In addition, the simulations of elemental sulfur addition on the grate fit well with the experimental data. The results suggest that the SO3 released from ferric sulfate decomposition is the main contributor to KCl sulfation, and that the effectiveness of the ferric sulfate addition is sensitive...

  9. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  10. Activation and transfer of sulfate in biological systems (1960)

    International Nuclear Information System (INIS)

    It examines in this review the successive stages of active sulfate formation and its role in biological synthesis of sulfuric esters. The possible role of active sulfate as intermediary in sulfate reduction is also discussed. (author)

  11. Infrared Turbidimetric Titration Method for Sulfate Ions in Brackish Water

    Directory of Open Access Journals (Sweden)

    Benabadji Nouredine

    2012-12-01

    Full Text Available In this work an infrared turbidimetric titration method is described for the determination of sulfate ions in brackish water. A suspension of barium sulfate is produced in an aqueous solution and/or brackish water sample by the addition of barium chloride solution and the turbidity is monitored with the help of an immersed infrared sensor. The developed sensor utilizes an optical system to measure the evolution of turbidity during the titration. This sensor is a simple device designed in the laboratory, consisting of two infrared diodes (LED, the first is an emitter and the second is used as detector (receiver. The data acquisition system is made with the help of a dataloger made on the basis of the microcontroller 16F877/874 accompanied with adaptable software both of them are self made. Concentration over 60 µg/mL of sulfate expressed as, SO42- can be measured with high reproducibility, by this method without a preliminary treatment or dilution of the sample. The method determines SO42 - concentration of brackish water with RSD of < 1.2%.

  12. Age-related changes in the sulphation of the chondroitin sulphate linkage region from human articular cartilage aggrecan.

    Science.gov (United States)

    Lauder, R M; Huckerby, T N; Brown, G M; Bayliss, M T; Nieduszynski, I A

    2001-09-01

    The chondroitin sulphate (CS) linkage regions have been isolated from human articular cartilage aggrecan (from 10- to 72-year-olds) by chondroitin ABC endolyase digestion and size-exclusion chromatography. Linkage region hexasaccharides have been characterized and their abundance estimated by high-pH anion-exchange chromatography. The basic structure for the CS linkage region oligosaccharides identified from human aggrecan is as follows: DeltaUA(beta1-3)GalNAc[0S/4S/6S](beta1-4)GlcA(beta1-3)Gal[0S/6S](beta1-3)Gal(beta1-4)Xyl, where DeltaUA represents 4,5-unsaturated hexuronic acid, 4S and 6S represent an O-ester sulphate group on C-4 and C-6 respectively, and 0S represents zero sulphation. There are significant age-related changes in the abundance of the various N-acetylgalactosamine (GalNAc) sulphation forms identified, occurring up to approx. 20 years old. During the period from 10 to 20 years old the level of GalNAc 6-sulphation at the linkage region increases from approx. 43% to approx. 75%, while there is a corresponding reduction in unsulphated (approx. 30% to approx. 20%) and 4-sulphated (approx. 25% to approx. 6%) GalNAc residues. There is also an increase in the incidence of linkage region galactose 6-sulphation (approx. 2% to approx. 10%) which was only observed in linkage regions with GalNAc 6-sulphation. Beyond 20 years old there are few changes in the relative abundance of these GalNAc sulphation variants; however, there is a slight increase in the abundance of 6-sulphation between approx. 20 years old and approx. 40 years old and a slight decrease in its abundance beyond approx. 40 years old. Our data show that in the majority of chains from tissues of all ages the GalNAc residue closest to the linkage region is 6-sulphated, but the level of GalNAc 6-sulphation within the linkage region is lower than the average level observed within the repeat region. PMID:11513754

  13. Heparan sulfate in skeletal muscle development

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, D.M.

    1985-01-01

    In this study, chick breast skeletal muscle cells developing in vitro from myoblasts to myotubes were found to synthesize heparan sulfate (HS), chrondroitin-6-sulfate, chrondroitin-4-sulfate, dermatan sulfate, unsulfated chrondroitin and hyaluronic acid in both the substratum attached material (SAM) and the cellular fraction. SAM was found to contain predominantly chrondroitin-6-sulfate and relatively little HS whereas the cellular fraction contained relatively higher levels of HS and lower levels of chrondroitin-6-sulfate. Hyaluronic acid was also a major component in both fractions with the other glycosaminoglycan isomers present as minor components. Muscle derived fibroblast cultures had higher levels of dermatan sulfate in the cell layer and higher levels of HS in the SAM fraction than did muscle cultures. The structure of the proteoglycans were partially characterized in /sup 35/SO/sub 4//sup 2 -/ radio-labeled cultures which indicated an apparent increase in the hydrodynamic size of the cell fraction heparan sulfate proteoglycan (HS PG). Myotubes incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate 3 times higher than myoblasts. The turnover rate of HS in the cellular fraction was the same for myoblasts and myotubes, with a t/sub 1/2/ of approximately 5 hours. Fibroblasts in culture synthesized the smallest HS PG, and incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate lower than that of myotubes. Studies in which fusion was reversibly inhibited with decreased medium (Ca/sup + +/) closely linked the increased synthesis of cell fraction, but not SAM fraction, HS with myotube formation. However, decreasing medium calcium appeared to cause significant alterations in the metabolism of inorganic sulfate.

  14. Heparan sulfate in skeletal muscle development

    International Nuclear Information System (INIS)

    In this study, chick breast skeletal muscle cells developing in vitro from myoblasts to myotubes were found to synthesize heparan sulfate (HS), chrondroitin-6-sulfate, chrondroitin-4-sulfate, dermatan sulfate, unsulfated chrondroitin and hyaluronic acid in both the substratum attached material (SAM) and the cellular fraction. SAM was found to contain predominantly chrondroitin-6-sulfate and relatively little HS whereas the cellular fraction contained relatively higher levels of HS and lower levels of chrondroitin-6-sulfate. Hyaluronic acid was also a major component in both fractions with the other glycosaminoglycan isomers present as minor components. Muscle derived fibroblast cultures had higher levels of dermatan sulfate in the cell layer and higher levels of HS in the SAM fraction than did muscle cultures. The structure of the proteoglycans were partially characterized in 35SO42- radio-labeled cultures which indicated an apparent increase in the hydrodynamic size of the cell fraction heparan sulfate proteoglycan (HS PG). Myotubes incorporated 35SO42- into HS PG at a rate 3 times higher than myoblasts. The turnover rate of HS in the cellular fraction was the same for myoblasts and myotubes, with a t/sub 1/2/ of approximately 5 hours. Fibroblasts in culture synthesized the smallest HS PG, and incorporated 35SO42- into HS PG at a rate lower than that of myotubes. Studies in which fusion was reversibly inhibited with decreased medium [Ca++] closely linked the increased synthesis of cell fraction, but not SAM fraction, HS with myotube formation. However, decreasing medium calcium appeared to cause significant alterations in the metabolism of inorganic sulfate

  15. Recrystallization of 223Ra with barium sulfate

    International Nuclear Information System (INIS)

    In this work, the kinetics of barium sulfate recrystallization has been studied in acidic 0.01 mol dm-3 sodium sulfate solution using 223Ra and 133Ba tracers at very low total radium concentration, i.e. less than 10-13 mol dm-3. It was found that the system follows the homogeneous recrystallization model and that recrystallization rates, inferred by the decrease of 223Ra and 133Ba in the aqueous solution, are fast. Therefore, even at very low concentrations, below the solubility limit, radium will be retained by barium sulfate-a mineral present in the deep underground repository. (author)

  16. Novel alkylsulfatases required for biodegradation of the branched primary alkyl sulfate surfactant 2-butyloctyl sulfate.

    Science.gov (United States)

    Ellis, Andrew J; Hales, Stephen G; Ur-Rehman, Naheed G A; White, Graham F

    2002-01-01

    Recent reports show that contrary to common perception, branched alkyl sulfate surfactants are readily biodegradable in standard biodegradability tests. We report here the isolation of bacteria capable of biodegrading 2-butyloctyl sulfate and the identification of novel enzymes that initiate the process. Enrichment culturing from activated sewage sludge yielded several strains capable of growth on 2-butyloctyl sulfate. Of these, two were selected for further study and identified as members of the genus Pseudomonas. Strain AE-A was able to utilize either sodium dodecyl sulfate (SDS) or 2-butyloctyl sulfate as a carbon and energy source for growth, but strain AE-D utilized only the latter. Depending on growth conditions, strain AE-A produced up to three alkylsulfatases, as shown by polyacrylamide gel electrophoresis zymography. Growth on either SDS or 2-butyloctyl sulfate or in nutrient broth produced an apparently constitutive, nonspecific primary alkylsulfatase, AP1, weakly active on SDS and on 2-butyloctyl sulfate. Growth on 2-butyloctyl sulfate produced a second enzyme, AP2, active on 2-butyloctyl sulfate but not on SDS, and growth on SDS produced a third enzyme, AP3, active on SDS but not on 2-butyloctyl sulfate. In contrast, strain AE-D, when grown on 2-butyloctyl sulfate (no growth on SDS), produced a single enzyme, DP1, active on 2-butyloctyl sulfate but not on SDS. DP1 was not produced in broth cultures. DP1 was induced when residual 2-butyloctyl sulfate was present in the growth medium, but the enzyme disappeared when the substrate was exhausted. Gas chromatographic analysis of products of incubating 2-butyloctyl sulfate with DP1 in gels revealed the formation of 2-butyloctanol, showing the enzyme to be a true sulfatase. In contrast, Pseudomonas sp. strain C12B, well known for its ability to degrade linear SDS, was unable to grow on 2-butyloctyl sulfate, and its alkylsulfatases responsible for initiating the degradation of SDS by releasing the parent

  17. Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways

    Directory of Open Access Journals (Sweden)

    Lin Zhou

    2015-11-01

    Full Text Available Osteoporosis, a metabolic bone disease, is characterized by an excessive formation and activation of osteoclasts. Anti-catabolic treatment using natural compounds has been proposed as a potential therapeutic strategy against the osteoclast related osteolytic diseases. In this study, the activity of berberine sulfate (an orally available form of berberine on osteoclast differentiation and its underlying molecular mechanisms of action were investigated. Using bone marrow macrophages (BMMs derived osteoclast culture system, we showed that berberine sulfate at the dose of 0.25, 0.5 and 1 μM significantly inhibited the formation of osteoclasts. Notably, berberine sulfate at these doses did not affect the BMM viability. In addition, we observed that berberine sulfate inhibited the expression of osteoclast marker genes, including cathepsin K (Ctsk, nuclear factor of activated T cells cytoplasmic 1 (NFATc1, tartrate resistant acid phosphatase (TRAcP, Acp5 and Vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2. Luciferase reporter gene assay and Western blot analysis further revealed that berberine sulfate inhibits receptor for activation of nuclear factor ligand (RANKL-induced NF-κB and NFAT activity. Taken together, our results suggest that berberine sulfate is a natural compound potentially useful for the treatment of osteoporosis.

  18. Self-assembly of the hydrogel polymer chain consisting of chitosan and chondroitin sulphate in the presence of theophylline

    International Nuclear Information System (INIS)

    In this work, polyelectronic complex (PEC) consisting of two polysaccharides were developed. One is chitosan (QT), cationic polymer, produced by the chitin deacetylation and the other is chondroitin sulphate (CS), anionic polymer, extracted from bovine or porcine aorta. The PECs were prepared in the presence of theophylline (TEO) for evaluating the influence of this drug in the polymer chains reorganization, as well as, studying the mechanical properties and release of SC and TEO in aqueous solutions on different pH conditions. By the obtained results, it was observed that the 84QT/15SC/TEO (% in weight) hydrogel is pH responsive because the CS releasing is more effective at pH 8, while the release of the TEO is higher at pH 2. The hydrogel showed mechanical properties more resistant to pH 2, 8 and 10 and this was attributed to interactions between the polymer chains. Finally, the X-rays profile showed the presence of peaks associated to reorganization of the chains in the hydrogel is at times larger than the hydrogel in the absence of solute. (author)

  19. ROE Wet Sulfate Deposition 2009-2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2009 to 2011. Summary data in this indicator were provided by EPA’s...

  20. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  1. Potassium aquaterbium(III oxalate sulfate

    Directory of Open Access Journals (Sweden)

    Ya-Guang Sun

    2009-07-01

    Full Text Available Single crystals of KTb(C2O4(SO4(H2O, potassium aquaterbium(III oxalate sulfate, were obtained under hydrothermal conditions. In the crystal structure, the Tb(III atom is coordinated by four O atoms from two oxalate anions, three O atoms from three sulfate anions and one O atom from a water molecule within a TbO8 distorted square antiprismatic coordination. The potassium and terbium(III atoms are bridged by the oxalate and sulfate groups, forming a three-dimensional structure. The coordination mode of the oxalate has not yet been reported. O—H...O hydrogen bonding between the water molecules and the oxygen atoms of oxalate and sulfate anions is also observed.

  2. 2-O Heparan Sulfate Sulfation by Hs2st Is Required for Erk/Mapk Signalling Activation at the Mid-Gestational Mouse Telencephalic Midline.

    Directory of Open Access Journals (Sweden)

    Wai Kit Chan

    Full Text Available Heparan sulfate (HS is a linear carbohydrate composed of polymerized uronate-glucosamine disaccharide units that decorates cell surface and secreted glycoproteins in the extracellular matrix. In mammals HS is subjected to differential sulfation by fifteen different heparan sulfotransferase (HST enzymes of which Hs2st uniquely catalyzes the sulfation of the 2-O position of the uronate in HS. HS sulfation is postulated to be important for regulation of signaling pathways by facilitating the interaction of HS with signaling proteins including those of the Fibroblast Growth Factor (Fgf family which signal through phosphorylation of extracellular signal-regulated kinases Erk1/2. In the developing mouse telencephalon Fgf2 signaling regulates proliferation and neurogenesis. Loss of Hs2st function phenocopies the thinned cerebral cortex of mutant mice in which Fgf2 or Erk1/2 function are abrogated, suggesting the hypothesis that 2-O-sulfated HS structures play a specific role in Fgf2/Erk signaling pathway in this context in vivo. This study investigated the molecular role of 2-O sulfation in Fgf2/Erk signaling in the developing telencephalic midline midway through mouse embryogenesis at E12.5. We examined the expression of Hs2st, Fgf2, and Erk1/2 activity in wild-type and Hs2st-/- mice. We found that Hs2st is expressed at high levels at the midline correlating with high levels of Erk1/2 activation and Erk1/2 activation was drastically reduced in the Hs2st-/- mutant at the rostral telencephalic midline. We also found that 2-O sulfation is specifically required for the binding of Fgf2 protein to Fgfr1, its major cell-surface receptor at the rostral telencephalic midline. We conclude that 2-O sulfated HS structures generated by Hs2st are needed to form productive signaling complexes between HS, Fgf2 and Fgfr1 that activate Erk1/2 at the midline. Overall, our data suggest the interesting possibility that differential expression of Hs2st targets the rostral

  3. Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers

    Energy Technology Data Exchange (ETDEWEB)

    Miletto, M.; Williams, K.H.; N' Guessan, A.L.; Lovley, D.R.

    2011-04-01

    Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations, and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to

  4. Chlorophenol Degradation Coupled to Sulfate Reduction

    OpenAIRE

    Häggblom, M M; Young, L. Y.

    1991-01-01

    We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO2. Forma...

  5. Heparan Sulfate Dependent Mechanisms of Amyloidosis

    OpenAIRE

    Noborn, Fredrik

    2012-01-01

    A common theme in amyloid disorders is the deposition of disease-specific protein aggregates in tissues. Amyloid proteins bind to heparan sulfate (HS), a sulfated glycosaminoglycan, and HS has been found to promote the aggregation process. The present work relates to HS mediated mechanisms of amyloidosis, particularly transthyretin (TTR) amyloidosis, AA-amyloidosis and Alzheimer’s disease (AD). TTR is a transport protein present in the blood and cerebrospinal fluid, which under unclear circum...

  6. Enterovirus 71 Uses Cell Surface Heparan Sulfate Glycosaminoglycan as an Attachment Receptor

    Science.gov (United States)

    Tan, Chee Wah; Poh, Chit Laa; Sam, I-Ching

    2013-01-01

    Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor. PMID:23097443

  7. Hormonal control of sulfate uptake and assimilation.

    Science.gov (United States)

    Koprivova, Anna; Kopriva, Stanislav

    2016-08-01

    Plant hormones have a plethora of functions in control of plant development, stress response, and primary metabolism, including nutrient homeostasis. In the plant nutrition, the interplay of hormones with responses to nitrate and phosphate deficiency is well described, but relatively little is known about the interaction between phytohormones and regulation of sulfur metabolism. As for other nutrients, sulfate deficiency results in modulation of root architecture, where hormones are expected to play an important role. Accordingly, sulfate deficiency induces genes involved in metabolism of tryptophane and auxin. Also jasmonate biosynthesis is induced, pointing to the need of increase the defense capabilities of the plants when sulfur is limiting. However, hormones affect also sulfate uptake and assimilation. The pathway is coordinately induced by jasmonate and the key enzyme, adenosine 5'-phosphosulfate reductase, is additionally regulated by ethylene, abscisic acid, nitric oxid, and other phytohormones. Perhaps the most intriguing link between hormones and sulfate assimilation is the fact that the main regulator of the response to sulfate starvation, SULFATE LIMITATION1 (SLIM1) belongs to the family of ethylene related transcription factors. We will review the current knowledge of interplay between phytohormones and control of sulfur metabolism and discuss the main open questions. PMID:26810064

  8. Divergent Synthesis of Heparan Sulfate Oligosaccharides.

    Science.gov (United States)

    Dulaney, Steven B; Xu, Yongmei; Wang, Peng; Tiruchinapally, Gopinath; Wang, Zhen; Kathawa, Jolian; El-Dakdouki, Mohammad H; Yang, Bo; Liu, Jian; Huang, Xuefei

    2015-12-18

    Heparan sulfates are implicated in a wide range of biological processes. A major challenge in deciphering their structure and activity relationship is the synthetic difficulties to access diverse heparan sulfate oligosaccharides with well-defined sulfation patterns. In order to expedite the synthesis, a divergent synthetic strategy was developed. By integrating chemical synthesis and two types of O-sulfo transferases, seven different hexasaccharides were obtained from a single hexasaccharide precursor. This approach combined the flexibility of chemical synthesis with the selectivity of enzyme-catalyzed sulfations, thus simplifying the overall synthetic operations. In an attempt to establish structure activity relationships of heparan sulfate binding with its receptor, the synthesized oligosaccharides were incorporated onto a glycan microarray, and their bindings with a growth factor FGF-2 were examined. The unique combination of chemical and enzymatic approaches expanded the capability of oligosaccharide synthesis. In addition, the well-defined heparan sulfate structures helped shine light on the fine substrate specificities of biosynthetic enzymes and confirm the potential sequence of enzymatic reactions in biosynthesis. PMID:26574650

  9. Changes in composition and sulfation patterns of glycoaminoglycans in renal cell carcinoma.

    Science.gov (United States)

    Ucakturk, Ebru; Akman, Orkun; Sun, Xiaojun; Baydar, Dilek Ertoy; Dolgun, Anil; Zhang, Fuming; Linhardt, Robert J

    2016-02-01

    Glycosaminoglycans (GAGs) are heterogeneous, linear, highly charged, anionic polysaccharides consisting of repeating disaccharides units. GAGs have some biological significance in cancer progression (invasion and metastasis) and cell signaling. In different cancer types, GAGs undergo specific structural changes. In the present study, in depth investigation of changes in sulfation pattern and composition of GAGs, heparan sulfate (HS)/heparin (HP), chondroitin sulfate (CS)/dermatan sulfate and hyaluronan (HA) in normal renal tissue (NRT) and renal cell carcinoma tissue (RCCT) were evaluated. The statistical evaluation showed that alteration of the HS (HSNRT = 415.1 ± 115.3; HSRCCT = 277.5 ± 134.3), and CS (CSNRT = 35.3 ± 12.3; CSRCCT = 166.7 ± 108.8) amounts (in ng/mg dry tissue) were statistically significant (p Sulfation pattern in NRT and RCCT was evaluated to reveal disaccharide profiles. Statistical analyses showed that RCCT samples contain significantly increased amounts (in units of ng/mg dry tissue) of 4SCS (NRT = 25.7 ± 9.4; RCCT = 117.1 ± 73.9), SECS (NRT = 0.7 ± 0.3; RCCT = 4.7 ± 4.5), 6SCS (NRT = 6.1 ± 2.7; RCCT = 39.4 ± 34.7) and significantly decreased amounts (in units of ng/mg dry tissue) of NS6SHS (RCCT = 28.6 ± 6.5, RCCT = 10.2 ± 8.0), NS2SHS (RCCT = 44.2 ± 13.8; RCCT = 27.2 ± 15.0), NSHS (NRT = 68.4 ± 15.8; RCCT = 50.4 ± 21.2), 2S6SHS (NRT = 1.0 ± 0.4; RCCT = 0.4 ± 0.3), and 6SHS (NRT = 60.6 ± 17.5; RCCT = 24.9 ± 12.3). If these changes in GAGs are proven to be specific and sensitive, they may serve as potential biomarkers in RCC. Our findings are likely to help us to show the direction for further investigations to be able to bring different diagnostic and prognostic approaches in renal tumors. PMID:26662466

  10. Altered synaptic marker abundance in the hippocampal stratum oriens of Ts65Dn mice is associated with exuberant expression of versican

    Directory of Open Access Journals (Sweden)

    Paul E Gottschall

    2012-02-01

    Full Text Available DS (Down syndrome, resulting from trisomy of chromosome 21, is the most common cause of genetic mental retardation; however, the molecular mechanisms underlying the cognitive deficits are poorly understood. Growing data indicate that changes in abundance or type of CSPGs (chondroitin sulfate proteoglycans in the ECM (extracellular matrix can influence synaptic structure and plasticity. The purpose of this study was to identify changes in synaptic structure in the hippocampus in a model of DS, the Ts65Dn mouse, and to determine the relationship to proteoglycan abundance and/or cleavage and cognitive disability. We measured synaptic proteins by ELISA and changes in lectican expression and processing in the hippocampus of young and old Ts65Dn mice and LMCs (littermate controls. In young (5 months old Ts65Dn hippocampal extracts, we found a significant increase in the postsynaptic protein PSD-95 (postsynaptic density 95 compared with LMCs. In aged (20 months old Ts65Dn hippocampus, this increase was localized to hippocampal stratum oriens extracts compared with LMCs. Aged Ts65Dn mice exhibited impaired hippocampal-dependent spatial learning and memory in the RAWM (radial-arm water maze and a marked increase in levels of the lectican versican V2 in stratum oriens that correlated with the number of errors made in the final RAWM block. Ts65Dn stratum oriens PNNs (perineuronal nets, an extension of the ECM enveloping mostly inhibitory interneurons, were dispersed over a larger area compared with LMC mice. Taken together, these data suggest a possible association with alterations in the ECM and inhibitory neurotransmission in the Ts65Dn hippocampus which could contribute to cognitive deficits.

  11. Temperature dependence of crystals conductivity both potassium sulfates and ammonium sulfates

    International Nuclear Information System (INIS)

    In the work the results of temperature dependence of conductivity of crystals both potassium sulfate and ammonium sulfate are given. The superficial specific conductivity and its dependence on width of a backlash between the central and ring electrodes are determined. (author)

  12. Solubility in aqueous system of potassium sulfate, cadmium sulfate at 50 deg C

    International Nuclear Information System (INIS)

    Solubility in system potassium sulfate-cadmium sulfate-water at 50 deg C is studied using isothermal method. Crystallization limits of K2SO4, CdSO4x8/3H2O double salt 2K2SO4x2CdSO4x3H2O at 50 deg C are determined

  13. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Science.gov (United States)

    2010-04-01

    ... ophthalmic solution. 524.1484e Section 524.1484e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution....

  14. Sanfilippo disease type D: deficiency of N-acetylglucosamine-6-sulfate sulfatase required for heparan sulfate degradation.

    OpenAIRE

    Kresse, H.; Paschke, E; von Figura, K; Gilberg, W; Fuchs, W

    1980-01-01

    Skin fibroblasts from two patients who had symptoms of the Sanfilippo syndrome (mucopolysaccharidosis III) accumulated excessive amounts of heparan sulfate and were unable to release sulfate from N-acetylglucosamine-6-sulfate linkages in heparan sulfate-derived oligosaccharides. Keratan sulfate-derived oligosaccharides bearing the same residue at the nonreducing end and p-nitrophenyl-6-sulfo-2-acetamido-2-deoxy-beta-D-glucopyranoside were degraded normally. Kinetic differences between th sulf...

  15. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms

    DEFF Research Database (Denmark)

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R;

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community...

  16. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  17. 2-Amino­pyrimidinium hydrogen sulfate

    OpenAIRE

    Elboulali, Adel; Akriche, Samah Toumi; Salem S. Al-Deyab; Rzaigui, Mohamed

    2011-01-01

    In the crystal structure of the title compound, C4H6N3 +·HSO4 −, hydrogen sulfate anions self-assemble through O—H⋯O hydrogen bonds, forming chains along the b axis, while the cations form centrosymmetric pairs via N—H⋯N hydrogen bonds. The 2-amino­pyrimidinium pairs are linked to the sulfate anions via N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (10 ). In addition, weak inter­molecular C—H⋯O contacts generate a three-dimensional network.

  18. On the evaporation of ammonium sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  19. Ablation of keratan sulfate accelerates early phase pathogenesis of ALS.

    Directory of Open Access Journals (Sweden)

    Kenichi Hirano

    Full Text Available Biopolymers consist of three major classes, i.e., polynucleotides (DNA, RNA, polypeptides (proteins and polysaccharides (sugar chains. It is widely accepted that polynucleotides and polypeptides play fundamental roles in the pathogenesis of neurodegenerative diseases. But, sugar chains have been poorly studied in this process, and their biological/clinical significance remains largely unexplored. Amyotrophic lateral sclerosis (ALS is a motoneuron-degenerative disease, the pathogenesis of which requires both cell autonomous and non-cell autonomous processes. Here, we investigated the role of keratan sulfate (KS, a sulfated long sugar chain of proteoglycan, in ALS pathogenesis. We employed ALS model SOD1(G93A mice and GlcNAc6ST-1(-/- mice, which are KS-deficient in the central nervous system. Unexpectedly, SOD1(G93AGlcNAc6ST-1(-/- mice exhibited a significantly shorter lifespan than SOD1(G93A mice and an accelerated appearance of clinical symptoms (body weight loss and decreased rotarod performance. KS expression was induced exclusively in a subpopulation of microglia in SOD1(G93A mice, and became detectable around motoneurons in the ventral horn during the early disease phase before body weight loss. During this phase, the expression of M2 microglia markers was transiently enhanced in SOD1(G93A mice, while this enhancement was attenuated in SOD1(G93AGlcNAc6ST-1(-/- mice. Consistent with this, M2 microglia were markedly less during the early disease phase in SOD1(G93AGlcNAc6ST-1(-/- mice. Moreover, KS expression in microglia was also detected in some human ALS cases. This study suggests that KS plays an indispensable, suppressive role in the early phase pathogenesis of ALS and may represent a new target for therapeutic intervention.

  20. Involvement of heparan sulfate 6-O-sulfation in the regulation of energy metabolism and the alteration of thyroid hormone levels in male mice.

    Science.gov (United States)

    Nagai, Naoko; Habuchi, Hiroko; Sugaya, Noriko; Nakamura, Masao; Imamura, Toru; Watanabe, Hideto; Kimata, Koji

    2013-08-01

    Here, we report that male heparan sulfate 6-O-sulfotransferase-2 (Hs6st2) knockout mice showed increased body weight in an age-dependent manner even when fed with a normal diet and showed a phenotype of impaired glucose metabolism and insulin resistance. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that the expression of mitochondrial uncoupling proteins Ucp1 and Ucp3 was reduced in the interscapular brown adipose tissue (BAT) of male Hs6st2 knockout mice, suggesting reduced energy metabolism. The serum level of thyroid-stimulating hormone was significantly higher and that of thyroxine was lower in the knockout mice. When cultures of brown adipocytes from wild-type and Hs6st2 knockout mice isolated and differentiated in vitro were treated with FGF19 (fibroblast growth factor 19) or FGF21 in the presence or the absence of heparitinase I, phosphorylation of p42/p44 mitogen-activated protein (MAP) kinase was reduced. Heparan sulfate (HS) 6-O-sulfation was reduced not only in BAT but also in the thyroid tissue of the knockout mice. Thus, 6-O-sulfation in HS seems to play an important role in mediating energy metabolism by controlling thyroid hormone levels and signals from the FGF19 subfamily proteins, and the alteration of the HS composition may result in metabolic syndrome phenotypes such as altered glucose and insulin tolerance. PMID:23690091

  1. Changes in tight junction protein expression and permeability of colon mucosa in rats with dextran sulfate sodium-induced inflammatory bowel disease%葡聚糖硫酸钠诱导炎症性肠病大鼠结肠黏膜紧密连接蛋白表达及其通透性的改变

    Institute of Scientific and Technical Information of China (English)

    饶艳霞; 陈洁; 陈蕾蕾; 顾伟忠; 舒小莉

    2012-01-01

    Objective To develop an experimental rat model of inflammatory bowel disease (IBD) by administration of dextran sulfate sodium (DSS) , and to observe changes in the tight junction protein expression and permeability of colon mucosa. Methods Male Sprague-Dawley (SD) rats were randomly divided into control (n=27) and IBD model groups (n =27). In the IBD model group, IBD was induced by 6-day administration of 3% DSS in water followed by 14-day administration of water only. The control group was fed with water only. Pathological changes in colon mucosae were observed on days 7, 14 and 21 after DSS administration. Colon tissue specimens were collected on day 21 for measuring myeloperoxidase (MPO) activity. The transepithelial electric resistance (TEER) , transepithefial potential difference (TEPD) and short circuit current (isc) of tne specimens were measured by Ussing chamber. Real-time PCR and Western blot were used to measure the mRNA and protein expression of tight junction proteins in colon epithelia. Results In the IBD model group, diarrhea, hernafecia and weight loss were seen. Inflammation occurred mainly in the distal colon and was characterized by crypt abscess and inflammatory cell infiltration. The IBD model group showed significantly increased MPO activity (P < 0. 01) , significandy decreased TEER (P <0.01) and TEPD (F<0.01), and significantly increased Isc (P<0.01) compared with the control group. No claudin 2 expression of mRNA and protein was detected in the control group, and they were expressed in the IBD model group. The expression levels of claudin 3, occludin and ZO-1 in the IBD model group were significantly decreased, compared with in the control group (P < 0. 01 ). Conclusions IBD rats show colonic barrier dysfunction and changes in the expression of tight junctionproteins. The changes in the expression of tight junction proteins may contribute to colonic barrier dysfunction in cases of IBD in the chronic recovery stage.%目的 建立葡聚糖

  2. Intravenous magnesium sulfate therapy in severe asthma

    Directory of Open Access Journals (Sweden)

    Mohd. Al-Ajmi

    2007-01-01

    Full Text Available A 22-year-old female, known asthmatic since seven years, developed severe bronchospasm in the preop-erative period. Bronchospasm remained unresponsive to the inhaled beta-agonist plus anticholinergic, IV ami-nophylline and hydrocortisone but responded quickly with magnesium sulfate® ( PSI, KSA infusion 1.25gm in 100ml normal saline over 20 minutes and another 1.25 gm over next 30 minutes as the initial infusion showed improvement in her clinical symptoms. Within half an hour of administering the 1st infusion of magnesium sulfate (1.25 gm the respiratory rate started reducing, rhonchi became less, SpO 2 came upto 92% and re-mained always above 90%. Encouraged by this result IV magnesium sulfate 2.5 gm in 500 ml normal saline was infused over next 24 hours along with alternate salbutamol and ipratropium nebulization every 6 hourly. With this treatment regimen the patient became asymptomatic within next 24 hours with normal clinical parameters and FEV 1 value. Hence it may be concluded that IV magnesium sulfate can be considered for patients with acute severe asthma who do not respond to standard therapeutic medications.

  3. Synthesis and Characterization of Nanostructured Sulfated Zirconias

    Czech Academy of Sciences Publication Activity Database

    Lutecki, M.; Šolcová, Olga; Werner, S.; Breitkopf, C.

    2010-01-01

    Roč. 53, č. 1 (2010), s. 13-20. ISSN 0928-0707 Grant ostatní: DFG(DE) BR2068/2-1; DFG(DE) BR2068/2-2 Institutional research plan: CEZ:AV0Z40720504 Keywords : sulfated zirconia * template assisted synthesis * porous materials Subject RIV: CA - Inorganic Chemistry Impact factor: 1.525, year: 2010

  4. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  5. Sulfate reduction and methanogenesis at a freshwater

    DEFF Research Database (Denmark)

    Iversen, Vibeke Margrethe Nyvang; Andersen, Martin Søgaard; Jakobsen, Rasmus

    enriched in dissolved sulfide, methane and bicarbonate. Under normal conditions the seawater-freshwater interface is found at a depth of 4 m at the coastline and reaches the bottom of the aquifer 40 m inland. However, occasional flooding of the area occurs, introducing sulfate to the aquifer. Groundwater...

  6. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF-4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF-4-MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF4. To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed

  7. 21 CFR 184.1143 - Ammonium sulfate.

    Science.gov (United States)

    2010-04-01

    ... the specifications of the “Food Chemicals Codex,” 3d Ed. (1981), pp. 22-23, which is incorporated by... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium sulfate. 184.1143 Section 184.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  8. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... hydroxide or potassium carbonate. (b) The ingredient meets the specifications of the “Food Chemicals Codex... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  9. Multiplicity of Sulfate and Molybdate Transporters and Their Role in Nitrogen Fixation in Rhizobium leguminosarum bv. viciae Rlv3841.

    Science.gov (United States)

    Cheng, Guojun; Karunakaran, Ramakrishnan; East, Alison K; Poole, Philip S

    2016-02-01

    Rhizobium leguminosarum Rlv3841 contains at least three sulfate transporters, i.e., SulABCD, SulP1 and SulP2, and a single molybdate transporter, ModABC. SulABCD is a high-affinity transporter whose mutation prevented growth on a limiting sulfate concentration, while SulP1 and SulP2 appear to be low-affinity sulfate transporters. ModABC is the sole high-affinity molybdate transport system and is essential for growth with NO3(-) as a nitrogen source on limiting levels of molybdate (<0.25 μM). However, at 2.5 μM molybdate, a quadruple mutant with all four transporters inactivated, had the longest lag phase on NO3(-), suggesting these systems all make some contribution to molybdate transport. Growth of Rlv3841 on limiting levels of sulfate increased sulB, sulP1, modB, and sulP2 expression 313.3-, 114.7-, 6.2-, and 4.0-fold, respectively, while molybdate starvation increased only modB expression (three- to 7.5-fold). When grown in high-sulfate but not low-sulfate medium, pea plants inoculated with LMB695 (modB) reduced acetylene at only 14% of the wild-type rate, and this was not further reduced in the quadruple mutant. Overall, while modB is crucial to nitrogen fixation at limiting molybdate levels in the presence of sulfate, there is an unidentified molybdate transporter also capable of sulfate transport. PMID:26812045

  10. Bioinformatic Analysis of the Human Recombinant Iduronate 2-Sulfate Sulfatase

    Science.gov (United States)

    Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Landázuri, Patricia; Poutou-Piñales, Raúl A.; Pedroza-Rodríguez, Aura M.

    2016-01-01

    Mucopolysaccharidosis type II is a human recessive disease linked to the X chromosome caused by deficiency of lysosomal enzyme Iduronate 2-Sulfate Sulfatase (IDS), which leads to accumulation of glycosaminoglycans in tissues and organs. The human enzyme has been expressed in Escherichia coli and Pichia pastoris in attempt to develop more successful expression systems that allow the production of recombinant IDS for Enzyme Replacement Therapy (ERT). However, the preservation of native signal peptide in the sequence has caused conflicts in processing and recognition in the past, which led to problems in expression and enzyme activity. With the main object being the improvement of the expression system, we eliminate the native signal peptide of human recombinant IDS. The resulting sequence showed two modified codons, thus, our study aimed to analyze computationally the nucleotide sequence of the IDSnh without signal peptide in order to determine the 3D structure and other biochemical properties to compare them with the native human IDS (IDSnh). Results showed that there are no significant differences between both molecules in spite of the two-codon modifications detected in the recombinant DNA sequence. PMID:27335624

  11. Perlecan Heparan Sulfate Is Required for the Inhibition of Smooth Muscle Cell Proliferation by All-trans-Retinoic Acid.

    Science.gov (United States)

    Tran-Lundmark, Karin; Tannenberg, Philip; Rauch, Bernhard H; Ekstrand, Johan; Tran, Phan-Kiet; Hedin, Ulf; Kinsella, Michael G

    2015-02-01

    Smooth muscle cell (SMC) proliferation is a key process in stabilization of atherosclerotic plaques, and during restenosis after interventions. A clearer understanding of SMC growth regulation is therefore needed to design specific anti-proliferative therapies. Retinoic acid has been shown to inhibit proliferation of SMCs both in vitro and in vivo and to affect the expression of extracellular matrix molecules. To explore the mechanisms behind the growth inhibitory activity of retinoic acid, we hypothesized that retinoids may induce the expression of perlecan, a large heparan sulfate proteoglycan with anti-proliferative properties. Perlecan expression and accumulation was induced in murine SMC cultures by all-trans-retinoic acid (AtRA). Moreover, the growth inhibitory effect of AtRA on wild-type cells was greatly diminished in SMCs from transgenic mice expressing heparan sulfate-deficient perlecan, indicating that the inhibition is perlecan heparan sulfate-dependent. In addition, AtRA influenced activation and phosphorylation of PTEN and Akt differently in wild-type and mutant SMCs, consistent with previous studies of perlecan-dependent SMC growth inhibition. We demonstrate that AtRA regulates perlecan expression in SMCs and that the inhibition of SMC proliferation by AtRA is, at least in part, secondary to an increased expression of perlecan and dependent upon its heparan sulfate-chains. PMID:25078760

  12. Are changes in sulfate assimilation pathway needed for evolution of C4 photosynthesis?

    Directory of Open Access Journals (Sweden)

    Silke Christine Weckopp

    2015-01-01

    Full Text Available C4 photosynthesis characteristically features a cell-specific localization of enzymes involved in CO2 assimilation in bundle sheath cells or mesophyll cells. Interestingly, enzymes of sulfur assimilation are also specifically present in bundle sheath cells of maize and many other C4 species. This localization, however, could not be confirmed in C4 species of the genus Flaveria. It was, therefore, concluded that the bundle sheath localization of sulfate assimilation occurs only in C4 monocots. However, recently the sulfate assimilation pathway was found coordinately enriched in bundle sheath cells of Arabidopsis, opening new questions about the significance of such cell-specific localization of the pathway. In addition, next generation sequencing revealed expression gradients of many genes from C3 to C4 species and mathematical modelling proposed a sequence of adaptations during the evolutionary path from C3 to C4. Indeed, such gradient, with higher expression of genes for sulfate reduction in C4 species, has been observed within the genus Flaveria. These new tools provide the basis for reexamining the intriguing question of compartmentalization of sulfur assimilation. Therefore, this review summarizes the findings on spatial separation of sulfur assimilation in C4 plants and Arabidopsis, assesses the information on sulfur assimilation provided by the recent transcriptomics data and discusses their possible impact on understanding this interesting feature of plant sulfur metabolism to find out whether changes in sulfate assimilation are part of a general evolutionary trajectory towards C4 photosynthesis.

  13. NG2 cells response to axonal alteration in the spinal cord white matter in mice with genetic disruption of neurofilament light subunit expression

    OpenAIRE

    Xiao Zhi; Tang Ya; Wu Ya; Bao Zhen; He Bei

    2008-01-01

    Abstract Background Chondroitin sulphate proteoglycan (NG2) expressing cells, morphologically characterized by multi-branched processes and small cell bodies, are the 4th commonest cell population of non-neuronal cell type in the central nervous system (CNS). They can interact with nodes of Ranvier, receive synaptic input, generate action potential and respond to some pathological stimuli, but the function of the cells is still unclear. We assumed the NG2 cells may play an active role in neur...

  14. 21 CFR 582.1131 - Aluminum sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sodium sulfate. 582.1131 Section 582.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  15. 21 CFR 182.1131 - Aluminum sodium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sodium sulfate. 182.1131 Section 182.1131 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1131 Aluminum sodium sulfate. (a) Product. Aluminum sodium sulfate. (b) Conditions of...

  16. Water absorbance and thermal properties of sulfated wheat gluten films

    Science.gov (United States)

    Wheat gluten films of varying thicknesses formed at 30C to 70C were treated with cold sulfuric acid to produce sulfated gluten films. Chemical, thermal, thermal stability, and water uptake properties were characterized for neat and sulfated films. The sulfated gluten films were able ...

  17. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  18. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  19. 21 CFR 524.155 - Bacitracin zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate...

    Science.gov (United States)

    2010-04-01

    ... sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment. 524.155 Section 524.155 Food and... zinc-polymyxin B sulfate-neomycin sulfate-hydrocortisone or hydrocortisone acetate ophthalmic ointment... 10 milligrams of hydrocortisone acetate. (b) Conditions of use. Dogs and cats—(1) Amount. Apply...

  20. Utilization of sulfate additives in biomass combustion: fundamental and modeling aspects

    OpenAIRE

    Wu, Hao; Jespersen, Jacob Boll; Grell, Morten Nedergaard; Aho, Martti; Jappe Frandsen, Flemming; Glarborg, Peter

    2013-01-01

    Sulfates, such as ammonium sulfate, aluminum sulfate and ferric sulfate, are effective additives for converting the alkali chlorides released from biomass combustion to the less harmful alkali sulfates. Optimization of the use of these additives requires knowledge on their decomposition rate and product distribution under high temperature conditions. In the present work, the decomposition of ammonium sulfate, aluminum sulfate and ferric sulfate wasstudied respectively in a fast-heating rate t...

  1. Sulfate resistance of high calcium fly ash concrete

    Science.gov (United States)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  2. Characterization of the N-deacetylase domain from the heparan sulfate N-deacetylase/N-sulfotransferase 2

    International Nuclear Information System (INIS)

    Heparin and heparan sulfate are linear sulfated polysaccharides that exert a multitude of biological functions. Heparan sulfate glucosaminyl N-deacetylase/N-sulfotransferase isoform 2 (NDST-2), a key enzyme in the biosynthesis of heparin, contains two distinct activities. This bifunctional enzyme removes the acetyl group from N-acetylated glucosamine (N-deacetylase activity) and transfers a sulfuryl group to the unsubstituted amino position (N-sulfotransferase activity). The N-sulfotransferase activity of NDST has been unambiguously localized to the C-terminal domain of NDST. Here, we report that the N-terminal domain of NDST-2 retains N-deacetylase activity. The N-terminal domain (A66-P604) of human NDST-2, designated as N-deacetylase (NDase), was cloned as a (His)6-fusion protein, and protein expression was carried out in Escherichia coli. Heparosan treated with NDase contains N-unsubstituted glucosamine and is highly susceptible to N-sulfation by N-sulfotransferase. Our results conclude that the N-terminal domain of NDST-2 contains functional N-deacetylase activity. This finding helps further elucidate the mechanism of action of heparan sulfate N-deacetylase/N-sulfotransferases and the biosynthesis of heparan sulfate in general

  3. Sulfation of chlorotyrosine and nitrotyrosine by human lung endothelial and epithelial cells: Role of the human SULT1A3

    International Nuclear Information System (INIS)

    During inflammation, potent reactive oxidants formed may cause chlorination and nitration of both free and protein-bound tyrosine. In addition to serving as biomarkers of inflammation-mediated oxidative stress, elevated levels of chlorotyrosine and nitrotyrosine have been linked to the pathogenesis of lung and vascular disorders. The current study was designed to investigate whether the lung cells are equipped with mechanisms for counteracting these tyrosine derivatives. By metabolic labeling, chlorotyrosine O-[35S]sulfate and nitrotyrosine O-[35S]sulfate were found to be generated and released into the labeling media of human lung endothelial and epithelial cells labeled with [35S]sulfate in the presence of added chlorotyrosine and nitrotyrosine. Enzymatic assays using the eleven known human cytosolic sulfotransferases (SULTs) revealed SULT1A3 as the enzyme responsible for catalyzing the sulfation of chlorotyrosine and nitrotyrosine. Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated the expression of SULT1A3 in the lung endothelial and epithelial cells used in this study. Kinetic constants of the sulfation of chlorotyrosine and nitrotyrosine by SULT1A3 were determined. Collectively, these results suggest that sulfation by SULT1A3 in lung endothelial and epithelial cells may play a role in the inactivation and/or disposal of excess chlorotyrosine and nitrotyrosine generated during inflammation.

  4. ELECTRON DETACHMENT DISSOCIATION OF DERMATAN SULFATE OLIGOSACCHARIDES

    OpenAIRE

    Wolff, Jeremy J.; Laremore, Tatiana N.; BUSCH, ALEXANDER M.; Linhardt, Robert J.; Amster, I. Jonathan

    2007-01-01

    The structural characterization of glycosaminoglycans (GAG) oligosaccharides has been a longstanding challenge in the field of mass spectrometry. In this work, we present the application of electron detachment dissociation (EDD) Fourier transform mass spectrometry to the analysis of dermatan sulfate (DS) oligosaccharides up to 10 residues in length. The EDD mass spectra of DS oligosaccharides were compared to their infrared multiphoton dissociation (IRMPD) mass spectra. EDD produces more abun...

  5. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    Science.gov (United States)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  6. Structure and anticoagulant properties of sulfated glycosaminoglycans from primitive Chordates

    Directory of Open Access Journals (Sweden)

    PAVÃO MAURO S. G.

    2002-01-01

    Full Text Available Dermatan sulfates and heparin, similar to the mammalian glycosaminoglycans, but with differences in the degree and position of sulfation were previously isolated from the body of the ascidian Styela plicata and Ascidia nigra. These differences produce profound effects on their anticoagulant properties. S. plicata dermatan sulfate composed by 2-O-sulfatedalpha-L-iduronic acid and 4-O-sulfated N-acetyl-beta-D-galactosamine residues is a potent anticoagulant due to a high heparin cofactor II activity. Surprisingly, it has a lower potency to prevent thrombus formation on an experimental model and a lower bleeding effect in rats than the mammalian dermatan sulfate. In contrast, A. nigra dermatan sulfate, also enriched in 2-O-sulfated alpha-L-iduronic acid, but in this case sulfated at O-6 of the N-acetyl-beta-D-galactosamine units, has no in vitro or in vivo anticoagulant activity, does not prevent thrombus formation but shows a bleeding effect similar to the mammalian glycosaminoglycan. Ascidian heparin, composed by 2-O-sulfated alpha-L-iduronic acid, N- and 6-O-sulfated glucosamine (75% and alpha-L-iduronic acid, N- and 6-O-sulfated glucosamine (25% disaccharide units has an anticoagulant activity 10 times lower than the mammalian heparin, is about 20 times less potent in the inhibition of thrombin by antithrombin, but has the same heparin cofactor II activity as mammalian heparin.

  7. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...

  8. Concrete Deterioration under Alternate Action of Carbonation and Sulfate Attack

    Directory of Open Access Journals (Sweden)

    Fenglan Li

    2013-11-01

    Full Text Available By micro- and macro-observations, the study reveals the deterioration mechanisms of concrete under alternate action of carbonation and sodium sulfate solution attack (C-SA comparied with the single sodium sulfate solution attack (SA. The studies indicate that in both cases, the main attack product is ettringite, some gypsum is checked only in the first layer of case SA, the thaumasite form of sulfate attack is not initiated in case C-SA. Compared with the single sodium sulfate solution attack, although the carbonation layer mitigates the extent of sulfate attack in limited exposure period, the alternate action of carbonation and sulfate attack still leads to strength degradation to some extent. The effect of carbonation on sulfate attack for longer exposure period deserves further research.

  9. Adsorption of sulfate in PWR steam generators: Laboratory tests

    International Nuclear Information System (INIS)

    Following observation of an apparent difference in the hideout mechanism for sulfate compared to that of other highly soluble species during chemical injection tests at several PWRS, a laboratory test program, discussed in this report was implemented to quantify sulfate adsorption on metal surfaces. Approximately 350 ug/m2 of sulfate could be adsorbed on Alloy 600 from neutral solutions at 300 degree C. Less adsorption was observed at lower temperature as well as at increased pH. The adsorbed sulfate could be desorbed into pure water over a period of several days subsequent to termination of sulfate ingress. Thus, a prompt shutdown to hot standby with maximization of blowdown should minimize the long term impact of sulfate steam generator corrosion subsequent to a period of significant sulfate or cation resin ingress. The only other species which exhibited significant adsorption was phosphate which also has a tetrahedral ionic structure in solution

  10. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments

    DEFF Research Database (Denmark)

    Jørgensen, BB; Weber, A.; Zopfi, J.

    2001-01-01

    Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea sediments from the surface down to the sulfate-methane transition at 2-4 m depth. Sulfate reduction rates were measured experimentally with (SO42-)-S-35, and the...... the process was very sluggish with turnover times of methane within the sulfate-methane transition zone of 20 yr or more. (C) 2001 Elsevier Science Ltd. All rights reserved.Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in...... Black Sea sediments from the surface down to the sulfate-methane transition at 2-4 m depth. Sulfate reduction rates were measured experimentally with (SO42-)-S-35, and the rates were compared with results of two diffusion-reaction models. The results showed that, even in these non-bioirrigated sediments...

  11. Regional transport model of atmospheric sulfates

    International Nuclear Information System (INIS)

    As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO2 and SO4/sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO2 and SO4/sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO2 and SO4/sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants

  12. Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: distributions of sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones

    International Nuclear Information System (INIS)

    The asparagine-linked oligosaccharides on the pituitary glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) consist of a heterogeneous array of neutral, sulfated, sialylated, and sulfated/sialylated structures. In this study, the authors determined the relative quantities of the various asparagine-linked oligosaccharides on LH, FSH, and TSH from these three animal species. The proportions of sulfated versus sialylated oligosaccharides varied markedly among the different hormones. Both hormone- and animal species-specific differences in the types and distributions of sulfated, sialylated, and sulfated/sialylated structures were evident. In particular, LH and FSH, which are synthesized in the same pituitary cell and bear α-subunits with the identical amino acid sequence, contained significantly different distributions of sulfated and sialylated oligosaccharides. For all three animal species, the ratio of sialylated to sulfated oligosaccharides differed by >10-fold for LH and FSH, with sulfated structures dominating on LH and sialylated structures on FSH. Sialylated oligosaccharides were also heterogeneous with respect to sialic acid linkage (α2,3 versus α2,6). The differences in oligosaccharide structures among the various pituitary glycoprotein hormones as well as among the various glycosylation sites within a single hormone support the hypothesis that glycosylation may serve important functional roles in the expression and/or regulation of hormone bioactivity

  13. Endocan in Cancers: A Lesson from a Circulating Dermatan Sulfate Proteoglycan

    OpenAIRE

    Lucie Devenyns; Maryse Delehedde; Claude-Alain Maurage; Romain R. Vivès

    2013-01-01

    As most proteoglycans exert their biological activities in the pericellular region, circulating Endocan has appeared since its discovery as an atypical dermatan sulfate proteoglycan, with distinctive structural and functional properties. Endocan is naturally expressed by endothelial cells, highly regulated in presence of proinflammatory and proangiogenic molecules, binds to matrix proteins, growth factors, integrin, and cells, and may be then considered as an accurate marker of endothelial ac...

  14. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    OpenAIRE

    Zhou, Aifen

    2010-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gen...

  15. Physico-chemical transformations of sulfated compounds during the leaching of highly sulfated cemented wastes

    International Nuclear Information System (INIS)

    Cementation of sulfated evaporator concentrates leads to highly sulfated low level wastes, (ca. 25% w/w sodium sulfate solution as mix water), which exhibit the presence of U-phase, a sodium-bearing calcium monosulfphoaluminate-like phase. During the leaching of simulated highly sulfated OPC/BFS cements, cured at room temperature and containing U-phase, sodium sulfate, and ettringite, physico-chemical transformations have been pointed out (transformation of U-phase into ettringite). Samples having the same chemical composition, but cured at high temperature (maximal temperature during curing: 120 C), do not contain ettringite initially, but secondary ettringite is formed during leaching. XRD spectra point out the existence of precipitation fronts (or of phase formation fronts) varying linearly versus the square root of time. The analysis of leaching solutions has provided complementary data used in a code, the aim of which is to assess cement degradation, based on coupling between transport by diffusion and chemical reactions (DIFFUZON code). The U-phase-ettringite transformation is confirmed

  16. Intravesical glycosaminoglycan replenishment with chondroitin sulphate in chronic forms of cystitis - A multi-national, multi-centre, prospective observational clinical trial

    DEFF Research Database (Denmark)

    Nordling, J.; Ophoven, A. van

    2008-01-01

    significantly (p < 0.0001). Both daytime and nighttime micturition frequencies as well as the score levels of urgency and pain declined significantly during the course of treatment. The functional bladder capacity as indicated by the volume of first morning voiding increased from 157.9 ml +/- 7.5 to 186.7 ml...... +/- 6.9 (mean +/- SE; p < 0.0001). The level of urgency decreased from 6.8 +/- 0.1 to 3.4 +/- 0.2 (mean SE; numerical rating scale (11-point box scale); p < 0.0001) and nocturia decreased from 4.0 +/- 0.2 to 2.1 +/- 0.1 times (mean +/- SE; p < 0.0001). Chondroitin sulphate instillation was effective and...

  17. Synthesis of cellulose nanocrystals carrying tyrosine sulfate mimetic ligands and inhibition of alphavirus infection.

    Science.gov (United States)

    Zoppe, Justin O; Ruottinen, Ville; Ruotsalainen, Janne; Rönkkö, Seppo; Johansson, Leena-Sisko; Hinkkanen, Ari; Järvinen, Kristiina; Seppälä, Jukka

    2014-04-14

    We present two facile approaches for introducing multivalent displays of tyrosine sulfate mimetic ligands on the surface of cellulose nanocrystals (CNCs) for application as viral inhibitors. We tested the efficacy of cellulose nanocrystals, prepared either from cotton fibers or Whatman filter paper, to inhibit alphavirus infectivity in Vero (B) cells. Cellulose nanocrystals were produced by sulfuric acid hydrolysis leading to nanocrystal surfaces decorated with anionic sulfate groups. When the fluorescent marker expressing Semliki Forest virus vector, VA7-EGFP, was incubated with CNCs, strong inhibition of virus infectivity was achieved, up to 100 and 88% for cotton and Whatman CNCs, respectively. When surface sulfate groups of CNCs were exchanged for tyrosine sulfate mimetic groups (i.e. phenyl sulfonates), improved viral inhibition was attained. Our observations suggest that the conjugation of target-specific functionalities to CNC surfaces provides a means to control their antiviral activity. Multivalent CNCs did not cause observable in vitro cytotoxicity to Vero (B) cells or human corneal epithelial (HCE-T) cells, even within the 100% virus-inhibitory concentrations. Based on the similar chemistry of known polyanionic inhibitors, our results suggest the potential application of CNCs as inhibitors of other viruses, such as human immunodeficiency virus (HIV) and herpes simplex viruses. PMID:24628489

  18. Acidification of musts in warm regions with tartaric acid and calcium sulfate at industrial scale

    Directory of Open Access Journals (Sweden)

    Gómez Juan

    2015-01-01

    Full Text Available Acidification of musts is necessary in warm areas where high temperatures during ripening accelerate breathing com- bustion of tartaric acid and, in particular, malic acid in the berries. L(+ tartaric acid, L(- or D,L malic acid and lactic acids are the only chemical acidifiers authorized by the OIV and European Community regulations. The use of calcium sulfate (gypsum: CaSO4·2H2O is also authorized in the European Community as a complementary acidifier in generous and generous liquor 42 wines from Spain (a practice known as plastering, provided that the residual sulfate content in the wine does not exceed 2.5 g/L expressed as potassium sulfate. However, this practice is not yet approved by OIV. To predict the effect on pH of different acidi- fiers, several chemical modeling approaches have been described in the literature, in particular a simplified model where the acidity of wine is considered to be due to a monoprotic acid. The aim of this work is to verify this model at pilot and industrial scale in the acidification of musts with tartaric and calcium sulfate, added either individually and in combination, using doses up to 3 g/L and to study the modifications that these practices produce on the compositions of the resulting wines. This work sup- plies useful information to study this practice in OIV in order to consider its approval.

  19. Heritability and clinical determinants of serum indoxyl sulfate and p-cresyl sulfate, candidate biomarkers of the human microbiome enterotype.

    Directory of Open Access Journals (Sweden)

    Liesbeth Viaene

    Full Text Available BACKGROUND: Indoxyl sulfate and p-cresyl sulfate are unique microbial co-metabolites. Both co-metabolites have been involved in the pathogenesis of accelerated cardiovascular disease and renal disease progression. Available evidence suggests that indoxyl sulfate and p-cresyl sulfate may be considered candidate biomarkers of the human enterotype and may help to explain the link between diet and cardiovascular disease burden. OBJECTIVE AND DESIGN: Information on clinical determinants and heritability of indoxyl sulfate and p-cresyl sulfate serum is non-existing. To clarify this issue, the authors determined serum levels of indoxyl sulfate and p-cresyl sulfate in 773 individuals, recruited in the frame of the Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO study. RESULTS: Serum levels of indoxyl sulfate and p-cresyl sulfate amounted to 3.1 (2.4-4.3 and 13.0 (7.4-21.5 μM, respectively. Regression analysis identified renal function, age and sex as independent determinants of both co-metabolites. Both serum indoxyl sulfate (h2 = 0.17 and p-cresyl sulfate (h2 = 0.18 concentrations showed moderate but significant heritability after adjustment for covariables, with significant genetic and environmental correlations for both co-metabolites. LIMITATIONS: Family studies cannot provide conclusive evidence for a genetic contribution, as confounding by shared environmental effects can never be excluded. CONCLUSIONS: The heritability of indoxyl sulfate and p-cresyl sulfate is moderate. Besides genetic host factors and environmental factors, also renal function, sex and age influence the serum levels of these co-metabolites.

  20. The preparation and antioxidant activity of glucosamine sulfate

    Science.gov (United States)

    Xing, Ronge; Liu, Song; Wang, Lin; Cai, Shengbao; Yu, Huahua; Feng, Jinhua; Li, Pengcheng

    2009-05-01

    Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O{2/-})/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O{2/-} scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.

  1. Discovery of a heparan sulfate 3-O-sulfation specific peeling reaction

    DEFF Research Database (Denmark)

    Huang, Yu; Mao, Yang; Zong, Chengli; Lin, Cheng; Boons, Geert-Jan; Zaia, Joseph

    2015-01-01

    mentioned above. By contrast, multiple distinct isoforms of 3-O-sulfotranserases exist in mammals (up to seven isoenzymes). Here we describe a novel peeling reaction that specifically degrades HS chains with 3-O-sulfated glucosamine at the reducing-end. When HS/heparin is enzymatically depolymerized for...... compositional analysis, 3-O-sulfated glucosamine at the reducing ends appears to be susceptible to degradation under mildly basic conditions. We propose a 3-O-desulfation initiated peeling reaction mechanism based on the intermediate and side-reaction products observed. Our discovery calls for the re...

  2. Sulphation heterogeneity in the trisaccharide (GalNAcSbeta1, 4GlcAbeta1,3GalNAcS) isolated from the non-reducing terminal of human aggrecan chondroitin sulphate.

    Science.gov (United States)

    West, L A; Roughley, P; Nelson, F R; Plaas, A H

    1999-08-15

    We report here the isolation and sulphation isomer analyses of trisaccharides GalNAcS(beta1,4)GlcA(beta1,3)GalNAcS (in which S indicates sulphate) derived from the non-reducing termini of aggrecan chondroitin sulphate. Rat chondrosarcoma and human aggrecans were digested for 1 h at 37 degrees C with 30 micro-units of endo-chondroitinase ABC per microgram of chondroitin sulphate, and trisaccharides were isolated from the digests by ToyoPearl HW40S gel-filtration chromatography. Four trisaccharide species were identified; their sulphation isomer compositions, as determined by digestion with chondroitinase ACII and fluorescence-based ion-exchange HPLC, were GalNAc4Sbeta1,4GlcAbeta1,3GalNAc4S, GalNAc4Sbeta1,4GlcAbeta1,3GalNAc6S, GalNAc4,6Sbeta1,4GlcAbeta1, 3GalNAc4S and GalNAc4,6Sbeta1,4GlcAbeta1,3GalNAc6S. The abundances of such sequences in chondroitin sulphate on aggrecan from normal (foetal to 72 years of age) and from osteoarthritic human knee cartilages were also established. The results showed that non-reducing terminal GalNAc4S or GalNAc4,6S can be linked to either a 4-sulphated or a 6-sulphated disaccharide, suggesting that the sulphation of the last disaccharide might not have a direct effect on the specificity of chondroitin sulphate terminal GalNAc sulphotransferases. Furthermore, for each aggrecan preparation examined, the 4S-to-6S ratio of all chain interior disaccharides was equivalent to that in the last repeating disaccharides at the non-reducing terminus, suggesting that neither chondroitin 4-sulphotransferase nor chondroitin 6-sulphotransferase shows preferential activity near the chain terminus. PMID:10432320

  3. The Influence of Sub-Unit Composition and Expression System on the Functional Antibody Response in the Development of a VAR2CSA Based Plasmodium falciparum Placental Malaria Vaccine

    OpenAIRE

    Nielsen, Morten A.; Mafalda Resende; de Jongh, Willem A.; Ditlev, Sisse B.; Benjamin Mordmüller; Sophie Houard; Nicaise Tuikue Ndam; Mette Ø Agerbæk; Mette Hamborg; Achille Massougbodji; Saddou Issifou; Anette Strøbæk; Lars Poulsen; Odile Leroy; Kremsner, Peter G

    2015-01-01

    The disease caused by Plasmodium falciparum (Pf) involves different clinical manifestations that, cumulatively, kill hundreds of thousands every year. Placental malaria (PM) is one such manifestation in which Pf infected erythrocytes (IE) bind to chondroitin sulphate A (CSA) through expression of VAR2CSA, a parasite-derived antigen. Protection against PM is mediated by antibodies that inhibit binding of IE in the placental intervillous space. VAR2CSA is a large antigen incompatible with large...

  4. Tyrosine sulfation of the amino terminus of PSGL-1 is critical for enterovirus 71 infection.

    Directory of Open Access Journals (Sweden)

    Yorihiro Nishimura

    Full Text Available Enterovirus 71 (EV71 is one of the major causative agents of hand, foot, and mouth disease, a common febrile disease in children; however, EV71 has been also associated with various neurological diseases including fatal cases in large EV71 outbreaks particularly in the Asia Pacific region. Recently we identified human P-selectin glycoprotein ligand-1 (PSGL-1 as a cellular receptor for entry and replication of EV71 in leukocytes. PSGL-1 is a sialomucin expressed on the surface of leukocytes, serves as a high affinity counterreceptor for selectins, and mediates leukocyte rolling on the endothelium. The PSGL-1-P-selectin interaction requires sulfation of at least one of three clustered tyrosines and an adjacent O-glycan expressing sialyl Lewis x in an N-terminal region of PSGL-1. To elucidate the molecular basis of the PSGL-1-EV71 interaction, we generated a series of PSGL-1 mutants and identified the post-translational modifications that are critical for binding of PSGL-1 to EV71. We expressed the PSGL-1 mutants in 293T cells and the transfected cells were assayed for their abilities to bind to EV71 by flow cytometry. We found that O-glycosylation on T57, which is critical for PSGL-1-selectin interaction, is not necessary for PSGL-1 binding to EV71. On the other hand, site-directed mutagenesis at one or more potential tyrosine sulfation sites in the N-terminal region of PSGL-1 significantly impaired PSGL-1 binding to EV71. Furthermore, an inhibitor of sulfation, sodium chlorate, blocked the PSGL-1-EV71 interaction and inhibited PSGL-1-mediated viral replication of EV71 in Jurkat T cells in a dose-dependent manner. Thus, the results presented in this study reveal that tyrosine sulfation, but not O-glycosylation, in the N-terminal region of PSGL-1 may facilitate virus entry and replication of EV71 in leukocytes.

  5. Uranium Immobilization by Sulfate-reducing Biofilms

    International Nuclear Information System (INIS)

    Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into the reactor for 32 weeks at a concentration of 126 ?M. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite

  6. New Bioactive Alkyl Sulfates from Mediterranean Tunicates

    Directory of Open Access Journals (Sweden)

    Marialuisa Menna

    2012-10-01

    Full Text Available Chemical investigation of two species of marine ascidians, Aplidium elegans and Ciona edwardsii, collected in Mediterranean area, led to isolation of a series of alkyl sulfates (compounds 1–5 including three new molecules 1–3. Structures of the new metabolites have been elucidated by spectroscopic analysis. Based on previously reported cytotoxic activity of these type of molecules, compounds 1–3 have been tested for their effects on the growth of two cell lines, J774A.1 (BALB/c murine macrophages and C6 (rat glioma in vitro. Compounds 1 and 2 induced selective concentration-dependent mortality on J774A.1 cells.

  7. Thermodynamics of aqueous sodium dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.L.

    1977-08-01

    A flow microcalorimeter system was assembled and is being used in a thermodynamic study of surfactant systems as part of the ERDA enhanced oil recovery program. Enthalpies of dilution and demicellization of sodium dodecyl sulfate were measured over a temperature range of 20 to 35/sup 0/C. This surfactant was also studied with cosurfactant and salt backgrounds. The critical micelle concentrations (cmc) were determined and are in excellent agreement with those in the literature. Studies below the cmc suggest the possible formation of a dimer. 17 tables, 9 figures.

  8. Structure of double hafnium and rubidium sulfate

    International Nuclear Information System (INIS)

    The crystal structure of the Hf(SO4)2x2Rb(SO4)H2O is studied. For the rhombic crystals the space group is P212121 with cell parameters a=9.728(2), b=12.493(2), c=15.025(3) A, and Z=4. The compound structure belongs to the type of chain structures. The Hf atom is surrounded by seven O atoms belonging to two bidentate-cyclic, bidentate-bridge and monodentate sulfate groups forming a pentagonal bipyramid. The interatomic distances and valent angles in the Hf polyhedron and SO4 tetrahedrons are presented

  9. Ligand-affinity cloning and structure of a cell surface heparan sulfate proteoglycan that binds basic fibroblast growth factor.

    OpenAIRE

    Kiefer, M C; Stephans, J C; Crawford, K; Okino, K.; Barr, P.J.

    1990-01-01

    Expression cloning of cDNAs encoding a basic fibroblast growth factor (FGF) binding protein confirms previous hypotheses that this molecule is a cell-surface heparan sulfate proteoglycan. A cDNA library constructed from a hamster kidney cell line rich in FGF receptor activity was transfected into a human lymphoblastoid cell line. Clones expressing functional basic FGF binding proteins at their surfaces were enriched by panning on plastic dishes coated with human basic FGF. The amino acid sequ...

  10. SULFATION OF ARABINOGALACTAN BY SULFAMIC ACID IN DIOXANE MEDIUM

    Directory of Open Access Journals (Sweden)

    Наталья Юрьевна Васильева

    2014-09-01

    Full Text Available Sulfation of arabinogalactan (AG by sulfamic acid in the presence of urea at temperatures 70–95 °C in dioxane medium was studied. The growth of sulfation temperature from 70 to 95 °C increases a degree of AG sulfation. According to NMR 13C spectroscopy data sulfate groups are fixed at С2 and C4 positions of galactose unit of basic chain and at C6 position of terminal galactose units of basic and side chains of arabinogalactan. The sulfation of AG by complex sulfamic acid – urea in dioxane medium makes possible to increase the environmental safety and efficiency of the process as compared to the known sulfation methods.

  11. Removal of Sulfate Ion From AN-107 by Evaporation

    International Nuclear Information System (INIS)

    Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid

  12. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S;

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known.......0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation....... Sulfate reducers that oxidized the carbon source completely to CO2 showed greater fractionations than sulfate reducers that released acetate as the final product of carbon oxidation. Different metabolic pathways and variable regulation of sulfate transport across the cell membrane all potentially affect...

  13. Immobilization of calcium sulfate contained in demolition waste

    International Nuclear Information System (INIS)

    This paper presents the results of a laboratory study undertaken to examine the treatment of demolition waste containing calcium sulfate by means of calcium sulfoaluminate clinker (CSA). The quantity of CSA necessary to entirely consume calcium sulfate was determined. Using infrared spectrometry analysis and X-ray diffraction, it was shown that calcium sulfate was entirely consumed when the ratio between CSA and calcium sulfate was 4. Standard sand was polluted by 4% calcium sulfate. Two solutions were investigated: ·either global treatment of sand by CSA, ·or immobilization of calcium sulfate by CSA, followed by the introduction of this milled mixture in standard sand. Regardless of the type of treatment, swelling was almost stabilized after 28 days of immersion in water

  14. Galactosaminoglycan Function and Oligosaccharide Structure Determination

    Directory of Open Access Journals (Sweden)

    Daniela G. Seidler

    2007-01-01

    Full Text Available This review will discuss the importance of sequencing long chondroitin sulfate and dermatan sulfate chains specifically derived from decorin. Decorin is a member of the small leucine-rich repeat proteoglycans and ubiquitously expressed primarily in the skin. Sequence information and diverse function of glycosaminoglycans is further influenced by variable expression through the core protein indicating the importance to analyse glycosaminoglycans from specific proteoglycans.

  15. 硫酸软骨素蛋白聚糖SRPX2在胃肠道肿瘤中的作用%Role of Chondroitin Sulfate Proteoglycan SRPX2 in Gastrointestinal Tumors

    Institute of Scientific and Technical Information of China (English)

    刘揆亮; 余瑞金

    2014-01-01

    含sushi重复蛋白X连锁2(SRPX2)是一种具有细胞外基质蛋白属性的硫酸软骨素蛋白聚糖.研究显示SRPX2可影响细胞的迁移、黏附等生物学行为,并具有促血管生成作用.SRPX2在胃癌和结肠癌组织中呈过表达,并与预后不良相关.本文就SRPX2在胃肠道肿瘤中作用的研究现状作一综述.

  16. Dimethylsulfoxide reduction by marine sulfate-reducing bacteria

    OpenAIRE

    Jonkers, Henk M.; van der Maarel, Marc J. E. C.; van Gemerden, Hans; Hansen, Theo A.

    1996-01-01

    Dimethylsulfoxide (DMSO) reduction occurred in five out of nine strains of sulfate-reducing bacteria from marine or saline environments, but not in three freshwater isolates. DMSO reduction supported growth in all positive strains. In Desulfovibrio desulfuricans strain PA2805, DMSO reduction occurred simultaneously-with sulfate reduction and was not effectively inhibited by molybdate, a specific inhibitor of sulfate reduction. The growth yield per mol lactate was 26% higher with DMSO than wit...

  17. Distribution of Heparan Sulfate Oligosaccharides in Murine Mucopolysaccharidosis Type IIIA

    OpenAIRE

    Kerryn Mason; Peter Meikle; John Hopwood; Maria Fuller

    2014-01-01

    Heparan sulfate (HS) catabolism begins with endo-degradation of the polysaccharide to smaller HS oligosaccharides, followed by the sequential action of exo-enzymes to reduce these oligosaccharides to monosaccharides and inorganic sulfate. In mucopolysaccharidosis type IIIA (MPS IIIA) the exo-enzyme, N-sulfoglucosamine sulfohydrolase, is deficient resulting in an inability to hydrolyze non-reducing end glucosamine N-sulfate esters. Consequently, partially degraded HS oligosaccharides with non-...

  18. Marine Non-Glycosaminoglycan Sulfated Glycans as Potential Pharmaceuticals

    OpenAIRE

    Vitor H. Pomin

    2015-01-01

    Sulfated fucans (SFs) and sulfated galactans (SGs) are currently the marine non-glycosaminoglycan (GAG) sulfated glycans most studied in glycomics. These compounds exhibit therapeutic effects in several pathophysiological systems such as blood coagulation, thrombosis, neovascularization, cancer, inflammation, and microbial infections. As analogs of the largely employed GAGs and due to some limitations of the GAG-based therapies, SFs and SGs comprise new carbohydrate-based therapeutics availab...

  19. Effective Synthesis of Sulfate Metabolites of Chlorinated Phenols

    OpenAIRE

    Lehmler, Hans-Joachim; He, Xianran; Li, Xueshu; Duffel, Michael W.; Parkin, Sean

    2013-01-01

    Chlorophenols are an important class of persistent environmental contaminants and have been implicated in a range of adverse health effects, including cancer. They are readily conjugated and excreted as the corresponding glucuronides and sulfates in the urine of humans and other species. Here we report the synthesis and characterization of a series of ten chlorophenol sulfates by sulfation of the corresponding chlorophenols with 2,2,2-trichloroethyl (TCE) chlorosulfate using N,N-dimethylamino...

  20. Sulfation of ractopamine and salbutamol by the human cytosolic sulfotransferases

    OpenAIRE

    Ko, KyoungA; Kurogi, Katsuhisa; Davidson, Garrett; Liu, Ming-Yih; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2012-01-01

    Feed additives such as ractopamine and salbutamol are pharmacologically active compounds, acting primarily as β-adrenergic agonists. This study was designed to investigate whether the sulfation of ractopamine and salbutamol may occur under the metabolic conditions and to identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating two major feed additive compounds, ractopamine and salbutamol. A metabolic labelling study showed the generation and release of [35S]sulfate...