Sample records for chondroitin sulfate expression

  1. Modulation of the expression of chondroitin sulfate proteoglycan in stimulated human monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Uhlin-Hansen, L.; Eskeland, T.; Kolset, S.O. (Univ. of Tromso (Norway))


    Proteoglycan biosynthesis was studied in human monocytes and monocyte-derived macrophages (MDM) after exposure to typical activators of the monocyte/macrophage system: interferon-gamma (IFN-gamma), lipopolysaccharide (LPS), and phorbol 12-myristate 13-acetate (PMA). By morphological examination, both monocytes and MDM were stimulated by these activators. Treatment with IFN-gamma resulted in a slight decrease in the expression of (35S)chondroitin sulfate proteoglycan (CSPG) in both monocytes and MDM, whereas LPS treatment increased the (35S)CSPG expression 1.8 and 2.2 times, respectively. PMA, in contrast, decreased the CSPG expression 0.4 times in monocytes, whereas MDM were stimulated to increase the biosynthesis 1.9 times. An increase in the sulfate density of the chondroitin sulfate chains was evident following differentiation of monocytes into MDM due to the expression of disulfated disaccharide units of the chondroitin sulfate E type (CS-E). However, monocytes exposed to PMA did also express disaccharides of the chondroitin sulfate E type. Furthermore, the expression of CS-E in MDM was increased 2 times following PMA treatment. An inactive phorbol ester, phorbol 12,13-diacetate, did not affect the expression of CS-E in either monocytes or MDM when compared with control cultures, suggesting that protein kinase C-dependent signal pathways may be involved in the regulation of sulfation of CSPG. Exposure to LPS or IFN-gamma did not lead to any changes in the sulfation of the chondroitin sulfate chains.

  2. Biomimetic molecules lower catabolic expression and prevent chondroitin sulfate degradation in an osteoarthritic ex vivo model. (United States)

    Sharma, Shaili; Vazquez-Portalatin, Nelda; Calve, Sarah; Panitch, Alyssa


    Aggrecan, the major proteoglycan in cartilage, serves to protect cartilage tissue from damage and degradation during the progression of osteoarthritis (OA). In cartilage extracellular matrix (ECM) aggrecan exists in an aggregate composed of several aggrecan molecules that bind to a single filament of hyaluronan. Each molecule of aggrecan is composed of a protein core and glycosaminoglycan sides chains, the latter of which provides cartilage with the ability to retain water and resist compressive loads. During the progression of OA, loss of aggrecan is considered to occur first, after which other cartilage matrix components become extremely susceptible to degradation. Proteolytic cleavage of the protein core of aggrecan by enzymes such as aggrecanases, prevent its binding to HA and lower cartilage mechanical strength. Here we present the use of HA-binding or collagen type II-binding molecules that functionally mimic aggrecan but lack known cleavage sites, protecting the molecule from proteolytic degradation. These molecules synthesized with chondroitin sulfate backbones conjugated to hyaluronan- or collagen type II- binding peptides, are capable of diffusing through a cartilage explant and adhering to the ECM of this tissue. The objective of this study was to test the functional efficacy of these molecules in an ex vivo osteoarthritic model to discern the optimal molecule for further studies. Different variations of chondroitin sulfate conjugated to the binding peptides were diffused through aggrecan depleted explants and assessed for their ability to enhance compressive stiffness, prevent CS degradation, and modulate catabolic (MMP-13 and ADAMTS-5) and anabolic (aggrecan and collagen type II) gene expression. A pilot in vivo study assessed the ability to retain the molecule within the joint space of an osteoarthritic guinea pig model. The results indicate chondroitin sulfate conjugated to hyaluronan-binding peptides is able to significantly restore equilibrium

  3. High chondroitin sulfate proteoglycan 4 expression correlates with poor outcome in patients with breast cancer. (United States)

    Hsu, Nicholas C; Nien, Pei-Yung; Yokoyama, Kazunari K; Chu, Pei-Yi; Hou, Ming-Feng


    Chondroitin sulfate proteoglycan 4 (CSPG4), a transmembrane proteoglycan originally identified in melanoma cells, has been reported to be expressed in breast cancer cells. This study was performed to examine the expression and significance of CSPG4 in a cohort of breast cancer patients. Immunohistochemical analysis of CSPG4 was performed on tissue microarrays constructed from tissue specimens from 240 breast cancer patients. CSPG4 staining was correlated with clinical and pathological characteristics, overall survival (OS), and disease recurrence. Contradicting to a previous report, our results showed that high CSPG4 expression was not related to triple-negative status of breast cancer patients. The Kaplan-Meier method showed that high CSPG4 expression was significantly associated with shorter time to recurrence (TTR). Patients with high CSPG4 expression had poorer OS and shorter TTR in a multivariate survival analysis after adjustment for stage, tumor grade, expression of estrogen receptor and progesterone receptor, and HER2 overexpression. This study showed that high CSPG4 expression correlates with disease recurrence and OS in breast cancers.

  4. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.


    produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated......Inactivation of the perlecan gene leads to perinatal lethal chondrodysplasia. The similarity to the phenotypes of the Col2A1 knock-out and the disproportionate micromelia mutation suggests perlecan involvement in cartilage collagen matrix assembly. We now present a mechanism for the defect...... in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...

  5. Methylprednisolone Inhibits the Expression of Glial Fibrillary Acidic Protein and Chondroitin Sulfate Proteoglycans in Reactivated Astrocytes

    Institute of Scientific and Technical Information of China (English)



    创伤后的神经胶质增生导致硫酸软骨素蛋白聚糖(CSPG)的显著表达,从而抑制轴突生长和再生.甲基强地松龙(MP),一种合成的糖皮质激素,在急性脊髓损伤(SCI)的治疗中有神经保护作用和抗炎效应.但是,MP对于CSPG在活性胶质细胞中的表达的作用尚不清楚.本文用a-氨基-3-羟基-5-甲基-4-异恶唑丙酸酯(AM-PA)诱导星形胶质细胞再活化,用环噻嗪模拟SCI的兴奋性中毒刺激.AMPA治疗后,星形胶质细胞再活化的标志物-胶质纤维酸性蛋白(GFAP)、CSPG神经聚糖和磷酸盐的表达都显著上调.AMPA治疗星形胶质细胞的条件培养液强烈抑制大鼠背根神经节中神经元的轴突生长,但这种作用能被MP的预处理所逆转.此外,MP下调成年SCI大鼠中GFAP和CSPG的表达,对抗RU486的糖皮质激素受体(GR)和GR siRNA能逆转MP对GFAP和神经聚糖表达的抑制作用.这些结果提示,MP能在兴奋性中毒损伤后通过GR介导的星形胶质细胞再活化下调和GSPG表达抑制来改善神经修复,促进轴突生长.%Reactive gliosis caused by post-traumatic injury often results in marked expression of chondroitin sul-fate proteoglycan(CSPG), which inhibits neurite outgrowth and regeneration. Methylprednisolone (MP), a synthet-ic glucocorticoid, has been shown to have neuroprotective and anti-inflammatory effects for the treatment of acute spinal cord injury (SCI). However, the effect of MP on CSPG expression in reactive glial cells remains unclear. In our study, we induced astrocyte reactivation using a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and cyclothiazide to mimic the exciotoxic stimuli of SCI. The expression of glial fibrillary acidic protein (GFAP), a marker of astrocyte reactivation, and CSPG neurocan and phosphacan were significantly elevated by AMPA treat-ment. The conditioned media from AMPA-treated astrocytes strongly inhibited neurite outgrowth of rat dorsal root ganglion neurons, and this

  6. Chondroitin 6-sulfate proteoglycan but not heparan sulfate proteoglycan is abnormally expressed in skin basement membrane from patients with dominant and recessive dystrophic epidermolysis bullosa

    DEFF Research Database (Denmark)

    Fine, J D; Couchman, J R


    Two distinct groups of proteoglycans, chondroitin 6-sulfate (C6-S) proteoglycan and heparan sulfate proteoglycan (HSPG), have been recently shown to reside within the lamina densa of normal human skin basement membrane (BM). To determine whether either or both antigens are normally expressed in one...... junctional EB, and all control skin specimens. We have subsequently extracted a greater than 400 kD C6-S proteoglycan from normal skin BM and have found that the core protein may also contain heparan sulfate side chains. Our findings suggest that 3B3 monoclonal antibody recognizes a hybrid proteoglycan...... in human skin, and that its absent or reduced binding in dystrophic EB skin BM may reflect either absence of associated core protein or posttranslational alterations in the proteoglycan side chains....

  7. Involvement of highly sulfated chondroitin sulfate in the metastasis of the Lewis lung carcinoma cells.

    NARCIS (Netherlands)

    Li, F.; Dam, G.B. ten; Murugan, S.; Yamada, S.; Hashiguchi, T.; Mizumoto, S.; Oguri, K.; Okayama, M.; Kuppevelt, A.H.M.S.M. van; Sugahara, K.


    The altered expression of cell surface chondroitin sulfate (CS) and dermatan sulfate (DS) in cancer cells has been demonstrated to play a key role in malignant transformation and tumor metastasis. However, the functional highly sulfated structures in CS/DS chains and their involvement in the process

  8. Expression of N-Acetylgalactosamine 4-Sulfate 6-O-Sulfotransferase Involved in Chondroitin Sulfate Synthesis Is Responsible for Pulmonary Metastasis

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto


    Full Text Available Chondroitin sulfate (CS containing E-disaccharide units, glucuronic acid-N-acetylgalactosamine(4, 6-O-disulfate, at surfaces of tumor cells plays a key role in tumor metastasis. However, the molecular mechanism of the metastasis involving the CS chain-containing E-units is not fully understood. In this study, to clarify the role of E-units in the metastasis and to search for potential molecular targets for anticancer drugs, the isolation and characterization of Lewis lung carcinoma (LLC cells stably downregulated by the knockdown for the gene encoding N-acetylgalactosamine 4-O-sulfate 6-O-sulfotransferase (GalNAc4S-6ST, which is responsible for the formation of E-units in CS chains, were performed. Knockdown of GalNAc4S-6ST in LLC cells resulted in a reduction in the proportion of E-units, in adhesiveness to extracellular matrix adhesion molecules and in proliferation in vitro. Furthermore, the stable downregulation of GalNAc4S-6ST expression in LLC cells markedly inhibited the colonization of the lungs by inoculated LLC cells and invasive capacity of LLC cells. These results provide clear evidence that CS chain-containing E-units and/or GalNAc4S-6ST play a crucial role in pulmonary metastasis at least through the increased adhesion and the invasive capacity of LLC cells and also provides insights into future drug targets for anticancer treatment.

  9. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    Energy Technology Data Exchange (ETDEWEB)

    Sugumaran, G.; Silbert, J.E.


    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-(14C)glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo(14C)chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo(14C)chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo(14C) chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo(14C)chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo(14C)chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo(14C)chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo(14C)chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent.

  10. Detection of chondroitin sulfate proteoglycan 4 (CSPG4) in melanoma. (United States)

    Wang, Yangyang; Sabbatino, Francesco; Wang, Xinhui; Ferrone, Soldano


    The tumor antigen chondroitin sulfate proteoglycan 4 (CSPG4) appears to be a useful biomarker to identify melanoma cells and an attractive target to apply antibody-based immunotherapy for the treatment of melanoma. Here we described the reverse transcription-polymerase chain reaction (RT-PCR) method and the immunohistochemical (IHC) staining method to detect the expression of CSPG4 in melanoma cells and tissues.

  11. Mast cell differentiation and activation is closely linked to expression of genes coding for the serglycin proteoglycan core protein and a distinct set of chondroitin sulfate and heparin sulfotransferases. (United States)

    Duelli, Annette; Rönnberg, Elin; Waern, Ida; Ringvall, Maria; Kolset, Svein O; Pejler, Gunnar


    Serglycin (SG) proteoglycan consists of a small core protein to which glycosaminoglycans of chondroitin sulfate or heparin type are attached. SG is crucial for maintaining mast cell (MC) granule homeostasis through promoting the storage of various basic granule constituents, where the degree of chondroitin sulfate/heparin sulfation is essential for optimal SG functionality. However, the regulation of the SG core protein expression and of the various chondroitin sulfate/heparin sulfotransferases during MC differentiation and activation are poorly understood. Here we addressed these issues and show that expression of the SG core protein, chondroitin 4-sulfotransferase (C4ST)-1, and GalNAc(4S)-6-O-sulfotransferase (GalNAc4S6ST) are closely linked to MC maturation. In contrast, the expression of chondroitin 6-sulfotransferase correlated negatively with MC maturation. The expression of N-deacetylase/N-sulfotransferase (NDST)-2, a key enzyme in heparin synthesis, also correlated strongly with MC maturation, whereas the expression of the NDST-1 isoform was approximately equal at all stages of maturation. MC activation by either calcium ionophore or IgE ligation caused an up-regulated expression of the SG core protein, C4ST-1, and GalNAc4S6ST, accompanied by increased secretion of chondroitin sulfate as shown by biosynthetic labeling experiments. In contrast, NDST-2 was down-regulated after MC activation, suggesting that MC activation modulates the nature of the glycosaminoglycan chains attached to the SG core protein. Taken together, these data show that MC maturation is associated with the expression of a distinct signature of genes involved in SG proteoglycan synthesis, and that MC activation modulates their expression.

  12. Changes in N-methyl-D-aspartate receptor 2A subunit expression caused by binocular form deprivation and chondroitin sulfate proteoglycan degradation

    Institute of Scientific and Technical Information of China (English)

    Mingming Liu; Wei Qin; Hanping Xie


    Light deprivation is known to induce a significant decrease in the percentage of N-methyl-D- aspartate receptor 2A subunit (NR2A)-expressing neurons during development. The purpose of this study was to investigate the effects of binocular form deprivation (BFD) and chondroitin sulfate proteoglycan (CSPG) degradation on NR2A expression via an immunohistochemical study, around the end of a critical developmental period. The results show that the positive staining of NR2A in the normal rat visual cortex increases gradually from postnatal 3-5 weeks (P 0.05). The positive staining of NR2A in the CSPG-treated group was insignificant compared with the BFD group at the same time point from 4 weeks to 7 weeks (P > 0.05). Thus, the effect of BFD on NR2A expression in the rat visual cortex was similar to that of CSPG degradation around the end of the critical developmental period.

  13. Chondroitin / dermatan sulfate modification enzymes in zebrafish development.

    Directory of Open Access Journals (Sweden)

    Judith Habicher

    Full Text Available Chondroitin/dermatan sulfate (CS/DS proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS. Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.

  14. Inactivation of thrombin by a fucosylated chondroitin sulfate from echinoderm. (United States)

    Mourão, P A; Boisson-Vidal, C; Tapon-Bretaudière, J; Drouet, B; Bros, A; Fischer, A


    A polysaccharide extracted from the sea cucumber body wall has the same backbone structure as the mammalian chondroitin sulfate, but some of the glucuronic acid residues display sulfated fucose branches. These branches confer high anticoagulant activity to the polysaccharide. Since the sea cucumber chondroitin sulfate has analogy in structure with mammalian glycosaminoglycans and sulfated fucans from brown algae, we compared its anticoagulant action with that of heparin and of a homopolymeric sulfated fucan with approximately the same level of sulfation as the sulfated fucose branches found in the sea cucumber polysaccharide. These various compounds differ not only in their anticoagulant potencies but also in the mechanisms of thrombin inhibition. Fucosylated chondroitin sulfate, like heparin, requires antithrombin or heparin cofactor II for thrombin inhibition. Sulfated fucans from brown algae have an antithrombin effect mediated by antithrombin and heparin cofactor II, plus a direct antithrombin effect more pronounced for some fractions. But even in the case of these two polysaccharides, we observed some differences. In contrast with heparin, total inhibition of thrombin in the presence of antithrombin is not achieved with fucosylated chondroitin sulfate, possibly reflecting a less specific interaction. Fucosylated chondroitin sulfate is able to inhibit thrombin generation after stimulation by both contact-activated and thromboplastin-activated systems. It delayed only the contact-induced thrombin generation, as expected for an anticoagulant without direct thrombin inhibition. Overall, the specific spatial array of the sulfated fucose branches in the fucosylated chondroitin sulfate not only confer high anticoagulant activity to the polysaccharide but also determine differences in the way it inhibits thrombin.

  15. Increased activity of chondroitin sulfate-synthesizing enzymes during proliferation of arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, J.; Thiel, J.; Schmidt, A.; Buddecke, E.


    Cultured arterial smooth muscle cells incorporate (/sup 35/S)sulfate into the extracellular chondroitin sulfate/dermatan sulfate containing proteoglycans at a higher rate in the phase of logarithmic growth than do non-dividing cells. The cell growth-dependent decrease in /sup 35/S incorporation with increasing cell density is accompanied by a decrease in the activity of chondroitin sulfate-synthesizing enzymes. The specific activity of xylosyl transferase, N-acetylgalactosaminyl transferase I and chondroitin sulfotransferase declines as the cells proceed from low to high densities. The corresponding correlation coefficients are 0.86, 0.91 and 0.89. The ratio of C-60H/C-40H sulfation of chondroitin shows a cell proliferation-dependent decrease indicating an inverse correlation of chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase activity. The observed changes in the expression of enzyme activities are thought to have some implications in the pathogenesis of arteriosclerosis, the initial stages of which are characterized by proliferation of arterial smooth muscle cells.

  16. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R


    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production...... and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution...... sulfate proteoglycans previously described....

  17. Biological functions of iduronic acid in chondroitin/dermatan sulfate. (United States)

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders


    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease.

  18. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    Directory of Open Access Journals (Sweden)

    Hiroyasu Ogawa

    Full Text Available Chondroitin sulfate (CS is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/- mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/- chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  19. Decline in arylsulfatase B and Increase in chondroitin 4-sulfotransferase combine to increase chondroitin 4-sulfate in traumatic brain injury. (United States)

    Bhattacharyya, Sumit; Zhang, Xiaolu; Feferman, Leo; Johnson, David; Tortella, Frank C; Guizzetti, Marina; Tobacman, Joanne K


    In an established rat model of penetrating ballistic-like brain injury (PBBI), arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase) activity was significantly reduced at the ipsilateral site of injury, but unaffected at the contralateral site or in sham controls. In addition, the ARSB substrate chondroitin 4-sulfate (C4S) and total sulfated glycosaminoglycans increased. The mRNA expression of chondroitin 4-sulfotransferase 1 (C4ST1; CHST11) and the sulfotransferase activity rose at the ipsilateral site of injury (PBBI-I), indicating contributions from both increased production and reduced degradation to the accumulation of C4S. In cultured, fetal rat astrocytes, following scratch injury, the ARSB activity declined and the nuclear hypoxia inducible factor-1α increased significantly. In contrast, sulfotransferase activity and chondroitin 4-sulfotransferase expression increased following astrocyte exposure to TGF-β1, but not following scratch. These different pathways by which C4S increased in the cell preparations were both evident in the response to injury in the PBBI-I model. Hence, findings support effects of injury because of mechanical disruption inhibiting ARSB and to chemical mediation by TGF-β1 increasing CHST11 expression and sulfotransferase activity. The increase in C4S following traumatic brain injury is because of contributions from impaired degradation and enhanced synthesis of C4S which combine in the pathogenesis of the glial scar. This is the first report of how two mechanisms contribute to the increase in chondroitin 4-sulfate (C4S) in TBI. Following penetrating ballistic-like brain injury in a rat model and in the scratch model of injury in fetal rat astrocytes, Arylsulfatase B activity declined, leading to accumulation of C4S. TGF-β1 exposure increased expression of chondroitin 4-sulfotransferase. Hence, the increase in C4S in TBI is attributable to both impaired degradation and enhanced synthesis, combining in the pathogenesis of the

  20. Melamine nanosensing with chondroitin sulfate-reduced gold nanoparticles. (United States)

    Noh, Hwa Jung; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie


    Gold nanoparticles were green-synthesized using a glycosaminoglycan, chondroitin sulfate, as the reducing agent by mixing Au3+ and chondroitin sulfate under heating. Chondroitin sulfate-reduced gold nanoparticles were characterized by UV-Vis spectrophotometry, high resolution transmission electron microscopy and atomic force microscopy. The yield of Au3+ to Au0 was measured as 80.1% by inductively coupled plasma-atomic emission spectroscopy. A mostly spherical shape, with an average diameter of 44.68 +/- 11.25 nm, was observed from the atomic force microscopy images. Using chondroitin sulfate-reduced gold nanoparticles, we developed a melamine nanosensor that provides a simplified method to detect melamine in infant formula. With an increase in the melamine concentration in the gold nanoparticle solution, the characteristic surface plasmon resonance band of gold nanoparticles at 530 nm decreased, whereas a new peak appeared at 620 nm. There was a linear relationship between the absorbance ratio (A620/A530) and the melamine concentration in the range of 0.1-10 microM. The practical use of the proposed method was verified by quantifying melamine spiked in real infant formula at concentrations as low as 12.6 ppb. The nanosensing of melamine using chondroitin sulfate-reduced gold nanoparticles can be a promising technique for quick on-site melamine screening of milk products.


    Directory of Open Access Journals (Sweden)

    Ana-Maria Oprea


    Full Text Available The in vitro and in vivo biocompatibility of xanthan/chondroitin sulfate hydrogels (X/CS in differentmixing ratios was investigated. The in vitro biocompatibility evaluation was performed by a chemiluminescent assayusing microorganisms such as Saccharomyces pombe. The cellular growth of S. pombe in presence of thexanthan/chondroitin sulfate hydrogels containing up to 20 % chondroitin sulfate was examinated comparatively withxanthan hydrogel.The in vivo evaluation was performed by toxicity test and subcutaneously implantation in rats. It has been establisheda lethal dose (LD50 bigger than 3200 mg/kg for all studied hydrogels, therefore they are nontoxic materials.The in vivo 30 days testing performed by subcutaneous implantation showed that the X/CS matrices were easilyabsorbed without side-effects, demonstrating their biocompatibility and effectiveness as potential drug delivery systems.

  2. Mast Cells Produce a Unique Chondroitin Sulfate Epitope. (United States)

    Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S


    The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells.

  3. Functional and clinical relevance of chondroitin sulfate proteoglycan 4. (United States)

    Campoli, Michael; Ferrone, Soldano; Wang, Xinhui


    The lack of effective conventional therapies for the treatment of advanced stage melanoma has stimulated interest in the development of novel strategies for the management of patients with malignant melanoma. Among them, immunotherapy has attracted much attention because of the potential role played by immunological events in the clinical course of melanoma. For many years, T cell-based immunotherapy has been emphasized in part because of the disappointing results of the monoclonal antibody (mAb)-based clinical trials conducted in the early 1980s and in part because of the postulated major role played by T cells in tumor growth control. More recently, mAb-based therapies have gained in popularity given their clinical and commercial success for a variety of malignant diseases. As a result, there has been increased interest in identifying and characterizing antibody-defined melanoma antigens. Among them, the chondroitin sulfate proteoglycan 4 (CSPG4), also known as high molecular weight-melanoma associated antigen (HMW-MAA) or melanoma chondroitin sulfate proteoglycan (MCSP), has attracted much attention in recent years because of the growing experimental evidence that it fulfills two requirements for immunotherapy to be therapeutically effective: (1) targeting of cancer stem cells (CSC) and (2) development of combinatorial therapies to counteract the escape mechanisms driven by the genetic instability of tumor cells. With this in mind, in this chapter, we have reviewed recent information related to the distribution of CSPG4 on various types of tumors, including CSC, its expression on pericytes in the tumor microenvironment, its recognition by T cells, its role in cell biology as well as the potential mechanisms underlying the ability of CSPG4-specific immunity to control malignant cell growth.

  4. Oncofetal chondroitin sulfate glycosaminoglycans are key players in integrin signaling and tumor cell motility

    DEFF Research Database (Denmark)

    Clausen, Thomas Mandel; Bento Ayres Pereira, Marina Maria; Al Nakouzi, Nader


    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2...

  5. Primary mesenchyme cell migration requires a chondroitin sulfate/dermatan sulfate proteoglycan. (United States)

    Lane, M C; Solursh, M


    Primary mesenchyme cell migration in the sea urchin embryo is inhibited by sulfate deprivation and exposure to exogenous beta-D-xylosides, two treatments known to disrupt proteoglycan synthesis. We show that in the developing sea urchin, exogenous xyloside affects the synthesis by the primary mesenchyme cells of a very large, cell surface chondroitin sulfate/dermatan sulfate proteoglycan. This proteoglycan is present in a partially purified fraction that restores migratory ability to defective cells in vitro. The integrity of this chondroitin sulfate/dermatan sulfate proteoglycan appears essential for primary mesenchyme cell migration since treatment of actively migrating cells with chondroitinase ABC reversibly inhibited their migration in vitro.

  6. The effect of divalent salt in chondroitin sulfate solutions (United States)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.


    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca2+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca2+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  7. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt;


    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...

  8. A Versatile pH Sensitive Chondroitin Sulfate-PEG Tissue Adhesive and Hydrogel**


    Strehin, Iossif; Nahas, Zayna; Arora,Karun; Nguyen, Thao; Elisseeff, Jennifer


    We developed a chondroitin sulfate - polyethylene glycol (CS-PEG) adhesive hydrogel with numerous potential biomedical applications. The carboxyl groups on chondroitin sulfate (CS) chains were functionalized with N-hydroxysuccinimide (NHS) to yield chondroitin sulfate succinimidyl succinate (CS-NHS). Following purification, the CS-NHS molecule can react with primary amines to form amide bonds. Hence, using six arm polyethylene glycol amine PEG-(NH2)6 as a crosslinker we formed a hydrogel whic...

  9. Basement membrane proteoglycans in glomerular morphogenesis: chondroitin sulfate proteoglycan is temporally and spatially restricted during development

    DEFF Research Database (Denmark)

    McCarthy, K J; Bynum, K; St John, P L;


    We previously reported the presence of a basement membrane-specific chondroitin sulfate proteoglycan (BM-CSPG) in basement membranes of almost all adult tissues. However, an exception to this ubiquitous distribution was found in the kidney, where BM-CSPG was absent from the glomerular capillary......, the present study used light and electron microscopic immunohistochemistry to examine the distribution of BM-CSPG and basement membrane heparan sulfate proteoglycan (BM-HSPG) during prenatal and postnatal renal development in the rat. Our results show that the temporal and spatial pattern of expression of BM...

  10. Biphasic Role of Chondroitin Sulfate in Cardiac Differentiation of Embryonic Stem Cells through Inhibition of Wnt/beta-Catenin Signaling

    NARCIS (Netherlands)

    Prinz, R.D.; Willis, C.M.; Kuppevelt, T.H. van; Kluppel, M.


    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional i

  11. Deglycosylation of chondroitin sulfate proteoglycan by hydrogen fluoride in pyridine. (United States)

    Olson, C A; Krueger, R; Schwartz, N B


    The original deglycosylation procedure using HF/pyridine has been modified for maximal removal of carbohydrate from chondroitin sulfate proteoglycan, with minimal alteration of the core protein. Gas-liquid chromatography analysis after treatment for various times showed that 95% of xylose and mannose and 70-85% of other sugars were removed within 30 min, indicating that almost all chondroitin sulfate chains and about 80% of N- and O-linked oligosaccharides were removed. In contrast to the loss of carbohydrate, no change in amino acid composition or loss of immunoreactivity occurred. Longer treatment of up to 16 h resulted in little additional removal of carbohydrate, but did cause a significant decrease in solubility and recovery of the deglycosylated product. Optimal removal of xylose residues after about 1 h was also shown by maximal acceptor activity of the product in a xylosyltransferase assay. Rapid removal of the HF reagent by vacuum evacuation and ion-exchange chromatography, coupled with the reduced time of treatment allowed recovery of an intact, homogenous protein core that is amenable to structural and sequence studies.

  12. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J


    alveolar, airway, and vascular BMs, in addition to smooth muscle external laminae (EL), in the adult and developing rat. Immunostaining for CSPG required hyaluronidase digestion, whereas CS staining was lost with the same treatment. A polyclonal antibody to the core protein of HSPG was found...... to be similarly distributed to CSPG by immunoperoxidase staining in adult and developing rat lungs, with the notable exception that little immunoreactivity for HSPG was found in smooth muscle EL. Commercially obtained polyclonal antibodies to entactin and laminin gave immunostaining comparable to that seen......Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  13. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Robert D Prinz

    Full Text Available The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  14. Nematodes join the family of chondroitin sulfate-synthesizing organisms: Identification of an active chondroitin sulfotransferase in Caenorhabditis elegans (United States)

    Dierker, Tabea; Shao, Chun; Haitina, Tatjana; Zaia, Joseph; Hinas, Andrea; Kjellén, Lena


    Proteoglycans are proteins that carry sulfated glycosaminoglycans (GAGs). They help form and maintain morphogen gradients, guiding cell migration and differentiation during animal development. While no sulfated GAGs have been found in marine sponges, chondroitin sulfate (CS) and heparan sulfate (HS) have been identified in Cnidarians, Lophotrocozoans and Ecdysozoans. The general view that nematodes such as Caenorhabditis elegans, which belong to Ecdysozoa, produce HS but only chondroitin without sulfation has therefore been puzzling. We have analyzed GAGs in C. elegans using reversed-phase ion-pairing HPLC, mass spectrometry and immunohistochemistry. Our analyses included wild type C. elegans but also a mutant lacking two HS sulfotransferases (hst-6 hst-2), as we suspected that the altered HS structure could boost CS sulfation. We could indeed detect sulfated CS in both wild type and mutant nematodes. While 4-O-sulfation of galactosamine dominated, we also detected 6-O-sulfated galactosamine residues. Finally, we identified the product of the gene C41C4.1 as a C. elegans CS-sulfotransferase and renamed it chst-1 (CarboHydrate SulfoTransferase) based on loss of CS-4-O-sulfation in a C41C4.1 mutant and in vitro sulfotransferase activity of recombinant C41C4.1 protein. We conclude that C. elegans indeed manufactures CS, making this widely used nematode an interesting model for developmental studies involving CS. PMID:27703236

  15. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Silbert, C.K.; Humphries, D.E.; Palmer, M.E.; Silbert, J.E. (Veterans Administration Outpatient Clinic, Boston, MA (USA))


    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with (3H)glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of (3H)chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics.

  16. Stabilization of human prostatic acid phosphatase by coupling with chondroitin sulfate. (United States)

    Luchter-Wasylewska, E; Dulińska, J; Ostrowski, W S; Torchilin, V P; Trubetskoy, V S


    Human prostatic acid phosphatase (PAP) (EC was covalently linked to chondroitin sulfate A from whale cartilage. In order to bind the protein amino groups with the preactivated carboxyl groups of chondroitin sulfate, 1-ethyl-3-(3'-dimethylaminepropyl)carbodiimide and N-hydroxysulfosuccinimide were used as coupling agents. The product was soluble and enzymatically active. The activity was on average 25% higher than that of the free enzyme. The product was heterogeneous in respect to charge and Mr (50-1500) kDa, as determined by chromatography on Sephacryl S 300 and polyacrylamide gel electrophoresis. The resulting polymers contained covalently bound chondroitin sulfate, as shown by the biotin-avidin test. The modified enzyme is more resistant against various denaturing agents, e.g., urea, ethanol, and heat. Thus covalent modification of PAP by cross-linking to chondroitin sulfate could be the preferred method for stabilization of its biological activity.

  17. Effects of chondroitin sulfate and glucosamine in adult patients with Kaschin-Beck disease

    DEFF Research Database (Denmark)

    Zhang, Ya-xu; Dong, Wei; Liu, Hui;


    The purpose is to investigate the effects of chondroitin sulfate and glucosamine on adult patients with Kaschin-Beck disease (KBD). A total of 80 patients, aged over 40 years, were randomized into two groups receiving either 1,600 mg oral mixture of chondroitin sulfate and glucosamine or placebo......). But the overall mean change in joint space was significant between the two groups (P glucosamine might play a protective role in preserving articular cartilage and provide...

  18. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) involved in chondroitin sulfate initiation: Impact of sulfation on activity and specificity. (United States)

    Gulberti, Sandrine; Jacquinet, Jean-Claude; Chabel, Matthieu; Ramalanjaona, Nick; Magdalou, Jacques; Netter, Patrick; Coughtrie, Michael W H; Ouzzine, Mohamed; Fournel-Gigleux, Sylvie


    Glycosaminoglycan (GAG) assembly initiates through the formation of a linkage tetrasaccharide region serving as a primer for both chondroitin sulfate (CS) and heparan sulfate (HS) chain polymerization. A possible role for sulfation of the linkage structure and of the constitutive disaccharide unit of CS chains in the regulation of CS-GAG chain synthesis has been suggested. To investigate this, we determined whether sulfate substitution of galactose (Gal) residues of the linkage region or of N-acetylgalactosamine (GalNAc) of the disaccharide unit influences activity and specificity of chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1), a key glycosyltransferase of CS biosynthesis. We synthesized a series of sulfated and unsulfated analogs of the linkage oligosaccharide and of the constitutive unit of CS and tested these molecules as potential acceptor substrates for the recombinant human CSGalNAcT-1. We show here that sulfation at C4 or C6 of the Gal residues markedly influences CSGalNAcT-1 initiation activity and catalytic efficiency. Kinetic analysis indicates that CSGalNAcT-1 exhibited 3.6-, 1.6-, and 2.2-fold higher enzymatic efficiency due to lower K(m) values toward monosulfated trisaccharides substituted at C4 or C6 position of Gal1, and at C6 of Gal2, respectively, compared with the unsulfated oligosaccharide. This highlights the critical influence of Gal substitution on both CSGalNAcT-1 activity and specifity. No GalNAcT activity was detected toward sulfated and unsulfated analogs of the CS constitutive disaccharide (GlcA-β1,3-GalNAc), indicating that CSGalNAcT-1 was involved in initiation but not in elongation of CS chains. Our results strongly suggest that sulfation of the linkage region acts as a regulatory signal in CS chain initiation.

  19. Chondroitin sulfate proteoglycan-4: a biomarker and a potential immunotherapeutic target for canine malignant melanoma. (United States)

    Mayayo, Saray Lorda; Prestigio, Simone; Maniscalco, Lorella; La Rosa, Giuseppe; Aricò, Arianna; De Maria, Raffaella; Cavallo, Federica; Ferrone, Soldano; Buracco, Paolo; Iussich, Selina


    Chondroitin sulfate proteoglycan-4 (CSPG4), also known as high molecular weight-melanoma associated antigen (HMW-MAA), is a membrane-bound chondroitin sulfate proteoglycan highly expressed by human melanoma cells. This phylogenetically conserved tumour antigen plays an important biological role in human melanoma, where it is used as a marker to diagnose forms with unusual characteristics, such as desmoplastic melanoma, and to detect melanoma cells in lymph nodes and peripheral blood, and as a target for immunotherapy because of its restricted distribution in normal tissues. To identify suitable targets to develop novel approaches of treating canine melanoma, CSPG4 was studies to see whether it is expressed in canine malignant melanomas. Immunohistochemical staining of 65 canine malignant melanomas with an anti-human CSPG4-specific antibody detected CSPG4 in 37 cases (56.9%). Positive staining was more frequent, albeit not significantly, in amelanotic compared to melanotic tumours and was statistically associated with tumours having both melanin and the epithelioid histotype. The frequency of CSPG4 expression was similar to that of other melanoma antigens used as diagnostic markers for canine malignant melanoma, such as Melan A and the protein recognized by the PNL2 monoclonal antibody. The results suggest that CSPG4 constitutes a new potential immunohistochemical marker of canine malignant melanoma and may represent an immunotherapeutic target as in humans.

  20. Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix. (United States)

    Kokenyesi, R

    Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.

  1. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS from Sea Cucumber Cucumaria frondosa

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Liu


    Full Text Available The low-molecular-weight fucosylated chondroitin sulfate (LFCS was prepared from native fucosylated chondroitin sulfate (FCS, which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of caspase-3 activity in LLC cells. Meanwhile, LFCS suppressed the expression of vascular endothelial growth factor (VEGF, increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1 and downregulated the matrix metalloproteinases (MMPs level. Furthermore, LFCS significantly suppressed the activation of ERK1/2/p38 MAPK/NF-κB pathway, which played a prime role in expression of MMPs. All of these data indicate LFCS may be used as anti-cancer drug candidates and deserve further study.

  2. Inter vs. intraglycosidic acetal linkages control sulfation pattern in semi-synthetic chondroitin sulfate. (United States)

    Laezza, Antonio; De Castro, Cristina; Parrilli, Michelangelo; Bedini, Emiliano


    Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units. This difference was ascribed to the stabilization of a labile interglycosidic benzylidene acetal involving positions O-3 and O-6 of some GlcA and GalNAc, respectively, when the benzylidene-acetylation reactions were conducted in a one-pot fashion. Isolation and characterization of a polysaccharide intermediate showing interglycosidic acetal moieties was accomplished.

  3. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate. (United States)

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo


    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug.

  4. Increased deposition of chondroitin/dermatan sulfate glycosaminoglycan and upregulation of β1,3-glucuronosyltransferase I in pulmonary fibrosis. (United States)

    Venkatesan, Narayanan; Ouzzine, Mohamed; Kolb, Martin; Netter, Patrick; Ludwig, Mara S


    Pulmonary fibrosis (PF) is characterized by increased deposition of proteoglycans (PGs), in particular core proteins. Glycosaminoglycans (GAGs) are key players in tissue repair and fibrosis, and we investigated whether PF is associated with changes in the expression and structure of GAGs as well as in the expression of β1,3-glucuronosyltransferase I (GlcAT-I), a rate-limiting enzyme in GAG synthesis. Lung biopsies from idiopathic pulmonary fibrosis (IPF) patients and lung tissue from a rat model of bleomycin (BLM)-induced PF were immunostained for chondroitin sulfated-GAGs and GlcAT-I expression. Alterations in disaccharide composition and sulfation of chondroitin/dermatan sulfate (CS/DS) were evaluated by fluorophore-assisted carbohydrate electrophoresis (FACE) in BLM rats. Lung fibroblasts isolated from control (saline-instilled) or BLM rat lungs were assessed for GAG structure and GlcAT-I expression. Disaccharide analysis showed that 4- and 6-sulfated disaccharides were increased in the lungs and lung fibroblasts obtained from fibrotic rats compared with controls. Fibrotic lung fibroblasts and transforming growth factor-β(1) (TGF-β(1))-treated normal lung fibroblasts expressed increased amounts of hyaluronan and 4- and 6-sulfated chondroitin, and neutralizing anti-TGF-β(1) antibody diminished the same. TGF-β(1) upregulated GlcAT-I and versican expression in lung fibroblasts, and signaling through TGF-β type I receptor/p38 MAPK was required for TGF-β(1)-mediated GlcAT-I and CS-GAG expression in fibroblasts. Our data show for the first time increased expression of CS-GAGs and GlcAT-I in IPF, fibrotic rat lungs, and fibrotic lung fibroblasts. These data suggest that alterations of sulfation isomers of CS/DS and upregulation of GlcAT-I contribute to the pathological PG-GAG accumulation in PF.

  5. Photorefractive keratectomy: measuring the matrix metalloproteinase activity and chondroitin sulfate concentration in tear fluid

    Directory of Open Access Journals (Sweden)

    Tetsuya Mutoh


    Full Text Available Tetsuya Mutoh, Masaya Nishio, Yukihiro Matsumoto, Kiyomi Arai, Makoto ChikudaDepartment of Ophthalmology, Dokkyo Medical University Koshigaya Hospital, Saitama, JapanAbstract: We herein report the case of a 20-year-old man who underwent a photorefractive keratectomy (PRK. We measured matrix metalloproteinase-9 (MMP-9 activity and chondroitin 4 sulfate and chondroitin 6 sulfate concentrations in tear fluid. Tear fluid was collected preoperatively via microcapillary tube, and was collected postoperatively on the first and fourth days, and after one week, one month, three months, and six months. Samples were formulated by dilution with 200 µL of saline. MMP-9 activity was analyzed by an enzyme immunocapture activity assay, and the concentrations of chondroitin sulfate were analyzed by enzyme-linked immunosorbent assay. No complications were observed after surgery, except for a minimal subepithelial haze. Although MMP-9 activity changed on the fourth postoperative day, the activity changed only minimally at this time. Chondroitin 4 sulfate concentrations in tear fluid increased dramatically from one week to one month, decreased transiently at three months, and increased by six months. The chondroitin 6 sulfate concentration did not normalize within one week, and decreased from one week to three months compared with the preoperative score, and was close to the preoperative score at six months. We conclude that corneal wound healing was still incomplete six months after PRK, and chondroitin 4 sulfate appears to be critical in this process.Keywords: matrix metalloproteinase, chondroitin sulfate, human tear fluid, photorefractive keratectomy, corneal wound healing

  6. [Glucosamine and chondroitin sulfate do not enhance anticoagulation activity of warfarin in mice in vivo]. (United States)

    Yokotani, Kaori; Nakanishi, Tomoko; Chiba, Tsuyoshi; Sato, Yoko; Umegaki, Keizo


    As an adverse event, it has been reported that anticoagulation activity of warfarin was enhanced by simultaneous intakes of glucosamine and chondroitin sulfate. However, it is unclear whether these is a causative relation. Therefore, in the present study, we evaluated whether glucosamine and chondroitin sulfate enhanced the anticoagulant action of warfarin in mice in vivo, focusing on hepatic cytochrome P450 (CYPs)-mediated mechanisms. Mice were fed a diet containing various doses of glucosamine or chondroitin sulfate (0, 0.3, 1% (w/w)) for 2 weeks, and given warfarin by gavage on the last 2 days of the treatment regimen. Doses of glucosamine and chondroitin sulfate were 443 mg/kg and 464 mg/kg in the 0.3% diet groups, and 1523 mg/kg and 1546 mg/kg in the 1% diet groups. We found that 1% glucosamine significantly shortened prothrombin time and thrombotest Owen in animals given warfarin. However, the two ingredients did not induce or inhibit hepatic CYPs, including (S)-warfarin hydroxylase. These findings suggest that glucosamine and chondroitin sulfate do not affect the anticoagulation activity of warfarin through hepatic CYP mediated-mechanisms.

  7. Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPσ. (United States)

    Pendleton, James C; Shamblott, Michael J; Gary, Devin S; Belegu, Visar; Hurtado, Andres; Malone, Misti L; McDonald, John W


    CNS damage often results in demyelination of spared axons due to oligodendroglial cell death and dysfunction near the injury site. Although new oligodendroglia are generated following CNS injury and disease, the process of remyelination is typically incomplete resulting in long-term functional deficits. Chondroitin sulfate proteoglycans (CSPGs) are upregulated in CNS grey and white matter following injury and disease and are a major component of the inhibitory scar that suppresses axon regeneration. CSPG inhibition of axonal regeneration is mediated, at least in part, by the protein tyrosine phosphatase sigma (PTPσ) receptor. Recent evidence demonstrates that CSPGs inhibit OL process outgrowth, however, the means by which their effects are mediated remains unclear. Here we investigate the role of PTPσ in CSPG inhibition of OL function. We found that the CSPGs, aggrecan, neurocan and NG2 all imposed an inhibitory effect on OL process outgrowth and myelination. These inhibitory effects were reversed by degradation of CSPGs with Chondroitinase ABC prior to OL exposure. RNAi-mediated down-regulation of PTPσ reversed the inhibitory effect of CSPGs on OL process outgrowth and myelination. Likewise, CSPG inhibition of process outgrowth and myelination was significantly reduced in cultures containing PTPσ(-/-) OLs. Finally, inhibition of Rho-associated kinase (ROCK) increased OL process outgrowth and myelination during exposure to CSPGs. These results suggest that in addition to their inhibitory effects on axon regeneration, CSPGs have multiple inhibitory actions on OLs that result in incomplete remyelination following CNS injury. The identification of PTPσ as a receptor for CSPGs, and the participation of ROCK downstream of CSPG exposure, reveal potential therapeutic targets to enhance white matter repair in the damaged CNS.

  8. Chondroitin-6-sulfate-containing proteoglycan: a new component of human skin dermoepidermal junction

    DEFF Research Database (Denmark)

    Fine, J D; Couchman, J R


    as 54 gestational days. Indirect immunoelectron microscopy and NaCl-split skin studies were performed to ultrastructurally localize the antigen; immune deposits were detectable within the lamina densa in chondroitinase-treated skin. These findings demonstrate that chondroitin sulfate proteoglycan...... chondroitin sulfate proteoglycan is present in adult, neonatal, and/or fetal skin, and if present, its ultrastructural localization. Indirect immunofluorescence was performed on human adult, neonatal, and fetal skin. To detect the antigen, specimens were pretreated with chondroitinase ABC; absence of enzyme...... treatment served as negative control. Chondroitin sulfate proteoglycan was detectable in linear homogeneous array along the dermoepidermal junction and within vascular (and when present, adnexal) basement membranes in both adult and neonatal skin. In fetal skin, basement membrane staining was noted as early...

  9. Buyang Huanwu Decoction inhibits the expression of chondroitin sulfate proteoglycans in injuried spinal cord of rat%补阳还五汤抑制脊髓损伤区内硫酸软骨素蛋白聚糖表达的实验研究

    Institute of Scientific and Technical Information of China (English)

    郑格琳; 张平; 郭洁; 刘恩


    目的:研究补阳还五汤对大鼠脊髓损伤区硫酸软骨素蛋白聚糖(CSPGs)表达的抑制作用.方法:利用脊髓半横断损伤大鼠模型,将SD大鼠随机分为正常组、空白对照组和补阳还五汤治疗组、阳性对照组(激素组),每组再随机分为7d、15d、30d等3个时间点,通过免疫组织化学染色检测各组脊髓损伤区硫酸软骨素蛋白聚糖表达的差异;结果:补阳还五汤组(0.85±0.03)与空白对照组(1.62±0.06)相比,脊髓损伤区内硫酸软骨素蛋白聚糖表达受到明显抑制,差异有极显著性差异(P0.05);结论:补阳还五汤可以抑制脊髓损伤区胶质瘢痕内CSPG的表达,从而抑制CSPG对轴突再生的抑制作用,可能是其促进脊髓损伤后后神经功能恢复的机制之一.%Objective: To study whether Buyang Huanwu Decoction can inhibit the expression of chondroitin sulfate proteoglycans in the injuried spinal cord of rat. Methods: SD rats were selected and divided into four groups at random: normal group, control group, Buyan Huanwu Decoction group, methylprednisolone group. The expression of chondroitin sulfate proteoglycans was detected by immunohistochemistry method. Results: The expression of chondroitin sulfate proteoglycans in the injuried spinal cord was apparently inhibited by Buyang Huanwu Decoction ( 0.85±0.03 ), compared with control group (1.62±0.06 ) (P<0.01). But the expression of chondroitin sulfate proteoglycans in the injuried spinal cord was not inhibited by methylprednisolone (1.76±0.04 ). Conclusion: Buyang Huanwu Decoction can inhibit the expression of chondroitin sulfate proteogiycans which is the inhibitor of axon regeneration. So this function may be one of the mechanism that Buyang Hnanwu Decoction can promote the functional recovery after spinal cord injury.

  10. Discovery of a TNF-α Antagonist Using Chondroitin Sulfate Microarrays


    Tully, Sarah E.; Rawat, Manish; Hsieh-Wilson, Linda C.


    We report the first example of synthetic chondroitin sulfate (CS) microarrays to rapidly identify glycosaminoglycan−protein interactions and probe the specificity of proteins for distinct sulfation sequences. Using the microarrays, we identify a novel interaction between CS and TNF-α, a proinflammatory cytokine involved in rheumatoid arthritis, Crohn's disease, and psoriasis. Moreover, we demonstrate that CS-E tetrasaccharides and polysaccharides enriched in the CS-E sulfation motif can inhib...

  11. Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan

    Directory of Open Access Journals (Sweden)

    Shinji Miyata


    Full Text Available Perineuronal nets (PNNs are lattice-like extracellular matrix structures composed of chondroitin sulfate proteoglycans (CSPGs. The appearance of PNNs parallels the decline of neural plasticity, and disruption of PNNs reactivates neural plasticity in the adult brain. We previously reported that sulfation patterns of chondroitin sulfate (CS chains on CSPGs influenced the formation of PNNs and neural plasticity. However, the mechanism of PNN formation regulated by CS sulfation remains unknown. Here we found that overexpression of chondroitin 6-sulfotransferase-1 (C6ST-1, which catalyzes 6-sulfation of CS chains, selectively decreased aggrecan, a major CSPG in PNNs, in the aged brain without affecting other PNN components. Both diffuse and PNN-associated aggrecans were reduced by overexpression of C6ST-1. C6ST-1 increased 6-sulfation in both the repeating disaccharide region and linkage region of CS chains. Overexpression of 6-sulfation primarily impaired accumulation of aggrecan in PNNs, whereas condensation of other PNN components was not affected. Finally, we found that increased 6-sulfation accelerated proteolysis of aggrecan by a disintegrin and metalloproteinase domain with thrombospondin motif (ADAMTS protease. Taken together, our results indicate that sulfation patterns of CS chains on aggrecan influenced the stability of the CSPG, thereby regulating formation of PNNs and neural plasticity.

  12. Characterization and application of chondroitin sulfate/polyvinyl alcohol nanofibres prepared by electrospinning. (United States)

    Guo, Junxia; Zhou, Huitong; Akram, Muhammad Yasir; Mu, Xueyan; Nie, Jun; Ma, Guiping


    Composite nanofibres were prepared by electrospinning from a solution of chondroitin sulfate and polyvinyl alcohol. The chondroitin sulfate/polyvinyl alcohol (CS/PVA) mass ratios of 7/3 has a uniform and smooth morphology, and the average diameter of the nanofibres was 136nm. Combretastatin A-4 phosphate was loaded on the nanofibres and used as a model for testing drug release from the nanofibres crosslinked with glutaric dialdehyde. The morphology and structure of the nanofibres was determined using scanning electron microscopy. In order to assess their possible application to tissue engineering scaffolds, the toxicity and cytocompatibility of the nanofibres were tested by methylthiazolydiphenyl-tetrazolium bromide assay.

  13. Glycosaminoglycan modifications in Duchenne muscular dystrophy: specific remodeling of chondroitin sulfate/dermatan sulfate. (United States)

    Negroni, Elisa; Henault, Emilie; Chevalier, Fabien; Gilbert-Sirieix, Marie; Van Kuppevelt, Toin H; Papy-Garcia, Dulce; Uzan, Georges; Albanese, Patricia


    Widespread skeletal muscle degeneration and impaired regeneration lead to progressive muscle weakness and premature death in patients with Duchenne muscular dystrophy (DMD). Dystrophic muscles are progressively replaced by nonfunctional tissue because of exhaustion of muscle precursor cells and excessive accumulation of extracellular matrix (ECM). Sulfated glycosaminoglycans (GAGs) are components of the ECM and are increasingly implicated in the regulation of biologic processes, but their possible role in the progression of DMD pathology is not understood. In the present study, we performed immunohistochemical and biochemical analyses of endogenous GAGs in skeletal muscle biopsies of 10 DMD patients and 11 healthy individuals (controls). Immunostaining targeted to specific GAG species showed greater deposition of chondroitin sulfate (CS)/dermatan (DS) sulfate in DMD patient biopsies versus control biopsies. The selective accumulation of CS/DS in DMD biopsies was confirmed by biochemical quantification assay. In addition, high-performance liquid chromatography analysis demonstrated a modification of the sulfation pattern of CS/DS disaccharide units in DMD muscles. In conclusion, our data open up a new path of investigation and suggest that GAGs could represent a new and original therapeutic target for improving the success of gene or cell therapy for the treatment of muscular dystrophies.

  14. Perlecan and basement membrane-chondroitin sulfate proteoglycan (bamacan) are two basement membrane chondroitin/dermatan sulfate proteoglycans in the Engelbreth-Holm-Swarm tumor matrix

    DEFF Research Database (Denmark)

    Couchman, J R; Kapoor, R; Sthanam, M;


    The presence of proteoglycans bearing galactosaminoglycan chains has been reported, but none has been identified previously in the matrix of the Engelbreth-Holm-Swarm tumor, which is a source of several basement membrane components. This tumor matrix contains perlecan, a large, low buoyant density...... heparan sulfate proteoglycan, widespread in many basement membranes and connective tissues. We now identify two distinct proteoglycan species from this tumor source, which are substituted with galactosaminoglycans and which show basement membrane localization by immunohistochemistry. One species...... is perlecan but, in addition to being present as a heparan sulfate proteoglycan, it is also present as a hybrid molecule, with dermatan sulfate chains. A minor population of perlecan apparently lacks heparan sulfate chains totally, and some of this is substituted with chondroitin sulfate. The second species...

  15. Sulfation and Cation Effects on the Conformational Properties of the Glycan Backbone of Chondroitin Sulfate Disaccharides (United States)

    Faller, Christina E.; Guvench, Olgun


    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic “backbone” has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high resolution, high precision free energies of CS disaccharides as a function of all possible backbone geometries. All ten disaccharides (β1-3 vs. β1-4 linkage x five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA –COO− moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to –COO− can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to –COO− results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing

  16. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik


    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  17. Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates, and related N-acetyl glycosamines

    DEFF Research Database (Denmark)

    Rees, Martin D; Hawkins, Clare L; Davies, Michael Jonathan


    Myeloperoxidase released from activated phagocytes reacts with H(2)O(2) in the presence of chloride ions to give hypochlorous acid. This oxidant has been implicated in the fragmentation of glycosaminoglycans, such as hyaluronan and chondroitin sulfates. In this study it is shown that reaction...

  18. [Determination of chondroitin sulfate in food supplements by capillary zone electrophoresis]. (United States)

    Arianova, E A; Bogachuk, M N; Perederiaev, O I


    Chondroitin sulfate is widely used as an ingredient in food supplements. A method of capillary zone electrophoresis for qualitative and quantitative analysis of chondroitin sulfate in food supplements has been developed. The system of capillary electrophoresis Agilent 3D CE (USA) with diode array detector (spectral range 190-400 nm, 192 nm was used to quantity), quartz capillary Agilent with effective length 56 cm (USA) (internal diameter 50 microm, temperature 25 degrees C, 30 kV, negative polarity) and 50 mM phosphate buffer (pH 3.5) has been used. Quantity limit of this method was 0.5 g/kg. It was used for determination of content of chondroitin sulfate in 14 food supplements. The chondroitin sulfate was detected in all test samples with deviation from the declared content (25-600 mg per capsule or tablet) at the level of 1 to 9%. The applicability of the elaborated method for assessing of food supplements quality has been shown.

  19. Conformational studies on five octasaccharides isolated from chondroitin sulfate using NMR spectroscopy and molecular modeling

    NARCIS (Netherlands)

    Blanchard, V.; Chevalier, F.; Imberty, A.; Leeflang, B.R.; Sugahara, K.; Kamerling, J.P.


    Chondroitin sulfate proteoglycans (CS-PG) are involved in the regulation of the central nervous system in vertebrates due to their presence on cell surfaces and in the extracellular matrix of tissues. The CS moieties are built up from repeating -4)GlcA(β 1-3)GalNAc(β 1- disaccharide units, partly O-

  20. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R.L.; Austen, K.F. (Brigham and Women' s Hospital, Boston, MA (USA)); Fox, C.C.; Lichtenstein, L.M. (Johns Hopkins School of Medicine, Baltimore, MD (USA))


    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of {sup 35}S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although ({sup 35}S)heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. The authors demonstrate that human lung mast cells of 96% purity incorporate ({sup 35}S)sulfate into separate heparin and chondroitin sulfate proteoglycans in an {approx}2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin ({sup 35}S)sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin ({sup 35}S)sulfate E proteoglycans and the ({sup 35}S)heparin proteoglycans were exocytosed from the ({sup 35}S)sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of {sup 35}S-labeled proteoglycans reside in the secretory granules of these human lung mast cells.

  1. What is the current status of chondroitin sulfate and glucosamine for the treatment of knee osteoarthritis? (United States)

    Henrotin, Yves; Marty, Marc; Mobasheri, Ali


    Chondroitin sulfate and glucosamine sulfate exert beneficial effects on the metabolism of in vitro models of cells derived from synovial joints: chondrocytes, synoviocytes and cells from subchondral bone, all of which are involved in osteoarthritis (OA). They increase type II collagen and proteoglycan synthesis in human articular chondrocytes and are able to reduce the production of some pro-inflammatory mediators and proteases, to reduce the cellular death process, and improve the anabolic/catabolic balance of the extracellular cartilage matrix (ECM). Clinical trials have reported a beneficial effect of chondroitin sulfate and glucosamine sulfate on pain and function. The structure-modifying effects of these compounds have been reported and analyzed in recent meta-analyses. The results for knee OA demonstrate a small but significant reduction in the rate of joint space narrowing. Chondroitin sulfate and glucosamine sulphate are recommended by several guidelines from international societies for the management of knee and hip OA, while others do not recommend these products or recommend only under condition. This comprehensive review clarifies the role of these compounds in the therapeutic arsenal for patients with knee OA.

  2. Partial Hydrolysis of the Fucosylated Chondroitin Sulfate from Sea Cucumber Isostichopus badionotus and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi-Guo; LI Guo-Yun; YE Xing-Qian; XUE Chang-Hu


    The method for preparing low molecular weight fucosylated chondroitin sulfate from sea cucumber lsostichopus badionotus using partial acid hydrolysis was reported, and its hydrolysis mechanism was also investigated. The sea cucumber chondroitin sulfate FCS was hydrolyzed under different conditions (80℃3 h and 6 h), then isolated and purified on a Bio-P-4 geltration to prepare low molecular weight fractions (LMWF-FCS). The chemical compositions of LMWF-FCS showed the branched fucose (Fuc) was cleaved during acid hydrolysis process, whereas the mole ratio of acetyl-galactosamine (GalNAc) and glucuronic acid (GlcA) in the backbone remained the same, which indicated the backbone was a typical chondroitin sulfate structure. The disaccharide composition analysis of LMWF-FCS suggested that the sulfation patterns of GalNAc in the backbone chain changed and the substitution value was reduced. Furthermore, the 1D NMR analysis illustrated the branched-Fuc was cleaved during acid hydrolysis, but their substitution patterns were not influenced, which was distinct from the previous reports that the substitutions of branched-Fuc in FCS were easy to change. Simultaneously, the sulfation pattern of GalNAc in backbone chain changed obviously in the acid hydrolysis process. The anticoagulant activity in vitro illuminated the anticoagulant activity of the degradation products over time in the acid hydrolysis are gradually declined, but still kept good. Therefore, the LMWF-FCS prepared could be developed as a new anticoagulant and antithrombotic drug like low molecular weight heparin.

  3. The combined therapy with chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride does not improve joint damage in an experimental model of knee osteoarthritis in rabbits. (United States)

    Roman-Blas, Jorge A; Mediero, Aránzazu; Tardío, Lidia; Portal-Nuñez, Sergio; Gratal, Paula; Herrero-Beaumont, Gabriel; Largo, Raquel


    Osteoarthritis is the most common chronic joint disorder especially during aging. Although with controversies, glucosamine, both in its forms of sulfate and hydrochloride, and chondroitin sulfate are commonly employed to treat osteoarthritis. Due to the modest improve in the symptoms observed in patients treated with these drugs alone, a formulation combining both agents has been considered. The discrepant results achieved for pain control or structural improvement in osteoarthritis patients has been attributed to the quality of chemical formulations or different bias in clinical studies. The current study has been designed to test the effects of two different combined formulations with adequate pharmaceutical grade of these drugs in osteoarthritic joints, and to explore the underlying mechanisms modulated by both formulations in different osteoarthritis target tissues. Knee osteoarthritis was surgically induced in experimental rabbits. Some animals received the combined therapy (CT)1, (chondroitin sulfate 1200mg/day + glucosamine sulfate 1500mg/day), or the CT2 ((chondroitin sulfate 1200mg/day + glucosamine hydrochloride 1500mg/day). Neither CT1 nor CT2 significantly modified the cartilage damage or the synovial inflammation observed in osteoarthritic animals. Treatments were also unable to modify the presence of pro-inflammatory mediators, and the synthesis of metalloproteinases in the cartilage or in the synovium of osteoarthritic animals. Combined therapies did not modify the decrease in the subchondral bone mineral density observed in osteoarthritic rabbits. Therapies of chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride failed to improve structural damage or to ameliorate the inflammatory profile of joint tissues during experimental osteoarthritis.

  4. NG2, a member of chondroitin sulfate proteoglycans family mediates the inflammatory response of activated microglia. (United States)

    Gao, Q; Lu, J; Huo, Y; Baby, N; Ling, E A; Dheen, S T


    Activation of microglial cells, the resident immune cells of the CNS causes neurotoxicity through the release of a wide array of inflammatory mediators including proinflammatory cytokines, chemokines and reactive oxygen species. In this study, we have investigated the expression of NG2 (also known as CSPG4), one of the members of transmembrane chondroitin sulfate proteoglycans family, in microglial cells and its role on inflammatory reaction of microglia by analyzing the expression of the proinflammation cytokines (interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha)), chemokines (stromal cell-derived factor-1alpha and monocyte chemotactic protein-1) and inducible nitric oxide synthase (iNOS). NG2 expression was not detectable in microglial cells expressing OX-42 in the brains of 1-day old postnatal rat pups and adult rats; it was, however, induced in activated microglial cells in pups and adult rats injected with lipopolysaccharide (LPS). In vitro analysis further confirmed that LPS induced the expression of NG2 in primary microglial cells and this was inhibited by dexamethasone. It has been well demonstrated that LPS induces the expression of iNOS and proinflammatory cytokines in microglia. However in this study, LPS did not induce the mRNA expression of iNOS and cytokines including IL-1beta, and TNF-alpha in microglial cells transfected with CSPG4 siRNA. On the contrary, mRNA expression of chemokines such as monocyte chemoattractant protein-1 (MCP-1) and stromal cell-derived factor-1alpha (SDF-1alpha) was significantly increased in LPS-activated microglial cells after CSPG4 siRNA transfection in comparison with the control. The above results indicate that NG2 mediates the induction of iNOS and inflammatory cytokine expression, but not the chemokine expression in activated microglia.

  5. A Novel Polybrene/Chondroitin Sulfate C Double Coated Capillary and Its Application in Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    DU,Ying-Xiang(杜迎翔); HONDA,Susumu; TAGA,Atsushi; LIU,Wen-Ying(刘文英); SUZUKI,Shigeo


    A new capillary coated by double polymer, polybrene/chondroitin sulfate C (P/CC), was developed using a simple procedure. The P/CC double coated capillary showed long lifetime,strong chemical stability and good reproducibility. It endured during more than 100 replicated analyses and was also tolerant to HCl (1 mol/L), NaOH (0.01 mol/L), CH3OH and CH3CN. The P/CC double coated capillary can be applied to basic drug analyses. The adsorption of basic drugs to the capillary wall was suppressed and the peak tailing greatly decreased. The use of the P/CC double coated capillary allowed excelent separation of the enantiomers of some basic drugs by using chondroitin sulfate C as the chiral selector, ami the peak symmetry of basic drugs was further improved under these conditions.

  6. Preparation and Characterization of PDLLA/ Chondroitin Sulfate/Chitosan Scaffold for Peripheral Nerve Regeneration

    Institute of Scientific and Technical Information of China (English)

    XU Haixing; YAN Yuhua; WAN Tao; LI Shipu


    A novel bioactive and bioresorbable PDLLA/chondroitin sulfate/chitosan scaffold was prepared via layer-by-layer(LBL) electrostatic-self-assembly (ESA) and the thermally induced phase separation (TIPS) technique. Chondroitin sulfate and chitosan were alternately deposited on the activated PDLLA substrate.The deposition process was monitored by UV-Vis absorbance spectroscopy. After frozen and lyophilized, the scaffold was characterized by attenuated total reflection (ATR)-FT-IR, XPS, SEM and AFM. The results showed that the scaffold was modified uniformly with a dense inner layer with few detectable pores and a porous sponge outer layer with the pore size about 5 μm, there was an obvious across section and the average thickness of each layer was about 9.4 nm.

  7. Hepatotoxicity associated with glucosamine and chondroitin sulfate in patients with chronic liver disease. (United States)

    Cerda, Cristian; Bruguera, Miguel; Parés, Albert


    Glucosamine and chondroitin sulfate are molecules involved in the formation of articular cartilage and are frequently used for symptom relief in patients with arthrosis. These molecules are well tolerated with scarce secondary effects. Very few cases of possible hepatotoxicity due to these substances have been described. The aim of this paper is to report the frequency of presumed glucosamine hepatotoxicity in patients with liver disease. A questionnaire was given to 151 consecutive patients with chronic liver disease of different etiology (mean age 59 years, 56.9% women) attended in an outpatient clinic with the aim of evaluating the frequency of consumption of these drugs and determine whether their use coincided with a worsening in liver function test results. Twenty-three patients (15.2%) recognized having taken products containing glucosamine or chondroitin sulfate previously or at the time of the questionnaire. Review of the clinical records and liver function tests identified 2 patients presenting an elevation in aminotransferase values temporarily associated with glucosamine treatment; one of the cases simultaneously presented a skin rash attributed to the drug. Review of these two patients and the cases described in the literature suggest toxicity of glucosamine and chondroitin sulfate. The clinical spectrum is variable, and the mechanism of toxicity is not clear but may involve reactions of hypersensitivity. The consumption of products containing glucosamine and/or chondroitin sulfate is frequent among patients with chronic liver diseases and should be taken into account on the appearance of alterations in liver function tests not explained by the underlying disease.

  8. Ultrastructural immunocytochemical localization of chondroitin sulfate proteoglycan in Bruch's membrane of the rat

    DEFF Research Database (Denmark)

    Lin, W L; Essner, E; McCarthy, K J


    Two monoclonal antibodies (Mab 4D5 and 2D6) raised against the core protein of a basement membrane chondroitin sulfate proteoglycan from Reichert's membrane of the rat, were used for ultrastructural immunoperoxidase localization of this protein in Bruch's membrane of the rat. Immunoreactivity for...... for both antibodies was found in the basal lamina (basement membrane) of the choriocapillary endothelium and retinal pigment epithelium, in collagen fibers in the collagenous zones, and surrounding the elastic layer....

  9. Intestinal mucosal mast cells from rats infected with Nippostrongylus brasiliensis contain protease-resistant chondroitin sulfate di-B proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R.L.; Lee, T.D.G.; Seldin, D.C.; Austen, K.F.; Befus, A.D.; Bienenstock, J.


    Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of (/sup 35/S) sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the /sup 35/S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The isolated proteoglycans were of approx. 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched populations of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leumekia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans are all highly sulfated, protease-resistant proteoglycans.

  10. Roles of chondroitin sulfate proteoglycan 4 in fibrogenic/adipogenic differentiation in skeletal muscle tissues. (United States)

    Takeuchi, Shiho; Nakano, Shin-Ichi; Nakamura, Katsuyuki; Ozoe, Atsufumi; Chien, Peggie; Yoshihara, Hidehito; Hakuno, Fumihiko; Matsuwaki, Takashi; Saeki, Yasushi; Takahashi, Shin-Ichiro; Yamanouchi, Keitaro; Nishihara, Masugi


    Intramuscular adipose tissue and fibrous tissue are observed in some skeletal muscle pathologies such as Duchenne muscular dystrophy and sarcopenia, and affect muscle strength and myogenesis. They originate from common fibrogenic/adipogenic cells in the skeletal muscle. Thus, elucidating the regulatory mechanisms underlying fibrogenic/adipogenic cell differentiation is an important step toward the mediation of these disorders. Previously, we established a highly adipogenic progenitor clone, 2G11, from rat skeletal muscle and showed that basic fibroblast growth factor (bFGF) is pro-adipogenic in these cells. Here, we demonstrated that 2G11 cells give rise to fibroblasts upon transforming growth factor (TGF)-β1 stimulation, indicating that they possess mesenchymal progenitor cells (MPC)-like characteristics. The previously reported MPC marker PDGFRα is expressed in other cell populations. Accordingly, we produced monoclonal antibodies that specifically bind to 2G11 cell surface antigens and identified chondroitin sulfate proteoglycan 4 (CSPG4) as a potential MPC marker. Based on an RNA interference analysis, we found that CSPG4 is involved in both the pro-adipogenic effect of bFGF and in TGF-β-induced alpha smooth muscle actin expression and stress fiber formation. By establishing an additional marker for MPC detection and characterizing its role in fibrogenic/adipogenic differentiation, these results will facilitate the development of effective treatments for skeletal muscle pathologies.

  11. Ultraviolet irradiation induces the accumulation of chondroitin sulfate, but not other glycosaminoglycans, in human skin. (United States)

    Werth, Benjamin Boegel; Bashir, Muhammad; Chang, Laura; Werth, Victoria P


    Ultraviolet (UV) light alters cutaneous structure and function. Prior work has shown loss of dermal hyaluronan after UV-irradiation of human skin, yet UV exposure increases total glycosaminoglycan (GAG) content in mouse models. To more fully describe UV-induced alterations to cutaneous GAG content, we subjected human volunteers to intermediate-term (5 doses/week for 4 weeks) or single-dose UV exposure. Total dermal uronyl-containing GAGs increased substantially with each of these regimens. We found that UV exposure substantially increased dermal content of chondroitin sulfate (CS), but not hyaluronan, heparan sulfate, or dermatan sulfate. UV induced the accumulation of both the 4-sulfated (C4S) and 6-sulfated (C6S) isoforms of CS, but in distinct distributions. Next, we examined several CS proteoglycan core proteins and found a significant accumulation of dermal and endothelial serglycin, but not of decorin or versican, after UV exposure. To examine regulation in vitro, we found that UVB in combination with IL-1α, a cytokine upregulated by UV radiation, induced serglycin mRNA in cultured dermal fibroblasts, but did not induce the chondroitin sulfate synthases. Overall, our data indicate that intermediate-term and single-dose UVB exposure induces specific GAGs and proteoglycan core proteins in human skin in vivo. These molecules have important biologic functions and contribute to the cutaneous response to UV.

  12. Ultraviolet irradiation induces the accumulation of chondroitin sulfate, but not other glycosaminoglycans, in human skin.

    Directory of Open Access Journals (Sweden)

    Benjamin Boegel Werth

    Full Text Available Ultraviolet (UV light alters cutaneous structure and function. Prior work has shown loss of dermal hyaluronan after UV-irradiation of human skin, yet UV exposure increases total glycosaminoglycan (GAG content in mouse models. To more fully describe UV-induced alterations to cutaneous GAG content, we subjected human volunteers to intermediate-term (5 doses/week for 4 weeks or single-dose UV exposure. Total dermal uronyl-containing GAGs increased substantially with each of these regimens. We found that UV exposure substantially increased dermal content of chondroitin sulfate (CS, but not hyaluronan, heparan sulfate, or dermatan sulfate. UV induced the accumulation of both the 4-sulfated (C4S and 6-sulfated (C6S isoforms of CS, but in distinct distributions. Next, we examined several CS proteoglycan core proteins and found a significant accumulation of dermal and endothelial serglycin, but not of decorin or versican, after UV exposure. To examine regulation in vitro, we found that UVB in combination with IL-1α, a cytokine upregulated by UV radiation, induced serglycin mRNA in cultured dermal fibroblasts, but did not induce the chondroitin sulfate synthases. Overall, our data indicate that intermediate-term and single-dose UVB exposure induces specific GAGs and proteoglycan core proteins in human skin in vivo. These molecules have important biologic functions and contribute to the cutaneous response to UV.

  13. Immunological characterization of a basement membrane-specific chondroitin sulfate proteoglycan

    DEFF Research Database (Denmark)

    McCarthy, K J; Accavitti, M A; Couchman, J R


    -[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate buffer followed by cesium chloride density-gradient ultracentrifugation under dissociative conditions. The proteoglycans were subsequently purified from the two most dense fractions (greater than 1.3 g/ml) by ion-exchange chromatography. Mice were immunized...... with the proteoglycan preparation and four mAbs recognizing the core protein of a high-density, buoyant chondroitin sulfate proteoglycan were raised. Confirmation of antibody specificity was carried out by the preparation of affinity columns made from each of the mAbs. Chondroitin sulfate proteoglycans (CSPGs) were...... (Mr = 5-6 x 10(5)), with a core protein of Mr = approximately 1.5-1.6 x 10(5) and composed exclusively of chondroitin sulfate chains with an average Mr = 1.6-1.8 x 10(4). In addition, a CSPG was purified from adult rat kidney, whose core protein was also Mr = 1.6 x 10(5). The proteoglycan and its core...

  14. A decorin-deficient matrix affects skin chondroitin/dermatan sulfate levels and keratinocyte function (United States)

    Nikolovska, Katerina; Renke, Jana K.; Jungmann, Oliver; Grobe, Kay; Iozzo, Renato V.; Zamfir, Alina D.; Seidler, Daniela G.


    Decorin is a small leucine-rich proteoglycan harboring a single glycosaminoglycan chain, which, in skin, is mainly composed of dermatan sulfate (DS). Mutant mice with targeted disruption of the decorin gene (Dcn−/−) exhibit an abnormal collagen architecture in the dermis and reduced tensile strength, collectively leading to a skin fragility phenotype. Notably, Ehlers-Danlos patients with mutations in enzymes involved in the biosynthesis of DS display a similar phenotype, and recent studies indicate that DS is involved in growth factor binding and signaling. To determine the impact of the loss of DS-decorin in the dermis, we analyzed the glycosaminoglycan content of Dcn−/− and wild-type mouse skin. The total amount of chondroitin/dermatan sulfate (CS/DS) was increased in the Dcn−/− skin, but was overall less sulfated with a significant reduction in bisulfated ΔDiS2,X (X=4 or 6) disaccharide units, due to the reduced expression of uronyl 2-O sulfotransferase (Ust). With increasing age, sulfation declined; however, Dcn−/− CS/DS was constantly undersulfated vis-à-vis wild-type. Functionally, we found altered fibroblast growth factor (Fgf)-7 and -2 binding due to changes in the micro-heterogeneity of skin Dcn−/− CS/DS. To better delineate the role of decorin, we used a 3D Dcn−/− fibroblast cell culture model. We found that the CS/DS extracts of wild-type and Dcn−/− fibroblasts were similar to the skin sugars, and this correlated with the lack of uronyl 2-O sulfotransferase in the Dcn−/− fibroblasts. Moreover, Ffg7 binding to total CS/DS was attenuated in the Dcn−/− samples. Surprisingly, wild-type CS/DS significantly reduced the binding of Fgf7 to keratinocytes in concentration dependent manner unlike the Dcn−/− CS/DS that only affected the binding at higher concentrations. Although binding to cell-surfaces was quite similar at higher concentrations, keratinocyte proliferation was differentially affected. Higher concentration of

  15. Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library

    DEFF Research Database (Denmark)

    Sugiura, Nobuo; Clausen, Thomas Mandel; Shioiri, Tatsuasa


    that interacts with a recombinant minimal CS-binding region of VAR2CSA (rVAR2) using a CS library of various defined lengths and sulfate compositions. The CS library was chemo-enzymatically synthesized with bacterial chondroitin polymerase and recombinant CS sulfotransferases. We found that C-4 sulfation...

  16. A Modular Approach to a Library of Semi-Synthetic Fucosylated Chondroitin Sulfate Polysaccharides with Different Sulfation and Fucosylation Patterns. (United States)

    Laezza, Antonio; Iadonisi, Alfonso; Pirozzi, Anna V A; Diana, Paola; De Rosa, Mario; Schiraldi, Chiara; Parrilli, Michelangelo; Bedini, Emiliano


    Fucosylated chondroitin sulfate (fCS)-a glycosaminoglycan (GAG) found in sea cucumbers-has recently attracted much attention owing to its biological properties. In particular, a low molecular mass fCS polysaccharide has very recently been suggested as a strong candidate for the development of an antithrombotic drug that would be safer and more effective than heparin. To avoid the use of animal sourced drugs, here we present the chemical transformation of a microbial sourced unsulfated chondroitin polysaccharide into a small library of fucosylated (and sulfated) derivatives thereof. To this aim, a modular approach based on the different combination of only five reactions was employed, with an almost unprecedented polysaccharide branching by O-glycosylation as the key step. The library was differentiated for sulfation patterns and/or positions of the fucose branches, as confirmed by detailed 2D NMR spectroscopic analysis. These semi-synthetic polysaccharides will allow a wider and more accurate structure-activity relationship study with respect to those reported in literature to date.

  17. Overproduction, purification and crystallization of a chondroitin sulfate A-binding DBL domain from a Plasmodium falciparum var2csa-encoded PfEMP1 protein

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Matthew K., E-mail: [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (United Kingdom)


    A chondroitin sulfate A-binding DBL important in placental malaria has been overproduced, purified and crystallized. Diffraction data were collected to 1.9 Å resolution. The PfEMP1 proteins of the malaria parasite Plasmodium falciparum are inserted into the membrane of infected red blood cells, where they mediate adhesion to a variety of human receptors. The DBL domains of the var2csa-encoded PfEMP1 protein play a critical role in malaria of pregnancy, tethering infected cells to the surface of the placenta through interactions with the glycosaminoglycan carbohydrate chondroitin sulfate A (CSA). A CSA-binding DBL domain has been overproduced in a bacterial expression system, purified and crystallized. Native data sets extending to 1.9 Å resolution have been collected and phasing is under way.

  18. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1

    DEFF Research Database (Denmark)

    Ayres Pereira, Marina; Mandel Clausen, Thomas; Pehrson, Caroline;


    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans......-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor...... for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial...

  19. Hexuronic acid stereochemistry determination in chondroitin sulfate glycosaminoglycan oligosaccharides by electron detachment dissociation. (United States)

    Leach, Franklin E; Ly, Mellisa; Laremore, Tatiana N; Wolff, Jeremy J; Perlow, Jacob; Linhardt, Robert J; Amster, I Jonathan


    Electron detachment dissociation (EDD) has previously provided stereo-specific product ions that allow for the assignment of the acidic C-5stereochemistry in heparan sulfate glycosaminoglycans (GAGs), but application of the same methodology to an epimer pair in the chondroitin sulfate glycoform class does not provide the same result. A series of experiments have been conducted in which glycosaminoglycan precursor ions are independently activated by electron detachment dissociation (EDD), electron induced dissociation (EID), and negative electron transfer dissociation (NETD) to assign the stereochemistry in chondroitin sulfate (CS) epimers and investigate the mechanisms for product ion formation during EDD in CS glycoforms. This approach allows for the assignment of electronic excitation products formed by EID and detachment products to radical pathways in NETD, both of which occur simultaneously during EDD. The uronic acid stereochemistry in electron detachment spectra produces intensity differences when assigned glycosidic and cross-ring cleavages are compared. The variations in the intensities of the doubly deprotonated (0,2)X(3) and Y(3) ions have been shown to be indicative of CS-A/DS composition during the CID of binary mixtures. These ions can provide insight into the uronic acid composition of binary mixtures in EDD, but the relative abundances, although reproducible, are low compared with those in a CID spectrum acquired on an ion trap. The application of principal component analysis (PCA) presents a multivariate approach to determining the uronic acid stereochemistry spectra of these GAGs by taking advantage of the reproducible peak distributions produced by electron detachment.

  20. Conformational Analysis of the Oligosaccharides Related to Side Chains of Holothurian Fucosylated Chondroitin Sulfates

    Directory of Open Access Journals (Sweden)

    Alexey G. Gerbst


    Full Text Available Anionic polysaccharides fucosylated chondroitin sulfates (FCS from holothurian species were shown to affect various biological processes, such as metastasis, angiogenesis, clot formation, thrombosis, inflammation, and some others. To understand the mechanism of FCSs action, knowledge about their spatial arrangement is required. We have started the systematic synthesis, conformational analysis, and study of biological activity of the oligosaccharides related to various fragments of these types of natural polysaccharides. In this communication, five molecules representing distinct structural fragments of chondroitin sulfate have been studied by means of molecular modeling and NMR. These are three disaccharides and two trisaccharides containing fucose and glucuronic acid residues with one sulfate group per each fucose residue or without it. Long-range C–H coupling constants were used for the verification of the theoretical models. The presence of two conformers for both linkage types was revealed. For the Fuc–GlA linkage, the dominant conformer was the same as described previously in a literature as the molecular dynamics (MD average in a dodechasaccharide FCS fragment representing the backbone chain of the polysaccharide including GalNAc residues. This shows that the studied oligosaccharides, in addition to larger ones, may be considered as reliable models for Quantitative Structure-Activity Relationship (QSAR studies to reveal pharmacophore fragments of FCS.

  1. Unusual case of drug-induced cholestasis due to glucosamine and chondroitin sulfate

    Institute of Scientific and Technical Information of China (English)

    Stephen; Ip; Rachel; Jeong; David; F; Schaeffer; Eric; M; Yoshida


    Glucosamine(GS) and chondroitin sulfate(CS) are common over-the-counter(OTC) supplements used in the treatment of osteoarthritis. These medications are seemingly safe, but there are increasing reports of hepatotoxicity with these supplements. We reported a unique case of drug-induced cholestasis caused by GS and CS in a combination tablet. The etiology of the jaundice was overlooked despite extensive investigations over a three-month period. Unlike drug-induced hepatocellular injury, drug-induced cholestatic jaundice with GS and CS has only been reported twice before. This case emphasizes the importance of a complete medication history, especially OTC supplements, in the assessment of cholestasis.

  2. [The effect of the biopolymer chondroitin sulfate on reparative regeneration of connective tissue]. (United States)

    Belova, S V; Norkin, I A; Puchinyan, D M


    The research objective is a study of an intra-articular method of introduction of the preparation "mukosat" for stimulation of reparative regeneration of connective tissue of knee joints in rabbits with an experimental arthritis. It is ascertained that intra-articular maintenance of chondroitin sulfate (the preparation "mukosat") acts as a stimulus for reparative regeneration of connective tissue thus showing up positive changes in the status of connective tissue elements of joints: decrease in glycosaminoglycan content in blood serum and normalization of the composition of glycosaminoglycan carbohydrate component. It probably depends on stimulation of biosynthesis of autologous normal glycosaminoglycans in tissues of animal knee joints.

  3. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang


    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  4. Prospect on Microbial Production of Chondroitin Sulfate%硫酸软骨素微生物生产展望

    Institute of Scientific and Technical Information of China (English)

    陈祥娥; 凌沛学


    Chondroitin sulfate is a member of the glycosaminoglycan family, with a wide range of applications. The bacterial capsular polysaccharide having similar structure to the biosynthetic precursor of chondroitin sulfate can be used as the substrate to produce chondroitin sulfate and its analogs by chemical or biosynthesis modification, which is a promising way of non-animals CS production. This review briefly introduces the relevant studies.%硫酸软骨素(CS)为糖胺聚糖家族一员,具有广泛的应用.采用与CS生物合成前体具有相似结构的细菌荚膜多糖为底物,经化学或生物修饰可生产CS及其类似物,是一种较有希望的非动物源性CS生产方式.本文对相关研究作一综述.

  5. Identification of keratan sulfate disaccharide at C-3 position of glucuronate of chondroitin sulfate from Mactra chinensis (United States)

    Higashi, Kyohei; Takeda, Keita; Mukuno, Ann; Okamoto, Yusuke; Masuko, Sayaka; Linhardt, Robert J.; Toida, Toshihiko


    Glycosaminoglycans (GAGs), including chondroitin sulfate (CS), dermatan sulfate, heparin, heparan sulfate and keratan sulfate (KS) are linear sulfated repeating disaccharide sequences containing hexosamine and uronic acid [or galactose (Gal) in the case of KS]. Among the GAGs, CS shows structural variations, such as sulfation patterns and fucosylation, which are responsible for their physiological functions through CS interaction with CS-binding proteins. Here, we solved the structure of KS-branched CS-E derived from a clam, Mactra chinensis. KS disaccharide [d-GlcNAc6S-(1→3)-β-d-Gal-(1→] was attached to the C-3 position of GlcA, and consecutive KS-branched disaccharide sequences were found in a CS chain. KS-branched polysaccharides clearly exhibited resistance to degradation by chondroitinase ABC or ACII (at low concentrations) compared with typical CS structures. Furthermore, KS-branched polysaccharides stimulated neurite outgrowth of hippocampal neurons. These results strongly suggest that M. chinensis is a rich source of KS-branched CS, and it has important biological activities. PMID:27647934

  6. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering. (United States)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue


    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  7. Chondroitin sulfate and glucosamine in the cartilage and subchondral bone repair of dogs - Histological findings

    Directory of Open Access Journals (Sweden)

    R.B. Eleotério


    Full Text Available Chondroitin and glucosamine sulfate nutraceuticals are commonly used in the management of degenerative articular disease in veterinary routine. However, there are controversies on the contribution of these substances to articular cartilage. The purpose of this study was to evaluate the efficiency of a chondroitin and glucosamine sulfate-based veterinary nutraceutical on the repair of an induced osteochondral defect in a dog femoral condyle, by macroscopic, histological and histomorphometric analyses. The nutraceutical was orally administered the day following injury induction, every 24 hours (treated group, TG, n=24, compared with animals that did not receive the product (control group, CG, n=24. Six animals per group were anaesthetized for sample collection at 15, 30, 60 and 90 days after surgery. At 15 days, defects were macroscopically filled with red-pinkish tissue. After 30 days, whitish color tissue was observed, both in TG and CG animals, with firmer consistency to touch at 60 and 90 postoperative days. Histological analysis demonstrated that, in both groups, there was initial blood clot formation, which was subsequently substituted by a fibrin net, with capillary proliferation from the adjacent bone marrow and infiltration of mesenchymal cells in clot periphery. As cellular differentiation developed, repair tissue presented a fibrocartilage aspect most of the time, and new subchondral bone formation occurred in the deepest area corresponding to the defect. Histomorphometry suggested that the nutraceutical did not favor the articular cartilage repair process. It was concluded that nutraceutical did not significantly influence chondrocytes proliferation or hyaline architecture restoration.

  8. Glucosamine and chondroitin sulfate in the repair of osteochondral defects in dogs - clinical-radiographic analysis

    Directory of Open Access Journals (Sweden)

    Renato Barros Eleotério


    Full Text Available Among the proposed treatments to repair lesions of degenerative joint disease (DJD, chondroprotective nutraceuticals composed by glucosamine and chondroitin sulfate are a non-invasive theraphy with properties that favors the health of the cartilage. Although used in human, it is also available for veterinary use with administration in the form of nutritional supplement independent of prescription, since they have registry only in the Inspection Service, which does not require safety and efficacy testing. The lack of such tests to prove efficacy and safety of veterinary medicines required by the Ministry of Agriculture and the lack of scientific studies proving its benefits raises doubts about the efficiency of the concentrations of such active substances. In this context, the objective of this study was to evaluate the efficacy of a veterinary chondroprotective nutraceutical based on chondroitin sulfate and glucosamine in the repair of osteochondral defects in lateral femoral condyle of 48 dogs, through clinical and radiographic analysis. The animals were divided into treatment group (TG and control group (CG, so that only the TG received the nutraceutical every 24 hours at the rate recommended by the manufacturer. The results of the four treatment times (15, 30, 60 and 90 days showed that the chondroprotective nutraceutical, in the rate, formulation and administration at the times used, did not improve clinical signs and radiologically did not influence in the repair process of the defects, since the treated and control groups showed similar radiographic findings at the end of the treatments.

  9. Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery (United States)

    da Silva, Indjara Mallmann; Boelter, Juliana Ferreira; da Silveira, Nádya Pesce; Brandelli, Adriano


    There is increased interest on the use of natural antimicrobial peptides in biomedicine and food preservation technologies. In this study, the antimicrobial activity of nisin encapsulated into nanovesicles containing polyanionic polysaccharides was investigated. Nisin was encapsulated in phosphatidylcholine (PC) liposomes containing chitosan or chondroitin sulfate by the thin-film hydration method and tested for antimicrobial activity against Listeria spp. The mean particle size of PC liposomes was 145 nm and varied to 210 and 134 nm with the incorporation of chitosan and chondroitin sulfate, respectively. Nisin-containing nanovesicles with and without incorporation of polysaccharides had a zeta potential values around -20 mV, showing mostly spherical structures when observed by transmission electron microscopy. Encapsulated nisin had similar efficiency as free nisin in inhibiting Listeria spp. isolated from bovine carcass, and greater efficiency in inhibiting Listeria monocytogenes. The formulation containing chitosan was more stable and more efficient in inhibiting L. monocytogenes when compared to the other nanovesicles tested. After 24 h, the viable cell counts were 2 log lower as compared with the other treatments and 7 log comparing to controls.

  10. Chondroitin Sulfate Is Indispensable for Pluripotency and Differentiation of Mouse Embryonic Stem Cells (United States)

    Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi


    Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin.

  11. Basement membrane chondroitin sulfate proteoglycan alterations in a rat model of polycystic kidney disease

    DEFF Research Database (Denmark)

    Ehara, T; Carone, F A; McCarthy, K J;


    Alterations in basement membrane components, notably proteoglycans, in a rat model of polycystic kidney disease have been investigated. Rats were fed phenol II (2-amino-4-hydroxyphenyl-5-phenyl thiazole) for 4 days and then changed to normal diet for a 7-day recovery period. Marked dilation...... of distal tubules and collecting ducts was observed by 4 days with phenol II treatment, but the morphology returned to normal after 7 days of subsequent normal diet. Staining of tissue sections with two mouse monoclonal antibodies to a recently described basement membrane chondroitin sulfate proteoglycan...... membrane heparan sulfate proteoglycan core protein related to perlecan did not diminish but rather stained affected tubules intensely, whereas laminin, on the other hand, was apparently diminished in the basement membranes of the cystic tubules. Type IV collagen staining did not change through disease...

  12. Chondroitin sulfate (United States)

    ... HIV/AIDS, heart disease, heart attack, weak bones (osteoporosis), joint pain caused by drugs used to treat breast cancer, acid reflux, high cholesterol, muscle soreness after exercise, a bladder condition called interstitial cystitis, a bone ...

  13. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities. (United States)

    Mizumoto, Shuji; Murakoshi, Saori; Kalayanamitra, Kittiwan; Deepa, Sarama Sathyaseelan; Fukui, Shigeyuki; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki


    Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.

  14. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications

    NARCIS (Netherlands)

    Abbadessa, A.; Blokzijl, M. M.; Mouser, V. H. M.; Marica, P.; Malda, J.; Hennink, W. E.; Vermonden, T.


    The aim ofthis study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA w

  15. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications

    NARCIS (Netherlands)

    Abbadessa, A; Blokzijl, M M; Mouser, V H M; Marica, P; Malda, J; Hennink, W E; Vermonden, T


    The aim of this study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA

  16. The chondroitin sulfate A-binding site of the VAR2CSA protein involves multiple N-terminal domains

    DEFF Research Database (Denmark)

    Dahlbäck, Madeleine; Jørgensen, Lars M; Nielsen, Morten A


    Malaria during pregnancy is a major health problem for African women. The disease is caused by Plasmodium falciparum malaria parasites, which accumulate in the placenta by adhering to chondroitin sulfate A (CSA). The interaction between infected erythrocytes and the placental receptor is mediated...

  17. Basement membrane-specific chondroitin sulfate proteoglycan is abnormally associated with the glomerular capillary basement membrane of diabetic rats

    DEFF Research Database (Denmark)

    McCarthy, K J; Abrahamson, D R; Bynum, K R;


    We have previously reported the production of monoclonal antibodies (MAb) recognizing the core protein of a basement membrane-specific chondroitin sulfate proteoglycan (BM-CSPG). Using immunohistochemical techniques, we have shown that BM-CSPG is present in almost every basement membrane, one...

  18. Molecular dynamics of a tetrasaccharide subunit of chondroitin 4-sulfate in water. (United States)

    Kaufmann, J; Möhle, K; Hofmann, H J; Arnold, K


    Molecular dynamics (MD) simulations on a tetrasaccharide subunit of chondroitin 4-sulfate (CS4) in aqueous solution were carried out to study its interactions with water. Pair distribution functions and diffusion coefficients were calculated from a 4 ns trajectory and the hydration of different molecular groups was analysed. The average values of the interglycosidic torsion angles found in the simulations are phi 13 = -10 degrees, psi 13 = -85 degrees and phi 13 = 80 degrees, psi 13 = 90 degrees for the beta-(1-->3) linkage, and phi 14 = -10 degrees, psi 14 = -70 degrees for the beta-(1-->4) linkage. Hydrophobic patches formed by sugar ring CH groups were found. The diffusion coefficients of the water molecules vary from 1.4 x 10(-9) to 2.3 x 10(-9) m2 s-1 depending on the distances between the water molecules and the atoms of the CS4 molecule and the type of CS4 atoms, respectively. Reorientation correlation times of the water molecules in the vicinity of different CS4 atoms were estimated to be about 1 ps at a polymer concentration of 4 wt.% CS4. The number of hydrogen bonds between the water molecules and the acceptor atoms of CS4 was determined to be about 20 per disaccharide unit, indicating a higher hydration ability of chondroitin sulfate in comparison with non-sulfated oligosaccharides. Substructures, where water molecules are involved in hydrogen bonds to different sugar rings, were found, which may be important for the stabilisation of the secondary structure of the CS4 molecule.

  19. Synthesis of the Oligosaccharides Related to Branching Sites of Fucosylated Chondroitin Sulfates from Sea Cucumbers

    Directory of Open Access Journals (Sweden)

    Nadezhda E. Ustyuzhanina


    Full Text Available Natural anionic polysaccharides fucosylated chondroitin sulfates (FCS from sea cucumbers attract great attention nowadays due to their ability to influence various biological processes, such as blood coagulation, thrombosis, angiogenesis, inflammation, bacterial and viral adhesion. To determine pharmacophore fragments in FCS we have started systematic synthesis of oligosaccharides with well-defined structure related to various fragments of these polysaccharides. In this communication, the synthesis of non-sulfated and selectively O-sulfated di- and trisaccharides structurally related to branching sites of FCS is described. The target compounds are built up of propyl β-d-glucuronic acid residue bearing at O-3 α-l-fucosyl or α-l-fucosyl-(1→3-α-l-fucosyl substituents. O-Sulfation pattern in the fucose units of the synthetic targets was selected according to the known to date holothurian FCS structures. Stereospecific α-glycoside bond formation was achieved using 2-O-benzyl-3,4-di-O-chloroacetyl-α-l-fucosyl trichloroacetimidate as a donor. Stereochemical outcome of the glycosylation was explained by the remote participation of the chloroacetyl groups with the formation of the stabilized glycosyl cations, which could be attacked by the glycosyl acceptor only from the α-side. The experimental results were in good agreement with the SCF/MP2 calculated energies of such participation. The synthesized oligosaccharides are regarded as model compounds for the determination of a structure-activity relationship in FCS.

  20. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. (United States)

    Mourão, P A; Pereira, M S; Pavão, M S; Mulloy, B; Tollefsen, D M; Mowinckel, M C; Abildgaard, U


    A polysaccharide isolated from the body wall of the sea cucumber Ludwigothurea grisea has a backbone like that of mammalian chondroitin sulfate: [4-beta-D-GlcA-1-->3-beta-D-GalNAc-1]n but substituted at the 3-position of the beta--glucuronic acid residues with sulfated alpha--fucopyranosyl branches (Vieira, R. P., Mulloy, B., and Mourão, P. A. S. (1991) J. Biol. Chem. 266, 13530-13536). Mild acid hydrolysis removes the sulfated alpha--fucose branches, and cleaved residues have been characterized by 1H NMR spectroscopy; the most abundant species is fucose 4-O-monosulfate, but 2,4- and 3, 4-di-O-sulfated residues are also present. Degradation of the remaining polysaccharide with chondroitin ABC lyase shows that the sulfated alpha-L-fucose residues released by mild acid hydrolysis are concentrated toward the non-reducing end of the polysaccharide chains; enzyme-resistant polysaccharide material includes the reducing terminal and carries acid-resistant -fucose substitution. The sulfated alpha-L-fucose branches confer anticoagulant activity on the polysaccharide. The specific activity of fucosylated chondroitin sulfate in the activated partial thromboplastin time assay is greater than that of a linear homopolymeric alpha-L-fucan with about the same level of sulfation; this activity is lost on defucosylation or desulfation but not on carboxyl-reduction of the polymer. Assays with purified reagents show that the fucosylated chondroitin sulfate can potentiate the thrombin inhibition activity of both antithrombin and heparin cofactor II.

  1. Preparation and antifouling property of polyurethane film modified by chondroitin sulfate (United States)

    Yuan, Huihui; Xue, Jing; Qian, Bin; Chen, Huaying; Zhu, Yonggang; Lan, Minbo


    An antifouling polyurethane film modified by chondroitin sulfate (PU-CS) was prepared by chemical grafting with N-Boc-1,3-propanediamine as a spacer. The different mass fraction of N-Boc-1,3-propanediamine was investigated to obtain PU-CS films with different CS grafting density. The surface properties of PU-CS films were comprehensively characterized. Proteins adsorption and glycosaminoglycans adhesion on films were evaluated. Moreover, inorganic salt deposition on film with highest CS grafting density (3.70 μg/cm2) was briefly investigated. The results showed that the increase of CS grafting density improved not only the hydrophilicity but the antifouling performance of films. The best antifouling film reduced the adsorption of fibrinogen (BFG), human serum albumin (HSA) and lysozyme (LYS) by 81.4%, 95.0% and 76.5%, respectively, and the adhesion of chondroitin (CS), heparin (HP) and hyaluronic acid (HA) by 70.6%, 87.4% and 81.3%, respectively. In addition, the co-adsorption of proteins and glycosaminoglycans reduced up to 86.9% and 75.5%, respectively. Changes in inorganic salt deposition after co-adsorption of proteins and glycosaminoglycans on PU-CS(3) suggested that the proteins promoted the inorganic salt deposition, while glycosaminoglycans inhibited the crystal growth. The negatively charged polysaccharides might promote the generation of smaller crystals which could be conducive to provide theoretical and practical guide to develop novel urinary stents with significant anti-encrustation properties.

  2. Chondroitin sulfate proteoglycan-4 (CSPG4)-specific monoclonal antibody 225.28 in detection of acute myeloid leukemia blasts. (United States)

    Fenton, Moon; Whiteside, Theresa L; Ferrone, Soldano; Boyiadzis, Michael


    Chondroitin sulfate proteoglycan-4 (CSPG4), a membrane-bound proteoglycan known to be expressed on the surface of malignant cells, has a restricted distribution in normal tissues. CSPG4 is a potential candidate tumor marker. We investigate CSPG4 expression on blasts in newly diagnosed acute myeloid leukemia (AML) patients and its relation with cytogenetic abnormalities and molecular markers known to have prognostic significance in this disease. Using hybridoma technology, we generated a specific monoclonal antibody (mAb), mAb 225.28, reactive with CSPG4. Blast samples obtained from the peripheral blood of newly diagnosed AML patients were analyzed for CSPG4 expression using the CSPG4-specific mAb and multiparameter flow cytometry. The results were correlated with cytogenetic and molecular characteristics of AML. CSPG4 was found to be expressed on a variable fraction of leukemic blasts in all AML patients with different leukemia morphology, including monoblastic cases. Reactivity of CSPG4-specific mAb with leukemic blasts was not limited to those with the rearranged MLL gene. CSPG4 was also expressed on AML blasts with a complex karyotype, FLT3 mutation, or NPM1 mutation. The results indicate that CSPG4 is expressed and detectable by flow cytometry using the mAb 225.28 on a proportion of blasts of all subtypes of AML irrespective of cytogenetic and molecular abnormalities. mAb 225.28 could be useful in detecting AML blasts by flow cytometry.

  3. Synthesis and detection of N-sulfonated oversulfated chondroitin sulfate in marketplace heparin. (United States)

    Mans, Daniel J; Ye, Hongping; Dunn, Jamie D; Kolinski, Richard E; Long, Dianna S; Phatak, Nisarga L; Ghasriani, Houman; Buhse, Lucinda F; Kauffman, John F; Keire, David A


    N-sulfonated oversulfated chondroitin sulfate (NS-OSCS), recently reported as a potential threat to the heparin supply, was prepared along with its intermediate derivatives. All compounds were spiked into marketplace heparin and subjected to United States Pharmacopeia (USP) identification assays for heparin (proton nuclear magnetic resonance [(1)H NMR], chromatographic identity, % galactosamine [%GalN], anti-factor IIa potency, and anti-factor Xa/IIa ratio). The U.S. Food and Drug Administration (FDA) strong-anionic exchange high-performance liquid chromatography (SAX-HPLC) method resolved NS-OSCS from heparin and OSCS and had a limit of detection of 0.26% (w/w) NS-OSCS. The %GalN test was sensitive to the presence of NS-OSCS in heparin. Therefore, current USP heparin monograph tests (i.e., SAX-HPLC and %GalN) detect the presence of NS-OSCS in heparin.

  4. Preparation and Characterization of a Novel PDLLA/Chondroitin Sulfate/Chitosan Asymmetry Film

    Institute of Scientific and Technical Information of China (English)


    A novel bioactive and bioresorbabie asymmetry film was prepared. The PDLLA membrane was activated by 1, 6-hexanediamine to obtain a stable positive charge surface. Chondroitin sulfate and chitosan were then deposited on activated PDLLA membrane via layer-by-layer (LBL) electro-static assembly(ESA) technique. The deposition process was monitored by UV-Vis absorbance spectroscopy. The composite membrane was frozen lyophilized to form the asymmetry film and characterized by attenuated total reflecti( )(ATR)-FT-IR, XPS and SEM. The experimental results show that a stable 1, 6-hexanediamine layer on PDLLA substrate based on the aminolysis of the polyester and the layer thickness increase linearly first with the increase of the deposited layers, and then increases slowly due to the layer interpenetration. The test results of ATR-FT-IR and SEM show the asymmetry film is modified uniformly with a dense inner layer and a porous sponge outer layer.

  5. Preparation of chondroitin sulfate nanocapsules for use as carries by the interfacial polymerization method. (United States)

    Xi, Juqun; Zhou, Ling; Fei, Yonghe


    In this paper, the method of interfacial polymerization in emulsion was employed to fabricate chondroitin sulfate-methacrylate (ChSMA) nanocapsules, in which poor water-soluble drug of indomethacin (IND) could be effectively encapsulated. The morphology and the size distribution of synthesized nanocapsules were characterized by field emission scanning electron microscopy (FESEM) and dynamic light scattering (DLS) techniques. The quantitative drug loading was investigated. The IND/ChSMA noodle-like self-assemblies were observed with the increase of IND feed concentration, and the interactions between IND and ChSMA were illuminated by FT-IR and XRD measurements. The in vitro drug release of IND-loaded nanocapsules and IND/ChSMA self-assemblies were also carried out in simulated body fluid pH 7.4 at 37°C.

  6. Semi-synthesis of unusual chondroitin sulfate polysaccharides containing GlcA(3-O-sulfate) or GlcA(2,3-di-O-sulfate) units. (United States)

    Bedini, Emiliano; De Castro, Cristina; De Rosa, Mario; Di Nola, Annalida; Restaino, Odile F; Schiraldi, Chiara; Parrilli, Michelangelo


    The extraction from natural sources of Chondroitin sulfate (CS), a polysaccharide used for management of osteoarthritis, leads to very complex mixtures. The synthesis of CS by chemical modification of other polysaccharides has seldom been reported due to the intrinsic complexity that arises from fine chemical modifications of the polysaccharide structure. In view of the growing interest in expanding the application of CS to pharmacological fields other than osteoarthritis treatment, we launched a program to find new sources of known or even unprecedented CS polysaccharides. As part of this program, we report herein on an investigation of the use of a cyclic orthoester group to selectively protect the 4,6-diol of N-acetyl-galactosamine residues in chondroitin (obtained from a microbial source), thereby facilitating its transformation into CSs. In particular, three CS polysaccharides were obtained and demonstrated to possess rare or hitherto unprecedented sulfation patterns by 2D NMR spectroscopy characterization. Two of them contained disaccharide subunits characterized by glucuronic acid residues selectively sulfated at position 3 (GlcA(3S)), the biological functions of which are known but have yet to be fully investigated. This first semi-synthetic access to GlcA(3S)-containing CS could greatly expedite such studies, since it can easily furnish considerable amounts of these polysaccharides, which are usually isolated with difficulty and in very low quantity from natural sources.

  7. Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. (United States)

    Vieira, R P; Mourão, P A


    The sulfated polysaccharides in the body wall of the sea cucumber occur as three fractions that differ markedly in molecular mass and chemical composition. The fraction containing a high molecular mass component has a high proportion of fucose and small amounts of galactose and amino sugars, whereas another fraction contains primarily a sulfated fucan. The third fraction (F-2), which represents the major portion of the sea cucumber-sulfated polysaccharides, contains approximately equimolar quantities of glucuronic acid, N-acetyl galactosamine, and fucose, and has a sulfate content higher than that in the other two fractions. The structure of fraction F-2 was examined in detail. This polysaccharide has an unusual structure composed of a chondroitin sulfate-like core, containing side chain disaccharide units of sulfated fucopyranosyl linked to approximately half of the glucuronic acid moieties through the O-3 position of the acid. These unusual fucose branches obstruct the access of chondroitinases to the chondroitin sulfate core of F-2. However, after partial acid hydrolysis, which removes the sulfated fucose residues from the polymer, fraction F-2 is degraded by chondroitinases into 6-sulfated and nonsulfated disaccharides.

  8. Effect of chondroitin sulfate on osteogenetic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Schneiders, Wolfgang, E-mail:; Rentsch, Claudia; Rehberg, Sebastian; Rein, Susanne; Zwipp, Hans; Rammelt, Stefan


    Chondroitin sulfate (CS) has anti-inflammatory properties and increases the regeneration ability of injured bone. In different in vivo investigations on bone defects the addition of CS to calcium phosphate bone cement has lead to an enhanced bone remodeling and increased new bone formation. The goal of this study was to evaluate the cellular effects of CS on human mesenchymal stem cells (hMSCs). In cell culture experiments hMSCs were incubated on calcium phosphate bone cements with and without CS and cultivated in a proliferation and an osteogenetic differentiation media. Alkaline phosphatase and the proliferation rate were determined on days 1, 7 and 14. Concerning the proliferation rates, no significant differences were detected. On days 1, 7 and 14 a significantly higher activity of alkaline phosphatase, an early marker of osteogenesis, was detected around CS modified cements in both types of media. The addition of CS leads to a significant increase of osteogenetic differentiation of hMSCs. To evaluate the influence of the osteoconductive potency of CS in twelve adult male Wistar rats, the interface reaction of cancellous bone to a nanocrystalline hydroxyapatite cement containing type I collagen (CDHA/Coll) without and with CS (CDHA/Coll/CS) was evaluated. Cylindrical implants were inserted press-fit into a defect of the tibial head. 28 days after the operation the direct bone contact and the percentage of newly formed bone were significantly higher on CDHA/Coll/CS-implants (p < 0.05). The addition of CS appears to enhance new bone formation on CDHA/Coll-composites in the early stages of bone healing. Possible mechanisms are discussed. - Highlights: Black-Right-Pointing-Pointer The influence of chondroitin sulfate (CS) on bone metabolism was evaluated. Black-Right-Pointing-Pointer CS leads to a significant increase of osteogenetic differentiation of hMSCs. Black-Right-Pointing-Pointer In small animal investigation CS seems to enhance osteogenesis in bone healing.

  9. Chondroitin 6-Sulfate as a Novel Biomarker for Mucopolysaccharidosis IVA and VII. (United States)

    Shimada, Tsutomu; Tomatsu, Shunji; Yasuda, Eriko; Mason, Robert W; Mackenzie, William G; Shibata, Yuniko; Kubaski, Francyne; Giugliani, Roberto; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji; Orii, Tadao


    Chondroitin 6-sulfate (C6S), a glycosaminoglycan (GAG), is distributed mainly in the growth plates, aorta, and cornea; however, the physiological function of C6S is not fully understood. One of the limitations is that no rapid, accurate quantitative method to measure C6S has been established. Mucopolysaccharidosis IVA and VII (MPS IVA and VII) are caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase and β-D-glucuronidase, respectively, resulting in accumulation of C6S and other GAG(s). While levels of keratan sulfate (KS), heparan sulfate, and dermatan sulfate in samples from MPS patients are well described, this is the first report of quantitative analysis of C6S levels in samples from MPS IVA and VII patients.We developed a method to digest polymeric C6S and measure resultant disaccharides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). C6S levels were measured in the blood from control subjects and patients with MPS IVA and VII aged from 0 to 58 years of age. We also assayed KS levels in the same samples for comparison with C6S.Levels of C6S in the blood decreased with age and were significantly elevated in patients with MPS IVA and VII, compared with age-matched controls. Levels of KS in patients with MPS IVA were also higher than those in age-matched controls, although differences were less pronounced than with C6S. Combining KS and C6S data, discriminated patients with MPS IVA from age-matched control subjects were better than either C6S or KS levels alone.In conclusion, this first report showing that blood levels of C6S are quantitatively evaluated in patients with MPS IVA and VII indicates that C6S could be a useful biomarker for these metabolic disorders.

  10. Is chondroitin sulfate responsible for the biological effects attributed to the GC protein-derived Macrophage Activating Factor (GcMAF)? (United States)

    Ruggiero, Marco; Reinwald, Heinz; Pacini, Stefania


    We hypothesize that a plasma glycosaminoglycan, chondroitin sulfate, may be responsible for the biological and clinical effects attributed to the Gc protein-derived Macrophage Activating Factor (GcMAF), a protein that is extracted from human blood. Thus, Gc protein binds chondroitin sulfate on the cell surface and such an interaction may occur also in blood, colostrum and milk. This interpretation would solve the inconsistencies encountered in explaining the effects of GcMAF in vitro and in vivo. According to our model, the Gc protein or the GcMAF bind to chondroitin sulfate both on the cell surface and in bodily fluids, and the resulting multimolecular complexes, under the form of oligomers trigger a transmembrane signal or, alternatively, are internalized and convey the signal directly to the nucleus thus eliciting the diverse biological effects observed for both GcMAF and chondroitin sulfate.

  11. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans (United States)

    Noborn, Fredrik; Gomez Toledo, Alejandro; Green, Anders; Nasir, Waqas; Sihlbom, Carina; Nilsson, Jonas; Larson, Göran


    Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans. PMID:27694851

  12. Chondroitin sulfate proteoglycan protein is stimulated by interleukin 11 and promotes endometrial epithelial cancer cell proliferation and migration. (United States)

    Winship, Amy; Van Sinderen, Michelle; Heffernan-Marks, Ariella; Dimitriadis, Eva


    Endometrial cancer is the most common gynecological cancer. We identified interleukin 11 (IL11) as a critical mediator of endometrial tumourigenesis and demonstrated that IL11 regulates chondroitin sulfate proteoglycan (CSPG4) in human placental trophoblasts. CSPG4 is a cell membrane protein overexpressed in numerous human cancers, although its role in endometrial cancer has not been investigated. We examined CSPG4 expression and localization in primary human type I endometrioid grade (G) 1-3 tumours by qPCR and immunohistochemistry and determined whether IL11 stimulated CSPG4. IL11 upregulated CSPG4 mRNA in HEC1A (G2-derived endometrial epithelial cancer cell line) cells. IL11 administration to BALB/c nude mice enhanced HEC1A xenograft tumour growth and increased CSPG4 protein in tumours. CSPG4 mRNA was unchanged between human G1-3 endometrial cancer and control tissues. CSPG4 protein levels were elevated in the epithelium of G2 and G3 endometrial cancer and in the tumour-associated stroma of G3 tumour tissues compared to proliferative phase or post-menopausal endometrium. CSPG4 knockdown by siRNA reduced HEC1A proliferation and migration in vitro and reduced gene expression of the key epithelial-to-mesenchymal transition (EMT) regulator SNAIL. Our data suggest that CSPG4 inhibition may impair endometrial cancer progression by reducing cancer cell proliferation, migration and potentially EMT.

  13. Synthesis, characterization and application in biomedicine of a novel chondroitin sulfate based hydrogel and bioadhesive (United States)

    Strehin, Iossif

    Clinically, there exists a need for adhesive biomaterials. There is room to improve upon what is currently on the market as it is either too toxic, lacks the required adhesive strength and/or lacks the desired degradation properties. The general goals of this thesis all focused on designing a biomaterial which would improve upon these shortcomings while at the same time allow for modifications to meet the needs for the specific application of interest. To accomplish this task, it was important to choose the appropriate composition and crosslinking chemistry which will allow the most flexibility. Chondroitin sulfate (CS) was chosen as the principle component of the hydrogel because it is a ubiquitous glycosaminoglycan (GAG) found in almost all tissues in the body. Many variants of CS exist with each one possessing unique biological activity allowing for tight control over these properties of the material. To modulate cell migration through the adhesive, polyethylene glycol (PEG) or blood was used as the second constituent. The former made the scaffold act as a cell barrier while the ladder could be used in varying concentrations to modulate cell adhesion and migration into the biomaterial. Also, the CS and blood components are both biodegradable and degradation can be controlled using various methods. While the constituents were chosen to allow flexibility in the biological activity and cell migration into the scaffold, the crosslinking chemistry was chosen to allow control over the mechanical properties as well as to increase tissue adhesion. By functionalizing the carboxyl groups of the GAG with N-hydroxysuccinimide (NHS), the resulting chondroitin sulfate succinimidyl succinate (CS-NHS) molecule could react with primary amines on polymers to form a hydrogel as well as the primary amines on proteins comprising tissue to anchor the hydrogel to the tissue. The material has been characterized and optimized for several applications. The applications described here

  14. Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway

    Directory of Open Access Journals (Sweden)

    Lü He-Zuo


    Full Text Available Abstract Background Neural precursor cells (NPCs are defined by their ability to proliferate, self-renew, and retain the potential to differentiate into neurons and glia. Deciphering the factors that regulate their behaviors will greatly aid in their use as potential therapeutic agents or targets. Chondroitin sulfate proteoglycans (CSPGs are prominent components of the extracellular matrix (ECM in the central nervous system (CNS and are assumed to play important roles in controlling neuronal differentiation and development. Results In the present study, we demonstrated that CSPGs were constitutively expressed on the NPCs isolated from the E16 rat embryonic brain. When chondroitinase ABC was used to abolish the function of endogenous CSPGs on NPCs, it induced a series of biological responses including the proliferation, differentiation and migration of NPCs, indicating that CSPGs may play a critical role in NPC development and differentiation. Finally, we provided evidence suggesting that integrin signaling pathway may be involved in the effects of CSPGs on NPCs. Conclusion The present study investigating the influence and mechanisms of CSPGs on the differentiation and migration of NPCs should help us to understand the basic biology of NPCs during CNS development and provide new insights into developing new strategies for the treatment of the neurological disorders in the CNS.

  15. Characterization and anti-tumor effects of chondroitin sulfate-chitosan nanoparticles delivery system (United States)

    Hu, Chieh-Shen; Tang, Sung-Ling; Chiang, Chiao-Hsi; Hosseinkhani, Hossein; Hong, Po-Da; Yeh, Ming-Kung


    We prepared chondroitin sulfate (ChS)-chitosan (CS) nanoparticles (NPs) as a delivery carrier, and doxorubicin (Dox) was used as a model drug. The physicochemical properties and biological activities of the Dox-ChS-CS NPs including the release profile, cell cytotoxicity, cellular internalization, and in vivo anti-tumor effects were evaluated. The ChS-CS NPs and Dox-ChS-CS NPs had a mean size of 262.0 ± 15.0 and 369.4 ± 77.4 nm, and a zeta potential of 30.2 ± 0.9 and 20.6 ± 3.1 mV, respectively. In vitro release tests showed that the 50 % release time for the Dox-ChS-CS NPs was 20 h. Two hepatoma cell models, HepG2 and HuH6, were used for evaluating the cytotoxicity and cell uptake efficiency of the Dox-ChS-CS NPs. A significant difference was observed between doxorubicin solution and the Dox-ChS-CS NPs in the cellular uptake within 60 min ( p nanoparticle delivery system platform for anti-tumor therapy.

  16. Spectral study of interaction between chondroitin sulfate and nanoparticles and its application in quantitative analysis (United States)

    Ma, Yi; Wei, Maojie; Zhang, Xiao; Zhao, Ting; Liu, Xiumei; Zhou, Guanglian


    In this work, the interaction between chondroitin sulfate (CS) and gold nanoparticles (GNPs) and silver nanoparticles (SNPs) was characterized for the first time. Plasma resonance scattering (PRS) and plasma resonance absorption (PRA) were used to investigate the characteristics of their spectrum. The results suggested that the CS with negative charge could interact with metal nanoparticles with negative charge and the adsorption of CS on the surface of SNPs was more regular than that of GNPs. The resonance scattering spectra also further confirmed the interaction between CS and SNPs. A new method for detection of CS based on the interaction was developed. CS concentrations in the range of 0.02-3.5 μg/mL were proportional to the decreases of absorbance of SNPs. Compared with other reported methods, the proposed method is simple and workable without complex process, high consumption and expensive equipments. The developed method was applied to the determination of the CS contents from different biological origins and the results were compared with those obtained by the method of Chinese Pharmacopeia. The effects of matrix in plasma and other glycosaminoglycans on the determination of CS were also investigated. The results showed that a small quantity of blood plasma had no effect on the determination of CS and when the concentration ratio of CS to heparin was more than 10:1, the influence of heparin on the detection of CS could be ignored. This work gave a specific research direction for the detection of CS in the presence of metal nanoparticles.

  17. Chondroitin Sulfate Proteoglycans: Structure-Function Relationship with Implication in Neural Development and Brain Disorders

    Directory of Open Access Journals (Sweden)

    Speranta Avram


    Full Text Available Chondroitin sulfate proteoglycans (CSPGs are extracellular matrix components that contain two structural parts with distinct functions: a protein core and glycosaminoglycan (GAG side chains. CSPGs are known to be involved in important cell processes like cell adhesion and growth, receptor binding, or cell migration. It is recognized that the presence of CSPGs is critical in neuronal growth mechanisms including axon guidance following injury of nervous system components such as spinal cord and brain. CSPGs are upregulated in the central nervous system after injury and participate in the inhibition of axon regeneration mainly through their GAG side chains. Recently, it was shown that some CSPGs members like aggrecan, versican, and neurocan were strongly involved in brain disorders like bipolar disorder (BD, schizophrenia, and ADHD. In this paper, we present the chemical structure-biological functions relationship of CSPGs, both in health state and in genetic disorders, addressing methods represented by genome-wide and crystallographic data as well as molecular modeling and quantitative structure-activity relationship.

  18. Physico-chemical characterization and cytotoxicity evaluation of curcumin loaded in chitosan/chondroitin sulfate nanoparticles. (United States)

    Jardim, Katiúscia Vieira; Joanitti, Graziella Anselmo; Azevedo, Ricardo Bentes; Parize, Alexandre Luis


    In this study, chitosan (CTS)/chondroitin sulfate (CS) nanoparticles, both pure and curcumin-loaded, were synthesized by ionic gelation. This method is simple and efficient for obtaining nanoparticles with a low polydispersity index (0.151±0.03 to 0.563±0.07) and hydrodynamic diameter in the range of 175.7±2.5 to 710.2±8.9nm, for this study. Samples have a relatively high zeta potential value, a fact that indicates that the colloidal system has good physical and chemical stabilities. The efficiency of the curcumin encapsulation in nanoparticles, which ranged from 62.4±0.61% to 68.3±0.88%, depends on the pH of the chitosan solution. The release of curcumin from the nanoparticles was enabled by a diffusion mechanism, with fast release in a phosphate buffer solution at pH6.8. The assaying of cell viability by the MTT test showed that the presence of both free curcumin and curcumin in the nanoencapsulated form leads to a statistically significant reduction in the viability of A549 cells, by comparison with the control group. The most significant reductions in cell viability of 41.1% and 60.4% (pnanoparticles with the chitosan solution at pH6.0, respectively.

  19. Preparation and characterization of chondroitin-sulfate-A-coated magnetite nanoparticles for biomedical applications (United States)

    Tóth, Ildikó Y.; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka


    Polysaccharides are promising candidates for manufacturing biocompatible core-shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core-shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl.

  20. Role of gold nanoparticles as drug delivery vehicles for chondroitin sulfate in the treatment of osteoarthritis. (United States)

    Dwivedi, Priyanka; Nayak, Vijayashree; Kowshik, Meenal


    Osteoarthritis is a disease which is characterized by joint pain, swelling and stiffness. Articular cartilage has limited self-repair capacity due to its avascular and aneural nature. In this work, we show the use of gold nanoparticles (AuNps) for enhancing the delivery of chondroitin sulfate (CS), a drug used in the treatment of osteoarthritis (OA). AuNps were synthesized and were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-Ray diffraction analysis. AuNps were combined with CS (AuNps-CS) and their effect on primary goat chondrocytes was studied using MTT assay, Hoechst staining, production of glycosaminoglycan and collagen. Cell viability studies by MTT revealed that AuNps-CS stimulate cell proliferation. A two-fold increase in GAG and collagen production was observed in presence of AuNps-CS combination as compared to native CS, indicating that this combination stimulates chondrocyte proliferation and enhances extracellular matrix production (ECM). Hence, this study exhibits the potential of AuNps as a carrier of CS for treatment of osteoarthritis.

  1. Effect of oversulfation on the chemical and biological properties of chondroitin-4-sulfate. (United States)

    Carranza, Yaneth E; Durand-Rougley, Clarissa; Doctor, Vasant


    Chondroitin-4-sulfate was oversulfated using chlorosulfonic acid-pyridine complex and was isolated as the sodium salt. A comparison of the infrared analysis of the native (N-2) and oversulfated (S-2) compounds showed that the two spectra were identical except for a new peak in S-2 at 825 cm corresponding to the equatorial C-6 position of galactosamine. There was a 2.7-fold increase of sulfate content in S-2 and a generation of a significant anticoagulant activity as measured by doubling of the prothrombin time of normal citrated human plasma using 7.5 microg, while N-2 was inactive even at 2,000 microg. The result of the in-vitro studies of the activation of glutamic plasminogen by tissue plasminogen activator (t-PA) or by high-molecular-weight urokinase using 0.05 mol/l Tris buffer (pH 7.35) containing a physiological concentration of NaCl (0.9%) showed that 28.6 microg/ml S-2 enhanced the activation by three-fold to four-fold by t-PA or by urokinase, while the same concentrations of N-2 or unfractionated heparin gave less than 30% enhancement of t-PA and no enhancement of urokinase. The mechanism of enhancement by S-2 was investigated by dilution studies. The results showed that S-2 interacted with both urokinase or t-PA and glutamic plasminogen favoring a template model, while N-2 or unfractionated heparin interacted only with t-PA.

  2. Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells. (United States)

    Karumbaiah, Lohitash; Enam, Syed Faaiz; Brown, Ashley C; Saxena, Tarun; Betancur, Martha I; Barker, Thomas H; Bellamkonda, Ravi V


    Neural stem cells (NSCs) possess great potential for neural tissue repair after traumatic injuries to the central nervous system (CNS). However, poor survival and self-renewal of NSCs after injury severely limits its therapeutic potential. Sulfated chondroitin sulfate glycosaminoglycans (CS-GAGs) linked to CS proteoglycans (CSPGs) in the brain extracellular matrix (ECM) have the ability to bind and potentiate trophic factor efficacy, and promote NSC self-renewal in vivo. In this study, we investigated the potential of CS-GAG hydrogels composed of monosulfated CS-4 (CS-A), CS-6 (CS-C), and disulfated CS-4,6 (CS-E) CS-GAGs as NSC carriers, and their ability to create endogenous niches by enriching specific trophic factors to support NSC self-renewal. We demonstrate that CS-GAG hydrogel scaffolds showed minimal swelling and degradation over a period of 15 days in vitro, absorbing only 6.5 ± 0.019% of their initial weight, and showing no significant loss of mass during this period. Trophic factors FGF-2, BDNF, and IL10 bound with high affinity to CS-GAGs, and were significantly (p hydrogels when compared to unsulfated hyaluronic acid (HA) hydrogels. Dissociated rat subventricular zone (SVZ) NSCs when encapsulated in CS-GAG hydrogels demonstrated ∼88.5 ± 6.1% cell viability in vitro. Finally, rat neurospheres in CS-GAG hydrogels conditioned with the mitogen FGF-2 demonstrated significantly (p hydrogels. Taken together, these findings demonstrate the ability of CS-GAG based hydrogels to regulate NSC self-renewal, and facilitate growth factor enrichment locally.

  3. Distinct structures of the α-fucose branches in fucosylated chondroitin sulfates do not affect their anticoagulant activity. (United States)

    Santos, Gustavo R C; Glauser, Bianca F; Parreiras, Luane A; Vilanova, Eduardo; Mourão, Paulo A S


    Fucosylated chondroitin sulfate (FCS) is a glycosaminoglycan found in sea cucumbers. It has a backbone like that of mammalian chondroitin sulfate (4-β-d-GlcA-1→3-β-d-GalNAc-1)n but substituted at the 3rd position of the β-d-glururonic acid residues with α-fucose branches. The structure of these branches varies among FCSs extracted from different species of sea cucumbers, as revealed by solution NMR spectroscopy. Some species (Isostichopus badionotus and Patalus mollis) contain branches formed by single α-fucose residues but with variable sulfation patterns (2,4-, 3,4- and 4-sulfation). FCS from Ludwigothurea grisea is distinguished because it contains preponderant branches formed by disaccharide units containing non-sulfated and 3-sulfated α-fucose units at the reducing and non-reducing ends, respectively. Despite the structural variability on their α-fucose branches, these FCSs have similar anticoagulant action on assays using purified reagents. They have serpin-dependent and serpin-independent effects. Pharmacological assays using experimental animals showed that the three types of FCSs have similar antithrombotic effect and bleeding tendency. They also activate factor XII on the same range of concentration. Based on these observations, we proposed that only few sulfated α-fucose branches along the FCS chain are enough to assure the binding of this glycosaminoglycan to proteins of the coagulation system. Substitution with additional sulfated α-fucose does not increase further the activity. Overall, the use of FCSs with marked variability on their branches of α-fucose allowed us to establish correlations between structures vs biological effects of these glycosaminoglycans on a more refined basis. It opens new avenues for therapeutic intervention using FCSs.

  4. Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. (II.) Seven compounds containing 2 or 3 sulfate residues.

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Waard, P. de; Harada, T.; Sugahara, K.


    Shark cartilage proteoglycans bear predominantly chondroitin 6-sulfate. After exhaustive protease digestion, reductive beta-elimination and subsequent chondroitinase ABC digestion, 13 hexasaccharide alditols were obtained from the carbohydrate-protein linkage region and six of them contain 0 or 1 su

  5. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate

    Directory of Open Access Journals (Sweden)

    Vineet eGupta


    Full Text Available Extracellular matrix (ECM components such as chondroitin sulfate (CS and tricalcium phosphate (TCP serve as raw materials and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(D,L-lactic-co-glycolic acid (PLGA microsphere-based scaffolds would enhance differentiation of rat bone marrow stromal cells (rBMSCs. The raw material encapsulation altered the microstructure of the microspheres and also influenced the cellular morphology that depended on the type of material encapsulated. Moreover, the mechanical properties of the raw material encapsulating microsphere-based scaffolds initially relied on the composition of the scaffolds and later on were primarily governed by the degradation of the polymer phase and newly synthesized extracellular matrix by the seeded cells. Furthermore, raw materials had a mitogenic effect on the seeded cells and led to increased glycosaminoglycan (GAG, collagen, and calcium content. Interestingly, the initial effects of raw material encapsulation on a per-cell basis might have been overshadowed by medium-regulated environment that appeared to favor osteogenesis. However, it is to be noted that in vivo, differentiation of the cells would be governed by the surrounding native environment. Thus, the results of this study demonstrated the potential of the raw materials in facilitating neo-tissue synthesis in microsphere-based scaffolds and perhaps in combination with bioactive signals, these raw materials may be able to achieve intricate cell differentiation profiles required for regenerating the osteochondral interface.

  6. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. (United States)

    Yuan, Pengfei; Zhang, Hongmin; Cai, Changzu; Zhu, Shiyou; Zhou, Yuexin; Yang, Xiaozhou; He, Ruina; Li, Chan; Guo, Shengjie; Li, Shan; Huang, Tuxiong; Perez-Cordon, Gregorio; Feng, Hanping; Wei, Wensheng


    As a gram-positive, spore-forming anaerobic bacillus, Clostridium difficile (C. difficile) is responsible for severe and fatal pseudomembranous colitis, and poses the most urgent antibiotic resistance threat worldwide. Epidemic C. difficile is the leading cause of antibiotic-associated diarrhoea globally, especially diarrhoea due to the emergence of hypervirulent strains associated with high mortality and morbidity. TcdB, one of the key virulence factors secreted by this bacterium, enters host cells through a poorly understood mechanism to elicit its pathogenic effect. Here we report the first identification of the TcdB cellular receptor, chondroitin sulfate proteoglycan 4 (CSPG4). CSPG4 was initially isolated from a whole-genome human shRNAmir library screening, and its role was confirmed by both TALEN- and CRISPR/Cas9-mediated gene knockout in human cells. CSPG4 is critical for TcdB binding to the cell surface, inducing cytoskeleton disruption and cell death. A direct interaction between the N-terminus of CSPG4 and the C-terminus of TcdB was confirmed, and the soluble peptide of the toxin-binding domain of CSPG4 could protect cells from the action of TcdB. Notably, the complete loss of CSPG4/NG2 decreased TcdB-triggered interleukin-8 induction in mice without significantly affecting animal mortality. Based on both the in vitro and in vivo studies, we propose a dual-receptor model for TcdB endocytosis. The discovery of the first TcdB receptor reveals a previously unsuspected role for CSPG4 and provides a new therapeutic target for the treatment of C. difficile infection.

  7. On the bioavailability of oral chondroitin sulfate formulations: proposed criteria for bioequivalence studies. (United States)

    Vergés, Josep; Castañeda-Hernández, Gilberto


    Chondroitin sulfate (CS) is a symptomatic slow-acting drug for osteoarthritis (SYSADOA). It should be noted, however, that there is a CS formulation approved as a drug in Europe, with evidenced efficacy and safety demonstrated by clinical trials in osteoarthritic patients. This formulation should therefore be considered as the reference product. This CS is manufactured by Bioibérica (Spain), commercialized in Europe by IBSA (Switzerland) and Bioibérica, and in the United States by Nutramax. Hence, all other CS formulations must demonstrate their bioequivalence with the reference product. Pharmacokinetic studies have shown that oral exogenous CS is absorbed as several metabolites, and the active moiety has not yet been identified. It is thus difficult to establish bioequivalence from plasma concentration against time curves. However, the FDA permits bioequivalence studies comparing the time course of the pharmacological response with two formulations of the same compound. It has been reported that the time course of CS response can be fitted to a modified Hill equation, as follows: E-E0=[(Emax x Ty )/(T50y+Ty)]. Where E is the effect at time T, E0 is the basal effect, Emax is the maximal effect, T50 is the time required to achieve 50% of the maximal effect and y is the sigmoid slope factor. Hence, it is proposed that a generic CS can be compared to the reference product using the Emax, T50, and y values derived by non-linear regression fitting to the modified Hill equation. The reference/test formulation ratio with the 90% confidence intervals (CI) can thus be estimated. If CI for each parameter ratio lies within 0.8-1.2, both CS formulations can be considered as bioequivalent. In the absence of such bioequivalence studies, physicians and patients are advised to use the reference product to obtain the maximal benefit in terms of efficacy and safety.

  8. Effects of chondroitin sulfate on alteration of actin cytoskeleton in rats with acute necrotizing pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Zhong-Ye He; Ren-Xuan Guo


    BACKGROUND: In experimental acute pancreatitis, a large amount of reactive oxygen species are produced, and in turn cytoskeletal changes may be induced in pancreatic tissue. These changes contribute to an imbalance of digestive enzyme segregation, transport, exocytosis and activation, resulting in cell injury. In this study, we assessed the effects of chondroitin sulfate (CS) on attenuation of oxidative damage and protection of F-actin in rats with acute necrotizing pancreatitis (ANP). METHODS:Ninety male Wistar rats were divided randomly into three groups. Group A was infused with 5% sodium taurocholate; group B was treated with CS;and group C served as control. Rats from the three groups were killed at 1, 3 or 8 hours. The levels were measured of malonyl dialdehyde (MDA), total superoxide dismutase (SOD), glutathione synthetase (GSH), serum amylase (SAM) and adenosine triphosphate (ATP). F-actin immunostained with rhodamine-phalloidin was analyzed using a confocal laser scanning system and the content of F-actin protein was determined. RESULTS: The levels of SAM increased in groups A and B, whereas the levels of GSH, SOD and ATP in group A decreased markedly during pancreatitis, and MDA increased signiifcantly. The levels of GSH, SOD and ATP in group B were higher than those in group A, but the level of MDA was lower than in group A. At the same time, ANP resulted in early disruption of the cytoskeleton with dramatic changes and a loss of F-actin. Administration of CS moderated the damage to the actin cytoskeleton. CONCLUSIONS:Retrograde infusion of sodium taurocholate via the pancreatic duct may produce pancreatic necrosis and a marked increase in serum amylase activity, induce a severe depletion of ATP level, prime lipid peroxidation, and damage F-actin. Treatment with CS can ameliorate pancreatic cell conditions, limit cell membrane peroxidation, protect F-actin, and attenuate pancreatitis.

  9. Synthesis and Characterization of a Chondroitin Sulfate Based Hybrid Bio/Synthetic Biomimetic Aggrecan Macromolecule (United States)

    Sarkar, Sumona

    Lower back pain resulting from intervertebral disc degeneration is one of the leading musculoskeletal disorders confronting our health system. In order to mechanically stabilize the disc early in the degenerative cascade and prevent the need for spinal fusion surgeries, we have proposed the development of a hybrid-bio/synthetic biomimetic proteoglycan macromolecule for injection into the disc in the early stages of degeneration. The goal of this thesis was to incorporate natural chondroitin sulfate (CS) chains into bottle brush polymer synthesis strategies for the fabrication of CS-macromolecules which mimic the proteoglycan structure and function while resisting enzymatic degradation. Both the "grafting-to" and "grafting-through" techniques of bottle brush synthesis were explored. CS was immobilized via a terminal primary amine onto a model polymeric backbone (polyacrylic acid) for investigation of the "grafting-to" strategy and an epoxy-amine step-growth polymerization technique was utilized for the "grafting-through" synthesis of CS-macromolecules with polyethylene glycol backbone segments. Incorporation of a synthetic polymeric backbone at the terminal amine of CS was confirmed via biochemical assays, 1H-NMR and FTIR spectroscopy, and CS-macromolecule size was demonstrated to be higher than that of natural CS via gel permeation chromatography, transmission electron microscopy and viscosity measurements. Further analysis of CS-macromolecule functionality indicated maintenance of natural CS properties such as high fixed charge density, high osmotic potential and low cytotoxicity with nucleus pulposus cells. These studies are the first attempt at the incorporation of natural CS into biomimetic bottle brush structures. CS-macromolecules synthesized via the methods developed in these studies may be utilized in the treatment and prevention of debilitating back pain as well as act as mimetics for other proteoglycans implicated in cartilage, heart valve, and nervous

  10. 局部深低温对脊髓损伤大鼠神经再生和硫酸软骨素蛋白多糖mRNA表达的影响%Effects of Regional Profound Hypothermia on Axon Regeneration and Chondroitin Sulfate Proteoglycans' mRNA Expression in Rats with Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    许晓宇; 成惠林


    目的探索局部深低温对脊髓损伤大鼠硫酸软骨素蛋白多糖(chondroitin sulfate proteoglycans,CSPGs)基因表达和轴突再生的影响。方法54只成年SD大鼠被随机分为三组:假手术组(n=6),脊髓损伤组(n=24)和脊髓损伤+低温组(n=24),建立动脉瘤夹钳夹脊髓损伤模型,在使用硬膜外灌流装置保持干预组低温状态120min后,缓慢复温至37℃。通过Realtime-PCR检测脊髓损伤大鼠伤后NG2、neurocan和Brevican的表达,通过LFB染色观察大鼠脊髓脱髓鞘程度并使用大鼠后肢BBB评分评估局部低温对于脊髓损伤后运动功能恢复的影响。结果ng2、Neurocan的mRNA表达在伤后8d左右(Brevican 14d)达到高峰,与损伤组相比,低温组在伤后8d和14d的表达水平显著降低(<0.05),脱髓鞘及空泡化程度降低,并获得了较高的BBB评分(<0.05)。结论局部低温能够促进脊髓损伤后运动功能的恢复,这种作用可能与局部深低温下调了硫酸软骨素蛋白多糖的基因表达有关。%Objective To investigate the ef ect of regional profound hypothermia on the mRNA expressions of chondroitin sulfate proteoglycans (CSPGs) and axon regeneration in adult rats with spinal cord injury. Methods 56 rats were randomly assigned into sham-operated (n=6), spinal cord injury (SCI) (n=24), SCI+Hypothermia (n=24) groups. Spinal cord injury models were established by clamped on T10 with aneurysm clip. An epidural perfusion device was applied to maintain a steady temperature (18℃) for 120min with gradual re-warming to 37℃. The mRNA expressions of NG2, Neurocan and Brevican were tested by real-time PCR. The Luxol Fast Blue (LFB) stain were used to observe the morphology features of spinal cord. The motor function of hind limbs (BBB score) was monitored for 21 days. Results The mRNA expressions of NG2, Neurocan, Brevican were significantly downregulated by hypothermia at 8D and 14D after spinal cord injury ( <0.05), an al

  11. Analysis of crude heparin by (1)H NMR, capillary electrophoresis, and strong-anion-exchange-HPLC for contamination by over sulfated chondroitin sulfate. (United States)

    Keire, David A; Trehy, Michael L; Reepmeyer, John C; Kolinski, Richard E; Ye, Wei; Dunn, Jamie; Westenberger, Benjamin J; Buhse, Lucinda F


    We previously published a strong-anion-exchange-high performance liquid chromatography (SAX-HPLC) method for the detection of the contaminant over sulfated chondroitin sulfate (OSCS) in heparin sodium active pharmaceutical ingredient (API). While APIs have been processed to remove impurities, crude heparins contain insoluble material, chondroitin sulfates, heparan sulfate, and proteins that may interfere with the recovery and measurement of OSCS. We examined 500MHz (1)H NMR, capillary electrophoresis (CE), and SAX-HPLC to quantify OSCS in crude heparin. Using our standard API protocol on OSCS spiked crude heparin samples; we observed a weight percent LOD and LOQ for the NMR approach of 0.1% and 0.3%, respectively, while the SAX-HPLC method gave values of 0.03% and 0.09%, respectively. CE data was not amenable to quantitative measurement of OSCS in crude heparin. We developed a modified HPLC sample preparation protocol using crude dissolved at the 100mg/mL level with a 2.5M NaCl solution. This SAX-HPLC approach gave a weight percent LOD of 0.02% and a LOQ of 0.07% and had better performance characteristics than that of the protocol used for APIs.

  12. Significant role of adhesion properties of primary osteoblast-like cells in early adhesion events for chondroitin sulfate and dermatan sulfate surface molecules. (United States)

    Stanford, C M; Solursh, M; Keller, J C


    The purpose of this study was to characterize the role of cell surface adhesive macromolecules through enzyme modulation and metabolic recovery prior to and during a kinetic cell adhesion assay. Primary rat calvarial osteoblast-like cells were derived from Sprague-Dawley calvarial plates. Cell adhesion kinetics was evaluated with the definition of first-order adhesion kinetics. Osteoblasts were incubated in an adhesion buffer for 1 h prior to a cell attachment assay using various enzymes to remove cell surface glycosaminoglycans (GAGs). A subtractive adhesion analysis was performed by plating cells at 5 x 10(4)/well for variable periods through 2 h. The medium was collected, the well surface washed and pooled, and the number of cells enumerated with a Coulter Counter. Cell adhesion demonstrated first-order logarithmic adhesion kinetics in the first 60 min. Scatchard analysis demonstrated a linear relationship. Preexposure of cells to various enzyme combinations demonstrated that 50% of the equilibrium adhesion was dependent on chondroitin sulfate or dermatan sulfate surface macromolecules. These results were confirmed with pretreatment with a metabolic inhibitor of GAG synthesis (beta-D-xyloside). These results suggest an important role for cell associated chondroitin sulfate and dermatan sulfate in cell adhesion in addition to Arg-Gly-Asp or integrin mediated adhesion events.

  13. Effects of sesamin on the biosynthesis of chondroitin sulfate proteoglycans in human articular chondrocytes in primary culture. (United States)

    Pothacharoen, Peraphan; Najarus, Sumet; Settakorn, Jongkolnee; Mizumoto, Shuji; Sugahara, Kazuyuki; Kongtawelert, Prachya


    Osteoarthritis (OA) is a degenerative joint disease that progressively causes a loss of joint functions and the impaired quality of life. The most significant event in OA is a high degree of degradation of articular cartilage accompanied by the loss of chondroitin sulfate-proteoglycans (CS-PGs). Recently, the chondroprotective effects of sesamin, the naturally occurring substance found in sesame seeds, have been proved in a rat model of papain-induced osteoarthritis. We hypothesized that sesamin may be associated with possible promotion of the biosynthesis of CS-PGs in human articular chondrocytes. The aim of the study was to investigate the effects of sesamin on the major CS-PG biosynthesis in primary human chondrocyte. The effects of sesamin on the gene expression of the PG core and the CS biosynthetic enzymes as well as on the secretion of glycosaminoglycans (GAGs) in monolayer and pellet culture systems of articular chondrocytes. Sesamin significantly increased the GAGs content both in culture medium and pellet matrix. Real-time-quantitative PCR showed that sesamin promoted the expression of the genes encoding the core protein (ACAN) of the major CS-PG aggrecan and the biosynthetic enzymes (XYLT1, XYLT2, CHSY1 and CHPF) required for the synthesis of CS-GAG side chains. Safranin-O staining of sesamin treated chondrocyte pellet section confirmed the high degree of GAG accumulation. These results were correlated with an increased level of secreted GAGs in the media of cultured articular chondrocytes in both culture systems. Thus, sesamin would provide a potential therapeutic strategy for treating OA patients.

  14. Chondroitin sulfate proteogly can and the plasticity of central nervous system%硫酸软骨素蛋白多糖与中枢神经系统可塑性

    Institute of Scientific and Technical Information of China (English)

    陈歆然; 余剑


    硫酸软骨素蛋白多糖(chondroitin sulfate proteoglycan,CSPG)是在发育和成熟的中枢神经系统(central nervous syste,CNS)中广泛表达的一组细胞外基质分子,在胚胎CNS发育和成年期CNS可塑性中发挥着重要作用.CSPG作为一种主要的细胞外抑制性成分,可影响CNS损伤后轴突再生和神经功能恢复.%Chondroitin sulfate proteoglycan (CSPG) is a group of extracellular matrix molecules expressed widely in the developing and mature central nervous system (CNS).They play an important role during embryonic CNS development and adult CNS plasticity.As a major extracellular inhibitory compound,CSPG can affect the axon regeneration and neurological recovery after CNS injury.

  15. Depolymerization of Fucosylated Chondroitin Sulfate with a Modified Fenton-System and Anticoagulant Activity of the Resulting Fragments (United States)

    Li, Jun-hui; Li, Shan; Zhi, Zi-jian; Yan, Lu-feng; Ye, Xing-qian; Ding, Tian; Yan, Lei; Linhardt, Robert John; Chen, Shi-guo


    Fucosylated chondroitin sulfate (fCS) from sea cucumber Isostichopus badionotus (fCS-Ib) with a chondroitin sulfate type E (CSE) backbone and 2,4-O-sulfo fucose branches has shown excellent anticoagulant activity although has also show severe adverse effects. Depolymerization represents an effective method to diminish this polysaccharide’s side effects. The present study reports a modified controlled Fenton system for degradation of fCS-Ib and the anticoagulant activity of the resulting fragments. Monosaccharides and nuclear magnetic resonance (NMR) analysis of the resulting fragments indicate that no significant chemical changes in the backbone of fCS-Ib and no loss of sulfate groups take place during depolymerization. A reduction in the molecular weight of fCS-Ib should result in a dramatic decrease in prolonging activated partial thromboplastin time and thrombin time. A decrease in the inhibition of thrombin (FIIa) by antithromin III (AT III) and heparin cofactor II (HCII), and the slight decrease of the inhibition of factor X activity, results in a significant increase of anti-factor Xa (FXa)/anti-FIIa activity ratio. The modified free-radical depolymerization method enables preparation of glycosaminoglycan (GAG) oligosaccharides suitable for investigation of clinical anticoagulant application. PMID:27657094

  16. Targeted disruption of a ring-infected erythrocyte surface antigen (RESA)-like export protein gene in Plasmodium falciparum confers stable chondroitin 4-sulfate cytoadherence capacity

    DEFF Research Database (Denmark)

    Goel, Suchi; Muthusamy, Arivalagan; Miao, Jun


    . In this study, microarray transcriptome analysis showed that the absence of a gene cluster, comprising kahrp, pfemp3, and four other genes, results in the loss of parasitized erythrocytes adhering to chondroitin 4-sulfate (C4S). The role of one of these genes, PF3D7_0201600/PFB0080c, which encodes PHISTb......The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family proteins mediate the adherence of infected erythrocytes to microvascular endothelia of various organs, including the placenta, thereby contributing to cerebral, placental, and other severe malaria pathogenesis. Several...... that the loss of PFB0080c markedly compromises the var gene switching process, leading to a marked reduction in the switching rate and additional PfEMP1 expression by a minor population of parasites. PFB0080c interacts with VAR2CSA and modulates knob-associated Hsp40 expression. Thus, PFB0080c may regulate VAR2...

  17. A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion

    DEFF Research Database (Denmark)

    Faassen, A E; Schrager, J A; Klein, D J


    motility and invasion. The current studies evaluate the role of a cell surface chondroitin sulfate proteoglycan (CSPG) in the adhesion, motility, and invasive behavior of a highly metastatic mouse melanoma cell line (K1735 M4) on type I collagen matrices. By blocking mouse melanoma cell production of CSPG...... with p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside), a compound that uncouples chondroitin sulfate from CSPG core protein synthesis, we observed a corresponding decrease in melanoma cell motility on type I collagen and invasive behavior into type I collagen gels. Melanoma cell motility on type I...... collagen could also be inhibited by removing cell surface chondroitin sulfate with chondroitinase. In contrast, type I collagen-mediated melanoma cell adhesion and spreading were not affected by either beta-D-xyloside or chondroitinase treatments. These results suggest that mouse melanoma CSPG...

  18. Chondroitin sulfate and hyaluronic acid (500-730 kda) inhibit stromelysin-1 synthesis in human osteoarthritic chondrocytes. (United States)

    Monfort, J; Nacher, M; Montell, E; Vila, J; Verges, J; Benito, P


    Chondroitin sulfate (CS) and 500-730 kDa hyaluronic acid (HA) are symptomatic slow-acting drugs for the treatment of osteoarthritis (OA). In addition, a growing body of evidence suggests a role for CS and this specific HA as modifiers of the course of OA. The therapeutic efficacy of CS and HA lies in their different mechanisms of action. Stromelysin-1 (metalloprotease-3 [MMP-3]) is a cartilage proteolytic enzyme, which induces cartilage destruction and acts as a mediator of the inflammatory response. However, there are few studies evaluating the in vitro effect of CS and HA on MMP-3 synthesis in human chondrocyte cultures from OA patients. Thus, the aim of the present study was to analyze the effect of CS and HA (500-730 kDa) on MMP-3 synthesis induced by interleukin-1beta (IL-1beta) in chondrocytes from patients with hip OA. Chondrocyte cultures were incubated for 48 h with IL-1beta (2.5 ng/ml) in the absence or presence of different HA 500-730 kDa (Hyalgan, Bioibérica Farma, Barcelona, Spain) concentrations, or alternatively, CS (Condro.san, Bioibérica Farma) at concentrations of 10, 50, 100, 150, 200 and 1,000 microg/ml. The results revealed that both CS and HA (500-730 kDa) inhibited MMP-3 synthesis induced by IL-1beta in human OA chondrocytes. Specifically, CS and HA (500-730 kDa) reduced MMP-3 expression levels at all tested concentrations. Therefore, our study provides new data on the mechanism of action of these drugs, which could help to explain their clinical efficacy in OA patients.

  19. Chondroitin sulfate proteoglycans and microglia prevent migration and integration of grafted Müller stem cells into degenerating retina. (United States)

    Singhal, Shweta; Lawrence, Jean M; Bhatia, Bhairavi; Ellis, James S; Kwan, Anthony S; Macneil, Angus; Luthert, Philip J; Fawcett, James W; Perez, Maria-Thereza; Khaw, Peng T; Limb, G Astrid


    At present, there are severe limitations to the successful migration and integration of stem cells transplanted into the degenerated retina to restore visual function. This study investigated the potential role of chondroitin sulfate proteoglycans (CSPGs) and microglia in the migration of human Müller glia with neural stem cell characteristics following subretinal injection into the Lister hooded (LH) and Royal College of Surgeons (RCS) rat retinae. Neonate LH rat retina showed minimal baseline microglial accumulation (CD68-positive cells) that increased significantly 2 weeks after transplantation (p cell layer (GCL) and inner plexiform layer. In contrast, nontransplanted 5-week-old RCS rat retina showed considerable baseline microglial accumulation in the outer nuclear layer (ONL) and photoreceptor outer segment debris zone (DZ) that further increased (p retina 2 weeks after transplantation. Marked deposition of the N-terminal fragment of CSPGs, as well as neurocan and versican, was observed in the DZ of 5-week-old RCS rat retinae, which contrasted with the limited expression of these proteins in the GCL of the adult and neonate LH rat retinae. Staining for CSPGs and CD68 revealed colocalization of these two molecules in cells infiltrating the ONL and DZ of the degenerating RCS rat retina. Enhanced immune suppression with oral prednisolone and intraperitoneal injections of indomethacin caused a reduction in the number of microglia but did not facilitate Müller stem cell migration. However, injection of cells with chondroitinase ABC combined with enhanced immune suppression caused a dramatic increase in the migration of Müller stem cells into all the retinal cell layers. These observations suggest that both microglia and CSPGs constitute a barrier for stem cell migration following transplantation into experimental models of retinal degeneration and that control of matrix deposition and the innate microglial response to neural retina degeneration may need to be

  20. 硫酸软骨素日本标准及其说明%Chondroitin Sulfate Standards in Japanese Pharmaceutical Codex and Its Explanation

    Institute of Scientific and Technical Information of China (English)

    边玲; 孔德新; 陈磊; 凌沛学


    Sodium chondroitin sulfate is included in Japanese Pharmaceutical Codex. The chondroitin sulfate standards in Japanese Pharmaceutical Codex is translated, and the determinations of nitrogen and sulfur are explained in this paper.%  硫酸软骨素钠收录于《日本药局方外医药品规格》,本文将硫酸软骨素日本标准译为中文,并对氮和硫的含量测定项进行说明。

  1. Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering

    Directory of Open Access Journals (Sweden)

    Lai JY


    Full Text Available Jui-Yang Lai*, Ya-Ting Li*, Ching-Hsien Cho, Ting-Chun Yu Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan, Republic of China*These authors contributed equally to this workAbstract: Recent studies reflect the importance of using naturally occurring biopolymers as three-dimensional corneal keratocyte scaffolds and suggest that the porous structure of gelatin materials may play an important role in controlling nutrient uptake. In the current study, the authors further consider the application of carbodiimide cross-linked porous gelatin as an alternative to collagen for corneal stromal tissue engineering. The authors developed corneal keratocyte scaffolds by nanoscale modification of porous gelatin materials with chondroitin sulfate (CS using carbodiimide chemistry. Scanning electron microscopy/energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy showed that the amount of covalently incorporated polysaccharide was significantly increased when the CS concentration was increased from 0% to 1.25% (w/v. In addition, as demonstrated by dimethylmethylene blue assays, the CS content in these samples was in the range of 0.078–0.149 nmol per 10 mg scaffold. When compared with their counterparts without CS treatment, various CS-modified porous gelatin membranes exhibited higher levels of water content, light transmittance, and amount of permeated nutrients but possessed lower Young’s modulus and resistance against protease digestion. The hydrophilic and mechanical properties of scaffolds modified with 0.25% CS were comparable with those of native corneas. The samples from this group were biocompatible with the rabbit corneal keratocytes and showed enhanced proliferative and biosynthetic capacity of cultured cells. In summary, the authors found that the nanoscale-level modification has influence on the characteristics and cell-material interactions of CS-containing gelatin hydrogels

  2. Contribution of chondroitin sulfate A to the binding of complement proteins to activated platelets.

    Directory of Open Access Journals (Sweden)

    Osama A Hamad

    Full Text Available BACKGROUND: Exposure of chondroitin sulfate A (CS-A on the surface of activated platelets is well established. The aim of the present study was to investigate to what extent CS-A contributes to the binding of the complement recognition molecule C1q and the complement regulators C1 inhibitor (C1INH, C4b-binding protein (C4BP, and factor H to platelets. PRINCIPAL FINDINGS: Human blood serum was passed over Sepharose conjugated with CS-A, and CS-A-specific binding proteins were identified by Western blotting and mass spectrometric analysis. C1q was shown to be the main protein that specifically bound to CS-A, but C4BP and factor H were also shown to interact. Binding of C1INH was dependent of the presence of C1q and then not bound to CS-A from C1q-depleted serum. The specific interactions observed of these proteins with CS-A were subsequently confirmed by surface plasmon resonance analysis using purified proteins. Importantly, C1q, C4BP, and factor H were also shown to bind to activated platelets and this interaction was inhibited by a CS-A-specific monoclonal antibody, thereby linking the binding of C1q, C4BP, and factor H to exposure of CS-A on activated platelets. CS-A-bound C1q was also shown to amplify the binding of model immune complexes to both microtiter plate-bound CS-A and to activated platelets. CONCLUSIONS: This study supports the concept that CS-A contributes to the binding of C1q, C4BP, and factor H to platelets, thereby adding CS-A to the previously reported binding sites for these proteins on the platelet surface. CS-A-bound C1q also seems to amplify the binding of immune complexes to activated platelets, suggesting a role for this molecule in immune complex diseases.

  3. Functions of chondroitin sulfate/dermatan sulfate chains in brain development. Critical roles of E and iE disaccharide units recognized by a single chain antibody GD3G7.

    NARCIS (Netherlands)

    Purushothaman, A.; Fukuda, J.; Mizumoto, S.; Dam, G.B. ten; Kuppevelt, A.H.M.S.M. van; Kitagawa, H.; Mikami, T.; Sugahara, K.


    Chondroitin sulfate (CS) and dermatan sulfate (DS) have been implicated in the processes of neural development in the brain. In this study, we characterized developmentally regulated brain CS/DS chains using a single chain antibody, GD3G7, produced by the phage display technique. Evaluation of the s

  4. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications. (United States)

    Abbadessa, A; Blokzijl, M M; Mouser, V H M; Marica, P; Malda, J; Hennink, W E; Vermonden, T


    The aim of this study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA was synthesized by reaction of chondroitin sulfate with glycidyl methacrylate (GMA) in dimethylsulfoxide at 50°C and its degree of methacrylation was tunable up to 48.5%, by changing reaction time and GMA feed. Unlike polymer solutions composed of CSMA alone (20% w/w), mixtures based on 2% w/w of CSMA and 18% of M15P10 showed strain-softening, thermo-sensitive and shear-thinning properties more pronounced than those found for polymer solutions based on M15P10 alone. Additionally, they displayed a yield stress of 19.2±7.0Pa. The 3D printing of this hydrogel resulted in the generation of constructs with tailorable porosity and good handling properties. Finally, embedded chondrogenic cells remained viable and proliferating over a culture period of 6days. The hydrogel described herein represents a promising biomaterial for cartilage 3D printing applications.

  5. Differences in host serotonin innervation of intrastriatal grafts are not determined by a glial scar or chondroitin sulfate proteoglycans. (United States)

    Petit, Audrey; Quenneville, Nancy; Vallée, Annie; Pierret, Philippe; Doucet, Guy


    Serotoninergic (5-HT) neurons of adult recipients provide a much denser innervation of striatal than ventral mesencephalic grafts implanted into the neostriatum of the rat. Moreover, grafts from both brain regions are more innervated by host 5-HT axons after implantation in neonatal than adult hosts. To test the hypothesis that differences in glial scarring or expression of the growth inhibitory molecules, chondroitin sulfate proteoglycans (CSPG), be responsible for these differences in 5-HT innervation of neural grafts, we examined the 5-HT innervation, the astroglial reaction and the expression of CSPG in ventral mesencephalic grafts implanted into newborn (1-5 days old), juvenile (15 days old), or adult rats and in striatal grafts implanted in adult rats, using immunohistochemistry against 5-HT, glial fibrillary acidic protein (GFAP) and CSPG. Immunostaining for GFAP showed a stronger initial gliosis (1-10 days after grafting) in neonatal than adult recipients of mesencephalic grafts, but this gliosis subsided gradually at later time points. Nevertheless, a glial scar formed at the graft-host interface in both neonatal and adult recipients, 5-10 days after transplantation, although it decreased over a longer time course--up to 60 days--in adults. Immunostained astrocytes appeared first in the host brain tissue around the graft and then immunoreactive processes and perikarya gradually invaded the graft. Immunoreactivity for CSPG was similar in neonatal and adult hosts: it was strongly expressed inside the graft early after transplantation, and almost completely down-regulated at 60 days. The reaction of adult hosts to striatal and mesencephalic grafts was similar, although GFAP was more heterogeneously distributed and CSPG immunoreactivity remained in patches inside striatal grafts, even after 60 days. The 5-HT innervation of mesencephalic grafts was much denser after implantation in newborns than in adults. It was also stronger in striatal than in mesencephalic

  6. Structural determination of novel sulfated octasaccharides isolated from chondroitin sulfate of shark cartilage and their application for characterizing monoclonal antibody epitopes. (United States)

    Deepa, Sarama S; Yamada, Shuhei; Fukui, Shigeyuki; Sugahara, Kazuyuki


    Twelve octasaccharide fractions were obtained from chondroitin sulfate C derived from shark cartilage after hyaluronidase digestion. Their sugar and sulfate composition was assigned by matrix-assisted laser desorption ionization time of flight mass spectrometry. The sequences were determined at low picomole amounts by a combination of enzymatic digestions with high-performance liquid chromatography, and were composed of disaccharide building units including O [GlcUAbeta1-3GalNAc], C [GlcUAbeta1-3GalNAc(6S)], A [GlcUAbeta1-3GalNAc(4S)], and/or D [GlcUA(2S)beta1-3GalNAc(6S)], where 2S, 4S, and 6S represent 2-O-, 4-O-, and 6-O-sulfate, respectively. As many as 24 different sequences including minor ones were revealed, exhibiting a high degree of structural diversity reflecting the enormous heterogeneity of the parent polysaccharides. Nineteen of them were novel, with the other four reported previously as unsaturated counterparts obtained after digestion with chondroitinase. Microarrays of these structurally defined octasaccharide fractions were prepared using low picomole amounts of their lipid-derivatives to investigate the binding specificity of four commercial anti-chondroitin sulfate antibodies CS-56, MO-225, 2H6, and LY111. The results revealed that multiple unique sequences were recognized by each antibody, which implies that the common conformation shared by the multiple primary sequences in the intact chondroitin sulfate chains is important as an epitope for each monoclonal antibody. Comparison of the specificity of the tested antibodies indicates that CS-56 and MO-225 specifically recognize octasaccharides containing an A-D tetrasaccharide sequence, whereas 2H6 and LY111 require a hexasaccharide as a minimum size for their binding, and prefer sequences with A- and C-units such as C-C-A-C (2H6) or C-C-A-O, C-C-A-A, and C-C-A-C (LY111) for strong binding but require no D-unit.

  7. Production of a monoclonal antibody by in vitro immunization that recognizes a native chondroitin sulfate epitope in the embryonic chick limb and heart. (United States)

    Capehart, A A; Wienecke, M M; Kitten, G T; Solursh, M; Krug, E L


    We report the production of a monoclonal antibody (d1C4) by in vitro immunization that has immunoreactivity with a native chondroitin sulfate epitope in embryonic chick limb and heart. Murine lymphocytes were stimulated by direct exposure to unfixed, unsolubilized precartilage mesenchymal aggregates in high-density micromass culture derived from Stage 22-23 chick limb buds. Specificity of d1C4 reactivity was demonstrated by sensitivity of immunohistochemical staining to pretreatment with chondroitinase ABC or AC, preferential immunoreactivity with chondroitin-6-sulfate glycosaminoglycan (CS-C GAG) in ELISA, and competition of immunohistochemical staining with CS-C GAG. Immunohistochemical analysis of the expression of the d1C4 epitope revealed a striking localization of immunoreactivity in the extracellular matrix (ECM) of precartilage aggregates of chick limb mesenchyme in high-density micromass culture by 16 hr and the prechondrogenic limb core at Stage 23 in vivo. Immunoreactivity in both cultured limb mesenchyme and the embryonic limb continued through differentiation of prechondrogenic condensations into cartilage tissue. In the developing chick heart, d1C4 staining was found throughout the ECM of atrioventricular cushion tissue by Stage 25, but was localized to mesenchyme adjacent to the myocardium in the outflow tract cushions. There was an abrupt demarcation between d1C4-reactive intracardiac mesenchyme and unreactive extracardiac mesenchyme of the dorsal mesocardium in the Stage 22 embryo. This study demonstrates the efficacy of in vitro immunization of lymphocytes for the production of MAbs to native ECM constituents, such as CS-GAGs. Immunohistochemical data utilizing d1C4 suggest that CS-GAGs bearing this epitope may be important in early morphogenetic events leading to cartilage differentiation in the limb and valvuloseptal morphogenesis in the heart.

  8. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury

    NARCIS (Netherlands)

    Bartus, Katalin; James, Nicholas D; Didangelos, Athanasios; Bosch, Karen D; Verhaagen, J.; Yáñez-Muñoz, Rafael J; Rogers, John H; Schneider, Bernard L; Muir, Elizabeth M; Bradbury, Elizabeth J


    Chondroitin sulfate proteoglycans (CSPGs) inhibit repair following spinal cord injury. Here we use mammalian-compatible engineered chondroitinase ABC (ChABC) delivered via lentiviral vector (LV-ChABC) to explore the consequences of large-scale CSPG digestion for spinal cord repair. We demonstrate si

  9. Cardiovascular safety and efficacy of the combined symptomatic slow-acting drug glucosamine and chondroitin sulfate in patients with gonarthrosis

    Directory of Open Access Journals (Sweden)

    A. P. Rebrov


    Full Text Available Objective: to investigate the clinical efficacy and cardiovascular safety of the combined symptomatic slow-acting drug glucosamine and chondroitin sulfate in patients with osteoarthritis (OA and hypertension.Subjects and methods. The investigation enrolled 44 patients (a female:male ratio of 40:4 aged 54.5±7.4 years with knee OA (duration, 6.4±1.54 years. The patients were blindly randomized into two groups: 1 those who received antihypertensive therapy, teraflex (chondroitin sulfate 400 mg and glucosamine sulfate 500 mg with/without acetaminophen; 2 those who had antihypertensive therapy and acetaminophen. At baseline and 3 and 6 months after treatment, the investigators assessed a change in the degree of OA by the WOMAC and Lequesne indices, the treatment efficiency evaluated by a physician and a patient using a visual analogue scale, and cardiovascular safety (during the first and last visits through examination of the antithrombogenic properties of the vascular wall and arterial stiffness.Results. All the patients taking teraflex for 6 months were observed to have a positive effect manifesting as a substantial reduction in WOMAC and Lequesne indices, pain syndrome, and needs for analgesics compared to both the baseline level and parameters in the patients receiving acetaminophen only. Teraflex therapy showed an increase in the fibrinolytic activity of the vascular wall. A more obvious fall in augmentation index and pulse wave velocity was seen in OA and AG patients receiving antihypertensive therapy and teraflex.Conclusion. Group 1 displayed not only reductions in pain syndrome and needs for analgesics, but also no blood pressure destabilization. They also had lower endothelial dysfunction manifesting as enhanced fibrinolytic activity of the vascular wall, decreased brachial and aortic augmentation indices, and lower pulse wave velocity.

  10. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhao [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Nooeaid, Patcharakamon [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Kohl, Benjamin [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Roether, Judith A.; Schubert, Dirk W. [Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Meier, Carola [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Boccaccini, Aldo R. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Godkin, Owen; Ertel, Wolfgang; Arens, Stephan [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Schulze-Tanzil, Gundula, E-mail: [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Institute of Anatomy, Paracelsus Medical University, Nuremberg (Germany)


    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  11. Primary ovarian carcinomas and abdominal metastasis contain 4,6-disulfated chondroitin sulfate rich regions, which provide adhesive properties to tumour cells.

    Directory of Open Access Journals (Sweden)

    Myrtille J E Vallen

    Full Text Available High mortality in ovarian cancer patients is primarily caused through rapid metastasis of the tumour, but the underlying mechanisms are poorly understood. Glycosaminoglycans, are abundantly present in tumours and chondroitin sulfate-E (CSE, a highly 4,6-sulfated glycosaminoglycan, has been indicated to play a role in carcinogenesis. In this study we investigated the presence of CSE in ovarian cancer metastasis and studied its role in tumour cell adhesiveness and migration. CSE was studied immunohistochemically in primary ovarian carcinomas and abdominal metastases using the single chain antibody GD3G7. The role of CSE was studied in 2D (scratch assays and 3D (collagen matrices, spheroids systems using SKOV3 cells applying 1: overexpression of CSE by stable transfection with DNA encoding GalNAc4S-6 sulfotransferase, 2: enzymatic removal of CS, and 3: addition of CSE. In ovarian cancer tissue, CSE expression was predominantly seen in the stromal compartment of both primary ovarian carcinomas and metastases, with a comparable degree of intensity and extent. Overexpression of CSE disaccharide units by tumour cells increased their adhesive properties which was especially seen in tumour spheroid formation. Increased expression of CSE reduced cell migration. Addition of free CSE had similar effects. The data presented here indicate that CSE is associated with metastatic lesions and that it provides tumours with adhesive properties. CSE rich motifs are put forward as a potential target for ovarian cancer therapy.

  12. [Protective action figurations for superoxide dismutase - chondroitin sulfate - catalase bienzyme conjugate after its medicative administration in endotoxin shock]. (United States)

    Maksimenko, A V; Vavaeva, A V; Zvyagintseva, M A; Abramov, A A; Timoshin, A A; Vavaev, A V; Lakomkin, V L


    Previously it found that the bienzymatic conjugate superoxide dismutase-chondroitin sulfate, catalase (SOD-CHS-CAT) increased the survival rate of rats with endotoxic shock caused by the administration of lipopolysaccharide (LPS). This effect was observed both in preventive (before LPS) and therapeutic conjugate administration (after the administration of LPS). This study shows that the development of endotoxic shock is accompanied by increased levels of NO in the liver, lungs, kidneys, heart; administration of the SOD-CHS-CAT conjugate insignificantly influenced this parameter. At the same time, the changes in blood urea and creatinine suggest the protective effect of the conjugate on renal function, while diverse changes in biochemical parameters studied complicate the formation of the agreed conclusions on the state of other organs.

  13. Establishment of chondroitin B lyase-based analytical methods for sensitive and quantitative detection of dermatan sulfate in heparin. (United States)

    Wu, Jingjun; Ji, Yang; Su, Nan; Li, Ye; Liu, Xinxin; Mei, Xiang; Zhou, Qianqian; Zhang, Chong; Xing, Xin-hui


    Dermatan sulfate (DS) is one of the hardest impurities to remove from heparin products due to their high structural similarity. The development of a sensitive and feasible method for quantitative detection of DS in heparin is essential to ensure the clinical safety of heparin pharmaceuticals. In the current study, based on the substrate specificity of chondroitin B lyase, ultraviolet spectrophotometric and strong anion-exchange high-performance liquid chromatographic methods were established for detection of DS in heparin. The former method facilitated analysis in heparin with DS concentrations greater than 0.1mgmL(-1) at 232nm, with good linearity, precision and recovery. The latter method allowed sensitive and accurate detection of DS at concentrations lower than 0.1mgmL(-1), exhibiting good linearity, precision and recovery. The linear range of DS detection using the latter method was between 0.01 and 0.5mgmL(-1).

  14. Regulation of chondroitin-4-sulfotransferase (CHST11) expression by opposing effects of arylsulfatase B on BMP4 and Wnt9A. (United States)

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K


    In this report, the gene regulatory mechanism by which decline in arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) reduces CHST11 (chondroitin-4-sulfotransferase; C4ST) mRNA expression in human colonic epithelial cells and in colonic epithelium of ARSB-deficient mice is presented. ARSB controls the degradation of chondroitin 4-sulfate (C4S) by removing the 4-sulfate group at the non-reducing end of the C4S chain, but has not previously been shown to affect C4S biosynthesis. The decline in CHST11 expression following ARSB reduction is attributable to effects of ARSB on bone morphogenetic protein (BMP)4, since BMP4 expression and secretion declined when ARSB was silenced. Inhibition of BMP4 by neutralizing antibody also reduced CHST11 expression. When C4S was more sulfated due to decline in ARSB, more BMP4 was sequestered by C4S in the cell membrane, and CHST11 expression declined. Exogenous recombinant BMP4, acting through a phospho-Smad3 binding site in the CHST11 promoter, increased the mRNA expression of CHST11. In contrast to the decline in BMP4 that followed decline in ARSB, Wnt9A mRNA expression was previously shown to increase when ARSB was silenced and C4S was more highly sulfated. Galectin-3 bound less to the more highly sulfated C4S, leading to increased nuclear translocation and enhanced galectin-3 interaction with Sp1 in the Wnt9A promoter. Silencing Wnt9A increased the expression of CHST11 in the colonic epithelial cells, and chromatin immunoprecipitation assay demonstrated enhancing effects of Wnt9A siRNA and exogenous BMP4 on the CHST11 promoter through the pSmad3 binding site. These findings suggest that cellular processes mediated by differential effects of Wnt9A and BMP4 can result from opposing effects on CHST11 expression.

  15. Gold nanomaterials based pseudostationary phases in capillary electrophoresis: a brand-new attempt at chondroitin sulfate isomers separation. (United States)

    Zhao, Ting; Zhou, Guanglian; Wu, Yuanhong; Liu, Xiumei; Wang, Fengshan


    In this work, a CE method with bare gold nanorods (GNRs) based pseudostationary phase was developed and applied for the separation of chondroitin sulfate (CS) isomers, CS, and dermatan sulfate (DS). The separation efficiency was investigated by varying the experimental parameters such as concentration and pH of the BGE, separation voltage, internal diameter of capillary, different size, and morphology of gold nanomaterials. Results showed that different size and morphology of gold nanomaterials had different effects on the separation of CS and DS. The best separation of CS and DS was achieved in the BGE composed of aqueous 150 mmol/L (mM) ethylenediamine + 20 mM sodium dihydrogen phosphate + 30% v/v GNRs, pH 4.5, at the separation voltage of -10 kV. Capillary was 59.2 cm in length (effective length 49 cm), 50 μm id capillary thermostated at 25°C. CE with bare GNRs used as pseudostationary phase was shown to be a suitable technique for the separation of CS and DS mixtures with wider peaks. RSD of migration time and peak area of CS and DS were 0.13, 0.14 and 0.86, 1.07%, respectively.

  16. Fractal analysis of extra-embryonic vessels of chick embryos under the effect of glucosamine and chondroitin sulfates. (United States)

    de Souza Lins Borba, Fernanda Katharine; Felix, Giovanni Loos Queiroz; Costa, Edbhergue Ventura Lola; Silva, Lisie; Dias, Paulo Fernando; de Albuquerque Nogueira, Romildo


    Like heparan sulfate proteoglycans, some monosaccharides and glycosaminoglycans, such as sulfated glucosamine (GS) and chondroitin (CS), integrate the vascular extracellular matrix and may influence vascular endothelial cell growth. To assess the effects of these substances on blood vessel formation, we used the chick yolk sac membrane (YSM) model and fractal geometry quantification, which provided an objective in vivo method for testing potential agents that promote vasculogenesis and angiogenesis. An image processing method was developed to evaluate YSM capillary vessels after they were implanted in a methylcellulose disk of GS or CS at a concentration between 0.001-0.1mg/disk (performed on 2-day old embryos). This method resulted in a binary image of the microvascular network (white vessels on a black background). Fractal box-counting (DBC) and information (DINF) dimensions were used to quantify the activity of GS and CS in vasculogenesis and angiogenesis. YSM treated with GS (0.001-0.1mg) and CS (0.03-0.1mg) showed an increase in fractal dimensions that corresponded to vitelline vessel growth compared to the control group (vehicle), with GS displaying higher fractal dimension values.

  17. Optimisation extraction of chondroitin sulfate from fish bone by high intensity pulsed electric fields. (United States)

    He, Guidan; Yin, Yongguang; Yan, Xiaoxia; Yu, Qingyu


    High intensity pulsed electric fields (PEF) was used to extract chondroitin sulphate (CS) from fish bone. Results show that PEF extraction speed is much faster, and the content of CS is much higher compared with traditional methods. Variation of PEF parameters and the content of CS were determined by single factor experiments. The processing conditions were optimised by quadratic general rotary unitised design experiments. The maximum yield of 6.92 g/L was achieved under the following conditions: material-liquid ratio of 1:15 g/mL, electric field intensity of 16.88 kV/cm, pulse number of 9, and NaOH concentration of 3.24%. The purity of CS was analysed by agarose gel electrophoresis. CS purity was high, and the extract did not contain any other glycosaminoglycans. PEF can be widely used to extract CS with non-thermal performance, high speed, and low pollution.

  18. Hybrid 3D structure of poly(d,l-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering


    Santo, Vítor E.; Duarte, Ana Rita C.; Gomes, Manuela E.; Mano, João F.; Rui L Reis


    In the tissue engineering (TE) field, the concept of producing multifunctional scaffolds, capable not only of acting as templates for cell transplantation but also of delivering bioactive agents in a controlled manner, is an emerging strategy aimed to enhance tissue regeneration. In this work, a complex hybrid release system consisting in a three-dimensional (3D) structure based on poly(d,l-lactic acid) (PDLLA) impregnated with chitosan/chondroitin sulfate nanoparticles (NPs) was ...

  19. FACE Analysis as a Fast and Reliable Methodology to Monitor the Sulfation and Total Amount of Chondroitin Sulfate in Biological Samples of Clinical Importance

    Directory of Open Access Journals (Sweden)

    Evgenia Karousou


    Full Text Available Glycosaminoglycans (GAGs due to their hydrophilic character and high anionic charge densities play important roles in various (pathophysiological processes. The identification and quantification of GAGs in biological samples and tissues could be useful prognostic and diagnostic tools in pathological conditions. Despite the noteworthy progress in the development of sensitive and accurate methodologies for the determination of GAGs, there is a significant lack in methodologies regarding sample preparation and reliable fast analysis methods enabling the simultaneous analysis of several biological samples. In this report, developed protocols for the isolation of GAGs in biological samples were applied to analyze various sulfated chondroitin sulfate- and hyaluronan-derived disaccharides using fluorophore-assisted carbohydrate electrophoresis (FACE. Applications to biologic samples of clinical importance include blood serum, lens capsule tissue and urine. The sample preparation protocol followed by FACE analysis allows quantification with an optimal linearity over the concentration range 1.0–220.0 µg/mL, affording a limit of quantitation of 50 ng of disaccharides. Validation of FACE results was performed by capillary electrophoresis and high performance liquid chromatography techniques.

  20. The effects of low density lipoproteins modified by incubation with chondroitin 6-sulfate on human aortic smooth muscle cells. (United States)

    Tîrziu, D; Jinga, V V; Serban, G; Simionescu, M


    One of the first changes that take place within the artery intima at the inception of atherosclerosis is the accumulation of LDL-derived modified lipoproteins which appear as subendothelial lipid droplets and vesicles. With time, the LDL retention and interaction with intimal chondroitin sulfate-proteoglycans may induce further structural and functional modification of the lipoproteins. The aim of this study was to produce 'in vitro' modified lipoproteins by LDL incubation with chondroitin 6-sulfate (CS, at 37 degrees C, for 48 h, in the absence of antioxidants) and to test their effects on cultured human aortic smooth muscle cells (SMCs). CS induced LDL modification (CS-mLDL) consisted in formation of a mixture of fused particles (up to 150 nm diameter) and monomers with a small content of lipid peroxides and a partially degraded apo B-100, corresponding to a mild oxidation. Upon incubation with SMCs, CS-mLDL produced a concentration-dependent stimulation of 3H-thymidine incorporation, that, at low concentration (25 microg/ml), was 2-3-fold higher than that obtained when native LDL was used; this increase correlates well with the level of CS-mLDL uptake at the same concentration. Besides the mitogenic effect, CS-mLDL induced a significant stimulation of SMCs migration, comparable with that reported for oxidized LDL. Upon incubation with CS-mLDL, SMCs accumulated lipid droplets of various number and dimension, as revealed by Nile red staining and electron microscopy. Competition studies performed in the presence of 20-fold excess of native LDL and acetyl LDL showed that 125I-CS-mLDL were taken up both by LDL receptor and scavenger receptor. At high concentration (200 microg/ml), CS-mLDL had a cytotoxic effect that was not significantly different from that of native LDL. Together these results provide evidence of (i) the direct alteration produced by CS on LDL and (ii) the effect of CS-mLDL on SMCs migration, proliferation and transformation in lipid-laden cells

  1. Development of a mouse monoclonal antibody against the chondroitin sulfate-protein linkage region derived from shark cartilage. (United States)

    Akatsu, Chizuru; Fongmoon, Duriya; Mizumoto, Shuji; Jacquinet, Jean-Claude; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki


    Glycosaminoglycans (GAGs) like chondroitin sulfate (CS) and heparan sulfate (HS) are synthesized on the tetrasaccharide linkage region, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser, of proteoglycans. The Xyl can be modified by 2-O-phosphate in both CS and HS, whereas the Gal residues can be sulfated at C-4 and/or C-6 in CS but not in HS. To study the roles of these modifications, monoclonal antibodies were developed against linkage glycopeptides of shark cartilage CS proteoglycans, and one was characterized in detail. This antibody bound hexa- and pentasaccharide-peptides more strongly than unsaturated tetrasaccharide-peptides with the unnatural fourth sugar residue (unsaturated hexuronic acid), suggesting the importance of the fifth and/or fourth saccharide residue GalNAc-5 and/or GlcA-4. Its reactivity was not affected by treatment with chondro-4-sulfatase or alkaline phosphatase, suggesting that 4-O-sulfate on the Gal residues and 2-O-phosphate on the Xyl residue were not recognized. Treatment with weak alkali to cleave the Xyl-Ser linkage completely abolished the binding activity, suggesting the importance of the peptide moiety of the hexasaccharide-peptide for the binding. Based on the amino acid composition and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analyses, it was revealed that the peptide moiety is composed of four amino acids, Ser, Pro, Gly, and Glu. Furthermore, the antibody stained wild-type CHO cells significantly, but much weakly mutant cells deficient in xylosyl- or galactosyltransferase-I required for the biosynthesis of the linkage region. These results suggest that the antibody recognizes the structure GalNAc(+/-6-O-sulfate)-GlcA-Gal-Gal-Xyl-Ser-(Pro, Gly, Glu). The antibody will be a useful tool for investigating the significance of the linkage region in the biosynthesis and/or intracellular transport of different GAG chains especially since such tools to study the linkage region are lacking.

  2. Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction

    Directory of Open Access Journals (Sweden)

    Liguo Sun


    Full Text Available The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3 gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface.

  3. In vitro and preliminary in vivo toxicity screening of high-surface-area TiO2-chondroitin-4-sulfate nanocomposites for bone regeneration application. (United States)

    Kandiah, Kavitha; Venkatachalam, Rajendran; Wang, Chunyan; Valiyaveettil, Suresh; Ganesan, Kumaresan


    The goal of this study was to prepare nontoxic, biomimetic TiO2/chondroitin-4-sulfate nanocomposites with osteointegration ability for biomedical applications. Nanocomposites with higher surface area were subjected to bioactivity study and obtained bone-like layer with stoichiometric Ca/P ratio of 1.64 and 1.66. The susceptibility of nanocomposites against Staphylococcus aureus (∼16 mm) and Escherichia coli (∼12 mm) is favorable in preventing the risk of bone diseases and postoperative infections. Adequate swelling and degradations properties were favorably achieved to reduce the risk of nanoparticle accumulation in cell organelles. Moreover, the toxicity in AGS cell line and biocompatibility in osteoblast-like MG-63 cell line showed no significant mitochondrial damage. In addition, the in vitro expression of osteoblast inducing genes (OCN, OPN, ALP and COL 1) and their up-regulation, and 20% of increased hatching rate in preliminary in vivo (zebrafish) analysis were favorable for the nanocomposite at the ratio of 2:0.50 than pure TiO2. Hence, it can be concluded that among the prepared nanocomposites TCs.5 is a promising biomimetic biomaterial that can be used for advanced orthopedic research and other applications.

  4. Increase of the final setting time of brushite cements by using chondroitin 4-sulfate and silica gel. (United States)

    Tamimi-Mariño, F; Mastio, J; Rueda, C; Blanco, L; López-Cabarcos, E


    Chondroitin 4-sulfate (C4S) is a bioactive glycosaminoglycan with inductive properties in bone and tissue regeneration. Dicalcium phosphate dehydrate cements (known as brushite) are biocompatible and resorbable materials used in bone and dental surgery. In this study we analyzed the effect of C4S on the setting of a calcium phosphate cement and the properties of the resulting material. Brushite based cement powder was synthesised by mixing monocalcium phosphate with beta-tricalcium phosphate and sodium pyrophosphate. When the concentration of C4S, in the liquid added to the cement powder, was between 1 and 8% the cement final setting time increases. Furthermore, the cement diametral tensile strength remains unaffected when solutions with concentrations of C4S below 5% were used, but decreases at higher C4S concentrations. Calorimetric analysis showed that the cements prepared with C4S alone and in combination with silica gel have a greater content of hydrated water. We concluded from our study that the addition of small amounts of C4S increases the cement setting time without affecting its diametral tensile strength and at the same time improves the cement's hydrophilicity.

  5. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds Improved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Sorina Dinescu


    Full Text Available Cartilage tissue engineering (CTE applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA and chondroitin sulfate (CS were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffolds based on natural compounds but also to evaluate their in vitro biological performances. Therefore, for prospective CTE, collagen-sericin (Coll-SS scaffolds improved with HA (5% or 10% and CS (5% or 10% were used as temporary physical supports for ASCs and were analyzed in terms of structural, thermal, morphological, and swelling properties and cytotoxic potential. To complete biocompatibility data, ASCs viability and proliferation potential were also assessed. Our studies revealed that Coll-SS hydrogels improved with 10% HA and 5% CS displayed the best biological performances in terms of cell viability, proliferation, morphology, and distribution. Thus, further work will address a novel 3D system including both HA 10% and CS 5% glycoproteins, which will probably be exposed to prochondrogenic conditions in order to assess its potential use in CTE applications.

  6. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin

    Energy Technology Data Exchange (ETDEWEB)

    Grijalva-Bustamante, G.A. [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Evans-Villegas, A.G. [Departamento de Ciencias Químico Biológicas, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Castillo-Castro, T. del, E-mail: [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Castillo-Ortega, M.M. [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Cruz-Silva, R. [Research Center for Exotic Nanocarbons, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano (Japan); Huerta, F. [Departamento Ingeniería Textil y Papelera, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1, E-03801 Alcoy (Spain); Morallón, E. [Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)


    Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection. - Highlights: • A new method of pyrrole polymerization using naturally occurring redox mediators and doping agents was studied. • The catalytic efficiency of different redox mediators toward pyrrole oxidation was evaluated. • Two different naturally occurring polymers were studied as bifunctional steric stabilizer/doping agents. • Polypyrrole improves the amperometric response of carbon nanotube screen printed electrodes toward uric acid sensing.


    Directory of Open Access Journals (Sweden)

    VI Shishkin


    Full Text Available Objective. To study features of bioenergetic processes in synovial fluid (SF in osteoarthritis (OA and to reveal influence of chondroitin sulfate (Structum on these processes. Material and methods. SF bioenergetic parameters were analyzed in 15 pts with knee OA receiving structum. SF bioenergetics was assessed with classic enzyme tests and polarographic analysis of oxygen consumption speed by SF cells. Physiological biochemical measures were compared during exacerbation and after treatment. Results. SF pH in OA is significantly shifted to the acidic diapason and bioenergetic processes are transformed with decrease of synovial tissue cells energetic potential (decrease of ATP level and engaging reserve energetic mechanism of creatine phosphate spending. Pharmacological correction of SF cells energetic metabolism can be achieved with chondroprotector structum. Conclusion. SF bioenergetics in OA is changed with glycolysis activation, engaging reserve bioenergetic mechanisms, creatine phosphate catabolism up regulation, and increase of dissociation between respiration and oxidative phosphorylation. pH shift to more acidic zone (from normal 7,4 to 6,85 in OA is a trigger of OA exacerbation. Substitutive therapy with polyanionic drug structum normalizes SF pH and bioenergetic parameters already after three months.

  8. Preparation and Characterization of a Collagen-Liposome-Chondroitin Sulfate Matrix with Potential Application for Inflammatory Disorders Treatment

    Directory of Open Access Journals (Sweden)

    Oana Craciunescu


    Full Text Available Smart drug delivery systems with controllable properties play an important role in targeted therapy and tissue regeneration. The aim of our study was the preparation and in vitro evaluation of a collagen (Col matrix embedding a liposomal formulation of chondroitin sulfate (L-CS for the treatment of inflammatory disorders. Structural studies using Oil Red O specific staining for lipids and scanning electron microscopy showed an alveolar network of nanosized Col fibrils decorated with deposits of L-CS at both periphery and inner of the matrix. The porosity and density of Col-L-CS matrix were similar to those of Col matrix, while its mean pore size and biodegradability had significantly higher and lower values (P<0.05, respectively. In vitro cytotoxicity assays showed that the matrix system induced high cell viability and stimulated cell metabolism in L929 fibroblast cell culture. Light and electron micrographs of the cell-matrix construct showed that cells clustered into the porous structure at 72 h of cultivation. In vitro diffusion test indicated that the quantity of released CS was significantly lower (P<0.05 after embedment of L-CS within Col matrix. All these results indicated that the biocompatible and biodegradable Col-L-CS matrix might be a promising delivery system for local treatment of inflamed site.

  9. Occurrence of sulfated fucose branches in fucosylated chondroitin sulfate are essential for the polysaccharide effect preventing muscle damage induced by toxins and crude venom from Bothrops jararacussu snake. (United States)

    Monteiro-Machado, Marcos; Tomaz, Marcelo A; Fonseca, Roberto J C; Strauch, Marcelo A; Cons, Bruno L; Borges, Paula A; Patrão-Neto, Fernando C; Tavares-Henriques, Matheus S; Teixeira-Cruz, Jhonatha M; Calil-Elias, Sabrina; Cintra, Adélia C O; Martinez, Ana Maria B; Mourão, Paulo A S; Melo, Paulo A


    Snake envenoming is an important public health problem around the world, particularly in tropics. Beyond deaths, morbidity induced by snake venoms, such as myotoxicity, is of pivotal consequence to population. Bothrops jararacussu is the main venomous snake in southeast region of Brazil, and particularly presents strong myotoxic effect. The only available therapy, antibothropic antivenom, poorly affects venom-induced myotoxicity. The aim of this study is to assess the ability of fucosylated chondroitin sulfate (fucCS), a glycosaminoglycan with anticoagulant and antithrombotic properties, and its derivatives to inhibit toxic activities of B. jararacussu crude venom and its isolated toxins, named bothropstoxins (BthTX-I and BthTX-II). The in vitro myotoxic activities induced by crude venom, by BthTX-I alone and by toxins together were abolished by fucCS. Carboxyl reduction (fucCS-CR) kept this ability whereas defucosilation (defucCS) abrogates myoprotection. We observed the same pattern in the response of these polysaccharides in antagonizing the increase in plasma creatine kinase (CK) levels, the reduction of skeletal muscle CK content and the rise of myeloperoxidase (MPO) activity induced by crude venom and isolated toxins. FucCS inhibited edematogenic activity and partially prevented the reduction of total leukocytes in blood when pre-incubated with crude venom. Furthermore, the venom procoagulant effect was completely antagonized by increasing concentrations of fucCS, although this polyanion could stop neither the tail bleeding nor the skin hemorrhage induced by Bothrops jararaca venom. The B. jararacussu phospholipase, hyaluronidase, proteolytic and collagenase activities were inhibited in vitro. The results suggest that fucCS could be able to interact with both toxins, and it is able to inhibit BthTX-II phospholipase activity. Light microscopy of extensor digitorum longus muscle (EDL) muscle showed myoprotection by fucCS, once necrotic areas, edema and

  10. Glucosamine and chondroitin sulfate association increases tibial epiphyseal growth plate proliferation and bone formation in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Roberta Bastos Wolff


    Full Text Available OBJECTIVE: The growth plate consists of organized hyaline cartilage and serves as a scaffold for endochondral ossification, a process that mediates longitudinal bone growth. Based on evidence showing that the oral administration of glucosamine sulfate (GS and/or chondroitin sulfate (CS is clinically valuable for the treatment of compromised articular cartilage, the current study evaluated the effects of these molecules on the tibial epiphyseal growth plate in female rats. METHOD: The animals were divided into two control groups, including vehicle treatment for 45 days (GC45 and 60 days (GC60 and six ovariectomized (OVX groups, including vehicle treatment for 45 days (GV45, GS for 45 days (GE45GS, GS+CS for 45 days (GE45GS+CS, vehicle for 60 days (GV60, GS for 60 days (GE60GS and GS+CS for 60 days (GE60GS+CS. At the end of treatment, the tibias were dissected, decalcified and processed for paraffin embedding. Morphological and morphometric methods were employed for analyzing the distal tibial growth plates using picrosirius red staining and the samples were processed for histochemical hyaluronan detection. Morphometric analyses were performed using the 6.0ProPlus¯ Image system. RESULTS: Notably, after 60 days of treatment, the number of proliferative chondrocytes increased two-fold, the percentage of remaining cartilage increased four-fold and the percentage of trabecular bone increased three-fold in comparison to the control animals. CONCLUSION: GS and CS treatment drugs led to marked cellular proliferation of the growth plate and bone formation, showing that drug targeting of the tibial epiphyseal growth plate promoted longitudinal bone growth.

  11. Degree of Suppression of Mouse Myoblast Cell Line C2C12 Differentiation Varies According to Chondroitin Sulfate Subtype (United States)

    Warita, Katsuhiko; Oshima, Nana; Takeda-Okuda, Naoko; Tamura, Jun-ichi; Hosaka, Yoshinao Z.


    Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype on myogenic differentiation remains unclear. In this study, we spiked cultures of C2C12 myoblasts, cells which are capable of undergoing skeletal muscle differentiation, with one of five types of CS (CS-A, -B, -C, -D, or -E) and induced differentiation over a fixed time. After immunostaining of the formed myotubes with an anti-MHC antibody, we counted the number of nuclei in the myotubes and then calculated the fusion index (FI) as a measure of myotube differentiation. The FI values of all the CS-treated groups were lower than the FI value of the control group, especially the group treated with CS-E, which displayed notable suppression of myotube formation. To confirm that the sugar chain in CS-E is important in the suppression of differentiation, chondroitinase ABC (ChABC), which catabolizes CS, was added to the media. The addition of ChABC led to the degradation of CS-E, and neutralized the suppression of myotube formation by CS-E. Collectively, it can be concluded that the degree of suppression of differentiation depends on the subtype of CS and that CS-E strongly suppresses myogenic differentiation. We conclude that the CS sugar chain has inhibitory action against myoblast cell fusion. PMID:27775651

  12. Anti-chondroitin sulfate proteoglycan 4-specific antibodies modify the effects of vemurafenib on melanoma cells differentially in normoxia and hypoxia. (United States)

    Pucciarelli, Daniela; Lengger, Nina; Takacova, Martina; Csaderova, Lucia; Bartosova, Maria; Breiteneder, Heimo; Pastorekova, Silvia; Hafner, Christine


    Chondroitin sulfate proteoglycan 4 (CSPG4), a highly immunogenic melanoma tumor antigen, is a potential target for antibody-based immunotherapy. The mechanism by which CSPG4 affects melanoma progression is only partly understood, in particular the involvement of other receptor tyrosine kinases and the tumor microenvironment. We have previously reported on a mimotope-based vaccine against CSPG4 in a human melanoma xenograft model that resulted in reduction of tumor growth. Herein we describe the influence of hypoxia on the response to polyclonal anti-CSPG4-antibodies induced by this vaccine in combination with the BRAF inhibitor vemurafenib to enhance therapeutic efficacy by simultaneously targeting multiple signaling pathways. Melanoma cells were treated with polyclonal anti-CSPG4-antibodies and vemurafenib. Proliferation, migration and invasion were evaluated in a real-time setting in the impedance-based x-CELLigence® system. Western blotting and quantitative PCR arrays were used to determine protein and mRNA expression of hypoxia inducible factor 1α (HIF1α), carbonic anhydrase IX (CAIX) and signaling pathway proteins. A melanoma xenograft model was used to detect HIF1α and CAIX expression in vivo. Hypoxia enhanced the antiproliferative response to vemurafenib. The migration and invasion capacities of vemurafenib-treated melanoma cells were increased, in spite of vemurafenib-decreased expression of HIF1α and CAIX. Polyclonal anti-CSPG4-antibodies reduced the Transwell migration of vemurafenib-treated, BRAF V600E-mutant and CSPG4-expressing melanoma cells in hypoxia. This was associated with the downregulation of phosphorylated AKT, a kinase contributing to tumor cell migration. Our results highlight CSPG4 as a potential target for modulating treatment resistance to vemurafenib induced by the hypoxic microenvironment.

  13. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications (United States)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon


    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  14. Influence of chondroitin sulfate and hyaluronic acid on structure, mechanical properties, and glioma invasion of collagen I gels. (United States)

    Yang, Ya-li; Sun, Charles; Wilhelm, Matthew E; Fox, Laura J; Zhu, Jieling; Kaufman, Laura J


    To mimic the extracellular matrix surrounding high grade gliomas, composite matrices composed of either acid-solubilized (AS) or pepsin-treated (PT) collagen and the glycosaminoglycans chondroitin sulfate (CS) and hyaluronic acid (HA) are prepared and characterized. The structure and mechanical properties of collagen/CS and collagen/HA gels are studied via confocal reflectance microscopy (CRM) and rheology. CRM reveals that CS induces fibril bundling and increased mesh size in AS collagen but not PT collagen networks. The presence of CS also induces more substantial changes in the storage and loss moduli of AS gels than of PT gels, in accordance with expectation based on network structural parameters. The presence of HA significantly reduces mesh size in AS collagen but has a smaller effect on PT collagen networks. However, both AS and PT collagen network viscoelasticity is strongly affected by the presence of HA. The effects of CS and HA on glioma invasion is then studied in collagen/GAG matrices with network structure both similar to (PT collagen-based gels) and disparate from (AS collagen-based gels) those of the corresponding pure collagen matrices. It is shown that CS inhibits and HA has no significant effect on glioma invasion in 1.0 mg/ml collagen matrices over 3 days. The inhibitory effect of CS on glioma invasion is more apparent in AS than in PT collagen gels, suggesting invasive behavior in these environments is affected by both biochemical and network morphological changes induced by GAGs. This study is among the few efforts to differentiate structural, mechanical and biochemical effects of changes to matrix composition on cell motility in 3D.

  15. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. (United States)

    Fan, Ming; Ma, Ye; Tan, Huaping; Jia, Yang; Zou, Siyue; Guo, Shuxuan; Zhao, Meng; Huang, Hao; Ling, Zhonghua; Chen, Yong; Hu, Xiaohong


    Injectable hydrogels and microspheres derived from natural polysaccharides have been extensively investigated as drug delivery systems and cell scaffolds. In this study, we report a preparation of covalent hydrogels basing polysaccharides via the Schiff' base reaction. Water soluble carboxymethyl chitosan (CMC) and oxidized chondroitin sulfate (OCS) were prepared for cross-linking of hydrogels. The mechanism of cross-linking is attributed to the Schiff' base reaction between amino and aldehyde groups of polysaccharides. Furthermore, bovine serum albumin (BSA) loaded chitosan-based microspheres (CMs) with a diameter of 3.8-61.6μm were fabricated by an emulsion cross-linking method, followed by embedding into CMC-OCS hydrogels to produce a composite CMs/gel scaffold. In the current work, gelation rate, morphology, mechanical properties, swelling ratio, in vitro degradation and BSA release of the CMs/gel scaffolds were examined. The results show that mechanical and bioactive properties of gel scaffolds can be significantly improved by embedding CMs. The solid CMs can serve as a filler to toughen the soft CMC-OCS hydrogels. Compressive modulus of composite gel scaffolds containing 20mg/ml of microspheres was 13KPa, which was higher than the control hydrogel without CMs. Cumulative release of BSA during 2weeks from CMs embedded hydrogel was 30%, which was significantly lower than those of CMs and hydrogels. Moreover, the composite CMs/gel scaffolds exhibited lower swelling ratio and slower degradation rate than the control hydrogel without CMs. The potential of the composite hydrogel as an injectable scaffold was demonstrated by encapsulation of bovine articular chondrocytes in vitro. These results demonstrate the potential of CMs embedded CMC-OCS hydrogels as an injectable drug and cell delivery system in cartilage tissue engineering.

  16. An efficency of use phonophoresis with an ointment on the basis of chondroitin sulfate and dimetil sulfoxide at the treatment of patients with arthritis of knee joints

    Directory of Open Access Journals (Sweden)

    Виктор Александрович Вишневский


    Full Text Available Osteoarthritis is a frequent disease in people especially of the mean and elderly age.Aim of research: the study of an efficiency of phonophoresis with an ointment on the basis of chondroitin sulfate and dimethyl sulfoxide at treatment of patients with osteoarthritis of knee joints in the outpatient setting.  Material and methods. Research was carried out by the clinical and laboratory examinations of 40 patients with osteoarthritis of knee joints in the outpatient setting.   Patients were distributed between the main and control group depending on an approach to treatment. Indicators before and after treatment in all patients were assessed on 2 scales: the scale of assessment of knee joints (on J.N. Insall et al 1976 - (7 points and 2 Oxford scale for knee joints (on W. Dawson et al, 1998 - (12 point. The level of oxyproline in daily urine was examined in all patients.Results and discussions. The degree of manifestation of pain syndrome, movement amplitude and an everyday motor activity are the parameters of an efficiency of treatment.Author noticed the more apparent efficiency of treatment in patients of the main group who underwent phonophoresis after rubbing an ointment on the basis of chondroitin sulfate in the region of injured knee joint.Disappearance of pains after 10 PhPh with an ointment on the basis of chondroitin sulfate and dimethyl sulfoxide was noticed in 6 (30% patients and diminution of pain intensity in 12 (60% patients. So the general efficiency of treatment is 90% in the main group in relation to 70% of general efficiency of treatment without use this ointment in the control group.Conclusions. 1. Phonophoresis with an ointment on the basis of chondroitin sulfate and dimethyl sulfoxide is a safe and rather effective method of treatment patients with osteoarthritis of knee joints of I-III radiographic stage, an efficiency of treatment is 90%.2. The use of phonophoresis with an ointment containing combination of chondroitin

  17. Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: characteristics, applications and eco-friendly processes: a review. (United States)

    Vázquez, José Antonio; Rodríguez-Amado, Isabel; Montemayor, María Ignacia; Fraguas, Javier; González, María Del Pilar; Murado, Miguel Anxo


    In the last decade, an increasing number of glycosaminoglycans (GAGs), chitin and chitosan applications have been reported. Their commercial demands have been extended to different markets, such as cosmetics, medicine, biotechnology, food and textiles. Marine wastes from fisheries and aquaculture are susceptible sources for polymers but optimized processes for their recovery and production must be developed to satisfy such necessities. In the present work, we have reviewed different alternatives reported in the literature to produce and purify chondroitin sulfate (CS), hyaluronic acid (HA) and chitin/chitosan (CH/CHs) with the aim of proposing environmentally friendly processes by combination of various microbial, chemical, enzymatic and membranes strategies and technologies.


    Directory of Open Access Journals (Sweden)

    Noushi Abeer Amer


    Full Text Available This study was designed to investigate the possible adverse effects that may be induced by once-daily therapeutic doses of either glucosamine sulfate or glucosamine/chondroitin sulfate administered orally to rats for 30 days on blood cells (RBCs, WBCs and platelets counts. Forty three white healthy adult Albino rats of both sexes were selected randomly for this study. They were divided into three groups (І, ІІ, ІІІ. Group І received 0.05 ml distilled water, group ІІ received once daily therapeutic dose of glucosamine sulphate and group ІІІ received once daily therapeutic dose of glucosamine sulphate/chondroitin sulphate orally. The treatment period was for 30 days. At day 31, the animals were subjected to light ether anaesthesia and blood was withdrawn from the eye by retro-orbital puncture for the estimation of blood cells (RBCs, WBCs and platelets count. Treatment with single daily therapeutic dose of either GS alone or GS/CS for 30 days on blood cells count in rats produced a non significant change in RBCs counts compared to control and to each other. There were no statistically significant differences in total WBCs count at day 31 in animals administered once daily therapeutic dose of either GS or GS/CS orally compared to control group. In contrast, there was a statistically significant elevation in total WBCs count in GS/CS- treated rats compared to that in the GS-treated rats. The results of this study also showed that there was statistically significant decrease in neutrophils percentage in both drug treatment groups compared to control group. A statistically significant reduction in the percentage of monocytes was observed in GS/CS group compared to the corresponding percentage in animals of control group; while, there were non-significant differences in the percentage of monocytes in GS treated rats compared to that in the control group. There were no significant differences in the percentage of monocytes at day 31 of GS

  19. Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS (United States)

    Nilsson, Jonas; Noborn, Fredrik; Gomez Toledo, Alejandro; Nasir, Waqas; Sihlbom, Carina; Larson, Göran


    Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl-O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides.

  20. Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS (United States)

    Nilsson, Jonas; Noborn, Fredrik; Gomez Toledo, Alejandro; Nasir, Waqas; Sihlbom, Carina; Larson, Göran


    Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl- O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides.

  1. Prognostic significance of chondroitin sulfate proteoglycan 4 over-expression in pancreatic cancer patients%胰腺癌组织中硫酸软骨素蛋白多糖4的表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    孙靖; 卢乐乐; 赖洁娟; 张玉君; 陈美玲; 白莲花; 张雷达


    目的 探讨硫酸软骨素蛋白多糖4(chondroitin sulfate proteoglycan 4,CSPG4)在胰腺癌(pancreatic carcinoma)中的表达及其临床意义.方法 收集2007年6月至2010年6月西南医院肝胆外科的胰腺导管腺癌及正常胰腺组织(距肿瘤边缘>2 cm)标本各160例,其中男性124例,女性36例;年龄33~75(56.98±10.75)岁.应用免疫组织化学染色法检测其中CSPG4的表达,分析CSPG4的表达与临床病理参数的相关性;采用Kaplan-Meier法分析胰腺癌中CSPG4的表达与患者预后的关系,Cox回归模型分析胰腺癌患者预后的影响因素.结果 胰腺导管腺癌组织中CSPG4的阳性表达率显著高于正常胰腺组织(46.25% vs 10.00%,P<0.01).胰腺癌中CSPG4的表达与有无淋巴结转移或血管侵犯、肿瘤T分期、TNM分期显著相关(P<0.01).胰腺癌中CSPG4阳性表达患者术后总生存率显著低于阴性表达者(P<0.01).CSPG4的表达是影响胰腺癌患者预后的独立危险因素之一(P<0.01).结论 CSPG4在胰腺导管腺癌中异常高表达,其表达水平是评估患者预后的独立预测指标,提示CSPG4可能成为胰腺癌治疗的一个新靶点.

  2. Chondroitin Sulfate Proteoglycan CSPG4 as a Novel Hypoxia-Sensitive Marker in Pancreatic Tumors


    Shereen Keleg; Alexandr Titov; Anette Heller; Thomas Giese; Christine Tjaden; Ahmad, Sufian S.; Gaida, Matthias M; Andrea S Bauer; Jens Werner; Giese, Nathalia A.


    CSPG4 marks pericytes, undifferentiated precursors and tumor cells. We assessed whether the shed ectodomain of CSPG4 (sCSPG4) might circulate and reflect potential changes in CSPG4 tissue expression (pCSPG4) due to desmoplastic and malignant aberrations occurring in pancreatic tumors. Serum sCSPG4 was measured using ELISA in test (n = 83) and validation (n = 221) cohorts comprising donors (n = 11+26) and patients with chronic pancreatitis (n = 11+20) or neoplasms: benign (serous cystadenoma S...

  3. Chondroitin sulfate proteoglycan CSPG4 as a novel hypoxia-sensitive marker in pancreatic tumors. (United States)

    Keleg, Shereen; Titov, Alexandr; Heller, Anette; Giese, Thomas; Tjaden, Christine; Ahmad, Sufian S; Gaida, Matthias M; Bauer, Andrea S; Werner, Jens; Giese, Nathalia A


    CSPG4 marks pericytes, undifferentiated precursors and tumor cells. We assessed whether the shed ectodomain of CSPG4 (sCSPG4) might circulate and reflect potential changes in CSPG4 tissue expression (pCSPG4) due to desmoplastic and malignant aberrations occurring in pancreatic tumors. Serum sCSPG4 was measured using ELISA in test (n = 83) and validation (n = 221) cohorts comprising donors (n = 11+26) and patients with chronic pancreatitis (n = 11+20) or neoplasms: benign (serous cystadenoma SCA, n = 13+20), premalignant (intraductal dysplastic IPMNs, n = 9+55), and malignant (IPMN-associated invasive carcinomas, n = 4+14; ductal adenocarcinomas, n = 35+86). Pancreatic pCSPG4 expression was evaluated using qRT-PCR (n = 139), western blot analysis and immunohistochemistry. sCSPG4 was found in circulation, but its level was significantly lower in pancreatic patients than in donors. Selective maintenance was observed in advanced IPMNs and PDACs and showed a nodal association while lacking prognostic relevance. Pancreatic pCSPG4 expression was preserved or elevated, whereby neoplastic cells lacked pCSPG4 or tended to overexpress without shedding. Extreme pancreatic overexpression, membranous exposure and tissue(high)/sera(low)-discordance highlighted stroma-poor benign cystic neoplasm. SCA is known to display hypoxic markers and coincide with von-Hippel-Lindau and Peutz-Jeghers syndromes, in which pVHL and LBK1 mutations affect hypoxic signaling pathways. In vitro testing confined pCSPG4 overexpression to normal mesenchymal but not epithelial cells, and a third of tested carcinoma cell lines; however, only the latter showed pCSPG4-responsiveness to chronic hypoxia. siRNA-based knockdowns failed to reduce the malignant potential of either normoxic or hypoxic cells. Thus, overexpression of the newly established conditional hypoxic indicator, CSPG4, is apparently non-pathogenic in pancreatic malignancies but might mark distinct

  4. Chondroitin sulfate proteoglycan CSPG4 as a novel hypoxia-sensitive marker in pancreatic tumors.

    Directory of Open Access Journals (Sweden)

    Shereen Keleg

    Full Text Available CSPG4 marks pericytes, undifferentiated precursors and tumor cells. We assessed whether the shed ectodomain of CSPG4 (sCSPG4 might circulate and reflect potential changes in CSPG4 tissue expression (pCSPG4 due to desmoplastic and malignant aberrations occurring in pancreatic tumors. Serum sCSPG4 was measured using ELISA in test (n = 83 and validation (n = 221 cohorts comprising donors (n = 11+26 and patients with chronic pancreatitis (n = 11+20 or neoplasms: benign (serous cystadenoma SCA, n = 13+20, premalignant (intraductal dysplastic IPMNs, n = 9+55, and malignant (IPMN-associated invasive carcinomas, n = 4+14; ductal adenocarcinomas, n = 35+86. Pancreatic pCSPG4 expression was evaluated using qRT-PCR (n = 139, western blot analysis and immunohistochemistry. sCSPG4 was found in circulation, but its level was significantly lower in pancreatic patients than in donors. Selective maintenance was observed in advanced IPMNs and PDACs and showed a nodal association while lacking prognostic relevance. Pancreatic pCSPG4 expression was preserved or elevated, whereby neoplastic cells lacked pCSPG4 or tended to overexpress without shedding. Extreme pancreatic overexpression, membranous exposure and tissue(high/sera(low-discordance highlighted stroma-poor benign cystic neoplasm. SCA is known to display hypoxic markers and coincide with von-Hippel-Lindau and Peutz-Jeghers syndromes, in which pVHL and LBK1 mutations affect hypoxic signaling pathways. In vitro testing confined pCSPG4 overexpression to normal mesenchymal but not epithelial cells, and a third of tested carcinoma cell lines; however, only the latter showed pCSPG4-responsiveness to chronic hypoxia. siRNA-based knockdowns failed to reduce the malignant potential of either normoxic or hypoxic cells. Thus, overexpression of the newly established conditional hypoxic indicator, CSPG4, is apparently non-pathogenic in pancreatic malignancies but might mark distinct

  5. The Properties of Chondroitin Sulfate from Dosidicus gigas Cartilage%秘鲁巨鱿软骨硫酸软骨素理化性质研究

    Institute of Scientific and Technical Information of China (English)

    李燕妮; 郭琳; 许维娜


    探索一种新的硫酸软骨素来源。以秘鲁巨鱿软骨为原料,经过酶解、超滤浓缩和乙醇沉淀的方法获得硫酸软骨素。秘鲁巨鱿硫酸软骨素得率为3.2%,比旋度为-25.2°,黏均分子量为157000,硫酸软骨素E型二糖占总二糖比例的17%。秘鲁巨鱿软骨可以作为一种硫酸软骨素新原料。%The arm of this research was to explore a new sources of chondroitin sulfate. With the purification process of enzymolysis,filtration and ethanol precipitation,chondroitin sulfate(CS) was purified from the carti-lage of Dosidicus gigas and characterized in an effort to find alternative source. The yield of CS was about 3.2%, the specific rotation was-25.2°,viscosity-average molecular was 157 000,the E-type disulfated disaccharides was 17%in all CS extracts. The Dosidicus gigas cartilage can be used as a new source of CS.

  6. cDNA cloning of the basement membrane chondroitin sulfate proteoglycan core protein, bamacan: a five domain structure including coiled-coil motifs

    DEFF Research Database (Denmark)

    Wu, R R; Couchman, J R


    Basement membranes contain several proteoglycans, and those bearing heparan sulfate glycosaminoglycans such as perlecan and agrin usually predominate. Most mammalian basement membranes also contain chondroitin sulfate, and a core protein, bamacan, has been partially characterized. We have now...... obtained cDNA clones encoding the entire bamacan core protein of Mr = 138 kD, which reveal a five domain, head-rod-tail configuration. The head and tail are potentially globular, while the central large rod probably forms coiled-coil structures, with one large central and several very short interruptions....... This molecular architecture is novel for an extracellular matrix molecule, but it resembles that of a group of intracellular proteins, including some proposed to stabilize the mitotic chromosome scaffold. We have previously proposed a similar stabilizing role for bamacan in the basement membrane matrix...

  7. Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans. (United States)

    Martinez, Pierre; Denys, Agnès; Delos, Maxime; Sikora, Anne-Sophie; Carpentier, Mathieu; Julien, Sylvain; Pestel, Joël; Allain, Fabrice


    Macrophages are major cells of inflammatory process and take part in a large number of physiological and pathological processes. According to tissue environment, they can polarize into pro-inflammatory (M1) or alternative (M2) cells. Although many evidences have hinted to a potential role of cell-surface glycosaminoglycans (GAGs) in the functions of macrophages, the effect of M1 or M2 polarization on the biosynthesis of these polysaccharides has not been investigated so far. GAGs are composed of repeat sulfated disaccharide units. Heparan (HS) and chondroitin/dermatan sulfates (CS/DS) are the major GAGs expressed at the cell membrane. They are involved in numerous biological processes, which rely on their ability to selectively interact with a large panel of proteins. More than 20 genes encoding sulfotransferases have been implicated in HS and CS/DS biosynthesis, and the functional repertoire of HS and CS/DS has been related to the expression of these isoenzymes. In this study, we analyzed the expression of sulfotransferases as a response to macrophage polarization. We found that M1 and M2 activation drastically modified the profiles of expression of numerous HS and CS/DS sulfotransferases. This was accompanied by the expression of GAGs with distinct structural features. We then demonstrated that GAGs of M2 macrophages were efficient to present fibroblast growth factor-2 in an assay of tumor cell proliferation, thus indicating that changes in GAG structure may contribute to the functions of polarized macrophages. Altogether, our findings suggest a regulatory mechanism in which fine modifications in GAG biosynthesis may participate to the plasticity of macrophage functions.

  8. 牛关节软骨中Ⅱ型胶原和硫酸软骨素的综合提取与表征%Extraction and Characterization of Type H Collagen and Chondroitin Sulfate From Bovine Articular Cartilage

    Institute of Scientific and Technical Information of China (English)

    毕彩霞; 王瑞瑞; 金京国; 李德富


    In the present study,fresh bovine articular cartilage is used as raw material to extract type Ⅱ collagen by acid and pepsin method after degreasing and decalcification.The residue is used to extract chondroitin sulfate by dilute alkali and trypsin method.Then the FT-IR,AFM and thermal gravimetric analysis are used to detect the structure and characteristic of type Ⅱ collagen and chondroitin sulfate.The results show that this extraction process does not damage the original native conformation structure of type Ⅱ collagen and chondroitin sulfate,and chondroitin sulfate has a high purity.%以新鲜牛关节软骨为原料,脱脂脱钙后采用乙酸与胃蛋白酶相结合的方法提取Ⅱ型胶原,然后采用稀碱与胰蛋白酶相结合的方法提取剩余残渣中的硫酸软骨素,并采用FT-IR、AFM和热重分析对所得Ⅱ型胶原和硫酸软骨素进行检测.结果表明,该方法提取得到的Ⅱ型胶原和硫酸软骨素均很好的保持了其天然结构,而且所得硫酸软骨素具有较高的纯度.

  9. Enhancing the intestinal absorption of low molecular weight chondroitin sulfate by conjugation with α-linolenic acid and the transport mechanism of the conjugates. (United States)

    Xiao, Yuliang; Li, Pingli; Cheng, Yanna; Zhang, Xinke; Sheng, Juzheng; Wang, Decai; Li, Juan; Zhang, Qian; Zhong, Chuanqing; Cao, Rui; Wang, Fengshan


    The purpose of this report was to demonstrate the effect of amphiphilic polysaccharides-based self-assembling micelles on enhancing the oral absorption of low molecular weight chondroitin sulfate (LMCS) in vitro and in vivo, and identify the transepithelial transport mechanism of LMCS micelles across the intestinal barrier. α-Linolenic acid-low molecular weight chondroitin sulfate polymers(α-LNA-LMCS) were successfully synthesized, and characterized by FTIR, (1)HNMR, TGA/DSC, TEM, laser light scattering and zeta potential. The significant oral absorption enhancement and elimination half-life (t₁/₂) extension of LNA-LMCS2 in rats were evidenced by intragastric administration in comparison with CS and LMCS. Caco-2 transport studies demonstrated that the apparent permeability coefficient (Papp) of LNA-LMCS2 was significantly higher than that of CS and LMCS (p<0.001), and no significant effects on the overall integrity of the monolayer were observed during the transport process. In addition, α-LNA-LMCS micelles accumulated around the cell membrane and intercellular space observed by confocal laser scanning microscope (CLSM). Furthermore, evident alterations in the F-actin cytoskeleton were detected by CLSM observation following the treatment of the cell monolayers with α-LNA-LMCS micelles, which further certified the capacity of α-LNA-LMCS micelles to open the intercellular tight junctions rather than disrupt the overall integrity of the monolayer. Therefore, LNA-LMCS2 with low cytotoxicity and high bioavailability might be a promising substitute for CS in clinical use, such as treating osteoarthritis, atherosclerosis, etc.

  10. Layer-by-layer assembly of type I collagen and chondroitin sulfate on aminolyzed PU for potential cartilage tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    He Xianyun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang Yingjun, E-mail: [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China) and National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China) and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wu Gang, E-mail: [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)


    Highlights: Black-Right-Pointing-Pointer A novel biodegradable polyurethane (PU) was successfully synthesized. Black-Right-Pointing-Pointer Surface aminolyzing of the PU was performed by reacting it with 1,3-propanediamine. Black-Right-Pointing-Pointer Collagen and chondroitin sulfate were deposited alternately on the PU surface. - Abstract: In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly({epsilon}-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and {sup 1}H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.

  11. The efficacy and tolerability of the slow-acting combined agent glucosamine and chondroitin sulfate in gonarthrosis patients tacking no nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    A. P. Rebrov


    Full Text Available Objective: to evaluate the efficacy and tolerability of the combined symptomatic slow-acting combined agent Theraflex in gonarthrosis patients untreated with nonsteroidal antiinflammatory drugs (NSAIDs.Patients and methods. The investigation enrolled 84 patients (78 women and 6 men aged 55.23±7.36 years with knee arthritis lasting 6.2±0.98 years who were blindly randomized into 2 groups. A study group took Theraflex (chondroitin sulfate 400 mg and glucosamine sulfate 500 mg with or without acetaminophen. A comparison group received acetaminophen only. At baseline and 3 and 6 months after treatment, the investigators assessed changes in the magnitude of osteoarthritis (OA using WOMAC and Lequen's indices, evaluated the therapeutic efficiency rated by a patient and a physician according to the visual analogue scale, and took into account adverse reactions (AR.Results. All the patients taking Theraflex for 6 months showed a positive effect in substantially lowering WOMAC and Lequen's indices and reducing pain and needs for analgesics as compared to both the values at baseline and those obtained in the patients receiving acetaminophen only.Conclusion. In osteoarthritis patients untreated with NSAIDs, Theraflex treatment was associated with a reduction in pain syndrome and stiffness and with better function and lower needs for analgesics. Six-month Theraflex therapy did not cause serious ARs, as well as in patients having controlled gastrointestinal and renal diseases and hypertension

  12. Study on Extraction of Chondroitin Sulfate from Chicken Keel Cartilage%以鸡胸软骨为原料提取硫酸软骨素的研究

    Institute of Scientific and Technical Information of China (English)

    李燕妮; 曹红光


    以鸡胸软骨为原料,在60℃下用木瓜蛋白酶水解除去蛋白质,再用乙醇沉淀获得鸡胸软骨多糖.色谱分析和聚丙烯酰胺凝胶电泳鉴别显示,鸡胸软骨多糖主要是硫酸软骨素,表明鸡胸软骨是可行的硫酸软骨素新来源.%With chicken keel cartilage as raw material,the polysaccharides of chicken keel cartilage was obtained by removing protein by hydrolysis with papain and precipitation with ethanol.Chromatographic analysis and polyacrylamide gel electrophoresis showed that chondroitin sulfate was the main component of polysaccharides of chicken keel cartilage.The chicken keel cartilage is an available new source of chondroitin sulfate.

  13. 展进新法方定测素骨软酸硫化酸硫多中钠素肝染污%Research Progress of the Determination Methods for Oversulfated Chondroitin Sulfate in Contaminated Heparin Sodium

    Institute of Scientific and Technical Information of China (English)

    迟培升; 高照明; 张玉冰


    The structure, properties and source of oversulfated chondroitin sulfate(OSCS), which exists in contaminated heparin sodium, are introduced. And the research progress of its determination methods are re-viewed.%介绍了污染肝素钠中多硫酸化硫酸软骨素的结构、性质及来源,并对其测定方法进行了综述.

  14. Determination of thermodynamic parameters for complexation of calcium and magnesium with chondroitin sulfate isomers using isothermal titration calorimetry: Implications for calcium kidney-stone research (United States)

    Rodgers, Allen L.; Jackson, Graham E.


    Chondroitin sulfate (CS) occurs in human urine. It has several potential binding sites for calcium and as such may play an inhibitory role in calcium oxalate and calcium phosphate (kidney stone disease by reducing the supersaturation (SS) and crystallization of these salts. Urinary magnesium is also a role player in determining speciation in stone forming processes. This study was undertaken to determine the thermodynamic parameters for binding of the disaccharide unit of two different CS isomers with calcium and magnesium. These included the binding constant K. Experiments were performed using an isothermal titration calorimeter (ITC) at 3 different pH levels in the physiological range in human urine. Data showed that interactions between the CS isomers and calcium and magnesium occur via one binding site, thought to be sulfate, and that log K values are 1.17-1.93 and 1.77-1.80 for these two metals respectively. Binding was significantly stronger in Mg-CS than in Ca-CS complexes and was found to be dependent on pH in the latter but not in the former. Furthermore, binding in Ca-CS complexes was dependent on the location of the sulfate binding site. This was not the case in the Mg-CS complexes. Interactions were shown to be entropy driven and enthalpy unfavourable. These findings can be used in computational modeling studies to predict the effects of the calcium and magnesium CS complexes on the speciation of calcium and the SS of calcium salts in real urine samples.

  15. Influence of charge on FITC-BSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers

    Directory of Open Access Journals (Sweden)

    Hu CS


    Full Text Available Chieh-shen Hu,1 Chiao-hsi Chiang,2 Po-da Hong,1,4,* Ming-kung Yeh1–3,*1Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology; 2School of Pharmacy, National Defence Medical Center; 3Bureau of Pharmaceutical Affairs, Ministry of National Defence Medical Affairs Bureau; 4Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan, Republic of China*These authors contributed equally to this workBackground and methods: Chondroitin sulfate-chitosan (ChS-CS nanoparticles and positively and negatively charged fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA-loaded ChS-CS nanoparticles were prepared and characterized. The properties of ChS-CS nanoparticles, including cellular uptake, cytotoxicity, and transepithelial transport, as well as findings on field emission-scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy were evaluated in human epithelial colorectal adenocarcinoma (Caco-2 fibroblasts. ChS-CS nanoparticles with a mean particle size of 250 nm and zeta potentials ranging from –30 to +18 mV were prepared using an ionic gelation method.Results: Standard cell viability assays demonstrated that cells incubated with ChS-CS and FITC-BSA-loaded ChS-CS nanoparticles remained more than 95% viable at particle concentrations up to 0.1 mg/mL. Endocytosis of nanoparticles was confirmed by confocal laser scanning microscopy and measured by flow cytometry. Ex vivo transepithelial transport studies using Caco-2 cells indicated that the nanoparticles were effectively transported into Caco-2 cells via endocytosis. The uptake of positively charged FITC-BSA-loaded ChS-CS nanoparticles across the epithelial membrane was more efficient than that of the negatively charged nanoparticles.Conclusion: The ChS-CS nanoparticles fabricated in this study were

  16. 硫酸软骨素蛋白多糖对神经系统损伤修复的影响%Effect of chondroitin sulfate proteoglycans on the repair of nerve system injury

    Institute of Scientific and Technical Information of China (English)

    杨子默; 胡华杰; 占琦; 赵娜; 王凤山


    硫酸软骨素蛋白多糖( chondroitin sulfate proteoglycans,CSPGs)是一组共价结合硫酸软骨素的蛋白质,其在中枢神经系统的发育和成熟以及在神经损伤的病理生理反应中均发挥着重要作用。本文就CSPGs在神经系统损伤及修复过程中发挥作用的功能性研究和机制性研究进行综述。%Chondroitin sulfate proteoglycans ( CSPGs) is one kind of proteins that covalently bind with chondroitin sulfate.CSPGs play important roles in the growth and development of the central nervous system and the pathological reaction of nervous injury.This article reviews the functional and mechanism studies of CSPGs in the repair of nerve system injury.

  17. Positive Mode LC-MS/MS Analysis of Chondroitin Sulfate Modified Glycopeptides Derived from Light and Heavy Chains of The Human Inter-α-Trypsin Inhibitor Complex. (United States)

    Gomez Toledo, Alejandro; Nilsson, Jonas; Noborn, Fredrik; Sihlbom, Carina; Larson, Göran


    The inter-α-trypsin inhibitor complex is a macromolecular arrangement of structurally related heavy chain proteins covalently cross-linked to the chondroitin sulfate (CS) chain of the proteoglycan bikunin. The inter-α-trypsin inhibitor complex is abundant in plasma and associated with inflammation, kidney diseases, cancer and diabetes. Bikunin is modified at Ser-10 by a single low-sulfated CS chain of 23-55 monosaccharides with 4-9 sulfate groups. The innermost four monosaccharides (GlcAβ3Galβ3Galβ4Xylβ-O-) compose the linkage region, believed to be uniform with a 4-O-sulfation to the outer Gal. The cross-linkage region of the bikunin CS chain is located in the nonsulfated nonreducing end, (GalNAcβ4GlcAβ3)(n), to which heavy chains (H1-H3) may be bound in GalNAc to Asp ester linkages. In this study we employed a glycoproteomics protocol to enrich and analyze light and heavy chain linkage and cross-linkage region CS glycopeptides derived from the IαI complex of human plasma, urine and cerebrospinal fluid samples. The samples were trypsinized, enriched by strong anion exchange chromatography, partially depolymerized with chondroitinase ABC and analyzed by LC-MS/MS using higher-energy collisional dissociation. The analyses demonstrated that the CS linkage region of bikunin is highly heterogeneous. In addition to sulfation of the Gal residue, Xyl phosphorylation was observed although exclusively in urinary samples. We also identified novel Neu5Ac and Fuc modifications of the linkage region as well as the presence of mono- and disialylated core 1 O-linked glycans on Thr-17. Heavy chains H1 and H2 were identified cross-linked to GalNAc residues one or two GlcA residues apart and H1 was found linked to either the terminal or subterminal GalNAc residues. The fragmentation behavior of CS glycopeptides under variable higher-energy collisional dissociation conditions displays an energy dependence that may be used to obtain complementary structural details. Finally

  18. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study. (United States)

    Bhowmick, Sirsendu; Scharnweber, Dieter; Koul, Veena


    Fortifying the scaffold with bioactive molecules and glycosaminoglycans (GAGs), is an efficient way to design new generation tissue engineered biomaterials. In this study, we evaluated the synergistic effect of electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) loaded with sericin and, contact co-culture of human mesenchymal stem cells (hMSCs)-keratinocytes on hMSCs' differentiation towards epithelial lineage. Cationic gelatin is prepared with one step novel synthesis process by grafting quaternary ammonium salts to the backbone of gelatin. Release kinetics studies showed that Fickian diffusion is the major release mechanism for both GAGs and sericin/gelatin. In vitro biocompatibility of the electrospun scaffold was evaluated in terms of LDH and DNA quantification assay on human foreskin fibroblast, human keratinocyte and hMSC. Significant proliferation (∼ 4-6 fold) was detected after culturing all three cell on the electrospun scaffold containing sericin. After 5 days of contact co-culture, results revealed that electrospun scaffold containing sericin promote epithelial differentiation of hMSC in terms of several protein markers (keratin 14, ΔNp63α and Pan-cytokeratin) and gene expression of some dermal proteins (keratin 14, ΔNp63α). Findings of this study will foster the progress of current skin tissue engineering scaffolds by understanding the skin regeneration and wound healing process.

  19. Effect of fiber crosslinking on collagen-fiber reinforced collagen-chondroitin-6-sulfate materials for regenerating load-bearing soft tissues. (United States)

    Shepherd, J H; Ghose, S; Kew, S J; Moavenian, A; Best, S M; Cameron, R E


    Porous collagen-glycosaminoglycan structures are bioactive and exhibit a pore architecture favorable for both cellular infiltration and attachment; however, their inferior mechanical properties limit use, particularly in load-bearing situations. Reinforcement with collagen fibers may be a feasible route for enhancing the mechanical characteristics of these materials, providing potential for composites used for the repair and regeneration of soft tissue such as tendon, ligaments, and cartilage. Therefore, this study investigates the reinforcement of collagen-chondroitin-6-sulfate (C6S) porous structures with bundles of extruded, reconstituted type I collagen fibers. Fiber bundles were produced through extrusion and then, where applicable, crosslinked using a solution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide. Fibers were then submerged in the collagen-C6S matrix slurry before being lyophilized. A second 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide crosslinking process was then applied to the composite material before a secondary lyophilization cycle. Where bundles had been previously crosslinked, composites withstood a load of approximately 60 N before failure, the reinforcing fibers remained dense and a favorable matrix pore structure resulted, with good interaction between fiber and matrix. Fibers that had not been crosslinked before lyophilization showed significant internal porosity and a channel existed between them and the matrix. Mechanical properties were significantly reduced, but the additional porosity could prove favorable for cell migration and has potential for directing aligned tissue growth.

  20. 硫酸软骨素钠的比浊法测定%Determination of Sodium Chondroitin Sulfate by Turbidimetric Method

    Institute of Scientific and Technical Information of China (English)

    姬胜利; 崔慧斐; 谢清毅; 王凤山


    Sodium chondroitin sulfate (CS-Na) reacts with cetylpyridinium chloride (CPC) to produce a stable and homogeneous emulsion. The emulsion was stable from 0.5 to 2 h, and the absorbancy at 680nm had a good linearity with the concentration of CS-Na in the range of 12.5~250 μg/ml, r=0.9992. The average recovery was 99.98%, RSD was 0.33%. Its result was comparable to that of HPLC method.%建立了硫酸软骨素钠含量的比浊测定法。硫酸软骨素钠与氯化十六烷基吡啶鎓结合形成的乳浊液在680 nm处的吸收度与硫酸软骨素钠浓度在12.5~250 μg/ml范围内具良好的线性关系,r=0.9992,方法平均回收率为99.98%,RSD为0.33%,乳浊液在0.5~2 h内稳定。测定结果与国际常用的HPLC法一致,较国内用的氨基己糖测定法和葡萄糖醛酸测定法简便,重现性好。

  1. Characterization of injectable hydrogels based on poly(N-isopropylacrylamide)-g-chondroitin sulfate with adhesive properties for nucleus pulposus tissue engineering. (United States)

    Wiltsey, Craig; Kubinski, Pamela; Christiani, Thomas; Toomer, Katelynn; Sheehan, Joseph; Branda, Amanda; Kadlowec, Jennifer; Iftode, Cristina; Vernengo, Jennifer


    The goal of this work is to develop an injectable nucleus pulposus (NP) tissue engineering scaffold with the ability to form an adhesive interface with surrounding disc tissue. A family of in situ forming hydrogels based on poly(N-isopropylacrylamide)-graft-chondroitin sulfate (PNIPAAm-g-CS) were evaluated for their mechanical properties, bioadhesive strength, and cytocompatibility. It was shown experimentally and computationally with the Neo-hookean hyperelastic model that increasing the crosslink density and decreasing the CS concentration increased mechanical properties at 37 °C, generating several hydrogel formulations with unconfined compressive modulus values similar to what has been reported for the native NP. The adhesive tensile strength of PNIPAAm increased significantly with CS incorporation (p < 0.05), ranging from 0.4 to 1 kPa. Live/Dead and XTT assay results indicate that the copolymer is not cytotoxic to human embryonic kidney (HEK) 293 cells. Taken together, these data indicate the potential of PNIPAAm-g-CS to function as a scaffold for NP regeneration.

  2. Systematic Review and Meta-Analysis of Intravesical Hyaluronic Acid and Hyaluronic Acid/Chondroitin Sulfate Instillation for Interstitial Cystitis/Painful Bladder Syndrome

    Directory of Open Access Journals (Sweden)

    Jung-Soo Pyo


    Full Text Available Background/Aims: To assess the efficacy of intravesical hyaluronic acid (HA and HA/chondroitin sulfate (CS instillation in patients with interstitial cystitis/painful bladder syndrome by systematic review and meta-analysis. Methods: A systematic literature search was performed using the keywords: ‘interstitial cystitis' or ‘painful bladder syndrome' or ‘bladder pain syndrome' and ‘hyaluronic acid', up to March 31, 2016. The primary outcome was visual analogue scale related pain symptom (VAS. Secondary outcomes were the O'Leary-Sant Interstitial Cystitis Symptom Index (ICSI and Problem Index (ICPI, frequency, nocturia, bladder volume, and voided urine volume. Results: Ten articles involving 390 patients were retrieved and assessed in analysis. A significant improvement in mean VAS on fixed-effect and random-effect models (mean difference [MD] -3.654, 95% confidence interval [CI] -3.814 to -3.495, and MD -3.206, 95% CI -4.156 to -2.257, respectively was found. Significant improvements were found in the ICSI (MD -3.223, 95% CI -4.132 to -2.315 and ICPI (MD -2.941, 95% CI -3.767 to -2.116. Similarly, the other outcomes were significantly improved. Conclusion: Intravesical HA and HA/CS instillation improved pain symptom, quality of life, and other outcomes and could be included as therapeutic modality of interstitial cystitis/painful bladder syndrome.

  3. Increased expression of chondroitin sulphate proteoglycans in rat hepatocellular carcinoma tissues

    Institute of Scientific and Technical Information of China (English)

    Xiao-Li Jia; Si-Yuan Li; Shuang-Suo Dang; Yan-An Cheng; Xin Zhang; Wen-Jun Wang; Clare E Hughes; Bruce Caterson


    AIM:To investigate the expression of chondroitin sulphate proteoglycans (CSPGs) in rat liver tissues of hepatocellular carcinoma (HCC).METHODS:Thirty male Sprague Dawley rats were randomly divided into two groups:control group (n =10)and HCC model group (n =20).Rats in the HCC model groups were intragastrically administrated with 0.2% (w/v) N-diethylnitrosamine (DEN) every 5 d for 16 wk,whereas 0.9% (w/v) normal saline was administered to rats in the control group.After 16 wk from the initiation of experiment,all rats were killed and livers were collected and fixed in 4% (w/v) paraformaldehyde.All tissues were embedded in paraffin and sectioned.Histological staining (hematoxylin and eosin and Toluidine blue) was performed to demonstrate the onset of HCC and the content of sulphated glycosaminoglycan (sGAG).Immunohistochemical staining was performed to investigate the expression of chondroitin sulphate (CS)/dermatan sulphate (DS)-GAG,heparan sulphate (HS)-GAG,keratan sulphate (KS)-GAG in liver tissues.Furthermore,expression and distribution of CSPG family members,including aggrecan,versican,biglycan and decorin in liver tissues,were also immunohistochemically determined.RESULTS:After 16 wk administration of DEN,malignant nodules were observed on the surface of livers from the HCC model group,and their hepatic lobule structures appeared largely disrupted under microscope.Toluidine blue staining demonstrated that there was an significant increase in sGAG content in HCC tissues when compared with that in the normal liver tissues from the control group [0.37 ± 0.05 integrated optical density per stained area (IOD/area) and 0.21 ±0.01 IOD/area,P < 0.05].Immunohistochemical studies demonstrated that this increased sGAG in HCC tissues was induced by an elevated expression of CS/DS (0.28 ± 0.02 IOD/area and 0.18 ± 0.02 IOD/area,P <0.05) and HS (0.30 ± 0.03 IOD/area and 0.17 ± 0.02 IOD/area,P < 0.01) but not KS GAGs in HCC tissues.Further studies thereby

  4. Ultrastructural localization of the core protein of a basement membrane-specific chondroitin sulfate proteoglycan in adult rat skin

    DEFF Research Database (Denmark)

    McCarthy, K J; Horiguchi, Y; Couchman, J R


    Basement membranes are complex extracellular matrices present at epithelial/mesenchymal interfaces of tissues. The dermal-epidermal junction has been shown to contain numerous components, some of the most well known being laminin, types IV and VII collagens, heparan sulfate proteoglycan, fibronec......Basement membranes are complex extracellular matrices present at epithelial/mesenchymal interfaces of tissues. The dermal-epidermal junction has been shown to contain numerous components, some of the most well known being laminin, types IV and VII collagens, heparan sulfate proteoglycan...... primarily within the basal lamina, apparently concentrated in the lamina densa. In addition, some of the proteoglycan was also present beneath the lamina densa, associated with the reticular lamina collagen fibrils....

  5. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ribeiro TG


    Full Text Available Tatiana G Ribeiro,1 Juçara R Franca,1 Leonardo L Fuscaldi,1 Mara L Santos,2 Mariana C Duarte,3 Paula S Lage,3 Vivian T Martins,4 Lourena E Costa,3 Simone OA Fernandes,1,5 Valbert N Cardoso,1,5 Rachel O Castilho,1,6 Manuel Soto,7 Carlos AP Tavares,4 André AG Faraco,1,6 Eduardo AF Coelho,3,8,* Miguel A Chávez-Fumagalli3,* 1Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, 2Departamento de Morfologia, Instituto de Ciências Biológicas, 3Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, 4Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, 5Departamento de Análises Clínicas e Toxicológicas, 6Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; 7Centro de Biología Molecular Severo Ochoa (CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain; 8Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil *These authors contributed equally to this work Abstract: Amphotericin B (AmpB is active against leishmaniasis, but its use is hampered due to its high toxicity observed in patients. In this study, a nanoparticles-delivery system for AmpB (NQC-AmpB, containing chitosan and chondroitin sulfate molecules, was evaluated in BALB/c mice against Leishmania amazonensis. An in vivo biodistribution study, including biochemical and toxicological evaluations, was performed to evaluate the toxicity of AmpB. Nanoparticles were radiolabeled with technetium-99m and injected in mice. The products presented a similar biodistribution in the liver, spleen, and kidneys of the animals. Free AmpB induced alterations in the body weight of the mice, which, in the biochemical analysis, indicated hepatic and renal injury, as well as morphological damage to the kidneys of

  6. Efficacy of intravenous administration of hyaluronan, sodium chondroitin sulfate, and N-acetyl-d-glucosamine for prevention or treatment of osteoarthritis in horses. (United States)

    Frisbie, David D; McIlwraith, C Wayne; Kawcak, Christopher E; Werpy, Natasha M


    OBJECTIVE To evaluate the efficacy of IV administration of a product containing hyaluronan, sodium chondroitin sulfate, and N-acetyl-d-glucosamine for prevention or treatment of osteoarthritis in horses. ANIMALS 32 healthy 2- to 5-year-old horses. PROCEDURES The study involved 2 portions. To evaluate prophylactic efficacy of the test product, horses received 5 mL of the product (n = 8) or saline (0.9% NaCl) solution (8; placebo) IV every fifth day, starting on day 0 (when osteoarthritis was induced in the middle carpal joint of 1 forelimb) and ending on day 70. To evaluate treatment efficacy, horses received either the product or placebo (n = 8/treatment) on days 16, 23, 30, 37, and 44 after osteoarthritis induction. Clinical, diagnostic imaging, synovial fluid, gross anatomic, and histologic evaluations and other tests were performed. Results of each study portion were compared between treatment groups. RESULTS Limb flexion and radiographic findings were significantly worse for horses that received the test product in the prophylactic efficacy portion than for placebo-treated horses or product-treated horses in the treatment efficacy portion. In the prophylactic efficacy portion, significantly less articular cartilage erosion was identified in product-treated versus placebo-treated horses. In the treatment efficacy portion, joints of product-treated horses had a greater degree of bone edema identified via MRI than did joints of placebo-treated horses but fewer microscopic articular cartilage abnormalities. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that caution should be used when administering the evaluated product IV to horses, particularly when administering it prophylactically, as it may have no benefit or may even cause harm.

  7. Intravesical administration of combined hyaluronic acid (HA) and chondroitin sulfate (CS) for the treatment of female recurrent urinary tract infections: a European multicentre nested case–control study (United States)

    Ciani, Oriana; Arendsen, Erik; Romancik, Martin; Lunik, Richard; Costantini, Elisabetta; Di Biase, Manuel; Morgia, Giuseppe; Fragalà, Eugenia; Roman, Tomaskin; Bernat, Marian; Guazzoni, Giorgio; Tarricone, Rosanna; Lazzeri, Massimo


    Objectives To compare the clinical effectiveness of the intravesical administration of combined hyaluronic acid and chondroitin sulfate (HA+CS) versus current standard management in adult women with recurrent urinary tract infections (RUTIs). Setting A European Union-based multicentre, retrospective nested case–control study. Participants 276 adult women treated for RUTIs starting from 2009 to 2013. Interventions Patients treated with either intravesical administration of HA+CS or standard of care (antimicrobial/immunoactive prophylaxis/probiotics/cranberry). Primary and secondary outcome measures The primary outcome was occurrence of bacteriologically confirmed recurrence within 12 months. Secondary outcomes were time to recurrence, total number of recurrences, health-related quality of life and healthcare resource consumption. Crude and adjusted results for unbalanced characteristics are presented. Results 181 patients treated with HA+CS and 95 patients treated with standard of care from 7 centres were included. The crude and adjusted ORs (95% CI) for the primary end point were 0.77 (0.46 to 1.28) and 0.51 (0.27 to 0.96), respectively. However, no evidence of improvement in terms of total number of recurrences (incidence rate ratio (95% CI), 0.99 (0.69 to 1.43)) or time to first recurrence was seen (HR (95% CI), 0.99 (0.61 to 1.61)). The benefit of intravesical HA+CS therapy improves when the number of instillations is ≥5. Conclusions Our results show that bladder instillations of combined HA+CS reduce the risk of bacteriologically confirmed recurrences compared with the current standard management of RUTIs. Total incidence rates and hazard rates were instead non-significantly different between the 2 groups after adjusting for unbalanced factors. In contrast to what happens with antibiotic prophylaxis, the effectiveness of the HA+CS reinstatement therapy improves over time. Trial registration number NCT02016118. PMID:27033958

  8. Chondroitin Sulfate Proteoglycans Negatively Modulate Spinal Cord Neural Precursor Cells by Signaling Through LAR and RPTPσ and Modulation of the Rho/ROCK Pathway. (United States)

    Dyck, Scott M; Alizadeh, Arsalan; Santhosh, Kallivalappil T; Proulx, Evan H; Wu, Chia-Lun; Karimi-Abdolrezaee, Soheila


    Multipotent adult neural precursor cells (NPCs) have tremendous intrinsic potential to repair the damaged spinal cord. However, evidence shows that the regenerative capabilities of endogenous and transplanted NPCs are limited in the microenvironment of spinal cord injury (SCI). We previously demonstrated that injury-induced upregulation of matrix chondroitin sulfate proteoglycans (CSPGs) restricts the survival, migration, integration, and differentiation of NPCs following SCI. CSPGs are long-lasting components of the astroglial scar that are formed around the lesion. Our recent in vivo studies demonstrated that removing CSPGs from the SCI environment enhances the potential of transplanted and endogenous adult NPCs for spinal cord repair; however, the mechanisms by which CSPGs regulate NPCs remain unclear. In this study, using in vitro models recapitulating the extracellular matrix of SCI, we investigated the direct role of CSPGs in modulating the properties of adult spinal cord NPCs. We show that CSPGs significantly decrease NPCs growth, attachment, survival, proliferation, and oligodendrocytes differentiation. Moreover, using genetic models, we show that CSPGs regulate NPCs by signaling on receptor protein tyrosine phosphate sigma (RPTPσ) and leukocyte common antigen-related phosphatase (LAR). Intracellularly, CSPGs inhibitory effects are mediated through Rho/ROCK pathway and inhibition of Akt and Erk1/2 phosphorylation. Downregulation of RPTPσ and LAR and blockade of ROCK in NPCs attenuates the inhibitory effects of CSPGS. Our work provide novel evidence uncovering how upregulation of CSPGs challenges the response of NPCs in their post-SCI niche and identifies new therapeutic targets for enhancing NPC-based therapies for SCI repair.

  9. Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer

    Directory of Open Access Journals (Sweden)

    Fernández-Vega Iván


    Full Text Available Abstract Background The expression of a specific set of genes controls the different structures of heparan sulfate proteoglycans (HSPGs, which are involved in the growth, invasion and metastatic properties of cancerous cells. The purpose of this study is to increase knowledge of HSPG alterations in breast cancer. Methods Twenty-three infiltrating ductal adenocarcinomas (IDCs, both metastatic and non-metastatic were studied. A transcriptomic approach to the structure of heparan sulfate (HS chains was used, employing qPCR to analyze both the expression of the enzymes involved in their biosynthesis and editing, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate chains, we extended the study to include the genes involved in the biosynthesis of these glycosaminoglycans. Histochemical techniques were also used to analyze tissular expression of particular genes showing significant expression differences, of potential interest. Results No significant change in transcription was detected in approximately 70% of analyzed genes. However, 13 demonstrated changes in both tumor types (40% showing more intense deregulation in the metastatic, while 5 genes showed changes only in non-metastatic tumors. Changes were related to 3 core proteins: overexpression of syndecan-1 and underexpression of glypican-3 and perlecan. HS synthesis was affected by lower levels of some 3-O-sulfotransferase transcripts, the expression of NDST4 and, only in non metastatic tumors, higher levels of extracellular sulfatases. Furthermore, the expression of chondroitin sulfate also was considerably affected, involving both the synthesis of the saccharidic chains and sulfations at all locations. However, the pro-metastatic enzyme heparanase did not exhibit significant changes in mRNA expression, although in metastatic tumors it appeared related to increased levels of the most stable form of mRNA. Finally, the expression of

  10. Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: the results of real-time polymerase chain reaction. (United States)

    Chou, Cheng-Hung; Cheng, Winston T K; Kuo, Tzong-Fu; Sun, Jui-Sheng; Lin, Feng-Huei; Tsai, Jui-Che


    Autologous fibrin glue has been demonstrated as a potential scaffold with very good biocompatibility for neocartilage formation. However, fibrin glue has been reported not to provide enough mechanical strength, but with many growth factors to interfere the tissue growth. Gelatin/hyaluronic acid/chondroitin-6-sulfate (GHC6S) tri-copolymer sponge has been prepared as scaffold for cartilage tissue engineering and showed very good results, but problems of cell seeding and cell distribution troubled the researchers. In this study, GHC6S particles would be added into the fibrin glue to provide better mechanical strength, better cell distribution, and easier cell seeding, which would be expected to improve cartilage regeneration in vitro. Porcine cryo-precipitated fibrinogen and thrombin prepared from prothrombin activated by 10% CaCl(2) solution were used in two groups. One is the fibrin glue group in which porcine chondrocytes were mixed with thrombin-fibrinogen solution, which was then converted into fibrin glue. The other is GHC6S-fibrin glue in which GHC6S particles were added into the thrombin-fibrinogen solution with porcine chondrocytes. After culturing for 1-2 weeks, the chondrocytes cultured in GHC6S-fibrin glue showed a round shape with distinct lacuna structure and showed positive in S-100 protein immunohistochemical stain. The related gene expressions of tissue inhibitor of metalloproteinases-1, matrix metalloproteinase-2, MT1-MMP, aggrecan, decorin, type I, II, X collagen, interleukin-1 beta, transforming growth factor-beta 1 (TGF-beta1), and Fas-associating death domain were checked by real-time PCR. The results indicated that the chondrocytes cultured in GHC6S-fibrin glue would effectively promote extracellular matrix (ECM) secretion and inhibit ECM degradation. The evidence could support that GHC6S-fibrin glue would be a promising scaffold for articular cartilage tissue engineering.

  11. Melanoma-associated Chondroitin Sulfate Proteoglycan (MCSP-targeted delivery of soluble TRAIL potently inhibits melanoma outgrowth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    van Waarde Aren


    Full Text Available Abstract Background Advanced melanoma is characterized by a pronounced resistance to therapy leading to a limited patient survival of ~6 - 9 months. Here, we report on a novel bifunctional therapeutic fusion protein, designated anti-MCSP:TRAIL, that is comprised of a melanoma-associated chondroitin sulfate proteoglycan (MCSP-specific antibody fragment (scFv fused to soluble human TRAIL. MCSP is a well-established target for melanoma immunotherapy and has recently been shown to provide important tumorigenic signals to melanoma cells. TRAIL is a highly promising tumoricidal cytokine with no or minimal toxicity towards normal cells. Anti-MCSP:TRAIL was designed to 1. selectively accrete at the cell surface of MCSP-positive melanoma cells and inhibit MCSP tumorigenic signaling and 2. activate apoptotic TRAIL-signaling. Results Treatment of a panel of MCSP-positive melanoma cell lines with anti-MCSP:TRAIL induced TRAIL-mediated apoptotic cell death within 16 h. Of note, treatment with anti-MCSP:sTRAIL was also characterized by a rapid dephosphorylation of key proteins, such as FAK, implicated in MCSP-mediated malignant behavior. Importantly, anti-MCSP:TRAIL treatment already inhibited anchorage-independent growth by 50% at low picomolar concentrations, whereas > 100 fold higher concentrations of non-targeted TRAIL failed to reduce colony formation. Daily i.v. treatment with a low dose of anti-MCSP:TRAIL (0.14 mg/kg resulted in a significant growth retardation of established A375 M xenografts. Anti-MCSP:TRAIL activity was further synergized by co-treatment with rimcazole, a σ-ligand currently in clinical trials for the treatment of various cancers. Conclusions Anti-MCSP:TRAIL has promising pre-clinical anti-melanoma activity that appears to result from combined inhibition of tumorigenic MCSP-signaling and concordant activation of TRAIL-apoptotic signaling. Anti-MCSP:TRAIL alone, or in combination with rimcazole, may be of potential value for the

  12. Altered expression of glycosaminoglycans in metastatic 13762NF rat mammary adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Steck, P.A.; Cheong, P.H.; Nakajima, M.; Yung, W.K.A.; Moser, R.P.; Nicolson, G.L.


    A difference in the expression and metabolism of (/sup 35/S)sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate. These results suggested that altered glycosaminoglycan expression and metabolism may be associated with the metastatic process in 13762NF rat mammary tumor cells.

  13. Reconstrução do ligamento cruzado cranial em cães, associado ou não ao sulfato de condroitina Cranial cruciate ligament reconstruction in dogs associated or not to chondroitin sulfate

    Directory of Open Access Journals (Sweden)

    F. Biasi


    Full Text Available Avaliou-se o efeito da reconstrução do ligamento cruzado cranial, associado ou não ao sulfato de condroitina, na evolução da osteoartrite induzida experimentalmente em cães. Vinte cães hígidos, sem raça definida, machos e fêmeas, com peso corpóreo entre 19 e 25kg, foram submetidos à desmotomia do ligamento cruzado cranial. Trinta dias após, foram separados em dois grupos de 10 animais. Um grupo foi submetido à reconstrução do ligamento cruzado com uso de aloenxerto de ligamento patelar congelado, o outro não. Trinta e um dias após a desmotomia, cada grupo foi dividido em dois subgrupos de cinco animais. Um recebeu sulfato de condroitina, o outro não. Os cães foram avaliados clínica e radiograficamente antes da desmotomia e aos 30, 60 e 90 dias após a desmotomia. No último momento foram realizados exames macro e microscópico. Nos cães submetidos somente à desmotomia e tratados com sulfato de condroitina houve redução na progressão das alterações ósseas, ao exame radiográfico. A reconstrução do ligamento cruzado cranial melhorou a função do membro e, quando associada ao sulfato de condroitina, houve melhor resposta. Não houve diferença entre os subgrupos quanto aos exames macro e microscópico.The effect of cranial cruciate ligament reconstruction, associated or not to chondroitin sulfate, on the evolution of experimentally induced osteoarthritis in dogs was studied. Twenty healthy mixed dogs, weighing between 19 and 25kg were submitted to cranial cruciate desmotomy. Thirty days later, the animals were divided into two groups with ten dogs each. One was submitted to cranial cruciate ligament reconstruction using frozen patellar tendon allograft and the other received no surgical treatment. Thirty one days after desmotomy, each group was divided into two subgroups with five animals each. One subgroup for each group received chondroitin sulfate and the other received no medical treatment. The dogs were

  14. Decorina e Condroitim sulfato na remodelação da matriz extracelular do línquen escleroso vulvar Decorin and chondroitin sulfate in linchen sclerosus extracellular matrix remodeling

    Directory of Open Access Journals (Sweden)

    Adriana de Carvalho Corrêa


    sulfated proteoglycans/glycosaminoglycans. OBJECTIVES: Decorin and chondroitim sulfate (sulfated proteoglycans/glycosaminoglycans immunoexpressions were the present investigation´s aim, emphasizing the hyaline zone related changes. METHODS: Thirty one vulvar LS untreated clinical lesions were biopsed and evaluated histologically according to Hewitt’s gradation and by immunohistochemical methods. Results were compared with ones of the control group, which was formed by cutaneous fragments from vulvoperineal corrective surgeries. RESULTS: We could demonstrate that decorin and chondroitin sulfate were present at the hyaline zone in different moments of matrix modulation. In all Hewitt stages chondroitin sulfate prevailed at the extracellular matrix in cases with a compact aspect of the hyaline zone while decorin was only seen in areas of less compactness. CONCLUSION: This proteoglycans/glycosaminoglycans synthesis sequence suggests that decorin may be a possible initial marker/indicator for vulvar LS. We suppose either that chondroitin sulfate is possibly a factor that limit matricial changes extension till middle dermis level.

  15. Transient expression of a cell surface heparan sulfate proteoglycan (syndecan) during limb development. (United States)

    Solursh, M; Reiter, R S; Jensen, K L; Kato, M; Bernfield, M


    Syndecan is an integral membrane proteoglycan that contains both heparan sulfate and chondroitin sulfate chains and that links the cytoskeleton to interstitial extracellular matrix components, including collagen and fibronectin. Immunohistochemistry with a monoclonal antibody directed to the core protein of the syndecan ectodomain has been used to analyze the distribution of this proteoglycan in the developing mouse limb bud and in high-density cultures of limb mesenchyme cells. By Day 9 of gestation when the limb buds are just apparent, syndecan is detected on cells throughout the limb region, including both ectodermal and mesenchymal components. This distribution does not change as the limb bud elongates along its proximodistal axis, except for its reduction in the apical ectodermal ridge. By Day 11, the intensity of immunofluorescence in the central core decreases relative to other regions. By Day 13 immunostaining is lost in the regions destined for chondrogenesis and myogenesis but persists in the limb ectoderm and peripheral and distal mesenchyme. In the limb mesenchyme cell cultures, syndecan is initially undetected, but is found throughout the culture by 24 hr. With further culture the antigen becomes reduced in chondrogenic foci and in association with myogenic cells. When chick limb ectoderm is placed on the high-density cultures, immunoreactivity in the mouse mesenchyme is enhanced suggesting that epithelial-mesenchymal interactions modulate syndecan expression in the limb bud. Based on analysis of 35S-labeled syndecan from the cultures, syndecan from limb mesenchyme cells contains more glycosaminoglycan chains and is larger in size than the previously described polymorphic forms of syndecan from various epithelia. The high affinity of syndecan for components of the extracellular matrix and its distribution in the early limb bud are consistent with a role in maintaining the morphologic integrity of the limb bud during the period of initiation and rapid

  16. Preparation and Properties of Low Molecular Weight Chondroitin Sulfate%低相对分子质量硫酸软骨素的制备及其性质

    Institute of Scientific and Technical Information of China (English)

    史敏娟; 熊双丽; 王莹莹; 姚小蕾


    以过氧化氢+铜离子(Ⅱ)体系自由基法降解制备了低相对分子质量(简称分子量,下同)硫酸软骨素,并采用元素分析、红外光谱、原子力显微镜进行了结构表征和物化性质分析.结果表明,铜离子催化氧化降解后硫酸软骨素重均分子量从56 596降到6 906,己糖醛酸、氨基己糖及硫酸根等主要成分变化不大,差异不显著,降解前后热分解特性一致.原子力显微镜分析发现,降解前后硫酸软骨素在水中均以多股螺旋棒状形式存在,降解过程中,螺旋链部分断裂.结合红外光谱图,可以推测自由基引起的降解主要是造成硫酸软骨素二糖间β-1,4糖苷键断裂,而对β-1,3糖苷键无影响.%Low molecular weight chondroitin sulfate was first prepared by free radical polymerization with hydrogen peroxide in the presence of copper (II) iron. Its characterization and physicochemical properties were investigated by physicochemical methods including chemical composition, elementary analysis,IR and AFM. The results show that the molecular weight of chondroitin sulfate decreased from 56 596 to 6 906 after copper catalytic oxidation. The major ingredients, such as hexuronic acid, hexosamine and sulfate radical, didn't exhibit significant change after degradation. The TG-DSC analysis shows that the mechanism of thermal decomposition is similar. The AFM analysis indicates that this sample existed in aqueous solution in the form of stranded spiral. Part of the spiral ruptured during degradation. IR analysis shows that the degradation process might cause β-1,4 glycosidic bond to fracture,but it had no effect on β-1,3 glycosidic bond.

  17. Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria

    DEFF Research Database (Denmark)

    Clausen, Thomas M; Christoffersen, Stig; Dahlbäck, Madeleine;


    that the CSA-binding DBL2X domain is situated in the center of the structure. Mutating classic sulfate-binding sites in VAR2CSA, along with testing dependence of ionic interactions, suggest that the CSA binding is not solely dependent on the sulfated CSA structure. Based on these novel PfEMP1 structure...

  18. Fibroblast invasive migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-CD44 proteoglycan

    DEFF Research Database (Denmark)

    Clark, Richard A F; Lin, Fubao; Greiling, Doris;


    with chondroitin sulfate and dermatan sulfate, but not heparan sulfate, after a 24 h incubation with platelet-derived growth factor, the stimulus used in the migration assay. These results demonstrate that dermatan sulfate-CD44H proteoglycan is essential for fibroblast migration into fibrin clots and that platelet...... of fibronectin. Several integrins-alpha 4 beta 1, alpha 5 beta 1, and alpha v beta 3-with known fibronectin binding affinity were necessary for this invasive migration. Here we examined another family of cell surface receptors: the proteoglycans. We found that dermatan sulfate was required for fibroblast...... including heparan sulfate and chondroitin sulfate, and as such can bind fibronectin. We found that CD44H, the non-spliced isoform of CD44, was necessary for fibroblast invasion into fibronectin/fibrin gels. Resting fibroblasts expressed mostly nonglycanated CD44H core protein, which became glycanated...

  19. 黄鳝骨硫酸软骨素多糖降血脂功能研究%Study on lipid-decreasing effect of Chondroitin Sulfate Polysaccharides from monopterus albus bone

    Institute of Scientific and Technical Information of China (English)



    目的:观察黄鳝骨硫酸软骨素多糖(Chondroitin Sulfate Polysaccharides,CHS)对高脂小鼠的降血脂功能.方法:将经预处理后的黄鳝骨经碱提、酶解、过柱(大孔吸附树脂)、脱盐得到CHS,灌胃给高脂小鼠,研究其降血脂功能.结果:多糖低、中剂量组(9、27 mg/kg)与高脂模型组比较,能显著降低高脂小鼠血清总胆固醇(TC)和低密度脂蛋白胆固醇(LDL-C)水平(P<0.01),对血清三酰甘油(TG)水平升高也有一定的抑制作用,但差异不显著;而高剂量组(81 mg/kg)仅能显著降低血清TC水平(P<0.05);各组对小鼠体重和腹部脂肪均影响不大.结论:27 mg/kg的CHS能显著降低高脂小鼠TC和LDL-C水平,并在一定程度上抑制小鼠TG水平的升高,具有一定降血脂功能.%Objective: To study the lipid-decreasing effect of Chondroitin Sulfate Polysaccharides (CHS), which was extract ed from monopterus albus bone on hyperlipidermia mice. Methods: CHS was extracted from pretreated monopterus albus bones by alkali-liquor extraction, enzyme decomposition, column separation and desalination. Then it was used on hyperlipidermia mice to observe the function of lipid-decreasing. Results: The total serum cholesterol (TC) and low-density lipopro-tein (LDL-C) were very significantly decreased (P<0.01) in the low and middle-dosage groups (9, 27 mg/kg) compared with hyperlipidermia model group, and the rising of triglyceride (TG) was also be inhibited a little, but without distinct diversity; the TC level of the high-dosage group (81 mg/kg) could be obviously decreased (P<0.05); there had no effects on the weight and belly fat of mice of each groups. Conclusion: CHS (27 mg/kg) can decrease the TC and LDL-C level of hiperlipemia mice, inhibite the raisen of TG in a certain degree, and show some colesterol-lowering function.

  20. Cartilage tissue engineering by collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells in vitro%大鼠脂肪干细胞复合胶原-壳聚糖-硫酸软骨素三维支架构建组织工程软骨

    Institute of Scientific and Technical Information of China (English)

    张涛; 付勤; 于志永


    Objective To evaluate the character of the collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells. Methods A dipose tissue were harvested from 6 weeks old Wistar rats and the stromal cells were harvested by type Ⅰ collagenase and then cultured in vitro. Type Ⅰ collagen was fully mixed with chitosan, freeze-dried and cross-linked with chondroitin sulfate, then freeze-dried again and sterilized by ethylene oxide. The pore diameter, water content, porosity of the scaffold were tested. The adipose tissue-derived stromal cells were digested, seeded into the plates, scaffold, and cen-trifuged into pellet, and then induced into cartilage. MTT detection for cell proliferation was done. After 3 weeks, the cell morphology, and cell proliferation and adhesion were observed, and chondrngenic differenti-ation was also analyzed. Results The pore diameter, water content, porosity tested for the scaffold showed an appropriate form. Cell proliferation showed faster in the scaffold and pellet culture system after 5 day, there was still cell proliferation in the scaffold system after 14 days but no obvious changes in the pellet cul-ture system; ceils on the scaffold proliferated densely showed by histological staining, but there was a scaf-fold structure residues in the inner layer. The finding of type Ⅱ immunohistochemistry stain showed that cells express strong positive for type Ⅱ collagen in the scaffold and pellet culture system whereas it was weakly positive in the plate culture system; the specific mRNA for cartilage, type Ⅱ collagen, aggrecan and SOX-9 were expressed in all three systems showed by RT-PCR, but type X collagen was expressed continu-ously in the plate culture system and expressed after 21 days in the pellet culture system, whereas it was not detected in the collagen-chitosan-chondroitin sulfate scaffold system. Conclusion The parameters of the collagen-chitosan-chondroitin sulfate scaffold were suitable in

  1. Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility. (United States)

    Li, Chang-Qing; Huang, Bo; Luo, Gang; Zhang, Chuan-Zhi; Zhuang, Ying; Zhou, Yue


    To construct a novel scaffold for nucleus pulposus (NP) tissue engineering, The porous type II collagen (CII)/hyaluronate (HyA)-chondroitin-6-sulfate (6-CS) scaffold was prepared using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) cross-linking system. The physico-chemical properties and biocompatibility of CII/HyA-CS scaffolds were evaluated. The results suggested CII/HyA-CS scaffolds have a highly porous structure (porosity: 94.8 +/- 1.5%), high water-binding capacity (79.2 +/- 2.8%) and significantly improved mechanical stability by EDC/NHS crosslinking (denaturation temperature: 74.6 +/- 1.8 and 58.1 +/- 2.6 degrees C, respectively, for the crosslinked scaffolds and the non-crosslinked; collagenase degradation rate: 39.5 +/- 3.4 and 63.5 +/- 2.0%, respectively, for the crosslinked scaffolds and the non-crosslinked). The CII/HyA-CS scaffolds also showed satisfactory cytocompatibility and histocompatibility as well as low immunogenicity. These results indicate CII/HyA-CS scaffolds may be an alternative material for NP tissue engineering due to the similarity of its composition and physico-chemical properties to those of the extracellular matrices (ECM) of native NP.

  2. Congenital fibrosarcoma in complete remission with Somatostatin, Bromocriptine, Retinoids, Vitamin D3, Vitamin E, Vitamin C, Melatonin, Calcium, Chondroitin sulfate associated with low doses of Cyclophosphamide in a 14-year Follow up. (United States)

    Di Bella, Giuseppe; Toscano, Rosilde; Ricchi, Alessandro; Colori, Biagio


    At birth, a male child presented a 6 cm tumour in the right leg. The tumour was partially removed after just 12 days. Histology showed a congenital fibrosarcoma associated with reactive lymphadenitis. A first cycle of adjuvant chemotherapy did not prevent the rapid progression of the disease. Subsequent evaluation for surgical removal raised serious concerns due to the need for a major operation involving total amputation of the right leg and hemipelvectomy. Since surgery could not exclude the possibility of disease recurrence and since the traditional cycles of chemotherapy did not offer any possibility of a cure, the parents opted for the Di Bella Method. The combined use of Somatostatin, Melatonin, Retinoids solubilized in Vit. E, Vit. C, Vit. D3, Calcium, and Chondroitin sulfate associated with low doses of Cyclophosphamide resulted in a complete objective response, still present 14 years later, with no toxicity and without the need for hospitalization, allowing a normal quality of life and perfectly normal adolescent psycho-physical development.

  3. 硫酸软骨蛋白多糖在脊髓损伤中的作用与研究进展%Advance in study of chondroitin sulfate proteoglycans in spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    董理; 彭谨; 杨明亮


    脊髓损伤(spinal cord injury,SCI)是一种严重的致残性疾病,据不完全统计,我国目前约有30万脊髓损伤患者。由于神经细胞再生能力低下,神经细胞轴突再生受抑制以及局部瘢痕组织的屏障,治疗脊髓损伤一直是神经科学研究领域的一大难题。脊髓损伤后,神经细胞及轴突的再生受复杂的环境因子凋控。研究发现,硫酸软骨蛋白多糖(chondroitin sulfate proteoglycans,CSPGs)能抑制神经损伤区域新突触的相连与再生,因此它在脊髓损伤后神经再生修复中的作用越来越受到人们的关注。

  4. Chondroitin Sulfate Proteoglycans in Neural Development and Regeneration%硫酸软骨素蛋白多糖与神经系统的发育和再生

    Institute of Scientific and Technical Information of China (English)

    顾文莉; 陆佩华


    硫酸软骨素蛋白多糖(chondroitin sulfate proteoglycans, CSPGs)是中枢神经系统(CNS)细胞外基质中的重要组成成分,在CNS的发育、成熟后正常功能的维持中发挥重要功能,如发育中影响神经细胞的迁移和轴突生长,成年后参与神经可塑性的控制等;而病理条件下,如CNS受损后又可做为胶质瘢痕的重要组分抑制受损神经的再生.研究发现,用酶降解CSPGs的糖氨多糖链或阻断其合成可以有效地削弱CSPGs对受损神经的抑制作用,促进轴突再生.然而,精确调控CSPGs特定时空表达模式的分子机制,以及功能发挥所涉及的完整信号转导通路还有待进一步研究.

  5. Intra-articular use of a medical device composed of hyaluronic acid and chondroitin sulfate (Structovial CS: effects on clinical, ultrasonographic and biological parameters

    Directory of Open Access Journals (Sweden)

    Henrotin Yves


    Full Text Available Abstract Background This pilot open noncontrolled study was designed to assess the efficacy of intra-articular injections of a solution combining hyaluronic acid (HA and chondroitin sulphate (CS in the treatment of outpatients affected by knee osteoarthrosis. Findings Thirty patients with knee OA have been included. The primary objective was to assess clinical efficacy as measured by pain and Lequesne’s index. Secondary objectives were to assess potential effect of the treatment on ultrasound parameters, safety and biomarkers of cartilage metabolism and joint inflammation. After a selection visit (V1, the study treatment was administered 3 times on a weekly basis (V2, V3, V4. Follow-up was planned 6 (V5 and 12 weeks (V6 after the first intra-articular injection. Efficacy results showed a reduction in mean pain at V3 and V6 and in functional impairment, the most marked changes being measured at the two follow-up visits (V5 and V6. Although statistical significance was not achieved due to small sample size, a clear tendency towards improvement was detectable for ultrasound assessments as well as biomarkers. Except for a mild injection site hematoma for which the drug causal relationship could not be excluded, no adverse effect of clinical relevance was recorded during the study. Conclusion Although this pilot study was performed according to an open design only, the ultrasound as well as biomarkers changes strongly suggest a non-placebo effect. These preliminary results call now for a randomized controlled study to confirm the clinical relevance of the observed results. Trial registration #ISRCTN91883031

  6. Farmacocinética da associação de glucosamina e sulfato de condroitina em humanos sadios do sexo masculino Pharmacokinetic profile of glucosamine and chondroitin sulfate association in healthy male individuals

    Directory of Open Access Journals (Sweden)

    Odaly Toffoletto


    Full Text Available A osteoartrose é uma doença crônica das articulações que, uma vez instalada, leva seus portadores a uma incapacidade funcional progressiva. Como os proteocondroitins sulfato são os maiores constituintes das cartilagens, espera-se que com a ingestão de glucosamina e condroitina haja uma melhora das condições biológicas desse tecido. Uma vez que não temos conhecimento de estudo da farmacocinética da administração oral dessa associação em seres humanos, o objetivo deste trabalho foi avaliá-la utilizando a associação entre o sulfato de glucosamina (SG e o sulfato de condroitina (SC administrada a dois grupos de doze voluntários sadios do sexo masculino (grupo I uma cápsula de (500 mg SG; 400 mg SC e grupo II quatro cápsulas. Amostras de sangue foram retiradas a intervalos de tempo pré-definidos até 48 horas pós-dose. O SG e o SC foram dosados no plasma pelo método de DMMB (azul de 1,9,dimetildimetileno. A concentração máxima foi atingida em 2 horas (média ±SE; 0,893±0,093 µg/mL, grupo I e 2,222±0,313 µg/mL, grupo II. As áreas sob a curva até 48 horas foram de 10,803±0,965 µg-hr/mL e 38,776±2,981 µg-hr/mL, respectivamente para os grupos I e II. Os dois grupos apresentaram um segundo pico após 18 horas, indicando circulação êntero-hepática. Os nossos resultados indicam que essa associação é absorvida por via oral por mecanismo saturável, o que pode facilitar o seu uso em tratamentos clínicos.Osteoarthrosis is a chronic joint disease that, once patent, leads to a progressive functional disability. As proteochondroitin sulfates are the major contents of the cartilage, it is expected that the ingestion of glucosamine and chondroitin might improve the biological status of that tissue. As we could not find any studies on the pharmacokinetic profile of this association by oral administration route in human beings, the objective of this study was to evaluate it by using the association of glucosamine sulfate

  7. Nano-Se-chondroitin sulfate inhibits T-2 toxin-induced apoptosis of cultured chondrocytes from patients with Kashin-Beck disease%硫酸软骨素纳米硒可抑制T-2毒素诱导的大骨节病软骨细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    韩晶; 郭雄; 吴翠艳; 李春燕; 何淑兰; 段琛; 宁玉洁


    Objective To observe the effect of nano-Se-chondroitin sulfate on the growth and apoptosis of chondrocytes from patients with Kashin-Beck disease (KBD) exposed to T-2 toxin in vitro. Methods Samples of the articular cartilage were obtained from 6 patients with grade Ⅱ/Ⅲ KBD diagnosed in line with the National Clinical Diagnostic Criteria of KBD (WS/T 207-2010) for chondrocyte separation and culture in vitro. The separated chondrocytes were treated with synthesized nano-Se-chondroitin sulfate particles and T-2 toxin, alone or in combination, and the cell growth and apoptosis were observed using MTT assay, HE staining and flow cytometry. Results The synthesized nano-Se-chondroitin sulfate, with a selenium entrapment ratio of 10.1%, spontaneously formed nanoparticles in distilled water with sizes ranging from 30 to 200 run. Fourier-transform infrared spectroscopy suggested a possible covalent bond that bound Nano-Se and chondroitin sulfate. Within the concentration range of 50-200 ng/ml, nano-Se-chondroitin sulfate significantly inhibited T-2 toxin-induced apoptosis of the cultured chondrocytes and reduced the early apoptosis rate to (8.64±1.57)% (P<0.05). Conclusion Nano-Se-chondroitin sulfate can inhibit T-2 toxin-induced apoptosis of cultured chondrocytes from KBD patients in vitro, and serves as a promising candidate therapeutic agent for KBD.%目的 确定硫酸软骨素纳米硒对T-2毒素干预体外大骨节病软骨细胞生长的影响.方法 合成并表征硫酸软骨素纳米硒粒子,依据《大骨节病临床诊断标准》(WS/T 207-2010),选择Ⅱ/Ⅲ度KBD患者6例关节软骨进行体外分离、培养.分别给予硫酸软骨素纳米硒联合T-2毒素进行干预,采用MTT、HE染色和流式细胞仪观察细胞生长和凋亡的变化.结果 合成的硫酸软骨素纳米硒中硒的含量为10.1%,可在蒸馏水中自组装成粒径为30~200 nm纳米粒子,红外图谱提示纳米硒与硫酸软骨素可能以共价键的方式结

  8. Rapid acquisition of isolate-specific antibodies to chondroitin sulfate A-adherent Plasmodium falciparum isolates in Ghanaian primigravidae

    DEFF Research Database (Denmark)

    Cox, Sharon E; Staalsoe, Trine; Arthur, Paul;


    Recent evidence suggests that pregnancy-associated malaria (PAM), associated with maternal anemia and low birth weight, results from preferential sequestration of parasitized red blood cells (pRBC) in the placenta via binding of variant surface antigens (VSA) expressed on the surface of p...... an attractive target for vaccination against PAM. Using flow cytometry, levels of antibody to VSA and VSA(CSA) expressed on the surface of red blood cells infected with Plasmodium falciparum isolates were measured during pregnancy and lactation in Ghanaian primigravid women enrolled in a trial of maternal...... vitamin A supplementation. Antibody responses to VSA(CSA) were detected within the first trimester of pregnancy and increased with increasing duration of pregnancy, and they seemed to be isolate specific, indicating that different CSA-adherent parasite lines express antigenically distinct VSA and thus may...

  9. Chondroitin sulfate A-adhering Plasmodium falciparum-infected erythrocytes express functionally important antibody epitopes shared by multiple variants

    DEFF Research Database (Denmark)

    Barfod, Lea; Dobrilovic, Tina; Magistrado, Pamela;


    Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes to chond......Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes...

  10. The NTS-DBL2X region of VAR2CSA Induces cross-reactive antibodies that inhibit adhesion of several Plasmodium falciparum isolates to chondroitin sulfate A

    DEFF Research Database (Denmark)

    Bigey, Pascal; Gnidehou, Sédami; Doritchamou, Justin


    is difficult. Methods. Using genetic immunization, we raised polyclonal antisera against overlapping segments of VAR2CSA in mice and rabbits. The adhesion-inhibition capacities of induced antisera and of specific antibodies purified from plasma of malaria-exposed pregnant women were assessed on laboratory....... The latter has been clearly associated to increased morbidity and mortality of the infants. Acquired anti-VAR2CSA antibodies have been associated with improved pregnancy outcomes, suggesting a vaccine could prevent the syndrome. However, identifying functionally important regions in the large VAR2CSA protein......-adapted parasite lines and field isolates expressing VAR2CSA. Competition enzyme-linked immunosorbent assay (ELISA) was employed to analyze functional resemblance between antibodies induced in animals and those naturally acquired by immune multigravidae. Results. Antibodies targeting the N-terminal sequence (NTS...

  11. OASIS regulates chondroitin 6-O-sulfotransferase 1 gene transcription in the injured adult mouse cerebral cortex. (United States)

    Okuda, Hiroaki; Tatsumi, Kouko; Horii-Hayashi, Noriko; Morita, Shoko; Okuda-Yamamoto, Aya; Imaizumi, Kazunori; Wanaka, Akio


    Old astrocyte specifically induced substance (OASIS), a basic leucine zipper transcription factor of the cAMP response element binding/Activating transcription factor family, is induced in reactive astrocytes in vivo and has important roles in quality control of protein synthesis at the endoplasmic reticulum. Reactive astrocytes produce a non-permissive environment for regenerating axons by up-regulating chondroitin sulfate proteoglycans (CSPGs). In this study, we focus on the potential role of OASIS in CSPG production in the adult mouse cerebral cortex. CS-C immunoreactivity, which represents chondroitin sulfate moieties, was significantly attenuated in the stab-injured cortices of OASIS knockout mice compared to those of wild-type mice. We next examined expression of the CSPG-synthesizing enzymes and core proteins of CSPGs in the stab-injured cortices of OASIS knockout and wild-type mice. The levels of chondroitin 6-O-sulfotransferase 1 (C6ST1, one of the major enzymes involved in sulfation of CSPGs) mRNA and protein increased after cortical stab injury of wild-type, but not of OASIS knockout, mice. A C-terminal deletion mutant OASIS over-expressed in rat C6 glioma cells increased C6ST1 transcription by interacting with the first intron region. Neurite outgrowth of cultured hippocampal neurons was inhibited on culture dishes coated with membrane fractions of epidermal growth factor-treated astrocytes derived from wild type but not from OASIS knockout mice. These results suggest that OASIS regulates the transcription of C6ST1 and thereby promotes CSPG sulfation in astrocytes. Through these mechanisms, OASIS may modulate axonal regeneration in the injured cerebral cortex. OASIS, an ER stress-responsive CREB/ATF family member, is up-regulated in the reactive astrocytes of the injured brain. We found that the up-regulated OASIS is involved in the transcriptional regulation of C6ST1 gene, which promotes chondroitin sulfate proteoglycan (CSPG) sulfation. We conclude

  12. Receptor tyrosine phosphatase beta is expressed in the form of proteoglycan and binds to the extracellular matrix protein tenascin

    DEFF Research Database (Denmark)

    Barnea, G; Grumet, M; Milev, P;


    The extracellular domain of receptor type protein tyrosine phosphatase beta (RPTP beta) exhibits striking sequence similarity with a soluble, rat brain chondroitin sulfate proteoglycan (3F8 PG). Immunoprecipitation experiments of cells transfected with RPTP beta expression vector and metabolically...... labeled with [35S]sulfate and [35S]methionine indicate that the transmembrane form of RPTP beta is indeed a chondroitin sulfate proteoglycan. The 3F8 PG is therefore a variant form composed of the entire extracellular domain of RPTP beta probably generated by alternative RNA splicing. Previous...

  13. Glucosamine and chondroitin use in canines for osteoarthritis: A review. (United States)

    Bhathal, Angel; Spryszak, Meredith; Louizos, Christopher; Frankel, Grace


    Osteoarthritis is a slowly progressive and debilitating disease that affects canines of all breeds. Pain and decreased mobility resulting from osteoarthritis often have a negative impact on the affected canine's quality of life, level of comfort, daily functioning, activity, behaviour, and client-pet companionship. Despite limited and conflicting evidence, the natural products glucosamine hydrochloride (HCl) and chondroitin sulfate are commonly recommended by veterinarians for treating osteoarthritis in dogs. There is a paucity of well-designed clinical veterinary studies investigating the true treatment effect of glucosamine and chondroitin. The purposes of this review article are to provide a brief background on glucosamine and chondroitin use in canine osteoarthritis and to critically review the available literature on the role of these products for improving clinical outcomes. Based on critical review, recommendations for practice are suggested and a future study design is proposed.

  14. Chondroitin 4-O-sulfotransferases are required for cell adhesion and morphogenesis in the Ciona intestinalis embryo. (United States)

    Nakamura, Jun; Tetsukawa, Akira; Fujiwara, Shigeki


    Chondroitin sulfate (CS) is a carbohydrate component of proteoglycans. Several types of sulfotransferases determine the pattern of CS sulfation, and thus regulate the biological functions of proteoglycans. The protochordate ascidians are the closest relatives of vertebrates, but the functions of their sulfotransferases have not been investigated. Here, we show that two chondroitin 4-O-sulfotransferases (C4STs) play important roles in the embryonic morphogenesis of the ascidian Ciona intestinalis. Ci-C4ST-like1 is predominantly expressed in the epidermis and muscle. Epidermal and muscle cells became spherical upon the injection of a Ci-C4ST-like1-specific morpholino oligo (MO), thus suggesting weakened cell adhesion. Co-injection of a Ci-C4ST-like1-expressing transgene rescued the phenotype, suggesting that the effects of the MO were specific. Ci-C4ST-like3 was expressed in the central nervous system, muscle, and mesenchyme. A specific MO appeared to affect cell adhesion in the epidermis and muscle. Convergent extension movement of notochordal cells was also impaired. Forced expression of Ci-C4ST-like3 restored normal morphogenesis, suggesting that the effects of the MO were specific. The present study suggests that Ci-C4ST-like1 and Ci-C4ST-like3 are required for cell adhesion mainly in the epidermis and muscle.

  15. Histochemical analysis of heparan sulfate 3-O-sulfotransferase expression in mouse brain. (United States)

    Yabe, Tomio; Maeda, Nobuaki


    In situ hybridization provides information for understanding the localization of gene expression in various tissues. The relative expression levels of mRNAs in a single cell can be sensitively visualized by this technique. Furthermore, since in situ hybridization is a histological technique, tissue structure is maintained after fixation, and it is possible to accurately identify cell types. We have examined the expression of heparan sulfate sulfotransferases by in situ hybridization to better understand the functions of heparan sulfate in the development of mouse nervous system. This chapter describes methods of in situ hybridization analyses using cRNA probes labeled with nonradioactive nucleotides.

  16. Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes

    DEFF Research Database (Denmark)

    Heinonen, J; Taipaleenmäki, H; Roering, P;


    -tag was expressed in Cos7 cells, and the cell lysate was studied for putative glycosaminoglycan attachment by digestion with chondroitinase ABC and Western blotting. RESULTS: The predicted molecule is a small, 121 amino acids long type I single-pass transmembrane chondroitin sulfate proteoglycan, that contains ER...

  17. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: II. The 6-O-sulfotransferase family. (United States)

    Cadwallader, Adam B; Yost, H Joseph


    Heparan sulfate (HS) is an unbranched chain of repetitive disaccharides, which specifically binds ligands when attached to the cell surface or secreted extracellularly. HS chains contain sulfated domains termed the HS fine structure, which gives HS specific binding affinities for extracellular ligands. HS 6-O-sulfotransferases (6-OST) catalyze the transfer of sulfate groups to the 6-O position of glucosamine residues of HS. We report here the characterization and developmental expression analysis of the 6-OST gene family in the zebrafish. The zebrafish 6-OST gene family consists of four conserved vertebrate orthologues, including a gene duplication specific to zebrafish. We examined the mRNA expression patterns in several tissues/organs throughout early zebrafish development, including early cleavage stages, eyes, somites, brain, internal organ primordial, and pectoral fin development. Members of the 6-OST gene family have spatially and temporally distinct restricted expression, suggesting in vivo functional differences exist between members of this family.

  18. Identification of chondroitin/dermatan sulfotransferases in the protochordate, Ciona intestinalis. (United States)

    Tetsukawa, Akira; Nakamura, Jun; Fujiwara, Shigeki


    Sulfated glycosaminoglycans are important components of connective tissues. The pattern of sulfation is important for their biological functions. Ascidians, the closest relatives of vertebrates, have a simple chordate body plan. In the present study, we identified an almost complete set of genes encoding proteins homologous to chondroitin/dermatan sulfotransferases in the genome of the ascidian Ciona intestinalis. We found eight genes encoding 4-O-sulfotransferases, eight genes encoding 6-O-sulfotransferases, and three genes encoding uronyl 2-O-sulfotransferases. The number of sulfotransferase genes was unexpectedly large, considering that ascidians do not have a well-developed endoskeleton. In addition, most of the genes within each sub-family seemed to have arisen by gene duplication events that occurred in the ascidian lineage after divergence from the main chordate lineage. This suggests that a unique pattern of sulfation independently developed during ascidian evolution. Some of the genes identified in the present study showed tissue-specific expression in the epidermis, notochord, muscle, and central nervous system. Region-specific expression in the epidermis was also observed. The present study provides useful information for further comparative and functional analyses of sulfotransferases and proteoglycans in chordate embryos.

  19. Clinical Observation of Glucosamine Hydrochloride Combined with Chondroitin Sulfate in the Treatment of Lumbar Facet Joint Osteoarthritis%盐酸氨基葡萄糖联合硫酸软骨素治疗腰椎小关节骨关节炎的临床观察

    Institute of Scientific and Technical Information of China (English)

    杨勇; 陈旭; 昝中学; 苟金平; 吴万军; 古其军


    目的 观察比较盐酸氨基葡萄糖单独使用及与硫酸软骨素联合使用治疗腰椎小关节骨关节炎(LFOA)的临床疗效.方法 2009年1月-2011年1月,将80例LFOA患者随机分成两组,A组口服盐酸氨基葡萄糖,B组口服盐酸氨基葡萄糖和硫酸软骨素两种药物,6周为1个疗程,间断治疗4个疗程.分别比较用药前与用药后3、6周及5、8、11个月时的日本骨科协会(JOA)评分、晨僵和压痛程度变化.结果 治疗后,两组的JOA评分在各观察时点均增加,与治疗前比较差异有统计学意义(P<0.05).组间行JOA评分治疗改善率的比较,在各观察时点差异均有统计学意义(P<0.05),B组JOA评分改善率优于A组.治疗3周后,两组晨僵和压痛评分均降低,与本组治疗前比较差异有统计学意义(P<0.05);组间比较,差异亦有统计学意义(P<0.05),B组晨僵和压痛程度均低于A组.第6周,第5、8、11个月,两组组间比较晨僵和压痛程度差异均无统计学意义(P>0.05),但各疗程结束后两组晨僵和压痛程度均呈持续降低趋势.结论 单独应用盐酸氨基葡萄糖及盐酸氨基葡萄糖与硫酸软骨素的联合应用治疗LFOA疗效确切,联合用药优于单独应用盐酸氨基葡萄糖.%Objective To observe the clinical effect of glucosamine hydrochloride or glucosamine hydrochloride and chondroitin sulfate in combination on the treatment of lumbar facet joint osteoarthritis (LFOA). Methods From January 2009 to January 2011, 80 patients with LFOA were randomly divided into 2 groups: group A with medication of glucosamine hydrochloride and group B with medication of glucosamine hydrochloride and chondroitin sulfate in combination. Each group was treated for 4 courses and 6 weeks for every course. The clinical effect from the change of score of the items observed at each point of each group was compared with its' pretreatment, and the clinical effect was compared in the two groups at the same point

  20. Chlorate: a reversible inhibitor of proteoglycan sulfation

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, D.E.; Silbert, J.E.


    Bovine aorta endothelial cells were cultured in medium containing (/sup 3/H)glucosamine, (/sup 35/S)sulfate, and various concentrations of chlorate. Cell growth was not affected by 10 mM chlorate, while 30 mM chlorate had a slight inhibitory effect. Chlorate concentrations greater than 10 mM resulted in significant undersulfation of chondroitin. With 30 mM chlorate, sulfation of chondroitin was reduced to 10% and heparan to 35% of controls, but (/sup 3/H)glucosamine incorporation on a per cell basis did not appear to be inhibited. Removal of chlorate from the culture medium of cells resulted in the rapid resumption of sulfation.

  1. A Sulfated Glycosaminoglycan Linkage Region is a Novel Type of Human Natural Killer-1 (HNK-1 Epitope Expressed on Aggrecan in Perineuronal Nets.

    Directory of Open Access Journals (Sweden)

    Keiko Yabuno

    Full Text Available Human natural killer-1 (HNK-1 carbohydrate (HSO3-3GlcAβ1-3Galβ1-4GlcNAc-R is highly expressed in the brain and required for learning and neural plasticity. We previously demonstrated that expression of the HNK-1 epitope is mostly abolished in knockout mice for GlcAT-P (B3gat1, a major glucuronyltransferase required for HNK-1 biosynthesis, but remained in specific regions such as perineuronal nets (PNNs in these mutant mice. Considering PNNs are mainly composed of chondroitin sulfate proteoglycans (CSPGs and regulate neural plasticity, GlcAT-P-independent expression of HNK-1 in PNNs is suggested to play a role in neural plasticity. However, the function, structure, carrier glycoprotein and biosynthetic pathway for GlcAT-P-irrelevant HNK-1 epitope remain unclear. In this study, we identified a unique HNK-1 structure on aggrecan in PNNs. To determine the biosynthetic pathway for the novel HNK-1, we generated knockout mice for GlcAT-S (B3gat2, the other glucuronyltransferase required for HNK-1 biosynthesis. However, GlcAT-P and GlcAT-S double-knockout mice did not exhibit reduced HNK-1 expression compared with single GlcAT-P-knockout mice, indicating an unusual biosynthetic pathway for the HNK-1 epitope in PNNs. Aggrecan was purified from cultured cells in which GlcAT-P and -S are not expressed and we determined the structure of the novel HNK-1 epitope using liquid chromatography/mass spectrometry (LC/MS as a sulfated linkage region of glycosaminoglycans (GAGs, HSO3-GlcA-Gal-Gal-Xyl-R. Taken together, we propose a hypothetical model where GlcAT-I, the sole glucuronyltransferase required for synthesis of the GAG linkage, is also responsible for biosynthesis of the novel HNK-1 on aggrecan. These results could lead to discovery of new roles of the HNK-1 epitope in neural plasticity.

  2. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.;


    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...

  3. Sensitive Determination of Chondroitin Sulfate by Fluorescence Recovery of an Anionic Aluminum Phthalocyanine-Cationic Surfactant Ion-Association Complex Used as a Fluorescent Probe Emitting at Red Region%四磺基铝酞菁-十四烷基二甲基乙基氯化铵离子缔合物红色荧光探针用于硫酸软骨素的测定

    Institute of Scientific and Technical Information of China (English)

    陈林; 黄萍; 杨惠卿; 邓雅斌; 郭梦林; 李东辉


    硫酸软骨素的测定在生物医学领域有重要价值,但常规检测法在灵敏度、选择性或简易性方面尚存在不足。本文基于带正电基团的阳离子表面活性剂对具有红区发射特性的强荧光化合物—荷负电的四磺基铝酞菁具有高效荧光猝灭作用,而在生物多糖硫酸软骨素存在下,上述荧光猝灭体系荧光显著恢复的现象,提出酞菁‐表面活性剂离子缔合物荧光恢复高灵敏测定硫酸软骨素的新方法,并用于实际样品分析。研究表明,中性介质中,红区荧光探针四磺基铝酞菁(Tetrasulfonated aluminium phthalocyanine ,AlS4 Pc)与阳离子表面活性剂十四烷基二甲基苄基氯化铵(Tetradecyldimethylbenzylammonium chloride ,TDBAC)发生强烈的缔合作用,导致AlS4 Pc的荧光几乎完全猝灭,从而获得暗背景的荧光体系。在加入带有阴离子基团(磺酸基)的生物多糖硫酸软骨素(Chondroitin sulfate ,CS)后,由于竞争结合作用,AlS4 Pc被释放而使体系的荧光大幅度恢复,且恢复程度与CS呈线性正相关。优化了反应条件,考察了共存物质的影响,结果表明本法具有较好的选择性。在最佳条件下,线性范围为0.20~10.0μg · m L -1,检测限为0.070μg · m L -1,工作曲线方程 y=1.04 x+2.09, r=0.9995。该法操作简便,灵敏度、稳定性与准确性好,实际样品的分析结果令人满意。酞菁荧光化合物在分析科学中的应用尚不多见,本文工作进一步开拓了酞菁红区荧光探针的新应用。%Determination of chondroitin sulfate in the biomedical field has an important value .The conventional methods for the assay of chondroitin sulfate are still unsatisfactory in sensitivity ,selectivity or simplicity .This work aimed at developing a novel method for sensitive and selective determination of chondroitin sulfate by fluorimetry .We found that some kinds of cationic

  4. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: I. The 3-O-sulfotransferase family. (United States)

    Cadwallader, Adam B; Yost, H Joseph


    Heparan sulfate (HS) is an unbranched chain of repetitive disaccharides, which specifically binds ligands when attached to the cell surface or secreted extracellularly. HS chains contain sulfated domains termed the HS fine structure, which gives HS specific binding affinities for extracellular ligands. HS 3-O-sulfotransferases (3-OST) catalyze the transfer of sulfate groups to the 3-O position of glucosamine residues of HS, a rare, but essential HS chain modification required for HS fine structure. We report here the first characterization and developmental expression analysis of the 3-OST gene family in a vertebrate. There are eight 3-OST genes in zebrafish: seven genes with homology to known 3-OST genes in mouse and human, as well as a novel, 3-OST-7. A phylogenetic comparison of human, mouse, and zebrafish indicates the 3-OST family can be subdivided into two distinct subgroups. We examined the mRNA expression patterns in several tissues/organs throughout early zebrafish development, including early cleavage stages, somites, brain, internal body organ primordial, and pectoral fin development. The 3-OST gene family has both specifically expressed and ubiquitously expressed genes, suggesting in vivo functional differences exist between members of this family.

  5. Depolymerization of sulfated polysaccharides under hydrothermal conditions. (United States)

    Morimoto, Minoru; Takatori, Masaki; Hayashi, Tetsuya; Mori, Daiki; Takashima, Osamu; Yoshida, Shinichi; Sato, Kimihiko; Kawamoto, Hitoshi; Tamura, Jun-ichi; Izawa, Hironori; Ifuku, Shinsuke; Saimoto, Hiroyuki


    Fucoidan and chondroitin sulfate, which are well known sulfated polysaccharides, were depolymerized under hydrothermal conditions (120-180°C, 5-60min) as a method for the preparation of sulfated polysaccharides with controlled molecular weights. Fucoidan was easily depolymerized, and the change of the molecular weight values depended on the reaction temperature and time. The degree of sulfation and IR spectra of the depolymerized fucoidan did not change compared with those of untreated fucoidan at reaction temperatures below 140°C. However, fucoidan was partially degraded during depolymerization above 160°C. Nearly the same depolymerization was observed for chondroitin sulfate. These results indicate that hydrothermal treatment is applicable for the depolymerization of sulfated polysaccharides, and that low molecular weight products without desulfation and deformation of the initial glycan structures can be obtained under mild hydrothermal conditions.

  6. Localization and expression of CHST6 and keratan sulfate proteoglycans in the human cornea. (United States)

    Di Iorio, Enzo; Barbaro, Vanessa; Volpi, Nicola; Bertolin, Marina; Ferrari, Barbara; Fasolo, Adriano; Arnaldi, Renato; Brusini, Paolo; Prosdocimo, Giovanni; Ponzin, Diego; Ferrari, Stefano


    Macular corneal dystrophy (MCD; OMIM 217800) is a rare autosomal recessive inherited disorder caused by mutations in the carbohydrate sulfotransferase 6 (CHST6) and characterised by the presence of unsulfated keratan sulfate proteoglycans (KSPGs) forming abnormal deposits that eventually lead to visual impairment. The aim of this study is to understand in which corneal cells CHST6 and KSPGs are expressed and exert their activity. Expression and localization of CHST6, keratan sulfate (KS) and proteins of the KSPGs, such as mimecan and lumican, were assessed both in human cornea sections and in cultured primary keratinocytes (n = 3) and keratocytes (n = 4). Immunohistochemistry, semiquantitative RT-PCR, in situ RNA hybridization and HPLC analysis of glycosaminoglycans were used as read-outs. In human corneas KS was predominantly found in the stroma, but absent, or barely detectable, in the corneal epithelium. A similar pattern of distribution was found in the epidermis, with KS mainly localised in the derma. As expected, in the cornea CHST6 (the gene encoding the enzyme which transfers sulfate residues onto KSPGs) was found expressed in the suprabasal, but not basal, layers of the epithelium, in the stroma and in the endothelium. Analyses of KS by means of HPLC showed that in vitro cultured stromal keratocytes express and secrete more KS than keratinocytes, thus mirroring results observed in vivo. Similarly expression of the CHST6 gene and of KS proteoglycans such as mimecan, lumican is limited to stromal keratocytes. Unlike keratocytes, corneal keratinocytes do not synthesize mimecan or lumican, and express very little, if none, CHST6. Any drug/gene therapy or surgical intervention aimed at curing this rare genetic disorder must therefore involve and target stromal keratocytes. If coupled to the accuracy of HPLC-based assay that we developed to determine the amount of KS in serum, our findings could lead to more targeted therapeutic treatments of the ocular features

  7. Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence. (United States)

    Li, Nan; Qin, Ting; Zhang, Xiao Lin; Huang, Bei; Liu, Zhi Xin; Xie, Hai Xia; Zhang, Jin; McBride, Mark J; Nie, Pin


    Flavobacterium columnare is an important bacterial pathogen of freshwater fish that causes high mortality of infected fish and heavy economic losses in aquaculture. The pathogenesis of this bacterium is poorly understood, in part due to the lack of efficient methods for genetic manipulation. In this study, a gene deletion strategy was developed and used to determine the relationship between the production of chondroitin lyases and virulence. The F. johnsoniae ompA promoter (PompA) was fused to sacB to construct a counterselectable marker for F. columnare. F. columnare carrying PompA-sacB failed to grow on media containing 10% sucrose. A suicide vector carrying PompA-sacB was constructed, and a gene deletion strategy was developed. Using this approach, the chondroitin lyase-encoding genes, cslA and cslB, were deleted. The ΔcslA and ΔcslB mutants were both partially deficient in digestion of chondroitin sulfate A, whereas a double mutant (ΔcslA ΔcslB) was completely deficient in chondroitin lyase activity. Cells of F. columnare wild-type strain G4 and of the chondroitin lyase-deficient ΔcslA ΔcslB mutant exhibited similar levels of virulence toward grass carp in single-strain infections. Coinfections, however, revealed a competitive advantage for the wild type over the chondroitin lyase mutant. The results indicate that chondroitin lyases are not essential virulence factors of F. columnare but may contribute to the ability of the pathogen to compete and cause disease in natural infections. The gene deletion method developed in this study may be employed to investigate the virulence factors of this bacterium and may have wide application in many other members of the phylum Bacteroidetes.

  8. Effects of chondroitin sulfate and sodium hyaluronate on chondrocytes and extracellular matrix of articular cartilage in dogs with degenerative joint disease Efeitos do sulfato de condroitina e do hialuronato de sódio nos condrócitos e na matriz extracelular na cartilagem articular de cães com doença articular degenerativa

    Directory of Open Access Journals (Sweden)

    G. Gonçalves


    Full Text Available Samples of articular cartilage of femur, tibia and patella of 15 dogs with experimentally induced degenerative joint disease (DJD were microscopically analyzed. Animals were distributed into three groups (n=5: the control group received no medication; the second group was treated with chondroitin sulfate and the third received sodium hyaluronate. Samples were processed and stained with HE and toluidine blue for morphological evaluation. The metabolic and proliferative activity of the chondrocytes was evaluated by the measurement of nucleolar organizer regions (NORs after impregnation by silver nitrate. Significant differences were not observed (P>0.05 in the morphology among the groups, however, the group treated with sodium hyaluronate had a higher score suggesting a trend to a greater severity of the lesions. Significant differences were not observed (P>0.05 in the measurement of NORs, cells and NORs/cells among the groups. Although differences were not significant, sodium hyaluronate group showed higher NOR and cell counts which suggested an increase of the proliferation rate of chondrocytes. In addition, a higher NOR/cell ratio in the group treated with chondroitin sulfate suggested that this drug may have stimulated the metabolic activity of the chondrocytes, minimizing the lesions resulting from DJD.Foram utilizadas amostras de cartilagem articular do fêmur, tíbia e patela de 15 cães com doença articular degenerativa (DAD, induzida experimentalmente. Foram constituídos três grupos de cinco animais: grupo 1 - controle, não medicado; grupo 2 - tratado com sulfato de condroitina e grupo 3 - tratado com hialuronato de sódio. As amostras foram processadas e coradas pelas técnicas de HE e de azul de toluidina para avaliação das alterações morfológicas, e impregnadas pelo nitrato de prata para análise da atividade metabólica e/ou proliferativa dos condrócitos, por meio da visualização e quantificação de regiões organizadoras

  9. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, C.P.; Nader, H.B. (Paulist School of Medicine, Sao Paulo (Brazil)); Buonassisi, V.; Colburn, P. (W. Alton Jones Cell Science Center, Lake Placid, NY (USA))


    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, ({sup 3}H)glucosamine/({sup 35}S)sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain.

  10. Prognostic impact of chondroitin-4-sulfotransferase CHST11 in ovarian cancer. (United States)

    Oliveira-Ferrer, L; Heßling, A; Trillsch, F; Mahner, S; Milde-Langosch, K


    Ovarian cancer (OvCa) accounts for the highest tumor-related mortality among gynecological malignancies, but the underlying mechanisms are poorly understood. Glycosaminoglycans are abundantly present in ovarian tumors, and there is rising evidence that chondroitin sulfate (CS) as well as diverse carbohydrate sulfotransferases (CHSTs), the enzymes involved in the sulfation process of these structures, plays an important role in metastatic spread of tumor cells. mRNA expression levels of CHST3/7/11/12/13/15 were compared between malignant (86 OvCas) and non-malignant tumors (6 borderline tumors and 3 cystadenomas). CHST11 and CHST15 were further chosen for Western blot analysis in a cohort of 216 OvCas. Protein expression levels were correlated with clinicopathologic prognostic parameters and survival data. A significantly higher mRNA expression of CHST11, CHST12, and CHST15 was measured in ovarian cancer samples in comparison to non-malignant ones, and the same trend was observed for CHST13. For CHST3 and CHST7, no significant differences were found between the two groups. At protein level, high CHST11 expression was independently associated with unfavorable progression-free survival (PFS; p = 0.027). A similar trend was observed for CHST15, showing a nearly significant correlation between high expression levels and shorter recurrence-free survival in patients without macroscopic residual tumor after surgery (p = 0.053). We conclude that CHSTs involved in the synthesis of CS-A and CS-E might influence ovarian cancer progression, and we suggest CHST11 as independent unfavorable prognostic factor in this entity.

  11. Sulfated polysaccharides and cell differentiation in the sea urchin embryo. (United States)

    Løvtrup-Rein, H; Løvtrup, S


    The synthesis of sulfated polysaccharides during the embryonic development of Paracentrotus lividus has been investigated by incorporation of radioactive sulfate, glucose, glucosamine and fucose. The following substances become labelled: fucan sulfate (approximately 60%), heparan sulfate (approximately 20%) and dermatan sulfate (approximately 20%), and possibly a very slight amount of chondroitin sulfate. In animalized and vegetalized embryos, the rate of incorporation is significantly reduced, and furthermore dermatan sulfate is almost absent in animalized embryos. It is concluded that this substance is associated with the differentiation of vegetative cells, possibly the mesenchyme cells.

  12. Molecular cloning and characterization of chondroitin-4-O-sulfotransferase-3. A novel member of the HNK-1 family of sulfotransferases. (United States)

    Kang, Hyung-Gyoo; Evers, Matthias R; Xia, Guoqing; Baenziger, Jacques U; Schachner, Melitta


    We have identified and characterized an N-acetylgalactosamine-4-O-sulfotransferase designated chondroitin-4-sulfotransferase-3 (C4ST-3) (GenBank accession number AY120869) based on its homology to HNK-1 sulfotransferase (HNK-1 ST). The cDNA predicts an open reading frame encoding a type II membrane protein of 341 amino acids with a 12-amino acid cytoplasmic domain and a 311-amino acid luminal domain containing a single potential N-linked glycosylation site. C4ST-3 has the greatest amino acid sequence identity when aligned with chondroitin-4-O-sulfotransferase 1 (C4ST-1) (45%) but also shows significant amino acid identity with chondroitin-4-O-sulfotransferase 2 (C4ST-2) (27%), dermatan-4-O-sulfotransferase 1 (29%), HNK-1 ST (26%), N-acetylgalactosamine-4-O-sulfotransferase 1 (26%), and N-acetylgalactosamine-4-O-sulfotransferase 2 (23%). C4ST-3 transfers sulfate to the C-4 hydroxyl of beta1,4-linked GalNAc that is substituted with a beta-linked glucuronic acid at the C-3 hydroxyl. The open reading frame of C4ST-3 is encoded by three exons located on human chromosome 3q21.3. Northern blot analysis reveals a single 2.1-kilobase transcript. C4ST-3 message is expressed in adult liver and at lower levels in adult kidney, lymph nodes, and fetal liver. Although C4ST-3 and C4ST-1 have similar specificities, the highly restricted pattern of expression seen for C4ST-3 suggests that it has a different role than C4ST-1.

  13. Epigenetic silencing of the sulfate transporter gene DTDST induces sialyl Lewisx expression and accelerates proliferation of colon cancer cells. (United States)

    Yusa, Akiko; Miyazaki, Keiko; Kimura, Naoko; Izawa, Mineko; Kannagi, Reiji


    Colon cancer cells express the carbohydrate determinant sialyl Lewis(x), while they exhibit markedly decreased the expression of its sulfated derivative, sialyl 6-sulfo Lewis(x). In contrast, normal colonic epithelial cells strongly express sialyl 6-sulfo Lewis(x), but they virtually do not express sialyl Lewis(x). Impaired sulfation was therefore suggested to occur during the course of malignant transformation of colonic epithelial cells and was assumed to be responsible for the increased sialyl Lewis(x) expression in cancers. To elucidate the molecular biological background of the impaired sulfation in cancers, we studied the expression levels of mRNA for 6-O-sulfotransferase isoenzymes, PAPS synthases and transporters, and a cell membrane sulfate transporter, DTDST, in cancer tissues. The most striking decrease in cancer cells compared with nonmalignant epithelial cells was noted in the transcription of the DTDST gene (P = 0.0000014; n = 20). Most cultured colon cancer cells had a diminished DTDST transcription, which was restored when cultured with histone deacetylase inhibitors. Suppression of DTDST transcription under the control of a tet-off inducible promoter resulted in increased sialyl Lewis(x) expression and reduced sialyl 6-sulfo Lewis(x) expression. Unexpectedly, the growth rate of the cancer cells was markedly enhanced when transcription of DTDST was suppressed. These results show that the decrease in the transcription of the sulfate transporter gene is the major cause of decreased expression of sialyl 6-sulfo Lewis(x) and increased expression of sialyl Lewis(x) in colon cancers. The results also suggest that the diminished DTDST expression is closely related to enhanced proliferation of cancer cells.

  14. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Marolla, Ana Paula Cleto [Universidade Federal de São Paulo, São Paulo, SP (Brazil); Waisberg, Jaques [Hospital do Servidor Público Estadual, São Paulo, SP (Brazil); Faculdade de Medicina do ABC, Santo André, SP (Brazil); Saba, Gabriela Tognini [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Waisberg, Daniel Reis [Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP (Brazil); Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva [Faculdade de Medicina do ABC, Santo André, SP (Brazil)


    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student’s t test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  15. Effects of Ligustrazine on Expression of Bone Marrow Heparan Sulfates in Syngeneic Bone Marrow Transplantation Mice

    Institute of Scientific and Technical Information of China (English)

    任天华; 刘文励; 孙汉英; 戴琪琳; 孙岚


    To explore the effects of ligustrazine on bone marrow heparan sulfates (HS) expression in bone marrow transplantation (BMT) mice, the syngeneic BMT mice were orally given 2 mg ligustrazine twice a day. On the 7th, 10th, 14th, 18th day after BMT, peripheral blood cells and bone marrow nuclear cells (BMNC) were counted, and the expression levels of HS in bone marrow and on the stromal cell surfaces were detected by immunohistochemistry and flow cytometry assay respectively. In ligustrazine-treated group, the white blood cells (WBC) and BMNC on the 7th, 10th, 14th, 18th day and platelets (PLT) on the 7th, 10th day were all significantly more than those in control group (P<0.05). The bone marrow HS expression levels in ligustrazine-treated group were higher than those in control group (P<0. 05) on the 7th, 10th, 14th, 18th day. However, the HS expression levels on the stromal cell surfaces showed no significant difference between the two groups on the 18th day (P>0. 05). It was concluded that ligustrazine could up-regulate HS expression in bone marrow, which might be one of the mechanisms contributing to ligustrazine promoting hematopoietic reconstitution after BMT.

  16. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: III. 2-O-sulfotransferase and C5-epimerases. (United States)

    Cadwallader, Adam B; Yost, H Joseph


    Heparan sulfate (HS) is an unbranched chain of repetitive disaccharides, which specifically binds ligands when attached to the cell surface or secreted extracellularly. HS chains contain sulfated domains, termed the HS fine structure, which give HS specific binding affinities for extracellular ligands. HS 2-O-sulfotransferase (2-OST) catalyzes the transfer of sulfate groups to the 2-O position of uronic acid residues of HS. We report here the characterization and developmental expression patterns of 2-OST in several tissues/organs throughout early zebrafish development, including early cleavage stages, eyes, somites, brain, internal organ primordial, and pectoral fin. The 2-OST gene has spatially and temporally distinct expression, which is a surprise given the essential role of 2-OST in HS fine structure formation. Furthermore, although 2-OST and C5-epimerase are predicted to be interdependent for protein translocation from the endoplasmic reticulum to the Golgi, their expression is not coordinately regulated during zebrafish development.

  17. 6-Sulphated chondroitins have a positive influence on axonal regeneration.

    Directory of Open Access Journals (Sweden)

    Rachel Lin

    Full Text Available Chondroitin sulphate proteoglycans (CSPGs upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs. Chondroitin 6-sulphotransferase-1 (C6ST-1 is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs. Using C6ST-1 knockout mice (KO, we studied post-injury changes in chondroitin sulphotransferase (CSST expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury.

  18. Requirement of keratan sulfate proteoglycan phosphacan with a specific sulfation pattern for critical period plasticity in the visual cortex. (United States)

    Takeda-Uchimura, Yoshiko; Uchimura, Kenji; Sugimura, Taketoshi; Yanagawa, Yuchio; Kawasaki, Toshisuke; Komatsu, Yukio; Kadomatsu, Kenji


    Proteoglycans play important roles in regulating the development and functions of the brain. They consist of a core protein and glycosaminoglycans, which are long sugar chains of repeating disaccharide units with sulfation. A recent study demonstrated that the sulfation pattern of chondroitin sulfate on proteoglycans contributes to regulation of the critical period of experience-dependent plasticity in the mouse visual cortex. In the present study, we investigated the role of keratan sulfate (KS), another glycosaminoglycan, in critical period plasticity in the mouse visual cortex. Immunohistochemical analyses demonstrated the presence of KS containing disaccharide units of N-acetylglucosamine (GlcNAc)-6-sulfate and nonsulfated galactose during the critical period, although KS containing disaccharide units of GlcNAc-6-sulfate and galactose-6-sulfate was already known to disappear before that period. The KS chains were distributed diffusely in the extracellular space and densely around the soma of a large population of excitatory and inhibitory neurons. Electron microscopic analysis revealed that the KS was localized within the perisynaptic spaces and dendrites but not in presynaptic sites. KS was mainly located on phosphacan. In mice deficient in GlcNAc-6-O-sulfotransferase 1, which is one of the enzymes necessary for the synthesis of KS chains, the expression of KS was one half that in wild-type mice. In the knockout mice, monocular deprivation during the critical period resulted in a depression of deprived-eye responses but failed to produce potentiation of nondeprived-eye responses. In addition, T-type Ca(2+) channel-dependent long-term potentiation (LTP), which occurs only during the critical period, was not observed. These results suggest that regulation by KS-phosphacan with a specific sulfation pattern is necessary for the generation of LTP and hence the potentiation of nondeprived-eye responses after monocular deprivation.

  19. Differential expression of proteoglycans in tissue remodeling and lymphangiogenesis after experimental renal transplantation in rats.

    Directory of Open Access Journals (Sweden)

    Heleen Rienstra

    Full Text Available BACKGROUND: Chronic transplant dysfunction explains the majority of late renal allograft loss and is accompanied by extensive tissue remodeling leading to transplant vasculopathy, glomerulosclerosis and interstitial fibrosis. Matrix proteoglycans mediate cell-cell and cell-matrix interactions and play key roles in tissue remodeling. The aim of this study was to characterize differential heparan sulfate proteoglycan and chondroitin sulfate proteoglycan expression in transplant vasculopathy, glomerulosclerosis and interstitial fibrosis in renal allografts with chronic transplant dysfunction. METHODS: Renal allografts were transplanted in the Dark Agouti-to-Wistar Furth rat strain combination. Dark Agouti-to-Dark Agouti isografts and non-transplanted Dark Agouti kidneys served as controls. Allograft and isograft recipients were sacrificed 66 and 81 days (mean after transplantation, respectively. Heparan sulfate proteoglycan (collXVIII, perlecan and agrin and chondroitin sulfate proteoglycan (versican expression, as well as CD31 and LYVE-1 (vascular and lymphatic endothelium, respectively expression were (semi- quantitatively analyzed using immunofluorescence. FINDINGS: Arteries with transplant vasculopathy and sclerotic glomeruli in allografts displayed pronounced neo-expression of collXVIII and perlecan. In contrast, in interstitial fibrosis expression of the chondroitin sulfate proteoglycan versican dominated. In the cortical tubular basement membranes in both iso- and allografts, induction of collXVIII was detected. Allografts presented extensive lymphangiogenesis (p<0.01 compared to isografts and non-transplanted controls, which was associated with induced perlecan expression underneath the lymphatic endothelium (p<0.05 and p<0.01 compared to isografts and non-transplanted controls, respectively. Both the magnitude of lymphangiogenesis and perlecan expression correlated with severity of interstitial fibrosis and impaired graft function

  20. Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3'-phosphoadenosine-5'-phosphosulfate. (United States)

    Zhou, Xianxuan; Chandarajoti, Kasemsiri; Pham, Truong Quang; Liu, Renpeng; Liu, Jian


    Heparan sulfate (HS) belongs to a major class of glycans that perform central physiological functions. Heparin is a specialized form of HS and is a clinically used anticoagulant drug. Heparin is a natural product isolated from pig intestine. There is a strong demand to replace natural heparin with a synthetic counterpart. Although a chemoenzymatic approach has been employed to prepare synthetic heparin, the scale of the synthesis is limited by the availability of sulfotransferases and the cofactor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Here, we present a novel method to produce secreted forms of sulfotransferases in the yeast cells, Kluyveromyces lactis. Five sulfotransferases including N-sulfotransferase, 2-O-sulfotransferase, 3-O-sulfotransferase 1 and 6-O-sulfotransferases 1 and 3 were expressed using this method. Unlike bacterial-expressed sulfotransferases, the yeast proteins can be directly used to modify polysaccharides without laborious purification. The yeast-expressed sulfotransferases also tend to have higher specific activity and thermostability. Furthermore, we demonstrated the possibility for the gram-scale synthesis of PAPS from adenosine 5'-triphosphate at only 1/5000th of the price purchased from a commercial source. Our results pave the way to conduct the enzymatic synthesis of heparin in large quantities.

  1. 鲐鱼软骨糖胺聚糖的硫酸软骨素的结构及其与生长因子的相互作用%Chondroitin Sulfate in the Preparation of Glycosaminoglycan from Mackerel (Pneumatophorus japonicus Houttuyn) Nasal Cartilage and Its Interaction with Growth Factors

    Institute of Scientific and Technical Information of China (English)



    为了开发具有药用价值的硫酸软骨素(chondroitin sulfate,CS)的新资源,从鲐鱼(Pneumatop horus japonicus Houttuyn)软骨蛋白聚糖(proteoglycan,PG)制备了糖胺聚糖(glycosaminoglycan,GAG),用酶降解和阴离子交换HPLC法测定了GAG的CS的组成及其含量,用凝胶层析法测定了GAG的分子量,用表面等离子体谐振(surface plasmon resonance,SPR)法测定了其与多效生长因子(PTN)、中期因子(MK)和肝细胞生长因子(HGF)相互作用的动力学参数结合速率常数(ka)、解离速率常数(kd)和平衡解离常数(KD).结果显示,鲐鱼软骨GAG含量约为651 μg/mg PG或1.09 μmol/mg PG(按照二糖单位计算),主要含CS (1.03μmol/mg PG,按照二糖单位计算),CS酶解产生的主要二糖单位是ΔDi-6S(38.8%)和ΔDi-4S(46.3%),有少量的ΔDi-0S(8.4%)和ΔDi-diSD(6.5%).GAG (CS)的分子量为78 kD.GAG(CS)与生长因子的相互作用的动力学参数ka((mol/L)-1·S-1)、kd(s-1)和KD (nmol/L)分别为(2.77±0.17) x105、(7.74±1.56) ×105和(0.28 ±0.06) (MK),(1.05 ±0.22)×104、(4.16±0.80)x 10-3和(417±131.3)(PTN),(7.04±0.94)×105、(7.84±2.82)× 10-3和(1 1.1±3.80)(HGF).该GAG同MK、HGF和PTN有高的或较高的亲和性,暗示鲐鱼软骨GAG的CS有可能通过调节生长因子的信号转导途径而对某些疾病发挥治疗作用,具有潜在进一步药用开发价值.%To search for new resource of chondroitin sulfate (CS) for therapeutics, glycosaminoglycan (GAG) was isolated from nasal proteoglycan (PG) of mackerel (Pneumatophorus japonicus Houttuyn). The disaccharide composition of CS in the GAG preparation was determined by anion-exchange HPLC after digestion with chondroitinase. The molecular size of GAG was determined by gel filtration, and the interaction of GAG with growth factors was analyzed to determine the kinetic parameter ^(association rate constant) ^ kd (dissociation rate constant) and KD (equilibrium dissociation constant) through surface plasmon resonance

  2. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis

    NARCIS (Netherlands)

    Stachtea, X.N.; Tykesson, E.; Kuppevelt, T.H. van; Feinstein, R.; Malmstrom, A.; Reijmers, R.M.; Maccarana, M.


    The epimerization of glucuronic acid into iduronic acid adds structural variability to chondroitin/dermatan sulfate polysaccharides. Iduronic acid-containing domains play essential roles in processes such as coagulation, chemokine and morphogen modulation, collagen maturation, and neurite sprouting.

  3. 硫酸软骨素联合甘油长期冷冻保存角膜植片的实验研究%An experimental study on the combination of chondroitin sulfate with glycerin for the cryopreservation of corneal graft

    Institute of Scientific and Technical Information of China (English)

    赵青; 王宏伟; 柴旭斌


    存组细胞内质网肿胀程度较重.3% CS处理组术后14d时植片淋巴细胞浸润及新生血管明显少于1% SH处理组和单纯甘油保存组.临床评分表明,与1% SH处理组和单纯甘油保存组比较,3% CS处理组的R1明显降低而CECs生存时间明显延长,差异均有统计学意义(P<0.05).免疫组织化学检测显示,在各时间点,3% CS处理组植片中TGF-β1的表达量(A值)明显高于1% SH处理组和单纯甘油保存组(P<0.01);而ICAM-1的表达量低于1% SH处理组和单纯甘油保存组(P<0.05),3% CS处理组植片中TGF-β1和ICAM-1的表达量接近于正常对照组表达水平.结论 3% CS处理后的甘油保存方法能长期维持CECs的活性,同种异体PKP结果显示3% CS处理后的甘油保存方法效果优于1% SH处理后的甘油保存法.%Background Chondroitin sulfate(CS) is a highly viscous and elastic acid mucopolysaccharide extracted from animal soft tissues,with a wide range of biological activity for use in clinical ophthalmology.Interim preservation solution containing CS has a significant protective effect on corneal endothelial cells (CECs).However,the protective effect played by CS in long-term glycerol cryopreservation of CECs remains to be studied. Objective This study is mainly attempted to investigate the protective effect of CS on graft CECs after cryopreservation by glycerin,and to compare the preserving outcome with that of sodium hyaluronate (SH). Methods One hundred and four eyes of fifty-two female Wistar rats were divided into four groups randomly.The cornea grafts were evenly anointed on the surface of the endothelium by 3% CS and 1% SH,respectively,and then cryopreserved in glycerol in the 3% CS group and 1% SH group,and the corneas cryopreserved only in glycerin were assigned to the glycerin only group.The fresh corneas of matched rats were used as the normal control group.Ninety-six female SD rats were appointed as recipients to receive

  4. Effects of Chondroitin Sulfate on Neurotransmitter in Brain Tissues of Rats with Chronic Alcoholism%硫酸软骨素对慢性酒精中毒模型大鼠脑组织神经递质的影响研究

    Institute of Scientific and Technical Information of China (English)

    刘坤; 仓怀芹; 高华; 刘占涛; 杨志宏; 于兹东


    目的:探讨硫酸软骨素(CS)对慢性酒精中毒模型大鼠脑组织神经递质的影响.方法:取大鼠随机分为正常对照组、模型组、纳洛酮组(腹腔注射纳洛酮注射液,0.08mg·kg-1·d-1)和CS低、中、高剂量组(灌胃CS,分别为50、100、150mg·kg-1·d-1),每组10只.除正常照组外,其余各组灌胃给于50%乙醇溶液8mL·kg-1·d-12周后,12mL·kg-1·d-16周,建立慢性酒精中毒模型,每天给予乙醇后给予相应药物.造模8周后苏木精-伊红染色法观察各组大鼠神经组织病理学变化,并以高效液相色谱法测定各组大鼠脑组织中单胺类神经递质去甲肾上腺素(NE)、5-羟色胺(5-HT)和多巴胺(DA)的含量.结果:与模型组比较,CS低、中、高剂量组大鼠神经组织病理学损伤程度均降低,NE、5-HT、DA含量均显著降低(P<0.05或P<0.01),且中剂量组最明显.结论:CS可能通过降低慢性酒精中毒模型大鼠脑组织中单胺类神经递质的含量来减轻脑损伤.%OBJECTIVE: To study the effect of chondroitin sulfate (CS) on neurotransmitter in brain tissues of rats with chronic alcoholism. METHODS: Rats were randomly assigned to normal control group, model group, naloxone group (intraperitoneal injection of naloxone 0.08 mg· kg-1· d-1) and CS low-dose, medium-dose and high-dose groups (intragastric administration of CS 50, 100, 150 mg·kg-1·d-1) with each group of 10 rats. Except normal control group, other groups were given intragastric administration of 50% ethanol solution 8 mL·kg-1 ·d-1 for 2 weeks. After that those groups were given intragastric administration of 50% ethanol solution 12 mL·kg-1 ·d-1 for 6 weeks to establish chronic alcoholism model. Model rats were treated with relevant drugs after giving ethanol. 8 weeks after modeling, HE-staining was used to observe the pathological change of nervous tissue. The content of NE, 5-HT and DA in brain tissues were determined by HPLC. RESULTS: Compared with model group, the

  5. 硫酸软骨素蛋白多糖抑制神经元轴突生长体外生物模型的建立%An in vitro Model of Chondroitin Sulfate Proteoglycan-induced Axon Outgrowth Inhibition

    Institute of Scientific and Technical Information of China (English)

    谭斐; 吴晓黎; 景良; 李桂晨; 赵琛; 郭阳


    Objective To establish an in vitro model to study the inhibitory effect of chondroitin sulfate proteoglycan (CSPG) on neuronal growth and axonal regeneration. Methods Different concentrations of CSPG were mixed with Texas-red Dye which has no biological toxicity ,and 5 μl of the mixture was dropped onto the center of the bottom of culture plates to form red round spots,which was called CSPG spots.SY5Y neuroblastoma cells or cerebellar granule neuron (CGN) from mice were seeded on the plates and cultured for 48 hours. The cell growth and axon extension were observed under microscope. Results In CSPG spots containing 1 and 3 μg/ml of CSPG,the growth of CGNs and SY5Y neuroblastoma cells were inhibited,and cell death occurred in the spot areas. No axon extension was found in cells outside the CSPG spots. High concentration of CSPG in the spots inhibited the growth of cells around CSPG spots. Conclusion This model mimics the CSGP-induced axon outgrowth inhibition, which can be used to study the neuronal growth and axonal regeneration after central nervous system injury.%目的 利用硫酸软骨素蛋白多糖(CSPG)的生物特性建立抑制神经元生长和轴突再生的体外生物模型.方法 将不同浓度CSPG与无生物毒性的德克萨斯红荧光染料混合,取5 μl滴在培养板的中心部位,形成边界清楚的红色圆形斑点,称CSPG圆斑(CSPG SPOT).将神经母细胞瘤SY5Y细胞和小鼠小脑颗粒细胞(CGNs)铺在含有CSPG SPOT的培养板中,48 h后观察细胞的生长情况.结果 含有1 μg/ml和3 μg/ml CSPG的SPOT分别使CGNs和神经母细胞瘤SY5Y细胞停止生长、死亡,没有发现细胞的轴突延伸到SPOT上生长.高浓度的CSPG可渗透到SPOT周围区域,使CSPG SPOT周围区域的细胞生长和轴突再生受到抑制.结论 该模型可以在体外模拟胶质细胞分泌的CSPG对神经细胞生长的抑制作用,对研究中枢神经系统损伤后神经元的生长和轴突的再生具有广泛的应用前景.

  6. Toxicity Biosensor for Sodium Dodecyl Sulfate Using Immobilized Green Fluorescent Protein Expressing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lia Ooi


    Full Text Available Green fluorescent protein (GFP is suitable as a toxicity sensor due to its ability to work alone without cofactors or substrates. Its reaction with toxicants can be determined with fluorometric approaches. GFP mutant gene (C48S/S147C/Q204C/S65T/Q80R is used because it has higher sensitivity compared to others GFP variants. A novel sodium dodecyl sulfate (SDS toxicity detection biosensor was built by immobilizing GFP expressing Escherichia coli in k-Carrageenan matrix. Cytotoxicity effect took place in the toxicity biosensor which leads to the decrease in the fluorescence intensity. The fabricated E. coli GFP toxicity biosensor has a wide dynamic range of 4–100 ppm, with LOD of 1.7 ppm. Besides, it possesses short response time (0.98, and long-term stability (46 days. E. coli GFP toxicity biosensor has been applied to detect toxicity induced by SDS in tap water, river water, and drinking water. High recovery levels of SDS indicated the applicability of E. coli GFP toxicity biosensor in real water samples toxicity evaluation.

  7. Effects of Platelet Factor 4 on Expression of Bone Marrow Heparan Sulfate in Syngenic Bone Marrow Transplantation Mice

    Institute of Scientific and Technical Information of China (English)

    孟凡凯; 孙汉英; 刘文励; 袁慧玲; 徐惠珍; 孙岚; 周银莉; 任天华


    Summary: To explore the effects of platelet factor 4(PF4) on hematopoietic reconstitution and its mechanism in syngenic bone marrow transplantation (BMT). The syngenic BMT mice models were established. 20 and 26 h before irradiation, the mice were injected 20 μg/kg PF4 or PBS twice into abdominal cavity, then the donor bone marrow nuclear cells (BMNC) were transplanted. On the 7th day, spleen clone forming units (CFU-S) were counted. On the 7th, 14th and 21st day after BMT, the BMNC and megakaryoryocytes in bone marrow tissue were counted and the percentage of hematopoietic tissue and expression level of heparan sulfate in bone marrow tissue were assessed. In PF4-treated groups, the CFU-S counts on the 7th day were higher than those in BMT groups after BMT. The BMNC and megakaryoryocyte counts and the percentage of hematopoietic tissue and heparan sulfate expression level were higher than those in BMT group on the 7th, 14th and 21st day after BMT (P<0. 01 or P<0. 05). PF4 could accelerate hematopoietic reconstitution of syngenic bone marrow transplantation. The promotion of the heparan sulfate expression in bone marrow may be one of mechanisms of PF4.

  8. Critical appraisal of the role of glucosamine and chondroitin in the management of osteoarthritis of the knee

    Directory of Open Access Journals (Sweden)

    Steven J Narvy


    Full Text Available Steven J Narvy1, C Thomas Vangsness Jr21Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 2Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USAAbstract: Osteoarthritis (OA is the most common musculoskeletal disease in the United States, with rising prevalence. Medical management of OA involves acetaminophen, nonsteroidal anti-inflammatory drugs, and other analgesics, all of which are of variable efficacy and are associated with significant side effects and toxicities. The purpose of this review is to critically evaluate the efficacy of glucosamine and chondroitin, both as single agents and in combination, for the treatment of knee OA. Also evaluated were the level of evidence and funding support of the included articles. Almost every included trial of glucosamine sulfate, glucosamine hydrochloride, and chondroitin sulfate has found the safety of these compounds to be equal to that of placebo, though their therapeutic efficacy in decreasing knee OA pain and improving joint function is variable. Additionally, there are data to support a role of these agents in reducing radiographic progression of knee OA. Industry involvement, however, remains prominent. Further, more comprehensive study by independent researchers free of industry ties is necessary to identify a subset of patients in whom the use of glucosamine and/or chondroitin would be most beneficial. These agents may be safely tried as an initial therapy in select OA patients prior to initiating therapy with nonsteroidal anti-inflammatory drugs, acetaminophen, and other traditional medications.Keywords: glucosamine sulfate, glucosamine hydrochloride, chondroitin sulfate, knee osteoarthritis, nutritional supplement, nutraceutical

  9. Expression of the cell-surface heparan sulfate proteoglycan syndecan-2 in developing rat anterior pituitary gland. (United States)

    Horiguchi, Kotaro; Syaidah, Rahimi; Fujiwara, Ken; Tsukada, Takehiro; Ramadhani, Dini; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi


    In the anterior pituitary gland, folliculo-stellate cells and five types of hormone-producing cells are surrounded by an extracellular matrix (ECM) essential for these cells to perform their respective roles. Syndecans-type I transmembrane cell-surface heparan sulfate proteoglycans act as major ECM coreceptors via their respective heparan sulfate chains and efficiently transduce intracellular signals through the convergent action of their transmembrane and cytoplasmic domains. The syndecans comprise four family members in vertebrates: syndecan-1, -2, -3 and -4. However, whether syndecans are produced in the pituitary gland or whether they have a role as a coreceptor is not known. We therefore used (1) reverse transcription plus the polymerase chain reaction to analyze the expression of syndecan genes and (2) immunohistochemical techniques to identify the cells that produce the syndecans in the anterior pituitary gland of adult rat. Syndecan-2 mRNA expression was clearly detected in the corticotropes of the anterior pituitary gland. Moreover, the expression of syndecan-2 in the developing pituitary gland had a distinct temporospatial pattern. To identify the cells expressing syndecan-2 in the developing pituitary gland, we used double-immunohistochemistry for syndecan-2 and the cell markers E-cadherin (immature cells) and Ki-67 (proliferating cells). Some E-cadherin- and Ki-67-immunopositive cells expressed syndecan-2. Therefore, syndecan-2 expression occurs in developmentally regulated patterns and syndecan-2 probably has different roles in adult and developing anterior pituitary glands.

  10. Heparan sulfate proteoglycans made by different basement-membrane-producing tumors have immunological and structural similarities

    DEFF Research Database (Denmark)

    Wewer, U M; Albrechtsen, R; Hassell, J R


    Using immunological assays, we determined the relationship between the heparan sulfate proteoglycans produced by two different murine basement-membrane-producing tumors, i.e., the mouse Engelbreth-Holm-Swarm (EHS) tumor and the L2 rat yolk-sac tumor. Antibodies prepared against the heparan sulfate...... mainly heparan sulfate (75%) along with smaller amounts of chondroitin sulfate (19%), whereas the L2 rat yolk-sac tumor produced mainly chondroitin sulfate (76%) with smaller amounts of heparan sulfate (21%). We conclude that these two murine basement-membrane-producing tumors elaborate...... proteoglycans obtained from these two sources immunoprecipitated the same precursor protein with a molecular mass of 400,000 daltons from 35S-methionine pulse-labeled cells of both tumors. Immunohistochemistry showed the heparan sulfate proteoglycan to be distributed in the extracellular matrix and also...

  11. The Effects of Magnesium Sulfate on Fetal Rats of FGR and the Expression of Caspase-3 in the Placenta of Maternal Rat

    Institute of Scientific and Technical Information of China (English)

    GAO Hui; ZOU Li


    To investigate the effect of magnesium sulfate on the fetal rats of FGR and the expression of caspase-3 in the placenta of maternal rat; To explore the mechanism of using magnesium sulfate to cure the FGR. Establish model of FGR by a way of passive smoking: giving the maternal rats different agent of magnesium sulfate by subcutaneous injection: low agent group (300 mg/kg),high agent group (600 mg/kg). Concentration of magnesium sulfate was monitored. The expres sion of caspase-3 was measured by RT-PCR and immunohistochemistry technology. Both of the concentrations of magnesium sulfate in high and low agents group are higher than the FGR group (P<0. 01); the weight of the placenta and fetal rat in high agent group are higher than the FGR group (P<0.05 and P<0.01); the expression of mRNA and protein of caspase-3 in the two agent group is higher than the FGR group (P<0.05 respectively); concentration of magnesium sulfate in the maternal rat blood correlate to the weight of fetal rat (r=0. 899, P=0. 038) and the expression of caspase-3 in the placenta of maternal rat (r= 0.747, P 0.033; r=-0. 915, P=0.001).The research suggests that the weight of fetal rat could be increased by treatment of magnesium sulfate. Because it would imfrmove the placental function by depressing the expression of caspase-3.

  12. The Diversity of Sulfide Oxidation and Sulfate Reduction Genes Expressed by the Bacterial Communities of the Cariaco Basin, Venezuela. (United States)

    Rodriguez-Mora, Maria J; Edgcomb, Virginia P; Taylor, Craig; Scranton, Mary I; Taylor, Gordon T; Chistoserdov, Andrei Y


    Qualitative expression of dissimilative sulfite reductase (dsrA), a key gene in sulfate reduction, and sulfide:quinone oxidoreductase (sqr), a key gene in sulfide oxidation was investigated. Neither of the two could be amplified from mRNA retrieved with Niskin bottles but were amplified from mRNA retrieved by the Deep SID. The sqr and sqr-like genes retrieved from the Cariaco Basin were related to the sqr genes from a Bradyrhizobium sp., Methylomicrobium alcaliphilum, Sulfurovum sp. NBC37-1, Sulfurimonas autotrophica, Thiorhodospira sibirica and Chlorobium tepidum. The dsrA gene sequences obtained from the redoxcline of the Cariaco Basin belonged to chemoorganotrophic and chemoautotrophic sulfate and sulfur reducers belonging to the class Deltaproteobacteria (phylum Proteobacteria) and the order Clostridiales (phylum Firmicutes).

  13. The liver and kidney expression of sulfate anion transporter sat-1 in rats exhibits male-dominant gender differences. (United States)

    Brzica, Hrvoje; Breljak, Davorka; Krick, Wolfgang; Lovrić, Mila; Burckhardt, Gerhard; Burckhardt, Birgitta C; Sabolić, Ivan


    The sulfate anion transporter (sat-1, Slc26a1) has been cloned from rat liver, functionally characterized, and localized to the sinusoidal membrane in hepatocytes and basolateral membrane (BLM) in proximal tubules (PT). Here, we confirm previously described localization of sat-1 protein in rat liver and kidneys and report on gender differences (GD) in its expression by immunochemical, transport, and excretion studies in rats. The approximately 85-kDa sat-1 protein was localized to the sinusoidal membrane in hepatocytes and BLM in renal cortical PT, with the male-dominant expression. However, the real-time reverse-transcription polymerase chain reaction data indicated no GD at the level of sat-1 mRNA. In agreement with the protein data, isolated membranes from both organs exhibited the male-dominant exchange of radiolabeled sulfate for oxalate, whereas higher oxalate in plasma and 24-h urine indicated higher oxalate production and excretion in male rats. Furthermore, the expression of liver, but not renal, sat-1 protein was: unaffected by castration, upregulated by ovariectomy, and downregulated by estrogen or progesterone treatment in males. Therefore, GD (males > females) in the expression of sat-1 protein in rat liver (and, possibly, kidneys) are caused by the female sex-hormone-driven inhibition at the posttranscriptional level. The male-dominant abundance of sat-1 protein in liver may conform to elevated uptake of sulfate and extrusion of oxalate, causing higher plasma oxalate in males. Oxalate is then excreted by the kidneys via the basolateral sat-1 (males > females) and the apical CFEX (Slc26a6; GD unknown) in PT and eliminated in the urine (males > females), where it may contribute to the male-prevailing development of oxalate urolithiasis.

  14. RB4CD12 epitope expression and heparan sulfate disaccharide composition in brain vasculature

    NARCIS (Netherlands)

    Hosono-Fukao, T.; Ohtake-Niimi, S.; Nishitsuji, K.; Hossain, M.M.; Kuppevelt, A.H.M.S.M. van; Michikawa, M.; Uchimura, K.


    RB4CD12 is a phage display antibody that recognizes a heparan sulfate (HS) glycosaminoglycan epitope. The epitope structure is proposed to contain a trisulfated disaccharide, [-IdoA(2-OSO(3))-GlcNSO(3) (6-OSO(3))-], which supports HS binding to various macromolecules such as growth factors and cytok

  15. Expression of two different sulfated fucans by females of Lytechinus variegatus may regulate the seasonal variation in the fertilization of the sea urchin. (United States)

    Cinelli, Leonardo P; Castro, Michelle O; Santos, Livia L; Garcia, Clarice R; Vilela-Silva, Ana-Cristina E S; Mourão, Paulo A S


    The egg jellies of sea urchins contain sulfated polysaccharides with unusual structures, composed of linear chains of l-fucose or l-galactose with well-defined repetitive units. The specific pattern of sulfation and the position of the glycosidic bond vary among sulfated polysaccharides from different species. These polysaccharides show species specificity in inducing the acrosome reaction, which is a critical event for fertilization. Females of the sea urchin Lytechinus variegatus spawn eggs containing a sulfated fucan with the repetitive sequence [3-alpha-L-Fucp-2(OSO(3))-1 --> 3-alpha-L-Fucp-4(OSO(3))-1 --> 3-alpha-L-Fucp-2,4(OSO(3))-1 --> 3-alpha-L-Fucp-2(OSO(3))-1](n). We now observe that, close to winter, a period of decreased fertility for the sea urchin, the females synthesize a distinct sulfated fucan with a simple structure, composed of 4-sulfated, 3-linked alpha-fucose residues. This sulfated fucan is inactive when tested in vitro for the acrosome reaction using homologous sperm. The amount of egg jellies spawned by females (and their constituent sulfated polysaccharides) varied greatly throughout the year. Apparently, there is a correlation between the temperature of the sea water and the expression of the 4-sulfated, 3-linked sulfated fucan. Overall, we described the occurrence of two isotypes of sulfated fucan in the egg jelly of the sea urchin L. variegatus, which differ in their biological activity and may be involved in the periodicity of the reproductive cycle of the invertebrate.

  16. Expression of Brassica napus L. γ-Glutamylcysteine Synthetase and Low-and High-Affinity Sulfate Transporters in Response to Excess Cadmium

    Institute of Scientific and Technical Information of China (English)

    Xin SUN; Xue-Mei SUN; Zhi-Min YANG; Shao-Qiong LI; Jin WANG; Song-Hua WANG


    In both the roots and leaves ofBrassica napus L. cv. Youyan No. 8 under treatment with 30 μmol/L Cd, massive production of non-protein thiols (NPT; mainly containing glutathione (GSH) and phytochelatins (PCs)) was induced, together with an increase in γ-glutamylcysteine synthetase (γ-ECS)mRNA transcripts. Because γ-ECS is the key enzyme catalyzing the first step in GSH biosynthesis, which, in turn, is converted to PCs, the Cd-induced increase in γ-ECS expression may be responsible for the observed increase in the production of NPT. Using a quantitative reverse transcription polymerase chain reaction (RT-PCR) approach, the expression of genes encoding a putative low-affinity sulfate transporter (LAST) and a putative high-affinity sulfate transporter (HAST) was determined at the transcriptional level. The RT-PCR analysis of relative transcript amounts indicates that the LAST gene in B. napus leaves showed a constitutive expression, which was hardly affected by Cd treatment. However, treatment with 30 μmol/L Cd for 2 or 3 d induced a marked increase in the expression of LAST in roots. Transcriptional expression of the HAST gene occurred in roots, but not in leaves. The expression of HAST only in the roots suggests that it has a specific function in sulfate uptake from soil and that the putative LAST may be responsible for the transport of sulfate from the roots to the shoots, as well as for the uptake of sulfate from soil. These results indicate that changes in transcriptional expression for sulfate transporters were required for the increased demand for sulfate during Cd stress.

  17. Pregnenolone sulfate decreases intraocular pressure and changes expression of sigma receptor in a model of chronic ocular hypertension. (United States)

    Sun, Xian; Cheng, Fang; Meng, Bo; Yang, Binbin; Song, Wulian; Yuan, Huiping


    Sigma receptors are Ca(2+)-sensitive, ligand-operated receptor chaperones at the mitochondrion-associated endoplasmic reticulum membrane. This study describes the effect of the sigma receptor 1 agonist pregnenolone sulfate on intraocular pressure (IOP) and sigma receptor 1 expression in rat retinas after chronic ocular hypertension. Chronic ocular hypertension was induced by occlusion of episcleral veins. Retinal histological sections were obtained to determine inner plexiform layer thickness and the number of cell bodies in the ganglion cell layer. Sigma receptor expression in rat retinas was analyzed by RT-PCR and Western blotting. Cauterization caused IOP to increase >73%, and the pressure was maintained for 2 months. A time-dependent loss of ganglion cells and retinal thickness occurred at elevated IOP. High IOP decreased sigma receptor 1 expression during the first week, but expression was increased at 8 weeks. Injected pregnenolone significantly decreased IOP, prevented ganglion cell loss, protected inner plexiform layer thickness, and increased sigma receptor 1 expression in episcleral vein-cauterized rats. Sigma receptors appear to be neuroprotective and potential targets for glaucoma therapeutics.

  18. Glycosaminoglycan modifications in Duchenne muscular dystrophy: specific remodeling of chondroitin sulfate/dermatan sulfate

    NARCIS (Netherlands)

    Negroni, E.; Henault, E.; Chevalier, F.; Gilbert-Sirieix, M.; Kuppevelt, T.H. van; Papy-Garcia, D.; Uzan, G.; Albanese, P.


    Widespread skeletal muscle degeneration and impaired regeneration lead to progressive muscle weakness and premature death in patients with Duchenne muscular dystrophy (DMD). Dystrophic muscles are progressively replaced by nonfunctional tissue because of exhaustion of muscle precursor cells and exce

  19. Proteomic Analysis of Potential Keratan Sulfate, Chondroitin Sulfate A, and Hyaluronic Acid Molecular Interactions


    Conrad, Abigail H.; Zhang, Yuntao; Tasheva, Elena S.; Conrad, Gary W.


    Corneal glycosaminoglycans KS, CSA, and HA bind many intracellular and extracellular proteins and thus may influence the conformation or availability of these proteins to participate in other biological interactions. KS binds SLIT2 and may convert it from a neurorepellant to a neuroattractant.

  20. Epigenetics: methylation-associated repression of heparan sulfate 3-O-sulfotransferase gene expression contributes to the invasive phenotype of H-EMC-SS chondrosarcoma cells. (United States)

    Bui, Catherine; Ouzzine, Mohamed; Talhaoui, Ibtissam; Sharp, Sheila; Prydz, Kristian; Coughtrie, Michael W H; Fournel-Gigleux, Sylvie


    Heparan sulfate proteoglycans (HSPGs), strategically located at the cell-tissue-organ interface, regulate major biological processes, including cell proliferation, migration, and adhesion. These vital functions are compromised in tumors, due, in part, to alterations in heparan sulfate (HS) expression and structure. How these modifications occur is largely unknown. Here, we investigated whether epigenetic abnormalities involving aberrant DNA methylation affect HS biosynthetic enzymes in cancer cells. Analysis of the methylation status of glycosyltransferase and sulfotransferase genes in H-HEMC-SS chondrosarcoma cells showed a typical hypermethylation profile of 3-OST sulfotransferase genes. Exposure of chondrosarcoma cells to 5-aza-2'-deoxycytidine (5-Aza-dc), a DNA-methyltransferase inhibitor, up-regulated expression of 3-OST1, 3-OST2, and 3-OST3A mRNAs, indicating that aberrant methylation affects transcription of these genes. Furthermore, HS expression was restored on 5-Aza-dc treatment or reintroduction of 3-OST expression, as shown by indirect immunofluorescence microscopy and/or analysis of HS chains by anion-exchange and gel-filtration chromatography. Notably, 5-Aza-dc treatment of HEMC cells or expression of 3-OST3A cDNA reduced their proliferative and invading properties and augmented adhesion of chondrosarcoma cells. These results provide the first evidence for specific epigenetic regulation of 3-OST genes resulting in altered HSPG sulfation and point to a defect of HS-3-O-sulfation as a factor in cancer progression.

  1. Propolis modulates vitronectin, laminin, and heparan sulfate/heparin expression during experimental burn healing

    Institute of Scientific and Technical Information of China (English)

    Pawel OLCZYK; Katarzyna KOMOSI(N)SKA-VASSEV; Katarzyna WINSZ-SZCZOTKA; Ewa M.KO(Z)MA; Grzegorz WISOWSKI; Jerzy STOJKO; Katarzyna KLIMEK; Krystyna OLCZYK


    Objective:This study was aimed at assessing the dynamics of vitronectin (VN),laminin (LN),and heparan sulfate/heparin (HS/HP) content changes during experimental burn healing.Methods:VN,LN,and HS/HP were isolated and purified from normal and injured skin of domestic pigs,on the 3rd,5th,10th,15th,and 21st days following thermal damage.The wounds were treated with apitherapeutic agent (propolis),silver sulfadiazine (SSD),physiological salt solution,and propolis vehicle.VN and LN were quantified using an immunoenzymatic assay and HS/HP was estimated by densitometric analysis.Results:Propolis treatment stimulated significant increases in VN,LN,and HS/HP contents during the initial phase of study,followed by a reduction in the estimated extracellular matrix molecules.Similar patterns,although less extreme,were observed after treatment with SSD.Conclusions:The beneficial effects of propolis on experimental wounds make it a potential apitherapeutic agent in topical burn management.

  2. Indoxyl sulfate-induced activation of (pro)renin receptor is involved in expression of TGF-β1 and α-smooth muscle actin in proximal tubular cells. (United States)

    Saito, Shinichi; Shimizu, Hidehisa; Yisireyili, Maimaiti; Nishijima, Fuyuhiko; Enomoto, Atsushi; Niwa, Toshimitsu


    Activation of (pro)renin receptor (PRR) is involved in the progression of chronic kidney disease. However, the role of indoxyl sulfate, a uremic toxin, in the activation of PRR is not clear. The present study aimed to clarify the role of indoxyl sulfate in activation of PRR, in relation to renal expression of fibrotic genes. Renal expression of PRR and renin/prorenin was up-regulated in chronic kidney disease rats compared with normal rats, whereas AST-120 suppressed these expression by reducing serum levels of indoxyl sulfate. Furthermore, administration of indoxyl sulfate to normotensive and hypertensive rats increased renal expression of PRR and renin/prorenin. Indoxyl sulfate induced expression of PRR and prorenin in cultured human proximal tubular cells (HK-2 cells). Indoxyl sulfate-induced PRR expression was inhibited by small interfering RNAs of signal transducer and activator of transcription 3 (Stat3) and nuclear factor-κB p65 in proximal tubular cells. N-acetylcysteine, an antioxidant, and diphenyleneiodonium, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase, suppressed indoxyl sulfate-induced PRR expression in proximal tubular cells. N-acetylcysteine prevented indoxyl sulfate-induced phosphorylation of Stat3 in proximal tubular cells. PRR small interfering RNA inhibited indoxyl sulfate-induced expression of TGF-β1 and α-smooth muscle actin in proximal tubular cells. Taken together, indoxyl sulfate-induced up-regulation of prorenin expression and activation of PRR through production of reactive oxygen species and activation of Stat3 and nuclear factor-κB play an important role in the expression of TGF-β1 and α-smooth muscle actin in proximal tubular cells. Thus, indoxyl sulfate-induced activation of prorenin/PRR might be involved in renal fibrosis.

  3. Changes in cardiac heparan sulfate proteoglycan expression and streptozotocin-induced diastolic dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Cestari Ismar N


    Full Text Available Abstract Background Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ-induced diabetes. Methods Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the following groups: control (sham injection, after 24 hours, 10 days, or 30 days of STZ administration. Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day groups to correlate the observed mRNA changes to the protein expression. Results In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic dysfunction with alterations in the peak velocity of early (E diastolic filling and isovolumic relaxation time (IVRT indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower than that in the control group. The same results were obtained from immunohistochemistry analysis. Conclusion Our data suggest that membrane proteoglycans participate in the sequence of events triggered by diabetes and inflicted on cardiac and skeletal muscles.

  4. Common glycoproteins expressing polylactosamine-type glycans on matched patient primary and metastatic melanoma cells show different glycan profiles. (United States)

    Kinoshita, Mitsuhiro; Mitsui, Yosuke; Kakoi, Naotaka; Yamada, Keita; Hayakawa, Takao; Kakehi, Kazuaki


    Recently, we reported comparative analysis of glycoproteins which express cancer-specific N-glycans on various cancer cells and identified 24 glycoproteins having polylactosamine (polyLacNAc)-type N-glycans that are abundantly present in malignant cells [ Mitsui et al., J. Pharm. Biomed. Anal. 2012 , 70 , 718 - 726 ]. In the present study, we applied the technique to comparative studies on common glycoproteins present in the matched patient primary and metastatic melanoma cell lines. Metastatic melanoma cells (WM266-4) contained a large amount of polyLacNAc-type N-glycans in comparison with primary melanoma cells (WM115). To identify the glycoproteins expressing these N-glycans, glycopeptides having polyLacNAc-type N-glycans were captured by a Datura stramonium agglutinin (DSA)-immobilized agarose column. The captured glycopeptides were analyzed by LC/MS after removing N-glycans, and some glycoproteins such as basigin, lysosome-associated membrane protein-1 (LAMP-1), and chondroitin sulfate proteoglycan 4 (CSPG4) were identified in both WM115 and WM266-4 cells. The expression level of polyLacNAc of CSPG4 in WM266-4 cells was significantly higher than that in WM115 cells. In addition, sulfation patterns of chondroitin sulfate (CS) chains in CSPG4 showed dramatic changes between these cell lines. These data show that characteristic glycans attached to common proteins observed in different stages of cancer cells will be useful markers for determining degree of malignancies of tumor cells.

  5. Roles of heparan sulfate sulfation in dentinogenesis. (United States)

    Hayano, Satoru; Kurosaka, Hiroshi; Yanagita, Takeshi; Kalus, Ina; Milz, Fabian; Ishihara, Yoshihito; Islam, Md Nurul; Kawanabe, Noriaki; Saito, Masahiro; Kamioka, Hiroshi; Adachi, Taiji; Dierks, Thomas; Yamashiro, Takashi


    Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix.

  6. Expression of hyaluronan and the hyaluronan-binding proteoglycans neurocan, aggrecan, and versican by neural stem cells and neural cells derived from embryonic stem cells. (United States)

    Abaskharoun, Mary; Bellemare, Marie; Lau, Elizabeth; Margolis, Richard U


    We have examined the expression and localization patterns of hyaluronan and hyaluronan-binding chondroitin sulfate proteoglycans in neural stem cells and differentiated neural cells derived from mouse embryonic stem cells. Expression of proteoglycans and hyaluronan was weak in the SSEA1-positive embryonic stem cells but increased noticeably after retinoic acid induction to nestin-positive neural stem cells. After subsequent plating, the hyaluronan-binding chondroitin sulfate proteoglycans aggrecan, neurocan, and versican are expressed by cells in both the astrocytic and neuronal lineages. During the time period that hyaluronan was present, it co-localized with each of the hyaluronan-binding proteoglycans studied and was found to be clearly associated with beta-III tubulin-expressing neurons and oligodendrocytes expressing the O4 sulfatide marker. Although proteoglycan expression levels increased to varying degrees following neural differentiation, they did not change noticably during the following 2 weeks in culture, but there was a significant decrease in hyaluronan expression. Our studies therefore demonstrate the expression by neural stem cells and neural cells derived from them of hyaluronan and its associated proteoglycans, thereby providing a necessary foundation for integrating their specific properties into developing strategies for therapeutic applications.

  7. Sulfated galactans from Gracilaria fisheri bind to shrimp haemocyte membrane proteins and stimulate the expression of immune genes. (United States)

    Rudtanatip, Tawut; Withyachumnarnkul, Boonsirm; Wongprasert, Kanokpan


    Previous studies demonstrated that sulfated galactans (SG) from Gracilaria fisheri (G. fisheri) exhibit immunostimulant activity in shrimp. The present study was conducted to test the hypothesis that SG stimulates signaling molecules of the immune response of shrimp by binding to receptors on the host cell membrane. Accordingly, we evaluated the ability of SG to bind to shrimp haemocytes and showed that SG bound to the shrimp haemocyte membrane (SHM), potentially to specific receptors. Furthermore, this binding was associated with an activation of immune response genes of shrimp. Data from confocal laser scanning micrographs revealed that FITC-labeled SG bound to haemocytes. Far western blot analysis demonstrated that SHM peptides, with molecular sizes of 13, 14, 15, 17, and 25 kDa, were associated with SG. Peptide sequence analysis of the isolated bands using LC-MS/MS and NCBI blast search revealed the identity of the 13, 14, and 17 kDa peptides as lipopolysaccharide and β-1,3-glucan binding protein (LGBP). SG induced the expression of immune related genes and downstream signaling mediators of LGBP including IMD, IKKs, NF-κB, antimicrobial peptides (crustin and PEN-4), the antiviral immunity (dicer), and proPO system (proPO-I and proPO-II). A LGBP neutralizing assay with anti-LGBP antibody indicated a decrease in SG-induced expression of LGBP downstream signaling mediators and the immune related genes. In conclusion, this study demonstrated that the SG-stimulated immune activity in haemocytes is mediated, in part, through the LGBP, and IMD-NF-κB pathway.

  8. Gene expression correlates with process rates quantified for sulfate- and Fe(III-reducing bacteria in U(VI-contaminated sediments

    Directory of Open Access Journals (Sweden)

    Denise M Akob


    Full Text Available Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III and sulfate reduction pathways in order to monitor these processes during in situ U(VI remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA and the dissimilatory (bisulfite reductase gene (dsrA, were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC site at Oak Ridge, Tennessee. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically-active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation.

  9. Similarity of recombinant human perlecan domain 1 by alternative expression systems bioactive heterogenous recombinant human perlecan D1

    DEFF Research Database (Denmark)

    Ellis, April L; Pan, Wensheng; Yang, Guang


    BACKGROUND: Heparan sulfate glycosaminoglycans are diverse components of certain proteoglycans and are known to interact with growth factors as a co-receptor necessary to induce signalling and growth factor activity. In this report we characterize heterogeneously glycosylated recombinant human...... perlecan domain 1 (HSPG2 abbreviated as rhPln.D1) synthesized in either HEK 293 cells or HUVECs by transient gene delivery using either adenoviral or expression plasmid technology. RESULTS: By SDS-PAGE analysis following anion exchange chromatography, the recombinant proteoglycans appeared to possess...... glycosaminoglycan chains ranging, in total, from 6 kDa to >90 kDa per recombinant. Immunoblot analysis of enzyme-digested high Mr rhPln.D1 demonstrated that the rhPln.D1 was synthesized as either a chondroitin sulfate or heparan sulfate proteoglycan, in an approximately 2:1 ratio, with negligible hybrids. Secondary...

  10. Development of cell-based bioassay with Sf9 cells expressing TcSKR1 and TcSKR2 and differential activation by sulfated and non-sulfated SK peptides. (United States)

    Yu, Na; Swevers, Luc; Nachman, Ronald J; Smagghe, Guy


    Insect sulfakinin receptors (SKRs) are G-protein-coupled receptors (GPCRs) that interact with sulfakinins (SKs) to modulate diverse biological processes. One of the indispensable roles of SKs is in the regulation of food intake in insects. In this project we report on the development of a cell-based receptor assay system with insect Sf9 cells, expressing TcSKR1 and TcSKR2 from the red flour beetle Tribolium castaneum, a model and important pest insect in agriculture. In this system, a stable presence of the two TcSKRs was supported by Western blotting. The expressed TcSKRs were coupled to Gαs-protein upon activation and stimulated cAMP accumulation in Sf9 cells. Exposure of the transfected cell lines to sulfated SK (sSK) activated TcSKR1 at 1 nM; the EC50 of sSK to obtain 50% of receptor activation was similar for both receptors. In contrast, μM concentrations of non-sulfated SK were necessary to activate both TcSKRs. In conclusion, this cell-based TcSKR assay system is useful to screen SK-related peptides and mimetics and to better document ligand-receptor structure-activity relationships. Given the importance of SK signaling system in insects, the present study may provide new insights on the development of new methods to control pest insects.

  11. Label-Free Detection of Chondroitin Sulphate Proteoglycan 4 by a Polyaniline/Graphene Nanocomposite Functionalized Impedimetric Immunosensor


    JingJing Fu; ZhuanZhuan Shi; Man Li; Yangyang Wang; Ling Yu


    The chondroitin sulphate proteoglycan 4 (CSPG4), also known as high molecular weight-melanoma associated antigen (HMW-MAA), is a tumor-associated antigen that is expressed in more than 85% of surgically removed melanoma lesions but has restricted distribution in normal tissues. The diagnostic and therapeutic value of CSPG4 drives a need for sensitive and low-cost detection approaches. To this end, we developed a polyaniline/graphene oxide nanocomposite (PANI@GO) that was electrochemically cod...

  12. Sulfation of p-nitrophenyl-N-acetyl-beta-D-galactosaminide with a microsomal fraction from cultured chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Habuchi, O.; Conrad, H.E.


    Chick embryo chondrocyte microsomes containing intact Golgi vesicles took up 3'-phosphoadenosine-5'-phospho(TVS)sulfate ((TVS)PAPS) in a time- and temperature-dependent, substrate-saturable manner. When (TVS)PAPS and p-nitrophenyl-N-acetyl-beta-D-galactosaminide (pNP-GalNAc) were added to the incubation in the absence of detergent, the microsomes catalyzed the transfer of sulfate from (TVS)PAPS to pNP-GalNAc to form pNP-GalNAc-6-TVSO4. The apparent Km values for PAPS in the uptake and the pNP-GalNAc sulfation reactions were 2 X 10(-7) and 2 X 10(-6) M, respectively. The sulfation of pNP-GalNAc by the microsomal preparation was inhibited by detergent. The microsomal fraction also catalyzed the transfer of sulfate from (TVS)PAPS to oligosaccharides prepared from chondroitin. However, in contrast to the sulfation of pNP-GalNAc, the rate of sulfation of these oligosaccharides was low in the absence of detergent and was markedly stimulated when detergent was added. Sulfation of pNP-GalNAc by the freeze-thawed microsomes was inhibited when the octasaccharide prepared from chondroitin was present in the reaction mixture. As the PAPS that had been internalized in the microsomal vesicles was consumed in the sulfation of pNP-GalNAc, more (TVS)PAPS was taken up and the sulfated pNP-GalNAc was released from the vesicles. These observations suggest that pNP-GalNAc may serve as a model membrane-permeable substrate for study of the 6-sulfo-transferase reaction involved in sulfation of chondroitin sulfate in intact Golgi vesicles.

  13. Use of flow cytometry for characterization and fractionation of cell populations based on their expression of heparan sulfate epitopes

    NARCIS (Netherlands)

    Holley, R.J.; Smith, R.A.; Westerlo, E.M.A. van de; Pickford, C.E.; Merry, C.L.; Kuppevelt, T.H. van


    The ability to characterize alterations in heparan sulfate (HS) structure during development or as a result of loss or mutation of one or more components of the HS biosynthetic pathway is essential for broad understanding of the effects these changes may have on cell/tissue function. The use of anti

  14. Effects of dermatan sulfate derivatives on platelet surface P-selectin expression and protein C activity in blood of inflammatory bowel disease patients

    Institute of Scientific and Technical Information of China (English)

    Sheng-Li Ji; Hai-Yan Du; Yan-Qing Chi; Hui-Fei Cui; Ji-Chao Cao; Mei-Yu Geng; Hua-Shi Guan


    AIM: To investigate the effect of dermatan sulfate (DS)derivatives on platelet surface P-selectin expression and blood activated protein C (APC) activity in patients with inflammatory bowel disease (IBD), and to clarity the antiinflammatory mechanism of DS derivatives.METHODS: Dermatan sulfate (DS) was sulfated with chlorosulfonic acid to prepare polysulfated dermatan sulfate (PSDS). The major disaccharides of DS and PSDS were determined by 1H nuclear magnetic resonance spectroscopy (1H-NMR) and 13C-NMR. Both DS and PSDS were depolymerized with hydrogen peroxide. The fragments were separated by gel filtration chromatography. The effects of DS derivatives on P-selectin expression were assayed by ELISA method,and blood APC activity was assayed by the synthetic chromogenic substrate method.RESULTS: The major disaccharides of DS and PSDS were IdoA-1→3-GalNAc-4-SO3 and IdoA-2SO3-1→3-GalNAc4, 6-diSO3, respectively. Compared with the adenosine diphosphate stimulated group and IBD control group, DS and its derivatives all had significant inhibitory effects on P-selectin expression (P<0.01), but there was no difference between DS-derived oligosaccharides (DSOSs) and PSDS-derived oligosaccharides (PSDSOSs). The experiments on APC activity showed that DS and its derivatives all enhanced APC activity. The most active DSOS was the one with a relative molecular weight (Mr) of 4 825, which enhanced the APC activity from 106.5±11.5% to 181.8±22.3% (P<0.01). With the decrease of Mr, the activity of DSOSs decreased gradually. The effect of PSDS on APC activity enhancement was more significant than that of DS, and the APC activity was raised to 205.2±22.1% (P<0.01). All the PSDSOSs were more active than DSOSs on the basis of comparable Mr. With the decrease of Mr, the activity of PSDSOSs increased gradually, and the most active PSDSOS was PSDSOS3 with Mr of 2 749, which enhanced the APC activity to 331.2±27.8% (P<0.01), then the activity of PSDSOSs decreased gradually

  15. Specific sulfation and glycosylation—a structural combination for the anticoagulation of marine carbohydrates (United States)

    Pomin, Vitor H.; Mourão, Paulo A. S.


    Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans (SFs), sulfated galactans (SGs) and glycosaminoglycans (GAGs). The structural combinations necessary for the anticoagulant activities are the 2-sulfation in α-L-SGs, the 2,4-di-sulfation in α-L-fucopyranosyl units found as composing units of certain sea-urchin and sea-cucumber linear SFs, or as branching units of the fucosylated chondroitin sulfate, a unique GAG from sea-cucumbers. Another unique GAG type from marine organisms is the dermatan sulfate isolated from ascidians. The high levels of 4-sulfation at the galactosamine units combined with certain levels of 2-sulfation at the iduronic acid units is the anticoagulant structural requirements of these GAGs. When the backbones of red algal SGs are homogeneous, the anticoagulation is proportionally dependent of their sulfation content. Finally, 4-sulfation was observed to be the structural motif required to enhance the inhibition of thrombin via heparin cofactor-II by invertebrate SFs. PMID:24639954

  16. Specific sulfation and glycosylation - a structural combination for the anticoagulation of marine carbohydrates

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Pomin


    Full Text Available Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans (SFs, sulfated galactans (SGs and glycosaminoglycans (GAGs. The structural combinations necessary for the anticoagulant activities are the 2-sulfation in α-L-SGs, the 2,4-di-sulfation in α-L-fucopyranosyl units found as composing units of certain sea-urchin and sea-cucumber linear SFs, or as branching units of the fucosylated chondroitin sulfate, a unique GAG from sea-cucumbers. Another unique GAG type from marine organisms is the dermatan sulfate isolated from ascidians. The high levels of 4-sulfation at the galactosamine units combined with certain levels of 2-sulfation at the iduronic acid units is the anticoagulant structural requirements of these GAGs. When the backbones of red algal SGs are homogeneous, the anticoagulation is proportionally dependent of their sulfation content. Finally, 4-sulfation was observed to be the structural motif required to enhance the inhibition of thrombin via heparin cofactor-II by invertebrate SFs.

  17. Specific sulfation and glycosylation-a structural combination for the anticoagulation of marine carbohydrates. (United States)

    Pomin, Vitor H; Mourão, Paulo A S


    Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans (SFs), sulfated galactans (SGs) and glycosaminoglycans (GAGs). The structural combinations necessary for the anticoagulant activities are the 2-sulfation in α-L-SGs, the 2,4-di-sulfation in α-L-fucopyranosyl units found as composing units of certain sea-urchin and sea-cucumber linear SFs, or as branching units of the fucosylated chondroitin sulfate, a unique GAG from sea-cucumbers. Another unique GAG type from marine organisms is the dermatan sulfate isolated from ascidians. The high levels of 4-sulfation at the galactosamine units combined with certain levels of 2-sulfation at the iduronic acid units is the anticoagulant structural requirements of these GAGs. When the backbones of red algal SGs are homogeneous, the anticoagulation is proportionally dependent of their sulfation content. Finally, 4-sulfation was observed to be the structural motif required to enhance the inhibition of thrombin via heparin cofactor-II by invertebrate SFs.

  18. Gene Expression by the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough Grown on an Iron Electrode under Cathodic Protection Conditions▿ † (United States)

    Caffrey, Sean M.; Park, Hyung Soo; Been, Jenny; Gordon, Paul; Sensen, Christoph W.; Voordouw, Gerrit


    The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at an iron electrode surface with an imposed negative potential of −1.1 V (cathodic protection conditions). The gene expression profile of cells grown on cathodic hydrogen was compared to that of cells grown with gaseous hydrogen bubbling through the culture. Relative to the latter, the electrode-grown cells overexpressed two hydrogenases, the hyn-1 genes for [NiFe] hydrogenase 1 and the hyd genes, encoding [Fe] hydrogenase. The hmc genes for the high-molecular-weight cytochrome complex, which allows electron flow from the hydrogenases across the cytoplasmic membrane, were also overexpressed. In contrast, cells grown on gaseous hydrogen overexpressed the hys genes for [NiFeSe] hydrogenase. Cells growing on the electrode also overexpressed genes encoding proteins which promote biofilm formation. Although the gene expression profiles for these two modes of growth were distinct, they were more closely related to each other than to that for cells grown in a lactate- and sulfate-containing medium. Electrochemically measured corrosion rates were lower for iron electrodes covered with hyn-1, hyd, and hmc mutant biofilms than for wild-type biofilms. This confirms the importance, suggested by the gene expression studies, of the corresponding gene products in D. vulgaris-mediated iron corrosion. PMID:18310429

  19. Chitosan Hydrogels for Chondroitin Sulphate Controlled Release: An Analytical Characterization

    Directory of Open Access Journals (Sweden)

    Annalisa Bianchera


    Full Text Available This paper provides an analytical characterization of chitosan scaffolds obtained by freeze-gelation toward the uptake and the controlled release of chondroitin sulphate (CS, as cartilage repair agent, under different pH conditions. Scanning electron microscopy (SEM, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR, and liquid chromatography-UV spectrophotometry (LC-UV techniques were exploited to obtain qualitative and quantitative descriptions of polymer and drug behaviour in the biomaterial. As for morphology, SEM analysis allowed the evaluation of scaffold porosity in terms of pore size and distribution both at the surface (Feret diameter 58±19 μm and on the cross section (Feret diameter 106±51 μm. LC and ATR-FTIR evidenced a pH-dependent CS loading and release behaviour, strongly highlighting the role of electrostatic forces on chitosan/chondroitin sulphate interactions.

  20. Evidence of calcium-dependent pathway in the regulation of human beta1,3-glucuronosyltransferase-1 (GlcAT-I) gene expression: a key enzyme in proteoglycan synthesis. (United States)

    Barré, Lydia; Venkatesan, Narayanan; Magdalou, Jacques; Netter, Patrick; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed


    The importance of heparan- and chondroitin-sulfate proteoglycans in physiological and pathological processes led to the investigation of the regulation of beta1,3-glucuronosyltransferase I (GlcAT-I), responsible for the completion of glycosaminoglycan-protein linkage tetrasaccharide, a key step prior to polymerization of chondroitin- and heparan-sulfate chains. We have cloned and functionally characterized GlcAT-I 5'-flanking regulatory region. Mutation analysis and electrophoretic mobility shift assays demonstrated the importance of Sp1 motif located at -65/-56 position in promoter activity. Furthermore, we found that elevation of intracellular calcium concentration by the calcium ionophore ionomycin stimulated GlcAT-I gene expression as well as glycosaminoglycan chain synthesis in HeLa cells. Bisanthracycline, an anti-Sp1 compound, inhibited GlcAT-I basal promoter activity and suppressed ionomycin induction, suggesting the importance of Sp1 in calcium induction of GlcAT-I gene expression. Nuclear protein extracts from ionomycin-induced cells exhibited an increased DNA binding of Sp1 factor to the consensus sequence at position -65/-56. Signaling pathway analysis and MEK inhibition studies revealed the important role of p42/p44 MAPK in the stimulation of GlcAT-I promoter activity by ionomycin. The present study identifies, for the first time, GlcAT-I as a target of calcium-dependent signaling pathway and evidences the critical role of Sp1 transcription factor in the activation of GlcAT-I expression.

  1. PPARγ regulates expression of carbohydrate sulfotransferase 11 (CHST11/C4ST1, a regulator of LPL cell surface binding.

    Directory of Open Access Journals (Sweden)

    Ismayil Tasdelen

    Full Text Available The transcription factor PPARγ is the key regulator of adipocyte differentiation, function and maintenance, and the cellular target of the insulin-sensitizing thiazolidinediones. Identification and functional characterization of genes regulated by PPARγ will therefore lead to a better understanding of adipocyte biology and may also contribute to the development of new anti-diabetic drugs. Here, we report carbohydrate sulfotransferase 11 (Chst11/C4st1 as a novel PPARγ target gene. Chst11 can sulphate chondroitin, a major glycosaminoglycan involved in development and disease. The Chst11 gene contains two functional intronic PPARγ binding sites, and is up-regulated at the mRNA and protein level during 3T3-L1 adipogenesis. Chst11 knockdown reduced intracellular lipid accumulation in mature adipocytes, which is due to a lowered activity of lipoprotein lipase, which may associate with the adipocyte cell surface through Chst11-mediated sulfation of chondroitin, rather than impaired adipogenesis. Besides directly inducing Lpl expression, PPARγ may therefore control lipid accumulation by elevating the levels of Chst11-mediated proteoglycan sulfation and thereby increasing the binding capacity for Lpl on the adipocyte cell surface.

  2. Role for chondroitin sulfate glycosaminoglycan in NEDD9-mediated breast cancer cell growth

    NARCIS (Netherlands)

    Iida, J.; Dorchak, J.; Clancy, R.; Slavik, J.; Ellsworth, R.; Katagiri, Y.; Pugacheva, E.N.; Kuppevelt, T.H. van; Mural, R.J.; Cutler, M.L.; Shriver, C.D.


    There are lines of evidence demonstrating that NEDD9 (Cas-L, HEF-1) plays a key role in the development, progression, and metastasis of breast cancer cells. We previously reported that NEDD9 plays a critical role for promoting migration and growth of MDA-MB-231. In order to further characterize the

  3. Effectiveness of Glucosamine and Chondroitin Sulfate Combination in Patients with Primary Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Laszlo IRSAY


    Full Text Available Purpose: Studying the effectiveness of chondroprotective agents for patients with primary knee arthritis or primary generalized osteoarthritis, according to the American College of Rheumatology 2000 criteria. Material and Methods: comparative study, the groups were constituted out of 25 patients in the study group and 15 patients in the control group. The patients were evaluated with the WOMAC test, Lequesne, cross-linked C-terminal (CTX telopeptide of type I collagen on inclusion, at 6 and 12 months and through bilateral- knee radiography, using the Kellgren-Lawrence classification on inclusion and 12 months later. Patients from the study group received a chondroprotectiv agent orally for 12 months. Results: WOMAC score was improved in the study group at 6 and 12 months -4.1 (CI -6.1 to -2.1 and -5.9 (CI -8 to -3.8 compared to the control group 1.5 (CI -0.7 to 3.7 and 2 (CI -0.2 to 4.2, with a statistical significance p=0.02. There has also been an amelioration of the Lequesne score in the study group at 6 and 12 months -3.8 (CI -6.3 to -1.3 and -6.2 (CI -9.1 to -3.3, and the control group 1.3 (CI -1.5 to 4.1 to 6 months and 1.9 (CI -0.8 to 4.6 to 12 months, with a statistical significance p=0.03. No adverse reactions were registered. Conclusions: The chondroprotective agent was effective in improving the function of patients with osteoarthritis, the studied marker cannot be used to monitor the treatment effectiveness, and the radiological modifications in the knee are statistically insignificant after 12 months of monitoring.

  4. Cell-based semiquantitative assay for sulfated glycosaminoglycans facilitating the identification of chondrogenesis. (United States)

    Yen, Ching-Yu; Wu, Yu-Wei; Hsiung, Chao-Nan; Yeh, Min-I; Lin, Yi-Ming; Lee, Sheng-Yang


    Glycosaminoglycans (GAGs), in particular chondroitin sulfate, are an accepted marker of chondrogenic cells. In this study, a cell-based sulfated GAG assay for identifying the chondrogenesis of mesenchymal stem cells was developed. Based on fluorescent staining using safranin O and 4',6-diamidino-2-phenylindole (DAPI), this method was highly sensitive. The results were both qualitative and quantitative. The method is suitable for identifying the chondrogenic process and also for screening compounds. The method may be helpful for discovering novel bioactive compounds for cartilage regeneration.

  5. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen.

    Directory of Open Access Journals (Sweden)

    Zhong-Dong Shi

    Full Text Available BACKGROUND: Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP expression in rat vascular smooth muscle cells (SMCs and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D. METHODOLOGY/PRINCIPAL FINDINGS: Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS chains from proteoglycan (PG core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1 suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13 expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity. CONCLUSIONS/SIGNIFICANCE: We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D

  6. Sulfate inhibition effect on sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Sulaiman Al Zuhair


    Full Text Available There is an increasing interest in the potential of bacterial sulfate reduction as an alternative method for sulfate removal from wastewater. Under anaerobic conditions, sulfate-reducing bacteria (SRB utilize sulfate to oxidize organic compounds and generate sulfide (S2-. SRB were successfully isolated from sludge samples obtained from a local petroleum refinery, and used for sulfate removal. The effects of initial sulfate concentration, temperature and pH on the rate of bacterial growth and anaerobic sulfate removal were investigated and the optimum conditions were identified. The experimental data were used to determine the parameters of two proposed kinetic model, which take into consideration substrate inhibition effect. Keywords: Sulfate Reducing Bacteria, Sulfate, Kinetic Model, Biotreatement, Inhibition Received: 31 August 2008 / Received in revised form: 18 September 2008, Accepted: 18 September 2008 Published online: 28 September 2008

  7. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R


    that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has...... not been carried out in a detailed way using high-resolution microscopy. We have begun this process, using well-known markers for the various Golgi compartments, coupled with the use of characterized antibodies and cDNA expression. Laser scanning confocal microscopy coupled with line scanning provides high......-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all...

  8. Expression of Genes Involved in Iron and Sulfur Respiration in a Novel Thermophilic Crenarchaeon Isolated from Acid-Sulfate-Chloride Geothermal Systems (United States)

    Kozubal, M.; Macur, R.; Inskeep, W. P.


    Acidic geothermal springs within Yellowstone National Park (YNP) provide an excellent opportunity to study microbial populations and their relationship with geochemical processes such as redox cycling and biomineralization of iron. Fourteen acid-sulfate-chloride (ASC) and acid-sulfate (AS) geothermal springs located in (YNP) have been extensively characterized for aqueous chemistry, solid phase mineral deposition and microbial diversity and distribution. The oxidation of Fe(II) with oxygen as an electron acceptor is exergonic under these conditions, consequently, Fe(II) may be an important electron donor driving primary production in ASC and AS habitats, and products of biomineralization (e.g. Fe[III]-oxides of varying crystallinity and structure, as well as jarosite in some cases) are common in the outflow channels of these environments. Recently, we isolated a novel Metallosphaera-like microorganism (Metallosphaera strain MK1) from an ASC spring in Norris Geyser Basin, YNP. Clone libraries (16S rRNA gene) from multiple sites suggest that microorganisms closely related to strain MK1 (between 98-100 percent similarity) dominate many spring locations between 55-80 C. The in situ abiotic oxidation rate of Fe(II) has been shown to be very slow in these systems and Metallosphaera strain MK1 has been directly implicated in biotic Fe(II) oxidation. Metallosphaera strain MK1 has been submitted for full genome sequencing and is yielding gene sequences related to the terminal oxidases SOXABC and SOXM super-complex. In addition, sequences from a recently characterized terminal oxidase FOX complex involved in Fe(II) and pyrite oxidation from Sulfolobus metallicus have been found in Metallosphaera strain MK1. A protein complex analogous to Metallosphaera sedula has been identified in strain MK1 and this complex has also been expressed in cells grown on pyrite and Fe(II). Other sequences identified in Metallosphaera strain MK1 that are involved in respiration are the TQO

  9. DcR3 binds to ovarian cancer via heparan sulfate proteoglycans and modulates tumor cells response to platinum with corresponding alteration in the expression of BRCA1

    Directory of Open Access Journals (Sweden)

    Connor Joseph P


    Full Text Available Abstract Background Overcoming platinum resistance is a major obstacle in the treatment of Epithelial Ovarian Cancer (EOC. In our previous work Decoy Receptor 3 (DcR3 was found to be related to platinum resistance. The major objective of this work was to define the cellular interaction of DcR3 with EOC and to explore its effects on platinum responsiveness. Methods We studied cell lines and primary cultures for the expression of and the cells ability to bind DcR3. Cells were cultured with DcR3 and then exposed to platinum. Cell viability was determined by MTT assay. Finally, the cells molecular response to DcR3 was studied using real time RT-PCR based differential expression arrays, standard RT-PCR, and Western blot. Results High DcR3 in the peritoneal cavity of women with EOC is associated with significantly shorter time to first recurrence after platinum based therapy (p = 0.02. None-malignant cells contribute DcR3 in the peritoneal cavity. The cell lines studied do not secrete DcR3; however they all bind exogenous DcR3 to their surface implying that they can be effected by DcR3 from other sources. DcR3s protein binding partners are minimally expressed or negative, however, all cells expressed the DcR3 binding Heparan Sulfate Proteoglycans (HSPGs Syndecans-2, and CD44v3. DcR3 binding was inhibited by heparin and heparinase. After DcR3 exposure both SKOV-3 and OVCAR-3 became more resistant to platinum with 15% more cells surviving at high doses. On the contrary CaOV3 became more sensitive to platinum with 20–25% more cell death. PCR array analysis showed increase expression of BRCA1 mRNA in SKOV-3 and OVCAR-3 and decreased BRCA1 expression in CaOV-3 after exposure to DcR3. This was confirmed by gene specific real time PCR and Western blot analysis. Conclusions Non-malignant cells contribute to the high levels of DcR3 in ovarian cancer. DcR3 binds readily to EOC cells via HSPGs and alter their responsiveness to platinum chemotherapy. The

  10. Sulfates on Mars: Indicators of Aqueous Processes (United States)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.


    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  11. Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action. (United States)

    Jones, M; Tussey, L; Athanasou, N; Jackson, D G


    The CD44 glycoprotein is expressed in multiple isoforms on a variety of cell types where it functions as a receptor for hyaluronan-mediated motility. Recently, interest has centered on CD44 heparan sulfate proteoglycan (HSPG) isoforms because of their potential to sequester heparin-binding growth factors and chemokines. Expression of these isoforms on ectodermal cells has recently been shown to regulate limb morphogenesis via presentation of fibroblast growth factor (FGF) 4/FGF 8 while expression on tumor cells was shown to sequester hepatocyte growth factor and promote tumor dissemination. To date, however, CD44 HSPG expression in tissue macrophages and lymphocytes has not been adequately investigated, despite the fact these cells actively synthesize growth factors and chemokines and indirect evidence that monocyte CD44 sequesters macrophage inflammatory protein-1beta. Here we show primary human monocytes rather than lymphocytes express CD44 HSPGs, but only following in vitro differentiation to macrophages or activation with the proinflammatory cytokine interleukin-1alpha or bacterial lipopolysaccharide. Furthermore, we show these isoforms are preferentially modified with heparan rather than chondroitin sulfate, bind the macrophage-derived growth factors FGF-2, vascular endothelial growth factor, and heparin-binding epidermal growth factor with varying affinities (K(d) 25-330 nM) and in the case of FGF-2, can stimulate productive binding to the high affinity tyrosine kinase FGF receptor 1 (FGFR1). In contrast, we find no evidence for significant binding to C-C chemokines. Last, we confirm by immunofluorescent antibody staining that inflamed synovial membrane macrophages express CD44 HSPGs and that expression is greatest in cells containing high FGF-2 levels. These results suggest a paracrine role for macrophage CD44 HSPG isoforms in the regulation of growth factor action during inflammation.

  12. Lysophosphatidic acid increases SLC26A3 expression in inflamed intestine and reduces diarrheal severity in C57BL/6 mice with dextran-sodium-sulfate-induced colitis

    Institute of Scientific and Technical Information of China (English)

    Xu Lihong; Xiao Fang; He Jiayi; Lan Xiaoqin; Ding Qiang; Li Junhua; Ursula Seidler


    Background Diarrhea is a common clinical feature of ulcerative colitis resulting from unbalanced intestinal fluid and salt absorption and secretion.The Cl-/HCO3-exchanger SLC26A3 is strongly expressed in the mid-distal colon and plays an essential role in colonic Cl-absorption and HCO3-secretion.Sic26a3 expression is up-regulated by lysophosphatidic acid (LPA) in vitro.Our study was designed to investigate the effects of LPA on SLC26A3 expression and the diarrheal phenotype in a mouse colitis model.Methods Colitis was induced in C57BL/6 mice by adding 4% of dextran sodium sulfate (DSS) to the drinking water.The mice were assigned to LPA treatment DSS group,phosphate-buffered saline (PBS) treatment DSS group,DSS only group and untreated mice with a completely randomized design.Diarrhea severity was evaluated by measuring mice weight,disease activity index (DAI),stool water content and macroscopic evaluation of colonic damage.The effect of LPA treatment on Sic26a3 mRNA level and protein expression in the different groups of mice was investigated by quantitative PCR and Western blotting.Results All mice treated with DSS lost weight,but the onset and severity of weight loss was attenuated in the LPA treatment DSS group.The increases in stool water content and the macroscopic inflammation score in LPA treatment DSS group were significantly lower compared to DSS control group or PBS treatment DSS group ((18.89±8.67)% vs.(28.97±6.95)% or (29.48±6.71)%,P=0.049,P=0.041,respectively and 2.67±0.81 vs.4.5±0.83 or 4.5±0.54,P=0.020,P=0.006,respectively),as well as the increase in DAI (P=0.004,P=0.008,respectively).LPA enema resulted in higher Slc26a3 mRNA and protein expression levels compared to PBS-treated and untreated DSS colitis mice.Conclusion LPA increases Slc26a3 expression in the inflamed intestine and reduces diarrhea severity in DSS-induced colitis,suggesting LPA might be a therapeutic strategy in the treatment of colitis associated diarrhea.

  13. Over-expression of the bacterial phytase US417 in Arabidopsis reduces the concentration of phytic acid and reveals its involvement in the regulation of sulfate and phosphate homeostasis and signaling. (United States)

    Belgaroui, Nibras; Zaidi, Ikram; Farhat, Ameny; Chouayekh, Hichem; Bouain, Nadia; Chay, Sandrine; Curie, Catherine; Mari, Stéphane; Masmoudi, Khaled; Davidian, Jean-Claude; Berthomieu, Pierre; Rouached, Hatem; Hanin, Moez


    Phytic acid (PA) is the main phosphorus storage form in plant seeds. It is recognized as an anti-nutrient for humans and non-ruminant animals, as well as one of the major sources of phosphorus that contributes to eutrophication. Therefore, engineering plants with low PA content without affecting plant growth capacity has become a major focus in plant breeding. Nevertheless, lack of knowledge on the role of PA seed reserves in regulating plant growth and in maintaining ion homeostasis hinders such an agronomical application. In this context, we report here that the over-expression of the bacterial phytase PHY-US417 in Arabidopsis leads to a significant decrease in seed PA, without any effect on the seed germination potential. Interestingly, this over-expression also induced a higher remobilization of free iron during germination. Moreover, the PHY-over-expressor lines show an increase in inorganic phosphate and sulfate contents, and a higher biomass production after phosphate starvation. Finally, phosphate sensing was altered because of the changes in the expression of genes induced by phosphate starvation or involved in phosphate or sulfate transport. Together, these results show that the over-expression of PHY-US417 reduces PA concentration, and provide the first evidence for the involvement of PA in the regulation of sulfate and phosphate homeostasis and signaling.

  14. Isolation of an Escherichia coli K4 kfoC mutant over-producing capsular chondroitin

    Directory of Open Access Journals (Sweden)

    De Rosa Mario


    Full Text Available Abstract Background Chondroitin sulphate is a complex polysaccharide having important structural and protective functions in animal tissues. Extracted from animals, this compound is used as a human anti-inflammatory drug. Among bacteria, Escherichia coli K4 produces a capsule containing a non-sulphate chondroitin and its development may provide an efficient and cheap fermentative production of the polysaccharide. Results A random N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis was performed on E. coli K4 to isolate mutants showing an increased production of chondroitin. Several mutants were isolated, one of which, here named VZ15, produced about 80% more chondroitin than the wild type E. coli. We found that the mutant has a missense mutation in the codon 313 of kfoC, the gene encoding chondroitin polymerase (K4CP, with a change from arginine to glutamine. A docking analysis to explain the increased productivity of the K4CP enzyme is presented. Conclusion The enhanced chondroitin production by the E. coli K4 mutant reported here shows the validity of the strain improvement strategy for more cost-friendly fermentative processes in the production of this pharmaceutically important but so-far expensive polysaccharide.

  15. Versican Expression during Synovial Joint Morphogenesis

    Directory of Open Access Journals (Sweden)

    John B. Shepard, Heidi A. Krug, Brooklynn A. LaFoon, Stanley Hoffman, Anthony A. Capehart


    Full Text Available The extracellular matrix (ECM plays a critical role in governing cell behavior and phenotype during limb skeletogenesis. Chondroitin sulfate proteoglycans (Cspgs are highly expressed in the ECM of precartilage mesenchymal condensations and are important to limb chondrogenesis and cartilage structure, but little is known regarding their involvement in formation of synovial joints in the embryonic limb. Matrix versican Cspg expression has previously been reported in the epiphysis of developing long bones and presumptive joint; however, detailed analysis has not yet been conducted. In the present study we immunolocalized versican and aggrecan Cspgs during chick elbow joint morphogenesis between HH st25-41 of development. In this study we show that versican and aggrecan expression initially overlapped in the incipient cartilage model of long bones in the wing, but versican was also highly expressed in the perichondrium and presumptive joint interzone during early stages of morphogenesis (HH st25-34. By HH st36-41 versican localization was restricted to the future articular surfaces of the developing joint and surrounding joint capsule while aggrecan localized in an immediately adjacent and predominately non-overlapping region of chondrogenic cells at the epiphyses. These results suggest a potential role for versican proteoglycan in development and maintenance of the synovial joint interzone.

  16. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings. (United States)

    Paolacci, Anna Rita; Celletti, Silvia; Catarcione, Giulio; Hawkesford, Malcolm J; Astolfi, Stefania; Ciaffi, Mario


    Characterization of the relationship between sulfur and iron in both Strategy I and Strategy II plants, has proven that low sulfur availability often limits plant capability to cope with iron shortage. Here it was investigated whether the adaptation to iron deficiency in tomato (Solanum lycopersicum L.) plants was associated with an increased root sulfate uptake and translocation capacity, and modified dynamics of total sulfur and thiols accumulation between roots and shoots. Most of the tomato sulfate transporter genes belonging to Groups 1, 2, and 4 were significantly upregulated in iron-deficient roots, as it commonly occurs under S-deficient conditions. The upregulation of the two high affinity sulfate transporter genes, SlST1.1 and SlST1.2, by iron deprivation clearly suggests an increased root capability to take up sulfate. Furthermore, the upregulation of the two low affinity sulfate transporter genes SlST2.1 and SlST4.1 in iron-deficient roots, accompanied by a substantial accumulation of total sulfur and thiols in shoots of iron-starved plants, likely supports an increased root-to-shoot translocation of sulfate. Results suggest that tomato plants exposed to iron-deficiency are able to change sulfur metabolic balance mimicking sulfur starvation responses to meet the increased demand for methionine and its derivatives, allowing them to cope with this stress.

  17. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings

    Institute of Scientific and Technical Information of China (English)

    Anna Rita Paolacci; Silvia Celletti; Giulio Catarcione; Malcolm J. Hawkesford; Stefania Astolfi; Mario Ciaffi


    Characterization of the relationship between sulfur and iron in both Strategy I and Strategy II plants, has proven that low sulfur availability often limits plant capability to cope with iron shortage. Here it was investigated whether the adaptation to iron deficiency in tomato (Solanum lycopersicum L.) plants was associated with an increased root sulfate uptake and translocation capacity, and modified dynamics of total sulfur and thiols accumulation between roots and shoots. Most of the tomato sulfate transporter genes belonging to Groups 1, 2, and 4 were significantly upregulated in iron-deficient roots, as it commonly occurs under S-deficient conditions. The upregulation of the two high affinity sulfate transporter genes, SlST1.1 and SlST1.2, by iron deprivation clearly suggests an increased root capability to take up sulfate. Furthermore, the upregulation of the two low affinity sulfate transporter genes SlST2.1 and SlST4.1 in iron-deficient roots, accompanied by a substantial accumulation of total sulfur and thiols in shoots of iron-starved plants, likely supports an increased root-to-shoot translocation of sulfate. Results suggest that tomato plants exposed to iron-deficiency are able to change sulfur metabolic balance mimicking sulfur starvation responses to meet the increased demand for methionine and its derivatives, al owing them to cope with this stress.

  18. Sulfated polysaccharides and immune response: promoter or inhibitor? (United States)

    Chen, D; Wu, X Z; Wen, Z Y


    Sulfated polysaccharides, which frequently connect to core protein, are expressed not only on cell surface but also throughout the extracellular matrix. Besides providing structural integrity of cells, sulfated polysaccharides interact with a variety of sulfated polysaccharides-binding proteins, such as growth factors, cytokines, chemokines and proteases. Sulfated polysaccharides play two-edged roles, inhibitor and promoter, in immune response. Some sulfated polysaccharides act as the immunosuppressor by blocking inflammatory signal transduction induced by proinflammatory cytokines, suppressing the activation of complement and inhibiting the process that leukocytes adhere to and pass through endothelium. On the contrary, the interaction between immune cells and sulfated polysaccharides produced by bacteria, endothelial cells and immune cells initiate the occurrence of immune response. It promotes the processes of recognizing and arresting antigen, migrating transendothelium, moving into and out of immune organ and enhancing the proliferation of lymphocyte. The structure of sulfated polysaccharides, such as molecular weight and sulfated sites heterogeneity, especially the degree of disaccharide sulfation, position of the sulfate moiety and organization of sulfated domains, may play critical role in their controversial effects. As a consequence, the interaction between sulfated polysaccharides and sulfated polysaccharide-binding proteins may be changed by modifying the structure of sulfated polysaccharides chains. The administration of drug targeting sulfated polysaccharide-protein interaction may be useful in treating inflammatory related diseases.

  19. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis.

    Directory of Open Access Journals (Sweden)

    Xanthi N Stachtea

    Full Text Available The epimerization of glucuronic acid into iduronic acid adds structural variability to chondroitin/dermatan sulfate polysaccharides. Iduronic acid-containing domains play essential roles in processes such as coagulation, chemokine and morphogen modulation, collagen maturation, and neurite sprouting. Therefore, we generated and characterized, for the first time, mice deficient in dermatan sulfate epimerase 1 and 2, two enzymes uniquely involved in dermatan sulfate biosynthesis. The resulting mice, termed DKO mice, were completely devoid of iduronic acid, and the resulting chondroitin sulfate chains were structurally different from the wild type chains, from which a different protein binding specificity can be expected. As a consequence, a vast majority of the DKO mice died perinatally, with greatly variable phenotypes at birth or late embryological stages such as umbilical hernia, exencephaly and a kinked tail. However, a minority of embryos were histologically unaffected, with apparently normal lung and bone/cartilage features. Interestingly, the binding of the chemokine CXCL13, an important modulator of lymphoid organogenesis, to mouse DKO embryonic fibroblasts was impaired. Nevertheless, the development of the secondary lymphoid organs, including the lymph nodes and spleen, was normal. Altogether, our results indicate an important role of dermatan sulfate in embryological development and perinatal survival.

  20. Fell-Muir Lecture: chondroitin sulphate glycosaminoglycans: fun for some and confusion for others. (United States)

    Caterson, Bruce


    This review emphasizes the importance of glycobiology in nature and aims to highlight, simplify and summarize the multiple functions and structural complexities of the different oligosaccharide combinatorial domains that are found in chondroitin sulphate/dermatan sulphate (CS/DS) glycosaminoglycan (GAG) chains. For example, there are 1008 different pentasaccharide sequences possible within CS, DS or CS/DS hybrid GAG chains. These combinatorial possibilities provide numerous potential ligand-binding domains that are important for cell and extracellular matrix interactions as well as specific associations with cytokines, chemokines, morphogens and growth factors that regulate cellular differentiation and proliferation during tissue development, for example, morphogen gradient establishment. The review provides some details of the large and diverse number of different enzymes that are involved in CS/DS biosynthesis and attempts to explain how differences in their expression patterns in different cell types can lead to subtle but important differences in the GAG metabolism that influence cellular proliferation and differentiation in development as well as regeneration and repair in disease. Our laboratory was the first to generate and characterize monoclonal antibodies (mAb) that very specifically recognize different ‘native’ sulphation motif/epitopes in CS/DS GAG chains. These monoclonal antibodies have been used to identify very specific spatio-temporal expression patterns of CS/DS sulphation motifs that occur during tissue and organ development (in particular their association with stem/progenitor cell niches) and also their recapitulated expression in adult tissues with the onset of degenerative joint diseases. In summary, diversity in CS/DS sulphation motif expression is a very important necessity for animal life as we know it.

  1. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawatjui, Nopporn [Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002 (Thailand); Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Damrongrungruang, Teerasak [Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002 (Thailand); Leeanansaksiri, Wilairat [Stem Cell Therapy and Transplantation Research Group, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); School of Microbiology, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jearanaikoon, Patcharee [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Hongeng, Suradej [Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400 (Thailand); Limpaiboon, Temduang, E-mail: [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)


    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering.

  2. The evaluation of endometrial sulfate glycosaminoglycans in women with polycystic ovary syndrome. (United States)

    Giordano, Mario Vicente; Giordano, Luiz Augusto; Gomes, Regina Célia Teixeira; Simões, Ricardo Santos; Nader, Helena Bonciani; Giordano, Mario Gáspare; Baracat, Edmund Chada; Soares Júnior, José Maria


    The aim of this study was to quantify the sulfated glycosaminoglycans in the endometria of women with polycystic ovary syndrome (PCOS). Of the 18 patients recruited for this study, 10 patients with PCOS comprised the PCOS group (PCOSG), and eight patients with regular and ovulatory menstrual cycles comprised the control group (CG). The clinical, biochemical, morphological and endometrial data from both groups were analyzed. Biopsies were performed during the proliferative phase of the menstrual cycle for the CG and during the persistent proliferative phase for the PCOSG (all women were amenorrheic). In the PCOSG, there was a significant increase in the endometrial concentration levels of heparan sulfate (p = 0.03), but no difference in the concentrations of chondroitin sulfate was determined between the two groups (p = 0.77). Period of time without menstruation (p = 0.001) and body mass index (BMI) (p = 0.04) correlated directly and positively with heparan sulfate concentration. There was no association between heparan sulfate levels and basal insulin values (p = 0.08). High levels of endometrial heparan sulfate in women with PCOS indicate an interference with maternal-fetal recognition, which contributes to infertility; thus, endometrial heparan sulfate may be a predictive marker of future neoplasia risk.

  3. Relationship between binding activity of sup 67 Ga and low sulfated acid glycosaminoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yasuhito; Tsukada, Fumitake; Kohno, Hiroyuki (Tohoku Coll. of Pharmacy, Sendai (Japan)); Kubodera, Akiko (Science Univ. of Tokyo (Japan). School of Pharmaceutical Sciences)


    Sulfate content of acid glycosaminoglycan (AGAG) extracted from granuloma which had been produced by turpentine oil was inversely proportional to the amount of {sub 67}Ga accumulation in the granuloma. Additionally, the lowest sulfation occurred in granuloma at a peak of inflammation when the uptake of {sub 67}Ga had reached a maximum. On the basis of electrophoretic pattern, sulfate content, and specific optical rotation, it was concluded that acid glycosaminoglycans obtained from granuloma are mainly composed of chondroitin sulfate-A, -B, and desulfated heparin, while haparan sulfate was a minor component. From in vitro assays, desulfated acid glycosaminoglycans, especially desulfated-heparin and desulfated-heparan sulfate, were found to have a high affinity to {sub 67}Ga. These results suggest that low- or de-sulfation of AGAG is related to the accumulation of {sub 67}Ga in inflammatory lesions such as granuloma. Moreover, these results suggest that {sub 67}Ga does not bind to glycosaminoglycans via sulfuric acid residues. (author).

  4. Ctr2 Regulates Mast Cell Maturation by Affecting the Storage and Expression of Tryptase and Proteoglycans. (United States)

    Öhrvik, Helena; Logeman, Brandon; Noguchi, Glyn; Eriksson, Inger; Kjellén, Lena; Thiele, Dennis J; Pejler, Gunnar


    Copper (Cu) is essential for multiple cellular functions. Cellular uptake of Cu(+) is carried out by the Ctr1 high-affinity Cu transporter. The mobilization of endosomal Cu pools is regulated by a protein structurally similar to Ctr1, called Ctr2. It was recently shown that ablation of Ctr2 caused an increase in the concentration of Cu localized to endolysosomes. However, the biological significance of excess endolysosomal Cu accumulation has not been assessed. In this study, we addressed this issue by investigating the impact of Ctr2 deficiency on mast cells, a cell type unusually rich in endolysosomal organelles (secretory granules). We show that Ctr2(-/-) mast cells have increased intracellular Cu concentrations and that the absence of Ctr2 results in increased metachromatic staining, the latter indicating an impact of Ctr2 on the storage of proteoglycans in the secretory granules. In agreement with this, the absence of Ctr2 caused a skewed ratio between proteoglycans of heparin and chondroitin sulfate type, with increased amounts of heparin accompanied by a reduction of chondroitin sulfate. Moreover, transmission electron microscopy analysis revealed a higher number of electron-dense granules in Ctr2(-/-) mast cells than in wild-type cells. The increase in granular staining and heparin content is compatible with an impact of Ctr2 on mast cell maturation and, in support of this, the absence of Ctr2 resulted in markedly increased mRNA expression, storage, and enzymatic activity of tryptase. Taken together, the present study introduces Ctr2 and Cu as novel actors in the regulation of mast cell maturation and granule homeostasis.

  5. Expression and regulation of versican in neural precursor cells and their lineages

    Institute of Scientific and Technical Information of China (English)

    Wen-li GU; Sai-li FU; Yan-xia WANG; Ying LI; Xiao-fei WANG; Xiao-ming XU; Pei-hua LU


    Aim: To have a better understanding of the expression and regulation of versican isoforms in neural precursor cells (NPC) and oligodendrogliogenesis. Methods:By immunocytochemistry, RT-PCR, and real-time PCR, we examined the temporal expression of versican in NPC isolated from embryonic d 16 rats as well as in oligodendrocyte (OL) lineage cells induced to differentiate from NPC,which mimicked the oligodendrogliogenesis in vivo. Results: We found that versican was constitutively expressed in NPC and their lineage cells, including neurons, astrocytes, and OL. In addition, 2 versican isoforms, V1/V0 and V2,were found to express at low levels in NPC, but at significantly higher levels in OL lineage cells. The peak expression of versican V2 was found at the oligodendrocyte precursor cell stage. Furthermore, the treatment of 2 pro-inflammatory cytokines, TNF-α and IFN-γ, enhanced the transcription of versican V2 in NPC in a dose-dependent manner, but showed no effect on V1/V0 expression.Conclusion: Taken together, our results demonstrate that versican, particularly the inhibitory V2 isoform, is increasingly expressed in OL lineage cells induced to differentiate from NPC. An increase in versican V2 expression after cytokine stimulation implies the interplay between the injury-induced upregulation of inflammatory cytokines and chondroitin sulfate proteoglycan-mediated inhibition of axonal regeneration after central nervous system injury.

  6. Expression and function of NG2/CSPG4 in human chondrocytes


    Jamil, Nuor Sabah Mohammed


    Introduction: NG2/CSPG4 is a unique transmembrane chondroitin sulphate proteoglycan molecule expressed as a core protein and a chondroitin sulphate proteoglycan (CSPG) up to 400kD. NG2/CSPG4 mediates the communication between the extracellular and intracellular compartments through interactions with collagen VI, growth factors and the actin cytoskeleton. NG2/CSPG4 affects cell migration, spreading, apoptosis and proliferation processes. NG2/CSPG4 has been shown to be expressed ...

  7. Glucosamine and chondroitin for the treatment of osteoarthritis (United States)

    Vasiliadis, Haris S; Tsikopoulos, Konstantinos


    The prevalence of primary or idiopathic osteoarthritis (OA) of knee and hip joints has substantially increased in general population during the last decades. Analgesics and non-steroidal anti-inflammatory drugs are currently extensively used as non-surgical treatment options. However, they act as symptomatic treatments, not offering a cure of OA and they are accused for an increased risk of adverse events. Glucosamine (GL) and chondroitin (CH) are nutritional supplements that have recently gained widespread use as treatment options for OA. They potentially or theoretically act as chondroprotectors or/and as “disease-modifying OA drugs” offering not only symptomatic relief but also alteration of the natural history of OA. However, although many studies have showed a significant treatment effect, accompanied with remarkable safety, there is still controversy regarding their relative effectiveness compared with placebo or other treatments. The scope of this review is to present and critically evaluate the current evidence-based information regarding the administration of GL and CH for the treatment of knee or hip OA. Our focus is to investigate the clinical efficacy and safety after the use of these supplements. An effect of GL and CH on both clinical and radiological findings has been shown. However, only a few high-quality level I trials exist in the literature, especially on the assessment of radiological progression of OA. The effect sizes are generally small and probably not clinically relevant. Even the validity of these results is limited by the high risk of bias introduced in the studies. Both GL and CH seem to be safe with no serious adverse events reported. There is currently no convincing information for the efficacy of GL and CH on OA. PMID:28144573

  8. Collagen/silicocarnotite composites, cross-linked with chondroitin sulphate: in vitro bioactivity


    Lachezar Radev; Vladimir Hristov; Irena Michailova; Maria H. V. Fernandes; Isabel M. M. Salvado


    In this work we present the experimental results on synthesis, structure evolution and in vitro bioactivity of collagen-silicocarnotite-chondroitin sulphate composites. The obtained samples were synthesised by mixing collagen (C) and silicocarnotite (S) powder with C:S ratio of 75:25 and 25:75 wt.% in the presence of chondroitin sulphate (ChS). Collagen was diluted in 5M CH3COOH before mixing. The obtained materials were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT...

  9. Inhibition of cultured bovine aortic endothelial cell proliferation by sodium spirulan, a new sulfated polysaccharide isolated from Spirulina platensis. (United States)

    Kaji, Toshiyuki; Fujiwara, Yasuyuki; Hamada, Chieko; Yamamoto, Chika; Shimada, Satomi; Lee, Jung-Bum; Hayashi, Toshimitsu


    Sodium spirulan (Na-SP) is a sulfated polysaccharide isolated from the blue-green alga Spirulina platensis, which consists of two types of disaccharide repeating units, O-hexuronosyl-rhamnose (aldobiuronic acid) and O-rhamnosyl-3-O-methylrhamnose (acofriose) with sulfate groups, other minor saccharides and sodium ion. Vascular endothelial cells are present on the inner surface of blood vessels in a monolayer and have anticoagulant properties. To address the question whether Na-SP influences the maintenance of endothelial cell monolayers, we investigated the proliferation of cultured bovine aortic endothelial cells treated with Na-SP. It was found that Na-SP has an inhibitory activity on endothelial cell proliferation accompanied with suppression of whole protein synthesis but without non-specific cell damage. The inhibitory activity of Na-SP was the strongest when compared to that of heparan sulfate, heparin, dextran sulfate, dermatan sulfate, chondroitin sulfate A/C and hyaluronan. Furthermore, it was shown that the inhibitory activity of Na-SP disappeared by either desulfation or depolymerization. The present data suggest that Na-SP is a unique sulfated polysaccharide that strongly inhibits vascular endothelial cell proliferation, and the inhibitory activity requires polymerization of sulfated O-rhamnosyl-acofriose repeating units.

  10. Tyrosine Sulfation of Statherin

    Directory of Open Access Journals (Sweden)

    C. Kasinathan, N. Gandhi, P. Ramaprasad, P. Sundaram, N. Ramasubbu


    Full Text Available Tyrosylprotein sulfotransferase (TPST, responsible for the sulfation of a variety of secretory and membrane proteins, has been identified and characterized in submandibular salivary glands (William et al. Arch Biochem Biophys 1997; 338: 90-96. In the present study we demonstrate the sulfation of a salivary secretory protein, statherin, by the tyrosylprotein sulfotransferase present in human saliva. Optimum statherin sulfation was observed at pH 6.5 and at 20 mm MnCl2. Increase in the level of total sulfation was observed with increasing statherin concentration. The Km value of tyrosylprotein sulfotransferase for statherin was 40 μM. Analysis of the sulfated statherin product on SDS-polyacrylamide gel electrophoresis followed by autoradiography revealed 35S-labelling of a 5 kDa statherin. Further analysis of the sulfated statherin revealed the sulfation on tyrosyl residue. This study is the first report demonstrating tyrosine sulfation of a salivary secretory protein. The implications of this sulfation of statherin in hydroxyapatite binding and Actinomyces viscosus interactions are discussed.

  11. Biosynthesis of promatrix metalloproteinase-9/chondroitin sulphate proteoglycan heteromer involves a Rottlerin-sensitive pathway.

    Directory of Open Access Journals (Sweden)

    Nabin Malla

    Full Text Available BACKGROUND: Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9 synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG. METHODOLOGY/PRINCIPAL FINDINGS: By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3 in both control and PMA exposed cells. CONCLUSIONS/SIGNIFICANCE: The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.

  12. Glucosamine:chondroitin or ginger root extract have little effect on articular cartilage in swine (United States)

    Sows are culled at a high rate from breeding herds due to musclo-skeletal problems and lameness. Research in our laboratory has shown that even first-parity sows have significant amounts of osteochondritic lesions of their articular cartilage. Glusoamine chondroitin and ginger root extract have both...

  13. Mobilization of stem/progenitor cells by sulfated polysaccharides does not require selectin presence. (United States)

    Sweeney, E A; Priestley, G V; Nakamoto, B; Collins, R G; Beaudet, A L; Papayannopoulou, T


    Employing carbohydrate ligands, which have been extensively used to block selectin function in vitro and in vivo, we have examined the involvement of such ligands in stem/progenitor cell mobilization in mice and monkeys. We found that sulfated fucans, branched and linear, are capable of increasing mature white cells in the periphery and mobilizing stem/progenitor cells of all classes (up to 32-fold) within a few hours posttreatment in a dose-dependent manner. To elicit the effect, the presence of sulfate groups was necessary, yet not sufficient, as certain sulfated hexosamines tested (chondroitin sulfates A or B) were ineffective. Significant mobilization of stem/progenitor cells and leukocytosis was elicited in selectin-deficient mice (L(-/-), PE(-/-), or LPE(-/-)) similar to that of wild-type controls, suggesting that the mode of action of sulfated fucans is not through blockade of known selectins. Other mechanisms have been entertained, in particular, the release of chemokines/cytokines, including some previously implicated in mobilization. Significant increases were documented in the levels of seven circulating chemokines/cytokines within a few hours after fucan sulfate treatment and support such a proposition. Additionally, an increase was noted in plasma metalloproteinase (MMP) 9, which might independently contribute to the mobilization process by enzymatically facilitating chemokine/cytokine release. Mobilization by sulfated polysaccharides provides a distinct paradigm in the mobilization process and uncovers an additional novel in vivo biological role for sulfated glycans. As similarly sulfated compounds were ineffective in vivo, the data also underscore the fact that polysaccharides with similar structures may elicit diverse in vivo effects.

  14. Molecular cloning of a new secreted sulfated mucin-like protein with a C-type lectin domain that is expressed in lymphoblastic cells. (United States)

    Bannwarth, S; Giordanengo, V; Lesimple, J; Lefebvre, J C


    We have previously demonstrated hyposialylation of the two major CD45 and leukosialin (CD43) molecules at the surface of latently human immunodeficiency virus type 1-infected CEM T cells (CEMLAI/NP), (Lefebvre, J. C., Giordanengo, V., Doglio, A., Cagnon, L., Breittmayer, J. P., Peyron, J. F., and Lesimple, J. (1994) Virology 199, 265-274; Lefebvre, J. C., Giordanengo, V., Limouse, M., Doglio, A., Cucchiarini, M., Monpoux, F., Mariani, R., and Peyron, J. F. (1994) J. Exp. Med. 180, 1609-1617). Searching to clarify mechanism(s) of hyposialylation, we observed two sulfated secreted glycoproteins (molecular mass approximately 47 and approximately 40 kDa) (P47 and P40), which were differentially sulfated and/or differentially secreted in the culture supernatants of CEMLAI/NP cells when compared with parental CEM cells. A hybridoma clone (7H1) resulting from the fusion between CEMLAI/NP and human embryonic fibroblasts MRC5 cells produced very large amounts of P47 that was purified using Jacalin lectin (specific for O-glycans) and microsequenced. Cloning of P47 was achieved using a CEMLAI/NP cDNA library screened with a degenerate oligonucleotide probe based on its NH2-terminal amino acid sequence. A single open reading frame encoding a protein of 323 amino acids was deduced from the longest isolated recombinant (1.4 kilobase). P47 is a secreted sulfated protein. It carries an NH2-terminal RGD (Arg-Gly-Asp) triplet, a striking alpha-helical leucine zipper composed of six heptads, and a C-terminal C-type lectin domain. The NH2-terminal portion is rich in glutamic acids with a predicted pI of 3.9. In addition, a hinge region with numerous condensed potential sites for O-glycan side chains, which are also the most likely sulfation sites, is located between the RGD and leucine zipper domains. Transcripts were detected in lymphoid tissues (notably bone marrow) and abundantly in T and B lymphoblastoid but very faintly in monocytoid cell lines.

  15. Correlation of Versican Expression, Accumulation, and Degradation during Embryonic Development by Quantitative Immunohistochemistry (United States)

    Snyder, Jessica M.; Washington, Ida M.; Birkland, Timothy; Chang, Mary Y.; Frevert, Charles W.


    Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection. PMID:26385570

  16. The Importance of Heparan Sulfate in Herpesvirus Infection

    Institute of Scientific and Technical Information of China (English)

    Christopher D.O'Donnell; Deepak Shukla


    Herpes simplex virus type-1 (HSV-1) is one of many pathogens that use the cell surface glycosaminoglycan heparan sulfate as a receptor.Heparan sulfate is highly expressed on the surface and extracellular matrix of virtually all cell types making it an ideal receptor.Heparan sulfate interacts with HSV-1 envelope glycoproteins gB and gC during the initial attachment step during HSV-1 entry.In addition,a modified form of heparan sulfate,known as 3-O-sulfated heparan sulfate,interacts with HSV-1 gD to induce fusion between the viral envelope and host cell membrane.The 3-O-sulfation of heparan sulfate is a rare modification which occurs during the biosynthesis of heparan sulfate that is carded out by a family of enzymes known as 3-O-sulfotransferases.Due to its involvement in multiple steps of the infection process,heparan sulfate has been a prime target for the development of agents to inhibit HSV entry.Understanding how heparan sulfate functions during HSV-1 infection may not only be critical for inhibiting infection by this virus,but it may also be crucial in the fight against many other pathogens as well.

  17. Musculocontractural Ehlers–Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin

    Directory of Open Access Journals (Sweden)

    Nadège Gouignard


    Full Text Available Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC. Musculocontractural Ehlers–Danlos syndrome (MCEDS is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE. Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial–mesenchymal transition (EMT and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo. Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and

  18. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells


    Beard, Rachel E; Zheng, Zhili; Lagisetty, Kiran H.; Burns, William R.; Tran, Eric; Hewitt, Stephen M.; Abate-Daga, Daniel; Rosati, Shannon F.; Fine, Howard A.; Ferrone, Soldano; Rosenberg, Steven A.; Morgan, Richard A.


    Background The development of immunotherapy has led to significant progress in the treatment of metastatic cancer, including the development of genetic engineering technologies that redirect lymphocytes to recognize and target a wide variety of tumor antigens. Chimeric antigen receptors (CARs) are hybrid proteins combining antibody recognition domains linked to T cell signaling elements. Clinical trials of CAR-transduced peripheral blood lymphocytes (PBL) have induced remission of both solid ...

  19. Cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced

    DEFF Research Database (Denmark)

    Rieger, Harden; Yoshikawa, Hiroshi Y; Quadt, Katharina;


    of the receptor/ligand arrangement on cytoadhesion, using artificial membranes with different CSA spacing intervals. We found that cytoadhesion is strongly dependent on the CSA distance, with half-maximal adhesion occurring at a CSA distance of 9 ± 1 nm at all hydrodynamic conditions. Moreover, binding to CSA...

  20. “On-The-Spot” Arresting of Chondroitin Sulphate Proteoglycans: Implications for Ovarian Adenocarcinoma Recognition and Intervention

    Directory of Open Access Journals (Sweden)

    Priyamvada Pradeep


    Full Text Available Ovarian Cancer (OC is one of the leading causes of cancer-associated death among women. The underlying biochemical cause of OC proliferation is usually attributed to the over-expression of Chondroitin Sulphate Proteoglycans (CSPGs wherein the CS-E subgroup plays a major role in tumor cell proliferation by over-expressing vascular endothelial growth factor (VEGF. We hereby hypothesize that by targeting the OC extracellular matrix using a CS-E-specific antibody, GD3G7, we could provide spatial delivery of crosslinkers and anti-VEGF agents to firstly induce in vivo crosslinking and complexation (arresting of CS-E into a “biogel mass” for efficient and effective detection, detachment and reduction of tumorous tissue, and secondly inhibit angiogenesis in OC. It is further proposed that the antibody-assisted targeted delivery of CS-E crosslinkers can bind to highly anionic CS-E to form a polyelectrolyte complex to inhibit the formation of ovarian tumor spheroids that are responsible for spheroid-induced mesothelial clearance and progression of OC. The hypothesis also describes the potential in vivo “On-The-Spot” CSPG crosslinkers such as sodium trimetaphosphate (physical crosslinker, 1,12-diaminododecane (chemical crosslinker, poly(ethylene glycol diglycidyl ether (synthetic polymer, and chitosan (natural polyelectrolyte-forming agent. In conclusion, this hypothesis proposes in vivo spatial crosslinking of CSPGs as a potential theranostic intervention strategy for OC—a first in the field of cancer research.

  1. Engineering S. equi subsp. zooepidemicus towards concurrent production of hyaluronic acid and chondroitin biopolymers of biomedical interest. (United States)

    Cimini, Donatella; Iacono, Ileana Dello; Carlino, Elisabetta; Finamore, Rosario; Restaino, Odile F; Diana, Paola; Bedini, Emiliano; Schiraldi, Chiara


    Glycosaminoglycans, such as hyaluronic acid and chondroitin sulphate, are not only more and more required as main ingredients in cosmeceutical and nutraceutical preparations, but also as active principles in medical devices and pharmaceutical products. However, while biotechnological production of hyaluronic acid is industrially established through fermentation of Streptococcus spp. and recently Bacillus subtilis, biotechnological chondroitin is not yet on the market. A non-hemolytic and hyaluronidase negative S. equi subsp. zooepidemicus mutant strain was engineered in this work by the addition of two E. coli K4 genes, namely kfoA and kfoC, involved in the biosynthesis of chondroitin-like polysaccharide. Chondroitin is the precursor of chondroitin sulphate, a nutraceutical present on the market as anti-arthritic drug, that is lately being studied for its intrinsic bioactivity. In small scale bioreactor batch experiments the production of about 1.46 ± 0.38 g/L hyaluronic acid and 300 ± 28 mg/L of chondroitin with an average molecular weight of 1750 and 25 kDa, respectively, was demonstrated, providing an approach to the concurrent production of both biopolymers in a single fermentation.

  2. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)


    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  3. The distribution and function of chondroitin sulfate and other sulfated glycosaminoglycans in the human bladder and their contribution to the protective bladder barrier

    NARCIS (Netherlands)

    Janssen, D.A.W.; Wijk, X.M. van; Jansen, K.C.; Kuppevelt, A.H.M.S.M. van; Heesakkers, J.P.F.A.; Schalken, J.A.


    PURPOSE: Glycosaminoglycan replenishment therapies are commonly applied to treat bladder inflammatory conditions such as bladder pain syndrome/interstitial cystitis. Although there is evidence that these therapies are clinically effective, much is still unknown about the location and function of dif

  4. Ethanol Extract of Cordyceps militaris Grown on Germinated Soybeans Attenuates Dextran-Sodium-Sulfate- (DSS-) Induced Colitis by Suppressing the Expression of Matrix Metalloproteinases and Inflammatory Mediators (United States)

    Park, Dong Ki; Park, Hye-Jin


    The effect of Cordyceps militaris (CM) grown on germinated soybeans (GSC) in the inflammatory bowel disease (IBD) model was studied. To demonstrate the preventive effect of GSC extract in a dextran-sodium-sulfate- (DSS-) induced acute colitis mouse model, GSC was administered 2 days before DSS coadministration. GSC significantly suppressed DSS-induced disease activity index (DAI) as well as histopathological scores, compared to control or CM-treated group. To elucidate the anti-IBD activity of GSC, we checked the level of matrix metalloproteinases (MMPs) and inflammatory mediators. GSC extract decreased the level of MMP-3 and -9 mRNAs and p53 proteins. The level and activity of LPS-induced MMP-9 were reduced in GSC-treated RAW264.7 cells. It also attenuated the level of inducible nitric oxide synthase (iNOS) and tumor necrosis factor- (TNF-) α mRNAs both in colon tissue and in macrophage cells. These results suggest that GSC can be applied as a protective agent against IBDs. PMID:23841050

  5. Ethanol Extract of Cordyceps militaris Grown on Germinated Soybeans Attenuates Dextran-Sodium-Sulfate- (DSS- Induced Colitis by Suppressing the Expression of Matrix Metalloproteinases and Inflammatory Mediators

    Directory of Open Access Journals (Sweden)

    Dong Ki Park


    Full Text Available The effect of Cordyceps militaris (CM grown on germinated soybeans (GSC in the inflammatory bowel disease (IBD model was studied. To demonstrate the preventive effect of GSC extract in a dextran-sodium-sulfate- (DSS- induced acute colitis mouse model, GSC was administered 2 days before DSS coadministration. GSC significantly suppressed DSS-induced disease activity index (DAI as well as histopathological scores, compared to control or CM-treated group. To elucidate the anti-IBD activity of GSC, we checked the level of matrix metalloproteinases (MMPs and inflammatory mediators. GSC extract decreased the level of MMP-3 and -9 mRNAs and p53 proteins. The level and activity of LPS-induced MMP-9 were reduced in GSC-treated RAW264.7 cells. It also attenuated the level of inducible nitric oxide synthase (iNOS and tumor necrosis factor- (TNF- α mRNAs both in colon tissue and in macrophage cells. These results suggest that GSC can be applied as a protective agent against IBDs.

  6. Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Yu Shuqiong; Sun Zhengqi; Xie Xiucai; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032 (China); Fu Zhengwei, E-mail: [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032 (China)


    Algal blooms have been increasing in prevalence all over the world, destroying ecosystems and placing other organisms at risk. Chemical remediation is one of most important methods of controlling algal bloom formation. The effects of copper sulfate, hydrogen peroxide (H{sub 2}O{sub 2}) and N-phenyl-2-naphthylamine on photosynthesis-related and microcystin-related gene transcription and physiological changes of Microcystis aeruginosa were analyzed. The results suggest that transcription of psaB, psbD1 and rbcL was inhibited by the three algaecides, which blocked the electron transport chain, significantly enhanced reactive oxygen species (ROS) accumulation and overwhelmed the antioxidant system. The increase in ROS destroyed pigment synthesis and membrane integrity, which inhibited or killed the algal cells. Furthermore, H{sub 2}O{sub 2} treatment down-regulated mcyD transcription, which indicated a decrease in the microcystin level in the cells. Our results demonstrate that H{sub 2}O{sub 2} has the greatest potential as an algaecide because it not only inhibits algae growth but may reduce microcystin synthesis.

  7. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Machado, C B [Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil); Ventura, J M G [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Lemos, A F [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Ferreira, J M F [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Leite, M F [Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil); Goes, A M [Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil)


    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation.

  8. Genome-Wide Expression Analysis of Human In Vivo Irritated Epidermis: Differential Profiles Induced by Sodium Lauryl Sulfate and Nonanoic Acid

    DEFF Research Database (Denmark)

    Clemmensen, Anders; Andersen, Klaus E; Clemmensen, Ole;


    -regulated kinase and growth factor receptor signaling, whereas SLS transiently downregulated cellular energy metabolism pathways. Differential expression of the cyclooxygenase-2 and matrix metalloproteinase 3 transcripts was confirmed immunohistochemically. After cumulative exposure, 883 genes were differentially...

  9. Label-Free Detection of Chondroitin Sulphate Proteoglycan 4 by a Polyaniline/Graphene Nanocomposite Functionalized Impedimetric Immunosensor

    Directory of Open Access Journals (Sweden)

    JingJing Fu


    Full Text Available The chondroitin sulphate proteoglycan 4 (CSPG4, also known as high molecular weight-melanoma associated antigen (HMW-MAA, is a tumor-associated antigen that is expressed in more than 85% of surgically removed melanoma lesions but has restricted distribution in normal tissues. The diagnostic and therapeutic value of CSPG4 drives a need for sensitive and low-cost detection approaches. To this end, we developed a polyaniline/graphene oxide nanocomposite (PANI@GO that was electrochemically codeposited on indium tin oxide (ITO electrode. Glutaraldehyde mediated the covalent immobilization of CSPG4 specific antibody mAbD2.8.5 to construct a CSPG4 immunosensor using cell culture media and cell lysate as samples. The fully assembled impedimetric immunosensor was used to detect CSPG4 in CSPG4-positive cell lines M14/CSPG4 and MV3. No impedance signal changes could be observed from CSPG4-negative cell lines M14 and mAbMk2-23 showing the specificity of the CSPG4-impedimetric immunosensor. This low-cost, simple, and label-free analytical method is an alternative to enzyme-linked immunosorbent assay and flow cytometry in screening of CSPG4 in complex biological samples.

  10. The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel

    Directory of Open Access Journals (Sweden)

    Christopher J. Little


    Full Text Available Osteoarthritis is a painful degenerative joint disease that could be better managed if tissue engineers can develop methods to create long-term engineered articular cartilage tissue substitutes. Many of the tissue engineered cartilage constructs currently available lack the chemical stimuli and cell-friendly environment that promote the matrix accumulation and cell proliferation needed for use in joint cartilage repair. The goal of this research was to test the efficacy of using a fibrin-alginate hydrogel containing hyaluronic acid (HA and/or chondroitin sulphate (CS supplements for chondrocyte culture. Neonatal porcine chondrocytes cultured in fibrin-alginate hydrogels retained their phenotype better than chondrocytes cultured in monolayer, as evidenced by analysis of their relative expression of type II versus type I collagen mRNA transcripts. HA or CS supplementation of the hydrogels increased matrix glycosaminoglycan (GAG production during the first week of culture. However, the effects of these supplements on matrix accumulation were not additive and were no longer observed after two weeks of culture. Supplementation of the hydrogels with CS or a combination of both CS and HA increased the chondrocyte cell population after two weeks of culture. Statistical analysis indicated that the HA and CS treatment effects on chondrocyte numbers may be additive. This research suggests that supplementation with CS and/or HA has positive effects on cartilage matrix production and chondrocyte proliferation in three-dimensional (3D fibrin-alginate hydrogels.

  11. Changes in the Expression and Distribution of Claudins, Increased Epithelial Apoptosis, and a Mannan-Binding Lectin-Associated Immune Response Lead to Barrier Dysfunction in Dextran Sodium Sulfate-Induced Rat Colitis (United States)

    Yuan, Bosi; Zhou, Shuping; Lu, Youke; Liu, Jiong; Jin, Xinxin; Wan, Haijun; Wang, Fangyu


    Background/Aims This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. Methods Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic epithelium were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling method assay. Results The lactulose and sucralose excretion levels in the urine of rats with DSS-induced colitis were significantly higher than those in the control rats. Mannitol excretion was lower and lactulose/mannitol ratios and sucralose/mannitol ratios were significantly increased compared with those in the control group (p<0.05). Compared with the controls, the expression of sealing claudins (claudin 3, claudin 5, and claudin 8) was significantly decreased, but that of claudin 1 was increased. The expression of pore-forming claudin 2 was upregulated and claudin 7 was downregulated in DSS-induced colitis. The epithelial apoptotic ratio was 2.8%±1.2% in controls and was significantly increased to 7.2%±1.2% in DSS-induced colitis. The expression of MBL and MASP-2 in the intestinal mucosa showed intense staining in controls, whereas there was weak staining in the rats with colitis. Conclusions There was increased intestinal permeability in DSS-induced colitis. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and the MASP-2-induced immune response impaired the intestinal epithelium and contributed to high intestinal permeability. PMID:25717051

  12. Acquisition of anoikis resistance up-regulates syndecan-4 expression in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Bruna Ribeiro Carneiro

    Full Text Available Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix, behaving as a critical mechanism in preventing adherent-independent cell growth and attachment to an inappropriate matrix, thus avoiding colonization of distant organs. Cell adhesion plays an important role in neoplastic transformation. Tumors produce several molecules that facilitate their proliferation, invasion and maintenance, especially proteoglycans. The syndecan-4, a heparan sulfate proteoglycan, can act as a co-receptor of growth factors and proteins of the extracellular matrix by increasing the affinity of adhesion molecules to their specific receptors. It participates together with integrins in cell adhesion at focal contacts connecting the extracellular matrix to the cytoskeleton. Changes in the expression of syndecan-4 have been observed in tumor cells, indicating its involvement in cancer. This study investigates the role of syndecan-4 in the process of anoikis and cell transformation. Endothelial cells were submitted to sequential cycles of forced anchorage impediment and distinct lineages were obtained. Anoikis-resistant endothelial cells display morphological alterations, high rate of proliferation, poor adhesion to fibronectin, laminin and collagen IV and deregulation of the cell cycle, becoming less serum-dependent. Furthermore, anoikis-resistant cell lines display a high invasive potential and a low rate of apoptosis. This is accompanied by an increase in the levels of heparan sulfate and chondroitin sulfate as well as by changes in the expression of syndecan-4 and heparanase. These results indicate that syndecan-4 plays a important role in acquisition of anoikis resistance and that the conferral of anoikis resistance may suffice to transform endothelial cells.

  13. Effectiveness and safety of Glucosamine, chondroitin, the two in combination, or celecoxib in the treatment of osteoarthritis of the knee. (United States)

    Zeng, Chao; Wei, Jie; Li, Hui; Wang, Yi-lun; Xie, Dong-xing; Yang, Tuo; Gao, Shu-guang; Li, Yu-sheng; Luo, Wei; Lei, Guang-hua


    This study aimed to investigate the effectiveness and safety of glucosamine, chondroitin, the two in combination, or celecoxib in the treatment of knee osteoarthritis (OA). PubMed, Embase and Cochrane Library were searched through from inception to February 2015. A total of 54 studies covering 16427 patients were included. Glucosamine plus chondroitin, glucosamine alone, and celecoxib were all more effective than placebo in pain relief and function improvement. Specifically, celecoxib is most likely to be the best treatment option, followed by the combination group. All treatment options showed clinically significant improvement from baseline pain, but only glucosamine plus chondroitin showed clinically significant improvement from baseline function. In terms of the structure-modifying effect, both glucosamine alone and chondroitin alone achieved a statistically significant reduction in joint space narrowing. Although no significant difference was observed among the five options with respect to the three major adverse effects (withdrawal due to adverse events, serious adverse events and the number of patients with adverse events), the additional classical meta-analysis showed that celecoxib exhibited a higher rate of gastrointestinal adverse effect comparing with the placebo group. The present study provided evidence for the symptomatic efficacy of glucosamine plus chondroitin in the treatment of knee OA.

  14. Beryllium sulfate induces p21 CDKN1A expression and a senescence-like cell cycle arrest in susceptible cancer cell types. (United States)

    Gorjala, Priyatham; Gary, Ronald K


    In fibroblasts, beryllium salt causes activation of the p53 transcription factor and induction of a senescence-like state. It is not known whether Be(2+) can affect the proliferation of cancer cells, which are generally unsusceptible to senescence. A172 glioblastoma and RKO colon carcinoma cell lines each have wildtype p53, so these cell types have the potential to be responsive to agents that activate p53. In A172 cells, BeSO(4) produced a G(0)/G(1)-phase cell cycle arrest and increased expression of senescence-associated β-galactosidase, an enzymatic marker of senescence. BeSO(4) caused phosphorylation of serine-15 of p53, accumulation of p53 protein, and expression of p21, the cyclin-dependent kinase inhibitor that is prominent during senescence. BeSO(4) inhibited A172 growth with an IC(50) = 4.7 μM in a 6-day proliferation assay. In contrast, BeSO(4) had no effect on RKO cells, even though Be(2+) uptake was similar for the two cell types. This differential responsiveness marks BeSO(4) as a reagent capable of activating a separable branch of the p53 signaling network. A172 and RKO cells are known to exhibit p53-dependent upregulation of p21 in response to DNA damage. The RKO cells produced high levels of p21 when exposed to DNA damaging agents, yet failed to express p21 when treated with BeSO(4). Conversely, BeSO(4) did not cause DNA damage in A172 cells, yet it was a potent inducer of p21 expression. These observations indicate that the growth control pathway affected by BeSO(4) is distinct from the DNA damage response pathway, even though both ultimately converge on p53 and p21.

  15. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig


    -state diffusion. The nucleation and crystal grain growth of the solid product, and this mixed control mechanism provide satisfactory explanations of the various phenomena related to the direct sulfation of limestone, such as porosity in the product layer, the variation of the apparent reaction orders of SO2, O-2...

  16. Proteoglycans of reactive rat cortical astrocyte cultures: abundance of N-unsubstituted glucosamine-enriched heparan sulfate. (United States)

    Hering, Thomas M; Beller, Justin A; Calulot, Christopher M; Centers, Adrian; Snow, Diane M


    "Reactive" astrocytes and other glial cells in the injured CNS produce an altered extracellular matrix (ECM) that influences neuronal regeneration. We have profiled the glycosaminoglycan (GAG) component of proteoglycans (PGs) produced by reactive neonatal rat cortical astrocytes, and have quantified their neurite-outgrowth inhibitory activity. PGs extracted from cell layers and medium were fractionated on DEAE-Sephacel with a gradient of NaCl from 0.15 to 1.0 M. Monosaccharide analysis of the major peaks eluting at 0.6 M NaCl indicated an excess of GlcNH₂ to GalNH₂, suggesting an approximate HS/CS ratio of 6.2 in the cell layer and 4.2 in the medium. Chondroitinase ABC-generated disaccharide analysis of cell and medium PGs showed a >5-fold excess of chondroitin 4-sulfate over chondroitin 6-sulfate. Heparin lyase-generated disaccharides characteristic of the highly sulfated S-domain regions within HS were more abundant in cell layer than medium-derived PGs. Cell layer and medium HS disaccharides contained ~20% and ~40% N-unsubstituted glucosamine respectively, which is normally rare in HS isolated from most tissues. NGF-stimulated neurite outgrowth assays using NS-1 (PC12) neuronal cells on adsorbed substrata of PGs isolated from reactive astrocyte medium showed pronounced inhibition of neurite outgrowth, and aggregation of NS-1 cells. Cell layer PGs from DEAE-Sephacel pooled fractions having high charge density permitted greater NGF-stimulated outgrowth than PGs with lower charge density. Our results indicate the synthesis of both inhibitory and permissive PGs by activated astrocytes that may correlate with sulfation patterns and HS/CS ratios.

  17. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    Energy Technology Data Exchange (ETDEWEB)

    Beavan, L.A.; Davies, M.; Couchman, J.R.; Williams, M.A.; Mason, R.M.


    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium (35S)sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at defined times (0-163 h) the kidneys were perfused in situ with 0.01% cetylpyridinium chloride in phosphate-buffered saline to maximize the recovery of 35S-proteoglycans. Glomeruli were isolated from the renal cortex and analyzed for 35S-proteoglycans by autoradiographic, biochemical, and immunochemical methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of (35S)heparan sulfate proteoglycans had a metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-((cholamidopropyl)dimethy-lammonio)-1-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane of rat glomeruli. Autoradiographic analysis showed that 18% of total radioactivity present at the end of the labeling period was associated with the glomerular basement membrane.

  18. Demonstration of immunogenic keratan sulphate in commercial chondroitin 6-sulphate from shark cartilage. Implications for ELISA assays

    DEFF Research Database (Denmark)

    Møller, H J; Møller-Pedersen, T; Damsgaard, T E;


    The prototype monoclonal keratan sulphate (KS) antibody 5D4 that is widely used for detection of KS in tissues and biological fluids reacts strongly with commercial low grade shark cartilage chondroitin 6-sulphate. Characterization of the immunogenic material by chondroitinase ABC digestion, ELISA...... inhibition studies, immunoblotting and HPLC analyses confirmed the presence of substantial amounts of KS, probably as a large proteoglycan (> 120 kDa). Commercial and heterogenic glycosaminoglycan preparations therefore must be used with great caution in immunological analyses. On the other hand the shark...... cartilage chondroitin 6-sulphate is an easy accessible source of immunogenic KS that can be used as a reference standard and as coating antigen in KS-ELISAs. The concentration of immunogenic KS in synovial fluid measured with an ELISA based solely on reagents of shark cartilage chondroitin 6-sulphate...

  19. Improvement of the Digestibility of Sulfated Hyaluronans by Bovine Testicular Hyaluronidase: A UV Spectroscopic and Mass Spectrometric Study

    Directory of Open Access Journals (Sweden)

    Katharina Lemmnitzer


    Full Text Available Glycosaminoglycans (GAGs such as hyaluronan (HA and chondroitin sulfate (CS are important, natural polysaccharides which occur in biological (connective tissues and have various biotechnological and medical applications. Additionally, there is increasing evidence that chemically (oversulfated GAGs possess promising properties and are useful as implant coatings. Unfortunately, a detailed characterization of these GAGs is challenging: although mass spectrometry (MS is one of the most powerful tools to elucidate the structures of (polysaccharides, MS is not applicable to high mass polysaccharides, but characteristic oligosaccharides are needed. These oligosaccharides are normally generated by enzymatic digestion. However, chemically modified (particularly sulfated GAGs are extremely refractive to enzymatic digestion. This study focuses on the investigation of the digestibility of GAGs with different degrees of sulfation by bovine testicular hyaluronidase (BTH. It will be shown by using an adapted spectrophotometric assay that all investigated GAGs can be basically digested if the reaction conditions are carefully adjusted. However, the oligosaccharide yield correlates reciprocally with the number of sulfate residues per polymer repeating unit. Finally, matrix-laser desorption and ionization (MALDI MS will be used to study the released oligosaccharides and their sulfation patterns.

  20. Controlling barium sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Greenley, R.

    Even though for several years success has been realized in controlling barium sulfate scale deposition in relatively shallow, low pressure oil wells--by squeezing an organic phosphonate scale inhibitor into the producing zone--barium sulfate scale depositon in deep, high pressure/high temperature wells usually meant an expensive workover operation. A case history of a deep (16,000 ft) well in St. Mary Parish, Louisiana, and the scale inhibitor squeeze operation are described. Based on the successful results obtained in treating this well, a generalized treating procedure for combating downhole scale deposition in high pressure/high temperature gas wells is presented. Formation squeezing with such an inhibitor represents a significant breakthrough for the oil and gas industry.

  1. Reactivating the extracellular matrix synthesis of sulfated glycosaminoglycans and proteoglycans to improve the human skin aspect and its mechanical properties

    Directory of Open Access Journals (Sweden)

    Chajra H


    Full Text Available Hanane Chajra,1 Daniel Auriol,1 Francine Joly,2 Aurélie Pagnon,3 Magda Rodrigues,4 Sophie Allart,4 Gérard Redziniak,5 Fabrice Lefevre1 1Libragen, Induchem (Givaudan Active Beauty, Toulouse, 2Sephra Pharma, Puteaux, 3Novotec, Bron, 4Centre de Physiopathologie de Toulouse-Purpan, Toulouse, 5Cosmetic Inventions, Antony, France Background: The aim of this study was to demonstrate that a defined cosmetic composition is able to induce an increase in the production of sulfated glycosaminoglycans (sGAGs and/or proteoglycans and finally to demonstrate that the composition, through its combined action of enzyme production and synthesis of macromolecules, modulates organization and skin surface aspect with a benefit in antiaging applications. Materials and methods: Gene expression was studied by quantitative reverse transcription polymerase chain reaction using normal human dermal fibroblasts isolated from a 45-year-old donor skin dermis. De novo synthesis of sGAGs and proteoglycans was determined using Blyscan™ assay and/or immunohistochemical techniques. These studies were performed on normal human dermal fibroblasts (41- and 62-year-old donors and on human skin explants. Dermis organization was studied either ex vivo on skin explants using bi-photon microscopy and transmission electron microscopy or directly in vivo on human volunteers by ultrasound technique. Skin surface modification was investigated in vivo using silicone replicas coupled with macrophotography, and the mechanical properties of the skin were studied using Cutometer. Results: It was first shown that mRNA expression of several genes involved in the synthesis pathway of sGAG was stimulated. An increase in the de novo synthesis of sGAGs was shown at the cellular level despite the age of cells, and this phenomenon was clearly related to the previously observed stimulation of mRNA expression of genes. An increase in the expression of the corresponding core protein of decorin, perlecan

  2. Off limits: sulfate below the sulfate-methane transition (United States)

    Brunner, Benjamin; Arnold, Gail; Røy, Hans; Müller, Inigo; Jørgensen, Bo


    One of the most intriguing recent discoveries in biogeochemistry is the ubiquity of cryptic sulfur cycling. From subglacial lakes to marine oxygen minimum zones, and in marine sediments, cryptic sulfur cycling - the simultaneous sulfate consumption and production - has been observed. Though this process does not leave an imprint in the sulfur budget of the ambient environment - thus the term cryptic - it may have a massive impact on other element cycles and fundamentally change our understanding of biogeochemical processes in the subsurface. Classically, the sulfate-methane transition (SMT) in marine sediments is considered to be the boundary that delimits sulfate reduction from methanogenesis as the predominant terminal pathway of organic matter mineralization. Two sediment cores from Aarhus Bay, Denmark reveal the constant presence of sulfate (generally 0.1 to 0.2 mM) below the SMT. The sulfur and oxygen isotope signature of this deep sulfate (34S = 18.9‰, 18O = 7.7‰) was close to the isotope signature of bottom-seawater collected from the sampling site (34S = 19.8‰, 18O = 7.3‰). In one of the cores, oxygen isotope values of sulfate at the transition from the base of the SMT to the deep sulfate pool (18O = 4.5‰ to 6.8‰) were distinctly lighter than the deep sulfate pool. Our findings are consistent with a scenario where sulfate enriched in 34S and 18O is removed at the base of the SMT and replaced with isotopically light sulfate below. Here, we explore scenarios that explain this observation, ranging from sampling artifacts, such as contamination with seawater or auto-oxidation of sulfide - to the potential of sulfate generation in a section of the sediment column where sulfate is expected to be absent which enables reductive sulfur cycling, creating the conditions under which sulfate respiration can persist in the methanic zone.

  3. Tgfβ-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. (United States)

    Barnette, Damien N; Hulin, Alexia; Ahmed, A S Ishtiaq; Colige, Alain C; Azhar, Mohamad; Lincoln, Joy


    Mature heart valves are complex structures consisting of three highly organized extracellular matrix layers primarily composed of collagens, proteoglycans and elastin. Collectively, these diverse matrix components provide all the necessary biomechanical properties for valve function throughout life. In contrast to healthy valves, myxomatous valve disease is the most common cause of mitral valve prolapse in the human population and is characterized by an abnormal abundance of proteoglycans within the valve tri-laminar structure. Despite the clinical significance, the etiology of this phenotype is not known. Scleraxis (Scx) is a basic-helix-loop-helix transcription factor that we previously showed to be required for establishing heart valve structure during remodeling stages of valvulogenesis. In this study, we report that remodeling heart valves from Scx null mice express decreased levels of proteoglycans, particularly chondroitin sulfate proteoglycans (CSPGs), while overexpression in embryonic avian valve precursor cells and adult porcine valve interstitial cells increases CSPGs. Using these systems we further identify that Scx is positively regulated by canonical Tgfβ2 signaling during this process and this is attenuated by MAPK activity. Finally, we show that Scx is increased in myxomatous valves from human patients and mouse models, and overexpression in human mitral valve interstitial cells modestly increases proteoglycan expression consistent with myxomatous mitral valve phenotypes. Together, these studies identify an important role for Scx in regulating proteoglycans in embryonic and mature valve cells and suggest that imbalanced regulation could influence myxomatous pathogenesis.

  4. Impact of sulfation pattern on the conformation and dynamics of sulfated fucan oligosaccharides as revealed by NMR and MD. (United States)

    Queiroz, Ismael N L; Wang, Xiaocong; Glushka, John N; Santos, Gustavo R C; Valente, Ana P; Prestegard, James H; Woods, Robert J; Mourão, Paulo A S; Pomin, Vitor H


    Sulfated fucans from sea urchin egg jelly express well-defined chemical structures that vary with species. This species specificity regulates the sperm acrosome reaction, a critical step to assure intra-specific fertilization. In addition, these polysaccharides are involved in other biological activities such as anticoagulation. Although sulfation patterns are relevant to the levels of response in both activities, conformation and dynamics of these glycans are also contributing factors. However, data about these features of sulfated fucans are very rare. To address this, we have employed nuclear magnetic resonance experiments combined with molecular dynamics on structurally defined oligosaccharides derived from two sulfated fucans. The results have indicated that the oligosaccharides are flexible in solution. Ring conformation of their composing units displays just the (1)C4 chair configuration. In a particular octasaccharide, composed of two tetrasaccharide sequences, inter-residual hydrogen bonds play a role to decrease dynamics in these repeating units. Conversely, the linking disaccharide [-3)-α-L-Fucp-2(OSO3(-))-(1-3)-α-L-Fucp-4(OCO3(-))-(1-] located right between the two tetrasaccharide units has amplified motions suggested to be promoted by electrostatic repulsion of sulfates on opposite sides of the central glycosidic bond. This conjunction of information about conformation and dynamics of sulfated fucan oligosaccharides provides new insights to explain how these glycans behave free in solution and influenced by sulfation patterns. It may also serve for future studies concerning structure-function relationship of sulfated fucans, especially those involving sea urchin fertilization and anticoagulation.

  5. Formulation and Evaluation of Chitosan-Chondroitin Sulphate Based Nasal Inserts for Zolmitriptan

    Directory of Open Access Journals (Sweden)

    Kirandeep Kaur


    Full Text Available Bioadhesive nasal dosage forms are an attractive method for overcoming rapid mucociliary clearance transport in the nose and for delivering the drug directly to brain. The present study was designed to formulate chondroitin sulphate (CS and chitosan (CH nasal inserts employing zolmitriptan, an antimigraine drug. The interpolymer complexes (IPC formed between –COO− and – groups of CS and group of CH were characterized by infrared spectroscopy (IR, differential scanning analysis (DSC, and zeta potential studies. The unloaded and loaded nasal inserts were evaluated for water uptake studies, and bioadhesive strength studies, scanning electron microscopic studies (SEM. The in vitro drug release and in situ permeation studies were carried out on loaded nasal inserts. The DSC and IR studies confirmed the formation of a complex between the two polymers. The results indicated that the formulation F1 (CH : CS; 30 : 70 was demonstrating the highest bioadhesive strength and zeta potential. The presence of porous structure in the nasal inserts was confirmed by the SEM analysis. Further, in vitro and in situ release studies demonstrated that formulations F9 and F11 (drug : polymer; 1 : 10 were releasing 90% and 98% zolmitriptan over a period of 8 h. It can be concluded that nasal inserts formulated from chitosan-chondroitin sulphate (CH-CS interpolymer complex (IPC can be used for delivery of antimigraine drug to brain.

  6. Formulation and Evaluation of Chitosan-Chondroitin Sulphate Based Nasal Inserts for Zolmitriptan (United States)

    Kaur, Kirandeep; Kaur, Gurpreet


    Bioadhesive nasal dosage forms are an attractive method for overcoming rapid mucociliary clearance transport in the nose and for delivering the drug directly to brain. The present study was designed to formulate chondroitin sulphate (CS) and chitosan (CH) nasal inserts employing zolmitriptan, an antimigraine drug. The interpolymer complexes (IPC) formed between –COO− and –OSO3− groups of CS and –NH3+ group of CH were characterized by infrared spectroscopy (IR), differential scanning analysis (DSC), and zeta potential studies. The unloaded and loaded nasal inserts were evaluated for water uptake studies, and bioadhesive strength studies, scanning electron microscopic studies (SEM). The in vitro drug release and in situ permeation studies were carried out on loaded nasal inserts. The DSC and IR studies confirmed the formation of a complex between the two polymers. The results indicated that the formulation F1 (CH : CS; 30 : 70) was demonstrating the highest bioadhesive strength and zeta potential. The presence of porous structure in the nasal inserts was confirmed by the SEM analysis. Further, in vitro and in situ release studies demonstrated that formulations F9 and F11 (drug : polymer; 1 : 10) were releasing 90% and 98% zolmitriptan over a period of 8 h. It can be concluded that nasal inserts formulated from chitosan-chondroitin sulphate (CH-CS) interpolymer complex (IPC) can be used for delivery of antimigraine drug to brain. PMID:24175310

  7. Evaluation and biological characterization of bilayer gelatin/chondroitin-6-sulphate/hyaluronic acid membrane. (United States)

    Wang, Tzu-Wei; Sun, Jui-Sheng; Wu, Hsi-Chin; Huang, Yi-Chau; Lin, Feng-Huei


    A biodegradable polymer scaffold was developed using gelatin, chondroitin-6-sulphate, and hyaluronic acid in the form of bilayer network. The bilayer porous structure of gelatin-chondroitin-6-sulphate-hyaluronic acid (G-C6S-HA) membrane was fabricated using different freezing temperatures followed by lyophilization. 1-Ethyl-3(3-dimethylaminopropyl) carbodiimide was used as crosslinking agent to improve the biological stability of the scaffold. The morphology, physical-chemical properties, and biocompatibility of bilayer G-C6S-HA membrane were evaluated in this study. The functional groups change in crosslinked G-C6S-HA scaffold was characterized by fourier transform infrared spectroscopy. The retention of glycosaminoglycan contents and matrix degradation rate were also examined by p-dimethylamino benzaldehyde and 2,4,6-trinitrobenzene sulphonic acid, respectively. Water absorption capacity was carried out to study G-C6S-HA membrane water containing characteristics. The morphology of the bilayer G-C6S-HA membrane was investigated under scanning electron microscope and light microscopy. In vitro biocompatibility was conducted with MTT test, LDH assay, as well as histological analysis. The results showed that the morphology of bilayer G-C6S-HA membrane was well reserved. The physical-chemical properties were also adequate. With good biocompatibility, this bilayer G-C6S-HA membrane would be suitable as a matrix in the application of tissue engineering.

  8. Knockout of the c-Jun N-terminal Kinase 2 aggravates the development of mild chronic dextran sulfate sodium colitis independently of expression of intestinal cytokines TNFα, TGFB1, and IL-6

    Directory of Open Access Journals (Sweden)

    Kersting S


    Full Text Available Sabine Kersting,1 Kirstin Reinecke,2 Christoph Hilgert,1 Monika S Janot,1 Elisabeth Haarmann,1 Martin Albrecht,1 Annette M Müller,3 Thomas Herdegen,2 Ulrich Mittelkötter,1 Waldemar Uhl,1 Ansgar M Chromik11Department of General and Visceral Surgery, St Josef Hospital, Ruhr-University of Bochum, Bochum, Germany; 2Institute of Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany; 3Department of Pediatric Pathology, Rheinische Friedrich-Wilhems-University of Bonn, Bonn, GermanyIntroduction: The c-Jun N-terminal kinases (JNKs are involved in signal transduction of inflammatory bowel diseases. The aim of this study was to examine the function of JNKs by using a low-dose dextran sulfate sodium (DSS model in JNK1 knockout mice (Mapk8–/–, JNK2 knockout mice (Mapk9–/–, and wild-type controls (WT1, WT2.Methods: The animals were evaluated daily using a disease activity index. After 30 days, the intestine was evaluated histologically with a crypt damage score. CD4+ and CD8+ cells were quantified using immunofluorescence. Analysis of tumor necrosis factor-a (TNFα, interleukin-6 (IL-6, and transforming growth factor ß1 (TGFB1 expression was carried out using LightCycler® real-time polymerase chain reaction.Results: Cyclic administration of low-dose DSS (1% was not able to induce features of chronic colitis in Mapk8–/– WT2 mice. By contrast, DSS administration significantly increased the disease activity index in WT1 and Mapk9–/– mice. In Mapk9–/– mice, the crypt damage score and the number of CD4+ and CD8+ cells as features of chronic colitis/inflammation were also significantly elevated. Expression of TNFα, IL-6, and TGFB1 was not altered by the JNK knockout.Conclusion: Administering DSS at a defined low concentration that is unable to induce colitis in WT animals leads to clinically and histologically detectable chronic colitis in Mapk9–/– mice. The reason for this disease

  9. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa. (United States)

    Chen, Lei; Gin, Karina Y H; He, Yiliang


    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.

  10. Drug: D04945 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D04945 Mixture, Drug Chondroitin sulfate - iron colloid mixt; Blutal (TN) Chondroit...trivalent, oral preparations B03AB07 Chondroitin sulfate-iron complex D04945 Chondroitin sulfate - iron colloid mixt PubChem: 17398226 ...

  11. Interaction of PACls with sulfate

    Institute of Scientific and Technical Information of China (English)

    XU Yi; WANG Dong-Sheng; TANG Hong-Xiao


    This article discusses the influential factors on Al13 separation considering the interaction of sulfate with various polyaluminum chloride(PACl). The experimental results showed that the basicity(B=[OH]/[Al]), the concentration of PACl and Al/SO4 ratio exhibited significant roles in the PACl-sulfate reaction. It indicated that different species in various PACl underwent different reaction pathway with sulfate. The Alc, colloidal species, formed precipitation quickly with sulfate, while Alb, oligomers and polymers, undergoes slow crystallization. And Ala, monomers, reacts with sulfate to form soluble complexes. The kinetic difference of reaction made it possible to realize the separation of Alb and further purification. The decrease of Ala resulted in the limit of ferron method was also mentioned.

  12. Peripheral nervous system genes expressed in central neurons induce growth on inhibitory substrates.

    Directory of Open Access Journals (Sweden)

    William J Buchser

    Full Text Available Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs. Peripheral nervous system (PNS neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG or permissive (laminin substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX. Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.

  13. Peripheral nervous system genes expressed in central neurons induce growth on inhibitory substrates. (United States)

    Buchser, William J; Smith, Robin P; Pardinas, Jose R; Haddox, Candace L; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R; Bixby, John L; Lemmon, Vance P


    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.

  14. Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates (United States)

    Buchser, William J.; Smith, Robin P.; Pardinas, Jose R.; Haddox, Candace L.; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R.; Bixby, John L.; Lemmon, Vance P.


    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons. PMID:22701605

  15. ADAMTS expression and function in central nervous system injury and disorders (United States)

    Gottschall, Paul E.; Howell, Matthew D.


    The components of the adult extracellular matrix in the central nervous system form a lattice-like structure that is deposited as perineuronal nets, around axon initial segments and as synapse-associated matrix. An abundant component of this matrix is the lecticans, chondroitin sulfate-bearing proteoglycans that are the major substrate for several members of the ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) family. Since lecticans are key regulators of neural plasticity, ADAMTS cleavage of lecticans would likely also contribute to neuroplasticity. Indeed, many studies have examined the neuroplastic contribution of the ADAMTSs to damage and recovery after injury and in central nervous system disease. Much of this data supports a role for the ADAMTSs in recovery and repair following spinal cord injury by stimulating axonal outgrowth after degradation of a glial scar and improving synaptic plasticity following seizure-induced neural damage in the brain. The action of the ADAMTSs in chronic diseases of the central nervous system appears to be more complex and less well-defined. Increasing evidence indicates that lecticans participate in synaptic plasticity in neurodegenerative disease states. It will be interesting to examine how ADAMTS expression and action would affect the progression of these diseases. PMID:25622912

  16. High cell density cultivation of Escherichia coli K4 in a microfiltration bioreactor: a step towards improvement of chondroitin precursor production


    Catapano Angela; De Rosa Mario; Cimini Donatella; Restaino Odile; Schiraldi Chiara


    Abstract Background The bacteria Escherichia coli K4 produces a capsular polysaccharide (K4 CPS) whose backbone is similar to the non sulphated chondroitin chain. The chondroitin sulphate is one of the major components of the extra-cellular matrix of the vertebrate connective tissues and a high value molecule, widely employed as active principle in the treatment of osteoarthritis. It is usually obtained by extraction from animal tissues, but the risk of virus contaminations, as well as the sc...

  17. Effects of diet type and supplementation of glucosamine, chondroitin, and MSM on body composition, functional status, and markers of health in women with knee osteoarthritis initiating a resistance-based exercise and weight loss program

    Directory of Open Access Journals (Sweden)

    Dugan Kristin


    Full Text Available Abstract Background The purpose of this study was to determine whether sedentary obese women with knee OA initiating an exercise and weight loss program may experience more beneficial changes in body composition, functional capacity, and/or markers of health following a higher protein diet compared to a higher carbohydrate diet with or without GCM supplementation. Methods Thirty sedentary women (54 ± 9 yrs, 163 ± 6 cm, 88.6 ± 13 kg, 46.1 ± 3% fat, 33.3 ± 5 kg/m2 with clinically diagnosed knee OA participated in a 14-week exercise and weight loss program. Participants followed an isoenergenic low fat higher carbohydrate (HC or higher protein (HP diet while participating in a supervised 30-minute circuit resistance-training program three times per week for 14-weeks. In a randomized and double blind manner, participants ingested supplements containing 1,500 mg/d of glucosamine (as d-glucosamine HCL, 1,200 mg/d of chondroitin sulfate (from chondroitin sulfate sodium, and 900 mg/d of methylsulfonylmethane or a placebo. At 0, 10, and 14-weeks, participants completed a battery of assessments. Data were analyzed by MANOVA with repeated measures. Results Participants in both groups experienced significant reductions in body mass (-2.4 ± 3%, fat mass (-6.0 ± 6%, and body fat (-3.5 ± 4% with no significant changes in fat free mass or resting energy expenditure. Perception of knee pain (-49 ± 39% and knee stiffness (-42 ± 37% was decreased while maximal strength (12%, muscular endurance (20%, balance indices (7% to 20%, lipid levels (-8% to -12%, homeostasis model assessment for estimating insulin resistance (-17%, leptin (-30%, and measures of physical functioning (59%, vitality (120%, and social function (66% were improved in both groups with no differences among groups. Functional aerobic capacity was increased to a greater degree for those in the HP and GCM groups while there were some trends suggesting that supplementation affected

  18. Sulfate resupply accentuates protein synthesis in coordination with nitrogen metabolism in sulfur deprived Brassica napus. (United States)

    Zhang, Qian; Lee, Bok-Rye; Park, Sang-Hyun; Zaman, Rashed; Avice, Jean-Christophe; Ourry, Alain; Kim, Tae-Hwan


    To investigate the regulatory interactions between S assimilation and N metabolism in Brassica napus, de novo synthesis of amino acids and proteins was quantified by (15)N and (34)S tracing, and the responses of transporter genes, assimilatory enzymes and metabolites pool involving in nitrate and sulfate metabolism were assessed under continuous sulfur supply, sulfur deprivation and sulfate resupply after 3 days of sulfur (S) deprivation. S-deprived plants were characterized by a strong induction of sulfate transporter genes, ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate reductase (APR), and by a repressed activity of nitrate reductase (NR) and glutamine synthetase (GS). Sulfate resupply to the S-deprived plants strongly increased cysteine, amino acids and proteins concentration. The increase in sulfate and cysteine concentration caused by sulfate resupply was not matched with the expression of sulfate transporters and the activity of ATPS and APR which were rapidly decreased by sulfate resupply. A strong induction of O-acetylserine(thiol)lyase (OASTL), NR and GS upon sulfate resupply was accompanied with the increase in cysteine, amino acids and proteins pool. Sulfate resupply resulted in a strong increase in de novo synthesis of amino acids and proteins, as evidenced by the increases in N and S incorporation into amino acids (1.8- and 2.4-fold increase) and proteins (2.2-and 6.3-fold increase) when compared to S-deprived plants. The results thus indicate that sulfate resupply followed by S-deprivation accelerates nitrate assimilation for protein synthesis.

  19. Urinary Glycosaminoglycan Electrophoresis With Optimized Keratan Sulfate Separation Using Peltier System for the Screening of Mucopolysaccharidoses

    Directory of Open Access Journals (Sweden)

    Mihriban Tijen Tanyalcin MD, PhD


    Full Text Available The purpose of this communication is to indicate a simple and rapid method with a small volume of urine sample to detect urine glycosaminoglycan (GAG and serve as a screening procedure for mucopolysaccharidoses (MPSs. Total GAG measurement for patients with MPS disorders is considered to be the first step in diagnosis of those heterogeneous group of lysosomal storage disorders presenting clinical phenotype. In this study, modified 9-dimethylmethylene blue method is used for total GAG measurement. Following GAG quantitation, the procedure described here allows GAG isolation from a very a small volume of urine sample and subjected to high-resolution GAG electrophoresis, which can be easily performed in routine clinical diagnostic laboratories. Glycosaminoglycan precipitation is a modified method based on total GAG concentration in the urine. For optimized isolation of total GAG for electrophoresis, instead of considering the urine creatinine concentration, 300 μg/mL GAG containing urine is considered to be the target concentration for the best precipitation with 1000 μL cetylpyridinium chloride (CPC/citrate buffer. Glycosaminoglycan concentration-based precipitation of urine with CPC allows the laboratory to be able to work with a small volume of urine sample by keeping the precipitating ratio with CPC constant for samples that contain GAG less than 300 μg/mL. Based on the effect of cold buffer using low voltage, GAGs high-resolution electrophoresis banding patterns described here enable a clear separation of keratan sulfate from chondroitin sulfate as well as dermatan sulfate (DS1 and DS2 and heparan sulfate. By this procedure, GAG patterns are more clear, easily identified, and provide a guide for the enzyme analysis deficient in the MPS disorders.

  20. Dual DNA methylation patterns in the CNS reveal developmentally poised chromatin and monoallelic expression of critical genes. (United States)

    Wang, Jinhui; Valo, Zuzana; Bowers, Chauncey W; Smith, David D; Liu, Zheng; Singer-Sam, Judith


    As a first step towards discovery of genes expressed from only one allele in the CNS, we used a tiling array assay for DNA sequences that are both methylated and unmethylated (the MAUD assay). We analyzed regulatory regions of the entire mouse brain transcriptome, and found that approximately 10% of the genes assayed showed dual DNA methylation patterns. They include a large subset of genes that display marks of both active and silent, i.e., poised, chromatin during development, consistent with a link between differential DNA methylation and lineage-specific differentiation within the CNS. Sixty-five of the MAUD hits and 57 other genes whose function is of relevance to CNS development and/or disorders were tested for allele-specific expression in F(1) hybrid clonal neural stem cell (NSC) lines. Eight MAUD hits and one additional gene showed such expression. They include Lgi1, which causes a subtype of inherited epilepsy that displays autosomal dominance with incomplete penetrance; Gfra2, a receptor for glial cell line-derived neurotrophic factor GDNF that has been linked to kindling epilepsy; Unc5a, a netrin-1 receptor important in neurodevelopment; and Cspg4, a membrane chondroitin sulfate proteoglycan associated with malignant melanoma and astrocytoma in human. Three of the genes, Camk2a, Kcnc4, and Unc5a, show preferential expression of the same allele in all clonal NSC lines tested. The other six genes show a stochastic pattern of monoallelic expression in some NSC lines and bi-allelic expression in others. These results support the estimate that 1-2% of genes expressed in the CNS may be subject to allelic exclusion, and demonstrate that the group includes genes implicated in major disorders of the CNS as well as neurodevelopment.

  1. Dual DNA methylation patterns in the CNS reveal developmentally poised chromatin and monoallelic expression of critical genes.

    Directory of Open Access Journals (Sweden)

    Jinhui Wang

    Full Text Available As a first step towards discovery of genes expressed from only one allele in the CNS, we used a tiling array assay for DNA sequences that are both methylated and unmethylated (the MAUD assay. We analyzed regulatory regions of the entire mouse brain transcriptome, and found that approximately 10% of the genes assayed showed dual DNA methylation patterns. They include a large subset of genes that display marks of both active and silent, i.e., poised, chromatin during development, consistent with a link between differential DNA methylation and lineage-specific differentiation within the CNS. Sixty-five of the MAUD hits and 57 other genes whose function is of relevance to CNS development and/or disorders were tested for allele-specific expression in F(1 hybrid clonal neural stem cell (NSC lines. Eight MAUD hits and one additional gene showed such expression. They include Lgi1, which causes a subtype of inherited epilepsy that displays autosomal dominance with incomplete penetrance; Gfra2, a receptor for glial cell line-derived neurotrophic factor GDNF that has been linked to kindling epilepsy; Unc5a, a netrin-1 receptor important in neurodevelopment; and Cspg4, a membrane chondroitin sulfate proteoglycan associated with malignant melanoma and astrocytoma in human. Three of the genes, Camk2a, Kcnc4, and Unc5a, show preferential expression of the same allele in all clonal NSC lines tested. The other six genes show a stochastic pattern of monoallelic expression in some NSC lines and bi-allelic expression in others. These results support the estimate that 1-2% of genes expressed in the CNS may be subject to allelic exclusion, and demonstrate that the group includes genes implicated in major disorders of the CNS as well as neurodevelopment.

  2. Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex. (United States)

    Levy, C; Brooks, J M; Chen, J; Su, J; Fox, M A


    Mounting evidence has demonstrated that a specialized extracellular matrix exists in the mammalian brain and that this glycoprotein-rich matrix contributes to many aspects of brain development and function. The most prominent supramolecular assemblies of these extracellular matrix glycoproteins are perineuronal nets, specialized lattice-like structures that surround the cell bodies and proximal neurites of select classes of interneurons. Perineuronal nets are composed of lecticans, a family of chondroitin sulfate proteoglycans that includes aggrecan, brevican, neurocan, and versican. These lattice-like structures emerge late in postnatal brain development, coinciding with the ending of critical periods of brain development. Despite our knowledge of the presence of lecticans in perineuronal nets and their importance in regulating synaptic plasticity, we know little about the development or distribution of the extracellular proteases that are responsible for their cleavage and turnover. A subset of a large family of extracellular proteases (called a disintegrin and metalloproteinase with thrombospondin motifs [ADAMTS]) is responsible for endogenously cleaving lecticans. We therefore explored the expression pattern of two aggrecan-degrading ADAMTS family members, ADAMTS15 and ADAMTS4, in the hippocampus and neocortex. Here, we show that both lectican-degrading metalloproteases are present in these brain regions and that each exhibits a distinct temporal and spatial expression pattern. Adamts15 mRNA is expressed exclusively by parvalbumin-expressing interneurons during synaptogenesis, whereas Adamts4 mRNA is exclusively generated by telencephalic oligodendrocytes during myelination. Thus, ADAMTS15 and ADAMTS4 not only exhibit unique cellular expression patterns but their developmental upregulation by these cell types coincides with critical aspects of neural development.

  3. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K


    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...

  4. p-Cresyl Sulfate

    Directory of Open Access Journals (Sweden)

    Tessa Gryp


    Full Text Available If chronic kidney disease (CKD is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden.

  5. p-Cresyl Sulfate (United States)

    Gryp, Tessa; Vanholder, Raymond; Vaneechoutte, Mario; Glorieux, Griet


    If chronic kidney disease (CKD) is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS) is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic) effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden. PMID:28146081

  6. Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix. (United States)

    Okolicsanyi, Rachel K; Griffiths, Lyn R; Haupt, Larisa M


    Along with the tri-lineage of bone, cartilage and fat, human mesenchymal stem cells (hMSCs) retain neural lineage potential. Multiple factors have been described that influence lineage fate of hMSCs including the extracellular microenvironment or niche. The niche includes the extracellular matrix (ECM) providing structural composition, as well as other associated proteins and growth factors, which collectively influence hMSC stemness and lineage specification. As such, lineage specific differentiation of MSCs is mediated through interactions including cell-cell and cell-matrix, as well as through specific signalling pathways triggering downstream events. Proteoglycans (PGs) are ubiquitous within this microenvironment and can be localised to the cell surface or embedded within the ECM. In addition, the heparan sulfate (HS) and chondroitin sulfate (CS) families of PGs interact directly with a number of growth factors, signalling pathways and ECM components including FGFs, Wnts and fibronectin. With evidence supporting a role for HSPGs and CSPGs in the specification of hMSCs down the osteogenic, chondrogenic and adipogenic lineages, along with the localisation of PGs in development and regeneration, it is conceivable that these important proteins may also play a role in the differentiation of hMSCs toward the neuronal lineage. Here we summarise the current literature and highlight the potential for HSPG directed neural lineage fate specification in hMSCs, which may provide a new model for brain damage repair.

  7. Determinação espectroscópica multivariada de glucosamina e condroitina em formulações farmacêuticas Multivariate spectroscopic determination of glucosamine and chondroitin in pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    Paula Rossignoli


    Full Text Available The objective of this study was to develop and validate an analytical method for quantification of glucosamine and chondroitin in pharmaceutical formulations. Multivariate calibration combined with infrared spectrophotometry allowed this analysis. 25 mixtures of glucosamine-6-sulphate and chondroitin-6-sulphate were used for calibration. Average errors found with this model during external validation were 1.37% for glucosamine sulphate and 1.30% for chondroitin sulphate. This method presented satisfactory results for assessed variables, what indicating that it is suitable for simultaneous quantification of glucosamine and chondroitin.

  8. Lack of gender-specific antibody recognition of products from domains of a var gene implicated in pregnancy-associated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Zornig, Hanne D; Buhmann, Caecilie;


    Gender-specific and parity-dependent acquired antibody recognition is characteristic of variant surface antigens (VSA) expressed by chondroitin sulfate A (CSA)-adherent Plasmodium falciparum involved in pregnancy-associated malaria (PAM). However, antibody recognition of recombinant products...

  9. Antibodies from malaria-exposed pregnant women recognize trypsin resistant epitopes on the surface of Plasmodium falciparum-infected erythrocytes selected for adhesion to chondroitin sulphate A

    Directory of Open Access Journals (Sweden)

    Staalsoe Trine


    Full Text Available Abstract Background The ability of Plasmodium falciparum-infected erythrocytes to adhere to the microvasculature endothelium is thought to play a causal role in malaria pathogenesis. Cytoadhesion to endothelial receptors is generally found to be highly sensitive to trypsinization of the infected erythrocyte surface. However, several studies have found that parasite adhesion to placental receptors can be markedly less sensitive to trypsin. This study investigates whether chondroitin sulphate A (CSA binding parasites express trypsin-resistant variant surface antigens (VSA that bind female-specific antibodies induced as a result of pregnancy associated malaria (PAM. Methods Fluorescence activated cell sorting (FACS was used to measure the levels of adult Scottish and Ghanaian male, and Ghanaian pregnant female plasma immunoglobulin G (IgG that bind to the surface of infected erythrocytes. P. falciparum clone FCR3 cultures were used to assay surface IgG binding before and after selection of the parasite for adhesion to CSA. The effect of proteolytic digestion of parasite erythrocyte surface antigens on surface IgG binding and adhesion to CSA and hyaluronic acid (HA was also studied. Results P. falciparum infected erythrocytes selected for adhesion to CSA were found to express trypsin-resistant VSA that are the target of naturally acquired antibodies from pregnant women living in a malaria endemic region of Ghana. However in vitro adhesion to CSA and HA was relatively trypsin sensitive. An improved labelling technique for the detection of VSA expressed by CSA binding isolates has also been described. Conclusion The VSA expressed by CSA binding P. falciparum isolates are currently considered potential targets for a vaccine against PAM. This study identifies discordance between the trypsin sensitivity of CSA binding and surface recognition of CSA selected parasites by serum IgG from malaria exposed pregnant women. Thus, the complete molecular

  10. 21 CFR 558.364 - Neomycin sulfate. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate. 558.364 Section 558.364 Food and... in Animal Feeds § 558.364 Neomycin sulfate. (a) Approvals. Type A medicated article: 325 grams per.... (c) (d) Conditions of use. Neomycin sulfate is used as follows: Neomycin Sulfate...

  11. 21 CFR 184.1307 - Ferric sulfate. (United States)


    ... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide or ferric hydroxide with sulfuric acid. (b) The ingredient must be of a...

  12. Antibodies from malaria-exposed pregnant women recognize trypsin resistant epitopes on the surface of Plasmodium falciparum-infected erythrocytes selected for adhesion to chondroitin sulphate A

    DEFF Research Database (Denmark)

    Sharling, Lisa; Enevold, Anders; Sowa, Kordai M P;


    BACKGROUND: The ability of Plasmodium falciparum-infected erythrocytes to adhere to the microvasculature endothelium is thought to play a causal role in malaria pathogenesis. Cytoadhesion to endothelial receptors is generally found to be highly sensitive to trypsinization of the infected erythroc......BACKGROUND: The ability of Plasmodium falciparum-infected erythrocytes to adhere to the microvasculature endothelium is thought to play a causal role in malaria pathogenesis. Cytoadhesion to endothelial receptors is generally found to be highly sensitive to trypsinization of the infected...... erythrocyte surface. However, several studies have found that parasite adhesion to placental receptors can be markedly less sensitive to trypsin. This study investigates whether chondroitin sulphate A (CSA) binding parasites express trypsin-resistant variant surface antigens (VSA) that bind female......-specific antibodies induced as a result of pregnancy associated malaria (PAM). METHODS: Fluorescence activated cell sorting (FACS) was used to measure the levels of adult Scottish and Ghanaian male, and Ghanaian pregnant female plasma immunoglobulin G (IgG) that bind to the surface of infected erythrocytes. P...

  13. Revisiting Modes of energy generation in sulfate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Joachimiak, Marcin; Chakraborty, Romy; Zhou, Aifen; Fortney, Julian; Geller, Jil; Wall, Judy; Zhou, Jizhong; Arkin, Adam; Hazen, Terry; Keasling, Jay; Chhabra, Swapnil


    Sulfate reducing bacteria (SRB) play an important role in global sulfur and carbon cycling through their ability to completely mineralize organic matter while respiring sulfate to hydrogen sulfide. They are ubiquitous in anaerobic environments and have the ability to reduce toxic metals like Cr(VI) and U(VI). While SRB have been studied for over three decades, bioenergetic modes of this group of microbes are poorly understood. Desulfovibrio vulgaris strain Hildenborough (DvH) has served as a model SRB over the last decade with the accumulation of transcriptomic, proteomic and metabolic data under a wide variety of stressors. To further investigate the three hypothesized modes of energy generation in this anaerobe we conducted a systematic study involving multiple electron donor and acceptor combinations for growth. DvH was grown at 37oC in a defined medium with (a) lactate + thiosulfate, (b) lactate + sulfite (c) lactate + sulfate, (d) pyruvate + sulfate, (e) H2 + acetate + sulfate, (f) formate + acetate + sulfate, g) formate + sulfate and (h) pyruvate fermentation. Cells were harvested at mid-log phase of growth for all conditions for transcriptomics, when the optical density at 600nm was in the range 0.42-0.5. Initial results indicate that cells grown on lactate do not appear to significantly differentiate their gene expression profiles when presented with different electron acceptors. These profiles however differ significantly from those observed during growth with other electron donors such as H2 and formate, as well as during fermentative growth. Together the gene expression changes in the presence of different electron donors provide insights into the ability of DvH to differentially reduce metals such as Cr(VI). Here we present revised modes of energy generation in DvH in light of this new transcriptomic evidence.

  14. HIV-1 p17 matrix protein interacts with heparan sulfate side chain of CD44v3, syndecan-2, and syndecan-4 proteoglycans expressed on human activated CD4+ T cells affecting tumor necrosis factor alpha and interleukin 2 production. (United States)

    De Francesco, Maria A; Baronio, Manuela; Poiesi, Claudio


    HIV-1 p17 contains C- and N-terminal sequences with positively charged residues and a consensus cluster for heparin binding. We have previously demonstrated by affinity chromatography that HIV-1 p17 binds strongly to heparin-agarose at physiological pH and to human activated CD4(+) T cells. In this study we demonstrated that the viral protein binds to heparan sulfate side chains of syndecan-2, syndecan-4, and CD44v3 purified from HeLa cells and that these heparan sulfate proteoglycans (HSPGs) co-localize with HIV-1 p17 on activated human CD4(+) T cells by confocal fluorescence analysis. Moreover, we observed a stimulatory or inhibitory activity when CD4(+) T cells were activated with mitogens together with nanomolar or micromolar concentrations of the matrix protein.

  15. Application of Image Analysis Based on SEM and Chemical Mapping on PC Mortars under Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    YU Cheng; SUN Wei; Scrivener Karen


    The degradation mechanisms of cementitious materials exposed to sulfate solutions have been controversial, despite considerable research. In this paper, two methodologies of image analysis based on scanning electron microscope and chemical mapping are used to analyse Portland cement mortars exposed to sodium sulfate solution. The effects of sulfate concentration in solution and water to cement ratio of mortar, which are considered as the most sensitive factors to sulfate attack, are investigated respectively by comparing the macro expansion with microstructure analysis. It is found that the sulfate concentration in pore solution, expressed as sulfate content in C-S-H, plays a critical role on the supersaturation with respect to ettringite and so on the expansion force generated.

  16. The expression pattern and inhibitory influence of Tenascin-C on the growth of spiral ganglion neurons suggest a regulatory role as boundary formation molecule in the postnatal mouse inner ear. (United States)

    Kwiatkowska, M; Reinhard, J; Roll, L; Kraft, N; Dazert, S; Faissner, A; Volkenstein, S


    Sensorineural hearing loss, as a consequence of acoustic trauma, aging, genetic defects or ototoxic drugs, is highly associated with irreversible damage of cochlear hair cells (HCs) and secondary degeneration of spiral ganglion (SG) cells. Cochlear implants (CIs), which bypass the lost HC function by direct electrical stimulation of the remaining auditory neurons, offer an effective therapy option. Several studies imply that components of the extracellular matrix (ECM) have a great impact on the adhesion and growth of spiral ganglion neurons (SGNs) during development. Based on these findings, ECM proteins might act as bioactive CI substrates to optimize the electrode-nerve interface and to improve efficacy of these implants. In the present study, we focused on the ECM glycoproteins Tenascin-C (TN-C), Laminin (LN), and Fibronectin (FN), which show a prominent expression along the growth route of SGNs and the niche around HCs during murine postnatal development in vivo. We compared their influence on adhesion, neurite length, and neurite number of SGNs in vitro. Moreover, we studied the expression of the chondroitin sulfate proteoglycan (CSPG) dermatan sulfate-dependent proteoglycan-1 (DSD-1-PG), an interaction partner of TN-C. In sum, our in vitro data suggest that TN-C acts as an anti-adhesive and inhibitory factor for the growth of SGNs. The DSD-1 carbohydrate epitope is specifically localized to HC stereocilia and SG fibers. Interestingly, TN-C and the DSD-1-PG exhibit a mutually exclusive expression pattern, with the exception of a very restricted region beneath the habenula perforata, where SG neurites grow through the basilar membrane (BM) toward the HCs. The complementary expression of TN-C, LN, FN, and the DSD-1 epitope suggests that TN-C may act as an important boundary formation molecule in the developing postnatal mouse inner ear, which makes it a promising candidate to regulate neurite outgrowth in the light of CIs.

  17. Chondroitin sulphate extracted from antler cartilage using high hydrostatic pressure and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Chong-Tai Kim


    Full Text Available Chondroitin sulphate (CS, a major glycosaminoglycan, is an essential component of the extracellular matrix in cartilaginous tissues. Wapiti velvet antlers are a rich source of these molecules. The purpose of the present study was to develop an effective isolation procedure of CS from fresh velvet antlers using a combination of high hydrostatic pressure (100 MPa and enzymatic hydrolysis (papain. High CS extractability (95.1 ± 2.5% of total uronic acid was obtained following incubation (4 h at 50 °C with papain at pH 6.0 in 100 MPa compared to low extractability (19 ± 1.1% in ambient pressure (0.1 MPa. Antler CS fractions were isolated by Sephacryl S-300 chromatography and identified by western blot using an anti-CS monoclonal antibody. The antler CS fraction did not aggregate with hyaluronic acid in CL-2B chromatography and possessed DPPH radical scavenging activity at 78.3 ± 1.5%. The results indicated that high hydrostatic pressure and enzymatic hydrolysis procedure may be a useful tool for the isolation of CS from antler cartilaginous tissues.

  18. Chondroitin sulphate proteoglycans: extracellular matrix proteins that regulate immunity of the central nervous system. (United States)

    Haylock-Jacobs, Sarah; Keough, Michael B; Lau, Lorraine; Yong, V Wee


    The extracellular matrix (ECM) is a complex network of scaffolding molecules that also plays an important role in cell signalling, migration and tissue structure. In the central nervous system (CNS), the ECM is integral to the efficient development/guidance and survival of neurons and axons. However, changes in distribution of the ECM in the CNS may significantly enhance pathology in CNS disease or following injury. One group of ECM proteins that is important for CNS homeostasis is the chondroitin sulphate proteoglycans (CSPGs). Up-regulation of these molecules has been demonstrated to be both desirable and detrimental following CNS injury. Taking cues from arthritis, where there is a strong anti-CSPG immune response, there is evidence that suggests that CSPGs may influence immunity during CNS pathological conditions. This review focuses on the role of CSPGs in CNS pathologies as well as in immunity, both from a viewpoint of how they may inhibit repair and exacerbate damage in the CNS, and how they are involved in activation and function of peripheral immune cells, particularly in multiple sclerosis. Lastly, we address how CSPGs may be manipulated to improve disease outcomes.

  19. Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering (United States)

    Silva, Joana M.; Georgi, Nicole; Costa, Rui; Sher, Praveen; Reis, Rui L.; Van Blitterswijk, Clemens A.; Karperien, Marcel; Mano, João F.


    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs. PMID:23437056

  20. The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. (United States)

    Zuber, Hélène; Davidian, Jean-Claude; Aubert, Grégoire; Aimé, Delphine; Belghazi, Maya; Lugan, Raphaël; Heintz, Dimitri; Wirtz, Markus; Hell, Rüdiger; Thompson, Richard; Gallardo, Karine


    Sulfate is required for the synthesis of sulfur-containing amino acids and numerous other compounds essential for the plant life cycle. The delivery of sulfate to seeds and its translocation between seed tissues is likely to require specific transporters. In Arabidopsis (Arabidopsis thaliana), the group 3 plasmalemma-predicted sulfate transporters (SULTR3) comprise five genes, all expressed in developing seeds, especially in the tissues surrounding the embryo. Here, we show that sulfur supply to seeds is unaffected by T-DNA insertions in the SULTR3 genes. However, remarkably, an increased accumulation of sulfate was found in mature seeds of four mutants out of five. In these mutant seeds, the ratio of sulfur in sulfate form versus total sulfur was significantly increased, accompanied by a reduction in free cysteine content, which varied depending on the gene inactivated. These results demonstrate a reduced capacity of the mutant seeds to metabolize sulfate and suggest that these transporters may be involved in sulfate translocation between seed compartments. This was further supported by sulfate measurements of the envelopes separated from the embryo of the sultr3;2 mutant seeds, which showed differences in sulfate partitioning compared with the wild type. A dissection of the seed proteome of the sultr3 mutants revealed protein changes characteristic of a sulfur-stress response, supporting a role for these transporters in providing sulfate to the embryo. The mutants were affected in 12S globulin accumulation, demonstrating the importance of intraseed sulfate transport for the synthesis and maturation of embryo proteins. Metabolic adjustments were also revealed, some of which could release sulfur from glucosinolates.

  1. Heparan sulfate structure: methods to study N-sulfation and NDST action. (United States)

    Dagälv, Anders; Lundequist, Anders; Filipek-Górniok, Beata; Dierker, Tabea; Eriksson, Inger; Kjellén, Lena


    Heparan sulfate proteoglycans are important modulators of cellular processes where the negatively charged polysaccharide chains interact with target proteins. The sulfation pattern of the heparan sulfate chains will determine the proteins that will bind and the affinity of the interactions. The N-deacetylase/N-sulfotransferase (NDST) enzymes are of key importance during heparan sulfate biosynthesis when the sulfation pattern is determined. In this chapter, metabolic labeling of heparan sulfate with [(35)S]sulfate or [(3)H]glucosamine in cell cultures is described, in addition to characterization of polysaccharide chain length and degree of N-sulfation. Methods to measure NDST enzyme activity are also presented.

  2. Sulfate reduction in freshwater peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Oequist, M.


    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO{sub 4}{sup 2-} concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 {mu}M. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 {mu}M h{sup -1} while in B and C they were 1 and 0.05 {mu}M h{sup -1}, respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 {mu}g d{sup -1} g{sup -1}) were found 10 cm below the water table, in B (ca. 1.0 {mu}g d{sup -1} g{sup -1}) in the vicinity of the water table, and in C (0.75 {mu}g d{sup -1} g{sup -1}) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m{sup -2} d{sup -1}, while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m{sup -2} d{sup -1}, respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination

  3. Studies on Sulfation of Lycium barbarum Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    YI,Jian-Ping; YAN,Hong; ZHONG,Ru-Gang


    @@ Polysaccharides can anti-virus, such as human immunodeficiency virus (HIV-1),[1] herpes simplex virus (HSV-1,HSV-2) and cytomegalovirus. Some of them are sulfates, e.g. dextran sulfate, heparin, sulfonation of chitosan and sulfated derivatives of Lentinan. Our results showed that sulfated derivatives of Lycium barbarum polysaccharides (LBP)have anti-HIV activity. Because the anti-HIV activity of LBP was deeply dependent on the molecular weight, the sulfation pattern and glycosidic branches besides degree of sulfation (DS), so we emphasized our work on the factors of DS.

  4. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions. (United States)

    Krick, Wolfgang; Schnedler, Nina; Burckhardt, Gerhard; Burckhardt, Birgitta C


    Tubular reabsorption of sulfate is achieved by the sodium-dependent sulfate transporter, NaSi-1, located at the apical membrane, and the sulfate-anion exchanger, sat-1, located at the basolateral membrane. To delineate the physiological role of rat sat-1, [(35)S]sulfate and [(14)C]oxalate uptake into sat-1-expressing oocytes was determined under various experimental conditions. Influx of [(35)S]sulfate was inhibited by bicarbonate, thiosulfate, sulfite, and oxalate, but not by sulfamate and sulfide, in a competitive manner with K(i) values of 2.7 +/- 1.3 mM, 101.7 +/- 9.7 microM, 53.8 +/- 10.9 microM, and 63.5 +/- 38.7 microM, respectively. Vice versa, [(14)C]oxalate uptake was inhibited by sulfate with a K(i) of 85.9 +/- 9.5 microM. The competitive type of inhibition indicates that these compounds are most likely substrates of sat-1. Physiological plasma bicarbonate concentrations (25 mM) reduced sulfate and oxalate uptake by more than 75%. Simultaneous application of sulfate, bicarbonate, and oxalate abolished sulfate as well as oxalate uptake. These data and electrophysiological studies using a two-electrode voltage-clamp device provide evidence that sat-1 preferentially works as an electroneutral sulfate-bicarbonate or oxalate-bicarbonate exchanger. In kidney proximal tubule cells, sat-1 likely completes sulfate reabsorption from the ultrafiltrate across the basolateral membrane in exchange for bicarbonate. In hepatocytes, oxalate extrusion is most probably mediated either by an exchange for sulfate or bicarbonate.

  5. A sulfate conundrum: Dissolved sulfates of deep-saline brines and carbonate-associated sulfates (United States)

    Labotka, Dana M.; Panno, Samuel V.; Locke, Randall A.


    Sulfates in deeply circulating brines and carbonate-associated sulfates (CAS) within sedimentary units of the Cambrian strata in the Illinois Basin record a complex history. Dissolved sulfate within the Mt. Simon Sandstone brines exhibits average δ34SSO4 values of 35.4‰ and δ18OSO4 values of 14.6‰ and appears to be related to Cambrian seawater sulfate, either original seawater or sourced from evaporite deposits such as those in the Michigan Basin. Theoretical and empirical relationships based on stable oxygen isotope fractionation suggest that sulfate within the lower depths of the Mt. Simon brines has experienced a long period of isolation, possibly several tens of millions of years. Comparison with brines from other stratigraphic units shows the Mt. Simon brines are geochemically unique. Dissolved sulfate from brines within the Ironton-Galesville Sandstone averages 22.7‰ for δ34SSO4 values and 13.0‰ for δ18OSO4 values. The Ironton-Galesville brine has mixed with younger groundwater, possibly of Ordovician to Devonian age and younger. The Eau Claire Formation lies between the Mt. Simon and Ironton-Galesville Sandstones. The carbonate units of the Eau Claire and stratigraphically equivalent Bonneterre Formation contain CAS that appears isotopically related to the Late Pennsylvanian-Early Permian Mississippi Valley-type ore pulses that deposited large sulfide minerals in the Viburnum Trend/Old Lead Belt ore districts. The δ34SCAS values range from 21.3‰ to 9.3‰, and δ18OCAS values range from +1.4‰ to -2.6‰ and show a strong covariance (R2 = 0.94). The largely wholesale replacement of Cambrian seawater sulfate signatures in these dolomites does not appear to have affected the sulfate signatures in the Mt. Simon brines even though these sulfide deposits are found in the stratigraphically equivalent Lamotte Sandstone to the southwest. On the basis of this and previous studies, greater fluid densities of the Mt. Simon brines may have prevented the

  6. Podocyte injury caused by indoxyl sulfate, a uremic toxin and aryl-hydrocarbon receptor ligand.

    Directory of Open Access Journals (Sweden)

    Osamu Ichii

    Full Text Available Indoxyl sulfate is a uremic toxin and a ligand of the aryl-hydrocarbon receptor (AhR, a transcriptional regulator. Elevated serum indoxyl sulfate levels may contribute to progressive kidney disease and associated vascular disease. We asked whether indoxyl sulfate injures podocytes in vivo and in vitro. Mice exposed to indoxyl sulfate for 8 w exhibited prominent tubulointerstitial lesions with vascular damage. Indoxyl sulfate-exposed mice with microalbuminuria showed ischemic changes, while more severely affected mice showed increased mesangial matrix, segmental solidification, and mesangiolysis. In normal mouse kidneys, AhR was predominantly localized to the podocyte nuclei. In mice exposed to indoxyl sulfate for 2 h, isolated glomeruli manifested increased Cyp1a1 expression, indicating AhR activation. After 8 w of indoxyl sulfate, podocytes showed foot process effacement, cytoplasmic vacuoles, and a focal granular and wrinkled pattern of podocin and synaptopodin expression. Furthermore, vimentin and AhR expression in the glomerulus was increased in the indoxyl sulfate-exposed glomeruli compared to controls. Glomerular expression of characteristic podocyte mRNAs was decreased, including Actn4, Cd2ap, Myh9, Nphs1, Nphs2, Podxl, Synpo, and Wt1. In vitro, immortalized-mouse podocytes exhibited AhR nuclear translocation beginning 30 min after 1 mM indoxyl sulfate exposure, and there was increased phospho-Rac1/Cdc42 at 2 h. After exposure to indoxyl sulfate for 24 h, mouse podocytes exhibited a pro-inflammatory phenotype, perturbed actin cytoskeleton, decreased expression of podocyte-specific genes, and decreased cell viability. In immortalized human podocytes, indoxyl sulfate treatment caused cell injury, decreased mRNA expression of podocyte-specific proteins, as well as integrins, collagens, cytoskeletal proteins, and bone morphogenetic proteins, and increased cytokine and chemokine expression. We propose that basal levels of AhR activity regulate

  7. Placental sequestration of Plasmodium falciparum malaria parasites is mediated by the interaction between VAR2CSA and chondroitin sulfate A on syndecan-1

    DEFF Research Database (Denmark)

    Ayres Pereira, Marina; Mandel Clausen, Thomas; Pehrson, Caroline;


    (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull...

  8. Sulfation of thyroid hormone by estrogen sulfotransferase

    NARCIS (Netherlands)

    M.H.A. Kester (Monique); T.J. Visser (Theo); C.H. van Dijk (Caren); D. Tibboel (Dick); A.M. Hood (Margaret); N.J. Rose; W. Meinl; U. Pabel; H. Glatt; C.N. Falany; M.W. Coughtrie


    textabstractSulfation is one of the pathways by which thyroid hormone is inactivated. Iodothyronine sulfate concentrations are very high in human fetal blood and amniotic fluid, suggesting important production of these conjugates in utero. Human estrogen sulfotransferas

  9. Changes in composition and sulfation patterns of glycoaminoglycans in renal cell carcinoma. (United States)

    Ucakturk, Ebru; Akman, Orkun; Sun, Xiaojun; Baydar, Dilek Ertoy; Dolgun, Anil; Zhang, Fuming; Linhardt, Robert J


    Glycosaminoglycans (GAGs) are heterogeneous, linear, highly charged, anionic polysaccharides consisting of repeating disaccharides units. GAGs have some biological significance in cancer progression (invasion and metastasis) and cell signaling. In different cancer types, GAGs undergo specific structural changes. In the present study, in depth investigation of changes in sulfation pattern and composition of GAGs, heparan sulfate (HS)/heparin (HP), chondroitin sulfate (CS)/dermatan sulfate and hyaluronan (HA) in normal renal tissue (NRT) and renal cell carcinoma tissue (RCCT) were evaluated. The statistical evaluation showed that alteration of the HS (HSNRT = 415.1 ± 115.3; HSRCCT = 277.5 ± 134.3), and CS (CSNRT = 35.3 ± 12.3; CSRCCT = 166.7 ± 108.8) amounts (in ng/mg dry tissue) were statistically significant (p Sulfation pattern in NRT and RCCT was evaluated to reveal disaccharide profiles. Statistical analyses showed that RCCT samples contain significantly increased amounts (in units of ng/mg dry tissue) of 4SCS (NRT = 25.7 ± 9.4; RCCT = 117.1 ± 73.9), SECS (NRT = 0.7 ± 0.3; RCCT = 4.7 ± 4.5), 6SCS (NRT = 6.1 ± 2.7; RCCT = 39.4 ± 34.7) and significantly decreased amounts (in units of ng/mg dry tissue) of NS6SHS (RCCT = 28.6 ± 6.5, RCCT = 10.2 ± 8.0), NS2SHS (RCCT = 44.2 ± 13.8; RCCT = 27.2 ± 15.0), NSHS (NRT = 68.4 ± 15.8; RCCT = 50.4 ± 21.2), 2S6SHS (NRT = 1.0 ± 0.4; RCCT = 0.4 ± 0.3), and 6SHS (NRT = 60.6 ± 17.5; RCCT = 24.9 ± 12.3). If these changes in GAGs are proven to be specific and sensitive, they may serve as potential biomarkers in RCC. Our findings are likely to help us to show the direction for further investigations to be able to bring different diagnostic and prognostic approaches in renal tumors.

  10. Effects of glucosamine, chondroitin, or placebo in patients with osteoarthritis of hip or knee: network meta-analysis

    DEFF Research Database (Denmark)

    Wandel, Simon; Jüni, Peter; Tendal, Britta;


    visual analogue scale. DATA SOURCES: Electronic databases and conference proceedings from inception to June 2009, expert contact, relevant websites. Eligibility criteria for selecting studies Large scale randomised controlled trials in more than 200 patients with osteoarthritis of the knee or hip...... that compared glucosamine, chondroitin, or their combination with placebo or head to head. Results 10 trials in 3803 patients were included. On a 10 cm visual analogue scale the overall difference in pain intensity compared with placebo was -0.4 cm (95% credible interval -0.7 to -0.1 cm) for glucosamine, -0...

  11. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang


    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  12. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate and polymyxin B sulfate ophthalmic solution. 524.1484e Section 524.1484e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution....

  13. 21 CFR 582.1643 - Potassium sulfate. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  14. 21 CFR 184.1643 - Potassium sulfate. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  15. 21 CFR 582.5443 - Magnesium sulfate. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  16. 21 CFR 184.1443 - Magnesium sulfate. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to...

  17. Sulfate transport in Penicillium chrysogenum plasma membranes.


    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J. M.; Konings, Wil N.


    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded that the sulfate transport system catalyzes the symport of two protons with one sulfate anion.

  18. Extraction and structural properties of Acanthophora muscoides (Rhodophyceae extracellular matrix sulfated polysaccharides and their effects on coagulation

    Directory of Open Access Journals (Sweden)

    José Ariévilo Gurgel Rodrigues


    Full Text Available Acanthophora muscoides (Rhodophyta contains structurally heterogeneous sulfated polysaccharides (Am-SPs with pharmacological importance; however, its matrix SPs composition has not been still extensively investigated. This study sequentially extracted and compared the structural features and the in vitro anticoagulant effects of the Am-SPs. Papain-extraction sequence yielded Am.E-1, Am.E-2 and Am.E-3 containing differences among the relative proportions of sulfate (26.18-33% and hexoses (42.02-60.67% based on chemical analyses. One- (1H and two-dimensions (1H/13C nuclear magnetic resonance experiments showed very complex Am-SPs composed of alternating 4-linked-α-galactopyranosyl units and 3-linked-β-galactopyranosyl units presenting variable sulfation, CH3 substitutions and3,6-anhydro-α-L-galactose units and pyruvated-D-galactose residues, respectively, typical of agarocolloids. Different chromatographic profiles (DEAE-cellulose were observed, with fractions (Am I, Am II and Am III eluted with 0.5, 0.75 and/or 1 M of NaCl, respectively revealing charge density patterns and distinct mobility to heparin by agarose-electrophoresis and, when analyzed by polyacrylamide-electrophoresis, a dispersive migration and similar mobility as chondroitin-6-sulfate for Am I fractions were noted. Regarding the activated partial thromboplastin time test, fractions had no virtually anticoagulation (1.47→3.07 IU mg-1 in comparison with 193 IU mg-1 heparin. Therefore, Am-SPs show significantly lower anticoagulation than heparin.

  19. Transplantation of D15A-Expressing Glial-Restricted-Precursor-Derived Astrocytes Improves Anatomical and Locomotor Recovery after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Chunling Fan, Yiyan Zheng, Xiaoxin Cheng, Xiangbei Qi, Ping Bu, Xuegang Luo, Dong H. Kim, Qilin Cao


    Full Text Available The transplantation of neural stem/progenitor cells is a promising therapeutic strategy for spinal cord injury (SCI. In this study, we tested whether combination of neurotrophic factors and transplantation of glial-restricted precursor (GRPs-derived astrocytes (GDAs could decrease the injury and promote functional recovery after SCI. We developed a protocol to quickly produce a sufficiently large, homogenous population of young astrocytes from GRPs, the earliest arising progenitor cell population restricted to the generation of glia. GDAs expressed the axonal regeneration promoting substrates, laminin and fibronectin, but not the inhibitory chondroitin sulfate proteoglycans (CSPGs. Importantly, GDAs or its conditioned medium promoted the neurite outgrowth of dorsal root ganglion neurons in vitro. GDAs were infected with retroviruses expressing EGFP or multi-neurotrophin D15A and transplanted into the contused adult thoracic spinal cord at 8 days post-injury. Eight weeks after transplantation, the grafted GDAs survived and integrated into the injured spinal cord. Grafted GDAs expressed GFAP, suggesting they remained astrocyte lineage in the injured spinal cord. But it did not express CSPG. Robust axonal regeneration along the grafted GDAs was observed. Furthermore, transplantation of D15A-GDAs significantly increased the spared white matter and decreased the injury size compared to other control groups. More importantly, transplantation of D15A-GDAs significantly improved the locomotion function recovery shown by BBB locomotion scores and Tredscan footprint analyses. However, this combinatorial strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. These results demonstrate that transplantation of D15A-expressing GDAs promotes anatomical and locomotion recovery after SCI, suggesting it may be an effective therapeutic approach for SCI.

  20. Drug: D07633 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D07633 Mixture, Drug Chondroitin sulfate sodium - flavin adenine dinucleotide sodium mixt; sulfate sodium - FAD sodium mixt; Mucofadin (TN); Mucotear (TN) Chondroitin sulfate sodi...rgans 13 Agents affecting sensory organs 131 Ophthalmic agents 1319 Others D07633 Chondroitin sulfate sodium - flavin adenine dinucleotide sodium mixt PubChem: 96024455 ...

  1. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels. (United States)

    Brown, Cody F C; Yan, Jing; Han, Tim Tian Y; Marecak, Dale M; Amsden, Brian G; Flynn, Lauren E


    An injectable composite scaffold incorporating decellularized adipose tissue (DAT) as a bioactive matrix within a hydrogel phase capable of in situ polymerization would be advantageous for adipose-derived stem cell (ASC) delivery in the filling of small or irregular soft tissue defects. Building on previous work, the current study investigates DAT milling methods and the effects of DAT particle size and cell seeding density on the response of human ASCs encapsulated in photo-cross-linkable methacrylated chondroitin sulphate (MCS)-DAT composite hydrogels. DAT particles were generated by milling lyophilized DAT and the particle size was controlled through the processing conditions with the goal of developing composite scaffolds with a tissue-specific 3D microenvironment tuned to enhance adipogenesis. ASC proliferation and adipogenic differentiation were assessed in vitro in scaffolds incorporating small (average diameter of 38   ±   6 μm) or large (average diameter of 278   ±   3 μm) DAT particles in comparison to MCS controls over a period of up to 21 d. Adipogenic differentiation was enhanced in the composites incorporating the smaller DAT particles and seeded at the higher density of 5   ×   10(5) ASCs/scaffold, as measured by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, semi-quantitative analysis of perilipin expression and oil red O staining of intracellular lipid accumulation. Overall, this study demonstrates that decellularized tissue particle size can impact stem cell differentiation through cell-cell and cell-matrix interactions, providing relevant insight towards the rational design of composite biomaterial scaffolds for adipose tissue engineering.

  2. Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development. (United States)

    Melrose, James; Isaacs, Marc D; Smith, Susan M; Hughes, Clare E; Little, Christopher B; Caterson, Bruce; Hayes, Anthony J


    Novel sulphation motifs within the glycosaminoglycan chain structure of chondroitin sulphate (CS) containing proteoglycans (PGs) are associated with sites of growth, differentiation and repair in many biological systems and there is compelling evidence that they function as molecular recognition sites that are involved in the binding, sequestration or presentation of soluble signalling molecules (e.g. morphogens, growth factors and cytokines). Here, using monoclonal antibodies 3B3(-), 4C3 and 7D4, we examine the distribution of native CS sulphation motifs within the developing connective tissues of the human foetal knee joint, both during and after joint cavitation. We show that the CS motifs have broad, overlapping distributions within the differentiating connective tissues before the joint has fully cavitated; however, after cavitation, they all localise very specifically to the presumptive articular cartilage tissue. Comparisons with the labelling patterns of heparan sulphate (HS), HS-PGs (perlecan, syndecan-4 and glypican-6) and FGF-2, molecules with known signalling roles in development, indicate that these also become localised to the future articular cartilage tissue after joint cavitation. Furthermore, they display interesting, overlapping distributions with the CS motifs, reflective of early tissue zonation. The overlapping expression patterns of these molecules at this site suggests they are involved, or co-participate, in early morphogenetic events underlying articular cartilage formation; thus having potential clinical relevance to mechanisms involved in its repair/regeneration. We propose that these CS sulphation motifs are involved in modulating the signalling gradients responsible for the cellular behaviours (proliferation, differentiation, matrix turnover) that shape the zonal tissue architecture present in mature articular cartilage.

  3. Tris(ethylenediaminecobalt(II sulfate

    Directory of Open Access Journals (Sweden)

    Bunlawee Yotnoi


    Full Text Available The structure of the title compound, [CoII(C2H8N23]SO4, the cobalt example of [M(C2H8N23]SO4, is reported. The Co and S atoms are located at the 2d and 2c Wyckoff sites (point symmetry 32, respectively. The Co atom is coordinated by six N atoms of three chelating ethylenediamine molecules generated from half of the ethylenediamine molecule in the asymmetric unit. The O atoms of the sulfate anion are disordered mostly over two crystallographic sites. The third disorder site of O (site symmetry 3 has a site occupancy approaching zero. The H atoms of the ethylenediamine molecules interact with the sulfate anions via intermolecular N—H...O hydrogen-bonding interactions.

  4. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. (United States)

    Yatusevich, Ruslan; Mugford, Sarah G; Matthewman, Colette; Gigolashvili, Tamara; Frerigmann, Henning; Delaney, Sean; Koprivova, Anna; Flügge, Ulf-Ingo; Kopriva, Stanislav


    Glucosinolates are plant secondary metabolites involved in responses to biotic stress. The final step of their synthesis is the transfer of a sulfo group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) onto a desulfo precursor. Thus, glucosinolate synthesis is linked to sulfate assimilation. The sulfate donor for this reaction is synthesized from sulfate in two steps catalyzed by ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate kinase (APK). Here we demonstrate that R2R3-MYB transcription factors, which are known to regulate both aliphatic and indolic glucosinolate biosynthesis in Arabidopsis thaliana, also control genes of primary sulfate metabolism. Using trans-activation assays we found that two isoforms of APK, APK1, and APK2, are regulated by both classes of glucosinolate MYB transcription factors; whereas two ATPS genes, ATPS1 and ATPS3, are differentially regulated by these two groups of MYB factors. In addition, we show that the adenosine 5'-phosphosulfate reductases APR1, APR2, and APR3, which participate in primary sulfate reduction, are also activated by the MYB factors. These observations were confirmed by analysis of transgenic lines with modulated expression levels of the glucosinolate MYB factors. The changes in transcript levels also affected enzyme activities, the thiol content and the sulfate reduction rate in some of the transgenic plants. Altogether the data revealed that the MYB transcription factors regulate genes of primary sulfate metabolism and that the genes involved in the synthesis of activated sulfate are part of the glucosinolate biosynthesis network.

  5. Sulfation and biological activities of konjac glucomannan. (United States)

    Bo, Surina; Muschin, Tegshi; Kanamoto, Taisei; Nakashima, Hideki; Yoshida, Takashi


    The sulfation of konjac glucomannan and its anti-HIV and blood anticoagulant activities were investigated. Konjac glucomannan is a polysaccharide occurring naturally in konjac plant tubers and has high molecular weights. Solubility in water is very low, and the aqueous solutions at low concentrations have high viscosity. Before sulfation, hydrolysis by diluted sulfuric acid was carried out to decrease the molecular weights of M¯n=19.2 × 10(4)-0.2 × 10(4). Sulfation with piperidine-N-sulfonic acid or SO3-pyridine complex gave sulfated konjac glucomannans with molecular weights of M¯n=1.0 × 10(4)-0.4 × 10(4) and degrees of sulfation (DS) of 1.3-1.4. It was found that the sulfated konjac glucomannans had potent anti-HIV activity at a 50% effective concentration, (EC50) of 1.2-1.3 μg/ml, which was almost as high as that of an AIDS drug, ddC, whose EC50=3.2 μg/ml, and moderate blood anticoagulant activity, AA=0.8-22.7 units/mg, compared to those of standard sulfated polysaccharides, curdlan (10 units/mg) and dextran (22.7 units/mg) sulfates. Structural analysis of sulfated konjac glucomannans with negatively charged sulfated groups was performed by high resolution NMR, and the interaction between poly-l-lysine with positively charged amino groups as a model compound of proteins and peptides was measured by surface plasmon resonance measurement, suggesting that the sulfated konjac glucomannans had a high binding stability on immobilized poly-l-lysine. The binding of sulfated konjac glucomannan was concentration-dependent, and the biological activity of the sulfated konjac glucomannans may be due to electrostatic interaction between the sulfate and amino groups.

  6. Human cytosolic sulfotransferase SULT1C4 mediates the sulfation of doxorubicin and epirubicin. (United States)

    Luo, Lijun; Zhou, Chunyang; Hui, Ying; Kurogi, Katsuhisa; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh


    Doxorubicin, an anthracycline, has been reported to be excreted in sulfate conjugated form. The current study aimed to identify the human cytosolic sulfotransferase(s) (SULT(s)) that is(are) capable of sulfating doxorubicin and its analog epirubicin, and to verify whether sulfation of doxorubicin and epirubicin may occur under metabolic conditions. A systematic analysis of thirteen known human SULTs, previously cloned, expressed, and purified, revealed SULT1C4 as the only human SULT capable of sulfating doxorubicin and epirubicin. Cultured HepG2 human hepatoma cells and Caco-2 human colon carcinoma cells were labeled with [(35)S]sulfate in the presence of different concentrations of doxorubicin or epirubicin. Analysis of spent labeling media showed the generation and release of [(35)S]sulfated doxorubicin and epirubicin by HepG2 cells and Caco-2 cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the expression of SULT1C4 in both HepG2 cells and Caco-2 cells. These results provided a molecular basis underlying the previous finding that sulfate-conjugated doxorubicin was excreted in the urine of patients treated with doxorubicin.

  7. Conditional expression of CD44 isoforms in lymphoma cells: influence on hyaluronate binding and tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Fu, J.


    CD44 describes a family of surface proteins consisting of many isoforms due to alternative splice of ten 'variant' exons. Members of this family are involved in various processes including hematopoiesis, lymphocyte activation and homing, limb development, wound healing and tumor progression. Clinically, CD44 has been shown to be a prognostic factor for several human cancers. To answer the question which isoform might be relevant for tumor progression and to gain an insight into the mechanism of its function, I established transfectants of the LB lymphoma cell line in which the expression of four CD44 isoforms, namely CD44v3-10, CD44v4-10, CD44v8-10 and CD44s, was controlled by the Tet-off promoter. In the presence of Doxycycline, the expression was repressed. Removal of Doxycycline switched on expression and the maximal CD44 amount was obtained within two days. The transfectants were characterized regarding their ability to bind to the extracellular matrix component hyaluronate (HA). Overexpression of all four CD44 isoforms conferred the ability to bind HA on LB cells. Other glycosaminoglycans (GAGs) were bound in an isotype-specific fashion. CD44v3-10, CD44v4-10 and CD44v8-10 showed high binding affinity to chondroitin A, B and C, and low affinity to heparin, heparan sulfate and keratan sulfate. CD44s could not bind to these GAGs. Among these three variants, the binding ability of CD44v3-10 was the strongest. CD44 clustering seemed to play a crucial role for HA binding. Both CD44s and CD44v8-10 formed reduction-sensitive complexes in LB cells. The complexes are homooligomers or heterooligomers composed of different isoforms. Cys286 in CD44 transmember domain was not responsible for the formation of reduction-sensitive oligomer or for the enhanced HA binding in LB cell line. Using a conditional dimerization system the requirement of CD44 oligomerization for HA binding was directly demonstrated. The induction of oligomerization increased HA binding

  8. Evaluating Deterioration of Concrete by Sulfate Attack

    Institute of Scientific and Technical Information of China (English)


    Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfate attack was used to evaluate the deterioration degree of concrete damaged by sulfate. The relationship between the resistance of concrete to sulfate attack and its permeability/porosity were analyzed as well as its responding mechanism. Results show that the depth of sulfate crystal attack from surface to inner of concrete can be reduced by decreasing w/c and addition of combining fly ash with silica fume. The variation of relative elastic modulus ratio and relative flexural strength ratio of various specimens before and after being subjected to sulfate attack was compared.

  9. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth. (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M


    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  10. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal


    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  11. In situ synthesised TiO2-chitosan-chondroitin 4-sulphate nanocomposites for bone implant applications. (United States)

    Alex, Martina Jenitha; Periasamy, Prabu; Mohan, Kalirajan; Sekar, Sankar; Prabha, Kavitha Kandiah Suriya; Venkatachalam, Rajendran


    The artificial materials for bone implant applications are gaining more importance in the recent years. The series titania-chitosan-chondroitin 4-sulphate nanocomposites of three different concentrations (2:1:x, where x- 0.125, 0.25, 0.5) have been synthesised by in situ sol-gel method and characterised by various techniques. The particle size of the nanocomposites ranges from 30-50 nm. The bioactivity, swelling nature, and the antimicrobial nature of the nanocomposites were investigated. The swelling ability and bioactivity of the composites is significantly greater and they possess high zone of inhibition against the microorganisms such as Staphylococcus aureus and Escherichia coli. The cell viability of the nanocomposites were evaluated by using MG-63 and observed the composites possess high cell viability at low concentration. The excellent bioactivity and biocompatibility makes these nanocomposites a promising biomaterial for bone implant applications.

  12. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. (United States)

    Christianson, Helena C; Svensson, Katrin J; van Kuppevelt, Toin H; Li, Jin-Ping; Belting, Mattias


    Extracellular vesicle (EV)-mediated intercellular transfer of signaling proteins and nucleic acids has recently been implicated in the development of cancer and other pathological conditions; however, the mechanism of EV uptake and how this may be targeted remain as important questions. Here, we provide evidence that heparan sulfate (HS) proteoglycans (PGs; HSPGs) function as internalizing receptors of cancer cell-derived EVs with exosome-like characteristics. Internalized exosomes colocalized with cell-surface HSPGs of the syndecan and glypican type, and exosome uptake was specifically inhibited by free HS chains, whereas closely related chondroitin sulfate had no effect. By using several cell mutants, we provide genetic evidence of a receptor function of HSPG in exosome uptake, which was dependent on intact HS, specifically on the 2-O and N-sulfation groups. Further, enzymatic depletion of cell-surface HSPG or pharmacological inhibition of endogenous PG biosynthesis by xyloside significantly attenuated exosome uptake. We provide biochemical evidence that HSPGs are sorted to and associate with exosomes; however, exosome-associated HSPGs appear to have no direct role in exosome internalization. On a functional level, exosome-induced ERK1/2 signaling activation was attenuated in PG-deficient mutant cells as well as in WT cells treated with xyloside. Importantly, exosome-mediated stimulation of cancer cell migration was significantly reduced in PG-deficient mutant cells, or by treatment of WT cells with heparin or xyloside. We conclude that cancer cell-derived exosomes use HSPGs for their internalization and functional activity, which significantly extends the emerging role of HSPGs as key receptors of macromolecular cargo.

  13. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming


    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe th...

  14. Discovery of a Heparan sulfate 3- o -sulfation specific peeling reaction

    NARCIS (Netherlands)

    Huang, Yu; Mao, Yang; Zong, Chengli; Lin, Cheng; Boons, Geert Jan; Zaia, Joseph


    Heparan sulfate (HS) 3-O-sulfation determines the binding specificity of HS/heparin for antithrombin III and plays a key role in herpes simplex virus (HSV) infection. However, the low natural abundance of HS 3-O-sulfation poses a serious challenge for functional studies other than the two cases ment

  15. The endometrial cancer cell lines Ishikawa and HEC-1A, and the control cell line HIEEC, differ in expression of estrogen biosynthetic and metabolic genes, and in androstenedione and estrone-sulfate metabolism. (United States)

    Hevir-Kene, Neli; Rižner, Tea Lanišnik


    Estrogens have important roles in the pathogenesis of endometrial cancer. They can have carcinogenic effects through stimulation of cell proliferation or formation of DNA-damaging species. To characterize model cell lines of endometrial cancer, we determined the expression profiles of the estrogen receptors (ERs) ESR1, ESR2 and GPER, and 23 estrogen biosynthetic and metabolic genes, and investigated estrogen biosynthesis in the control HIEEC cell line and the Ishikawa and HEC-1A EC cell lines. HIEEC and Ishikawa expressed all ERs to different extents, while HEC-1A cells lacked expression of ESR1. Considering the estrogen biosynthetic and metabolic enzymes, these cells showed statistically significant different gene expression profiles for SULT2B1, HSD3B2, CYP19A1, AKR1C3, HSD17B1, HSD17B7, HSD17B12, CYP1B1, CYP3A5, COMT, SULT1A1, GSTP1 and NQO2. In these cells, E2 was formed from E1S and E1, while androstenedione was not converted to estrogens. HIEEC and Ishikawa had similar profiles of androstenedione and E1 metabolism, but hydrolysis of E1S to E1 was weaker in Ishikawa cells. HEC-1A cells were less efficient for activation of E1 into the potent E2, but metabolized androstenedione to other androgenic metabolites better than HIEEC and Ishikawa cells. This study reveals that HIEEC, Ishikawa, and HEC-1A cells can all form estrogens only via the sulfatase pathway. HIEEC, Ishikawa, and HEC-1A cells expressed all the major genes in the production of hydroxyestrogens and estrogen quinones, and in their conjugation. Significantly higher CYP1B1 mRNA levels in Ishikawa cells compared to HEC-1A cells, together with lack of UGT2B7 expression, indicate that Ishikawa cells can accumulate more toxic estrogen-3,4-quinones than HEC-1A cells, as also for HIEEC cells. This study provides further characterization of HIEEC, Ishikawa, and HEC-1A cells, and shows that they differ greatly in expression of the genes investigated and in their capacity for E2 formation, and thus they

  16. Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate. (United States)

    Dou, Wenfang; Xu, Yongmei; Pagadala, Vijayakanth; Pedersen, Lars C; Liu, Jian


    Heparan sulfate (HS) is a highly sulfated polysaccharide that plays important physiological roles. The biosynthesis of HS involves a series of enzymes, including glycosyltransferases (or HS polymerase), epimerase, and sulfotransferases. N-Deacetylase/N-Sulfotransferase isoform 1 (NDST-1) is a critical enzyme in this pathway. NDST-1, a bifunctional enzyme, displays N-deacetylase and N-sulfotransferase activities to convert an N-acetylated glucosamine residue to an N-sulfo glucosamine residue. Here, we report the cooperative effects between N-deacetylase and N-sulfotransferase activities. Using baculovirus expression in insect cells, we obtained three recombinant proteins: full-length NDST-1 and the individual N-deacetylase and N-sulfotransferase domains. Structurally defined oligosaccharide substrates were synthesized to test the substrate specificities of the enzymes. We discovered that N-deacetylation is the limiting step and that interplay between the N-sulfotransferase and N-deacetylase accelerates the reaction. Furthermore, combining the individually expressed N-deacetylase and N-sulfotransferase domains produced different sulfation patterns when compared with that made by the NDST-1 enzyme. Our data demonstrate the essential role of domain cooperation within NDST-1 in producing HS with specific domain structures.

  17. Fucoidans - sulfated polysaccharides of brown algae

    Energy Technology Data Exchange (ETDEWEB)

    Usov, Anatolii I; Bilan, M I [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)


    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  18. Fucoidans — sulfated polysaccharides of brown algae (United States)

    Usov, Anatolii I.; Bilan, M. I.


    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  19. Multiplicity of Sulfate and Molybdate Transporters and Their Role in Nitrogen Fixation in Rhizobium leguminosarum bv. viciae Rlv3841. (United States)

    Cheng, Guojun; Karunakaran, Ramakrishnan; East, Alison K; Poole, Philip S


    Rhizobium leguminosarum Rlv3841 contains at least three sulfate transporters, i.e., SulABCD, SulP1 and SulP2, and a single molybdate transporter, ModABC. SulABCD is a high-affinity transporter whose mutation prevented growth on a limiting sulfate concentration, while SulP1 and SulP2 appear to be low-affinity sulfate transporters. ModABC is the sole high-affinity molybdate transport system and is essential for growth with NO3(-) as a nitrogen source on limiting levels of molybdate (molybdate, a quadruple mutant with all four transporters inactivated, had the longest lag phase on NO3(-), suggesting these systems all make some contribution to molybdate transport. Growth of Rlv3841 on limiting levels of sulfate increased sulB, sulP1, modB, and sulP2 expression 313.3-, 114.7-, 6.2-, and 4.0-fold, respectively, while molybdate starvation increased only modB expression (three- to 7.5-fold). When grown in high-sulfate but not low-sulfate medium, pea plants inoculated with LMB695 (modB) reduced acetylene at only 14% of the wild-type rate, and this was not further reduced in the quadruple mutant. Overall, while modB is crucial to nitrogen fixation at limiting molybdate levels in the presence of sulfate, there is an unidentified molybdate transporter also capable of sulfate transport.

  20. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge


    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  1. High cell density cultivation of Escherichia coli K4 in a microfiltration bioreactor: a step towards improvement of chondroitin precursor production

    Directory of Open Access Journals (Sweden)

    De Rosa Mario


    Full Text Available Abstract Background The bacteria Escherichia coli K4 produces a capsular polysaccharide (K4 CPS whose backbone is similar to the non sulphated chondroitin chain. The chondroitin sulphate is one of the major components of the extra-cellular matrix of the vertebrate connective tissues and a high value molecule, widely employed as active principle in the treatment of osteoarthritis. It is usually obtained by extraction from animal tissues, but the risk of virus contaminations, as well as the scarceness of raw material, makes this productive process unsafe and unable to satisfy the growing market demand. In previous studies a new biotechnological process to produce chondroitin from Escherichia coli K4 capsular polysaccharide was investigated and a 1.4 g·L-1 K4 CPS concentration was reached using fed-batch fermentation techniques. In this work, on the trail of these results, we exploited new fermentation strategies to further improve the capsular polysaccharide production. Results The inhibitory effect of acetate on the bacterial cells growth and K4 CPS production was studied in shake flask conditions, while a new approach, that combined the optimization of the feeding profiles, the improvement of aeration conditions and the use of a microfiltration bioreactor, was investigated in three different types of fermentation processes. High polysaccharide concentrations (4.73 ± 0.2 g·L-1, with corresponding average yields (0.13 ± 0.006 gK4 CPS·gcdw-1, were obtained; the increase of K4 CPS titre, compared to batch and fed-batch results, was of 16-fold and 3.3-fold respectively, while average yield was almost 3.5 and 1.4 fold higher. Conclusion The increase of capsular polysaccharide titre confirmed the validity of the proposed fermentation strategy and opened the way to the use of the microfiltration bioreactor for the biotechnological production of chondroitin.

  2. Pregnenolone sulfate activates basic region leucine zipper transcription factors in insulinoma cells: role of voltage-gated Ca2+ channels and transient receptor potential melastatin 3 channels. (United States)

    Müller, Isabelle; Rössler, Oliver G; Thiel, Gerald


    The neurosteroid pregnenolone sulfate activates a signaling cascade in insulinoma cells involving activation of extracellular signal-regulated protein kinase and enhanced expression of the transcription factor Egr-1. Here, we show that pregnenolone sulfate stimulation leads to a significant elevation of activator protein-1 (AP-1) activity in insulinoma cells. Expression of the basic region leucine zipper (bZIP) transcription factors c-Jun and c-Fos is up-regulated in insulinoma cells and pancreatic β-cells in primary culture after pregnenolone sulfate stimulation. Up-regulation of a chromatin-embedded c-Jun promoter/luciferase reporter gene transcription in pregnenolone sulfate-stimulated insulinoma cells was impaired when the AP-1 binding sites were mutated, indicating that these motifs function as pregnenolone sulfate response elements. In addition, phosphorylation of cAMP response element (CRE)-binding protein is induced and transcription of a CRE-controlled reporter gene is stimulated after pregnenolone sulfate treatment, indicating that the CRE functions as a pregnenolone sulfate response element as well. Pharmacological and genetic experiments revealed that both L-type Ca(2+) channels and transient receptor potential melastatin 3 (TRPM3) channels are essential for connecting pregnenolone sulfate stimulation with enhanced AP-1 activity and bZIP-mediated transcription in insulinoma cells. In contrast, pregnenolone sulfate stimulation did not enhance AP-1 activity or c-Jun and c-Fos expression in pituitary corticotrophs that express functional L-type Ca(2+) channels but only trace amounts of TRPM3. We conclude that expression of L-type Ca(2+) channels is not sufficient to activate bZIP-mediated gene transcription by pregnenolone sulfate. Rather, additional expression of TRPM3 or depolarization of the cells is required to connect pregnenolone sulfate stimulation with enhanced gene transcription.

  3. Optimization of a biological sulfate reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, A.


    A biological sulfate reduction process is presented. It is intended to treat sulfate wastes by converting them to hydrogen sulfide which can be further oxidized to elemental sulfur. An optimization study of a completely-mixed reactor system was performed. Major operating parameters were determined at the bench-scale level. The study was conducted in batch-culture experiments, using a mixed Desulfovibrio culture from sewage. Kinetic values were extrapolated using the Michaelis-Menten model, which best fitted the experimental data. The iron loading and the sulfate loading significantly affected the growth and metabolism of sulfate reducing bacteria (SRB). A model to determine V/sub m/ from the iron and sulfate loading values was explored. The model is limited by sulfate loading greater than 4.3 g/l, where bacterial growth is inhibited. Iron loading is not anticipated to suppress the bacterial metabolism efficiency since it remained in the linear pattern even at inhibition levels. Studies of the metabolic behavior of SRB, using lactic acid as the carbon source, showed a requirement of 2.7 moles of lactate for each mole of sulfate. This technique and its application to the sulfur recovery process are discussed.

  4. Di-sulfated Keratan Sulfate as a Novel Biomarker for Mucopolysaccharidosis II, IVA, and IVB. (United States)

    Shimada, Tsutomu; Tomatsu, Shunji; Mason, Robert W; Yasuda, Eriko; Mackenzie, William G; Hossain, Jobayer; Shibata, Yuniko; Montaño, Adriana M; Kubaski, Francyne; Giugliani, Roberto; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji E; Fukao, Toshiyuki; Orii, Tadao


    Keratan sulfate (KS) is a storage material in mucopolysaccharidosis IV (MPS IV). However, no detailed analysis has been reported on subclasses of KS: mono-sulfated KS and di-sulfated KS. We established a novel method to distinguish and quantify mono- and di-sulfated KS using liquid chromatography-tandem mass spectrometry and measured both KS levels in various specimens.Di-sulfated KS was dominant in shark cartilage and rat serum, while mono-sulfated KS was dominant in bovine cornea and human serum. Levels of both mono- and di-sulfated KS varied with age in the blood and urine from control subjects and patients with MPS II and IVA. The mean levels of both forms of KS in the plasma/serum from patients with MPS II, IVA, and IVB were elevated compared with that in age-matched controls. Di-sulfated KS provided more significant difference between MPS IVA and the age-matched controls than mono-sulfated KS. The ratio of di-sulfated KS to total KS in plasma/serum increased with age in control subjects and patients with MPS II but was age independent in MPS IVA patients. Consequently, this ratio can discriminate younger MPS IVA patients from controls. Levels of mono- and di-sulfated KS in urine of MPS IVA and IVB patients were all higher than age-matched controls for all ages studied.In conclusion, the level of di-sulfated KS and its ratio to total KS can distinguish control subjects from patients with MPS II, IVA, and IVB, indicating that di-sulfated KS may be a novel biomarker for these disorders.

  5. Using Terrestrial Sulfate Efflorescences as an Analogue of Hydrated Sulfate Formation in Valles Marineris on Mars (United States)

    Smith, P. C.; Szynkiewicz, A.


    Hydrated sulfate minerals provide conclusive evidence that a hydrologic cycle was once active on the surface of Mars. Two classes of hydrated sulfate minerals have been detected by robotic instruments on Mars: monohydrated sulfate minerals comprised of kieserite and gypsum, and various polyhydrated sulfates with Fe-Ca-Na-Mg-rich compositions. These minerals are found in various locations on Mars, including large surface exposures in valley settings of Valles Marineris. However, the sulfate sources and formation mechanisms of these minerals are not yet well understood.Recently, it has been suggested that the sulfate minerals in Valles Marineris might have formed in a manner similar to sulfate efflorescences found in dry environments on Earth. In this study, we use sulfate effloresences from the Rio Puerco Watershed, New Mexico as a terrestrial analogue to assess major factors that might have led to deposition of sulfate minerals in Valles Marineris. In different seasons indicative of dry and wet conditions, we collected field photographs and sediment samples for chemical and stable isotopic analyses (sulfur content, δ34S) to determine major sources of sulfate ions for efflorescences and to assess how the seasonal changes in surface/groundwater activity affect their formation. Preliminary sulfur isotope results suggest that oxidation of bedrock sulfides (0.01-0.05 wt. S %) is a major source of sulfate ion for efflorescences formation because their δ34S varied in negative range (-28 to -20‰) similar to sulfides (average -32‰). Using field photographs collected in Oct 2006, Feb and Nov 2012, May 2013, Mar and Oct 2014, we infer that the highest surface accumulation of sulfate efflorescences in the studied analog site was observed after summer monsoon seasons when more water was available for surface and subsurface transport of solutes from chemical weathering. Conversely, spring snow melt led to enhanced dissolution of sulfate efflorescences.

  6. Sulfated binary and trinary oxide solid superacids

    Institute of Scientific and Technical Information of China (English)

    缪长喜; 华伟明; 陈建民; 高滋


    A series of sulfated binary and trinary oxide solid superacids were prepared, and their catalytic activities for n-butane isomerization at low temperature were measured. The incorporation of different metal oxides into ZrO2 may produce a positive or negative effect on the acid strength and catalytic activity of the solid superacids. Sulfated oxides of Cr-Zr, Fe-Cr-Zr and Fe-V-Zr are 2 - 3 times more active than the reported sulfated Fe-Mn-Zr oxide. The enhancement in the superacidity and catalytic activity of these new solid superacids has been discussed on account of the results of various characteriation techniques.

  7. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.


    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... the presence of radioactively labeled tyrosine. These techniques have been described in detail previously. The aim of this chapter is to present alternative analytical methods of Tyr sulfation than radioisotope incorporation before analysis Udgivelsesdato: 2008...

  8. Combinatorial roles of heparan sulfate proteoglycans and heparan sulfates in Caenorhabditis elegans neural development.

    Directory of Open Access Journals (Sweden)

    Tarja K Kinnunen

    Full Text Available Heparan sulfate proteoglycans (HSPGs play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS glycans. However, whether a specific HSPG (such as syndecan contains HS modifications that differ from another HSPG (such as glypican has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease.

  9. Biosensor analysis of the molecular interactions of pentosan polysulfate and of sulfated glycosaminoglycans with immobilized elastase, hyaluronidase and lysozyme using surface plasmon resonance (SPR) technology. (United States)

    Shen, Bojiang; Shimmon, Susan; Smith, Margaret M; Ghosh, Peter


    Pentosan polysulfate (NaPPS) and chondroitin sulfates (ChSs) have recently been shown to exhibit both symptom and disease modifying activities in osteoarthritis (OA), but their respective mechanisms of action are still the subject of conjecture. Excessive catabolism of joint articular cartilage is considered to be responsible for the initiation and progression of OA but the abilities of these drugs to mitigate this process has received only limited attention. Human neutrophil elastase (HNE) is a proteinase, which can degrade the collagens and proteoglycans (PGs) of the cartilage directly or indirectly by activating latent matrix metalloproteinases. Hyaluronidase (HAase) is an endoglycosidase, which degrades glycosaminoglycans including hyaluronan, which provides the aggregating component of the PG aggrecan complex. In the present study the molecular interactions between the NaPPS, ChSs and some other sulfated polysaccharides with immobilized HNE, HAase or lysozyme (a cationic protein implicated in PG metabolism) were studied using a SPR biosensor device-BIAcore2000. The above three enzymes were covalently immobilized to a biosensor chip CM5 separately using amine coupling. The binding affinity of each sulfated polysaccharide and the kinetics of NaPPS over the concentration range of 0.3-5.0 microg/ml were determined. The inhibition of HNE by the sulfated polysaccharides as determined using the synthetic substrate succinyl-Ala-Ala-Val-nitroanilide (SAAVNA) in a functional assay was compared with their respective binding affinities for this proteinase using the BIAcore system. The results obtained with the two independent techniques showed good correlation and indicated that the degree and ring positions of oligosaccharide sulfation were major determinants of enzyme inhibitory activity. The observed difference in order of binding affinities of the drugs to the immobilized HNE, HAase and lysozyme suggests a conformational relationship, in addition to the charge

  10. Characterization of human placental glycosaminoglycans and regional binding to VAR2CSA in malaria infected erythrocytes

    DEFF Research Database (Denmark)

    Beaudet, Julie M; Mansur, Leandra; Joo, Eun Ji;


    expressing VAR2CSA on the erythrocyte surface. This protein adheres to a low-sulfated chondroitin sulfate-A found in placental tissue causing great harm to both mother and developing fetus. In rare cases, the localization of infected erythrocytes to the placenta can even result in the vertical transmission...

  11. Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways. (United States)

    Zhou, Lin; Song, Fangming; Liu, Qian; Yang, Mingli; Zhao, Jinmin; Tan, Renxiang; Xu, Jun; Zhang, Ge; Quinn, Julian M W; Tickner, Jennifer; Xu, Jiake


    Osteoporosis, a metabolic bone disease, is characterized by an excessive formation and activation of osteoclasts. Anti-catabolic treatment using natural compounds has been proposed as a potential therapeutic strategy against the osteoclast related osteolytic diseases. In this study, the activity of berberine sulfate (an orally available form of berberine) on osteoclast differentiation and its underlying molecular mechanisms of action were investigated. Using bone marrow macrophages (BMMs) derived osteoclast culture system, we showed that berberine sulfate at the dose of 0.25, 0.5 and 1 μM significantly inhibited the formation of osteoclasts. Notably, berberine sulfate at these doses did not affect the BMM viability. In addition, we observed that berberine sulfate inhibited the expression of osteoclast marker genes, including cathepsin K (Ctsk), nuclear factor of activated T cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAcP, Acp5) and Vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2). Luciferase reporter gene assay and Western blot analysis further revealed that berberine sulfate inhibits receptor for activation of nuclear factor ligand (RANKL)-induced NF-κB and NFAT activity. Taken together, our results suggest that berberine sulfate is a natural compound potentially useful for the treatment of osteoporosis.

  12. Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia. (United States)

    Milucka, Jana; Widdel, Friedrich; Shima, Seigo


    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) at marine gas seeps is performed by archaeal-bacterial consortia that have so far not been cultivated in axenic binary or pure cultures. Knowledge about possible biochemical reactions in AOM consortia is based on metagenomic retrieval of genes related to those in archaeal methanogenesis and bacterial sulfate reduction, and identification of a few catabolic enzymes in protein extracts. Whereas the possible enzyme for methane activation (a variant of methyl-coenzyme M reductase, Mcr) was shown to be harboured by the archaea, enzymes for sulfate activation and reduction have not been localized so far. We adopted a novel approach of fluorescent immunolabelling on semi-thin (0.3-0.5 μm) cryosections to localize two enzymes of the SR pathway, adenylyl : sulfate transferase (Sat; ATP sulfurylase) and dissimilatory sulfite reductase (Dsr) in microbial consortia from Black Sea methane seeps. Both Sat and Dsr were exclusively found in an abundant microbial morphotype (c. 50% of all cells), which was tentatively identified as Desulfosarcina/Desulfococcus-related bacteria. These results show that ANME-2 archaea in the Black Sea AOM consortia did not express bacterial enzymes of the canonical sulfate reduction pathway and thus, in contrast to previous suggestions, most likely cannot perform canonical sulfate reduction. Moreover, our results show that fluorescent immunolabelling on semi-thin cryosections which to our knowledge has been so far only applied on cell tissues, is a powerful tool for intracellular protein detection in natural microbial associations.

  13. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)


    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  14. RO