WorldWideScience

Sample records for cholorotoxin-conjugated iron oxide

  1. Iron oxide modified minerals

    Czech Academy of Sciences Publication Activity Database

    Mashlan, M.; Bartoňková, H.; Jančík, D.; Tuček, J.; Martinec, Petr

    2009-01-01

    Roč. 191, 1-3 (2009), s. 151-157. ISSN 0304-3843 Institutional research plan: CEZ:AV0Z30860518 Keywords : Mössbauer spectroscopy * clay minerals * iron oxide * nanoparticle Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.209, year: 2007 http://www.springerlink.com/content/9870444lu2g66382/fulltext.pdf

  2. Iron oxides photochemical dissolution

    International Nuclear Information System (INIS)

    This work was intended to study the light irradiation influence of diverse wave-lengths on iron oxides dissolution in aqueous solutions. The objectives of this work were: the exploration of photochemical processes with the aim of its eventual application in: a) decontamination and chemical cleaning under special conditions; b) materials for solar energy conversion. (Author)

  3. Superparamagnetic iron oxide

    International Nuclear Information System (INIS)

    Superparamagnetic iron oxide (AMI 25) is a promising new contrast agent for imaging the reticuloendothelial-system. Iron oxide crystals possess a large magnetic susceptibility and enhance proton relaxation rates, especially transverse relaxation (T2). In order to guide the clinical utilization of this contrast media 4 patients with malignant lesions of the liver are analyzed before and after slow intravenous administration (20 μmol Fe/kg) of AMI 25. Two magnetic resonance (MR) sequences are performed at different times using 0.35 T magnet. MR signal-to-noise ratio (SNR) of the reticuloendothelial-system (particularly the liver SNR) decrease promptly. The maximum decrease in SNR (67-72 percent for the liver, 46-65 percent for the spleen, 23-41 percent for the bone marrow) is observed 3 h after injection (P<0.01). However, except the peak of contrast enhancement in T1-weighted sequence of splenic tissue, the curve describes a plateau within 30 min and 6 h, allowing a delay between injection and imaging. T2-weighted sequences give a greater contrast-to-noise ratio (CNR) by adding the spontaneous tumor contrast to the effect yielded by AMI 25. These results suggest that images must be acquired between 1 and 6 h after intravenous administration of superparamagnetic iron oxide. (author). 18 refs.; 6 figs

  4. Iron oxide surfaces

    Science.gov (United States)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  5. Superparamagnetic iron oxide

    International Nuclear Information System (INIS)

    This paper assesses the value of MR imaging of hepatic malignant tumors after injection of different concentrations of superparamagnetic iron oxide (AMI-25) at 1.5 T. Fourteen patients with pathologically proved hepatic malignant tumors were imaged on a 1.5 T magnet. T1-weighted (TR = 400 msec, TE = 20 msec) and T2-weighted (TR = 2,000 msec, TE = 40, 90 msec) sequences were obtained before and 1 hour after intravenous injection of varying concentrations of AMI-25 (10-20 μmol/kg). Signal intensity measurements were obtained from tumor, liver, and background noise. The contrast-to-noise ratio was calculated at the lesion-to-liver signal intensity difference scaled to image noise, including ghost artifacts. Statistical tests were then applied to compare the lesion-to-liver contrast before and after injection

  6. Oxidation of soot on iron oxide catalysts

    OpenAIRE

    Waglöhner, Steffen

    2012-01-01

    This thesis addresses the rational development of an iron oxide based catalyst for soot oxidation. The approach of this development process comprises three research methods, namely mechanistic and kinetic experiments, kinetic and fluid dynamic modelling and structure-activity relations of different types of iron oxides. A combination of this enables the synthesis of an advanced catalytic material, which is transferred to a real DPF system and tested under real diesel exhaust conditions.

  7. Water oxidation: High five iron

    Science.gov (United States)

    Lloret-Fillol, Julio; Costas, Miquel

    2016-03-01

    The oxidation of water is essential to the sustainable production of fuels using sunlight or electricity, but designing active, stable and earth-abundant catalysts for the reaction is challenging. Now, a complex containing five iron atoms is shown to efficiently oxidize water by mimicking key features of the oxygen-evolving complex in green plants.

  8. Iron, Oxidative Stress and Gestational Diabetes

    OpenAIRE

    Taifeng Zhuang; Huijun Han; Zhenyu Yang

    2014-01-01

    Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans) can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iro...

  9. Iron oxides in human brain

    Czech Academy of Sciences Publication Activity Database

    Cesnek, M.; Miglierini, M.; Lančok, Adriana

    Bratislava : SUT, 2015 - (Vajda, J.; Jamnický, I.), s. 225-229 ISBN 978-80-227-4373-0. [International Conference on Applied Physics of Condensed Matter /21./. Štrbské Pleso (SK), 24.06.2014-26.06.2014] R&D Projects: GA MŠk(CZ) 7AMB14SK165 Institutional support: RVO:61388980 Keywords : Iron oxides Subject RIV: CA - Inorganic Chemistry http://kf.elf.stuba.sk/~apcom/proceedings/pdf/225_cesnek.pdf

  10. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  11. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  12. Dextran-modified iron oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Ji(r)í Hradil; Alexander Pisarev; Michal Babi(c); Daniel Horák

    2007-01-01

    Dextran-modified iron oxide nanoparticles were prepared by precipitation of Fe(Ⅱ) and Fe(Ⅲ) salts with ammonium hydroxide by two methods.Iron oxide was precipitated either in the presence of dextran solution, or the dextran solution was added after precipitation. In the second method,the iron oxide particle size and size distribution could be controlled depending on the concentration of dextran in the solution. The nanoparticles were characterized by size-exclusion chromatography, transmission electron microscopy and dynamic light scattering. Optimal conditions for preparation of stable iron oxide colloid particles were determined. The dextran/iron oxide ratio 0-0.16 used in precipitation of iron salts can be recommended for synthesis of nanoparticles suitable for biomedical applications, as the colloid does not contain excess dextran and does not coagulate.

  13. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...

  14. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.; Fauth, K.; Goering, E.; Johnson, Erik; Nielsen, Martin Meedom; Mørup, Steen

    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have...

  15. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.;

    2004-01-01

    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have...

  16. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    Science.gov (United States)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume; Kappler, Andreas; Bernard, Sylvain; Obst, Martin; Férard, Céline; Skouri-Panet, Fériel; Guigner, Jean-Michel; Posth, Nicole; Galvez, Matthieu; Brown, Gordon E., Jr.; Guyot, François

    2009-02-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and

  17. Tannin biosynthesis of iron oxide nanoparticles

    Science.gov (United States)

    Herrera-Becerra, R.; Rius, J. L.; Zorrilla, C.

    2010-08-01

    In this work, iron oxide nanoparticles synthesized with gallic acid and tannic acid are characterized using High-Resolution Transmission Electron Microscopy (HRTEM). Its size, form, and structure are compared with nanoparticles obtained previously using alfalfa biomass in order to find a simpler, consistent, and environmentally friendly method in the production of iron oxide nanoparticles.

  18. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  19. Iron oxides characterization by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    In this work rust development on low carbon wire surface after the conformation process at different temperatures was studied by Moessbauer spectroscopy. The characterization was made by determining the following spectral parameters; 1) Quadrupole splitting, 2) Isomer shift, and 3) Magnetic splitting. The area quantification determined the percentage amount of three different iron oxides. These iron oxides were: a) Wustite (Fe O), b) Hematite (Fe2O3), and c) Magnetite (Fe3O4) which were present in the rust studied. With the results it was possible to establish the best temperature to favor the development of each of these iron oxides. (Author)

  20. Arsenic Adsorption Onto Iron Oxides Minerals

    Science.gov (United States)

    Aredes, S.; Klein, B.; Pawlik, M.

    2004-12-01

    The predominant form of arsenic in water is as an inorganic ion. Under different redox conditions arsenic in water is stable in the +5 and +3 oxidation states. Arsenic oxidation state governs its toxicity, chemical form and solubility in natural and disturbed environments. As (III) is found in anoxic environments such as ground water , it is toxic and the common species is the neutral form, H3AsO3. As (V) is found in aerobic conditions such as surface water, it is less toxic and the common species in water are: H2AsO4 - and HAsO4 {- 2}. The water pH determines the predominant arsenate or arsenite species, however, both forms of arsenic can be detected in natural water systems. Iron oxides minerals often form in natural waters and sediments at oxic-anoxic boundaries. Over time they undergo transformation to crystalline forms, such as goethite or hematite. Both As(V) and As(III) sorbs strongly to iron oxides, however the sorption behavior of arsenic is dependent on its oxidation state and the mineralogy of the iron oxides. Competition between arsenic and others ions, such fluoride, sulphate and phosphate also play a role. On the other hand, calcium may increase arsenic adsorption onto iron oxides. Electrokinetic studies and adsorption experiments were carried out in order to determine which conditions favour arsenic adsorption. Hematite, goethite and magnetite as iron based sorbents were used. Test were also conducted with a laterite soil rich in iron minerals. The focus of this study is to evaluate physical and chemical conditions which favour arsenic adsorption onto iron oxides minerals, the results contribute to an understanding of arsenic behaviour in natural and disturbed environments. Furthermore, results could contribute in developing an appropriate remediation technology for arsenic removal in water using iron oxides minerals.

  1. Wet Chemistry of Spinel Iron oxide Particles

    OpenAIRE

    Jolivet, J.; Chanéac, C.; Prené, P.; Vayssières, L.; Tronc, E.

    1997-01-01

    Various properties of spinel iron oxide nanograins are reviewed, illustrating the broad possibilities of wet chemistry for tailoring materials for a wide range of utilizations, from catalysis and sensors to cast magnetic materials.

  2. The irony of iron -- biogenic iron oxides as an iron source to the ocean

    Directory of Open Access Journals (Sweden)

    David eEmerson

    2016-01-01

    Full Text Available Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity.

  3. Exploring Microbial Iron Oxidation in Wetland Soils

    Science.gov (United States)

    Wang, J.; Muyzer, G.; Bodelier, P. L. E.; den Oudsten, F.; Laanbroek, H. J.

    2009-04-01

    Iron is one of the most abundant elements on earth and is essential for life. Because of its importance, iron cycling and its interaction with other chemical and microbial processes has been the focus of many studies. Iron-oxidizing bacteria (FeOB) have been detected in a wide variety of environments. Among those is the rhizosphere of wetland plants roots which release oxygen into the soil creating suboxic conditions required by these organisms. It has been reported that in these rhizosphere microbial iron oxidation proceeds up to four orders of magnitude faster than strictly abiotic oxidation. On the roots of these wetland plants iron plaques are formed by microbial iron oxidation which are involved in the sequestering of heavy metals as well organic pollutants, which of great environmental significance.Despite their important role being catalysts of iron-cycling in wetland environments, little is known about the diversity and distribution of iron-oxidizing bacteria in various environments. This study aimed at developing a PCR-DGGE assay enabling the detection of iron oxidizers in wetland habitats. Gradient tubes were used to enrich iron-oxidizing bacteria. From these enrichments, a clone library was established based on the almost complete 16s rRNA gene using the universal bacterial primers 27f and 1492r. This clone library consisted of mainly α- and β-Proteobacteria, among which two major clusters were closely related to Gallionella spp. Specific probes and primers were developed on the basis of this 16S rRNA gene clone library. The newly designed Gallionella-specific 16S rRNA gene primer set 122f/998r was applied to community DNA obtained from three contrasting wetland environments, and the PCR products were used in denaturing gradient gel electrophoresis (DGGE) analysis. A second 16S rRNA gene clone library was constructed using the PCR products from one of our sampling sites amplified with the newly developed primer set 122f/998r. The cloned 16S rRNA gene

  4. Iron oxides in human spleen

    Czech Academy of Sciences Publication Activity Database

    Kopáni, M.; Miglierini, M.; Lančok, Adriana; Dekan, J.; Čaplovicová, M.; Jakubovský, J.; Boča, R.; Mrazova, H.

    2015-01-01

    Roč. 28, č. 5 (2015), s. 913-928. ISSN 0966-0844 Institutional support: RVO:61388980 Keywords : diffraction * iron * magnetic properties Subject RIV: CA - Inorganic Chemistry Impact factor: 2.503, year: 2014

  5. Metal ion binding to iron oxides

    Science.gov (United States)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  6. Relationship Between Iron Oxides and Surface Charge Characteristics in Soils

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; WANGWEI-JUN

    1991-01-01

    The relationship between iron oxides and surface charge characteristics in variable charge soils (latosol and red earth) was studied in following three ways.(1)Remove free iron oxides (Fed) and amorphous iron oxides (Feo) from the soils with sodium dithionite and acid ammonium oxalate solution respectively.(2) Add 2% glucose (on the basis of air-dry soil weight) to soils and incubate under submerged condition to activate iron oxides,and then the mixtures are dehydrated and air-dried to age iron oxides.(3) Precipitate various crystalline forms of iron oxides onto kaolinite.The results showed that free iron oxides (Fed) were the chief carrier of variable positive charges.Of which crystalline iron oxides (Fed-Feo) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges,and did little influence on negative charges.Whereas the amorphous iron oxides (Feo),which presented mainly fas a coating with a large specific surface area,not only had positive charges,but also blocked the negative charge sites in soils.Submerged incubation activated iron oxides in the soils,and increased the amount of amorphous iron oxides and the degree of activation of iron oxide,which resulted in the increase of positive and negative charges of soils.Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide,and also led to the decrease of positive and negative charges.Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges.Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges.Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.

  7. Surface strains in iron oxide heterogeneous layer

    International Nuclear Information System (INIS)

    Recently the oxidation study at high temperature, have been glance to examine the influence of the surface strains. The samples of the pure iron were oxidized among 850 and 1050 deg C, under argon-water vapor atmosphere. The oxide layer was analyzed by optics and scanning electrons microscopy, and X-ray diffraction. The results showed a heterogeneous layer consisting of three distinct oxides. On the other hand it was possible to observe the presence of the strains on the mentioned layer. (author)

  8. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  9. Kinetics of iron oxidation in silicate melts

    International Nuclear Information System (INIS)

    High-temperature XANES experiments at the Fe K-edge have been used to study the kinetics of iron oxidation in a supercooled melt of Fe-bearing pyroxene composition. These experiments, made just above the glass transition between 600 and 700 deg C, show that variations in relative abundances of ferric and ferrous iron can be determined in situ at such temperatures. The kinetics of iron oxidation do not vary much with temperature down to the glass transition. This suggests that rate-limiting factor in this process is not oxygen diffusion, which is coupled to relaxation of the silicate network, but diffusion of network modifying cations along with a counter flux of electrons. To give a firmer basis to redox determinations made from XANES spectroscopy, the redox state of a series of a samples was first determined from wet chemical, Moessbauer spectroscopy and electron microprobe analyses. (authors)

  10. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI

    OpenAIRE

    2010-01-01

    Contrast agents, such as iron oxide, enhance MR images by altering the relaxation times of tissues in which the agent is present. They can also be used to label targeted molecular imaging probes. Unfortunately, no molecular imaging probe is currently available on the clinical MRI market. A promising platform for MRI contrast agent development is nanotechnology, where superparamagnetic iron oxide nanoparticles (SPIONS) are tailored for MR contrast enhancement, and/or for molecular imaging. SPI...

  11. 21 CFR 73.200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... million. Mercury (as Hg) , not more than 1 part per million. (2) Synthetic iron oxide for dog and cat food... food. (2) Synthetic iron oxide may be safely used for the coloring of dog and cat foods in an amount... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200...

  12. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  13. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.;

    2014-01-01

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule-molecule and molecule-surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it...... is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous...... monolayer islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and...

  14. Magnetic transport properties in iron/iron-oxide films

    International Nuclear Information System (INIS)

    Iron/iron-oxide granular films were fabricated using reactive dc magnetron sputtering. Their structural, magnetic and transport properties were systematically studied. XPS and TEM confirmed the coexistence of Fe, FeO and Fe2O3. A metal-insulator transition was observed with the increasing of the oxygen component in the film. The temperature dependencies of longitudinal resistivity ρxx and anomalous Hall resistivity ρxy were discussed. We found the enhancement of ρxy and investigated the scaling law between anomalous Hall coefficient Rs and ρxx. In all the samples, Rs was found to be proportional to ρxx when ρxx is small, which indicated the skew scattering is dominant

  15. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    K S Rane; V M S Verenkar; P Y Sawant

    2001-06-01

    Iron oxyhydroxides and hydroxides were synthesized from chemically beneficiated high SiO2/Al2O3 low-grade iron ore (57.49% Fe2O3) rejects and heated to get iron oxides of 96–99.73% purity. The infrared band positions, isothermal weight loss and thermogravimetric and chemical analysis established the chemical formulas of iron-oxyhydroxides as -FeOOH.0.3H2O; -FeOOH.0.2H2O and amorphous FeOOH. The thermal products of all these were -Fe2O3 excepting that of -FeOOH.0.3H2O which gave mainly -Fe2O3 and some admixture of -Fe2O3. The hydrazinated iron hydroxides and oxyhydroxides, on the other hand, decomposed autocatalytically to mainly -Fe2O3. Hydrazine method modifies the thermal decomposition path of the hydroxides. The saturation magnetization, s, values were found to be in the range 60–71 emu g–1 which are close to the reported values for -Fe2O3. Mechanism of the -Fe2O3 formation by hydrazine method is discussed.

  16. Methyltrimethoxysilane (MTMS)-based silica-iron oxide superhydrophobic nanocomposites.

    Science.gov (United States)

    Nadargi, Digambar; Gurav, Jyoti; Marioni, Miguel A; Romer, Sara; Matam, Santhosh; Koebel, Matthias M

    2015-12-01

    We report a facile synthesis of superhydrophobic silica-iron oxide nanocomposites via a co-precursor sol-gel process. The choice of the silica precursor (Methyltrimethoxysilane, MTMS) in combination with iron nitrate altered the pore structure dramatically. The influence of iron oxide doping on the structural properties of pristine MTMS aerogel is discussed. PMID:26277744

  17. Synthesis and characterization of iron, iron oxide and iron carbide nanostructures

    International Nuclear Information System (INIS)

    Magnetic iron oxide (Fe3O4 and γ-Fe2O3) and iron carbide (Fe3C) nanoparticles of different geometrical shapes: cubes, spheres, rods and plates, have been prepared by thermal decomposition of a mixture containing the metal precursor Fe(CO)5 and the stabilizer polyvinylpyrrolidone (PVP) at 300 °C in a sealed cell under inert atmosphere. The thermal decomposition process was performed for 4 or 24 h at ([PVP]/[Fe(CO)5]) (w/v) ratio of 1:1 or 1:5. Elemental iron nanospheres embedded within a mixture of amorphous and graphitic carbon coating were obtained by hydrogen reduction of the prepared iron oxide and iron carbide nanoparticles at 450 °C. The formation of the graphitic carbon phase at such a low temperature is unique and probably obtained by catalysis of the elemental iron nanoparticles. Changing the annealing time period and the ([PVP]/[Fe(CO)5]) ratio allowed control of the composition, size, size distribution, crystallinity, geometrical shape and magnetic properties of the different magnetic nanoparticles. - Highlights: • Thermal decomposition at 300 °C of a mixture of PVP and Fe(CO)5 leads to the formation of magnetic nanoparticles of different phases and shapes. • Changing the annealing time period and the ([PVP]/[Fe(CO)5]) (w/v) ratio allowed control of the nanoparticles different properties. • H2 reduction of the former magnetic nanoparticles leads to the formation of almost pure Fe nanospheres phase

  18. Nitric oxide and plant iron homeostasis.

    Science.gov (United States)

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. PMID:25612116

  19. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.;

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...

  20. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    Energy Technology Data Exchange (ETDEWEB)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  1. Ultrathin iron oxide films on Ru(0001)

    OpenAIRE

    Monti, Matteo

    2014-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Aplicada. Fecha de lectura: 11-07-2014 In this dissertation the growth and properties of ultrathin iron oxides lms on ruthenium have been investigated by means of di raction, microscopy and spectroscopy techniques. The systems studied have been prepared in-situ using molecular beam epitaxy and oxygen-assisted molecular beam epitaxy. We begin with the preparation of ultr...

  2. Mineral resource of the month: iron oxide pigments

    Science.gov (United States)

    U.S. Geological Survey

    2008-01-01

    The article discusses iron oxide pigments, which have been used as colorants since human began painting as they resist color change due to sunlight exposure, have good chemical resistance and are stable under normal ambient conditions. Cyprus, Italy and Spain are among the countries that are known for the production of iron oxide pigments. Granular forms of iron oxides and nano-sized materials are cited as developments in the synthetic iron oxide pigment industry which are being used in computer disk drives and nuclear magnetic resonance imaging.

  3. Review of iron oxides for water treatment

    International Nuclear Information System (INIS)

    Many processes have utilized iron oxides for the treatment of liquid wastes containing radioactive and hazardous metals. These processes have included adsorption, precipitation and other chemical and physical techniques. For example, a radioactive wastewater precipitation process includes addition of a ferric hydroxide floc to scavenge radioactive contaminants, such as americium, plutonium and uranium. Some adsorption processes for wastewater treatment have utilized ferrites and a variety of iron containing minerals. Various ferrites and natural magnetite were used in batch modes for actinide and heavy metal removal from wastewater. Supported magnetite was also used in a column mode, and in the presence of an external magnetic field, enhanced capacity was found for removal of plutonium and americium from wastewater. These observations were explained by a nano-level high gradient magnetic separation effect, as americium, plutonium and other hydrolytic metals are known to form colloidal particles at elevated pHs. Recent modeling work supports this assumption and shows that the smaller the magnetite particle the larger the induced magnetic field around the particle from the external field. Other recent studies have demonstrated the magnetic enhanced removal of arsenic, cobalt and iron from simulated groundwater. (author)

  4. Ferrous iron sorption by hydrous metal oxides.

    Science.gov (United States)

    Nano, Genevieve Villaseñor; Strathmann, Timothy J

    2006-05-15

    Ferrous iron is critical to a number of biogeochemical processes that occur in heterogeneous aquatic environments, including the abiotic reductive transformation of subsurface contaminants. The sorption of Fe(II) to ubiquitous soil minerals, particularly iron-free mineral phases, is not well understood. Colloidal TiO2, gamma-AlOOH, and gamma-Al2O2 were used as model hydrous oxides to investigate Fe(II) sorption to iron-free mineral surfaces. Rapid Fe(II) sorption during the first few hours is followed by a much slower uptake process that continues for extended periods (at least 30 days). For equivalent solution conditions, the extent of Fe(II) sorption decreases in the order TiO2 >gamma-Al2O3 >gamma-AlOOH. Short-term equilibrium sorption data measured over a wide range of conditions (pH, ionic strength, Fe(II)-to-sorbent ratio) are well described by the diffuse double layer model. Fe(II) sorption to TiO2 is best described by a single-site model that considers formation of two surface complexes, SOFe+ and SOFeOH0. For gamma-AlOOH and gamma-Al2O3, sorption data are best described by a two-site model that considers formation of SOFe+ complexes at weak- and strong-binding surface sites. Accurate description of sorption data for higher Fe(II) concentrations at alkaline pH conditions requires the inclusion of a Fe(II) surface precipitation reaction in the model formulation. The presence of common groundwater constituents (calcium, sulfate, bicarbonate, or fulvic acid) had no significant effect on Fe(II) sorption. These results demonstrate that iron-free soil minerals can exert a significant influence on Fe(II) sorption and speciation in heterogeneous aquatic systems. PMID:16337955

  5. Toxicity of iron oxide nanoparticles against osteoblasts

    International Nuclear Information System (INIS)

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 μg/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 μg/mL and 25.9 % in 500 μg/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 μg/mL, 23.40 % of apoptosis in a concentration of 300 μg/mL and 28.49 % in a concentration of 500 μg/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  6. Toxicity of iron oxide nanoparticles against osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Shi Sifeng [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China); Jia Jingfu [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Guo Xiaokui [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Zhao Yaping [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Liu Boyu [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Chen Desheng; Guo Yongyuan; Zhang Xianlong, E-mail: zhangxianlong20101@163.com [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China)

    2012-09-15

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 {mu}g/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 {mu}g/mL and 25.9 % in 500 {mu}g/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 {mu}g/mL, 23.40 % of apoptosis in a concentration of 300 {mu}g/mL and 28.49 % in a concentration of 500 {mu}g/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  7. Amorphous structure of iron oxide of bacterial origin

    International Nuclear Information System (INIS)

    In nature, there are various iron oxides produced by the water-habitant bacterial group called “iron-oxidizing bacteria”. These iron oxides have been studied mainly from biological and geochemical perspectives. Today, attempts are made to use such iron oxides as novel functional materials in several applications. However, their quantitative structural characteristics are still unclear. We studied the structure of iron oxide of microtubular form consisting of amorphous nanoparticles formed by an iron-oxidizing bacterium, Leptothrix ochracea, using a combination of high-energy X-ray diffraction and reverse Monte Carlo simulation. We found that its structure consists of a framework of corner- and edge-sharing distorted FeO6 octahedral units, while SiO4 tetrahedral units are isolated in the framework. The results reveal the atomic arrangement of iron oxide of bacterial origin, which is essential for investigating its potential as a functional material. -- Highlights: ► The amorphous structure of bacterial iron oxide was investigated. ► The structure was simulated by high-energy X-ray diffraction and reverse Monte Carlo simulation. ► The structure was constructed of a framework of corner- and edge-sharing distorted FeO6 octahedral units. ► SiO4 tetrahedral units were distributed isolatedly in the framework of FeO6 octahedral units.

  8. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments

    DEFF Research Database (Denmark)

    Schippers, A.; Jørgensen, BB

    2002-01-01

    Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments, They may be buried in the sediment or oxidized by O-2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3-...

  9. Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain

    OpenAIRE

    Heising, Silke; Schink, Bernhard

    1998-01-01

    Oxidation of ferrous iron was studied with the anaerobic phototrophic bacterial strain BS-1. Based on morphology, substrate utilization patterns, arrangement of intracytoplasmic membranes and the in vivo absorption spectrum, this strain was assigned to the known species Rhodomicrobium vannielii. Also, the type strain of this species oxidized ferrous iron in the light. Phototrophic growth of strain BS-1 with ferrous iron as electron donor was stimulated by the presence of acetate or succinate ...

  10. Iron oxide nanoparticle enhancement of radiation cytotoxicity

    Science.gov (United States)

    Mazur, Courtney M.; Tate, Jennifer A.; Strawbridge, Rendall R.; Gladstone, David J.; Hoopes, P. Jack

    2013-02-01

    Iron oxide nanoparticles (IONPs) have been investigated as a promising means for inducing tumor cell-specific hyperthermia. Although the ability to generate and use nanoparticles that are biocompatible, tumor specific, and have the ability to produce adequate cytotoxic heat is very promising, significant preclinical and clinical development will be required for clinical efficacy. At this time it appears using IONP-induced hyperthermia as an adjunct to conventional cancer therapeutics, rather than as an independent treatment, will provide the initial IONP clinical treatment. Due to their high-Z characteristics, another option is to use intracellular IONPs to enhance radiation therapy without excitation with AMF (production of heat). To test this concept IONPs were added to cell culture media at a concentration of 0.2 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for either 48 or 72 hours. Extracellular iron was then removed and all cells were irradiated at 4 Gy. Although samples incubated with IONPs for 48 hrs did not demonstrate enhanced post-irradiation cytotoxicity as compared to the non-IONP-containing cells, cells incubated with IONPs for 72 hours, which contained 40% more Fe than 48 hr incubated cells, showed a 25% decrease in clonogenic survival compared to their non-IONP-containing counterparts. These results suggest that a critical concentration of intracellular IONPs is necessary for enhancing radiation cytotoxicity.

  11. Microbially Induced Iron Oxidation: What, Where, How

    Energy Technology Data Exchange (ETDEWEB)

    SCHIERMEYER,ELISA M.; PROVENCIO,PAULA P.; NORTHUP,DIANA E.

    2000-08-15

    From the results of the different bacterial cells seen, it is fairly certain that Gallionella is present because of the bean-shaped cells and twisted stalks found with the TEM. The authors cannot confirm, though, what other iron-oxidizing genera exist in the tubes, since the media was only preferential and not one that isolated a specific genus of bacteria. Based on the environment in which they live and the source of the water, they believe their cultures contain Gallionella, Leptothrix, and possibly Crenothrix and Sphaerotilus. They believe the genus Leptothrix rather than Sphaerotilus exist in the tubes because the water source was fresh, unlike the polluted water in which Sphaerotilus are usually found. The TEM preparations worked well. The cryogenic method rapidly froze the cells in place and allowed them to view their morphology. The FAA method, as stated previously, was the best of the three methods because it gave the best contrast. The gluteraldehyde samples did not come out as well. It is possible that the gluteraldehyde the authors prepared was still too concentrated and did not mix well. Although these bacteria were collected from springs and then cultured in an environment containing a presumably pure iron-bearing metal, it seems the tube already containing Manganese Gradient Medium could be used with a piece of metal containing these bacteria. A small piece of corroding metal could then be inserted into the test tube and cultured to study the bacteria.

  12. Iron oxidation and its impact on MR behavior

    Science.gov (United States)

    Sunkara, S. R.; Root, T. W.; Ulicny, J. C.; Klingenberg, D. J.

    2009-02-01

    The oxidation of particles in MR fluids and its impact on rheology are investigated. The oxidation of iron spheres in an aliphatic oil follows a linear growth law, suggesting that the oxide forms a nonadherent layer. The magnetic field-induced yield stress decreases with increasing extent of oxidation. The rheological behavior is consistent with that predicted using a core-shell model.

  13. Bio-inspired Iron Catalysts for Hydrocarbon Oxidations

    Energy Technology Data Exchange (ETDEWEB)

    Que, Jr., Lawrence [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-03-22

    Stereoselective oxidation of C–H and C=C bonds are catalyzed by nonheme iron enzymes. Inspired by these bioinorganic systems, our group has been exploring the use of nonheme iron complexes as catalysts for the oxidation of hydrocarbons using H2O2 as an environmentally friendly and atom-efficient oxidant in order to gain mechanistic insights into these novel transformations. In particular, we have focused on clarifying the nature of the high-valent iron oxidants likely to be involved in these transformations.

  14. Nitric Oxide Improves Internal Iron Availability in Plants1

    Science.gov (United States)

    Graziano, Magdalena; Beligni, María Verónica; Lamattina, Lorenzo

    2002-01-01

    Iron deficiency impairs chlorophyll biosynthesis and chloroplast development. In leaves, most of the iron must cross several biological membranes to reach the chloroplast. The components involved in the complex internal iron transport are largely unknown. Nitric oxide (NO), a bioactive free radical, can react with transition metals to form metal-nitrosyl complexes. Sodium nitroprusside, an NO donor, completely prevented leaf interveinal chlorosis in maize (Zea mays) plants growing with an iron concentration as low as 10 μm Fe-EDTA in the nutrient solution. S-Nitroso-N-acetylpenicillamine, another NO donor, as well as gaseous NO supply in a translucent chamber were also able to revert the iron deficiency symptoms. A specific NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, blocked the effect of the NO donors. The effect of NO treatment on the photosynthetic apparatus of iron-deficient plants was also studied. Electron micrographs of mesophyll cells from iron-deficient maize plants revealed plastids with few photosynthetic lamellae and rudimentary grana. In contrast, in NO-treated maize plants, mesophyll chloroplast appeared completely developed. NO treatment did not increase iron content in plant organs, when expressed in a fresh matter basis, suggesting that root iron uptake was not enhanced. NO scavengers 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue promoted interveinal chlorosis in iron-replete maize plants (growing in 250 μm Fe-EDTA). Even though results support a role for endogenous NO in iron nutrition, experiments did not establish an essential role. NO was also able to revert the chlorotic phenotype of the iron-inefficient maize mutants yellow stripe1 and yellow stripe3, both impaired in the iron uptake mechanisms. All together, these results support a biological action of NO on the availability and/or delivery of metabolically active iron within the plant. PMID:12481068

  15. Neutrophilic iron oxidizers adapted to highly oxic environments

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen;

    carbon) while oxygen (O2) is the electron acceptor provided during the aeration process. Numerous previous studies have described neutrophilic iron oxidizers as a bacterial guild with a special niche preference, especially the transition zone between aerobic and anoxic regions, where abiotic chemical...... indicate that neutrophilic iron oxidizers in highly oxic environments like drinking water treatment systems can be abundant (5 E+04 to 7 E+05 cells per gram of wet sand material). It was furthermore observed that the diversity of the cultivated dominant iron oxidizers differs substantially from those...

  16. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, Tomi-Pekka; Loft, Steffen; Nyyssönen, Kristiina;

    2007-01-01

    The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration with d...

  17. Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications

    Directory of Open Access Journals (Sweden)

    Dale L. Huber

    2012-05-01

    Full Text Available Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia—an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m, which is very close to the typical values of 100 kHz and 20 mT used in medical treatments.

  18. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles

    Science.gov (United States)

    Zeng, Q.; Baker, I.; Loudis, J. A.; Liao, Y. F.; Hoopes, P. J.

    2007-02-01

    Fe/Fe oxide nanoparticles, in which the core consists of metallic Fe and the shell is composed of Fe oxides, were obtained by reduction of an aqueous solution of FeCl 3 within a NaBH 4 solution, or, using a water-in-oil micro-emulsion with CTAB as the surfactant. The reduction was performed either in an inert atmosphere or in air, and passivation with air was performed to produce the Fe/Fe 3O 4 core/shell composite. Phase identification and particle size were determined by X-ray diffraction and TEM. Thermal analysis was performed using a differential scanning calorimeter. The quasistatic magnetic properties were measured using a VSM, and the specific absorption rates (SARs) of both Fe oxide and Fe/Fe 3O 4 composite nanoparticles either dispersed in methanol or in an epoxy resin were measured by Luxtron fiber temperature sensors in an alternating magnetic field of 150 Oe at 250 kHz. It was found that the preparation conditions, including the concentrations of solutions, the mixing procedure and the heat treatment, influence the particle size, the crystal structure and consequently the magnetic properties of the particles. Compared with Fe oxides, the saturation magnetization (MS) of Fe/Fe 3O 4 particles (100-190 emu/g) can be twice as high, and the coercivity (H C) can be tunable from several Oe to several hundred Oe. Hence, the SAR of Fe/Fe 3O 4 composite nanoparticles can be much higher than that of Fe oxides, with a maximum SAR of 345 W/g. The heating behavior is related to the magnetic behavior of the nanoparticles.

  19. Iron oxide-based nanomagnets in nanomedicine: fabrication and applications

    OpenAIRE

    Meng Meng Lin; Hyung-Hwan Kim; Hyuck Kim; Mamoun Muhammed; Do Kyung Kim

    2010-01-01

    Iron oxide-based nanomagnets have attracted a great deal of attention in nanomedicine over the past decade. Down to the nanoscale, superparamagnetic iron oxide nanoparticles can only be magnetized in the presence of an external magnetic field, which makes them capable of forming stable colloids in a physio-biological medium. Their superparamagnetic property, together with other intrinsic properties, such as low cytotoxicity, colloidal stability, and bioactive molecule conjugation capability, ...

  20. Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery

    OpenAIRE

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics,...

  1. Battles with Iron: Manganese in Oxidative Stress Protection*

    OpenAIRE

    Aguirre, J. Dafhne; Culotta, Valeria C.

    2012-01-01

    The redox-active metal manganese plays a key role in cellular adaptation to oxidative stress. As a cofactor for manganese superoxide dismutase or through formation of non-proteinaceous manganese antioxidants, this metal can combat oxidative damage without deleterious side effects of Fenton chemistry. In either case, the antioxidant properties of manganese are vulnerable to iron. Cellular pools of iron can outcompete manganese for binding to manganese superoxide dismutase, and through Fenton c...

  2. Dextran-modified iron oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Jií; Hradil

    2007-01-01

    [1]Anger,S.,Caldwell,K.,Mehnert,W.,& Muller,R.(1999).Coating of nanoparticles:Analysis of adsorption using sedimentation field-flow fractionation(SdFFF).Proceedings of International Symposium of Controlled Release of Bioactivated Materials,26,599-600.[2]Bonnemain,B.(1998).Superparamagnetic agents in magnetic resonance imaging:Physicochemical characteristics and clinical applications-A review.Journal of Drug Targeting,6(3),167-174.[3]Bootz,A.,Vogel,V.,Schubert,D.,& Kreuter,J.(2004).Comparison of scanning electron microscopy,dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles.European Journal of Pharmaceutics and Biopharmaceutics,57(2),369-375.[4]Browarzik,D.(1997).Continuous kinetics of dextran degradation.Journal of Macromolecular Science Pure and Applied Chemistry,34(3),397-404.[5]Cabasso,I.,& Yuan,Y.(1996).Nanoparticles in polymer and polymer dendrimers.In J.Fendler & I.Dekany (Eds.),NATO ASI Series.Part 18Nanoparticles in Solids and Solutions (pp.131-153).[6]Chastellain,M.,Petri,A.,& Hofmann,H.(2004).Particle size investigation of a multistep synthesis of PVA coated superparamagnetic nanoparticles.Journal of Colloid Interface Science,278(2),353-360.[7]Chmela,E.,Tijssen,R.,Blom,M.T.,Gardeniers,H.J.G.E.,& van den Berg,A.(2002).A chip system for size separation of macromolecules and particles by hydrodynamic chromatography.Analytical Chemistry,74(14),3470-3475.[8]Confer,D.R.,& Logan,B.E.(1997).Molecular weight distribution of hydrolysis product during the biodegradation of model macromolecules in suspended and biofilm cultures.Ⅱ:Dextran and dextrin.Water Research,31(9),2137-2145.[9]Griffiths,C.H.,O'Horo,M.P.,& Smith,T.W.(1979).The structure,magnetic characterization and oxidation of colloidal iron dispersions.Journal of Applied Physics,50(11),7108-7115.[10]Gupta,A.K.,& Gupta,M.(2005).Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials,26

  3. Stem cell tracking using iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Bull E

    2014-03-01

    Full Text Available Elizabeth Bull,1 Seyed Yazdan Madani,1 Roosey Sheth,1 Amelia Seifalian,1 Mark Green,2 Alexander M Seifalian1,31UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, 2Department of Physics, King’s College London, Strand Campus, London, UK; 3Royal Free London National Health Service Foundation Trust Hospital, London, UKAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.Keywords: stem cells, nanoparticle, magnetic

  4. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, T.P.; Loft, Steffen Huitfeldt; Nyyssonen, K.;

    2007-01-01

    The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration with...... daily urinary 8-hydroxydeoxyguanosine excretion, a marker of oxidative stress, in 48 mildly dyslipidemic men in East Finland. In multivariate linear regression analyses allowing for age, smoking, body mass index and physical exercise, serum ferritin concentration predicted the excretion rate at B = 0.......17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload...

  5. Iron accumulation with age, oxidative stress and functional decline.

    Directory of Open Access Journals (Sweden)

    Jinze Xu

    Full Text Available Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength in male Fischer 344 X Brown Norway rats fed ad libitum (AL or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.

  6. Heterogeneous Fenton oxidation of ofloxacin drug by iron alginate support.

    Science.gov (United States)

    Titouhi, Hana; Belgaied, Jamel-Eddine

    2016-08-01

    A new catalytic wet peroxide oxidation of ofloxacin antibiotic is presented in this work. The removal was achieved using a biodegradable sodium alginate-iron material. Several parameters were studied such as iron content, drying duration of the catalytic support, temperature, solid amount and initial drug concentration. The process showed a strong oxidative ability; at optimum conditions, a nearly complete removal of the drug (around 98%) has been reached after three h of treatment. A relatively low decrease of support activity (around 10%) has been observed after three successive oxidation runs and a low iron leaching has been detected (1.2% of the incorporated quantity). The removal of the substrate has been also examined in the absence of hydrogen peroxide in order to discriminate between the contributions of simple adsorption and oxidation processes in the drug disappearance. We also discussed the influence of the studied experimental parameters on the removal kinetic. PMID:26752017

  7. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to...... present and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation...

  8. The Irony of Iron – Biogenic Iron Oxides as an Iron Source to the Ocean

    OpenAIRE

    Emerson, David

    2016-01-01

    Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidiz...

  9. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    International Nuclear Information System (INIS)

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m2). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe2+ (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe2+ (ferrous) to Fe3+ (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  10. Iron oxide and gold nanoparticles in cancer therapy

    Science.gov (United States)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  11. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Recently, magnetic iron oxide particles have been emerged as significant nanomaterials due to its extensive range of application in various fields. In this regard, synthesis of iron oxide nanoparticles with desirable properties and high potential applications are greatly demanded. Therefore, investigation on different iron oxide phases and their magnetic properties along with various commonly used synthetic techniques are remarked and thoroughly described in this review. Electrochemical synthesis as a newfound method with unique advantages is elaborated, followed by design approaches and key parameters to control the properties of the iron oxide nanoparticles. Additionally, since the dispersion of iron oxide nanoparticles is as important as its preparation, surface modification issue has been a serious challenge which is comprehensively discussed using different surfactants. Despite the advantages of the electrochemical synthesis method, this technique has been poorly studied and requires deep investigations on effectual parameters such as current density, pH, electrolyte concentration etc. - Highlights: • IONPs are applied in chemical industries, medicine, magnetic storage etc. • Electrochemical synthesis (EC) is convenient, eco-friendly, selective and low-cost. • EC key factors are current density, pH, electrolyte concentration, electrode type. • Organic, inorganic and biological materials can be used to modify IONPs’ surface. • The physicochemical properties of IONPs can be controlled by adding surfactants

  12. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Moshe Ben, E-mail: mosheinspain@hotmail.com [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel); Calmano, Wolfgang [Institute of Environmental Technology and Energy Economics, Technical University of Hamburg-Harburg, 21073 Hamburg (Germany); Adin, Avner [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel)

    2009-11-15

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m{sup 2}). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe{sup 2+} (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe{sup 2+} (ferrous) to Fe{sup 3+} (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  13. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ramimoghadam, Donya; Bagheri, Samira, E-mail: samira_bagheri@um.edu.my; Hamid, Sharifah Bee Abd

    2014-11-15

    Recently, magnetic iron oxide particles have been emerged as significant nanomaterials due to its extensive range of application in various fields. In this regard, synthesis of iron oxide nanoparticles with desirable properties and high potential applications are greatly demanded. Therefore, investigation on different iron oxide phases and their magnetic properties along with various commonly used synthetic techniques are remarked and thoroughly described in this review. Electrochemical synthesis as a newfound method with unique advantages is elaborated, followed by design approaches and key parameters to control the properties of the iron oxide nanoparticles. Additionally, since the dispersion of iron oxide nanoparticles is as important as its preparation, surface modification issue has been a serious challenge which is comprehensively discussed using different surfactants. Despite the advantages of the electrochemical synthesis method, this technique has been poorly studied and requires deep investigations on effectual parameters such as current density, pH, electrolyte concentration etc. - Highlights: • IONPs are applied in chemical industries, medicine, magnetic storage etc. • Electrochemical synthesis (EC) is convenient, eco-friendly, selective and low-cost. • EC key factors are current density, pH, electrolyte concentration, electrode type. • Organic, inorganic and biological materials can be used to modify IONPs’ surface. • The physicochemical properties of IONPs can be controlled by adding surfactants.

  14. Microstructural effects on the oxidation of iron aluminide

    Science.gov (United States)

    Hale, Peter M.

    This work addresses the impact of processing and microstructure on the oxide chemistry and short-term isothermal oxidation rate, over the first 24h of oxidation, for the B2 iron aluminide, Fe-40Al. Research interests in iron-aluminum alloys, used for high temperature structural applications, are primarily concerned with the improvement of high temperature oxidation performance and mechanical properties. The oxidation performance of alloys with aluminum contents below 20at% is dependent upon processing and microstructure. Before this work, it was not established if there was any impact of material processing and microstructure on the oxidation performance of the high aluminum content Fe-40Al alloy. This study utilized eight industrial processes to produce six different material conditions. Among the characteristics of the microstructures produced were grain sizes from 2 to ≥500mum, oxygen contents from 0--2.6at%, and powder particle surface area-to-volume ratios from 0--0.6 m2/cm3. For the six materials tested, short-term (24h) isothermal oxidation rates were determined at 700, 750, and 800°C. The resultant rates were then used to determine the relationship between the oxidation rate constant and temperature. The chemistry, physical characteristics, and structure of the oxides formed were then characterized. It was concluded that microstructure has a limited impact on oxidation properties: no practical impact was observed on oxidation rate; an initial transient oxide layer formed independent of microstrucure; microstructure can be used to control the formation of oxide-metal interfacial voids, formed during the oxidation process; and oxide inclusion "pegs" serve to improve oxide adhesion. Additionally it was observed that contamination from hot pressing contributed to the formation of oxide nodules during oxidation. Overall the isothermal oxidation properties during the first 24h of exposure proved to be robust over many combinations of microstructures.

  15. Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process.

    Science.gov (United States)

    Nie, Zhen-yuan; Liu, Hong-chang; Xia, Jin-lan; Yang, Yi; Zhen, Xiang-jun; Zhang, Li-Juan; Qiu, Guan-zhou

    2016-02-01

    While indirect model has been widely accepted in bioleaching, but the evidence of cell surface iron speciation has not been reported. In the present work the iron speciation on the cell surfaces of four typically acidophilic iron-oxidizing microorganism (mesophilic Acidithiobacillus ferrooxidans ATCC 23270, moderately thermophilic Leptospirillum ferriphilum YSK and Sulfobacillus thermosulfidooxidans St, and extremely thermophilic Acidianus manzaensis YN25) grown on different energy substrates (chalcopyrite, pyrite, ferrous sulfate and elemental sulfur (S(0))) were studied in situ firstly by using synchrotron-based micro- X-ray fluorescence analysis and X-ray absorption near-edge structure spectroscopy. Results showed that the cells grown on iron-containing substrates had apparently higher surface iron content than the cells grown on S(0). Both ferrous iron and ferric iron were detected on the cell surface of all tested AIOMs, and the Fe(II)/Fe(III) ratios of the same microorganism were affected by different energy substrates. The iron distribution and bonding state of single cell of A. manzaensis were then studied in situ by scanning transmission soft X-ray microscopy based on dual-energy contrast analysis and stack analysis. Results showed that the iron species distributed evenly on the cell surface and bonded with amino, carboxyl and hydroxyl groups. PMID:26645388

  16. A pentanuclear iron catalyst designed for water oxidation

    Science.gov (United States)

    Okamura, Masaya; Kondo, Mio; Kuga, Reiko; Kurashige, Yuki; Yanai, Takeshi; Hayami, Shinya; Praneeth, Vijayendran K. K.; Yoshida, Masaki; Yoneda, Ko; Kawata, Satoshi; Masaoka, Shigeyuki

    2016-02-01

    Although the oxidation of water is efficiently catalysed by the oxygen-evolving complex in photosystem II (refs 1 and 2), it remains one of the main bottlenecks when aiming for synthetic chemical fuel production powered by sunlight or electricity. Consequently, the development of active and stable water oxidation catalysts is crucial, with heterogeneous systems considered more suitable for practical use and their homogeneous counterparts more suitable for targeted, molecular-level design guided by mechanistic understanding. Research into the mechanism of water oxidation has resulted in a range of synthetic molecular catalysts, yet there remains much interest in systems that use abundant, inexpensive and environmentally benign metals such as iron (the most abundant transition metal in the Earth’s crust and found in natural and synthetic oxidation catalysts). Water oxidation catalysts based on mononuclear iron complexes have been explored, but they often deactivate rapidly and exhibit relatively low activities. Here we report a pentanuclear iron complex that efficiently and robustly catalyses water oxidation with a turnover frequency of 1,900 per second, which is about three orders of magnitude larger than that of other iron-based catalysts. Electrochemical analysis confirms the redox flexibility of the system, characterized by six different oxidation states between FeII5 and FeIII5; the FeIII5 state is active for oxidizing water. Quantum chemistry calculations indicate that the presence of adjacent active sites facilitates O-O bond formation with a reaction barrier of less than ten kilocalories per mole. Although the need for a high overpotential and the inability to operate in water-rich solutions limit the practicality of the present system, our findings clearly indicate that efficient water oxidation catalysts based on iron complexes can be created by ensuring that the system has redox flexibility and contains adjacent water-activation sites.

  17. Memory Effects on Iron Oxide Filled Carbon Nanotubes

    OpenAIRE

    Cava, Carlos

    2013-01-01

    In this Licentiate Thesis, the properties and effects of iron and iron oxide filled carbon nanotube (Fe-CNT) memories are investigated using experimental characterization and quantum physical theoretical models. Memory devices based on the simple assembly of Fe-CNTs between two metallic contacts are presented as a possible application involving the resistive switching phenomena of this material. It is known that the electrical conductivity of these nanotubes changes significantly when the mat...

  18. Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).

    Science.gov (United States)

    Rofe, Adam P; Pryor, Paul R

    2016-04-01

    Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis. PMID:27037068

  19. Gold-Iron Oxide Catalyst for CO Oxidation: Effect of Support Structure

    Directory of Open Access Journals (Sweden)

    Hui-Zhen Cui

    2016-03-01

    Full Text Available Gold-iron oxide (Au/FeOx is one of the highly active catalysts for CO oxidation, and is also a typical system for the study of the chemistry of gold catalysis. In this work, two different types of iron oxide supports, i.e., hydroxylated (Fe_OH and dehydrated iron oxide (Fe_O, have been used for the deposition of gold via a deposition-precipitation (DP method. The structure of iron oxide has been tuned by either selecting precipitated pH of 6.7–11.2 for Fe_OH or changing calcination temperature of from 200 to 600 °C for Fe_O. Then, 1 wt. % Au catalysts on these iron oxide supports were measured for low-temperature CO oxidation reaction. Both fresh and used samples have been characterized by multiple techniques including transmission electron microscopy (TEM and high-resolution TEM (HRTEM, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, X-ray absorption near edge structure (XANES and temperature-programmed reduction by hydrogen (H2-TPR. It has been demonstrated that the surface properties of the iron oxide support, as well as the metal-support interaction, plays crucial roles on the performance of Au/FeOx catalysts in CO oxidation.

  20. Magnetic iron oxide for contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    The main objective of this experimental work has been to study the biological fate and the contrast enhancing potential of a model preparation of magnetic iron oxide (MSM) after intravenous injection to rodents. This was achieved by: Studying in vitro contrast efficacy of various magnetic iron oxide preparations by relaxation analysis. Studying in vivo contrast efficacy of MSM by relaxation analysis and NMR imaging. Studying the biodistribution and bioelimination of MSM in independent experiments using relaxation analysis, radioactivity studies and histological techniques. Studying interactions of MSM with target cells and target organelles using ex vivo techniques. Based on the presented experimental study, the MSM model preparation of magnetic iron oxide seems to fulfill basic requirements of NMR contrast agents: efficient proton relaxation, specific in vivo distribution, and biological tolerance. 177 refs., 5 figs., 2 tabs

  1. Virus-Templated Near-Amorphous Iron Oxide Nanotubes.

    Science.gov (United States)

    Shah, Sachin N; Khan, Abid A; Espinosa, Ana; Garcia, Miguel A; Nuansing, Wiwat; Ungureanu, Mariana; Heddle, Jonathan G; Chuvilin, Andrey L; Wege, Christina; Bittner, Alexander M

    2016-06-14

    We present a simple synthesis of iron oxide nanotubes, grown under very mild conditions from a solution containing Fe(II) and Fe(III), on rod-shaped tobacco mosaic virus templates. Their well-defined shape and surface chemistry suggest that these robust bionanoparticles are a versatile platform for synthesis of small, thin mineral tubes, which was achieved efficiently. Various characterization tools were used to explore the iron oxide in detail: Electron microscopy (SEM, TEM), magnetometry (SQUID-VSM), diffraction (XRD, TEM-SAED), electron spectroscopies (EELS, EDX, XPS), and X-ray absorption (XANES with EXAFS analysis). They allowed determination of the structure, crystallinity, magnetic properties, and composition of the tubes. The protein surface of the viral templates was crucial to nucleate iron oxide, exhibiting analogies to biomineralization in natural compartments such as ferritin cages. PMID:27181278

  2. Mussel-Inspired Polydopamine Coated Iron Oxide Nanoparticles for Biomedical Application

    OpenAIRE

    Xiangling Gu; Yancong Zhang; Hanwen Sun; Xinfeng Song; Chunhua Fu; Pingxuan Dong

    2015-01-01

    Mussel-inspired polydopamine (PDA) coated iron oxide nanoparticles have served as a feasible, robust, and functional platform for various biomedical applications. However, there is scarcely a systemic paper reviewed about such functionalising nanomaterials to date. In this review, the synthesis of iron oxide nanoparticles, the mechanism of dopamine self-oxidation, the interaction between iron oxide and dopamine, and the functionality and the safety assessment of dopamine modified iron oxide n...

  3. High Temperature Internal Oxidation Behavior of Iron Based Alloys

    International Nuclear Information System (INIS)

    A study of growth kinetics and microstructure of internal oxides in the iron-base alloys was carried out by an optical microscope and a scanning electron microscope, so that the growth mechanisms of the oxide precipitates in the internal oxidation zone could be understood in detail. Iron-based alloys, Fe-1%Al, Fe-1%Al-1%Hf, Fe-1%Cr, Fe-1%Cr-1%Hf and Fe-2%Hf, were oxidized in a sealed quartz tube containing Fe/FeO powder mixtures which maintained the oxygen partial pressure at the FeO decomposition pressure at 800 .deg. C for the various time periods to 121 hours. Results show that the growth rate of the oxide precipitates in the internal oxidation zone is controlled by the diffusion of oxygen. The variation of the solute element and the addition of Hf in the iron-base alloys led to a change in the depth of internal oxidation zone and in the oxide morphology. The internal precipitate adopted the form of continuous needles or feathers for the Fe-Al system, whereas that in the Fe-Cr and Fe-2%Hf systems adapted the form of discontinuous crystallites, that is, spheres or polyhedral crystallites. The mechanism of this morphological evolution was explained in detail

  4. Structural transformations of heat-treated bacterial iron oxide

    International Nuclear Information System (INIS)

    A bacterial siliceous iron oxide microtubule (diameter: ca. 1 μm, 15Fe2O3·8SiO2·P2O5·30H2O) produced by Leptothrix ochracea was heat treated in air and its structural transformation was investigated in detail by microscopy, diffractometry, and spectroscopy. Although the heat-treated bacterial iron oxide retained its original microtubular structure, its nanoscopic, middle-range, and local structures changed drastically. Upon heat treatment, nanosized pores were formed and their size changed depending on temperature. The Fe–O–Si linkages were gradually cleaved with increasing temperature, causing the progressive separation of Fe and Si ions into iron oxide and amorphous silicate phases, respectively. Concomitantly, global connectivity and local structure of FeO6 octahedra in the iron oxide nanoparticles systematically changed depending on temperature. These comprehensive investigations clearly revealed various structural changes of the bacterial iron oxide which is an important guideline for the future exploration of novel bio-inspired materials. - Highlights: • Structural transformation of a bacterial iron oxide microtubule was investigated. • Si–O–Fe was cleaved with increasing temperature to form α-Fe2O3/silicate composite. • Crystallization to 2Fh started at 500 °C to give α-Fe2O3 >700 °C. • FeO6 octahedra were highly distorted <500 °C. • Formation of face-sharing FeO6 was promoted >500 °C, releasing the local strain of FeO6

  5. Structural transformations of heat-treated bacterial iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki, E-mail: hideki-h@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan); Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Nakanishi, Koji [Office of Society-Academia Collaboration for Innovation, Kyoto University, Uji 611-0011 (Japan); Yogi, Chihiro [SR Center, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Peterlik, Herwig [Faculty of Physics, University of Vienna, A-1090 Vienna (Austria); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Takada, Jun [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2015-04-01

    A bacterial siliceous iron oxide microtubule (diameter: ca. 1 μm, 15Fe{sub 2}O{sub 3}·8SiO{sub 2}·P{sub 2}O{sub 5}·30H{sub 2}O) produced by Leptothrix ochracea was heat treated in air and its structural transformation was investigated in detail by microscopy, diffractometry, and spectroscopy. Although the heat-treated bacterial iron oxide retained its original microtubular structure, its nanoscopic, middle-range, and local structures changed drastically. Upon heat treatment, nanosized pores were formed and their size changed depending on temperature. The Fe–O–Si linkages were gradually cleaved with increasing temperature, causing the progressive separation of Fe and Si ions into iron oxide and amorphous silicate phases, respectively. Concomitantly, global connectivity and local structure of FeO{sub 6} octahedra in the iron oxide nanoparticles systematically changed depending on temperature. These comprehensive investigations clearly revealed various structural changes of the bacterial iron oxide which is an important guideline for the future exploration of novel bio-inspired materials. - Highlights: • Structural transformation of a bacterial iron oxide microtubule was investigated. • Si–O–Fe was cleaved with increasing temperature to form α-Fe{sub 2}O{sub 3}/silicate composite. • Crystallization to 2Fh started at 500 °C to give α-Fe{sub 2}O{sub 3} >700 °C. • FeO{sub 6} octahedra were highly distorted <500 °C. • Formation of face-sharing FeO{sub 6} was promoted >500 °C, releasing the local strain of FeO{sub 6}.

  6. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery.

    Science.gov (United States)

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics, an area used to combine therapeutics and diagnostics. The recent applications of NPs in miRNA delivery are also reviewed. PMID:24396508

  7. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping;

    2013-01-01

    A planar trioctahedral iron(II)–iron(III) hydroxide (green rust, GR) intercalated with dodecanoate (GRC12) has been oxidized by dioxygen to produce the corresponding planar iron(III) (hydr)oxide. The formulae of GRC12 and the final iron(III) product (oxGRC12) were determined to be FeII2.00FeIII1.......00(OH)5.31(C12H23O2)0.66(SO4)0.51 and FeIII3O2.18(OH)3.13(C12H23O2)0.56(SO4)0.47, respectively. oxGRC12 has the same planar layer structure as GRC12, as revealed by identical powder X‐ray diffraction patterns. The electrostatic interactions between the interlayer dodecanoate (C12) anions and the iron...... hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy. The...

  8. DETERMINATION OF THE RATES AND PRODUCTS OF FERROUS IRON OXIDATION IN ARSENIC-CONTAMINATED POND WATER.

    Science.gov (United States)

    Dissolved ferrous iron and arsenic in the presence of insufficient oxygenated ground water is released into a pond. When the mixing of ferrous iron and oxygenated water within the pond occurs, the ferrous iron is oxidized and precipitated as an iron oxide. Groups of experiments...

  9. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.

    Science.gov (United States)

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; Ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  10. Moessbauer study of function of magnesium in iron oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    YangJie-Xin; MaoLian-Sheng; 等

    1997-01-01

    Moessbauer spectroscopy has been utilized for studying the action of Mg element in iron oxide catalysts used for the dehydrogenation of ethylbenzene to sytrene.The experimental results show that the presence of opportune amount of Mg can enhance the stability and dispersion of catalysts,i.e.Mg is an sueful structure promoter in this kind of catalysts.

  11. OXYANION SORPTION TO HIGH SURFACE AREA IRON AND ALUMINUM OXIDES

    Science.gov (United States)

    Sorption of selected oxyanions (Mo, As, and P) to high surface area iron and aluminum oxides was investigated using in situ Raman and ATR-FTIR spectroscopy, batch sorption methods, electrophoretic mobility measurements, and surface complexation modeling. In situ ATR-FTIR and Raman spectra were coup...

  12. Structural investigations of biogenic iron oxide samples. Preliminary results

    International Nuclear Information System (INIS)

    Some preliminary results on morphology and structure of iron oxide particles formed inside Klebsiella oxytoca bacteria are presented. In particular, by means of optical microscopy, scanning electron microscopy and small-angle X-ray scattering the effect of the bacteria age (the duration of growth) on the nanoparticles properties is studied

  13. Identification of Spinel Iron Oxide Nanoparticles by 57Fe NMR

    Directory of Open Access Journals (Sweden)

    SangGap Lee

    2011-12-01

    Full Text Available We have synthesized and studied monodisperse iron oxide nanoparticles of smaller than 10 nm to identify between the two spinel phases, magnetite and maghemite. It is shown that 57Fe NMR spectroscopy is a promising tool for distinguishing between the two phases.

  14. Basic methods for measuring the reflectance color of iron oxides

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Jaroslav; Hrdý, J.; Hrdý, J., jr.

    2007-01-01

    Roč. 118, - (2007), s. 278-288. ISSN 0030-4026 Institutional research plan: CEZ:AV0Z10100522 Keywords : iron oxide * color imetric classification system * color imetr * hematite * color sample Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.385, year: 2007

  15. Self-orderding of iron oxide nanoparticles covered by graphene

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Vejpravová, Jana; Pacáková, Barbara; Holý, V.; Bernstorff, S.; Kalbáč, Martin

    2014-01-01

    Roč. 251, č. 12 (2014), s. 2499-2504. ISSN 0370-1972 R&D Projects: GA MŠk LL1301; GA ČR GAP204/10/1677 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : GISAXS * graphene * iron oxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.489, year: 2014

  16. Liquid Phase Plasma Synthesis of Iron Oxide/Carbon Composite as Dielectric Material for Capacitor

    OpenAIRE

    2014-01-01

    Iron oxide/carbon composite was synthesized using a liquid phase plasma process to be used as the electrode of supercapacitor. Spherical iron oxide nanoparticles with the size of 5~10 nm were dispersed uniformly on carbon powder surface. The specific capacitance of the composite increased with increasing quantity of iron oxide precipitate on the carbon powder up to a certain quantity. When the quantity of the iron oxide precipitate exceeds the threshold, however, the specific capacitance was ...

  17. Hybrid Adsorptive and Oxidative Removal of Natural Organic Matter Using Iron Oxide-Coated Pumice Particles

    Directory of Open Access Journals (Sweden)

    Sehnaz Sule Kaplan Bekaroglu

    2016-01-01

    Full Text Available The aim of this work was to combine adsorptive and catalytic properties of iron oxide surfaces in a hybrid process using hydrogen peroxide and iron oxide-coated pumice particles to remove natural organic matter (NOM in water. Experiments were conducted in batch, completely mixed reactors using various original and coated pumice particles. The results showed that both adsorption and catalytic oxidation mechanisms played role in the removal of NOM. The hybrid process was found to be effective in removing NOM from water having a wide range of specific UV absorbance values. Iron oxide surfaces preferentially adsorbed UV280-absorbing NOM fractions. Furthermore, the strong oxidants produced from reactions among iron oxide surfaces and hydrogen peroxide also preferentially oxidized UV280-absorbing NOM fractions. Preloading of iron oxide surfaces with NOM slightly reduced the further NOM removal performance of the hybrid process. Overall, the results suggested that the tested hybrid process may be effective for removal of NOM and control disinfection by-product formation.

  18. NO Oxidation Kinetics on Iron Zeolites: Influence of Framework Type and Iron Speciation

    Czech Academy of Sciences Publication Activity Database

    Brosius, R.; Habermacher, D.; Martens, J. A.; Vradman, L.; Herskowitz, M.; Čapek, Libor; Sobalík, Zdeněk; Dědeček, Jiří; Wichterlová, Blanka; Tokarová, V.; Gonsiorová, O.

    30-31, 1/4 (2004), s. 333-339. ISSN 1022-5528 Grant ostatní: AMMONORE G5RD-CT(XE) 2001-00595 Institutional research plan: CEZ:AV0Z4040901 Keywords : NO oxidation * zeolites * iron Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.493, year: 2004

  19. Mussel-Inspired Polydopamine Coated Iron Oxide Nanoparticles for Biomedical Application

    Directory of Open Access Journals (Sweden)

    Xiangling Gu

    2015-01-01

    Full Text Available Mussel-inspired polydopamine (PDA coated iron oxide nanoparticles have served as a feasible, robust, and functional platform for various biomedical applications. However, there is scarcely a systemic paper reviewed about such functionalising nanomaterials to date. In this review, the synthesis of iron oxide nanoparticles, the mechanism of dopamine self-oxidation, the interaction between iron oxide and dopamine, and the functionality and the safety assessment of dopamine modified iron oxide nanoparticles as well as the biomedical application of such nanoparticles are discussed. To enlighten the future research, the opportunities and the limitations of functionalising iron oxide nanoparticles coated with PDA are also analyzed.

  20. Gamma-ray synthesis of magnetic nanocarrier composed of gold and magnetic iron oxide

    International Nuclear Information System (INIS)

    Magnetic nanocarrier consisting of iron oxide and gold was synthesized in an aqueous solution by using γ-ray irradiation. UV-vis absorption spectra showed surface plasmon resonance of nano-sized metallic gold. The surface of quasicore-shell structured magnetic iron oxide nanocarriers was almost covered with gold grains after having the gold grains grow over the iron oxides

  1. Iron oxidation state in hydrous rhyolites

    Science.gov (United States)

    Humphreys, M.; Brooker, R.; Fraser, D.; Smith, V. C.

    2012-12-01

    Recent studies have suggested that the Earth's mantle at subduction zones is oxidized relative to that at mid-ocean ridges. One possible origin of the oxidation is thought to be hydrous fluids, which are released into the mantle from the down-going slab during subduction. However, this is controversial; other studies have concluded that there is no intrinsic difference in oxidation state. One potential problem in determining primary oxidation states is that magmas produced by partial melting of the sub-arc mantle undergo significant degassing and crystallisation near the earth's surface, which may overprint the oxidation state of the primary melt. H2O contents of melt inclusions may be affected by partial re-equilibration. The effect of H2O on Fe oxidation state is unclear, although theoretical arguments typically predict increasing Fe3+/ΣFe during shallow degassing as a result of preferential diffusion of H2 out of the melt: FeO (m) + H2O (m) = Fe2O3 (m) + H2 (g) [1] We used XANES to measure Fe3+/Fe2+ in cylinders of rhyolitic obsidian that had been hydrated in gold capsules in cold-seal apparatus. Runs were performed at 850-900 °C under H2O-saturated conditions for short run times (20-80 minutes). Surprisingly, we find a positive correlation between Fe3+/ΣFe and H2O content of the glass. This is inconsistent with the effects of reaction [1], but can be explained by considering the acid-base properties of the hydrous melt. In particular, basic behaviour of FeO but amphoteric behaviour of Fe2O3, and changes in melt basicity relating to dissolution of H2O, can explain increasing Fe3+/Fe2+ with increasing H2O. We discuss the implications of these results for using melt compositions to infer the oxidation state of the earth's mantle.

  2. Improved Aeration Process - Catalytic Role Of The Iron Oxides In Arsenic Oxidation And Coprecipitation

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Søgaard, Erik Gydesen

    2013-01-01

    improved aeration process that can also help in developing better arsenic removal treatment. The results present advantages of arsenic oxidation in an aeration process in the presence of ferrihydrite surface that have been shown to adsorb arsenic simultaneously to its oxidation. The presence of...... aeration. Moreover, it was found that the adsorption rate was limited by an excess of dissolved iron, due to competition between arsenic and iron compounds for adsorption sites on iron oxyhydroxide surface. The results were obtained both in lab and pilot scale experiments, which enabled to illustrate...

  3. Selective stabilization of aliphatic organic carbon by iron oxide

    Science.gov (United States)

    Adhikari, Dinesh; Yang, Yu

    2015-06-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter.

  4. Surface oxidation phenomena of boride coatings grown on iron

    International Nuclear Information System (INIS)

    Very hard boride coatings are grown on various metals using thermochemical as well as chemical vapour deposition techniques. In this way many surface properties, and in particular the wear resistance, can be considerably improved. Usually, also the corrosion behaviour of the treated components is important. In particular, oxidizing atmospheres are involved in many applications where, therefore, coating-environment interactions can play a relevant role. In a previous work, the early stages of the oxidation of iron borides were studied by treating single phase compacted powders in flowing oxygen at low temperatures (300-450deg C). In the present paper, the attention is addressed to the oxidation of both single phase and polyphase boride coatings thermochemically grown on iron. The single phase boride coatings were constituted by Fe2B, while the polyphase coatings were constituted by an inner Fe2B layer and an outer FeB-base layer. All the boride layers displayed strong (002) preferred crystallographic orientations. (orig.)

  5. The Molecular Mechanism of Iron(III) Oxide Nucleation.

    Science.gov (United States)

    Scheck, Johanna; Wu, Baohu; Drechsler, Markus; Rosenberg, Rose; Van Driessche, Alexander E S; Stawski, Tomasz M; Gebauer, Denis

    2016-08-18

    A molecular understanding of the formation of solid phases from solution would be beneficial for various scientific fields. However, nucleation pathways are still not fully understood, whereby the case of iron (oxyhydr)oxides poses a prime example. We show that in the prenucleation regime, thermodynamically stable solute species up to a few nanometers in size are observed, which meet the definition of prenucleation clusters. Nucleation then is not governed by a critical size, but rather by the dynamics of the clusters that are forming at the distinct nucleation stages, based on the chemistry of the linkages within the clusters. This resolves a longstanding debate in the field of iron oxide nucleation, and the results may generally apply to oxides forming via hydrolysis and condensation. The (molecular) understanding of the chemical basis of phase separation is paramount for, e.g., tailoring size, shape and structure of novel nanocrystalline materials. PMID:27466739

  6. Interactions between iron oxides and copper oxides under hydrothermal conditions

    International Nuclear Information System (INIS)

    Under hydrothermal conditions, magnetite and hematite have been shown to undergo interconversion reactions, the extent of which is controlled in part by the presence of copper oxides. In oxygenated water, the degree to which magnetite was oxidized to hematite was found to be dependent on the presence of CuO or Cu2O. When these materials were absent, the oxidation of magnetite was limited by the dissolved oxygen in the aqueous system. Participation of the copper oxides in the oxidation process was confirmed by more complete conversion of magnetite was also influenced by the presence of the copper oxides. In addition to driving the reduction to completion, the presence of the copper oxides also exerted a strong influence over the morphology of the magnetite that formed. (author). 13 refs., 1 tab., 3 figs

  7. RECYCLING BLENDS OF WASTE PLASTICS AND BIOMASS AS REDUCING AGENT FOR THE PRODUCTION OF METALLIC IRON FROM IRON OXIDE

    Directory of Open Access Journals (Sweden)

    JAMES RANSFORD DANKWAH

    2013-12-01

    Full Text Available Laboratory studies on the production of metallic iron from iron oxide using blends of palm nut shells (Elaes Guineanses and waste plastics as reducing agent have been performed through experiments conducted in a horizontal tube furnace. Composite pellets were formed from mixtures of iron oxide and carbonaceous materials consisting of chars of palm nut shells (PNS, high density polyethylene (HDPE and two blends of PNS with HDPE. Two sources of iron oxide were utilised in this investigation; reagent grade iron oxide (96.89 % Fe2O3 and EAF slag (47.1 % FeO. The iron oxide-carbonaceous material composites were heated rapidly at 1500°C in a continuous stream of argon and the off gas was analysed continuously using an infrared (IR gas analyser and a gas chromatographic (GC analyser. Elemental analyses of samples of the reduced metal were performed chemically for its carbon and oxygen contents using a LECO carbon/sulphur and oxygen/nitrogen analysers, respectively. The extent of reduction (after ten and fifteen minutes for reagent grade iron oxide and EAF slag, respectively and the level of carburisation were determined for each carbonaceous reductant. The results indicate that carburised metallic iron can be produced effectively from iron oxide using PNS, HDPE and blends of these carbonaceous materials as reductants. The extent of reduction improved significantly when PNS was blended with HDPE.

  8. PREPARATION AND CHARACTERIZATION OF IRON OXIDE NANOPARTICLES ON DISACCHARIDE TEMPLATES

    Directory of Open Access Journals (Sweden)

    B ANILREDDY

    2013-09-01

    Full Text Available We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharidetemplates. Interaction between iron sulfate and template has been carried out in aqueous phase,followed by the selective and controlled removal of the template to achieve narrow distribution ofparticle size. Particles of iron oxide obtained have been characterized for their stability in solventmedia, size, size distribution and crystallinity and it was found that when the negative value of thezeta potential increases, particle size decreases. A narrow particle size distribution with D100 = 275nm was obtained with chitosan and starch templates. SEM measurements further confirm the particlesize measurement. Diffuse reflectance UV–VIS spectra values show that the template is completelyremoved from the final iron oxide particles and powder XRD measurements show that the peaks ofthe diffractogram are in agreement with the theoretical data of hematite. The salient observations ofour study shows that there occurs a direct correlation between zeta potential, polydispersity index,band gap energy and particle size. The crystallite size of the particles was found to be 30–35 nm. Alarge negative zeta potential was found to be advantageous for achieving lower particle sizes, as theparticles remained discrete without agglomeration.

  9. Niobian iron oxides as heterogeneous Fenton catalysts for environmental remediation

    International Nuclear Information System (INIS)

    Heterogeneous Fenton or Fenton-like reagents consist of a mixture of an iron-containing solid matrix and a liquid medium with H2O2. The Fenton system is based on the reaction between Fe2+ and H2O2 to produce highly reactive intermediate hydroxyl radicals (. OH), which are able to oxidize organic contaminants, whereas the Fenton-like reaction is based on the reaction between Fe3+ and H2O2. These heterogeneous systems offer several advantages over their homogeneous counterparts, such as no sludge formation, operation at near-neutral pH and the possibility of recycling the iron promoter. Some doping transition cations in the iron oxide structure are believed to enhance the catalytic efficiency for the oxidation of organic substrates in water. In this work, goethites synthesized in presence of niobium served as precursors for the preparation of magnetites (niobian magnetites) via chemical reduction with hydrogen at 400 deg. C. These materials were used as Fenton-like catalysts. Both groups of (Nb, Fe)-oxide samples were characterized by 57Fe Moessbauer spectroscopy at 298 K. The results show that increasing niobium contents raise the catalytic potential for decomposition of methylene blue, which was, in this work, used as a model molecule for organic substrates in water.

  10. Interactions of silica with iron oxides: Effects on oxide transformations and sorption properties

    International Nuclear Information System (INIS)

    This report is a review of the literature on the adsorption of silica species on iron oxides and oxyhydroxides, and its effects on the adsorption of other species and on oxide interconversion reactions. The information is discussed briefly in the contexts of nuclear waste disposal and boiler-water chemistry. (author). 76 refs

  11. Geochemical Niches of Iron-Oxidizing Acidophiles in Acidic Coal Mine Drainage

    OpenAIRE

    Jones, Daniel S.; Kohl, Courtney; Grettenberger, Christen; Larson, Lance N.; Burgos, William D.; Macalady, Jennifer L.

    2014-01-01

    A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less ex...

  12. High temperature oxidation of iron-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Lars

    2003-06-15

    The high temperature oxidation of the ferritic alloy Fe78Cr22 has been investigated in the present work. The effect of small alloying additions of cerium and/or silicon was also investigated. The alloys were oxidized at 973, 1173 and 1373 K in either air or a hydrogen/argon mixture. The various reaction atmospheres contained between 0.02 and 50% water vapour. The oxide scales formed on the various alloys at 973 K consisted of thin chromia layers. The oxide scales grown on the alloys at 1173 K also consisted of a chromia layer. The microstructure of the chromia scales was found to depend on the reaction atmosphere. The chromia scales grown in hydrogen/argon atmospheres formed oxide whiskers and oxide ridges at the surface of the scales, while the chromia scales grown in air formed larger oxide grains near the surface. This difference in oxide microstructure was due to the vaporization of chromium species from the chromia scales grown in air. Two different growth mechanisms are proposed for the growth of oxide whiskers. The growth rate of the chromia scales was independent of the oxygen activity. This is explained by a growth mechanism of the chromia scales, where the growth is governed by the diffusion of interstitial chromium. The addition of silicon to the iron-chromium alloy resulted in the formation of silica particles beneath the chromia scale. The presence of silicon in the alloy was found to decrease the growth rate of the chromia scale. This is explained by a blocking mechanism, where the silica particles beneath the chromia scale partly block the outwards diffusion of chromium from the alloy to the chromia scale. The addition of cerium to the iron-chromium alloy improved the adhesion of the chromia scale to the alloy and decreased the growth rate of chromia. It was observed that the minimum concentration of cerium in the alloy should be 0.3 at.% in order to observe an effect of the cerium addition. The effect of cerium is explained by the &apos

  13. Concurrent repletion of iron and zinc reduces intestinal oxidative damage in iron-and zinc-deficient rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To understand the interactions between iron and zinc during absorption in iron- and zinc-deficient rats,and their consequences on intestinal oxidant-antioxidant balance.METHODS: Twenty-four weanling Wistar-Kyoto rats fed an iron- and zinc-deficient diet (< 6.5 mg Fe and 4.0 mg Zn/kg diet) for 4 wk were randomly divided into three groups (n = 8, each) and orally gavaged with 4 mg iron, 3.3 mg zinc, or 4 mg iron + 3.3 mg zinc for 2wk. At the last day of repletion, 3 h before the animals were sacrificed, they received either 37 mBq of 55Fe or 65Zn, to study their localization in the intestine, using microautoradiography. Hemoglobin, iron and zinc content in plasma and liver were measured as indicators of iron and zinc status. Duodenal sections were used for immunochemical staining of ferritin and metallothionein.Duodenal homogenates (mitochondrial and cytosolic fractions), were used to assess aconitase activity,oxidative stress, functional integrity and the response of antioxidant enzymes.RESULTS: Concurrent repletion of iron- and zinc-deficient rats showed reduced localization of these minerals compared to rats that were teated with iron or zinc alone;these data provide evidence for antagonistic interactions.This resulted in reduced formation of lipid and protein oxidation products and better functional integrity of the intestinal mucosa. Further, combined repletion lowered iron-associated aconitase activity and ferritin expression,but significantly elevated metallothionein and glutathione levels in the intestinal mucosa. The mechanism of interactions during combined supplementation and its subsequent effects appeared to be due to through modulation of cytosolic aconitase, which in turn influenced the labile iron pool and metallothionein levels, and hence reduced intestinal oxidative damage.CONCLUSION: Concurrent administration of iron and zinc corrects iron and zinc deficiency, and also reduces the intestinal oxidative damage associated with iron

  14. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  15. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION

    Directory of Open Access Journals (Sweden)

    Neenu Singh

    2010-09-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein–SPION interaction and various safety considerations relating to SPION exposure are also addressed.

  16. Structure and growth of oxide on iron-chromium alloys

    International Nuclear Information System (INIS)

    Several oxides form during the initial stages of oxidation of iron-chromium alloys at 400 to 6000C in CO2-1%CO gas. The nature of the oxidation product depends upon crystallographic orientation and composition of the substrate, and can be explained by considering the maximum solubility of chromium in different oxide phases together with interfacial and strain energy factors. Kinetics of oxidation together with micrographic observations indicate that, as oxidation proceeds spinel oxide M3O4 nucleates at sites on the substrate surface associated with asperities. The spinel nuclei grow laterally and vertically until they coalesce and the scale subsequently thickens according to a parabolic rate law. The duplex structure of scales is interpreted in terms of an outward diffusion of cations together with simultaneous growth of an inner layer in the space created by this outward movement. Scale porosity provides a route for gas-phase transport of oxidant to support the growth of the inner layer. Regularly spaced lamellar voids which may form in the inner layer are believed to be associated with a cyclic vacancy condensation process. Enrichment of the inner layer in chromium is explained by analysis of the possible diffusion path networks in close-packed oxides. Some comments are made concerning possible practical applications of these data. (author)

  17. The combustion of titanium powder in air and iron oxide

    OpenAIRE

    Brown, Robert Alexander

    2000-01-01

    The quest for ever stronger and tougher steels has lead to an interest in the 'Acicular Ferrite' microstructure, its chaotic and disordered morphology imparting a high degree of toughness to the steel. To date, only complex and expensive materials and manufacturing processes have formed acicular ferrite within bulk cast steel. As such, the thrust of this research is to produce a cheap steel addition, an iron - titanium oxide metal-ceramic composite, that will facilitate the formation of acicu...

  18. In Vivo Clearance and Toxicity of Monodisperse Iron Oxide Nanocrystals

    OpenAIRE

    Gu, Luo; Fang, Ronnie H.; Sailor, Michael J.; Park, Ji-Ho

    2012-01-01

    Thermal decomposition of organometallic precursors have been found to generate highly crystalline iron oxide (IO) nanocrystals that display superior MR contrast and lower polydispersity than IO nanocrystals synthesized by aqueous precipitation. In the present study, the in vivo characteristics of IO nanocrystals prepared by the thermal decomposition route and then coated with a phospholipid containing a pendant poly(ethylene glycol) chain are examined. The size and surface chemistry of the IO...

  19. Water-soluble iron oxide nanoparticles for nanomedicine

    OpenAIRE

    Cooper, Christy L.; Reece, Lisa M; Key, J.; Bergstrom, Donald E.; Leary, James F

    2008-01-01

    Monodisperse iron oxide nanoparticles (MION) are easily synthesized in organic solvents for industrial applications. However, biological applications require that the particles by readily dispersed in aqueous solutions. To improve their dispersion in aqueous solution, MION particles can be conjugated to water soluble polymers. These water soluble particles can then be used for nanomedicine, which utilizes nanometer scale constructs to treat diseases at the cellular level. Here we report the s...

  20. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers

    Directory of Open Access Journals (Sweden)

    Wahajuddin

    2012-07-01

    Full Text Available Wahajuddin,1,2 Sumit Arora21Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 2Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Rae Bareli, IndiaAbstract: A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite or Fe3O4 (magnetite particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to

  1. High temperature application of EDTA solvents for iron oxide removal

    International Nuclear Information System (INIS)

    The sludge dissolution kinetics and corrosion of materials were quantitatively evaluated when iron oxide removal solvents containing EDTA were applied at temperatures ranging from 93 to 150 deg. C. Periodic ventilation and excessive EDTA concentration were evaluated as alternatives to enhance the sludge dissolution kinetics. Magnetite dissolution was drastically accelerated as the temperature was raised up to 150 deg. C, while the amount of corrosion was well controlled within an allowable limit

  2. Mössbauer study of iron oxides in human body

    Czech Academy of Sciences Publication Activity Database

    Lančok, Adriana; Miglierini, M.; Kopáni, M.

    Košice : Technical University of Košice, 2015 - (Liptovský, P.; Marcin, J.). s. 107 ISBN 978-80-553-2177-6. [Magnetic Measurements 2015. 25.08.-28.08.2015, Košice] R&D Projects: GA MŠk(CZ) 7AMB14SK165 Institutional support: RVO:61388980 Keywords : Mössbauer spectrometry * ferritin * iron oxides Subject RIV: CA - Inorganic Chemistry

  3. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)

    OpenAIRE

    Neenu Singh; Jenkins, Gareth J. S.; Romisa Asadi; Doak, Shareen H.

    2010-01-01

    Superparamagnetic iron oxide nanoparticles (SPION) are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this rev...

  4. Size dependent magnetic properties of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Jhunu; Haik, Yousef. E-mail: haik@eng.fsu.edu; Chen, C.-J.Ching-Jen

    2003-02-01

    {gamma}Fe{sub 2}O{sub 3} nanoparticles has been synthesized by a combination of chemical and ultrasonication procedure and further stabilized with surfactant. Their magnetic properties are compared with the different fractions (10-12, 20-30, 100-150 nm) of commercially available iron oxide. The sizes obtained from the scanning transmission electron micrographs are correlated with the magnetic properties of the particles.

  5. Superparamagnetic iron oxide; Clinical time-response study

    Energy Technology Data Exchange (ETDEWEB)

    Gandon, Yves; Heautot, J.F.; Brunet, Frederic; Carsin, Michel (Hopital Pontchaillou, Rennes (France). Departement d' Imagerie Medicale); Guyader, Dominique; Deugnier, Yves (Hopital Pontchaillou, Rennes (France). Service de Medecine Interne et Hepatologie)

    Superparamagnetic iron oxide (AMI 25) is a promising new contrast agent for imaging the reticuloendothelial-system. Iron oxide crystals possess a large magnetic susceptibility and enhance proton relaxation rates, especially transverse relaxation (T2). In order to guide the clinical utilization of this contrast media 4 patients with malignant lesions of the liver are analyzed before and after slow intravenous administration (20 {mu}mol Fe/kg) of AMI 25. Two magnetic resonance (MR) sequences are performed at different times using 0.35 T magnet. MR signal-to-noise ratio (SNR) of the reticuloendothelial-system (particularly the liver SNR) decrease promptly. The maximum decrease in SNR (67-72 percent for the liver, 46-65 percent for the spleen, 23-41 percent for the bone marrow) is observed 3 h after injection (P<0.01). However, except the peak of contrast enhancement in T1-weighted sequence of splenic tissue, the curve describes a plateau within 30 min and 6 h, allowing a delay between injection and imaging. T2-weighted sequences give a greater contrast-to-noise ratio (CNR) by adding the spontaneous tumor contrast to the effect yielded by AMI 25. These results suggest that images must be acquired between 1 and 6 h after intravenous administration of superparamagnetic iron oxide. (author). 18 refs.; 6 figs.

  6. Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Brullot, W., E-mail: ward.brullot@fys.kuleuven.be [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Heverlee, Leuven (Belgium); Reddy, N.K. [Department of Chemical Engineering, Katholieke Universiteit Leuven, Willem de Croylaan 46, 3001 Heverlee, Leuven (Belgium); Wouters, J.; Valev, V.K.; Goderis, B. [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Heverlee, Leuven (Belgium); Vermant, J. [Department of Chemical Engineering, Katholieke Universiteit Leuven, Willem de Croylaan 46, 3001 Heverlee, Leuven (Belgium); Verbiest, T. [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Heverlee, Leuven (Belgium)

    2012-06-15

    Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles were obtained by a facile protocol and thoroughly characterized. Superparamagnetic iron oxide nanoparticles synthesized using a modified forced hydrolysis method were functionalized with polyethylene glycol silane (PEG silane), precipitated and dried. These functionalized particles are dispersable in a range of solvents and concentrations depending on the desired properties. Examples of tunable properties are magnetic behavior, optical and magneto-optical response, thermal features and rheological behavior. As such, PEG silane functionalized particles represent a platform for the development of new materials that have broad applicability in e.g. biomedical, industrial or photonic environments. Magnetic, optical, magneto-optical, thermal and rheological properties of several ferrofluids based on PEG coated particles with different concentrations of particles dispersed in low molecular mass polyethylene glycol were investigated, establishing the applicability of such materials. - Highlights: Black-Right-Pointing-Pointer Ferrofluids based on polyethylene glycol coated iron oxide nanoparticles. Black-Right-Pointing-Pointer Magnetic, optical, magneto-optical, thermal and rheological characterization of ferrofluids. Black-Right-Pointing-Pointer Tunable properties of versatile polyethylene glycol stabilized ferrofluids.

  7. Radiation defects and metal ions of iron group in oxides

    International Nuclear Information System (INIS)

    The effect of transition ion impurities (iron group) upon optical properties and radiation defect production has been studied for alkaline earth metal oxides. Basic physical and chemical properties of the latters have been compared to those of transition metal (iron group) oxides. Original results of magnesium oxide monocrystal growth have been obtained by the method of chemical transport reactions in a narrow gap for various cobalt, nickel and manganese ion concentrations. For transition metal ions the dependences of optical absorption, luminescence and ESR on ion concentration in magnesium oxide have been found. Basing on those dependences and in terms of the ligand field theory the crystal field parameters have been calculated for cobalt and nickel ions. Characteristics of electron and hole center creation in oxides of alkaline earth metals stated for various concentrations of transition metal ions are the following: the change of the ions' electron state, their participation in the radiation defect creation and decay, the interaction between transition metal ions and radiation defects

  8. Electron uptake by iron-oxidizing phototrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bose, A; Gardel, EJ; Vidoudez, C; Parra, EA; Girguis, PR

    2014-02-26

    Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light. Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.

  9. Investigations on the Oxidation of Iron-chromium and Iron-vanadium Molten Alloys

    OpenAIRE

    Wang, Haijuan

    2010-01-01

    With the progress of high alloy steelmaking processes, it is essential to minimize the loss of valuable metals, like chromium and vanadium during the decarburization process, from both economic as well as environmental view points. One unique technique to realize this aim, used in the present work, is the decarburization of high alloy steel grades using oxygen with CO2 in order to reduce the partial pressure of oxygen. In the present work, the investigation on the oxidation of iron-chromium a...

  10. Surface photovoltage analysis of iron contamination in silicon processing and the relation to gate oxide integrity

    Science.gov (United States)

    Henley, Worth B.

    1995-09-01

    Surface photovoltage (SPV), a contactless optical technique for measuring minority carrier lifetime, is used to quantify the relationship between silicon iron contamination level and thin gate oxide integrity. Iron concentration levels in the range of 1 X 1010 cm-3 to 5 X 1013 cm-3 are evaluated for oxide thicknesses of 8 to 20 nm. Ramp voltage electrical breakdown and time dependant dielectric breakdown measurement on the iron contaminated gate oxide capacitors are reported. Distinct iron contamination threshold limits based on defect density and gate oxide integrity evaluate cleaning efficiencies and metallic cross contamination effects during thermal processing contamination. Iron-silicide precipitation kinetics are investigated by the lifetime analysis procedure.

  11. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments

    OpenAIRE

    Egger, Matthias; Rasigraf, Olivia; Sapart, Célia J.; Jilbert, Tom; Mike S.M. Jetten; Röckmann, Thomas; van der Veen, Carina; Bândă, Narcisa; Kartal, Boran; Ettwig, Katharina F.; Slomp, Caroline P.

    2015-01-01

    Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. ...

  12. Evaluation of iron oxide nanoparticle biocompatibility.

    Science.gov (United States)

    Hanini, Amel; Schmitt, Alain; Kacem, Kamel; Chau, François; Ammar, Souad; Gavard, Julie

    2011-01-01

    Nanotechnology is an exciting field of investigation for the development of new treatments for many human diseases. However, it is necessary to assess the biocompatibility of nanoparticles in vitro and in vivo before considering clinical applications. Our characterization of polyol-produced maghemite γ-Fe(2)O(3) nanoparticles showed high structural quality. The particles showed a homogeneous spherical size around 10 nm and could form aggregates depending on the dispersion conditions. Such nanoparticles were efficiently taken up in vitro by human endothelial cells, which represent the first biological barrier to nanoparticles in vivo. However, γ-Fe(2)O(3) can cause cell death within 24 hours of exposure, most likely through oxidative stress. Further in vivo exploration suggests that although γ-Fe(2)O(3) nanoparticles are rapidly cleared through the urine, they can lead to toxicity in the liver, kidneys and lungs, while the brain and heart remain unaffected. In conclusion, γ-Fe(2)O(3) could exhibit harmful properties and therefore surface coating, cellular targeting, and local exposure should be considered before developing clinical applications. PMID:21589646

  13. Enhanced piezoelectric and mechanical properties of electroactive polyvinylidene fluoride/iron oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Zen-Wei; Chen, Erh-Chiang; Wu, Tzong-Ming, E-mail: tmwu@dragon.nchu.edu.tw

    2015-01-15

    This work describes the preparation and characterization of polyvinylidene fluoride (PVDF)/iron oxide composites fabricated from monodispersed 6 nm iron oxide nanoparticles in the crystalline form of magnetite (Fe{sub 3}O{sub 4}) and polyvinylidene fluoride in a mixed solvent system (THF/DMF) through the solution mixing technique. Structural analysis using transmission electron microscopy shows that the 6 nm iron oxide nanoparticles are uniformly distributed in PVDF matrix. The piezoelectric responses of PVDF/iron oxide composites are extensively increased about five times in magnitude with applied electrical field poling at 35 MV/m. Mechanical properties of the fabricated 2 wt% PVDF/iron oxide composites measured by dynamic mechanical analysis indicate significant enhancements in the storage modulus when compared to that of neat PVDF. The incorporation of 2 wt% iron oxide nanoparticles into the PVDF matrix improves the thermal stability about 28 °C as compared to that of PVDF. The effect of iron oxide on the isothermal degradation behavior of PVDF is also investigated. - Highlights: • A new PVDF/iron oxide composite were synthesized for electroactive usages. • Thermal properties of composite have improved as the contents of iron oxide increase. • Piezoelectric property of composite increases with increasing content of iron oxide. • Piezoelectric responses of composite enhance notably with applying electrical field.

  14. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  15. REMOVAL OF ARSENIC FROM GROUNDWATER USING NATURALLY OCCURRING IRON OXIDES IN RURAL REGIONS OF MONGOLIA

    Science.gov (United States)

    We have found that the iron oxide particles produced by grinding naturally occurring iron ores are very effective in removing arsenic from water. The arsenic adsorption isothermal of the particles h...

  16. Investigation on steelmaking dust recycling and iron oxide red preparing

    Institute of Scientific and Technical Information of China (English)

    Pingfeng Fu; Qiang Zhang

    2008-01-01

    To investigate the physical and chemical properties of the steelmaking dust, wet sieve separation, XRD, SEM, EDS, and traditional chemical analysis were carried out to obtain the particle size distribution, mineralogy, morphology, and the chemical composition of the dust. The dust with a total Fe content of 64.08wt% has coarse metallic iron, magnetite and hematite grains, while fine clay minerals with a size of <38 μm are mainly iosiderite, calcium silicate, and calcite, which are conglomerated to each other.By following the procedures of wet magnetic separation, acid leaching, and oxidization calcination, magnetic materials were recycled and further prepared as iron oxide red with a productivity of 0.54 ton per unit ton of the dust. Middle iron concentrate with an Fe content of 65.92wt% can be reused as feeding material in the ironmaking industry. Additionally, washed water from acid leaching with an Fe3+ ion content of less than 5 g·L-1 was recovered as feeding water in the wet magnetic separation procedure.

  17. Mercury removal in wastewater by iron oxide nanoparticles

    Science.gov (United States)

    Vélez, E.; Campillo, G. E.; Morales, G.; Hincapié, C.; Osorio, J.; Arnache, O.; Uribe, J. I.; Jaramillo, F.

    2016-02-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe3O4 and γ-Fe2O3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λmax∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements.

  18. Oxidation of phenolic acids by soil iron and manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, R.G.; Cheng, H.H.; Harsh, J.B.

    Phenolic acids are intermediary metabolites of many aromatic chemicals and may be involved in humus formation, allelopathy, and nutrient availability. Depending on their structures, six phenolic acids were shown to react at different rates with oxidized forms of Fe and Mn in a Palouse soil (fine-silty, mixed, mesic Pachic Ultic Haploxeroll). Increasing methoxy substitution on the aromatic ring of phenolic acids increased the reaction rate. Reaction rate was also increased for longer carboxyl-containing side chains. After 4 h reaction, little of the applied (10 mg kg/sup -1/ soil) p-hydroxybenzoic or p-coumaric acids had reacted, while 0 to 5, 70, 90, and 100% of the vanillic, ferulic, syringic, and sinapic acids, respectively, had reacted. After 72 h under conditions limiting microbial growth, none of the p-hydroxybenzoic, 30% of the p-coumaric, and 50% of the vanillic acids had reacted. The reaction was shown to be predominantly chemical, and not biological, since phenolic acid extractabilities were similar for Palouse soil and for Palouse soil pretreated with LiOBr to remove organic matter. When the Palouse soil was pretreated with a sodium dithionite-citrate solution to remove Fe and Mn oxides, none of the phenolic acids reacted after 1 h. The reaction of sinapic acid with Palouse soil was shown to produce Fe(II) and soluble Mn as reaction products. The reaction of phenolic acids with soil was thus shown to be an oxidation of the phenolic acids, coupled with a reduction of soil Fe and Mn oxides.

  19. Secoisolariciresinol Diglucoside Abrogates Oxidative Stress-Induced Damage in Cardiac Iron Overload Condition

    OpenAIRE

    Stephanie Puukila; Sean Bryan; Anna Laakso; Jessica Abdel-Malak; Carli Gurney; Adrian Agostino; Adriane Belló-Klein; Kailash Prasad; Neelam Khaper

    2015-01-01

    Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG), a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and ...

  20. Study of nanocomposites based on iron oxides and pectin

    International Nuclear Information System (INIS)

    Mössbauer and X-ray diffraction study of nanocomposites based on iron oxides and pectin (PC) was carried out involving magnetization measurements. The concentrations of PC in nanocomposites varied from 0 to 10%. Mössbauer investigations of nanocomposites were carried out in the temperature range from 5 to 300 K. Many-state superparamagnetic relaxation model was used for spectra fitting. The magnetization, M(T,H), was measured in the temperature interval of 80-300 K and magnetic field up to 10 kOe. Formation of the 'iron-polymer' interface was not observed. Particle sizes were estimated using the Mössbauer and X-ray powder diffraction data

  1. Study of nanocomposites based on iron oxides and pectin

    Science.gov (United States)

    Chistyakova, Nataliya I.; Shapkin, Alexey A.; Sirazhdinov, Ruslan R.; Gubaidulina, Tatiana V.; Kiseleva, Tatiana Yu.; Kazakov, Alexander P.; Rusakov, Vyacheslav S.

    2014-10-01

    Mössbauer and X-ray diffraction study of nanocomposites based on iron oxides and pectin (PC) was carried out involving magnetization measurements. The concentrations of PC in nanocomposites varied from 0 to 10%. Mössbauer investigations of nanocomposites were carried out in the temperature range from 5 to 300 K. Many-state superparamagnetic relaxation model was used for spectra fitting. The magnetization, M(T,H), was measured in the temperature interval of 80-300 K and magnetic field up to 10 kOe. Formation of the "iron-polymer" interface was not observed. Particle sizes were estimated using the Mössbauer and X-ray powder diffraction data.

  2. Study of nanocomposites based on iron oxides and pectin

    Energy Technology Data Exchange (ETDEWEB)

    Chistyakova, Nataliya I., E-mail: nchistyakova@yandex.ru; Shapkin, Alexey A., E-mail: nchistyakova@yandex.ru; Sirazhdinov, Ruslan R., E-mail: nchistyakova@yandex.ru; Gubaidulina, Tatiana V., E-mail: nchistyakova@yandex.ru; Kiseleva, Tatiana Yu., E-mail: nchistyakova@yandex.ru; Kazakov, Alexander P., E-mail: nchistyakova@yandex.ru; Rusakov, Vyacheslav S., E-mail: nchistyakova@yandex.ru [M. V. Lomonosov Moscow State University, Faculty of Physics, Leninskie gory, 119991 Moscow (Russian Federation)

    2014-10-27

    Mössbauer and X-ray diffraction study of nanocomposites based on iron oxides and pectin (PC) was carried out involving magnetization measurements. The concentrations of PC in nanocomposites varied from 0 to 10%. Mössbauer investigations of nanocomposites were carried out in the temperature range from 5 to 300 K. Many-state superparamagnetic relaxation model was used for spectra fitting. The magnetization, M(T,H), was measured in the temperature interval of 80-300 K and magnetic field up to 10 kOe. Formation of the 'iron-polymer' interface was not observed. Particle sizes were estimated using the Mössbauer and X-ray powder diffraction data.

  3. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    International Nuclear Information System (INIS)

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: ► Hybrid, dextran-iron oxide nanoparticles and thin films. ► Laser immobilization. ► Biocompatibility of dextran-iron oxide nanoparticles.

  4. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Predoi, D.; Ciobanu, C.S. [National Institute for Physics of Materials, P.O. Box MG 07, Bucharest, Magurele (Romania); Radu, M.; Costache, M.; Dinischiotu, A. [Molecular Biology Center, University of Bucharest, 91-95 Splaiul Independentei, 76201, Bucharest 5 (Romania); Popescu, C.; Axente, E.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Gyorgy, E., E-mail: egyorgy@cin2.es [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Consejo Superior de Investigaciones Cientificas, Centre d' Investigacions en Nanociencia i Nanotecnologia (CSIC-CIN2), Campus UAB, 08193 Bellaterra (Spain)

    2012-02-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: Black-Right-Pointing-Pointer Hybrid, dextran-iron oxide nanoparticles and thin films. Black-Right-Pointing-Pointer Laser immobilization. Black-Right-Pointing-Pointer Biocompatibility of dextran-iron oxide nanoparticles.

  5. Chitosan-Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm.

    Science.gov (United States)

    Konwar, Achyut; Kalita, Sanjeeb; Kotoky, Jibon; Chowdhury, Devasish

    2016-08-17

    We report a robust biofilm with antimicrobial properties fabricated from chitosan-iron oxide coated graphene oxide nanocomposite hydrogel. For the first time, the coprecipitation method was used for the successful synthesis of iron oxide coated graphene oxide (GIO) nanomaterial. After this, films were fabricated by the gel-casting technique aided by the self-healing ability of the chitosan hydrogel network system. Both the nanomaterial and the nanocomposite films were characterized by techniques such as scanning electron microscopy, FT-IR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. Measurements of the thermodynamic stability and mechanical properties of the films indictaed a significant improvement in their thermal and mechanical properties. Moreover, the stress-strain profile indicated the tough nature of the nanocomposite hydrogel films. These improvements, therefore, indicated an effective interaction and good compatibility of the GIO nanomaterial with the chitosan hydrogel matrix. In addition, it was also possible to fabricate films with tunable surface properties such as hydrophobicity simply by varying the loading percentage of GIO nanomaterial in the hydrogel matrix. Fascinatingly, the chitosan-iron oxide coated graphene oxide nanocomposite hydrogel films displayed significant antimicrobial activities against both Gram-positive and Gram-negative bacterial strains, such as methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, and Escherichia coli, and also against the opportunistic dermatophyte Candida albicans. The antimicrobial activities of the films were tested by agar diffusion assay and antimicrobial testing based on direct contact. A comparison of the antimicrobial activity of the chitosan-GIO nanocomposite hydrogel films with those of individual chitosan-graphene oxide and chitosan-iron oxide nanocomposite films demonstrated a higher antimicrobial activity for the former in both types of tests. In vitro hemolysis

  6. Iron oxide-based nanomagnets in nanomedicine: fabrication and applications

    Directory of Open Access Journals (Sweden)

    Meng Meng Lin

    2010-02-01

    Full Text Available Iron oxide-based nanomagnets have attracted a great deal of attention in nanomedicine over the past decade. Down to the nanoscale, superparamagnetic iron oxide nanoparticles can only be magnetized in the presence of an external magnetic field, which makes them capable of forming stable colloids in a physio-biological medium. Their superparamagnetic property, together with other intrinsic properties, such as low cytotoxicity, colloidal stability, and bioactive molecule conjugation capability, makes such nanomagnets ideal in both in-vitro and in-vivo biomedical applications. In this review, a chemical, physical, and biological synthetic approach to prepare iron oxide-based nanomagnets with different physicochemical properties was illustrated and compared. The growing interest in iron oxide-based nanomagnets with multifunctionalities was explored in cancer diagnostics and treatment, focusing on their combined roles in a magnetic resonance contrast agent, hyperthermia, and magnetic force assisted drug delivery. Iron oxides as magnetic carriers in gene therapy were reviewed with a focus on the sophisticated design and construction of magnetic vectors. Finally, the iron oxide-based nanomagnet also represents a very promising tool in particle/cell interfacing in controlling cellular functionalities, such as adhesion, proliferation, differentiation, and cell patterning, in stem cell therapy and tissue engineering applications. Meng Meng Lin received a BSc in biotechnology at the University of Hong Kong, China in 2004 and an MSc in biomedical nanotechnology at Newcastle University, UK, in 2005. She is currently working toward her PhD at the Institute of Science and Technology in Medicine, Keele University, UK. She was a visiting student at the Royal Institute of Technology, Sweden, in 2006. Her research interests include nanoparticles preparation, cell/nanomaterials interface, and cancer-oriented drug delivery. Hyung-Hwan Kim received an MSc degree in

  7. Synthesis of Functionalized Iron Oxide Nanoparticle with Amino Pyridine Moiety and Studies on Their Catalytic Behavior

    OpenAIRE

    Girija, D.; Naik, Halehatty S. Bhojya; Kumar, B. Vinay; Sudhamani, C. N.

    2011-01-01

    Aim: The main objective of this paper is to study the synthesis of functionalized iron oxide nanoparticle and its reactivity towards chromene synthesis Study design: Functionalized iron oxide nanoparticle study. Place and duration of study: Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, between December 2009 and July 2010. Methodology: This paper describes synthesis of stable functionalized iron oxide nanoparticles ...

  8. Porous Iron Oxide Ribbons Grown on Graphene for High-Performance Lithium Storage

    OpenAIRE

    Yang, Shubin; Sun, Yi; Chen, Long; Hernandez, Yenny; Feng, Xinliang; Müllen, Klaus

    2012-01-01

    A well-designed nanostructure of transition metal oxides has been regarded as a key to solve their problems of large volume changes during lithium insertion-desertion processes which are associated with pulverization of the electrodes and rapid capacity decay. Here we report an effective approach for the fabrication of porous iron oxide ribbons by controlling the nucleation and growth of iron precursor onto the graphene surface and followed by an annealing treatment. The resultant iron oxide ...

  9. Iron modified titanium–hafnium binary oxides as catalysts in total oxidation of ethyl acetate

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Henych, Jiří; Velinov, N.; Kormunda, M.; Dimitrov, M.; Paneva, D.; Slušná, Michaela; Mitov, I.; Štengl, Václav

    2016-01-01

    Roč. 81, JUN (2016), s. 14-19. ISSN 1566-7367 R&D Projects: GA MŠk LM2015073 Institutional support: RVO:61388980 Keywords : Titania–hafnia binary oxides * Iron modifications * Support effect * Ethyl acetate oxydation Subject RIV: CA - Inorganic Chemistry Impact factor: 3.699, year: 2014

  10. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Kalambur, Venkat S; Longmire, Ellen K; Bischof, John C

    2007-11-20

    Superparamagnetic iron oxide nanoparticles (NPs) hold promise for a variety of biomedical applications due to their properties of visualization using magnetic resonance imaging (MRI), heating with radio frequency (rf), and movement in an external magnetic field. In this study, the cellular loading (uptake) mechanism of dextran- and surfactant-coated iron oxide NPs by malignant prostate tumor cells (LNCaP-Pro5) has been studied, and the feasibility of traditional rf treatment and a new laser heating method was evaluated. The kinetics of cell loading was quantified using magnetophoresis and a colorimetric assay. The results showed that loading of surfactant-coated iron oxide NPs with LNCaP-Pro5 was saturable with time (at 24 h) and extracellular concentration (11 pg Fe/cell at 0.5 mg Fe/mL), indicating that the particles are taken up by an "adsorptive endocytosis" pathway. Dextran-coated NPs, however, were taken up less efficiently (1 pg Fe/cell at 0.5 mg Fe/mL). Loading did not saturate with concentration suggesting uptake by fluid-phase endocytosis. Magnetophoresis suggests that NP-loaded cells can be held using external magnetic fields in microcirculatory flow velocities in vivo or in an appropriately designed extracorporeal circuit. Loaded cells were heated using traditional rf (260A, 357 kHz) and a new laser method (532 nm, 7 ns pulse duration, 0.03 J/pulse, 20 pulse/s). Iron oxide in water was found to absorb sufficiently strongly at 532 nm such that heating of individual NPs and thus loaded cells (1 pg Fe/cell) was effective (10 pg Fe/cell) and longer duration (30 min) when compared to laser to accomplish cell destruction (50% viability at 10 pg Fe/cell). Scaling calculations show that the pulsed laser method can lead to single-cell (loaded with NPs) treatments (200 degrees C temperature change at the surface of an individual NP) unlike traditional rf heating methods which can be used only for bulk tissue level treatments. In a mixture of normal and NP

  11. Hydrothermal treatment of electrochemically synthesized nanocrystalline magnetic iron oxide powder

    Directory of Open Access Journals (Sweden)

    Vulićević Lj.

    2007-01-01

    Full Text Available Magnetic iron oxide nano-powders were synthesised electrochemically, using a low-carbon steel electrode immersed in a NaCl aqueous solution, at constant temperature of the electrolyte, pH and current density. In the second step, portions of the starting admixture were boiled at ~360 K during two hours and autoclaved at various temperatures. Both the starting powder and the treated ones were examined by a standard XRD method, then uniaxially pressed into pellets under 400 MPa, and their electric and magnetic behavior during non isothermal heating was analyzed.

  12. Hydrothermal treatment of electrochemically synthesized nanocrystalline magnetic iron oxide powder

    OpenAIRE

    Vulićević Lj.; Ivanović N.; Maričić A.; Srećković M.; Vardić S.; Plazinić M.; Tomić Ž.

    2007-01-01

    Magnetic iron oxide nano-powders were synthesised electrochemically, using a low-carbon steel electrode immersed in a NaCl aqueous solution, at constant temperature of the electrolyte, pH and current density. In the second step, portions of the starting admixture were boiled at ~360 K during two hours and autoclaved at various temperatures. Both the starting powder and the treated ones were examined by a standard XRD method, then uniaxially pressed into pellets under 400 MPa, and their electr...

  13. Sentinel lymph node after intramammary injection of superparamagnetic iron oxide

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate enhancement (signal loss) of the axillary lymph nodes on MR lymphography after intramammary injection of superparamagnetic iron oxide (Ferumoxides) for detection of the sentinel lymph node. MR lymphography was performed in a total of 11 patients with breast cancer without palpable axillary lymph node swelling before operation. Coronal and axial images were obtained before and after intramammary injection of 1.5 ml Ferumoxides adjacent to the breast tumor. In all patients, decreased intensity was recognized in the axillary lymph nodes. MR lymphography could detect the sentinel lymph node with its decreased signal intensity 20 minutes after the intramammary injection of Ferumoxides. (author)

  14. Synthesis and Characterization of Holmium-Doped Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maarten Bloemen

    2014-02-01

    Full Text Available Rare earth atoms exhibit several interesting properties, for example, large magnetic moments and luminescence. Introducing these atoms into a different matrix can lead to a material that shows multiple interesting effects. Holmium atoms were incorporated into an iron oxide nanoparticle and the concentration of the dopant atom was changed in order to determine its influence on the host crystal. Its magnetic and magneto-optical properties were investigated by vibrating sample magnetometry and Faraday rotation measurements. The luminescent characteristics of the material, in solution and incorporated in a polymer thin film, were probed by fluorescence experiments.

  15. Catalytic effect of free iron ions and heme-iron on chromophore oxidation of a polyene antibiotic amphotericin B

    Science.gov (United States)

    Czernel, Grzegorz; Typek, Rafał; Klimek, Katarzyna; Czuryło, Aleksandra; Dawidowicz, Andrzej L.; Gagoś, Mariusz

    2016-05-01

    Owing to the presence of a chromophore in the amphotericin B (AmB) structure, the molecule can undergo the oxidation process. In this research, AmB chromophore oxidation was catalysed by iron ions (iron(III) chloride (FeCl3), pH 2.5) and by heme-iron (methemoglobin (HbFe(III)), and hemin (heme-Fe(III)) at pH 7.0). Additionally, we compared oxidation processes induced by the aforementioned oxidizing agents with autoxidation by dioxygen (O2) naturally occurring in a sample. The effects of the interaction of the oxidizing agents with AmB were analysed using molecular spectroscopies (electronic absorption (UV-Vis), fluorescence) and LC-MS. The use of a 1,10-phenanthroline (phen) chelator facilitated unambiguous determination of the oxidative effect of free iron(III) ions (FeIII) in an acidic solution on the AmB molecules. Also, the changes in the spectra of fluorescence emission centred at ∼470 nm indicate iron-catalysed processes of AmB chromophore oxidation. Unexpectedly, we found a similar spectroscopic effect for AmB induced by methemoglobin and hemin at pH 7.0. Methemoglobin and hemin at a concentration of 8 × 10-7 M (physiological) significantly increases the rate of the processes of AmB chromophore oxidation relative to the process of autoxidation.

  16. Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique

    OpenAIRE

    Ciobanu Carmen; Iconaru Simona; Gyorgy Eniko; Radu Mihaela; Costache Marieta; Dinischiotu Anca; Le Coustumer Philippe; Lafdi Khalid; Predoi Daniela

    2012-01-01

    Abstract Background In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.% iron oxide nanoparticles (IONPs). The IONPs were synthesized by co-precipitation method. A KrF* excimer laser source (λ = 248 nm, τFWHM≅25 ns, ν = 10 Hz) was used for the growth of the hybrid, iron oxide NPs-dextran thin films. Results Dextran coated iron oxide nanoparticles thin f...

  17. Contribution to the study of iron-manganese alloy oxidation in oxygen at high temperatures

    International Nuclear Information System (INIS)

    This research thesis reports a systematic investigation of the oxidation of three relatively pure iron-manganese alloys in oxygen, under atmospheric pressure, and between 400 and 1000 C, these alloys being annealed as well as work-hardened. It also compares their behaviour with that of non-alloyed iron oxidized under the same conditions. The author describes the experimental techniques and installations, discusses the morphology of oxide films formed under the experimental conditions, discusses the film growth kinetics which is studied by thermogravimetry, proposes interpretations of results, and outlines the influence of manganese addition to iron on iron oxidation

  18. Radiation-induced synthesis of gold, iron-oxide composite nanoparticles

    International Nuclear Information System (INIS)

    Composite nanoparticles consisting of magnetic iron oxide nanoparticles and gold nanoparticles were synthesized using gamma-rays or electron beam. Ionizing irradiation induces the generation of reducing species inside the aqueous solution, and gold ions are reduced to form metallic Au nanoparticles. The size of Au nanoparticles depended on the dose rate and the concentration of support iron oxide. The gold nanoparticles on iron oxide nanoparticles selectively adsorb biomolecules via Au-S bonding. By using magnetic property of the support iron oxide nanoparticles, the composite nanoparticles are expected as a new type of magnetic nanocarrier for biomedical applications. (author)

  19. Thermo-electric oxidization of iron in lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Matthias

    2007-07-01

    Lithium niobate crystals (LiNbO{sub 3}) are a promising material for nonlinear-optical applications like frequency conversion to generate visible light, e.g., in laser displays, but their achievable output power is greatly limited by the ''optical damage'', i.e., light-induced refractive-index changes caused by excitation of electrons from iron impurities and the subsequent retrapping in unilluminated areas of the crystal. The resulting space-charge fields modify the refractive indices due to the electro-optic effect. By this ''photorefractive effect'' the phase-matching condition, i.e., the avoidance of destructive interference between light generated at different crystal positions due to the dispersion of the fundamental wave and the converted wave, is disturbed critically above a certain light intensity threshold. The influence of annealing treatments conducted in the presence of an externally applied electric field (''thermo-electric oxidization'') on the valence state of iron impurities and thereby on the optical damage is investigated. It is observed that for highly iron-doped LiNbO{sub 3} crystals this treatment leads to a nearly complete oxidization from Fe{sup 2+} to Fe{sup 3+} indicated by the disappearance of the absorption caused by Fe{sup 2+}. During the treatment an absorption front forms that moves through the crystal. The absorption in the visible as well as the electrical conductivity are decreased by up to five orders of magnitude due to this novel treatment. The ratio of the Fe{sup 2+} concentration to the total iron concentration - a measure for the strength of the oxidization - is in the order of 10{sup -6} for oxidized crystals whereas it is about 10{sup -1} for untreated samples. Birefringence changes are observed at the absorption front that are explained by the removal of hydrogen and lithium ions from the crystal that compensate for the charges of the also removed electrons from

  20. Thermo-electric oxidization of iron in lithium niobate crystals

    International Nuclear Information System (INIS)

    Lithium niobate crystals (LiNbO3) are a promising material for nonlinear-optical applications like frequency conversion to generate visible light, e.g., in laser displays, but their achievable output power is greatly limited by the ''optical damage'', i.e., light-induced refractive-index changes caused by excitation of electrons from iron impurities and the subsequent retrapping in unilluminated areas of the crystal. The resulting space-charge fields modify the refractive indices due to the electro-optic effect. By this ''photorefractive effect'' the phase-matching condition, i.e., the avoidance of destructive interference between light generated at different crystal positions due to the dispersion of the fundamental wave and the converted wave, is disturbed critically above a certain light intensity threshold. The influence of annealing treatments conducted in the presence of an externally applied electric field (''thermo-electric oxidization'') on the valence state of iron impurities and thereby on the optical damage is investigated. It is observed that for highly iron-doped LiNbO3 crystals this treatment leads to a nearly complete oxidization from Fe2+ to Fe3+ indicated by the disappearance of the absorption caused by Fe2+. During the treatment an absorption front forms that moves through the crystal. The absorption in the visible as well as the electrical conductivity are decreased by up to five orders of magnitude due to this novel treatment. The ratio of the Fe2+ concentration to the total iron concentration - a measure for the strength of the oxidization - is in the order of 10-6 for oxidized crystals whereas it is about 10-1 for untreated samples. Birefringence changes are observed at the absorption front that are explained by the removal of hydrogen and lithium ions from the crystal that compensate for the charges of the also removed electrons from Fe2+. A microscopic shock-wave model is developed that explains the observed absorption front by a self

  1. Storage and production of hydrogen by the redox of modified iron oxides

    International Nuclear Information System (INIS)

    Pure hydrogen could be supplied directly to PEFC through the decomposition of water by reduced iron oxide at low temperatures 2O →Fe3O4 + 4H2). Among 26 metal elements examined, Al, Mo and Zr were favorable additives for preserving the Fe/Fe3O4 sample from decaying its reactivity by repeated cycles. The decomposition of water was most repetitive for the reduced iron oxide added with Al. The addition of Rh or Ir enhanced the rate of H20 decomposition remarkably at 2O at low temperature while the compound oxides formed between iron and additives mitigate the coagulation of iron and iron oxide particles during repeated reaction cycles. The hydrogen supply system based on the decomposition of water by the reduced iron oxides with the additive elements described above was designed and manufactured. The system worked well at <573 K, recovering hydrogen repeatedly by ca. 4.5 wt% of Fe. (author)

  2. Molecular modeling studies of oleate adsorption on iron oxides

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Plane wave periodic DFT study of oleate-iron oxide interaction. • Magnetite-oleate complex is more stable than hematite and goethite. • Flotation recovery of magnetite is more compared to the other two oxides. - Abstract: Comparative studies of oleate interaction with hematite, magnetite and goethite using density functional calculations are presented. The approach is illustrated by carrying out geometric optimization of oleate on the stable and most exposed planes of hematite, magnetite, and goethite. Interaction energies for oleate-mineral surface have been determined, based on which, magnetite is found to be forming the most stable complex with oleate. Trend as obtained from the quantum chemical calculations has been validated by contact angle measurements and flotation studies on hematite, magnetite and goethite with sodium oleate at different pH and collector concentrations

  3. Molecular modeling studies of oleate adsorption on iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rath, Swagat S. [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India); Sinha, Nishant [Accelrys K.K, Bengaluru (India); Sahoo, Hrushikesh [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India); Das, Bisweswar, E-mail: bdas@immt.res.in [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India); Mishra, Barada Kanta [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India)

    2014-03-01

    Graphical abstract: - Highlights: • Plane wave periodic DFT study of oleate-iron oxide interaction. • Magnetite-oleate complex is more stable than hematite and goethite. • Flotation recovery of magnetite is more compared to the other two oxides. - Abstract: Comparative studies of oleate interaction with hematite, magnetite and goethite using density functional calculations are presented. The approach is illustrated by carrying out geometric optimization of oleate on the stable and most exposed planes of hematite, magnetite, and goethite. Interaction energies for oleate-mineral surface have been determined, based on which, magnetite is found to be forming the most stable complex with oleate. Trend as obtained from the quantum chemical calculations has been validated by contact angle measurements and flotation studies on hematite, magnetite and goethite with sodium oleate at different pH and collector concentrations.

  4. Modified Fenton oxidation of pyrene in contaminated soils using iron nano oxides

    OpenAIRE

    Sahand Jorfi; Abbas Rezaee; Nemat Allah Jaafarzadeh Haghighi Fard; Ghasem Ali Mohebali

    2013-01-01

    Background and Aim: Problems related to conventional Fenton oxidation, including neccesity of having a low pH and production of considerable amounts of sludge, have prompted researchers to consider chelating agents to improve the pH operating range and iron nano-oxide particles to reduce excess sludge. The main objective of this study was to remove pyrene from contaminated soils by a modified Fenton oxidation method  at neutral pH. Materials and Methods: Experiments were conducted using vario...

  5. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    Xiang-Hong Peng

    2008-10-01

    Full Text Available Xiang-Hong Peng1,4, Ximei Qian2,4, Hui Mao3,4, Andrew Y Wang5, Zhuo (Georgia Chen1,4, Shuming Nie2,4, Dong M Shin1,4*1Department of Medical Oncology/Hematology; 2Department of Biomedical Engineering; 3Department of Radiology; 4Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; 5Ocean Nanotech, LLC, Fayetteville, AR, USAAbstract: Magnetic iron oxide (IO nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI, which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.Keywords: iron oxide nanoparticles, tumor imaging, MRI, therapy

  6. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    Science.gov (United States)

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. PMID:27261762

  7. Magnetic Iron Oxide Nanoparticle Seeded Growth of Nucleotide Coordinated Polymers.

    Science.gov (United States)

    Liang, Hao; Liu, Biwu; Yuan, Qipeng; Liu, Juewen

    2016-06-22

    The introduction of functional molecules to the surface of magnetic iron oxide nanoparticles (NPs) is of critical importance. Most previously reported methods were focused on surface ligand attachment either by physisorption or covalent conjugation, resulting in limited ligand loading capacity. In this work, we report the seeded growth of a nucleotide coordinated polymer shell, which can be considered as a special form of adsorption by forming a complete shell. Among all of the tested metal ions, Fe(3+) is the most efficient for this seeded growth. A diverse range of guest molecules, including small organic dyes, proteins, DNA, and gold NPs, can be encapsulated in the shell. All of these molecules were loaded at a much higher capacity compared to that on the naked iron oxide NP core, confirming the advantage of the coordination polymer (CP) shell. In addition, the CP shell provides better guest protein stability compared to that of simple physisorption while retaining guest activity as confirmed by the entrapped glucose oxidase assay. Use of this system as a peroxidase nanozyme and glucose biosensor was demonstrated, detecting glucose as low as 1.4 μM with excellent stability. This work describes a new way to functionalize inorganic materials with a biocompatible shell. PMID:27248668

  8. Homogeneous, heterogeneous and biological oxidation of iron(II) in rapid sand filtration

    NARCIS (Netherlands)

    Beek, van C.G.E.M.; Hiemstra, T.; Hofs, B.; Nederlof, M.M.; Paassen, van J.A.M.; Reijnen, G.K.

    2012-01-01

    Homogeneous, heterogeneous and biological oxidation may precipitate iron(II) as iron(III) hydroxides. In this paper we evaluate the conditions under which each of these processes is dominant in rapid sand filtration (RSF). It is demonstrated that in the presence of iron(III) hydroxide precipitates h

  9. HREM investigation of the constitution and the crystallography of thin thermal oxide layers on iron

    DEFF Research Database (Denmark)

    Graat, P.C.J.; Brongers, M.P.H.; Zandbergen, H.W.;

    1997-01-01

    Oxide layers formed at 573 K in O2 at atmospheric pressure, both on a clean iron surface and on an iron surface covered with an etching induced (hydro)oxide film, were investigated with high-resolution transmission electron microscopy (HREM). Cross-sections of oxidised samples were prepared by a...... specially developed technique, consisting of, consecutively, jet electropolishing, oxidation and ion milling. Oxidation of clean iron surfaces yielded an oxide layer of uniform thickness with Fe3O4 adjacent to a-Fe and a-Fe2O3 on top of Fe3O4. A Bain-type orientation relationship for magnetite/ferrite and a...... Shoji-Nishiyama-type orientation relationship for hematite/magnetite were observed. At several locations cracks close to and parallel to the interface with the substrate were observed within Fe3O4. Oxidation of iron samples that were covered with an (hydro)oxide film prior to oxidation yielded thin...

  10. Iron oxide nanoparticles for magnetically assisted patterned coatings

    International Nuclear Information System (INIS)

    Iron oxide nanoparticles able to magnetically assemble during the curing stage of a polymeric support to create micro-scale surface protuberances in a controlled manner were prepared and characterized. The bare Fe3O4 particles were obtained by two methods: co-precipitation from an aqueous solution containing Fe3+/Fe2+ ions with a molar ratio of 2:1 and partial oxidation of ferrous ions in alkaline conditions. The products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetization measurement. They were subsequently functionalized using oleic acid, sodium oleate, or non-ionic surfactant mixtures with various hydrophilic to lipophilic balance (HLB) values. Composite nanoparticle-polymer films prepared by spraying were deposited and cured by drying on glass slides under a static magnetic field in the range of 1.5–5.5 mT. Magnetic field generated surface roughness was evidenced by optical and scanning electron microscopy. The optimum hierarchical patterning was obtained with the nanoparticles produced by partial oxidation and functionalized with hydrophobic surfactants. Possible applications may include ice-phobic composite coatings. - Highlights: • Magnetite nanoparticles bearing variable hydrophobic functionality were synthesized. • Partial oxidation in alkaline solution is proved to be the optimum synthesis method. • Nanoparticle assembly in magnetic field produced films with hierarchical roughness. • Coating patterning is controlled by surfactant nature and magnetic field strength. • Possible applications in composite films with ice-phobic properties are suggested

  11. Iron oxide nanoparticles for magnetically assisted patterned coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dodi, Gianina; Hritcu, Doina, E-mail: dhritcu@ch.tuiasi.ro; Draganescu, Dan; Popa, Marcel I.

    2015-08-15

    Iron oxide nanoparticles able to magnetically assemble during the curing stage of a polymeric support to create micro-scale surface protuberances in a controlled manner were prepared and characterized. The bare Fe{sub 3}O{sub 4} particles were obtained by two methods: co-precipitation from an aqueous solution containing Fe{sup 3+}/Fe{sup 2+} ions with a molar ratio of 2:1 and partial oxidation of ferrous ions in alkaline conditions. The products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetization measurement. They were subsequently functionalized using oleic acid, sodium oleate, or non-ionic surfactant mixtures with various hydrophilic to lipophilic balance (HLB) values. Composite nanoparticle-polymer films prepared by spraying were deposited and cured by drying on glass slides under a static magnetic field in the range of 1.5–5.5 mT. Magnetic field generated surface roughness was evidenced by optical and scanning electron microscopy. The optimum hierarchical patterning was obtained with the nanoparticles produced by partial oxidation and functionalized with hydrophobic surfactants. Possible applications may include ice-phobic composite coatings. - Highlights: • Magnetite nanoparticles bearing variable hydrophobic functionality were synthesized. • Partial oxidation in alkaline solution is proved to be the optimum synthesis method. • Nanoparticle assembly in magnetic field produced films with hierarchical roughness. • Coating patterning is controlled by surfactant nature and magnetic field strength. • Possible applications in composite films with ice-phobic properties are suggested.

  12. Iron oxide reduction in deep Baltic Sea sediments: the potential role of anaerobic oxidation of methane

    Science.gov (United States)

    Egger, Matthias; Slomp, Caroline P.; Dijkstra, Nikki; Sapart, Célia J.; Risgaard-Petersen, Nils; Kasten, Sabine; Riedinger, Natascha; Barker Jørgensen, Bo

    2015-04-01

    Methane is a powerful greenhouse gas and its emission from marine sediments to the atmosphere is largely controlled by anaerobic oxidation of methane (AOM). Traditionally, sulfate is considered to be the most important electron acceptor for AOM in marine sediments. However, recent studies have shown that AOM may also be coupled to the reduction of iron (Fe) oxides (Beal et al., 2009; Riedinger et al., 2014; Egger et al., 2014). In the Baltic Sea, the transition from the Ancylus freshwater phase to the Littorina brackish/marine phase (A/L-transition) ca. 9-7 ka ago (Zillén et al., 2008) resulted in the accumulation of methanogenic brackish/marine sediments overlying Fe-oxide rich lacustrine deposits. The downward diffusion of methane from the brackish/marine sediments into the lake sediments leads to an ideal diagenetic system to study a potential coupling between Fe oxide reduction and methane oxidation. Here, we use porewater and sediment geochemical data obtained at sites M0063 and M0065 during the IODP Baltic Sea Paleoenvironment Expedition 347 in 2013 to identify the potential mechanisms responsible for the apparent Fe oxide reduction in the non-sulfidic limnic sediments below the A/L transition. In this presentation, we will review the various explanations for the elevated ferrous Fe in the porewater in the lake sediments and we will specifically address the potential role of the reaction of methane with Fe-oxides. References: Beal E. J., House C. H. and Orphan V. J. (2009) Manganese- and iron-dependent marine methane oxidation. Science 325, 184-187. Egger M., Rasigraf O., Sapart C. J., Jilbert T., Jetten M. S. M., Röckmann T., van der Veen C., Banda N., Kartal B., Ettwig K. F. and Slomp C. P. (2014) Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ. Sci. Technol. 49, 277-283. Riedinger N., Formolo M. J., Lyons T. W., Henkel S., Beck A. and Kasten S. (2014) An inorganic geochemical argument for coupled anaerobic oxidation of

  13. Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix ochracea

    International Nuclear Information System (INIS)

    Some features of characteristic iron oxide sheaths which the iron oxidizing bacteria Leptothrix ochracea (L. oceracea) formed were studied in order to make clear their morphology microstructure, chemical composition, and crystal structure through scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). Each sheath was a hollow tube with average outer and inner diameters of 1.1 and 1.4 μm, respectively. Their length ranged from 10 to 200 μm and the aspect ratio was 10-200. Each sheath was constructed by very small particles with a diameter of less than 100 nm. The hollow sheaths were mainly composed of Fe and O with small amounts of Si and P. The chemical composition analyzed by EDX was roughly Fe:Si:P=80:15:5 with the exception of O. XRD measurement revealed that crystal structures of the sheath were similar to that of 2-line ferrihydrite. The sheath showed spin-glass-like magnetic properties

  14. A Combined Experimental and Numerical Approach to a Discrete Description of Indirect Reduction of Iron Oxide

    OpenAIRE

    Peters, Bernhard; Hoffmann, F; Senk, D.; Babich, A.; Hausemer, L.; Simoes, J.-P.

    2016-01-01

    Blast furnaces are complex counter-current reactors designed to reduce chemically iron oxides and melt them to liquid iron. The complex processes in blast furnace iron making involve various aspects of thermodynamics, fluid dynamics, chemistry and physics. Physical, thermal and chemical phenomena occurring within the process are highly coupled in time and space. In order to generate a more detailed understanding of the indirect reduction of iron ore, the innovative approach of the Extended D...

  15. Iron binding at specific sites within the octameric HbpS protects streptomycetes from iron-mediated oxidative stress.

    Directory of Open Access Journals (Sweden)

    Ina Wedderhoff

    Full Text Available The soil bacterium Streptomyces reticuli secretes the octameric protein HbpS that acts as a sensory component of the redox-signalling pathway HbpS-SenS-SenR. This system modulates a genetic response on iron- and haem-mediated oxidative stress. Moreover, HbpS alone provides this bacterium with a defence mechanism to the presence of high concentrations of iron ions and haem. While the protection against haem has been related to its haem-binding and haem-degrading activity, the interaction with iron has not been studied in detail. In this work, we biochemically analyzed the iron-binding activity of a set of generated HbpS mutant proteins and present evidence showing the involvement of one internal and two exposed D/EXXE motifs in binding of high quantities of ferrous iron, with the internal E78XXE81 displaying the tightest binding. We additionally show that HbpS is able to oxidize ferrous to ferric iron ions. Based on the crystal structure of both the wild-type and the mutant HbpS-D78XXD81, we conclude that the local arrangement of the side chains from the glutamates in E78XXE81 within the octameric assembly is a pre-requisite for interaction with iron. The data obtained led us to propose that the exposed and the internal motif build a highly specific route that is involved in the transport of high quantities of iron ions into the core of the HbpS octamer. Furthermore, physiological studies using Streptomyces transformants secreting either wild-type or HbpS mutant proteins and different redox-cycling compounds led us to conclude that the iron-sequestering activity of HbpS protects these soil bacteria from the hazardous side effects of peroxide- and iron-based oxidative stress.

  16. Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels

    DEFF Research Database (Denmark)

    Carpenter, E.E.; Long, J.W.; Rolison, D.R.;

    2006-01-01

    A sol-gel synthesis was used to produce iron oxide aerogels. These nanocrystalline aerogels have a pore-solid structure similar to silica aerogels but are composed entirely of iron oxides. Mössbauer experiments and x-ray diffraction showed that the as-prepared aerogel is an amorphous or poorly...

  17. Identification of Iron Oxides Qualitatively/Quantitatively Formed during the High Temperature Oxidation of Superalloys in Air and Steam Environments

    Institute of Scientific and Technical Information of China (English)

    M.Siddique; N.Hussain; M.Shafi

    2009-01-01

    Mossbauer spectroscopy has been used to study the morphology of iron oxides formed during the oxidation of superalloys, such as SS-304L (1.4306S), Incoloy-800H, Incoloy-825, UBHA-25L, Sanicro-28 and Inconel-690, at 1200℃ exposed in air and steam environments for 400 h. The basic aim was to identify and compare the iron oxides qualitatively and quantitatively, formed during the oxidation of these alloys in two environments. The behaviour of alloy UBHA-25L in high temperature oxidation in both environments indicates that it has good oxidation resistance especially in steam, whereas Sanicro-28 has excellent corrosion resistance in steam environment. In air oxidation of lnconel-690 no iron oxide, with established Mossbauer parameters, was detected.

  18. Thermodynamic Calculation on the Reduction of Iron Oxide in an H2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Zhang Jing Qiu

    2007-09-01

    Full Text Available

    Thermodynamic calculation on the reduction of iron oxide in H2 atmosphere is carried out in this paper. The general calculation model of the standard free energy changes for reactions are established. Accurate calculation and plotting of the standard free energy changes, equilibrium constants and gas composition for preparing iron by reduction of iron oxide in H2 atmosphere are realized using the developed general computer program.

  19. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    Science.gov (United States)

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-01

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. PMID:25498641

  20. Iron oxide nanoparticles for magnetically assisted patterned coatings

    Science.gov (United States)

    Dodi, Gianina; Hritcu, Doina; Draganescu, Dan; Popa, Marcel I.

    2015-08-01

    Iron oxide nanoparticles able to magnetically assemble during the curing stage of a polymeric support to create micro-scale surface protuberances in a controlled manner were prepared and characterized. The bare Fe3O4 particles were obtained by two methods: co-precipitation from an aqueous solution containing Fe3+/Fe2+ ions with a molar ratio of 2:1 and partial oxidation of ferrous ions in alkaline conditions. The products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetization measurement. They were subsequently functionalized using oleic acid, sodium oleate, or non-ionic surfactant mixtures with various hydrophilic to lipophilic balance (HLB) values. Composite nanoparticle-polymer films prepared by spraying were deposited and cured by drying on glass slides under a static magnetic field in the range of 1.5-5.5 mT. Magnetic field generated surface roughness was evidenced by optical and scanning electron microscopy. The optimum hierarchical patterning was obtained with the nanoparticles produced by partial oxidation and functionalized with hydrophobic surfactants. Possible applications may include ice-phobic composite coatings.

  1. Processing, Microstructure, and Oxidation Behavior of Iron Foams

    Science.gov (United States)

    Park, Hyeji; Noh, Yoonsook; Choi, Hyelim; Hong, Kicheol; Kwon, Kyungjung; Choe, Heeman

    2016-09-01

    With its historically long popularity in major structural applications, the use of iron (Fe) has also recently begun to be explored as an advanced functional material. For this purpose, it is more advantageous to use Fe as a porous structure, simply because it can provide a greater surface area and a higher reaction rate. This study uses a freeze-casting method, which consists of simple and low-cost processing steps, to produce Fe foam with a mean pore size of 10 μm. We examine the influences of various parameters ( i.e., mold bottom temperature, powder content, and sintering time) on the processing of Fe foam, along with its oxidation kinetics at 823 K (550 °C) with various heat-treatment times. We confirm that Fe2O3 and Fe3O4 oxide layers are successfully formed on the surface of Fe foam. With the Fe oxide layers as an active anode material, the Fe foam can potentially be used as a three-dimensional anode current collector for an advanced lithium-ion battery.

  2. Processing, Microstructure, and Oxidation Behavior of Iron Foams

    Science.gov (United States)

    Park, Hyeji; Noh, Yoonsook; Choi, Hyelim; Hong, Kicheol; Kwon, Kyungjung; Choe, Heeman

    2016-06-01

    With its historically long popularity in major structural applications, the use of iron (Fe) has also recently begun to be explored as an advanced functional material. For this purpose, it is more advantageous to use Fe as a porous structure, simply because it can provide a greater surface area and a higher reaction rate. This study uses a freeze-casting method, which consists of simple and low-cost processing steps, to produce Fe foam with a mean pore size of 10 μm. We examine the influences of various parameters (i.e., mold bottom temperature, powder content, and sintering time) on the processing of Fe foam, along with its oxidation kinetics at 823 K (550 °C) with various heat-treatment times. We confirm that Fe2O3 and Fe3O4 oxide layers are successfully formed on the surface of Fe foam. With the Fe oxide layers as an active anode material, the Fe foam can potentially be used as a three-dimensional anode current collector for an advanced lithium-ion battery.

  3. Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, Arpit; Jain, Navin; Manju Barathi L [Birla Institute of Technology and Science, Centre for Biotechnology, Department of Biological Sciences (India); Akhtar, Mohd Sayeed [Jimma University, Department of Applied Microbiology, College of Natural Sciences (Ethiopia); Yun, Yeoung-Sang [Chonbuk National University, Division of Environmental and Chemical Engineering (Korea, Republic of); Panwar, Jitendra, E-mail: drjitendrapanwar@yahoo.co.in [Birla Institute of Technology and Science, Centre for Biotechnology, Department of Biological Sciences (India)

    2013-11-15

    In the present study, extracellular synthesis of iron oxide nanoparticles (IONPs) was achieved using Aspergillus japonicus isolate AJP01. The isolate demonstrated its ability to hydrolyze the precursor salt solution, a mixture of iron cyanide complexes, under ambient conditions. Hydrolysis of these complexes released ferric and ferrous ions, which underwent protein-mediated coprecipitation and controlled nucleation resulting in the formation of IONPs. Transmission electron microscopy, selected area electron diffraction pattern, energy dispersive spectroscopy and grazing incidence X-ray diffraction analysis confirmed the mycosynthesis of IONPs. The synthesized particles were cubic in shape with a size range of 60–70 nm with crystal structure corresponding to magnetite. Scanning electron microscopy analysis revealed the absence of IONPs on fungal biomass surface, indicating the extracellular nature of synthesis. Fourier transform infrared spectroscopy confirmed the presence of proteins on as-synthesised IONPs, which may confer their stability. Preliminary investigation indicated the role of proteins in the synthesis and stabilization of IONPs. On the basis of present findings, a probable mechanism for synthesis of IONPs is suggested. The simplicity and versatility of the present approach can be utilized for the synthesis of other nanomaterials.

  4. Dielectrical and structural characterization of iron oxide added to hydroxyapatite

    Indian Academy of Sciences (India)

    C C Silva; F P Filho; M F P Graça; M A Valente; A S B Sombra

    2008-08-01

    In this work we report preparation, structural and dielectric analyses of iron oxide added in hydroxyapatite bioceramic (Ca10(PO4)6(OH)2 – HAP). Hydroxyapatite is the main mineral constituent of teeth and bones with excellent biocompatibility with hard and muscle tissues. The samples were prepared through a calcination procedure associated with dry high-energy ball milling process with different iron concentrations (1, 2.5 and 5 wt%). The dielectric analyses were made measuring the sample impedance in the frequency range 1 kHz–10 MHz, at room temperature. The relative permittivity of the ceramics, at 10 MHz, are between 7.13 ± 0.07 (1 wt%) and 6.20 ± 0.11 (5 wt%) while e″ are between 0.0795 ± 0.008 (1 wt%) and 0.067 ± 0.012 (5 wt%). These characteristics were related to the sample microstructures studied by X-ray diffraction and SEM.

  5. Iron oxide nanoparticles stabilized inside highly ordered mesoporous silica

    Indian Academy of Sciences (India)

    A Bhaumik; S Samanta; N K Mal

    2005-11-01

    Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material through in-situ reduction during impregnation. The samples were characterized by powder XRD, TEM, SEM/EDS, N2 adsorption, FT-IR and UV–visible spectroscopies. Characterization data indicated well-dispersed isolated nanoclusters of (Fe2O3),` within the internal surface of 2D-hexagonal mesoporous silica structure. No occluded Fe/Fe2O3 crystallites were observed at the external surface of the mesoporous silica nanocomposites. Inorganic mesoporous host, such as hydrophilic silica in the pore walls, directs a physical constraint necessary to prevent the creation of large Fe2O3 agglomerates and enables the formation of nanosized Fe2O3 particles inside the mesopore.

  6. Synthesis of Monodisperse Iron Oxide Nanoparticles without Surfactants

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Yang

    2014-01-01

    Full Text Available Monodisperse iron oxide nanoparticles could be successfully synthesized with two kinds of precipitants through a precipitation method. As-prepared nanoparticles in the size around 10 nm with regular spherical-like shape were achieved by adjusting pH values. NaOH and NH3·H2O were used as two precipitants for comparison. The average size of nanoparticles with NH3·H2O precipitant got smaller and represented better dispersibility, while nanoparticles with NaOH precipitant represented better magnetic property. This work provided a simple method without using any organic solvents, organic metal salts, or surfactants which could easily obtain monodisperse nanoparticles with tunable morphology.

  7. In vivo tracing of superparamagnetic iron oxide-labeled

    Directory of Open Access Journals (Sweden)

    CHENG Jing-liang

    2010-06-01

    Full Text Available In recent years, a great progress has beenmade in the management of central nervous system disease such asbrain trauma by transplantationof bonemarrow stromal cells.1 Fluorescence microscopy of host brain sections can trace and show the proliferation, migration and differentiation of bone marrow mesenchymal stem cells (BMSCs labeled with green fluorescent protein. However, in clinic we need a noninvasive approach. In vivo monitoring of magnetically labeled stem cells by routine MRI has been widely applied abroad,2,3 but according to our knowledge, there are no reports that have ever described the in vivo tracing of BMSCs labeled with superparamagnetic iron oxide (SPIO and transplanted for brain injuries by susceptibility weighted imaging (SWI at home or abroad.

  8. Iron oxide nanoparticles in different modifications for antimicrobial phototherapy

    Science.gov (United States)

    Tuchina, Elena S.; Kozina, Kristina V.; Shelest, Nikita A.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2014-03-01

    The main goal of this study was to investigate the sensitivity of microorganisms to combined action of blue light and iron oxide nanoparticles. Two strains of Staphylococcus aureus - methicillin-sensitive and meticillin-resistant were used. As a blue light source LED with spectral maximum at 405 nm was taken. The light exposure was ranged from 5 to 30 min. The Fe2O3 (diameter ˜27 nm), Fe3O4 nanoparticles (diameter ˜19 nm), and composite Fe2O3/TiO2 nanoparticles (diameter ˜100 nm) were synthesized. It was shown that irradiation by blue light caused from 20% to 88% decrease in the number of microorganisms treated with nanoparticles. Morphological changes in bacterial cells after phototreatment were analyzed using scanning electron microscope.

  9. Ca alginate as scaffold for iron oxide nanoparticles synthesis

    Directory of Open Access Journals (Sweden)

    P. V. Finotelli

    2008-12-01

    Full Text Available Recently, nanotechnology has developed to a stage that makes it possible to process magnetic nanoparticles for the site-specific delivery of drugs. To this end, it has been proposed as biomaterial for drug delivery system in which the drug release rates would be activated by a magnetic external stimuli. Alginate has been used extensively in the food, pharmaceutical and biomedical industries for their gel forming properties in the presence of multivalent cations. In this study, we produced iron oxide nanoparticles by coprecipitation of Fe(III and Fe(II. The nanoparticles were entrapped in Ca alginate beads before and after alginate gelation. XRD analysis showed that particles should be associated to magnetite or maghemite with crystal size of 9.5 and 4.3 nm, respectively. Studies using Mössbauer spectroscopy corroborate the superparamagnetic behavior. The combination of magnetic properties and the biocompatibility of alginate suggest that this biomaterial may be used as biomimetic system.

  10. Photocatalytic Iron Oxide Coatings Produced by Thermal Spraying Process

    Science.gov (United States)

    Navidpour, A. H.; Salehi, M.; Amirnasr, M.; Salimijazi, H. R.; Azarpour Siahkali, M.; Kalantari, Y.; Mohammadnezhad, M.

    2015-12-01

    Recently, hematite coatings with semiconductor properties have received attention for photocatalytic applications. In this study, plasma and flame spraying techniques were used for hematite deposition on 316 stainless steel plates. X-ray diffraction was used for phase composition analysis, and methylene blue was used as an organic pollutant to evaluate the photocatalytic activity of thermally sprayed coatings. The results showed that all these coatings could act under visible-light irradiation but the one deposited by flame spraying at 20 cm stand-off distance showed the highest photocatalytic activity. The results showed that wavelength of the light source and pH of the solution affected the photocatalytic activity significantly. It was also shown that thermally sprayed iron oxide coatings could have a high photo-absorption ability, which could positively affect the photocatalytic activity.

  11. Colloidal stability of iron oxide nanoparticles with multivalent polymer surfactants.

    Science.gov (United States)

    Choi, Young-Wook; Lee, Hoik; Song, Youngjun; Sohn, Daewon

    2015-04-01

    This paper introduces a new approach for preparing magnetic colloidal suspensions with electrostatic repulsion between particles and polyelectrolyte surfactants. The surface charge of the iron oxide particles was positive in acidic aqueous conditions; however the surface charge of the colloid was negative in basic aqueous conditions due to the amphoteric property of Fe2O3. The long-term colloidal stability and particle distribution of the multivalent charged polymers, Poly(4-vinylbenzenesulfonate sodium salt) (PSS), Poly(acrylic acid) (PAA), and Poly(allylamine hydrochloride) (PAH) were compared with the monovalent surfactant sodium dodecyl sulfate (SDS). Both mono- and multivalent surfactant molecules showed good colloidal stability for extended periods of time. However, the particle distribution was dependent on the hydrophobicity of the surfactants' functional groups. Polyelectrolytes with a negatively charged functional group showed good long-term stability of particles and a narrow particle distribution regardless of the acid dissociation constant (pKa) of the polymer. PMID:25526296

  12. Transformation of iron oxides on PI electrospun membranes

    Science.gov (United States)

    Li, Penggang; Lv, Fengzhu; Liu, Leipeng; Ding, Ling; Zhang, Yihe

    2016-09-01

    Iron oxides/PI fiber membranes, especially magnetic PI membranes, are important flexible porous materials available application in the field of wave absorption, magnetic recording, membrane separation and catalysts. Therefore, α-Fe2O3 loaded PI composite fibers were prepared by electrospinning of poly(amic acid) PAA solution followed by loading Fe3+ on the PAA membrane by ion-exchange and then imidization. Then the α-Fe2O3 on PI membrane were reduced by H2 to give magnetic PI membranes. The content of α-Fe2O3 and Fe3O4 on PI can be controlled by adjustment the ion-exchange time. The saturation magnetization of the composite membranes can reach up to 4 emu/g and the final composite membranes have magnetic response ability.

  13. SURFACE-MODIFICATION OF FINE RED IRON OXIDE PIGMENT

    Institute of Scientific and Technical Information of China (English)

    Shuilin Zheng; Qinghui Zhang

    2003-01-01

    Surface-modification of fine red iron oxide pigment was carried out in an aqueous solution of sodium polyacrylate. The sedimentation time of modified samples in water increased from 1.05 to 264.4 hours while the particle size (d50) decreased from 1.09 to 0.85 μm, and the tinting strength increased from 100 to 115. The surface-modification as well as the dispersing and stabilizing mechanisms in aqueous solution of the samples were studied by means of IR,Thermal analysis and Zeta potential. The results showed that the modifier molecules acted on the surface of the particles by chemical and physical adsorption, and after the particles were dispersed in aqueous solution, endowing the particle surface with a relatively high negative Zeta potential, thus enhancing electrostatic and steric repulsion between particles for their effective stabilization.

  14. Magnetic study of iron oxide nanoparticles dispersed within porous silicon

    International Nuclear Information System (INIS)

    Full text: Iron oxide nanoparticles (NPs) of 3.8, 5 and 8 nm have been infiltrated into the pores of porous silicon. The aim is to create a superparamagnetic (SPM) nanocomposite system with maximized magnetic moment. Therefore the particle size versus the superparamagnetic behaviour has been figured out. The blocking temperature TB which indicates the transition between SPM behaviour and blocked state is not only dependent on the particle size but also the magnetic interactions between them which can be varied by the distance between the particles. Thus a modification, on the one hand of the pore-loading and on the other hand of the porous silicon morphology results in a composite material with a desired TB. Because both materials, the mesoporous silicon matrices as well as the Fe3O4-NPs offer low toxicity the system is a promising candidate for biomedical applications as e.g. magnetic field guided drug delivery. (author)

  15. Magnetic properties of ultrasmall iron-oxide nanoparticles

    International Nuclear Information System (INIS)

    Highlights: • The ultrasmall iron oxide nanoparticles in organic fluid were synthesized with diameter d ∼ 3 nm. • Very low blocking temperature, TB = 10 K, is determined in accordance with size. • Nanoparticles in fluid are noninteracting, drying brings interaction between nanoparticles. • High influence of surface on the magnetic properties. • High magnetic anisotropy due to surface anisotropy, ∼ 106 erg/cm3, 100 times higher than in bulk. - Abstract: The work presents structural and magnetic properties of ultrasmall magnetic nanoparticles consisting of inorganic iron oxide core and organic ester shell, dispersed in an organic fluid, synthesized via polyol route. The structure analysis shows that nanoparticles are crystalline, less than 3 nm in size, mutually clearly separated. The magnetic properties are in accordance with the size of the nanoparticles and do not indicate interparticle interactions. The particles show pure superparamagnetic behavior with very low blocking temperature. ZFCFC bifurcation and ac susceptibility peaks are at temperatures TB < 12 K. The properties of fluid were compared with dried powder sample. Drying of fluid brings about interactions between the magnetic nanoparticles that considerably affect spin dynamics of the particles. The surface of nanoparticles has a significant influence on their behavior. The Mössbauer parameters indicate existence of γ-Fe2O3 core and non-stoichiometric surface layer. Magnetic field dependent magnetization analysis suggests smaller apparent size of the particles d0 = 0.56 nm. High magnetic anisotropy due to surface layer anisotropy was measured to be of the order 106 erg/cm3 that is two orders of magnitude higher than that in bulk material

  16. Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    A series of magnetic iron oxide nanoparticle clusters with different structure guide agents were synthesized by a modified solvothermal method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analyses (TG), a vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). It is found that the superparamagnetic nanoparticles guided by NaCit (sodium citrate) have high saturation magnetization (Ms) of 69.641 emu/g and low retentivity (Mr) of 0.8 emu/g. Guiding to form superparamagnetic clusters with size range of 80–110 nm, the adherent small-molecule citrate groups on the surface prevent the prefabricated ferrite crystals growing further. In contrast, the primary small crystal guided and stabilized by the PVP long-chain molecules assemble freely to larger ones and stop growing in size range of 100–150 nm, which has saturation magnetization (Ms) of 97.979 emu/g and retentivity (Mr) of 46.323 emu/g. The relevant formation mechanisms of the two types of samples are proposed at the end. The superparamagnetic ferrite clusters guided by sodium citrate are expected to be used for movement controlling of passive interference particles to avoid aggregation and the sample guided by PVP will be a candidate of nanometer wave absorbing material. - Highlights: • A facile synthesis of two kinds of monodisperse iron oxide nano-particle clusters was performed via a modified one-step solvothermal method in this work. • The NaCit and PVP as different guiding agents are used to control the formation and aggregation of nano-crystals during reacting and the ripening processes. • The superparamagnetic NaCit–Fe3O4 samples have high saturation magnetization (Ms) of 69.641 emu/g and low retentivity (Mr) of 0.8 emu/g. • The relevant formation mechanisms of the two types of samples are proposed

  17. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea)

    Science.gov (United States)

    Rui, Mengmeng; Ma, Chuanxin; Hao, Yi; Guo, Jing; Rui, Yukui; Tang, Xinlian; Zhao, Qi; Fan, Xing; Zhang, Zetian; Hou, Tianqi; Zhu, Siyuan

    2016-01-01

    Nanomaterials are used in practically every aspect of modern life, including agriculture. The aim of this study was to evaluate the effectiveness of iron oxide nanoparticles (Fe2O3 NPs) as a fertilizer to replace traditional Fe fertilizers, which have various shortcomings. The effects of the Fe2O3 NPs and a chelated-Fe fertilizer (ethylenediaminetetraacetic acid-Fe; EDTA-Fe) fertilizer on the growth and development of peanut (Arachis hypogaea), a crop that is very sensitive to Fe deficiency, were studied in a pot experiment. The results showed that Fe2O3 NPs increased root length, plant height, biomass, and SPAD values of peanut plants. The Fe2O3 NPs promoted the growth of peanut by regulating phytohormone contents and antioxidant enzyme activity. The Fe contents in peanut plants with Fe2O3 NPs and EDTA-Fe treatments were higher than the control group. We used energy dispersive X-ray spectroscopy (EDS) to quantitatively analyze Fe in the soil. Peanut is usually cultivated in sandy soil, which is readily leached of fertilizers. However, the Fe2O3 NPs adsorbed onto sandy soil and improved the availability of Fe to the plants. Together, these results show that Fe2O3 NPs can replace traditional Fe fertilizers in the cultivation of peanut plants. To the best of our knowledge, this is the first research on the Fe2O3 NPs as the iron fertilizer. PMID:27375665

  18. Environmental Factors Affecting Ammonium Oxidation Under Iron Reducing Conditions

    Science.gov (United States)

    Jaffe, P. R.; Huang, S.; Ruiz-Urigüen, M.

    2014-12-01

    Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. Through a 180-day anaerobic incubation experiment, and using PCR-DGGE, 454-pyosequecing and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, a previously unreported species in the Acidimicrobiaceae family, might be either responsible or plays a key role in the Feammox process, We have enriched these Feammox bacteria (65.8% in terms of cell numbers) in a membrane reactor, and isolated the pure Acidimicrobiaceae bacterium A6 strain in an autotrophic medium. In samples collected and then incubated from a series of local wetland-, upland-, as well as storm-water detention pond-sediments, Feammox activity was only detected in acidic soil environments that contain Fe oxides. Using primers we developed for this purpose, Acidimicrobiaceae bacterium A6 was detected in all incubations where Feammox was observed. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. Feammox was still proceeding at pH as low as 2. In Feammox culture amended with different Fe(III) sources, Feammox reaction proceeded only when Fe oxides (ferrihydrite or goethite ) were supplied, whereas samples incubated with ferric chloride or ferric citrate showed no measurable NH4+ oxidation. Furthermore, we have also determined from incubation experiments conducted with a temperature gradient (10 ~ 35℃), that the Feammox process was active when the temperature is above 15℃, and the optimal temperature is 20℃. Incubations of enrichment culture with 79% Feammox bacteria appeared to remove circa 8% more NH4+ at 20ºC than at

  19. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  20. Ultrasonic-assisted synthesis and magnetic studies of iron oxide/MCM-41 nanocomposite

    International Nuclear Information System (INIS)

    Highlights: → A quick and facile route for the synthesis of iron oxide/MCM-41 nanocomposite. → Magnetic nanoparticles were stabilized inside the pores of mesoporous silica MCM-41. → The pore size of MCM-41 dictates the properties of iron oxide nanoparticles. → The procedure provides a narrow size distribution of magnetic nanoparticles. - Abstract: Iron oxide nanoparticles were stabilized within the pores of mesoporous silica MCM-41 amino-functionalized by a sonochemical method. Formation of iron oxide nanoparticles inside the mesoporous channels of amino-functionalized MCM-41 was realized by wet impregnation using iron nitrate, followed by calcinations at 550 deg. C in air. The effect of functionalization level on structural and magnetic properties of obtained nanocomposites was studied. The resulting materials were characterized by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy and selected area electron diffraction (HRTEM and SAED), vibrating sample and superconducting quantum interface magnetometers (VSM and SQUID) and nitrogen adsorption-desorption isotherms measurements. The HRTEM images reveal that the most of the iron oxide nanoparticles were dispersed inside the mesopores of silica matrix and the pore diameter of the amino-functionalized MCM-41 matrix dictates the particle size of iron oxide nanoparticles. The obtained material possesses mesoporous structure and interesting magnetic properties. Saturation magnetization value of magnetic iron oxide nanopatricles stabilized in MCM-41 amino-functionalized by in situ sonochemical synthesis was 1.84 emu g-1. An important finding is that obtained magnetic nanocomposite materials exhibit enhanced magnetic properties than those of iron oxide/MCM-41 nanocomposite obtained by conventional method. The described method is providing a rather short preparation time and a narrow size distribution of iron oxide nanoparticles.

  1. Effectiveness of antioxidants in preventing oxidation of palm oil enriched with heme iron: A model for iron fortification in baked products

    OpenAIRE

    Alemán Ezcaray, Mercedes; Nuchi, C. D.; Bou Novensà, Ricard; Tres Oliver, Alba; Polo Pozo, Francisco Javier; Guardiola Ibarz, Francesc; Codony Salcedo, Rafael

    2010-01-01

    Bakery products such as biscuits, cookies, and pastries represent a good medium for iron fortification in food products, since they are consumed by a large proportion of the population at risk of developing iron deficiency anemia, mainly children. The drawback, however, is that iron fortification can promote oxidation. To assess the extent of this, palm oil added with heme iron and different antioxidants was used as a model for evaluating the oxidative stability of some bakery products, such ...

  2. Biotic and abiotic oxidation and reduction of iron at circumneutral pH are inseparable processes under natural conditions

    NARCIS (Netherlands)

    Ionescu, Danny; Heim, Christine; Polerecky, L.; Thiel, Volker; de Beer, Dirk

    2015-01-01

    Oxidation and reduction of iron can occur through abiotic (chemical) and biotic (microbial) processes. Abiotic iron oxidation is a function of pH and O2 concentration. Biotic iron oxidation is carried out by a diverse group of bacteria, using O2 or NO3 as terminal electron acceptors. At circumneutra

  3. Promotion of Iron Oxide Reduction and Extracellular Electron Transfer in Shewanella oneidensis by DMSO

    OpenAIRE

    Yuan-Yuan Cheng; Bing-Bing Li; Dao-Bo Li; Jie-Jie Chen; Wen-Wei Li; Zhong-Hua Tong; Chao Wu; Han-Qing Yu

    2013-01-01

    The dissimilatory metal reducing bacterium Shewanella oneidensis MR-1, known for its capacity of reducing iron and manganese oxides, has great environmental impacts. The iron oxides reducing process is affected by the coexistence of alternative electron acceptors in the environment, while investigation into it is limited so far. In this work, the impact of dimethyl sulphoxide (DMSO), a ubiquitous chemical in marine environment, on the reduction of hydrous ferric oxide (HFO) by S. oneidensis M...

  4. Deposition and Characterization of Sisal Fiber Composite Prepare By Iron Oxide Synthesis.

    OpenAIRE

    Asif Jehan; Dr. Shirish Joshi

    2015-01-01

    Iron oxide synthesized through sintering route. The present research work deals with ferrite composite prepared using chemical reactions. Ferric nitrates and ammonium chloride doped with sisal fiber has been prepared. The comparative studies of ferric oxide were examined through few characterizations. The structural behavior of iron oxide was studied in XRD, FT/IR, TEM and SEM. This behavior showed ferrite nature of the sample.

  5. Deposition and Characterization of Sisal Fiber Composite Prepare By Iron Oxide Synthesis.

    Directory of Open Access Journals (Sweden)

    Asif Jehan

    2015-02-01

    Full Text Available Iron oxide synthesized through sintering route. The present research work deals with ferrite composite prepared using chemical reactions. Ferric nitrates and ammonium chloride doped with sisal fiber has been prepared. The comparative studies of ferric oxide were examined through few characterizations. The structural behavior of iron oxide was studied in XRD, FT/IR, TEM and SEM. This behavior showed ferrite nature of the sample.

  6. Modeling of iron oxide reduction in a plasma jet by the products of methane conversion

    International Nuclear Information System (INIS)

    Iron oxide scale, which consists of FeO and Fe3O4, has been accumulated in Belarus in a large amount as a waste of the Belarus metallurgical works and heat-treatment departments of machine-building factories. Currently, the reduction of iron oxide for further use of pure iron powder for producing machine parts via the powder metallurgy route is an urgent problem. In this work, a heat transfer model for the reduction of iron oxide particles in a plasmatron is developed, which permits calculating the temperature, heating rate and particle velocity. Thermodynamic modeling (TM) in different temperature intervals accounting for possible phase transitions is used for determining the composition of gas phase necessary for the reduction of iron oxide. The results of modeling permit estimating the optimal process parameters, which provide complete reduction of the iron oxide powder to iron: the temperature interval, initial methane-to-oxygen ratio and the mass ratio of iron oxide to the gas mixture. (authors)

  7. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Stephan; Settles, Marcus; Rummeny, Ernst J.; Daldrup-Link, Heike E. [Technical University Munich, Department of Diagnostic Radiology, Munich (Germany); Bonaterra, Gabriel [Ruprecht-Karls-University, Institute of Anatomy and Cell Biology, Heidelberg (Germany); Rudelius, Martina [Technical University Munich, Department of Pathology, Munich (Germany)

    2004-10-01

    To evaluate the capacity of human monocytes to phagocytose various approved iron oxide based magnetic resonance (MR) contrast agents and to optimize in vitro labeling of these cells. Human monocytes were incubated with two superparamagnetic iron oxide particles (SPIO) as well as two ultrasmall SPIO (USPIO) at varying iron oxide concentrations and incubation times. Iron uptake in monocytes was proven by histology, quantified by atomic emission absorption spectrometry and depicted with T2* weighted fast field echo (FFE) MR images at 1.5 T. Additionally, induction of apoptosis in iron oxide labeled monocytes was determined by YO-PRO-1 staining. Cellular iron uptake was significantly (P<0.01) higher after incubation with SPIO compared with USPIO. For SPIO, the iron oxide uptake was significantly (P<0.01) higher after incubation with the ionic Ferucarbotran as compared with the non-ionic Ferumoxides. Efficient cell labeling was achieved after incubation with Ferucarbotran at concentrations {>=}500 {mu}g Fe/ml and incubation times {>=}1 h, resulting in a maximal iron oxide uptake of up to 50 pg Fe/cell without impairment of cell viability. In vitro labeling of human monocytes for MR imaging is most effectively obtained with the approved SPIO Ferucarbotran. Potential subsequent in vivo cell tracking applications comprise, e.g. specific targeting of inflammatory processes. (orig.)

  8. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro

    International Nuclear Information System (INIS)

    To evaluate the capacity of human monocytes to phagocytose various approved iron oxide based magnetic resonance (MR) contrast agents and to optimize in vitro labeling of these cells. Human monocytes were incubated with two superparamagnetic iron oxide particles (SPIO) as well as two ultrasmall SPIO (USPIO) at varying iron oxide concentrations and incubation times. Iron uptake in monocytes was proven by histology, quantified by atomic emission absorption spectrometry and depicted with T2* weighted fast field echo (FFE) MR images at 1.5 T. Additionally, induction of apoptosis in iron oxide labeled monocytes was determined by YO-PRO-1 staining. Cellular iron uptake was significantly (P<0.01) higher after incubation with SPIO compared with USPIO. For SPIO, the iron oxide uptake was significantly (P<0.01) higher after incubation with the ionic Ferucarbotran as compared with the non-ionic Ferumoxides. Efficient cell labeling was achieved after incubation with Ferucarbotran at concentrations ≥500 μg Fe/ml and incubation times ≥1 h, resulting in a maximal iron oxide uptake of up to 50 pg Fe/cell without impairment of cell viability. In vitro labeling of human monocytes for MR imaging is most effectively obtained with the approved SPIO Ferucarbotran. Potential subsequent in vivo cell tracking applications comprise, e.g. specific targeting of inflammatory processes. (orig.)

  9. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    OpenAIRE

    Lili Zhang; Xinxin Yu; Hongrui Hu; Yang Li; Mingzai Wu; Zhongzhu Wang; Guang Li; Zhaoqi Sun; Changle Chen

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4·7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide ...

  10. Uncoupling and oxidative stress in liver mitochondria isolated from rats with acute iron overload

    Energy Technology Data Exchange (ETDEWEB)

    Pardo Andreu, G.L. [Centro de Quimica Farmaceutica, Departamento de Investigaciones Biomedicas, Ciudad de La Habana (Cuba); Inada, N.M.; Vercesi, A.E. [Universidade Estadual de Campinas, Departamento de Patologia Clinica, Faculdade de Ciencias Medicas, Campinas, SP (Brazil); Curti, C. [Universidade de Sao Paulo, Departamento de Fisica e Quimica, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, SP (Brazil)

    2009-01-15

    One hypothesis for the etiology of cell damage arising from iron overload is that its excess selectively affects mitochondria. Here we tested the effects of acute iron overload on liver mitochondria isolated from rats subjected to a single dose of i.p. 500 mg/kg iron-dextran. The treatment increased the levels of iron in mitochondria (from 21{+-}4 to 130{+-}7 nmol/mg protein) and caused both lipid peroxidation and glutathione oxidation. The mitochondria of iron-treated rats showed lower respiratory control ratio in association with higher resting respiration. The mitochondrial uncoupling elicited by iron-treatment did not affect the phosphorylation efficiency or the ATP levels, suggesting that uncoupling is a mitochondrial protective mechanism against acute iron overload. Therefore, the reactive oxygen species (ROS)/H{sup +} leak couple, functioning as a mitochondrial redox homeostatic mechanism could play a protective role in the acutely iron-loaded mitochondria. (orig.)

  11. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    Science.gov (United States)

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R.; Bohidar, H. B.

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe3O4)) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe3O4 and CA-Fe3O4/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, CA-Fe3O4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe3O4) and 189.51 nm (CA-Fe3O4) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe2O3/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL-1 with a low detection limit of 0.32 ng mL-1, sensitivity 0.03 Ω/ng ml-1 cm-2, and reproducibility more than 11 times.

  12. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry

    International Nuclear Information System (INIS)

    In this study, a systematic approach based on the application of Fourier transform infrared spectrophotometry (FTIR) was taken, in order to quantitatively analyze the corrosion products formed in the secondary cycle of pressurized water reactors (PWR). Binary mixtures of iron oxides were prepared with known compositions containing pure commercial magnetite (Fe3O4), maghemite (γ-Fe2O3), and hematite (α-Fe2O3) for calibration purposes. Calcium oxide (lime) was added to all samples as a standard reference in obtaining the calibration curves. Using regression analysis, relationships were developed for intensity versus concentration for absorption bands corresponding to each of the phases in their corresponding FTIR spectrum. Correlation coefficients, R2, of 0.82, 0.87, and 0.86 were obtained for maghemite-magnetite, hematite-magnetite, and hematite-maghemite systems, respectively. The calibration curves generated were used to quantify phases in multi-component unknown field samples that were obtained from different components (moisture separators, condensers, and high- and low- pressure heaters) of the two units (units 1 and 2) of the secondary cycle of the Comanche Peak PWR

  13. Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1.

    Science.gov (United States)

    Wakai, Satoshi; Kikumoto, Mei; Kanao, Tadayoshi; Kamimura, Kazuo

    2004-12-01

    The effects of cyanide, azide, and 2-n-Heptyl-4-hydroxy-quinoline-N-oxide (HQNO) on the oxidation of ferrous ion or elemental sulfur with Acidithiobacillus ferrooxidans NASF-1 cells grown in iron- or sulfur-medium were examined. The iron oxidation of both iron- and sulfur-grown cells was strongly inhibited by cyanide and azide, but not by HQNO. Sulfur oxidation was relatively resistant to cyanide and azide, and inhibited by HQNO. Higher sulfide oxidation, ubiquinol dehydrogenase activity, and sulfide:quinone oxidoreductase (SQR) activity were observed in sulfur-grown cells more than in iron-grown cells. Sulfide oxidation in the presence of ubiquinone with the membrane fraction was inhibited by HQNO, but not by cyanide, azide, antimycin A, and myxothiazol. The transcription of three genes, encoding an aa(3)-type cytochrome c oxidase (coxB), a bd-type ubiquinol oxidase (cydA), and an sqr, were measured by real-time reverse transcription polymerase chain reaction. The transcriptional levels of coxB and cydA genes were similar in sulfur- and iron-grown cells, but that of sqr was 3-fold higher in sulfur-grown cells than in iron-grown cells. A model is proposed for the oxidation of reduced inorganic sulfur compounds in A. ferrooxidans NASF-1 cells. PMID:15618623

  14. Iron-zirconium oxide catalysts for the hydrogenation of carbon monoxide: In situ studies by iron-57 Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Some unsupported iron-zirconium oxide catalysts have been prepared by the calcination in air of precipitates containing 15 mole% iron. The catalyst formed at 5000C was shown by powder X-ray diffraction to consist of a non-equilibriated solid solution of iron(III) in a tetragonal or cubic zirconium dioxide structure whereas the catalyst formed at 10000C was found to contain a zirconium-doped α-iron(III) oxide, or a magnetically ordered iron-zirconium oxide, in combination with an iron-containing monoclinic polymorph of zirconium dioxide. The 57Fe Moessbauer spectra recorded in situ following the pretreatment of the solids in nitrogen, carbon monoxide and hydrogen showed that little change is induced in the catalysts under such conditions. The 57Fe Moessbauer spectra also showed that the pretreated catalysts were unchanged by exposure to a 1:1 mixture of carbon monoxide and hydrogen at 2700C and 1 atmosphere pressure but were partially converted to iron carbide when used for the hydrogenation of carbon monoxide at 3300C and at 20 atmospheres pressure. The hydrocarbon product distribution showed Schulz-Flory α-values of 0.73 to 0.76 which were higher than the α-values obtained from pure iron catalysts which had been prepared and pretreated in a similar fashion. The 57Fe Moessbauer spectra and the results of the catalytic evaluation may be associated with an interaction between zirconium(IV) and the electron-rich atoms of the reactant carbon monoxide. (orig.)

  15. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Directory of Open Access Journals (Sweden)

    Saba Naqvi

    2010-11-01

    Full Text Available Saba Naqvi1, Mohammad Samim2, MZ Abdin3, Farhan Jalees Ahmed4, AN Maitra5, CK Prashant6, Amit K Dinda61Faculty of Engineering and Interdisciplinary Sciences, 2Department of Chemistry, 3Department of Biotechnology, Faculty of Science, 4Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, 5Department of Chemistry, University of Delhi, 6Department of Pathology, All India Institute of Medical Sciences, New Delhi, IndiaAbstract: Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774 cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 µg/mL and up to three hours of exposure, whereas at higher concentrations (300–500 µg/mL and prolonged (six hours exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury

  16. Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality

    Science.gov (United States)

    2016-01-01

    Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry. PMID:27482521

  17. Evaluation of the Properties of Iron Oxide-Filled Castor Oil Polyurethane

    Directory of Open Access Journals (Sweden)

    Eleonora Mussatti

    2012-01-01

    Full Text Available The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3. The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5% were prepared through the casting process followed by compression molding at room temperature. The composites were analyzed by FTIR, XRD and densities, tensile strength, Young's modulus, electrical and thermal conductivities measurements. By increasing the iron oxide content, the apparent density, tensile strength, Young's modulus and electrical conductivity values of the composites were also increased. The iron oxide additions did not change significantly the value of thermal conductivity (from 0.191 W.mK-1 for PU up to 0.340 W.mK-1 for PU enriched with 12.5% v/v of iron oxide. Thus, even at the higher iron oxide concentration, the compounds as well as the pure polyurethane can be classified as thermal insulators.

  18. Evaluation of the properties of iron oxide-filled castor oil polyurethane

    Directory of Open Access Journals (Sweden)

    Eleonora Mussatti

    2013-02-01

    Full Text Available The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3. The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5% were prepared through the casting process followed by compression molding at room temperature. The composites were analyzed by FTIR, XRD and densities, tensile strength, Young's modulus, electrical and thermal conductivities measurements. By increasing the iron oxide content, the apparent density, tensile strength, Young's modulus and electrical conductivity values of the composites were also increased. The iron oxide additions did not change significantly the value of thermal conductivity (from 0.191 W.mK-1 for PU up to 0.340 W.mK-1 for PU enriched with 12.5% v/v of iron oxide. Thus, even at the higher iron oxide concentration, the compounds as well as the pure polyurethane can be classified as thermal insulators.

  19. Inhibitory Effect Evaluation of Glycerol-Iron Oxide Thin Films on Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    C. L. Popa

    2015-01-01

    Full Text Available The main purpose of this study was to evaluate the inhibitory effect of glycerol- iron oxide thin films on Methicillin-Resistant Staphylococcus aureus (MRSA. Our results suggest that glycerol-iron oxide thin films could be used in the future for various biomedical and pharmaceutical applications. The glycerol-iron oxide thin films have been deposited by spin coating method on a silicon (111 substrate. The structural properties have been studied by X-ray diffraction (XRD and scanning electron spectroscopy (SEM. The XRD investigations of the prepared thin films demonstrate that the crystal structure of glycerol-iron oxide nanoparticles was not changed after spin coating deposition. On the other hand, the SEM micrographs suggest that the size of the glycerol-iron oxide microspheres increased with the increase of glycerol exhibiting narrow size distributions. The qualitative depth profile of glycerol-iron oxide thin films was identified by glow discharge optical emission spectroscopy (GDOES. The GDOES spectra revealed the presence of the main elements: Fe, O, C, H, and Si. The antimicrobial activity of glycerol-iron oxide thin films was evaluated by measuring the zone of inhibition. After 18 hours of incubation at 37°C, the diameters of the zones of complete inhibition have been measured obtaining values around 25 mm.

  20. Catalytic performance of cerium iron complex oxides for partial oxidation of methane to synthesis gas

    Institute of Scientific and Technical Information of China (English)

    LI Kongzhai; WANG Hua; WEI Yonggang; LIU Mingchun

    2008-01-01

    The cerium iron complex oxides oxygen carder was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carrier could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carriers were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carder: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction con-dition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.

  1. Cobalt, nickel/iron, and titanium oxide electrodes for water oxidation

    Science.gov (United States)

    Selloni, Annabella

    2014-03-01

    Water splitting on metal oxide surfaces has attracted enormous interest for more than forty years. While a great deal of work has focused on titanium dioxide (TiO2) , recently cobalt and mixed Ni-Fe oxides have also emerged as promising electrocatalysts for water oxidation due to their low cost and high activity. In this talk I shall discuss various aspects of water oxidation on cobalt (hydro-)oxides, pure and mixed nickel and iron (hydro-)oxides, and TiO2\\ surfaces. Using DFT +U calculations, I shall examine the composition and structure of cobalt and Ni-Fe oxides under electrochemical conditions, and present studies of the oxygen evolution reaction (OER) on the relevant stable compounds. I shall also present hybrid functional calculations of the first proton-coupled-electron transfer at the water/TiO2 interface in the presence of a photoexcited hole. Our results provide evidence that the proton and electron transfers are not concerted but rather represent two sequential processes. They also suggest that the OER is faster at higher pH, as indeed observed experimentally. This work was supported by DoE-BES, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16286.

  2. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  3. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  4. Whey protein inhibits iron overload-induced oxidative stress in rats.

    Science.gov (United States)

    Kim, Jungmi; Paik, Hyun-Dong; Yoon, Yoh-Chang; Park, Eunju

    2013-01-01

    In this study, we evaluated the effects of whey protein on oxidative stress in rats that were subjected to oxidative stress induced by iron overload. Thirty male rats were assigned to 3 groups: the control group (regular [50 mg/kg diet] dose of iron+20% casein), iron overload group (high [2,000 mg/kg] dose of iron+20% casein, IO), and whey protein group (high dose of iron+10% casein+10% whey protein, IO+whey). After 6 wk, the IO group showed a reduction in the plasma total radical trapping antioxidant parameter and the activity of erythrocyte superoxide dismutase and an increase in lipid peroxidation (determined from the proportion of conjugated dienes). However, whey protein ameliorated the oxidative changes induced by iron overload. The concentration of erythrocyte glutathione was significantly higher in the IO+whey group than in the IO group. In addition, whey protein supplementation fully inhibited iron overload-induced DNA damage in leukocytes and colonocytes. A highly significant positive correlation was observed between plasma iron levels and DNA damage in leukocytes and colonocytes. These results show the antioxidative and antigenotoxic effects of whey protein in an in vivo model of iron overload-induced oxidative stress. PMID:23883690

  5. Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts

    Science.gov (United States)

    Wu, Wei; Changzhong Jiang, Affc; Roy, Vellaisamy A. L.

    2014-11-01

    Photocatalytic degradation of toxic organic pollutants is a challenging tasks in ecological and environmental protection. Recent research shows that the magnetic iron oxide-semiconductor composite photocatalytic system can effectively break through the bottleneck of single-component semiconductor oxides with low activity under visible light and the challenging recycling of the photocatalyst from the final products. With high reactivity in visible light, magnetic iron oxide-semiconductors can be exploited as an important magnetic recovery photocatalyst (MRP) with a bright future. On this regard, various composite structures, the charge-transfer mechanism and outstanding properties of magnetic iron oxide-semiconductor composite nanomaterials are sketched. The latest synthesis methods and recent progress in the photocatalytic applications of magnetic iron oxide-semiconductor composite nanomaterials are reviewed. The problems and challenges still need to be resolved and development strategies are discussed.

  6. Gold catalysts supported on nanosized iron oxide for low-temperature oxidation of carbon monoxide and formaldehyde

    Science.gov (United States)

    Tang, Zheng; Zhang, Weidong; Li, Yi; Huang, Zuming; Guo, Huishan; Wu, Feng; Li, Jinjun

    2016-02-01

    This study aimed to optimize synthesis of gold catalyst supported on nanosized iron oxide and to evaluate the activity in oxidation of carbon monoxide and formaldehyde. Nanosized iron oxide was prepared from a colloidal dispersion of hydrous iron oxide through a dispersion-precipitation method. Gold was adsorbed onto nanosized iron oxide under self-generated basic conditions. Characterization results indicate that the iron oxide consisted of hematite/maghemite composite with primary particle sizes of 6-8 nm. Gold was highly dispersed on the surface of the support. The catalysts showed good activity in the oxidation of airborne carbon monoxide and formaldehyde. The optimal pH for their synthesis was ∼7. The catalytic performance could be enhanced by extending the adsorption time of gold species on the support within 21 h. The optimized catalyst was capable of achieving complete oxidation of 1% carbon monoxide at -20 °C and 33% conversion of 450 ppm formaldehyde at ambient temperature. The catalyst may be applicable to indoor air purification.

  7. Iron(II) Initiation of Lipid and Protein Oxidation in Pork: The Role of Oxymyoglobin.

    Science.gov (United States)

    Zhou, Feibai; Jongberg, Sisse; Zhao, Mouming; Sun, Weizheng; Skibsted, Leif H

    2016-06-01

    Iron(II), added as FeSO4·7H2O, was found to increase the rate of oxygen depletion as detected electrochemically in a pork homogenate from Longissimus dorsi through an initial increase in metmyoglobin formation from oxymyoglobin and followed by formation of primary and secondary lipid oxidation products and protein oxidation as detected as thiol depletion in myofibrillar proteins. Without added iron(II), under the same conditions at 37 °C, oxygen consumption corresponded solely to the slow oxymyoglobin autoxidation. Long-lived myofibrillar protein radicals as detected by ESR spectroscopy in the presence of iron(II) were formed subsequently to oxymyoglobin oxidation, and their level was increased by lipid oxidation when oxygen was completely depleted. Similarly, the time profile for formation of lipid peroxide indicated that oxymyoglobin oxidation initiates both protein oxidation and lipid oxidation. PMID:27217062

  8. Evaluation of the properties of iron oxide-filled castor oil polyurethane

    OpenAIRE

    Eleonora Mussatti; Claudia Merlini; Guilherme Mariz de Oliveira Barra; Saulo Güths; Antonio Pedro Novaes de Oliveira; Cristina Siligardi

    2013-01-01

    The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3). The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5%) were prepared through the casting process followed by compression molding at room temperature. The composites were ana...

  9. An evaluation of iron oxide nanofluids in enhanced oil recovery application

    Science.gov (United States)

    Guan, Beh Hoe; Khalid, M. Hanafi M.; Matraji, Herman Hari; Chuan, Lee Kean; Soleimani, Hassan

    2014-10-01

    This paper evaluates the oil recover efficiency of Iron Oxide (Fe2O3) nanofluids in EOR. Iron Oxide nanoparticles were synthesized at two different temperatures via sol-gel method. TEM results show that the Fe2O3 prepared at 300°C and 600°C were ranged from 10-25nm and 30-90nm, respectively. Results showed that the nanofluid composed of Iron Oxide nanoparticles prepared at 300°C gives 10% increase in the oil recovery in comparison with Fe2O3 nanoparticles calcined at 600°C.

  10. Physiological effects of magnetic iron oxide nanoparticles towards watermelon.

    Science.gov (United States)

    Li, Junli; Chang, Peter R; Huang, Jin; Wang, Yunqiang; Yuan, Hong; Ren, Hongxuan

    2013-08-01

    Nanoparticles (NPs) have been exploited in a diverse range of products in the past decade or so. However, the biosafety/environmental impact or legislation pertaining to this newly created, highly functional composites containing NPs (otherwise called nanomaterials) is generally lagging behind their technological innovation. To advance the agenda in this area, our current primary interest is focused on using crops as model systems as they have very close relationship with us. Thus, the objective of the present study was to evaluate the biological effects of magnetic iron oxide nanoparticles towards watermelon seedlings. We have systematically studied the physiological effects of Fe2O3 nanoparticles (nano-Fe2O3) on watermelon, and present the first evidence that a significant amount of Fe2O3 nanoparticles suspended in a liquid medium can be taken up by watermelon plants and translocated throughout the plant tissues. Changes in important physiological indicators, such as root activity, activity of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), chlorophyll and malondialdehyde (MDA) contents, ferric reductase activity, root apoplastic iron content were clearly presented. Different concentrations of nano-Fe2O3 all increased seed germination, seedling growth, and enhanced physiological function to some degree; and the positive effects increased quickly and then slowed with an increase in the treatment concentrations. Changes in CAT, SOD and POD activities due to nano-Fe2O3 were significantly larger than that of the control. The 20 mg/L treatment had the most obvious effect on the increase of root activity. Ferric reductase activity, root apoplastic iron content, and watermelon biomass were significantly affected by exposure to nano-Fe2O3. Results of statistical analysis showed that there were significant differences in all the above indexes between the treatment at optimal concentration and the control. This proved that the proper concentration of nano

  11. Iron overload by Superparamagnetic Iron Oxide Nanoparticles is a High Risk Factor in Cirrhosis by a Systems Toxicology Assessment

    Science.gov (United States)

    Wei, Yushuang; Zhao, Mengzhu; Yang, Fang; Mao, Yang; Xie, Hang; Zhou, Qibing

    2016-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions. PMID:27357559

  12. Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific

    Science.gov (United States)

    Meister, Patrick; Chapligin, Bernhard; Picard, Aude; Meyer, Hanno; Fischer, Cornelius; Rettenwander, Daniel; Amthauer, Georg; Vogt, Christoph; Aiello, Ivano

    2015-04-01

    The mechanisms of early diagenetic quartz formation under low-temperature conditions are still poorly understood. We studied lithified cherts consisting of microcrystalline quartz recovered from ODP Site 1226 in the Eastern Equatorial Pacific. The cherts occur near the base of a 420-m-thick Miocene-Holocene sequence within unlithified nannofossil and diatom ooze. Palaeo-temperatures reconstructed from δ18O values in the cherts are near to present porewater temperatures and a sharp depletion in dissolved silica occurs around 385 mbsf indicating that silica precipitation is still ongoing. Also a deep iron oxidation front occurs at the same depth, which is caused by upward diffusing nitrate from an oxic seawater aquifer in the underlying basaltic crust. Sequential iron extraction and analysis of the X-ray absorption near-edge structure (XANES) revealed that iron in the cherts predominantly occurs as illite and amorphous iron oxide, whereas iron in the nannofossil and diatom ooze occurs mainly as smectites. Mössbauer spectroscopy confirmed that the illite iron in the cherts is largely oxidized. A possible mechanisms that may be operative is quartz precipitation initiated by adsorption of silica to freshly precipitated iron oxides. The decrease in porewater silica concentration below opal-A and opal-CT saturation then allows for the precipitation of the thermodynamically more stable phase: quartz. We suggest that the formation of early-diagenetic chert at iron oxidation fronts is an important process in suboxic zones of silica-rich sediments. The largest iron oxidation front ever occurred during the great oxidation event ca. 2.5 Ga ago, when large amounts of iron and chert beds were deposited.

  13. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    Science.gov (United States)

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  14. The Influence of Iron Ions on the Aqueous Photocatalytic Oxidation of Deicing Agents

    Directory of Open Access Journals (Sweden)

    D. Klauson

    2007-07-01

    Full Text Available An experimental research into aqueous photocatalytic oxidation (PCO of the deicing compounds, 2-ethoxyethanol (2-EE, diethylene glycol monomethyl ether (DEGMME, and ethylene glycol (EG was undertaken. The addition of iron ions to the acidic aqueous solutions to be treated displayed complex influence on the oxidation efficiency of the above mentioned substances, resulting in a sharp increase of the PCO efficiency at smaller concentrations of iron ions followed by a drastic decrease with the increasing iron ion concentrations. The phenomena observed can be explained by the electron scavenging effect of the iron ions and the competitive adsorption of iron ions and the oxidized substances on titanium dioxide surface. The carbonic acids determined as the PCO by-products allow outlining some reaction pathways for the substances under consideration.

  15. Role of Iron Anode Oxidation on Transformation of Chromium by Electrolysis

    OpenAIRE

    Sarahney, Hussam; Mao, Xuhui; Alshawabkeh, Akram N.

    2012-01-01

    The potential for chemical reduction of hexavalent chromium Cr(VI) in contaminated water and formation of a stable precipitate by Zero Valent Iron (ZVI) anode electrolysis is evaluated in separated electrodes system. Oxidation of iron electrodes produces ferrous ions causing the development of a reducing environment in the anolyte, chemical reduction of Cr(VI) to Cr(III) and formation of stable iron-chromium precipitates. Cr(VI) transformation rates are dependent on the applied electric curre...

  16. Preparation of nano-iron oxide red pigment powders by use of cyanided tailings

    International Nuclear Information System (INIS)

    On one hand, cyanided tailings are one kind of pollutants. On the other hand, they contain a lot of valuable elements. So utilization of them can bring social and environmental benefits. In this paper, cyanided tailings were used to prepare nano-iron oxide red pigment powders by an ammonia process with urea as precipitant. At first, cyanided tailings were oxidized by nitric acid. Then, the oxidizing mixture was separated into solid and liquid parts. The liquid mixture was reduced by scrap iron and the impurity of it was removed by use of NH3.H2O. Then, the seed crystal of γ-FeOOH was obtained, when the pure liquid reacted with ammonia liquid at the selected experimental conditions. At last, nano-iron oxide red pigment powders were prepared. The structure, morphology and size distribution of seed crystal and iron oxide red were characterized systematically by means of X-ray diffraction (XRD), transmission electron microscope (TEM) and laser particle size analyzer (LPSA). The results revealed that typical iron oxide nanoparticles were α-Fe2O3 with particle size of 50-70 nm. Furthermore, the factors that affected the hue and quality of the seed crystal and iron oxide red pigment were also discussed

  17. Modeling CO Oxidation on Silica-Supported Iron Oxide under Transient Conditions

    OpenAIRE

    Randall, Harvey; Doepper, Ralf; Renken, Albert

    1997-01-01

    The oxidn. of CO on silica-supported hematite (Fe2O3) was studied by the step-response method in a tubular fixed-bed reactor at temps. 270-350 Deg. The oxidn. process appeared to proceed in two stages. First, oxygen atoms adsorbed on the surface of hematite react with gas phase CO according to an Eley-Rideal mechanism. Once that adsorbed oxygen has been consumed to some extent, surface oxygen from the lattice of iron oxide is removed in a second stage involving CO adsorption and CO reactive d...

  18. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils;

    2013-01-01

    An emerging area in chemical science is the study of solid-phase redox reactions using ultrafast time-resolved spectroscopy. We have used molecules of the photoactive dye 2′,7′-dichlorofluorescein (DCF) anchored to the surface of iron(iii) oxide nanoparticles to create iron(ii) surface atoms via...

  19. Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Carmen Bautista, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Bomati-Miguel, Oscar [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Puerto Morales, Maria del [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Serna, Carlos J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Veintemillas-Verdaguer, Sabino [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)]. E-mail: sabino@icmm.csic.es

    2005-05-15

    The favoured mechanism of adsorption of dextran on the surface of maghemite nanoparticles (5 nm) prepared by laser pyrolysis seems to be the collective hydrogen bonding between dextran hydroxyl groups and iron oxide particle surface. After heating, the formation of a surface complex between the polysaccharide oxygen atoms and the surface iron atoms gave rise to a stronger bonding.

  20. Magnetic hyperthermia in phosphate coated iron oxide nanofluids

    Science.gov (United States)

    Lahiri, B. B.; Muthukumaran, T.; Philip, John

    2016-06-01

    We study the magnetic field induced hyperthermia in water based phosphate coated Fe3O4 nanofluids, synthesized by a co-precipitation method using ferrous and ferric salt solutions, ammonia and orthophosphoric acid. The specific absorption rate (SAR) values were measured at a fixed frequency of 126 kHz and at extremely low field amplitudes. The SAR values were determined from the initial rate of temperature rise curves under non-adiabatic conditions. It was observed that the SAR initially increases with sample concentration, attains a maximum at an optimum concentration and beyond which SAR decreases. The decrease in SAR values beyond the optimum concentration was attributed to the enhancement of dipolar interaction and agglomeration of the particles. The system independent intrinsic loss power (ILP) values, obtained by normalizing the SAR values with respect to field amplitude and frequency, were found to vary between 158-125 nHm2 kg-1, which were the highest benchmark values reported in the biologically safe experimental limit of 1.03-0.92×108 Am-1 s-1. The very high value of ILP observed in the bio-compatible phosphate coated iron oxide nanofluids may find practical applications for these nanoparticles in tumor targeted hyperthermia treatment.

  1. Ultrafast optical modification of exchange interactions in iron oxides

    Science.gov (United States)

    Mikhaylovskiy, R. V.; Hendry, E.; Secchi, A.; Mentink, J. H.; Eckstein, M.; Wu, A.; Pisarev, R. V.; Kruglyak, V. V.; Katsnelson, M. I.; Rasing, Th.; Kimel, A. V.

    2015-09-01

    Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm-2 acts as a pulsed effective magnetic field of 0.01 Tesla.

  2. Glycoconjugated chitosan stabilized iron oxide nanoparticles as a multifunctional nanoprobe

    Energy Technology Data Exchange (ETDEWEB)

    Remant Bahadur, K.C.; Lee, So Min; Yoo, Eun Soo; Choi, Jin Hyun [Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Ghim, Han Do, E-mail: hdghim@knu.ac.kr [Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2009-06-01

    Surface modification of iron oxide nanoparticles (IOPs) with functional polymer can be used for the preparation of multifunction nanoprobes. The present study dealt with the preparation of glycoconjugated chitosan (GC) stabilized IOPs (GC-IOPs). GC was prepared by direct coupling of lactobionic acid (LA) on chitosan. GC was subsequently grafted onto the surface of IOPs to enhance colloid stability. X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), transmission electron microscopy (TEM), dynamic light scattering (DLS), electrophoretic light scattering (ELS) and superconducting quantum interference device (SQUID) measurements were performed to investigate the properties of nanoparticles. FT-IR and XRD analysis of GC-IOPs showed that backbone and side chain functionality of chitosan and phase purity of IOPs remained intact during conjugation. TEM observations revealed that GC-IOPs were spherical (8-10 nm) but the dispersibility and stability in acetated buffer (pH 7.4) linearly increased with degree of substitution (DS) of chitosan. The specific magnetization of GC-IOPs was varied with DS from 19.50 to 41.56 emu/g. This variation in colloid stability and specific magnetization suggests that DS can be varied to tailor the degree of dispersion and magnetic properties of IOPs. The advantage of GC-IOPS is the ability to achieve a homogeneous nanosize particle distribution and specific surface functionality for bioconjugation. These characteristics make the GC-IOPs a potential candidate for biomedical research and clinical diagnosis.

  3. Training effect of exchange biased iron - oxide/ferromagnet systems

    International Nuclear Information System (INIS)

    Substantial training effect in hysteresis loops was observed in ferromagnet (F) - antiferromagnet (AF) exchange coupled systems of the structure, Si(100)/iron - oxide(tAF)/F layer (5 nm)/Ta(10 nm), prepared by magnetron sputtering. The exchange bias field and the coercivity decrease with increasing number of loop cycles. The initially asymmetric hysteresis loop becomes more symmetric as the number of loop cycles increases. The effect is more prominent in the descending curve starting from the saturation in the positive (parallel to the pinned direction) direction than in the ascending curve of the hysteresis loop. The value of the ascending curve switching field vert-barHsw+vert-bar is rather unchanged while the switching field vert-barHsw-vert-bar in the descending curve decreases drastically with repeated hysteresis loop cycling as was observed in some CoO/Co and NiO/NiFe systems. Those phenomena can be interpreted by a modification of the extended model of Fulcomer and Charap's: the essential modification being the introduction of positive and negative exchange coupling between AF grains. [copyright] 2001 American Institute of Physics

  4. Glycoconjugated chitosan stabilized iron oxide nanoparticles as a multifunctional nanoprobe

    International Nuclear Information System (INIS)

    Surface modification of iron oxide nanoparticles (IOPs) with functional polymer can be used for the preparation of multifunction nanoprobes. The present study dealt with the preparation of glycoconjugated chitosan (GC) stabilized IOPs (GC-IOPs). GC was prepared by direct coupling of lactobionic acid (LA) on chitosan. GC was subsequently grafted onto the surface of IOPs to enhance colloid stability. X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), transmission electron microscopy (TEM), dynamic light scattering (DLS), electrophoretic light scattering (ELS) and superconducting quantum interference device (SQUID) measurements were performed to investigate the properties of nanoparticles. FT-IR and XRD analysis of GC-IOPs showed that backbone and side chain functionality of chitosan and phase purity of IOPs remained intact during conjugation. TEM observations revealed that GC-IOPs were spherical (8-10 nm) but the dispersibility and stability in acetated buffer (pH 7.4) linearly increased with degree of substitution (DS) of chitosan. The specific magnetization of GC-IOPs was varied with DS from 19.50 to 41.56 emu/g. This variation in colloid stability and specific magnetization suggests that DS can be varied to tailor the degree of dispersion and magnetic properties of IOPs. The advantage of GC-IOPS is the ability to achieve a homogeneous nanosize particle distribution and specific surface functionality for bioconjugation. These characteristics make the GC-IOPs a potential candidate for biomedical research and clinical diagnosis.

  5. Preparation of polylysine-modified superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gao; Zhang, Baolin, E-mail: baolinzhang@ymail.com; Wang, Jun; Xie, Songbo; Li, Xuan

    2015-01-15

    Polylysine (PLL) coated iron oxide nanoparticles (SPIONs) have potential in biomedical application. In the present work PEG coated SPIONs (PEG-SPIONs) with the particle size of 9.4±1.4 nm were synthesized by thermal decomposition of Fe(acac){sub 3} in PEG, and then coated with PLL (PLL/PEG-SPIONs). The PEG-SPIONs and PLL/PEG-SPIONs were superparamagnetic with the saturation magnetization of 53 and 44 emu/g, respectively. The hydrodynamic diameter of PEG-SPIONs in deionized water was 18.8 nm, which increased to 21.3−28.2 nm after mixing with different amount of PLL. The zeta potentials of PLL/PEG-SPIONs were −8.9 − −3.4 mV which were changing with time. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses indicated that PLL was attached to the PEG-SPIONs. - Highlights: ●Hydrophilic PEG-SPIONs were synthesized by a thermal decomposition approach. ●The PEG-SPIONs were successfully coated with PLL. ●PEG-SPIONs and PLL/PEG-SPIONs have small hydrodynamic sizes. ●Both PEG-SPIONs and PLL/PEG-SPIONs showed superparamagnetic behavior at 300 K.

  6. Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles.

    Science.gov (United States)

    Tefft, Brandon J; Uthamaraj, Susheil; Harburn, J Jonathan; Klabusay, Martin; Dragomir-Daescu, Dan; Sandhu, Gurpreet S

    2015-01-01

    Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering. PMID:26554870

  7. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy

    Directory of Open Access Journals (Sweden)

    Sneha M

    2015-10-01

    Full Text Available Murugesan Sneha, Nachiappan Meenakshi Sundaram Department of Biomedical Engineering, PSG College of Technology, Tamil Nadu, India Abstract: Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications. Keywords: iron oxide, hydroxyapatite, nanocomposite, superparamagnetic, bone cancer

  8. Eco-Friendly Magnetic Iron Oxide Pillared Montmorillonite for Advanced Catalytic Degradation of Dichlorophenol

    Science.gov (United States)

    Eco-friendly pillared montmorillonites, in which the pillars consist of iron oxide are expected to have interesting and unusual magnetic properties that are applicable for environmental decontamination. Completely “green” and effective composite was synthesized using mild reactio...

  9. Iron homeostatis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study

    Science.gov (United States)

    ABSTRACT: BACKGROUND: Lung injury caused by both inhaled dusts and infectious agents depends on increased availability of iron and metal-catalyzed oxidative stress. Because inhaled particles, such as silica, and certain infections can cause secondary pulmonary alveolar proteinosi...

  10. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  11. One-pot size and shape controlled synthesis of DMSO capped iron oxide nanoparticles

    Indian Academy of Sciences (India)

    Debanjan Guin; Sunkara V Manorama; S Radha; A K Nigam

    2006-11-01

    We report here the capping of iron oxide nanoparticles with dimethyl sulfoxide (DMSO) to make chloroform soluble iron oxide nanoparticles. Size and shape of the capped iron oxide nanoparticles are well controlled by simply varying the reaction parameters. The synthesized nanocrystallites were characterized by thermal analysis (TG–DTA), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) for evaluating phase, structure and morphology. 1H NMR spectra of the synthesized samples confirm DMSO, and the capping of DMSO on the ferrite samples. Shift of the S=O stretching frequency in Fourier transformed infrared (FTIR) spectra indicates that the bonding between DMSO and ferrite is through an oxygen moiety. The magnetic measurements of all the synthesized samples were investigated with a SQUID magnetometer which shows that the magnetic properties are strongly dependent on the size as well as shape of the iron oxide.

  12. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    Science.gov (United States)

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. PMID:26592710

  13. Influence of Iron Oxide Particles on the Strength of Ball-Milled Iron

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D R; Syn, C K; Sherby, O D

    2005-12-07

    Detailed microstructural and mechanical property studies of ball-milled iron, in the powder and consolidated states, are reviewed and assessed. The analyses cover three and one-half orders of magnitude of grain size (from 6 nm to 20 mm) and focus on the influence of oxide particles on the strength. The study includes the early work of Koch and Yang, Kimura and Takaki and continues with the more recent work of Umemoto et al and Belyakov, Sakai et al. It is shown that the major contributors to strength are the nanooxide particles. These particles are created by adiabatic shear banding during ball-milling leading to a bimodal distribution of particles. The predicted strength from particles, {sigma}{sub p}, is given by {sigma}{sub p} = B {center_dot} (D*{sub S}){sup -1/2} where D*{sub S} is the surface-to-surface interparticle spacing, and B = 395 MPa {center_dot} {micro}m{sup -1/2}. A model is proposed that accounts for the influence of the bimodal particle size distribution on strength.

  14. Photoinitiated coupling of unmodified monosaccharides to iron oxide nanoparticles for sensing proteins and bacteria

    OpenAIRE

    Liu, Li-Hong; Dietsch, Hervé; Schurtenberger, Peter; Yan, Mingdi

    2009-01-01

    We report a versatile approach for the immobilization of unmodified monosaccharides onto iron oxide nanoparticles. Covalent coupling of the carbohydrate onto iron oxide nanoparticle surfaces was accomplished by the CH insertion reaction of photochemically activated phosphate-functionalized perfluorophenylazides (PFPAs), and the resulting glyconanoparticles were characterized by IR, TGA, and TEM. The surface-bound d-mannose showed the recognition ability towards Concanavalin A and Escherichia ...

  15. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    OpenAIRE

    Predoi, Daniela; Ciobanu, Carmen Steluta; Mihaela RADU; COSTACHE, MARIETA; Dinischiotu, Anca; Gyorgy, Eniko

    2012-01-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, n...

  16. Iron oxides and quality of organic matter in sugarcane harvesting systems

    OpenAIRE

    Diogo Mazza Barbieri; José Marques Júnior; Diego Silva Siqueira; Daniel De Bortoli Teixeira; Alan Rodrigo Panosso; Gener Tadeu Pereira; Newton La Scala Junior

    2014-01-01

    Improvements in working conditions, sustainable production, and competitiveness have led to substantial changes in sugarcane harvesting systems. Such changes have altered a number of soil properties, including iron oxides and organic matter, as well as some chemical properties, such as the maximum P adsorption capacity of the soil. The aim of this study was to characterize the relationship between iron oxides and the quality of organic matter in sugarcane harvesting systems. For that purpose,...

  17. The Influence of Iron Ions on the Aqueous Photocatalytic Oxidation of Deicing Agents

    OpenAIRE

    D. Klauson; S. Preis

    2007-01-01

    An experimental research into aqueous photocatalytic oxidation (PCO) of the deicing compounds, 2-ethoxyethanol (2-EE), diethylene glycol monomethyl ether (DEGMME), and ethylene glycol (EG) was undertaken. The addition of iron ions to the acidic aqueous solutions to be treated displayed complex influence on the oxidation efficiency of the above mentioned substances, resulting in a sharp increase of the PCO efficiency at smaller concentrations of iron ions followed by a drastic decrease with th...

  18. Iron oxide nanoparticle modified monolithic pipette tips for selective enrichment of phosphopeptides

    OpenAIRE

    Křenková, Jana

    2012-01-01

    We have developed iron oxide nanoparticle modified monolithic pipette tips for selective and efficient enrichment of phosphopeptides. Iron oxide nanoparticles were synthesized using a co-precipitation method and stabilized by citrate ions. A stable coating of nanoparticles was obtained via multivalent interactions of citrate ions on the nanoparticle surface with a quaternary amine functionalized surface of the methacrylate based monolithic tips. The performance of the developed and comme...

  19. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    KAUST Repository

    Lin, Aigu L.

    2015-06-23

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite. © 2015 Scientific Reports.

  20. Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging.

    Science.gov (United States)

    Xu, Cheng; Shi, Sixiang; Feng, Liangzhu; Chen, Feng; Graves, Stephen A; Ehlerding, Emily B; Goel, Shreya; Sun, Haiyan; England, Christopher G; Nickles, Robert J; Liu, Zhuang; Wang, Taihong; Cai, Weibo

    2016-07-01

    Polyethylene glycol (PEG) surface modification is one of the most widely used approaches to improve the solubility of inorganic nanoparticles, prevent their aggregation and prolong their in vivo blood circulation half-life. Herein, we developed double-PEGylated biocompatible reduced graphene oxide nanosheets anchored with iron oxide nanoparticles (RGO-IONP-(1st)PEG-(2nd)PEG). The nanoconjugates exhibited a prolonged blood circulation half-life (∼27.7 h) and remarkable tumor accumulation (>11 %ID g(-1)) via an enhanced permeability and retention (EPR) effect. Due to the strong near-infrared absorbance and superparamagnetism of RGO-IONP-(1st)PEG-(2nd)PEG, multimodality imaging combining positron emission tomography (PET) imaging with magnetic resonance imaging (MRI) and photoacoustic (PA) imaging was successfully achieved. The promising results suggest the great potential of these nanoconjugates for multi-dimensional and more accurate tumor diagnosis and therapy in the future. PMID:27109431

  1. Isolation of microorganisms involved in reduction of crystalline iron(III oxides in natural environments

    Directory of Open Access Journals (Sweden)

    Tomoyuki eHori

    2015-05-01

    Full Text Available Reduction of crystalline Fe(III oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet a limited number of isolates makes it difficult to understand physiology and ecological impact of the microorganisms involved. Here, two-staged cultivation was implemented to selectively enrich and isolate crystalline iron(III reducers in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by two-year successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae, followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs identified. The Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III media in order to stimulate proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. These isolates had 94.8–98.1% sequence similarities of 16S rRNA genes to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in terms of growth rate. The results demonstrate the successful enrichment and isolation of novel iron(III reducers that were able to thrive by reducing highly

  2. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  3. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications

    International Nuclear Information System (INIS)

    Iron oxide nanoparticles are the most popular magnetic nanoparticles used in biomedical applications due to their low cost, low toxicity, and unique magnetic property. Magnetic iron oxide nanoparticles, including magnetite (Fe3O4) and maghemite (γ-Fe2O3), usually exhibit a superparamagnetic property as their size goes smaller than 20 nm, which are often denoted as superparamagnetic iron oxide nanoparticles (SPIONs) and utilized for drug delivery, diagnosis, therapy, and etc. This review article gives a brief introduction on magnetic iron oxide nanoparticles in terms of their fundamentals of magnetism, magnetic resonance imaging (MRI), and drug delivery, as well as the synthesis approaches, surface coating, and application examples from recent key literatures. Because the quality and surface chemistry play important roles in biomedical applications, our review focuses on the synthesis approaches and surface modifications of iron oxide nanoparticles. We aim to provide a detailed introduction to readers who are new to this field, helping them to choose suitable synthesis methods and to optimize the surface chemistry of iron oxide nanoparticles for their interests. (topical review — magnetism, magnetic materials, and interdisciplinary research)

  4. Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata

    Directory of Open Access Journals (Sweden)

    P. Compère

    2008-09-01

    Full Text Available The Rimicaris exoculata shrimp is considered as a primary consumer that dominates the fauna of most Mid-Atlantic Ridge (MAR hydrothermal ecosystems. These shrimps harbour in their gill chambers an important ectosymbiotic community of chemoautotrophic bacteria associated with iron oxide deposits. The structure and elemental composition of the mineral concretions associated with these bacteria have been investigated by using LM, ESEM, TEM STEM and EDX microanalyses. The nature of the iron oxides in shrimps obtained from the Rainbow vent field has also been determined by Mössbauer spectroscopy. This multidisciplinary approach has revealed that the three layers of mineral crust in the Rimicaris exoculata shrimps consist of large concretions formed by aggregated nanoparticles of two-line ferrihydrite and include other minor elements as Si, Ca, Mg, S and P, probably present as silicates cations, sulphates or phosphates respectively that may contribute to stabilise the ferrihydrite form of iron oxides. TEM-observations on the bacteria have revealed their close interactions with these minerals. Abiotic and biotic precipitation could occur within the gill chamber of Rimicaris exoculata, suggesting the biologically-mediated formation of the iron oxide deposits. The difference of the bacterial density in the three-mineral crust layers could be correlated to the importance of the iron oxide concretions and suggest that the first mineral particles precipitates on the lower layer which could be considered as the most likely location of iron-oxidizing bacteria.

  5. Vapour phase approach for iron oxide nanoparticle synthesis from solid precursors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mandeep; Ulbrich, Pavel; Prokopec, Vadym [Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Svoboda, Pavel [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 120 00 Prague 2 (Czech Republic); Šantavá, Eva [Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Štěpánek, František, E-mail: Frantisek.Stepanek@vscht.cz [Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-04-15

    A new non-solution mediated approach to the synthesis of iron oxide nanoparticles directly from solid FeCl{sub 2} salt precursors has been developed. The method is rapid, simple and scalable. The structural properties and the phase of the resulting iron oxide particles has been determined by a range of methods including XRD, FT-IR and Mössbauer spectroscopy, and the phase is shown to be maghemite (γ-Fe{sub 2}O{sub 3}). The magnetic properties of the iron oxide particles have been measured using SQUID, confirming superparamagnetic behaviour of the powder and a saturation magnetization of 53.0 emu g{sup −1} at 300 K. Aqueous dispersions at increasing concentrations were prepared and their heating rate under a 400 kHz alternating magnetic field measured. The specific absorption rate (SAR) of the iron oxide was found to be 84.8 W g{sup −1}, which makes the material suitable for the formulation of ferrofluids or ferrogels with RF heating properties. - Graphical Abstract: Superparamagnetic iron oxide nanoparticles obtained by a novel vapour phase approach. Highlights: ► Novel vapour phase (non-solvent) approach for iron oxide nanoparticle synthesis. ► Attractive alternative approach to the present co-precipitation method. ► Better magnetic properties with high coercivity of nanoparticles. ► A high specific absorption rate (SAR) for hyperthermia applications.

  6. Selective catalytic oxidation of H2S over iron oxide supported on alumina-intercalated Laponite clay catalysts

    International Nuclear Information System (INIS)

    Graphical abstract: The catalytic reaction and deactivation mechanisms for H2S selective oxidation over Fe/Al-Lap catalysts are shown in the illustration. The catalytic reaction follows Mars–van Krevelen mechanism. Moreover, the interaction between iron oxide and alumina, the strong acidity of the catalysts and the well dispersion of iron oxide improve the catalytic performance efficiently. Meanwhile, the catalyst deactivation is mainly due to the formation of Fe2(SO4)3 and elemental sulfur deposits on the surface. -- Highlights: • Fe/Al-Lap catalysts with mesoporous structure were synthesized. • Iron oxide mainly exists in form of isolate Fe3+ in an oxidic environment. •Fe/Al-Lap catalysts show high catalytic activities at low temperature. •The high catalytic activities are ascribed to the interaction between iron oxide and alumina. •The formed Fe2(SO4)3 and elemental sulfur deposits on surface cause catalyst deactivation. -- Abstract: A series of iron oxide supported on alumina-intercalated clay catalysts (named Fe/Al-Lap catalysts) with mesoporous structure and high specific surface area were prepared. The structural and chemical properties were studied by nitrogen sorption isotherms, X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (UV–vis DRS), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FTIR), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) techniques. It was realized that iron oxide mainly existed in the form of isolated Fe3+ in an oxidic environment. Fe/Al-Lap catalysts showed high catalytic activities in the temperature range of 120–200 °C without the presence of excessive O2. This can be attributed to the interaction between iron oxide and alumina, which improve the redox property of Fe3+ efficiently. In addition, the strong acidity of catalysts and good dispersion of iron oxide were also beneficial to oxidation reaction. Among them, 7% Fe

  7. Thin film lubrication of hexadecane confined by iron and iron oxide surfaces: A crucial role of surface structure

    International Nuclear Information System (INIS)

    A comparative analysis of thin film lubrication of hexadecane between different iron and its oxide surfaces has been carried out using classical molecular dynamic simulation. An ab initio force-field, COMPASS, was applied for n-hexadecane using explicit atom model. An effective potential derived from density functional theory calculation was utilized for the interfacial interaction between hexadecane and the tribo-surfaces. A quantitative surface parameterization was introduced to investigate the influence of surface properties on the structure, rheological properties, and tribological performance of the lubricant. The results show that although the wall-fluid attraction of hexadecane on pure iron surfaces is significantly stronger than its oxides, there is a considerable reduction of shear stress of confined n-hexadecane film between Fe(100) and Fe(110) surfaces compared with FeO(110), FeO(111), Fe2O3(001), and Fe2O3(012). It was found that, in thin film lubrication of hexadecane between smooth iron and iron oxide surfaces, the surface corrugation plays a role more important than the wall-fluid adhesion strength

  8. Thin film lubrication of hexadecane confined by iron and iron oxide surfaces: A crucial role of surface structure

    Science.gov (United States)

    Ta, D. T.; Tieu, A. K.; Zhu, H. T.; Kosasih, B.

    2015-10-01

    A comparative analysis of thin film lubrication of hexadecane between different iron and its oxide surfaces has been carried out using classical molecular dynamic simulation. An ab initio force-field, COMPASS, was applied for n-hexadecane using explicit atom model. An effective potential derived from density functional theory calculation was utilized for the interfacial interaction between hexadecane and the tribo-surfaces. A quantitative surface parameterization was introduced to investigate the influence of surface properties on the structure, rheological properties, and tribological performance of the lubricant. The results show that although the wall-fluid attraction of hexadecane on pure iron surfaces is significantly stronger than its oxides, there is a considerable reduction of shear stress of confined n-hexadecane film between Fe(100) and Fe(110) surfaces compared with FeO(110), FeO(111), Fe2O3(001), and Fe2O3(012). It was found that, in thin film lubrication of hexadecane between smooth iron and iron oxide surfaces, the surface corrugation plays a role more important than the wall-fluid adhesion strength.

  9. Thin film lubrication of hexadecane confined by iron and iron oxide surfaces: A crucial role of surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Ta, D. T.; Tieu, A. K.; Zhu, H. T., E-mail: hongtao@uow.edu.au; Kosasih, B. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfield Avenue, Wollongong, NSW 2522 (Australia)

    2015-10-28

    A comparative analysis of thin film lubrication of hexadecane between different iron and its oxide surfaces has been carried out using classical molecular dynamic simulation. An ab initio force-field, COMPASS, was applied for n-hexadecane using explicit atom model. An effective potential derived from density functional theory calculation was utilized for the interfacial interaction between hexadecane and the tribo-surfaces. A quantitative surface parameterization was introduced to investigate the influence of surface properties on the structure, rheological properties, and tribological performance of the lubricant. The results show that although the wall-fluid attraction of hexadecane on pure iron surfaces is significantly stronger than its oxides, there is a considerable reduction of shear stress of confined n-hexadecane film between Fe(100) and Fe(110) surfaces compared with FeO(110), FeO(111), Fe{sub 2}O{sub 3}(001), and Fe{sub 2}O{sub 3}(012). It was found that, in thin film lubrication of hexadecane between smooth iron and iron oxide surfaces, the surface corrugation plays a role more important than the wall-fluid adhesion strength.

  10. Iron-sulfur Proteins Are the Major Source of Protein-bound Dinitrosyl Iron Complexes Formed in Escherichia coli Cells under Nitric Oxide Stress

    OpenAIRE

    Landry, Aaron P.; Duan, Xuewu; Huang, Hao; Ding, Huangen

    2011-01-01

    Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not the proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs ...

  11. Metal regeneration of iron chelates in nitric oxide scrubbing

    Science.gov (United States)

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  12. Performance Optimization of Metallic Iron and Iron Oxide Nanomaterials for Treatment of Impaired Water Supplies

    OpenAIRE

    Xie, Yang

    2011-01-01

    Iron nanomaterials including nanoscale zero valent iron (NZVI), NZVI-based bimetallic reductants (e.g., Pd/NZVI) and naturally occurring nanoscale iron mineral phases represent promising treatment tools for impaired water supplies. However, questions pertaining to fundamental and practical aspects of their reactivity may limit their performance during applications.For NZVI treatment of pollutant source zones, a major hurdle is its limited reactive lifetime. In Chapter 2, we report the longevi...

  13. Iron-tellurium-selenium mixed oxide catalysts for the selective oxidation of propylene to acrolein

    International Nuclear Information System (INIS)

    This paper reports on iron-tellurium-selenium mixed oxide catalysts prepared by coprecipitation from aqueous solution investigated for the propylene to acrolein reaction in the temperature range 543-773 K. Infrared spectroscopy, electron dispersive X-ray analysis, X-ray diffraction, and isotopic tracer techniques have also been employed to characterize this catalytic system. Properties of the Fe-Te-Se mixed oxide catalysts have been compared with Fe-Te mixed oxides in an effort to deduce the functionality of Se. The selenium in the Fe-Te-Se-O catalyst has been found to be the hydrocarbon activating site. The activation energies for the acrolein and carbon dioxide formation are 71 and 54 kJ/mol, respectively. Reactions carried out with 18O2 have shown lattice oxygen to be primarily responsible for the formation of both acrolein and carbon dioxide. The initial and rate-determining step for acrolein formation is hydrogen abstraction as determined by an isotope effect associated with the C3D6 reaction. No isotope effect is observed for carbon dioxide formation from C3D6 suggesting that CO2 is formed by parallel, not consecutive, oxidation of propylene

  14. Solvent Extraction-spectrophotometric Determination of Iron(III) with Mixture of Dibenzoylmethane and Tri-n-octylphosphine Oxide

    OpenAIRE

    上田, 穣一; Ueda, Joichi; Kosumi, Shiro

    1999-01-01

    A method for the spectrophotometric determination of iron(III) utilising the synergistic extraction with dibenzoylmethane(DBM) and tri-n-octylphosphine oxide(TOPO) is described. Iron(III) can be extracted

  15. Superparamagnetic iron oxide particles: current state and future development

    International Nuclear Information System (INIS)

    A wide range of applications for superparamagnetic iron oxide (SPIO) particles as contrast media for MRI has emerged over the last 15 years. SPIO particles can be manufactured with different particle sizes and surface coatings. Large SPIO particles (50-150 nm) predominantly produce a signal decrease or T2-shortening and are used as contrast media for MRI of the liver and spleen. They have a high accuracy, especially in detecting liver metastases (approved for clinical use: AMI-25 (Endorem or Ferridex), SHU-555A (Resovist)). Smaller particles (about 20 nm in diameter) show a different organ distribution and have a potential for improving noninvasive lymph node assessment or characterizing vulnerable atherosclerotic plaques (in clinical trials: AMI-227 [Sinerem or Combidex]). Particles with an optimized T1-relaxivity and prolonged intravascular circulation time can be used as blood pool contrast media for MR angiography. The currently investigated indications are MR angiography of the trunk, peripheral vessels, and coronary arteries (e.g., SHU-555C (Supravist), VSOP-C184). Other applications of small SPIO particles include MRI of the bone marrow and the determination of perfusion parameters in tumors or other tissues like the myocardium. SPIO particles with a modified coat can be used in socalled molecular imaging, such as receptor-directed imaging, cell labeling for in-vivo monitoring of cell migration, e.g., stem cell labeling, and labeling of gene constructs for localization in genetic therapy. In tumor therapy SPIO particles can serve as mediators for hyperthermia. SPIO is a powerful MR contrast medium with manifold applications ranging from diagnostic imaging to molecular medicine. (orig.)

  16. Comparison of iron oxide nanoparticle and waterbath hyperthermia cytotoxicity

    Science.gov (United States)

    Ogden, J. A.; Tate, J. A.; Strawbridge, R. R.; Ivkov, R.; Hoopes, P. J.

    2009-02-01

    The development of medical grade iron oxide nanoparticles (IONP) has renewed interest in hyperthermia cancer therapy. Because of their modifiable size and heating capabilities under an AC magnetic field (alternating magnetic field, AMF), IONPs have the potential to damage or kill cells in a manner more therapeutically efficient than previous hyperthermia techniques. The use of IONPs in hyperthermia cancer therapy has prompted numerous questions regarding the cytotoxic mechanism associated with IONP heat therapy and if such mechanism is different (more or less effective) with respect to conventional hyperthermia techniques. In this in vitro study, we determine the immediate and long-term (24 hours) cytotoxic effects of isothermal IONP hyperthermia treatment versus a conventional global heating technique (water bath). Using the same heating time and temperature we showed significantly greater cytotoxicity in IONP-heated cells as opposed to water bath-treated cells. We postulate that the difference in treatment efficacy is due to the spatial relationship of particle-induced thermal damage within cells. Although the exact mechanism is still unclear, it appears likely that intracellular IONPs have to achieve a very high temperature in order to heat the surrounding environment; therefore it is reasonable to assume that particles localized to specific areas of the cell such as the membrane can deliver exacerbated injury to those areas. In this experiment, although detectable global temperature for the particle-heated cells stands comparable to the conventional heat treatment, particle-induced cell death is higher. From the results of this study, we propose that the mechanism of IONP hyperthermia renders enhanced cytotoxicity compared to conventional waterbath hyperthermia at the same measured thermal dose.

  17. Magnetic field calculations for iron oxide nanoparticles for MRI

    Science.gov (United States)

    Hernandez, Ricardo; Mendez Rojas, Miguel; Dies Suarez, Pilar; Hidalgo Tobón, Silvia

    2014-11-01

    The susceptibility effects of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with triethylenglycol (TREG) and Polyethylen Glycol (PEG) has been studied, those nanoparticles have the necessary properties to be used in the clinic as contrast media in imaging by MRI[1-3]. We are considering the behavior of the magnetic field as plane wave to explain the electrical and magnetic field produced by SPIONs. Images were acquired on a 1.5T imager Philips, using mFFE Sequence. Three glass capillary tubes with a) TREG (10nm) concentration of 300 μg/ml, and PEGCOOH 6000(10nm) with 300 μg/ml, and 2% agarosa. Magnetic field simulations were calculated in Matlab. The plane wave that comes in contact with a sphere of radius a, an propagation constant k1, and it is in an homogeneous space k2. We consider that the electric field is linearly polarized on x-direction, with a propagation on z-positive-axis. The secondary induced field can be explained from the interior of the sphere and valid exterior points. The referred waves are transmitted and reflected, this is valid only when the wavelength is smaller than the radius of the sphere. The obtained vibrational mode is an answer of the electrical oscillation and this is projection of the disturbed magnetic field. TREG-SPIONs produce more serious susceptibility artefacts compared to PEG-SPIONs. This study is promissory due to the concordance of the results of the simulations and the inhomogeneities showed in the MR images.

  18. Iron oxidation and biomineralization by Mariprofundus ferrooxydans, a deep-sea microaerophilic lithoautotroph

    Science.gov (United States)

    Chan, C. S.; Emerson, D.; Fakra, S.; Edwards, K. J.

    2007-12-01

    The ocean crust contains a large reservoir of reduced iron, available for microbial energy generation. Some of this ferrous iron is mobilized by fluids in hydrothermal fields at seamounts and mid-ocean ridges. A microaerophilic iron oxidizer, Mariprofundus ferrooxydans has been identified (by molecular methods and microscopy) at various sites, and appears to be a key iron-oxidizing bacterium (FeOB) in the deep sea. Originally isolated from microbial mats near vents at the Loihi Seamount in Hawaii, Mariprofundus is distinctive because it forms an extracellular iron-mineralized stalk-like structure. We aim to understand its metabolism and mineral formation using a multidisciplinary approach, including electron microscopy, x-ray spectroscopy, time-lapse light microscopic imaging of live cells, and genomic and biochemical analyses. Microscopy and spectroscopy work shows that as the cells grow, they excretes iron and organic-rich fibrils that make up the stalk, at a rate of ~2 microns/hr. Stalk growth appears to be parallel to the direction of Fe and oxygen gradients. The Mariprofundus genome contains several terminal oxidases/peroxidases, including two cbb3-type cytochrome oxidases with a high affinity for oxygen, consistent with the microaerophilic lifestyle of these organisms. However, we have not identified genes for metabolisms other than aerobic iron oxidation, nor have we found any genes similar to known or suspected iron oxidases, though the genome (2.87 Mb) is rich in cytochromes (32 of 2922 genes). Thus, we are performing experiments to extract and analyze proteins from both cultured and environmental samples in order to find ones that will oxidize iron. UV-Vis spectra of extracts suggest that c-type cytochromes are particularly abundant, so these are candidates for further investigation. In combination with the microscopy and spectroscopy studies, these are the first steps towards understanding the complete pathway of iron from uptake through mineral

  19. Microbial iron(II oxidation in littoral freshwater lake sediments: Competition between phototrophic vs. nitrate-reducing iron(II-oxidizers

    Directory of Open Access Journals (Sweden)

    AndreasKappler

    2012-05-01

    Full Text Available The distribution of neutrophilic microbial iron oxidation is mainly determined by local gradients of oxygen, light, nitrate and ferrous iron. In the anoxic top part of littoral freshwater lake sediments, nitrate-reducing and phototrophic Fe(II-oxidizers compete for the same e- donor; reduced iron. It is not yet understood how these microbes co-exist in the sediment and what role they play in the Fe cycle. We show that both metabolic types of anaerobic Fe(II-oxidizing microorganisms are present in the same sediment layer directly beneath the oxic-anoxic sediment interface. The photoferrotrophic MPNs counted 3.4•105 cells•g-1 and the autotrophic and mixotrophic nitrate-reducing Fe(II-oxidizers totalled 1.8•104 and 4.5•104 cells•g-1 dry weight sediment, respectively. To distinguish between the two microbial Fe(II oxidation processes and assess their individual contribution to the sedimentary Fe cycle, littoral lake sediment was incubated in microcosm experiments. Nitrate-reducing Fe(II-oxidizing bacteria exhibited a higher maximum Fe(II oxidation rate per cell, in both pure cultures and microcosms, than photoferrotrophs. In microcosms, photoferrotrophs instantly started oxidizing Fe(II, whilst nitrate-reducing Fe(II-oxidizers showed a significant lag-phase during which they probably use organics as e- donor before initiating Fe(II oxidation. This suggests that they will be outcompeted by phototrophic Fe(II-oxidizers during optimal light conditions; as phototrophs deplete Fe(II before nitrate-reducing Fe(II-oxidizers start Fe(II oxidation. Thus, the co-existence of the two anaerobic Fe(II-oxidizers may be possible due to a niche space separation in time by the day-night cycle, where nitrate-reducing Fe(II-oxidizers oxidize Fe(II during darkness and phototrophs play a dominant role in Fe(II oxidation during daylight. Furthermore, metabolic flexibility of Fe(II-oxidizing microbes may play a paramount role in the conservation of the

  20. Acute iron overload and oxidative stress in brain

    International Nuclear Information System (INIS)

    An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6 h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A·)/ascorbate (AH−) ratio, taken as oxidative stress index, was assessed. The A·/AH− ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR·) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8 h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21 h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6 h after Fe administration. CAT activity was significantly increased after 8 h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR· generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR· generation rate after 6 h

  1. Acute iron overload and oxidative stress in brain.

    Science.gov (United States)

    Piloni, Natacha E; Fermandez, Virginia; Videla, Luis A; Puntarulo, Susana

    2013-12-01

    An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A)/ascorbate (AH(-)) ratio, taken as oxidative stress index, was assessed. The A/AH(-) ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6h after Fe administration. CAT activity was significantly increased after 8h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR generation rate after 6h of Fe overload

  2. Mutual effects of nitric oxide and iron on the growth of marine algae

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Experiments on the effects of nitric oxide (NO) and iron on the growth of marine microalgae Skeletonema costatum were conducted.The results are as follows: exogenous NO could increase the growth rate of marine algae and raise the biomass remarkably under iron-deficient conditions. But it was a complicated process that the phytoplankton growth was influenced by NO and iron, which was controlled by the NO concentration, the nutrition level of the culture medium and the iron concentration, etc. Meanwhile, the iron concentration in the medium also has a direct influence on the growth and NO release capacity of the algae. Therefore, the effects of NO and iron on the growth of marine phytoplankton were mutual.

  3. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  4. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    International Nuclear Information System (INIS)

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature

  5. N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching.

    Science.gov (United States)

    Gholami, Javad; Manteghian, Mehrdad; Badiei, Alireza; Ueda, Hiroshi; Javanbakht, Mehran

    2016-02-01

    An N-butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)-visible spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N-butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N-butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10(-6)  M) and limit of quantitation (2.9 × 10(-5)  M) were obtained under optimal conditions. PMID:26016610

  6. Cell adhesion of Shewanella oneidensis to iron oxide minerals: Effect of different single crystal faces

    Directory of Open Access Journals (Sweden)

    Hochella Michael F

    2005-12-01

    Full Text Available The results of experiments designed to test the hypothesis that near-surface molecular structure of iron oxide minerals influences adhesion of dissimilatory iron reducing bacteria are presented. These experiments involved the measurement, using atomic force microscopy, of interaction forces generated between Shewanella oneidensis MR-1 cells and single crystal growth faces of iron oxide minerals. Significantly different adhesive force was measured between cells and the (001 face of hematite, and the (100 and (111 faces of magnetite. A role for electrostatic interactions is apparent. The trend in relative forces of adhesion generated at the mineral surfaces is in agreement with predicted ferric site densities published previously. These results suggest that near-surface structure does indeed influence initial cell attachment to iron oxide surfaces; whether this is mediated via specific cell surface-mineral surface interactions or by more general interfacial phenomena remains untested.

  7. Iron Oxides from Volcanic Soils as Potential Catalysts in the Water Gas Shift Reaction

    International Nuclear Information System (INIS)

    This study was focused on changes of the iron oxide mineralogy with temperature of two Chilean soils (Andisol and Ultisol) derived from volcanic materials and their use as iron-based catalysts in the water gas shift reaction (WGSR). Ultisol materials produced about twice as much hydrogen than did those from Andisol upon WGSR, but in both cases hydrogen yielding increased as the heating temperature of the soil materials increased from 124 deg. C to 500 deg. C. The room temperature Moessbauer spectra showed an increase of the relative proportion of the magnetically ordered components as temperature increased. Higher heating temperature produced a negative effect on the catalytic activity, whereas the organic matter destruction led to a positive effect, due to an increasing exposition of the iron oxide surfaces; heating the soil sample at 600 deg. C induced changes on the iron oxide mineralogy with a significant decrease of the catalytic activity

  8. Iron Oxides from Volcanic Soils as Potential Catalysts in the Water Gas Shift Reaction

    Science.gov (United States)

    Pizarro, C.; Escudey, M.; Moya, S. A.; Fabris, J. D.

    2005-04-01

    This study was focused on changes of the iron oxide mineralogy with temperature of two Chilean soils (Andisol and Ultisol) derived from volcanic materials and their use as iron-based catalysts in the water gas shift reaction (WGSR). Ultisol materials produced about twice as much hydrogen than did those from Andisol upon WGSR, but in both cases hydrogen yielding increased as the heating temperature of the soil materials increased from 124°C to 500°C. The room temperature Mössbauer spectra showed an increase of the relative proportion of the magnetically ordered components as temperature increased. Higher heating temperature produced a negative effect on the catalytic activity, whereas the organic matter destruction led to a positive effect, due to an increasing exposition of the iron oxide surfaces; heating the soil sample at 600 °C induced changes on the iron oxide mineralogy with a significant decrease of the catalytic activity.

  9. Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling.

    Science.gov (United States)

    Emerson, David; Scott, Jarrod J; Benes, Joshua; Bowden, William B

    2015-12-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long -149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. PMID:26386054

  10. Discovery of Fe7O9: a new iron oxide with a complex monoclinic structure.

    Science.gov (United States)

    Sinmyo, Ryosuke; Bykova, Elena; Ovsyannikov, Sergey V; McCammon, Catherine; Kupenko, Ilya; Ismailova, Leyla; Dubrovinsky, Leonid

    2016-01-01

    Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth's interior. PMID:27605075

  11. Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications.

    Science.gov (United States)

    Tuček, Jiří; Kemp, Kingsley Christian; Kim, Kwang Soo; Zbořil, Radek

    2014-08-26

    Owing to the three different orbital hybridizations carbon can adopt, the existence of various carbon nanoallotropes differing also in dimensionality has been already affirmed with other structures predicted and expected to emerge in the future. Despite numerous unique features and applications of 2D graphene, 1D carbon nanotubes, or 0D fullerenes, nanodiamonds, and carbon quantum dots, which have been already heavily explored, any of the existing carbon allotropes do not offer competitive magnetic properties. For challenging applications, carbon nanoallotropes are functionalized with magnetic species, especially of iron oxide nature, due to their interesting magnetic properties (superparamagnetism and strong magnetic response under external magnetic fields), easy availability, biocompatibility, and low cost. In addition, combination of iron oxides (magnetite, maghemite, hematite) and carbon nanostructures brings enhanced electrochemical performance and (photo)catalytic capability due to synergetic and cooperative effects. This work aims at reviewing these advanced applications of iron-oxide-supported nanocarbon composites where iron oxides play a diverse role. Various architectures of carbon/iron oxide nanocomposites, their synthetic procedures, physicochemical properties, and applications are discussed in details. A special attention is devoted to hybrids of carbon nanotubes and rare forms (mesoporous carbon, nanofoam) with magnetic iron oxide carriers for advanced environmental technologies. The review also covers the huge application potential of graphene/iron oxide nanocomposites in the field of energy storage, biomedicine, and remediation of environment. Among various discussed medical applications, magnetic composites of zero-dimensional fullerenes and carbon dots are emphasized as promising candidates for complex theranostics and dual magneto-fluorescence imaging. PMID:25000534

  12. What is the real role of iron oxides in the optical properties of dust aerosols?

    Science.gov (United States)

    Zhang, X. L.; Wu, G. J.; Zhang, C. L.; Xu, T. L.; Zhou, Q. Q.

    2015-11-01

    Iron oxide compounds constitute an important component of mineral dust aerosols. Several previous studies have shown that these minerals are strong absorbers at visible wavelengths and thus that they play a critical role in the overall climate perturbation caused by dust aerosols. When compiling a database of complex refractive indices of possible mineral species of iron oxides to study their optical properties, we found that uniformly continuous optical constants for a single type of iron oxide in the wavelength range between 0.2 and 50 μm are very scarce, and that the use of hematite to represent all molecular or mineral iron-oxides types is a popular hypothesis. However, the crucial problem is that three continuous data sets for complex refractive indices of hematite are employed in climate models, but there are significant differences between them. Thus, the real role of iron oxides in the optical properties of dust aerosols becomes a key scientific question, and we address this problem by considering different refractive indices, size distributions and more logical weight fractions and mixing states of hematite. Based on the microscopic observations, a semi-external mixture that employs an external mixture between Fe aggregates and other minerals and partly internal mixing between iron oxides and aluminosilicate particles is advised as the optimal approximation. The simulations demonstrate that hematite with a spectral refractive index from Longtin et al. (1988) shows approximately equal absorbing capacity to the mineral illite over the whole wavelength region from 0.55 to 2.5 μm, and only enhances the optical absorption of aerosol mixture at λ < 0.55 μm. Using the data set from Querry (1985) may overestimate the optical absorption of hematite at both visible and near-infrared wavelengths. More laboratory measurements of the refractive index of iron oxides, especially for hematite and goethite in the visible spectrum, should therefore be taken into account

  13. Non-heme iron catalysts for the benzylic oxidation : a parallel ligand screening approach

    NARCIS (Netherlands)

    Klopstra, M; Hage, R; Kellogg, R.M.; Feringa, B.L.

    2003-01-01

    Ethylbenzene and 4-ethylanisole were used as model substrates for benzylic oxidation with H2O2 or O-2 using a range of non-heme iron catalysts following a parallel ligand screening approach. Effective oxidation was found for Fe complexes based on tetra- and pentadentate nitrogen ligands affording th

  14. DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles.

    Science.gov (United States)

    Park, Jeong-Ann; Kim, Song-Bae

    2015-10-01

    In this study, batch experiments were performed to examine the adhesion of bacteriophage MS2 to three iron oxide particles (IOP1, IOP2 and IOP3) with different particle properties. The characteristics of MS2 and iron oxides were analyzed using various techniques to construct the classical DLVO and XDLVO potential energy profiles between MS2 and iron oxides. X-ray diffractometry peaks indicated that IOP1 was mainly composed of maghemite (γ-Fe2O3), but also contained some goethite (α-FeOOH). IOP2 was composed of hematite (α-Fe2O3) and IOP3 was composed of iron (Fe), magnetite (Fe3O4) and iron oxide (FeO). Transmission electron microscope images showed that the primary particle size of IOP1 (γ-Fe2O3) was 12.3±4.1nm. IOP2 and IOP3 had primary particle sizes of 167±35nm and 484±192nm, respectively. A surface angle analyzer demonstrated that water contact angles of IOP1, IOP2, IOP3 and MS2 were 44.83, 64.00, 34.33 and 33.00°, respectively. A vibrating sample magnetometer showed that the magnetic saturations of IOP1, IOP2 and IOP3 were 176.87, 17.02 and 946.85kA/m, respectively. Surface potentials measured in artificial ground water (AGW; 0.075mM CaCl2, 0.082mM MgCl2, 0.051mM KCl, and 1.5mM NaHCO3; pH7.6) indicated that iron oxides and MS2 were negatively charged in AGW (IOP1=-0.0185V; IOP2=-0.0194V; IOP3=-0.0301V; MS2=-0.0245V). Batch experiments demonstrated that MS2 adhesion to iron oxides was favorable in the order of IOP1>IOP2>IOP3. This tendency was well predicted by the classical DLVO model. In the DLVO calculations, both the sphere-plate and sphere-sphere geometries predicted the same trend of MS2 adhesion to iron oxides. Additionally, noticeable differences were not found between the DLVO and XDLVO interaction energy profiles, indicating that hydrophobic interactions did not play a major role; electrostatic interactions, however, did influence MS2 adhesion to iron oxides. Furthermore, the aggregation of iron oxides was investigated with a modified XDLVO

  15. Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide

    International Nuclear Information System (INIS)

    Highlights: • Laser sintered MgO pellets with nanoparticles of Al2O3 and Fe2O3. • Characterized these pellets by XRD, SEM and XPS. • Spinel formations were observed in both cases. • Changes in morphology and structure were analyzed. - Abstract: Nanoparticles of iron oxide (Fe2O3, 20–40 nm) and aluminum oxide (Al2O3, 50 nm) were mixed in different concentrations (3, 5 and 7 wt%) in a magnesium oxide (MgO) matrix. The mixture pellet was irradiated with 532 nm output from a Q-switched Nd:YAG laser using different laser fluence and translation speed for sintering. The refractory samples obtained were analyzed using X-ray diffraction technique, scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that the samples irradiated at translation speed of 110 μm/s and energy fluence of 1.7 J/cm2 with a concentration of 5 and 7 wt% of Fe2O3 presented the MgFe2O4 spinel-type phase. With the addition of Al2O3 nanoparticles, at a translation speed of 110 μm/s and energy fluence of 1.7 J/cm2, there were the formations of MgAl2O4 spinel phase. The changes in morphologies and microstructure due to laser irradiation were analyzed

  16. In-situ determination of the oxidation state of iron in Fe-bearing silicate melts

    Science.gov (United States)

    Courtial, P.; Wilke, M.; Potuzak, M.; Dingwell, D. B.

    2005-12-01

    Terrestrial lavas commonly contain up to 10 wt% of iron. Furthermore, rocks returned from the Moon indicate lunar lava containing up to 25 wt% of iron and planetary scientists estimated that the martian mantle has about 18 wt% of iron. An experimental challenge in dealing with Fe-bearing silicate melts is that the oxidation state, controlling the proportions of ferric and ferrous iron, is a function of composition, oxygen fugacity and temperature and may vary significantly. Further complications concerning iron originate from its potential to be either four-, six- or even five-fold coordinated in both valence states. Therefore, the oxidation state of iron was determined in air for various Fe-bearing silicate melts. Investigated samples were Na-disilicate (NS), one atmosphere anorthite-diopside eutectic (AD) and haplogranitic (HPG8) melts containing up to 20, 20 and 10 wt% of iron, respectively. XANES spectra at the Fe K-edge were collected for all the melts at beamline A1, HASYLAB, Hamburg, using a Si(111) 4-crystal monochromator. Spectra were collected for temperatures up to 1573 K using a Pt-Rh loop as heating device. The Fe oxidation state was determined from the centroid position of the pre-edge feature using the calibration of Wilke et al. (2004). XANES results suggest that oxidation state of iron does not change within error for NS melts with addition of Fe, while AD and HPG8 melts become more oxidised with increasing iron content. Furthermore, NS melts are well more oxidised than AD and HPG8 melts that exhibit relatively similar oxidation states for identical iron contents. The oxidation state of iron for NS melts appears to be slightly temperature-dependent within the temperature range investigated (1073-1573 K). However, this trend is stronger for AD and HPG8 melts. Assuming that glass reflects a picture of the homogeneous equilibria of the melt, the present in-situ Fe-oxidation states determined for these melts were compared to those obtained on quenched

  17. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Science.gov (United States)

    Henych, Jiří; Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš; Janoš, Pavel; Kuráň, Pavel; Štastný, Martin

    2015-07-01

    Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching <70% was found for the samples with Ti:Fe ratio 0.25:1 and 1:0.25. Contrary, parathion methyl was not degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified.

  18. Application of factor analysis to XPS valence band of superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    X-Ray photoelectron spectra of nano-sized superparamagnetic iron oxide nanoparticles were examined with the aim to discriminate the different degree of iron oxidation. Careful analysis of the valence band regions reveals the presence of both Fe3O4 and Fe2O3. The application of factor analysis enabled us to extract the relative molar concentrations of these oxides in the nanoparticles. This is of particular interest in improving the magnetic properties of iron oxide nanoparticles whose superparamagnetic character can be optimized to obtain better contrast in images from nuclear magnetic resonance. As a result, the factor analysis allows tuning the nanoparticle synthesis conditions in order to obtain the optimal magnetic properties for imaging. Results obtained by the XPS valence band analysis were compared to the transmission electron microscopy, X-ray diffraction and Raman measurements.

  19. Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel.

    Science.gov (United States)

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Trudel, Simon; Berlinguette, Curtis P

    2013-08-01

    Photochemical metal-organic deposition (PMOD) was used to prepare amorphous metal oxide films containing specific concentrations of iron, cobalt, and nickel to study how metal composition affects heterogeneous electrocatalytic water oxidation. Characterization of the films by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed excellent stoichiometric control of each of the 21 complex metal oxide films investigated. In studying the electrochemical oxidation of water catalyzed by the respective films, it was found that small concentrations of iron produced a significant improvement in Tafel slopes and that cobalt or nickel were critical in lowering the voltage at which catalysis commences. The best catalytic parameters of the series were obtained for the film of composition a-Fe20Ni80. An extrapolation of the electrochemical and XPS data indicates the optimal behavior of this binary film to be a manifestation of iron stabilizing nickel in a higher oxidation level. This work represents the first mechanistic study of amorphous phases of binary and ternary metal oxides for use as water oxidation catalysts, and provides the foundation for the broad exploration of other mixed-metal oxide combinations. PMID:23883103

  20. Pollution Control Meets Sustainability: Structure-Activity Studies on New Iron Oxide-Based CO Oxidation Catalysts.

    Science.gov (United States)

    Schoch, Roland; Bauer, Matthias

    2016-08-01

    A new class of catalysts for the oxidation of CO based on iron oxide as a biocompatible, earth-abundant and non-toxic metal is presented. The catalytic activities achieved with these catalysts provide promising milestones towards the substitution of noble metals in CO oxidation catalysts. The catalysts can be obtained by using iron core-shell nanoparticle precursors. The metal used for the shell material determines whether the iron core is integrated in or isolated from the support. The active iron site is effectively integrated into the γ-Al2 O3 support if an aluminum shell is present in the core-shell precursor. When the metal used for the shell is different from the support, an isolated structure is formed. Using this directed synthesis approach, different iron oxide species can be obtained and their structural differences are linked to distinct catalytic activities, as demonstrated by combined in-depth analytical studies using XRD, X-ray absorption spectroscopy (XAS), UV/Vis, and Brunauer-Emmett-Teller (BET) analysis. The key species responsible for high catalytic activity is identified as isolated tetrahedrally coordinated Fe(III) centers, whereas aggregation leads to a reduction in activity. PMID:27440425

  1. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stefanie; Sommer, Anja [Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen (Germany); Distel, Luitpold V.R. [Department of Radiation Oncology, Friedrich Alexander University Erlangen-Nuremberg, Universitaetsstrasse 27, D-91054 Erlangen (Germany); Neuhuber, Winfried [Department of Anatomy, Chair of Anatomy I, Friedrich Alexander University Erlangen-Nuremberg, Krankenhausstr. 9, D-91054 Erlangen (Germany); Kryschi, Carola, E-mail: kryschi@chemie.uni-erlangen.de [Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen (Germany)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.

  2. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

    International Nuclear Information System (INIS)

    Highlights: • Paddy soil contaminated with benzoate incubated with hematite and magnetite. • Iron oxides addition enhanced methanogenic benzoate degradation by 25–53%. • The facilitated syntrophy might involve direct interspecies electron transfer. • Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved. - Abstract: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89–94% of the electrons released from benzoate oxidation were recovered in CH4 production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments

  3. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation

    International Nuclear Information System (INIS)

    Highlights: ► Ultrasmall citrate-coated SPIONs with γFe2O3 and Fe3O4 structure were prepared. ► SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. ► The SPION induced ROS production is due to released iron ions and catalytically active surfaces. ► Released iron ions and SPION surfaces initiate the Fenton and Haber–Weiss reaction. ► X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber–Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.

  4. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jake; Bernstein, Hans C.; Jay, Z.; Kozubal, Mark; Jennings, Ryan; Tringe, Susannah G.; Inskeep, William P.

    2016-02-15

    Iron oxide microbial mats are ubiquitous geobiological features on Earth and occur in extant acidic hot springs of Yellowstone National Park (YNP), WY, USA, and form as a result of microbial processes. The relative contribution of different organisms to the development of these mat ecosystems is of specific interest. We hypothesized that chemolithoautotrophic organisms contribute to the early development and production of Fe(III)-oxide mats, which could support later-colonizing heterotrophic microorganisms. Sterile glass slides were incubated in the outflow channels of two acidic geothermal springs in YNP, and spatiotemporal changes in Fe(III)-oxide accretion and abundance of relevant community members were measured. Lithoautotrophic Hydrogenobaculum spp. were first colonizers and the most abundant taxa identified during early successional stages (7 – 40 days). Populations of M. yellowstonensis colonized after ~ 7 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized after 30 days, and emerge as the dominant functional guild in mature iron oxide mats (1 – 2 cm thick) that form after 70 – 120 days. First-order rate constants of iron oxide accretion ranged from 0.05 – 0.046 day-1, and reflected the absolute amount of iron accreted. Micro- and macroscale microterracettes were identified during iron oxide mat development, and suggest that the mass transfer of oxygen limits microbial growth. This was also demonstrated using microelectrode measurements of oxygen as a function of mat depth, which showed steep gradients in oxygen from the aqueous mat interface to ~ 1 mm. The formation and succession of amorphous Fe(III)-oxide mat communities follows a predictable pattern of distinct stages and growth. The successional stages and microbial signatures observed in these extant Fe(III)-oxide mat communities may be relevant to other past or present Fe(III)-oxide mineralizing systems.

  5. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles.

    Science.gov (United States)

    Bharde, Atul A; Parikh, Rasesh Y; Baidakova, Maria; Jouen, Samuel; Hannoyer, Baetrice; Enoki, Toshiaki; Prasad, B L V; Shouche, Yogesh S; Ogale, Satish; Sastry, Murali

    2008-06-01

    The bacterium Actinobacter sp. has been shown to be capable of extracellularly synthesizing iron based magnetic nanoparticles, namely maghemite (gamma-Fe2O3) and greigite (Fe3S4) under ambient conditions depending on the nature of precursors used. More precisely, the bacterium synthesized maghemite when reacted with ferric chloride and iron sulfide when exposed to the aqueous solution of ferric chloride-ferrous sulfate. Challenging the bacterium with different metal ions resulted in induction of different proteins, which bring about the specific biochemical transformations in each case leading to the observed products. Maghemite and iron sulfide nanoparticles show superparamagnetic characteristics as expected. Compared to the earlier reports of magnetite and greigite synthesis by magnetotactic bacteria and iron reducing bacteria, which take place strictly under anaerobic conditions, the present procedure offers significant advancement since the reaction occurs under aerobic condition. Moreover, reaction end products can be tuned by the choice of precursors used. PMID:18454562

  6. Oxidation of sulphide minerals-VI Ferrous and ferric iron in the water-soluble oxidation products of iron sulphide minerals.

    Science.gov (United States)

    Steger, H F

    1979-06-01

    A pseudo-kinetic method has been developed for determining the ferrous and ferric iron in the water-soluble oxidation products of pyrrhotite, pyrite and chalcopyrite, and ores and concentrates containing them. Two determinations are required for each material. In one, the total iron is determined with 1,10-phenanthroline after reduction to Fe(II). In the other, the reduction of Fe(III) is retarded by complexation with fluoride. The difference in the amount of ferrous phenanthranoline complex produced in these two determinations is a function of the original FE(III) concentration and of time. PMID:18962467

  7. Ceruloplasmin Oxidation, a Feature of Parkinson's Disease CSF, Inhibits Ferroxidase Activity and Promotes Cellular Iron Retention

    KAUST Repository

    Olivieri, S.

    2011-12-14

    Parkinson\\'s disease is a neurodegenerative disorder characterized by oxidative stress and CNS iron deposition. Ceruloplasmin is an extracellular ferroxidase that regulates cellular iron loading and export, and hence protects tissues from oxidative damage. Using two-dimensional electrophoresis, we investigated ceruloplasmin patterns in the CSF of human Parkinson\\'s disease patients. Parkinson\\'s disease ceruloplasmin profiles proved more acidic than those found in healthy controls and in other human neurological diseases (peripheral neuropathies, amyotrophic lateral sclerosis, and Alzheimer\\'s disease); degrees of acidity correlated with patients\\' pathological grading. Applying an unsupervised pattern recognition procedure to the two-dimensional electrophoresis images, we identified representative pathological clusters. In vitro oxidation of CSF in two-dimensional electrophoresis generated a ceruloplasmin shift resembling that observed in Parkinson\\'s disease and co-occurred with an increase in protein carbonylation. Likewise, increased protein carbonylation was observed in Parkinson\\'s disease CSF, and the same modification was directly identified in these samples on ceruloplasmin. These results indicate that ceruloplasmin oxidation contributes to pattern modification in Parkinson\\'s disease. From the functional point of view, ceruloplasmin oxidation caused a decrease in ferroxidase activity, which in turn promotes intracellular iron retention in neuronal cell lines as well as in primary neurons, which are more sensitive to iron accumulation. Accordingly, the presence of oxidized ceruloplasmin in Parkinson\\'s disease CSF might be used as a marker for oxidative damage and might provide new insights into the underlying pathological mechanisms.

  8. Recycling of a spent iron based catalyst for the complete oxidation of toluene: effect of palladium.

    Science.gov (United States)

    Kim, Sang Chai; Nah, Jae Woon

    2015-01-01

    Complete oxidation of volatile organic compound (toluene) was carried out to assess the property and activity of the palladium-spent iron based catalyst. The properties of the prepared catalysts were characterized by using the Brunauer-Emmett-Teller method and by conducting temperature-programmed reduction, X-ray diffraction, X-ray photoelectron spectroscopy and field emission transmission electron microscopy. The addition of palladium to the spent iron based catalyst pretreated with oxalic acid shifted the conversion curve for the total oxidation of toluene to lower temperature. An increase in the toluene conversion due to palladium was highly related to the easier lattice oxygen mobility of the catalysts. Instrumental analysis suggested the presence of a strong interaction between palladium and iron oxide species. Moreover, in the case of reducing the Pd/Fe catalyst with hydrogen, palladium accelerated the reducing iron oxides, subsequently decreasing the toluene conversion. As a result, the oxidation states of palladium and iron had an important effect on the catalytic activity. PMID:25413115

  9. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kayal, S. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ramanujan, R.V., E-mail: ramanujan@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2010-04-06

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe{sub 3}O{sub 4}), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  10. Preparation and characterization of thermosensitive PNIPAA-coated iron oxide nanoparticles

    Science.gov (United States)

    Zhang, Shengmao; Zhang, Linna; He, Benfang; Wu, Zhishen

    2008-08-01

    A new and facile approach was established to fabricate thermoresponsive poly(N-isopropylacrylamide) (PNIPAA) coated iron oxide nanoparticles in a non-aqueous medium. The morphology and structure of the nanoparticle-doped composite were analyzed by means of transmission electron microscopy (TEM), x-ray powder diffraction (XRD), and Fourier transformation infrared spectrometry (FTIR). The thermosensitivity of the composite was also investigated. Results indicated that the oil-soluble iron oxide nanoparticles encapsulated with PNIPAA, composed of an inorganic iron oxide core and biocompatible PNIPAA shell, were dispersed well in water and had a sphere-like shape. The PNIPAA-coated iron oxide nanoparticles with such a kind of core-shell structure showed excellent thermosensitivity. Namely, the aqueous suspension of PNIPAA-coated iron oxide nanoparticles dramatically changed from transparent to opaque as the temperature increased from room temperature to 38 °C, showing potential as optical transmittance switch materials and their significance in the fields of protein adsorption and purification controlled release, and drug delivery.

  11. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe3O4), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  12. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    International Nuclear Information System (INIS)

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe0 foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H2O2, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe2O3 on Fe0 metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na2SO4 containing 0.5 wt% NH4F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H2O2). In case of INT-40 V in the presence of H2O2 3%, the first-order rate constant was found to be 1.7 × 10−2 min−1, and 1.2 × 10−2 min−1 with commercial hematite powder. Degradation of cyanide was much less with only H2O2. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction

  13. Deposition of Biogenic Iron Minerals in a Methane Oxidizing Microbial Mat

    Directory of Open Access Journals (Sweden)

    Christoph Wrede

    2013-01-01

    Full Text Available The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates.

  14. Iron

    Science.gov (United States)

    ... seafood, and foods that contain vitamin C , like citrus fruits, strawberries, sweet peppers, tomatoes, and broccoli. What ... diets. What are some effects of iron on health? Scientists are studying iron to understand how it ...

  15. Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study

    Directory of Open Access Journals (Sweden)

    Roggli Victor L

    2008-01-01

    Full Text Available Abstract Background Lung injury caused by both inhaled dusts and infectious agents depends on increased availability of iron and metal-catalyzed oxidative stress. Because inhaled particles, such as silica, and certain infections can cause secondary pulmonary alveolar proteinosis (PAP, we tested the hypothesis that idiopathic PAP is associated with an altered iron homeostasis in the human lung. Methods Healthy volunteers (n = 20 and patients with idiopathic PAP (n = 20 underwent bronchoalveolar lavage and measurements were made of total protein, iron, tranferrin, transferrin receptor, lactoferrin, and ferritin. Histochemical staining for iron and ferritin was done in the cell pellets from control subjects and PAP patients, and in lung specimens of patients without cardiopulmonary disease and with PAP. Lavage concentrations of urate, glutathione, and ascorbate were also measured as indices of oxidative stress. Results Lavage concentrations of iron, transferrin, transferrin receptor, lactoferrin, and ferritin were significantly elevated in PAP patients relative to healthy volunteers. The cells of PAP patients had accumulated significant iron and ferritin, as well as considerable amounts of extracellular ferritin. Immunohistochemistry for ferritin in lung tissue revealed comparable amounts of this metal-storage protein in the lower respiratory tract of PAP patients both intracellularly and extracellularly. Lavage concentrations of ascorbate, glutathione, and urate were significantly lower in the lavage fluid of the PAP patients. Conclusion Iron homeostasis is altered in the lungs of patients with idiopathic PAP, as large amounts of catalytically-active iron and low molecular weight anti-oxidant depletion are present. These findings suggest a metal-catalyzed oxidative stress in the maintenance of this disease.

  16. Toxicity and Biodistribution of Activated and Non-activated Intravenous Iron Oxide Nanoparticles

    OpenAIRE

    Tate, JA; Ogden, JA; Strawbridge, RR; Pierce, ZE; Hoopes, PJ

    2009-01-01

    The use of nanoparticles in medical treatment has prompted the question of their safety. In this study, the pathophysiology and biodistribution of three different concentrations of intravenously-delivered dextran-coated Fe3O4 iron oxide nanoparticles (IONP) were evaluated in mice. Some groups of mice were exposed to an AC magnetic field (AMF) at levels comparable with those proposed for cancer treatments. Iron biodistribution analysis for both AMF and non-AMF treated mice was performed for al...

  17. Characterization of iron oxides in mineral dust aerosols : implications for light absorption (art. no. D21207)

    OpenAIRE

    Lafon, S.; I. N. Sokolik; Rajot, Jean-Louis; Caquineau, Sandrine; Gaudichet, A.

    2006-01-01

    We report on measurements that were specifically designed to determine iron oxides in mineral dust aerosols needed for improved optical modeling. Atmospheric dust samples as well as samples generated in a wind tunnel from soils were analyzed by a number of analytical techniques for their total and free iron content ( bulk and size resolved), hematite and goethite, mineralogy, and size distribution. These samples are representative of several important dust sources in East Asia and northern Af...

  18. Characterization of iron oxides in mineral dust aerosols: Implications for light absorption

    OpenAIRE

    Lafon, Sandra; Sokolik, Irina N.; Rajot, Jean-Louis; Caquineau, Sandrine; Gaudichet, Annie

    2006-01-01

    We report on measurements that were specifically designed to determine iron oxides in mineral dust aerosols needed for improved optical modeling. Atmospheric dust samples as well as samples generated in a wind tunnel from soils were analyzed by a number of analytical techniques for their total and free iron content (bulk and size resolved), hematite and goethite, mineralogy, and size distribution. These samples are representative of several important dust sources in East Asia and northern Afr...

  19. Tracking Mesenchymal Stem Cells with Iron Oxide Nanoparticle Loaded Poly(lactide-co-glycolide) Microparticles

    OpenAIRE

    Xu, Chenjie; Miranda-Nieves, David; Ankrum, James A.; Matthiesen, Mads Emil; Phillips, Joseph A.; Roes, Isaac; Wojtkiewicz, Gregory R.; Juneja, Vikram; Kultima, Jens Roat; Zhao, Weian; Vemula, Praveen Kumar; Lin, Charles P.; Nahrendorf, Matthias; Karp, Jeffrey M.

    2012-01-01

    Monitoring the location, distribution and long-term engraftment of administered cells is critical for demonstrating the success of a cell therapy. Among available imaging-based cell tracking tools, magnetic resonance imaging (MRI) is advantageous due to its non-invasiveness, deep penetration, and high spatial resolution. While tracking cells in pre-clinical models via internalized MRI contrast agents (iron oxide nanoparticles, IO-NPs) is a widely used method, IO-NPs suffer from low iron conte...

  20. Effect of Calcium Oxide Additive on the Performance of Iron Oxide Sorbent for High-Temperature Coal Gas Desulfurization

    Institute of Scientific and Technical Information of China (English)

    Huiling Fan; Kechang Xie; Ju Shangguan; Fang Shen; Chunhu Li

    2007-01-01

    The effect of calcium oxide additive in iron oxide sorbent for hot gas desulfurization was investigated by XRD and TPR techniques. XRD characterization showed that CaO was highly dispersed after the calcination of sorbents. Calcium sulfate formed in the desulfurization was decomposed and regenerated to CaO by reacting with CO before the next sulfidation process. Calcium participated in every sulfidation/regeneration cycle and contributed to the enhancement of sulfur capacity. The TPR results showed that the reduction temperature of the sorbent increased with the increase of the content of calcium. Calcium played a role of retarding reduction. Therefore, the addition of calcium oxide additive will benefit the utilization of iron oxide sorbent in strongly reducing atmospheres.

  1. Effect of iron supplementation on oxidative stress and intestinal inflammation in rats with acute colitis.

    Science.gov (United States)

    Aghdassi, E; Carrier, J; Cullen, J; Tischler, M; Allard, J P

    2001-05-01

    In this study, we investigated the effect of intraperitoneal iron dextran (100 mg/100 g body weight) on oxidative stress and intestinal inflammation in rats with acute colitis induced by 5% dextran sulfate sodium. In both colitis and healthy animals, disease activity index, crypt and inflammatory scores, colon length, plasma and colonic lipid peroxides, and plasma vitamins E, C, and retinol were assessed. The results showed that iron-supplemented groups had moderate iron deposition in the colonic submucosa and lamina propria. In the colitis group supplemented with iron, colon length was significantly shorter; disease activity index, crypt, and inflammatory scores and colonic lipid peroxides were significantly higher; and plasma alpha-tocopherol was significantly lower compared to the colitis group without iron supplementation. There was no intestinal inflammation and no significant increase in colonic lipid peroxides in healthy rats supplemented with iron. In conclusion, iron injection resulted in an increased oxidative stress and intestinal inflammation in rats with colitis but not in healthy rats. PMID:11341654

  2. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding

    Science.gov (United States)

    Terrani, K. A.; Zinkle, S. J.; Snead, L. L.

    2014-05-01

    Application of advanced oxidation-resistant iron alloys as light water reactor fuel cladding is proposed. The motivations are based on specific limitations associated with zirconium alloys, currently used as fuel cladding, under design-basis and beyond-design-basis accident scenarios. Using a simplified methodology, gains in safety margins under severe accidents upon transition to advanced oxidation-resistant iron alloys as fuel cladding are showcased. Oxidation behavior, mechanical properties, and irradiation effects of advanced iron alloys are briefly reviewed and compared to zirconium alloys as well as historic austenitic stainless steel cladding materials. Neutronic characteristics of iron-alloy-clad fuel bundles are determined and fed into a simple economic model to estimate the impact on nuclear electricity production cost. Prior experience with steel cladding is combined with the current understanding of the mechanical properties and irradiation behavior of advanced iron alloys to identify a combination of cladding thickness reduction and fuel enrichment increase (∼0.5%) as an efficient route to offset any penalties in cycle length, due to higher neutron absorption in the iron alloy cladding, with modest impact on the economics.

  3. Nitric oxide formation in an iron oxide pellet rotary kiln furnace.

    Science.gov (United States)

    Davis, R A

    1998-01-01

    A one-dimensional numerical model was developed to simulate the effects of heat and mass transfer on the formation of oxides of nitrogen (NOx) in a rotary kiln furnace for iron oxide pellet induration. The modeled kiln has a length-to-diameter ratio of approximately seven. The principal mechanism of heat transfer is radiation from the flame, which was described by the net radiation method. The well known Zeldovich mechanism was used to predict thermal NOx generation. Temperature fluctuations in the vicinity of the flame were estimated with a clipped Gaussian probability density function. The thermal energy and mass balance model equations were solved numerically. The model is capable of predicting temperature profiles and NOx production rates in agreement with observed plant performance. The model was used to explore the effects of process changes on the total NOx formation in the kiln. It was concluded that the gas temperature as well as the partial pressure of oxygen in the process gases controls the rate of NOx formation. Lowering the temperature of the kiln gases by increasing the secondary air flow rates requires simultaneously decreasing the pellet production rate in order to maintain the pellet temperatures needed for blast furnace conditions. PMID:15655997

  4. Magnetic Field Gradient Differentiation of Pedogenic Iron Oxide Minerals From Chinese Loess and Paleosols

    Science.gov (United States)

    Wagoner, L.; Roth, A.; Singer, M. J.; Verosub, K.

    2003-12-01

    The correlation between paleosols and enhanced magnetic susceptibility on the Chinese Loess Plateau is by now well established. However, scant effort has focussed on the interpretation of paleoclimate via the specific iron oxide mineral assemblages contributing to the enhanced magnetic susceptibility signal. This paper focuses on the separation and identification of the pedogenic (minerals from selected loess and paleosol layers of the Loess Plateau. Heretofore, it has been difficult if not impossible to isolate mixed iron oxide mineral phases due to their very similar physical and magnetic properties. Chinese loess and paleosol samples were chosen to illustrate the utility of the technique to natural soil systems. In the following method, initial size separation of mineral particles at 0.5 micron or less by gravity and centrifugation reduces the problem of overlapping magnetic susceptibilities due to mixed grain sizes. The submicron mineral fraction is then subjected to a series of high field gradient (HFG) magnetic separations utilizing a new design. Although HFG magnetic separation methods have been used before, the new design is able to differentiate submicron iron oxide mineral phases from bulk earth material. The design includes a Franz Isodynamic Separator fitted with a custom-made flow cell. A recirculating liquid is used to suspend the mineral particles between the poles of the electromagnet. By varying the strength of the field gradient, recirculation time, and flow velocity, step-wise separation of ferrimagnetic from antiferromagnetic minerals is possible. Because of the tendency for particles to aggregate during recirculation, some mixing of the oxide mineralogy has been unavoidable. Although theoretical arguments favor a narrow grain size distribution (about 50-100 nm) for stable single domain magnetite, in soil environments, and particularly for nanoscale materials, discrete particles are the exception rather than the rule. Therefore it is likely that

  5. Towards a Mechanistic Understanding of Anaerobic Nitrate Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification

    Directory of Open Access Journals (Sweden)

    JohnDCoates

    2012-02-01

    Full Text Available The anaerobic oxidation of Fe(II by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate dependent iron oxidation. We suggest that anaerobic iron oxidizing microorganisms likely exist along a continuum including: 1 bacteria that inadvertently oxidize Fe(II by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g. denitrification and suffer from toxicity or energetic penalty, 2 Fe(II tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and 3 bacteria that efficiently accept electrons from Fe(II to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed.

  6. Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique

    Directory of Open Access Journals (Sweden)

    Ciobanu Carmen

    2012-03-01

    Full Text Available Abstract Background In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.% iron oxide nanoparticles (IONPs. The IONPs were synthesized by co-precipitation method. A KrF* excimer laser source (λ = 248 nm, τFWHM≅25 ns, ν = 10 Hz was used for the growth of the hybrid, iron oxide NPs-dextran thin films. Results Dextran coated iron oxide nanoparticles thin films were indexed into the spinel cubic lattice with a lattice parameter of 8.36 Å. The particle sized calculated was estimated at around 7.7 nm. The XPS shows that the binding energy of the Fe 2p3/2 of two thin films of dextran coated iron oxide is consistent with Fe3+ oxides. The atomic percentage of the C, O and Fe are 66.71, 32.76 and 0.53 for the films deposited from composite targets containing 1 wt.% maghemite and 64.36, 33.92 and 1.72 respectively for the films deposited from composite targets containing 5 wt.% maghemite. In the case of cells cultivated on dextran coated 5% maghemite γ-Fe2O3, the number of cells and the level of F-actin were lower compared to the other two types of thin films and control. Conclusions The dextran-iron oxide continuous thin films obtained by MAPLE technique from composite targets containing 10 wt.% dextran as well as 1 and 5 wt.% iron oxide nanoparticles synthesized by co-precipitation method presented granular surface morphology. Our data proved a good viability of Hep G2 cells grown on dextran coated maghemite thin films. Also, no changes in cells morphology were noticed under phase contrast microscopy. The data strongly suggest the potential use of iron oxide-dextran nanocomposites as a potential marker for biomedical applications.

  7. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Holmes David S

    2009-08-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans gains energy from the oxidation of ferrous iron and various reduced inorganic sulfur compounds at very acidic pH. Although an initial model for the electron pathways involved in iron oxidation has been developed, much less is known about the sulfur oxidation in this microorganism. In addition, what has been reported for both iron and sulfur oxidation has been derived from different A. ferrooxidans strains, some of which have not been phylogenetically characterized and some have been shown to be mixed cultures. It is necessary to provide models of iron and sulfur oxidation pathways within one strain of A. ferrooxidans in order to comprehend the full metabolic potential of the pangenome of the genus. Results Bioinformatic-based metabolic reconstruction supported by microarray transcript profiling and quantitative RT-PCR analysis predicts the involvement of a number of novel genes involved in iron and sulfur oxidation in A. ferrooxidans ATCC23270. These include for iron oxidation: cup (copper oxidase-like, ctaABT (heme biogenesis and insertion, nuoI and nuoK (NADH complex subunits, sdrA1 (a NADH complex accessory protein and atpB and atpE (ATP synthetase F0 subunits. The following new genes are predicted to be involved in reduced inorganic sulfur compounds oxidation: a gene cluster (rhd, tusA, dsrE, hdrC, hdrB, hdrA, orf2, hdrC, hdrB encoding three sulfurtransferases and a heterodisulfide reductase complex, sat potentially encoding an ATP sulfurylase and sdrA2 (an accessory NADH complex subunit. Two different regulatory components are predicted to be involved in the regulation of alternate electron transfer pathways: 1 a gene cluster (ctaRUS that contains a predicted iron responsive regulator of the Rrf2 family that is hypothesized to regulate cytochrome aa3 oxidase biogenesis and 2 a two component sensor-regulator of the RegB-RegA family that may respond to the redox state of the quinone pool

  8. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Pongrac IM

    2016-04-01

    Full Text Available Igor M Pongrac,1 Ivan Pavičić,2 Mirta Milić,2 Lada Brkič Ahmed,1 Michal Babič,3 Daniel Horák,3 Ivana Vinković Vrček,2 Srećko Gajović1 1School of Medicine, Croatian Institute for Brain Research, University of Zagreb, 2Institute for Medical Research and Occupational Health, Zagreb, Croatia; 3Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Abstract: Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs – uncoated, coated with D-mannose, or coated with poly-L-lysine – affects biocompatibility. We sought to investigate murine neural stem cells (NSCs as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions

  9. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy

    Science.gov (United States)

    Sneha, Murugesan; Sundaram, Nachiappan Meenakshi

    2015-01-01

    Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications. PMID:26491311

  10. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer

    International Nuclear Information System (INIS)

    Present work was focused on producing improved iron oxide nanoparticles for targeted drug delivery in breast cancer. Nanometric-sized iron oxide particles were synthesized by laser pyrolysis and were morphologically/structurally characterized. These new nanoparticles were compared with some commercial, chemically prepared iron oxide ones. Cytotoxicity and the anti-proliferation effects of nanoparticles were tested in vitro on the breast adenocarcinoma cell line MCF-7. Nanoparticles were further coated with the antracyclinic antibiotic Violamycine B1 and tested for the anti-tumor effect on MCF-7 cells. The nanoparticles produced by us seem more effective in vitro than the commercial ones, with respect to cellular uptake and VB1 delivery. Violamycine B1 bound on nanoparticles is as efficient as the free form, but is better delivered into tumor cells.

  11. Photosensitizer decorated iron oxide nanoparticles: bimodal agent for combined hyperthermia and photodynamic therapy

    Science.gov (United States)

    Yang, Zhimou; Xu, Keming; Zhang, Bei; Xu, Bing; Zhang, Xixiang; Chang, Chi K.

    2006-02-01

    As the PDT effect may be enhanced by localized hyperthermia (HT), it would be logical to find a single agent that could bring about these two modalities at precisely the target site for synergism. Since highly localized HT can be induced by magnetic field excitation of superparamagnetic nanoparticles, we report here the design and synthesis of photosensitizer-decorated iron oxide nanoparticles and their tumoricidal effect. Thus, a porphyrin is covalently anchored on the iron oxide nanoparticle via dihydroxybenzene which binds tightly on the surface of the nanoparticle by M-O bond. The morphology of the resultant nanoparticle was studied to show that the crystallinality is not changed and the nanoparticle remains superparamagnetic at room temperature. The conjugate is also strongly fluorescent indicating that the iron oxide hardly affects the optical properties of the surface bound porphyrin moieties. The conjugate is readily taken by cancer cell (Hela cell line) and is able to trigger apoptosis after excitation by light.

  12. Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Pragnesh N. Dave

    2014-01-01

    Full Text Available In the 21st century water polluted by heavy metal is one of the environment problems. Various methods for removal of the heavy metal ions from the water have extensively been studied. Application of iron oxide nanaparticles based nanomaterials for removal of heavy metals is well-known adsorbents for remediation of water. Due to its important physiochemical property, inexpensive method and easy regeneration in the presence of external magnetic field make them more attractive toward water purification. Surface modification strategy of iron oxide nanoparticles is also used for the remediation of water increases the efficiency of iron oxide for the removal of the heavy metal ions from the aqueous system.

  13. Effect of Chromium Ion Implantation on the Oxidation Rate of Iron andSteel

    International Nuclear Information System (INIS)

    This research discussed about the effect of chromium ion implantation onthe oxidation rate of iron (Fe 95.5 %) and steel (AISI 304). The measurementof oxidation resistance of the samples was carried out in dry oxygen mediumat high temperature conditions and the time of observation was varied. Theoxidation resistance can be analyzed by the changing of weight before andafter the process. The result showed that for iron materials (Fe 95.5 %)implanted chromium ion at energy 100 keV and ion dose 5 x 1017 ion/cm2increase the oxidation resistance in order of 28.68 %. But for AISI 304 steelimplanted chromium ion at the same conditions, the oxidation resistancedecreased. This phenomena is caused by the fact that the content of chromiummaybe already exceed the solubility of base material and it will create thepossibility of the formation of oxid spinel which less protective. (author)

  14. Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Dadfarnia, S., E-mail: sdadfarnia@yazd.ac.ir [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Haji Shabani, A.M.; Moradi, S.E. [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Emami, S. [Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2015-03-01

    Highlights: • Synthesis and characterization of (Fe{sub 3}O{sub 4}@MIL-100(Fe)). • Studying the capability of (Fe{sub 3}O{sub 4}@MIL-100(Fe)) for the removal of methyl red. • Studying the adsorption kinetic of MR on (Fe{sub 3}O{sub 4}@MIL-100(Fe)). • Studying the adsorption thermodynamic of MR on (Fe{sub 3}O{sub 4}@MIL-100(Fe)). • Introduction of a sorbent with high capacity for MR removal. - Abstract: The objective followed by this research is the synthesis of iron based metal organic framework loaded on iron oxide nanoparticles (Fe{sub 3}O{sub 4}@MIL-100(Fe)) and the study of its capability for the removal of methyl red. Effective parameters in the selection of a new adsorbent, i.e. adsorption capacity, thermodynamics, and kinetics were investigated. All the studies were carried out in batch experiments. Removal of methyl red from aqueous solutions varied with the amount of adsorbent, methyl red contact time, initial concentration of dye, adsorbent dosage, and solution pH. The capability of the synthesized adsorbent in the removal of methyl red was compared with the metal organic framework (MIL-100(Fe)) and iron oxide nanoparticles. The results show that Fe{sub 3}O{sub 4}@MIL-100(Fe) nanocomposite exhibits an enhanced adsorption capacity.

  15. Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent

    International Nuclear Information System (INIS)

    Highlights: • Synthesis and characterization of (Fe3O4@MIL-100(Fe)). • Studying the capability of (Fe3O4@MIL-100(Fe)) for the removal of methyl red. • Studying the adsorption kinetic of MR on (Fe3O4@MIL-100(Fe)). • Studying the adsorption thermodynamic of MR on (Fe3O4@MIL-100(Fe)). • Introduction of a sorbent with high capacity for MR removal. - Abstract: The objective followed by this research is the synthesis of iron based metal organic framework loaded on iron oxide nanoparticles (Fe3O4@MIL-100(Fe)) and the study of its capability for the removal of methyl red. Effective parameters in the selection of a new adsorbent, i.e. adsorption capacity, thermodynamics, and kinetics were investigated. All the studies were carried out in batch experiments. Removal of methyl red from aqueous solutions varied with the amount of adsorbent, methyl red contact time, initial concentration of dye, adsorbent dosage, and solution pH. The capability of the synthesized adsorbent in the removal of methyl red was compared with the metal organic framework (MIL-100(Fe)) and iron oxide nanoparticles. The results show that Fe3O4@MIL-100(Fe) nanocomposite exhibits an enhanced adsorption capacity

  16. The life cycle of iron Fe(III) oxide: impact of fungi and bacteria

    Science.gov (United States)

    Bonneville, Steeve

    2014-05-01

    Iron oxides are ubiquitous reactive constituents of soils, sediments and aquifers. They exhibit vast surface areas which bind a large array of trace metals, nutrients and organic molecules hence controlling their mobility/reactivity in the subsurface. In this context, understanding the "life cycle" of iron oxide in soils is paramount to many biogeochemical processes. Soils environments are notorious for their extreme heterogeneity and variability of chemical, physical conditions and biological agents at play. Here, we present studies investigating the role of two biological agents driving iron oxide dynamics in soils, root-associated fungi (mycorrhiza) and bacteria. Mycorrhiza filaments (hypha) grow preferentially around, and on the surface of nutrient-rich minerals, making mineral-fungi contact zones, hot-spots of chemical alteration in soils. However, because of the microscopic nature of hyphae (only ~ 5 µm wide for up to 1 mm long) and their tendency to strongly adhere to mineral surface, in situ observations of this interfacial micro-environment are scarce. In a microcosm, ectomycorrhiza (Paxillus involutus) was grown symbiotically with a pine tree (Pinus sylvestris) in the presence of freshly-cleaved biotite under humid, yet undersaturated, conditions typical of soils. Using spatially-resolved ion milling technique (FIB), transmission electron microscopy and spectroscopy (TEM/STEM-EDS), synchrotron based X-ray microscopy (STXM), we were able to quantify the speciation of Fe at the biotite-hypha interface. The results shows that substantial oxidation of biotite structural-Fe(II) into Fe(III) subdomains occurs at the contact zone between mycorrhiza and biotite. Once formed, iron(III) oxides can reductively dissolve under suboxic conditions via several abiotic and microbial pathways. In particular, they serve as terminal electron acceptors for the oxidation of organic matter by iron reducing bacteria. We aimed here to understand the role of Fe(III) mineral

  17. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    International Nuclear Information System (INIS)

    Highlights: • Ti–Fe mixed oxides were synthesized via low-temperature one-pot method. • Mixed oxides were used for degradation of parathion methyl. • Pure reference oxide samples showed no degradation ability. • Mixed oxides reached 70% degree of conversion of parathion methyl. - Abstract: Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching <70% was found for the samples with Ti:Fe ratio 0.25:1 and 1:0.25. Contrary, parathion methyl was not degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified

  18. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Henych, Jiří, E-mail: henych@iic.cas.cz [Department of Material Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš [Department of Material Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Janoš, Pavel; Kuráň, Pavel; Štastný, Martin [Faculty of the Environment, J.E. Purkyně University, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2015-07-30

    Highlights: • Ti–Fe mixed oxides were synthesized via low-temperature one-pot method. • Mixed oxides were used for degradation of parathion methyl. • Pure reference oxide samples showed no degradation ability. • Mixed oxides reached 70% degree of conversion of parathion methyl. - Abstract: Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching <70% was found for the samples with Ti:Fe ratio 0.25:1 and 1:0.25. Contrary, parathion methyl was not degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified.

  19. AbstractApplication of Fenton-like process using iron nano oxides for pyrene removal from contaminated soils

    Directory of Open Access Journals (Sweden)

    S. Jorfi

    2014-05-01

    Conclusion: Fenton oxidation using iron nano oxides under defined optimum conditions and neutral pH, can be a suitable alternative to conventional Fenton for remediation of soils contaminated with pyrene.

  20. Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    García, L.V.; Mendivil, M.I.; Roy, T.K. Das; Castillo, G.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • Laser sintered MgO pellets with nanoparticles of Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}. • Characterized these pellets by XRD, SEM and XPS. • Spinel formations were observed in both cases. • Changes in morphology and structure were analyzed. - Abstract: Nanoparticles of iron oxide (Fe{sub 2}O{sub 3}, 20–40 nm) and aluminum oxide (Al{sub 2}O{sub 3}, 50 nm) were mixed in different concentrations (3, 5 and 7 wt%) in a magnesium oxide (MgO) matrix. The mixture pellet was irradiated with 532 nm output from a Q-switched Nd:YAG laser using different laser fluence and translation speed for sintering. The refractory samples obtained were analyzed using X-ray diffraction technique, scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that the samples irradiated at translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2} with a concentration of 5 and 7 wt% of Fe{sub 2}O{sub 3} presented the MgFe{sub 2}O{sub 4} spinel-type phase. With the addition of Al{sub 2}O{sub 3} nanoparticles, at a translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2}, there were the formations of MgAl{sub 2}O{sub 4} spinel phase. The changes in morphologies and microstructure due to laser irradiation were analyzed.

  1. Synthesis, purification and assembly of gold and iron oxide nanoparticles

    Science.gov (United States)

    Qiu, Penghe

    , 6 & 7), nanoparticles were assembled into three different hierachical structures through both template-assisted and template-free approaches. In the template-assisted assembly, gold nanorods were aligned into ordered 1D linear pattern by using soft biological filamentous, namely bacteria flagella, as templates. Two different ways of assembling nanorods onto flagella were investigated. In another study, a highly commercialized polymer, polyvinylpyrrolidone (PVP), was discovered for the first time to be able to self-assemble into branched hollow fibers. Based on this discovery, two approaches (one through direct deposition of silica onto the PVP aggregate and the other through co-assembly of PVP covered gold nanoparticles with free PVP molecules) by which the self-assembly behavior of PVP could be exploited to template the formation of branched hollow inorganic fibers were demonstrated. In the template-free assembly, a general method for assembling nanoparticle into clusters (NPCs) in an oil-in-water emulsion system was investigated. Detailed studies on the mechanism of formation of NPCs structure, optimized conditions, scalable production and surface chemistry manipulation were carried out. Besides, comparison of the properties of individual and clustered iron oxide nanoparticles was conducted. It was discovered that due to their collective properties, NPCs are more responsive to an external magnetic field and can potentially serve as better contrast enhancement agents than individually dispersed magnetic NPs in Magnetic Resonance Imaging (MRI).

  2. Colloidal Stability and Monodispersible Magnetic Iron Oxide Nanoparticles in Biotechnology Application

    Science.gov (United States)

    Shamili, K.; Rajesh, E. M.; Rajendran, R.; Madhan Shankar, S. R.; Elango, M.; Abitha Devi, N.

    2013-02-01

    Magnetic iron oxide nanoparticles are promising material for various biological applications. In the recent decades, magnetic iron oxide nanoparticles (MNPs) have great attention in biomedical applications such as drug delivery, magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH). This review focuses on the colloidal stability and monodispersity properties of MNPs, which pay more attention toward biomedical applications. The simplest and the most promising method for the synthesis of MNPs is co-precipitation. The biocompatible MNPs are more interested in MRI application. This review also apportions synthesis, characterization and applications of MNP in biological and biomedical as theranostics and imaging.

  3. Improved detection of liver cancer with hepatocytes-directed superparamagnetic iron oxide particles

    International Nuclear Information System (INIS)

    This paper investigates the use of a novel superparamagnetic MR contrast agent directed to asialoglycoprotein (ASG) receptors on hepatocytes for the detection of liver cancer. Ultrasmall (mean size, 12 nm) superparamagnetic particles of iron oxide (USPIO) are targeted to ASG receptors by coating particles with arabinogalactan (AG-USPIO). Hepatocyte and tumor cell receptor affinity studies, relaxation effects, and changes in tumor-liver contrast of AG-USPIO are compared to conventional iron oxide preparations (AMI-25 and USPIO) in animal models (hepatocellular and mammary adenocarcinoma) of liver cancer (N = 115 rats)

  4. Phase change induced by polypyrrole in iron-oxide polypyrrole nanocomposite

    Indian Academy of Sciences (India)

    Komilla Suri; S Annapoorni; R P Tandon

    2001-12-01

    Nanocomposites of polypyrrole and iron oxide were prepared using simultaneous gelation and polymerization processes. Varied amounts of pyrrole monomer were added to a solution containing iron nitrate as precursor and 2-methoxy ethanol as solvent. The presence of oxide and polypyrrole was confirmed by using X-ray and FTIR techniques. Some of these nanocomposites exhibited magnetic behaviour. SEM studies of powders indicated presence of nanosized particles. Electrical conductivity studies of powders showed a slight variation in conductivity for lower concentration of pyrrole, with a sudden increase in conductivity at 15% of pyrrole concentration. A transition from a nonmagnetic to magnetic phase was also observed at the same concentration.

  5. Elimination of dyes from aqueous solutions using iron oxides and chitosan as adsorbents: a comparative study

    Directory of Open Access Journals (Sweden)

    Silvina Pirillo

    2009-01-01

    Full Text Available This work investigates the adsorption of Alizarin, Eriochrome Blue Black R and Fluorescein using chitosan, goethite and magnetite as adsorbents. For Alizarin, the best adsorbent is chitosan with a Langmuir parameter of 15.8 mmol dye/g adsorbent. For Eriochrome Blue Black R only 1.94 mmol dye/g chitosan is adsorbed. Langmuir parameters for the Alizarin adsorption on both iron oxides display one or two orders of magnitude lower than for chitosan and two orders of magnitude lower in the case of Eriochrome Blue Black R. Fluorescein does not adsorb in appreciable amounts on chitosan and it presents the lower affinity on the iron oxides.

  6. Tucum-Do-Cerrado (Bactris setosa Mart.) Consumption Modulates Iron Homeostasis and Prevents Iron-Induced Oxidative Stress in the Rat Liver.

    Science.gov (United States)

    Fustinoni-Reis, Adriana M; Arruda, Sandra F; Dourado, Lívia P S; da Cunha, Marcela S B; Siqueira, Egle M A

    2016-02-01

    This study investigated the effect of tucum-do-cerrado consumption in the oxidative status of iron-supplemented rats. Four groups of rats were treated: Control (AIN-93G), Tuc (AIN-93G added of tucum-do-cerrado), Fe (AIN-93G iron-enriched), or TucFe (AIN-93G with tucum-do-cerrado and iron-enriched) diet, for 30 days. Iron-enriched diet increased serum, liver, spleen, and intestine iron levels; transferrin saturation; liver lipid oxidation; mRNA levels of hepatic Hamp and Bmp6, and Nrf2 in the intestine. Tucum-do-cerrado consumption reduced spleen lipid and protein oxidation; mRNA levels of hepatic Hamp and Ftl, and increased serum antioxidant capacity and hepatic mRNA levels of Bmp6, Hmox1, Nqo1, and Nrf2. TucFe diet consumption abrogated the liver Hamp iron-induced up-regulation, prevented intestinal iron accumulation; hepatic lipid peroxidation; splenic protein damage, and the increase of catalase, glutathione reductase, and glutathione peroxidase activity in some tissues. These results suggest that tucum-do-cerrado protects tissues against oxidative damage, by reducing iron availability in liver and consequently inhibiting liver Hamp expression. PMID:26901220

  7. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    Science.gov (United States)

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  8. Risk of Oxidative Damage to Bone from Increased Iron Stores During Space Flight

    Science.gov (United States)

    Zwart, S. R.; Smith, S. M.

    2014-01-01

    Iron stores are increased secondary to neocytolysis of red blood cells and a high dietary intake of iron during space flight. This raises concerns about the risk of excess iron causing oxidative damage in many tissues, including bone. Biomarkers of iron status, oxidative damage, and bone resorption during space flight were analyzed for 23 (16 M/7 F) International Space Station crewmembers as part of the Nutrition SMO project. Up to 5 in-flight blood samples and 24-h urine pools were collected over the course of the 4-6 month missions. Serum iron increased slightly during space flight and was decreased at landing (P serum ferritin early in flight (217% in women and 68% in men, P serum ferritin. A greater area under the curve for ferritin during flight was correlated with greater changes in bone mineral density of several bone regions after flight (1). In a separate study (2), a ground-based investigation was conducted that examined the combined effects of radiation exposure and iron overload on sensitivity to radiation injury in several physiological systems in 12-wk male Sprague-Dawley rats. The rats were acclimated to an adequate iron diet (45 mg iron (ferric citrate)/kg diet) for 3 wk and then assigned to one of four groups: adequate iron (Fe) diet/no radiation, adequate Fe diet/ radiation, moderately high Fe diet (650 mg Fe (ferric citrate)/kg diet)/no radiation, and moderately high Fe diet/radiation. Animals remained on the assigned diet for 4 wk. Starting on day 14 of experimental diet treatment, animals were exposed to a fractionated dose (0.375 Gy) of Cs-137 every other day (3 Gy total dose). On day 29 (24 h after last radiation exposure), animals were euthanized. Oxidative stress markers in the liver, bone, eyes, and serum were assessed. There was evidence that the iron diet contributed to DNA damage as well as radiation exposure in the liver, eyes, and bone. Together, the results suggest that increased iron stores do constitute a risk factor for oxidative

  9. Synthesis of nanocrystalline iron oxide ultrathin films by thermal decomposition of iron nitropruside: Structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Sanjib Kumar [Department of Chemistry, Vivekananda College, Thakurpukur, Kolkata 700063 (India); Mukherjee, Nillohit; Maji, Swarup Kumar; Adhikary, Bibhutosh [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Mondal, Anup, E-mail: anupmondal2000@yahoo.co.in [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India)

    2010-12-15

    Ultrathin films of nanocrystalline {alpha}-Fe{sub 2}O{sub 3} have been deposited on glass substrates from an inorganic precursor, iron nitropruside. This is a novel route of synthesis for iron oxide thin films on glass substrates, by annealing the precursor thin film in air at 650 {sup o}C for 15 min. The films were characterized using TG-DTA analysis, X-ray diffraction, UV-visible, FESEM, AFM and Raman measurements. X-ray diffraction and Raman analyses revealed that the deposited films contain {alpha}-phase of Fe{sub 2}O{sub 3} (hematite). The synthetic route described here provides a very simple and cost-effective method to deposit {alpha}-Fe{sub 2}O{sub 3} thin films on glass substrates with band gap energy of about 2.75 eV. The deposited films were found to show catalytic effect for the photo-degradation of phenol.

  10. Iron in human atheroma and LDL oxidation by macrophages following erythrophagocytosis.

    Science.gov (United States)

    Yuan, X M; Anders, W L; Olsson, A G; Brunk, U T

    1996-07-01

    The oxidative modification of low density lipoprotein (LDL) has been implicated as an early step in the formation of atheromatous lesions. In vitro studies suggest it to be accelerated, or even initiated, by transition metals such as iron or copper in combination with a reducing agent. Even if such metals have been demonstrated in atheroma gruels, their origin and precise localisation within human atheroma are presently unknown. In the initial part of this study we applied Pearl's method, energy dispersive X-ray microanalysis, and a modified Timm sulphide silver method (SSM) to demonstrate the occurrence of iron in early atherosclerotic lesions from a number of consecutive autopsy cases with evident, general atheromatosis. With the very sensitive SSM, but not with the other techniques, we found foam cells to contain heavy metals with a mainly lysosomal localization. On the basis of the hypothesis that such a lysosomal accumulation of iron might be due to erythrophagocytosis by migrating tissue-bound macrophages that later develop into foam cells, we designed an in vitro model system where human monocyte-derived macrophages were exposed to artificially aged, UV-exposed erythrocytes. The macrophages were then exposed to LDL in serum-and iron-free RPMI medium, occasionally in the presence of the potent iron-chelator desferrioxamine. The capacity of macrophages to oxidise LDL was much enhanced following erythrophagocytosis, and the process was shown to involve secretion of iron. Consequently, LDL oxidation was greatly inhibited by desferrioxamine. We conclude that iron may be exocytosed by macrophages that previously had their lysosomal apparatus enriched with iron, e.g. due to erythrophagocytosis. Oxidation of LDL may result in ensuing foam cell-formation secondary to scavenger-receptor mediated endocytosis by macrophages. PMID:8800494

  11. Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace

    International Nuclear Information System (INIS)

    The partial oxidation of a COG (coke oven gas) in a blast furnace is examined in this work using thermodynamic analysis. LTIR and HTIR (Low-temperature and high-temperature indirect reduction) of iron oxides in a blast furnace are also studied. The influences of the reaction temperature, M/H (methane-to-hematite) ratio, and O/F (oxygen-to-fuel) ratio on CH4 conversion and iron oxide reduction are examined. Within the investigated ranges of the parameters, a higher reaction temperature is conducive to CH4 conversion, while at least 97.64% of Fe2O3 is reduced. In LTIR, Fe3O4 is the prime product, with a high level of solid carbon formation. The entire LTIR reaction is characterized by exothermic behavior, so that no additional heat is required to trigger COG partial oxidation and IR. In HTIR, increasing the reaction temperature facilitates CO-based IR and suppresses H2-based IR. A higher temperature produces more Fe, so as to enhance the iron oxide reduction reactions; meanwhile, the FeO reduction is governed by H2 and CH4. When the reaction temperature is higher than 800 °C and the M/H ratio is lower than unity, a heat supply is required to drive HTIR. The O/F ratio in LTIR and HTIR should be controlled below 2 to retard carbon formation and drive iron oxide reduction. - Highlights: • Direct partial oxidation of coke oven gas in blast furnace is analyzed thermodynamically. • A higher reaction temperature is conducive to CH4 conversion and syngas production. • At least 97.64% of Fe2O3 is converted. • The low-temperature indirect reduction is characterized by exothermic behavior. • The oxygen-to-fuel molar ratio in indirect reduction should be controlled below 2

  12. Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.

    Directory of Open Access Journals (Sweden)

    Jarrod J Scott

    Full Text Available Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests

  13. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    Science.gov (United States)

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. PMID:26593529

  14. Preparation and characterization of hydroxyapatite-coated iron oxide particles by spray-drying technique.

    Science.gov (United States)

    Donadel, Karina; Felisberto, Marcos D V; Laranjeira, Mauro C M

    2009-06-01

    Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP) were coated with hydroxyapatite (HAp) by spray-drying using two IOMP/HAp ratios (0.7 and 3.2). The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction). The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure. PMID:19488622

  15. Association of trace elements with iron oxides during rock weathering

    International Nuclear Information System (INIS)

    The association of trace elements with Fe oxides during the early stages of rock weathering was determined by analysis of fresh diabase and granite rocks, their associated whole and size-separated saprolites, and goethite by neutron activation and X-ray fluorescence. The same elements are found to be associated with Fe oxides when the results are interpreted by analysis of correlation, by the distribution of elements in the various size fractions by the effects of removing free Fe oxides, and by direct analysis of geothite from the saprolite. The elements Co, Cr, Mn, Sc, Th, U, Zn, and the heavy rare-earth elements during the weathering of diabase, and As, Co, Cr, Sc, Th, U, Zn, and the heavy rare-earth elements during the weathering of granite are associated with Fe oxides. The concentrations of Mn are too low in this system to separate the effects of Mn oxides from those of Fe oxides

  16. Oxidation of sulphide minerals--I: determination of ferrous and ferric iron in samples of pyrrhotite, pyrite and chalcopyrite.

    Science.gov (United States)

    Steger, H F

    1977-04-01

    A method has been developed for determining small amounts of both ferrous and ferric iron in oxidized samples of pyrrhotite, pyrite and chalcopyrite. The oxidized iron is selectively dissolved in 10M phosphoric acid under reflux and can be determined with the accuracy generally accepted in chemical phase analysis. PMID:18962075

  17. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia.

    Science.gov (United States)

    Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V

    2014-03-01

    The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study. PMID:24317633

  18. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  19. Effect of adsorbed polyaniline on the thermal stability of iron and arsenic oxides

    Directory of Open Access Journals (Sweden)

    Robson Fernandes de Farias

    2000-06-01

    Full Text Available Iron and arsenic oxide grains are coated with the conducting organic polymer polyaniline. The obtained samples were characterized by infrared spectroscopy, SEM, conducting measurements and thermogravimetry. The thermal stability of both oxides are increased. For As2O3 the sublimation temperature is increased from 165ºC in the pure oxide to 206ºC in the polymer modified sample. The pure Fe3O4 sample exhibits sublimation at 780ºC whereas the polyaniline coated oxide is stable until at least 1000ºC.

  20. Prebiotic Polymerization: Oxidative Polymerization of 2,3 Dimercapto-1- Propanol on the Surface of Iron(III) Hydroxide Oxide

    Science.gov (United States)

    Weber, Arthur L.

    1995-01-01

    The oxidation of 2,3-dimercapto-1-propanol by ferric ions on the surface of iron(III) hydroxide oxide (Fe(OH)O) yielded polydisulfide oligomers. This polymerization occurred readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron(III) hydroxide oxide (20 mg, 160 micromole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the FE(OH)O phase. Reactions carried out at the same ratio of dithiol to FE(OH)O but at higher dithiol concentrations gave higher yields of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis is discussed.

  1. Prebiotic polymerization: Oxidative polymerization of 2, 3-dimercapto-1-propanol on the surface of iron(III) hydroxide oxide

    Science.gov (United States)

    Weber, Arthur L.

    1995-01-01

    The oxidation of 2, 3-dimercapto-1-propanol by ferric ions on the surface of iron(III) hydroxide oxide (Fe(OH)O) yielded polydisulfide oligomers. This polymerization occurred readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron(III) hydroxide oxide (20 mg, 160 micromole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the Fe(OH)O phase. Reactions carried out at the same ratio of dithiol to Fe(OH)O but at higher dithiol concentrations gave higher yields of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis is discussed.

  2. Prebiotic Oxidative Polymerization of 2,3 Dimercaptopropanol on the Surface of Iron(III) Hydroxide Oxide

    Science.gov (United States)

    Weber, Arthur L.

    1994-01-01

    The oxidation of 2,3-Dimercapto-1-propanol by ferric ions on the surface of iron (III) hydroxide oxide yielded polydisulfide polymers. This polymerization occured readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron (III) hydroxide oxide (20 mg, 160 micro mole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the mineral phase. Reactions at higher dithiol concentrations with the same ratio of dithiol to mineral gave a higher yield of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis will be discussed.

  3. Hexadecylamine adsorption at the iron oxide-oil interface.

    Science.gov (United States)

    Wood, Mary H; Welbourn, Rebecca J L; Charlton, Timothy; Zarbakhsh, Ali; Casford, M T; Clarke, Stuart M

    2013-11-12

    The adsorption behavior of a model additive, hexadecylamine, onto an iron surface from hexadecane oil has been characterized using polarized neutron reflectometry, sum-frequency generation spectroscopy, solution depletion isotherm, and X-ray photoelectron spectroscopy (XPS). The amine showed a strong affinity for the metal surface, forming a dense monolayer at relatively low concentrations; a layer thickness of 16 (±3) Å at low concentrations, increasing to 20 (±3) Å at greater amine concentrations, was determined from the neutron data. These thicknesses suggest that the molecules in the layer are tilted. Adsorption was also indicated by sum-frequency generation spectroscopy and XPS, the latter indicating that the most dominant amine-surface interaction was via electron donation from the nitrogen lone pair to the positively charged iron ions. Sum-frequency generation spectroscopy was used to determine the alkyl chain conformation order and orientation on the surface. PMID:24106786

  4. Degradation of Phenol with Fenton-like Treatment by Using Heterogeneous Catalyst (Modified Iron Oxide) and Hydrogen Peroxide

    International Nuclear Information System (INIS)

    Goethite, hematite, magnetite and synthesized iron oxide are used as catalysts for Fenton-type oxidation of phenol. The synthesized iron oxides were characterized by X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR). The catalytic activity of these materials is classified according to the observed rate of phenol oxidation. The effectiveness of the catalysts followed the sequence: ferrous ion > synthesized iron oxide >> magnetite hematite > goethite. According to these results, the most effective iron oxide catalyst had the structure similar to natural hematite. The surface oxidation state of the catalyst was between magnetite and hematite (+2.5 ∼ +3.0). Phenol degraded completely in 40 min at neutral pH (pH = 7). Soluble ferric and ferrous ions were not detected in the filtrate from Fenton reaction solution by AAS. The formation of hydroxyl radicals was confirmed by EPR

  5. Formation of iron sulfide nodules during anaerobic oxidation

    OpenAIRE

    van Dongen, B. E.; Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, Cantock’s Close, Bristol University, Bristol BS8 1TS, United Kingdom; Roberts, A. P.; National Oceanography Centre, University of Southampton, Southampton, UK.; Schouten, S.; Department of Marine Biogeochemistry, Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands; Jiang, W-T; Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan, PR China; Florindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Pancost, R. D.; Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, Cantock’s Close, Bristol University, Bristol BS8 1TS, United Kingdom

    2007-01-01

    The biomarker compositions of iron sulfide nodules (ISNs; upper Pliocene Valle Ricca section near Rome, Italy) that contain the ferrimagnetic mineral greigite (Fe3S4) were examined. In addition to the presence of specific terrestrial and marine biomarkers, consistent with formation in coastal marine sediments, these ISNs contain compounds thought to originate from sulfate reducing bacteria (SRB). These compounds include a variety of low-molecular-weight and branched alkanols and seve...

  6. Reaction modelling of Iron Oxide Bromination in the UT-3 thermochemical cycle for Hydrogen production from water

    International Nuclear Information System (INIS)

    Analysis modelling of the iron oxide bromination had been carried out using experiment data from the iron oxide bromination in the UT-3 thermochemical cycle. Iron oxide in the form of pellets were made of the calcination of the mixture of iron oxide, silica, graphite and cellulose at 1473 K. Thermobalance reactor was used to study the kinetic reactions of the iron oxide bromination at a temperature of 473 K for 2 - 6 hours. The data collected from the experiments were used as input for the common models. However, none of these models could not explain the result of the experiments. A new model, a combination of two kinetic reactions : exposed particle and coated particle was created and worked successfully

  7. Synthesis, Characterization and Cytotoxicity Evaluation of Nitric Oxide-Iron Oxide magnetic Nanoparticles

    Science.gov (United States)

    Haddad, P. S.; Britos, T. N.; Santos, M. C.; Seabra, A. B.; Palladino, M. V.; Justo, G. Z.

    2015-05-01

    The present work is focused on the synthesis, characterization and cytotoxic evaluation of superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs have been proposed for an increasing number of biomedical applications, such as drug-delivery. To this end, toxicological studies of their potential effects in biological systems must be better evaluated. The aim of this study was to examine the in vitro cytotoxicity of thiolated (SH) and S-nitrosated (S-NO) SPIONs in cancer cell lines. SPIONs were prepared by the coprecipitation method using ferrous and ferric chlorides in aqueous solution. The nanoparticles (Fe3O4) were coated with thiol containing molecule cysteine (Cys) (molar ratio SPIONs:ligand = 1:20), leading to the formation of an aqueous dispersion of thiolated nanoparticles (SH- SPIONs). These particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results obtained showed that Cys-SPIONs have a mean diameter of 14 nm at solid state and present super paramagnetic behavior at room temperature. Thiol groups on the surface of the nanoparticles were nitrosated through the addition of sodium nitrite leading to the formation of S-NOCys-SPIONs (S-nitrosated-Cys-SPIONs), which act as spontaneous nitric oxide (NO) donor). The cytotoxicity of thiolated and S-nitrosated nanoparticles was evaluated in acute T cell leukemia (Jurkat cell line) and Lewis lung carcinoma (3LL) cells. The results showed that at low concentrations thiolated (Cys) and S- nitrosated (S-NOCyst) SPIONs display low cytotoxicity in both cell types. However, at higher concentrations, Cys-SPIONs exhibited cytotoxic effects, whereas S-NOCys-SPIONs protected them, and also promoted cell proliferation.

  8. Magnetically controllable Pickering emulsion prepared by a reduced graphene oxide-iron oxide composite.

    Science.gov (United States)

    Lin, Kun-Yi Andrew; Yang, Hongta; Petit, Camille; Lee, Wei-der

    2015-01-15

    Pickering emulsions stabilized by graphene oxide (GO) have attracted much attention owing to the unique 2-D structure and amphiphilic surface properties of GO. On the other hand, investigations on reduced GO (RGO) to prepare Pickering emulsions are still limited, especially for water-in-oil (W/O) emulsions. Considering growing interests for directing Pickering emulsions to a specific location, it is necessary to embed Pickering emulsions with responsiveness upon external driving forces such as magnetic fields. To that end, we developed magnetically responsive RGO (denoted as "MRGO") and used MRGO to prepare W/O Pickering emulsions. MRGO was synthesized by decorating iron oxide nanoparticles on the surface of RGO and characterized by SEM, EDS, TEM, FT-IR, Raman, XRD and SQUID. MRGO Pickering emulsion (MRGO-PE) was prepared by suspending MRGO sheets in dodecane and mixing with water vigorously. The amount of MRGO added to prepare MRGO-PE is related to the size distribution of the droplets of MRGO-PE and the relationship can be well-described using a mass balance model. The motion of droplets of MRGO-PE under an external magnetic field is demonstrated. We also investigated the adsorptive property of MRGO-PE by evaluating the removal of Nile Red dye from dodecane. The results shows that the dye removal by MRGO-PE is not just achieved by MRGO layer of MRGO-PE but also by water encapsulated by MRGO. Owing to their magnetic property, MRGO-PE can be utilized as a magnetically-controlled carrier which can preserve and transport to specific locations certain compounds. PMID:25454454

  9. Magnetic iron oxide nanoparticles as long wavelength photoinitiators for free radical polymerization

    OpenAIRE

    Yar, Yasemin; Acar, Funda Havva Yağcı; Dadashi-Silab, Sajjad; Yagci, Yusuf

    2015-01-01

    Iron oxide nanoparticles (Fe3O4 NPs) capped with lauric acid agents were synthesized and their photocatalytic activity was investigated in free radical photopolymerization of vinyl monomers. These NPs were able to release charge carriers (electron-hole pairs) upon photoexcitation through which the capping agents or an additional amine co-initiator acting as the hole acceptor underwent oxidation to eventually form the initiating radicals. In lauric acid coated Fe3O4 NPs, electron transfer foll...

  10. Oxidative Desulfurization of kerosene in the presence of iron chlorideionic liquid catalyst and ultrasound waves

    OpenAIRE

    Maryam Sadat Seyedi; Manouchehr Bahmaei; Amir Farshi

    2015-01-01

    Oxidative Desulfurization of kerosene refinery in Tehran with sulfur content of 0/293% with iron chloride - hydrogen peroxide and ultrasonic liquid catalysts in the presence of acetic acid - formic acid and an oxidizinghydrogen peroxide has been studied. The effects of operating parameters such as temperature, reaction time, mole ratio of moles of sulfur oxidation (no/ ns),mole ratio of moles of acid per mol of sulfur (nacid/ ns (on the desulfurization of kerosene checked(the molar ratio of o...

  11. The use of coal in a solid phase reduction of iron oxide

    Science.gov (United States)

    Nokhrina, O. I.; Rozhihina, I. D.; Hodosov, I. E.

    2015-09-01

    The results of the research process of producing metalized products by solid-phase reduction of iron using solid carbonaceous reducing agents. Thermodynamic modeling was carried out on the model of the unit the Fe-C-O and system with iron ore and coal. As a result of modeling the thermodynamic boundary reducing, oxidizing, and transition areas and the value of the ratio of carbon and oxygen in the system. Simulation of real systems carried out with the gas phase obtained in the pyrolys of coal. The simulation results allow to determine the optimal cost of coal required for complete reduction of iron ore from a given composition. The kinetics of the processes of solid-phase reduction of iron using coal of various technological brands.

  12. Nanostructures design by plasma afterglow-assisted oxidation of iron-copper thin films

    Science.gov (United States)

    Imam, A.; Boileau, A.; Gries, T.; Ghanbaja, J.; Mangin, D.; Hussein, K.; Sezen, H.; Amati, M.; Belmonte, T.

    2016-05-01

    Oxidizing thin films made of Fe-Cu alloy with an Ar-O2 micro-afterglow operated at atmospheric pressure shows remarkable growth processes. The presence of iron in copper up to about 50% leads to the synthesis of CuO nanostructures (nanowalls, nanotowers and nanowires). Nanotowers show the presence of an amorphous phase trapped between crystalline domains. Beyond 50%, Fe2O3 iron nanoblades are also found. CuO nanowires as small as 5 nm in diameter can be synthesized. Thanks to the presence of patterned domains induced by buckling, it was possible to show that the stress level decreases when the iron content in the alloy increases. Iron blades grow from the inner Fe2O3 layer through the overlying CuO if it is thin enough.

  13. Role of precursor alloy phases and intermediate oxides in the preparation of Raney and Urushibara iron

    International Nuclear Information System (INIS)

    57Fe Moessbauer spectroscopy and scanning electron microscopy measurements of precursor phases formed during catalyst preparation and of the catalysts, themselves, demonstrate that the preparation of Raney iron from iron aluminum alloys involves the formation of Fe (OH)2 and Fe3O4 as intermediate phases. The metallic Fe is formed from subsequent reduction of Fe3O4 by hydrogen generated by the oxidation of aluminum metal by hydroxide ions. Precursors to Urushibara iron U-Fe (III) are found to consist of Fe-Zn alloys when Zn is used as a reductant and of epitaxial deposits of Fe on aluminum when Al is the reductant. The material resulting from the reduction of the iron salt by aluminum is not a hydrogenation catalyst; the absence of catalytic activity is related to the absence of any alloying of the iron and aluminum. A consideration of the preparation of Raney iron, Urushibara iron, ammonia synthesis and Fischer-Tropsch catalysts leads to the conclusions that catalytic activity is highly correlated to the existence of intermediate mixed-crystals phases and the presence of intimate mixtures of at least two phases in the final catalyst. (orig.)

  14. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Science.gov (United States)

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs – uncoated, coated with d-mannose, or coated with poly-l-lysine – affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles.

  15. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs - uncoated, coated with d-mannose, or coated with poly-l-lysine - affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles. PMID:27217748

  16. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging.

    Science.gov (United States)

    Wang, Yi-Xiang J

    2015-12-21

    Five types of superparamagnetic iron oxide (SPIO), i.e. Ferumoxides (Feridex(®) IV, Berlex Laboratories), Ferucarbotran (Resovist(®), Bayer Healthcare), Ferumoxtran-10 (AMI-227 or Code-7227, Combidex(®), AMAG Pharma; Sinerem(®), Guerbet), NC100150 (Clariscan(®), Nycomed,) and (VSOP C184, Ferropharm) have been designed and clinically tested as magnetic resonance contrast agents. However, until now Resovist(®) is current available in only a few countries. The other four agents have been stopped for further development or withdrawn from the market. Another SPIO agent Ferumoxytol (Feraheme(®)) is approved for the treatment of iron deficiency in adult chronic kidney disease patients. Ferumoxytol is comprised of iron oxide particles surrounded by a carbohydrate coat, and it is being explored as a potential imaging approach for evaluating lymph nodes and certain liver tumors. PMID:26715826

  17. Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein in Situ

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Sanjay [Ames Laboratory; Woehl, Taylor J [Ames Laboratory; Liu, Xunpei [Iowa State University; Mallapragada, Surya K [Ames Laboratory; Prozorov, Tanya [Ames Laboratory

    2014-09-23

    Biomineralization proteins are widely used as templating agents in biomimetic synthesis of a variety of organic–inorganic nanostructures. However, the role of the protein in controlling the nucleation and growth of biomimetic particles is not well understood, because the mechanism of the bioinspired reaction is often deduced from ex situ analysis of the resultant nanoscale mineral phase. Here we report the direct visualization of biomimetic iron oxide nanoparticle nucleation mediated by an acidic bacterial recombinant protein, Mms6, during an in situ reaction induced by the controlled addition of sodium hydroxide to solution-phase Mms6 protein micelles incubated with ferric chloride. Using in situ liquid cell scanning transmission electron microscopy we observe the liquid iron prenucleation phase and nascent amorphous nanoparticles forming preferentially on the surface of protein micelles. Our results provide insight into the early steps of protein-mediated biomimetic nucleation of iron oxide and point to the importance of an extended protein surface during nanoparticle formation.

  18. Preparation of iron oxide nanoparticles from FeCl3 solid powder using microemulsions

    Science.gov (United States)

    Nassar, Nashaat; Husein, Maen

    2006-05-01

    Nanoparticles of iron oxide were prepared by subjecting iron chloride powder to (w/o) microemulsions consisting of sodium bis(2-ethylhexyl) sulfosuccinate (AOT), isooctane and water. FeCl3 was first dissolved in the water pools of the microemulsion, and then reacted with NaOH added as an aqueous solution to form iron oxide. The amount of NaOH solution was limited so that single microemulsion phase is obtained. This technique serves as an in-situ nanoparticle preparation technique aimed at minimizing particle aggregation associated with particle transportation to required sites. In this study, the effects of AOT concentration and water to AOT mole ratio on the nanoparticle size were investigated. UV/Vis spectrophotometry and transmission electron microscopy (TEM) were used to measure the particle size distribution.

  19. LA-ICP-MS Allows Quantitative Microscopy of Europium-Doped Iron Oxide Nanoparticles and is a Possible Alternative to Ambiguous Prussian Blue Iron Staining.

    Science.gov (United States)

    Scharlach, Constantin; Müller, Larissa; Wagner, Susanne; Kobayashi, Yuske; Kratz, Harald; Ebert, Monika; Jakubowski, Norbert; Schellenberger, Eyk

    2016-05-01

    The development of iron oxide nanoparticles for biomedical applications requires accurate histological evaluation. Prussian blue iron staining is widely used but may be unspecific when tissues contain substantial endogenous iron. Here we tested whether microscopy by laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) is sensitive enough to analyze accumulation of very small iron oxide particles (VSOP) doped with europium in tissue sections. For synthesis of VSOP, a fraction of Fe3+ (5 wt%) was replaced by Eu3+, resulting in particles with 0.66 mol% europium relative to iron (Eu-VSOP) but with otherwise similar properties as VSOP. Eu-VSOP or VSOP was intravenously injected into ApoE-/- mice on Western cholesterol diet and accumulated in atherosclerotic plaques of these animals. Prussian blue staining was positive for ApoE-/- mice with particle injection but also for controls. LA-ICP-MS microscopy resulted in sensitive and specific detection of the europium of Eu-VSOP in liver and atherosclerotic plaques. Furthermore, calibration with Eu-VSOP allowed calculation of iron and particle concentrations in tissue sections. The combination of europium-doped iron oxide particles and LA-ICP-MS microscopy provides a new tool for specific and quantitative analysis of particle distribution at the tissue level and allows correlation with other elements such as endogenous iron. PMID:27305821

  20. H{sub 2} from biosyngas via iron reduction and oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Straus, J.; Terry, P. [H Power Corp., Belleville, NJ (United States)

    1995-09-01

    The production of hydrogen from the steam-oxidation of iron is a long-known phenomenon. The rise in interest in the production and storage of hydrogen justifies the examination of this process (and of the reverse process, the reduction of iron oxide) for commercial use. Under NREL subcontract ZAR-4-13294-02, a process simulation program was developed and used as a design tool to analyze various configurations of the iron-hydrogen purification/storage scheme. Specifically, analyses were performed to determine the effectiveness of this scheme in conjunction with biomass-derived gasified fuel streams (biosyngas). The results of the computer simulations led to a selection of a two-stage iron oxide reduction process incorporating interstage water and CO{sub 2} removal. Thermal analysis shows that the iron-hydrogen process would yield essentially the same quantity of clean hydrogen per unit of biomass as the conventional route. The iron-hydrogen process benefits from the excellent match potentially achievable between the otherwise-unusable energy fraction in the off-gas of the reduction reactor and the parasitic thermal, mechanical and electrical energy needs of some typical gasifier systems. The program simulations and economic analysis suggest that clean hydrogen from biomass feedstock could cost about 20% less via the iron-hydrogen method than by conventional methods of purification (using the same feedstock). Cost analyses show that lower capital costs would be incurred in generating clean hydrogen by utilizing this approach, especially in response to the fluctuating demand profile of a utility.

  1. Synthesis of porous superparamagnetic iron oxides from colloidal nanoparticles: Effect of calcination temperature and atmosphere

    International Nuclear Information System (INIS)

    Nanostructured iron oxides with superparamagnetism were synthesized from colloidal particles of hydrous iron oxide. The synthesis procedure involved preparation of acetone-nanoparticle composite and calcination of the composite in air or nitrogen. The effects of calcination temperature and atmosphere on the properties of the products were investigated. Powder X-ray diffraction, 57Fe Mössbauer spectra, transmission electron microscopy, nitrogen sorption, thermal analysis and vibrating-sample magnetometry were applied to characterize the materials. The products calcined in flowing air are composed of nanoparticles, while those calcined in flowing nitrogen contain nanosheets. The former has larger specific surface areas, whereas the latter has stronger saturation magnetization in external magnetic field. Increasing calcination temperature reduced the specific surface area of the product, whereas enhanced its saturation magnetization. Furthermore, the iron oxides with superparamagnetism showed good affinity to arsenite, and therefore they could be potential adsorbents for arsenic remediation in water. - Highlights: • Nanostructured superparamagnetic iron oxides were synthesized from colloidal nanoparticles. • Calcination in air led to formation of nanoparticles. • Calcination in nitrogen led to formation of nanosheets. • The superparamagnetic materials had high adsorption capabilities for arsenite

  2. Neutrophilic iron-oxidizing bacteria: occurrence and relevance in biological drinking water treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    2013-01-01

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully ...

  3. Neutrophilic Iron Oxidizing Bacteria: Occurrence and Relevance in Biological Drinking Water Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully ...

  4. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wydra, Robert J.; Kruse, Anastasia M. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Bae, Younsoo [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506 (United States); Anderson, Kimberly W. [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Hilt, J. Zach, E-mail: hilt@engr.uky.edu [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States)

    2013-12-01

    In this study, core-shell nanoparticles were developed to achieve thermal therapy that can ablate cancer cells in a remotely controlled manner. The core-shell nanoparticles were prepared using atomic transfer radical polymerization (ATRP) to coat iron oxide (Fe{sub 3}O{sub 4}) nanoparticles with a poly(ethylene glycol) (PEG) based polymer shell. The iron oxide core allows for the remote heating of the particles in an alternating magnetic field (AMF). The coating of iron oxide with PEG was verified through Fourier transform infrared spectroscopy and thermal gravimetric analysis. A thermoablation (55 °C) study was performed on A549 lung carcinoma cells exposed to nanoparticles and over a 10 min AMF exposure. The successful thermoablation of A549 demonstrates the potential use of polymer coated particles for thermal therapy. - Highlights: • Utilized atomic transfer radical polymerization (ATRP) to coat iron oxide nanoparticles with PEG • Investigated the surface coating by surface characterization methods • Demonstrated the potential use of nanoparticles for cancer therapy applications.

  5. Electrophoretic deposition of adsorbed arsenic on fine iron oxide particles in tap water

    Science.gov (United States)

    Sharif, Syahira Mohd; Bakar, Noor Fitrah Abu; Naim, M. Nazli; Rahman, Norazah Abd; Talib, Suhaimi Abdul

    2016-02-01

    Electrophoretic deposition (EPD) technique has been demonstrated to remove arsenic with natural adsorbent (fine iron oxide particles) in tap water samples. Characterizations of metal element particularly arsenic and fine iron oxide particles in tap water from two different locations, i.e. commercial and residential areas, were conducted. Results showed that the concentration of arsenic in tap water from residential area was higher than commercial area samples i.e. 0.022 ± 0.004 and 0.016 ± 0.008 ppm, respectively. The same finding was observed in zeta potential value where it was higher in the residential area than commercial area, i.e. -42.27 ± 0.12 and -34.83 ± 0.23 mV, respectively. During the removal of arsenic using the EPD technique, direct current (DC) voltage was varied from 5 to 25V at a constant electrode distance of 30 mm. Effect of zeta potential, voltage and electrode type were intensively investigated. High percentage removal of arsenic was obtained from carbon plate than carbon fibre electrode. The percentage removal of arsenic from all samples slightly decreased with increasing of the applied voltage. EDX analysis confirmed that arsenic has adsorbed onto deposited iron oxide particles on the anode electrode. Overall, EPD technique was found to be successful in removing arsenic onto fine iron oxide particles in tap water with 26% ± 1.05 of removal.

  6. Integrity of 111In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse

    International Nuclear Information System (INIS)

    Introduction: Iron-oxide nanoparticles can act as contrast agents in magnetic resonance imaging (MRI), while radiolabeling the same platform with nuclear medicine isotopes allows imaging with positron emission tomography (PET) or single-photon emission computed tomography (SPECT), modalities that offer better quantification. For successful translation of these multifunctional imaging platforms to clinical use, it is imperative to evaluate the degree to which the association between radioactive label and iron oxide core remains intact in vivo. Methods: We prepared iron oxide nanoparticles stabilized by oleic acid and phospholipids which were further radiolabeled with 59Fe, 14C-oleic acid, and 111In. Results: Mouse biodistributions showed 111In preferentially localized in reticuloendothelial organs, liver, spleen and bone. However, there were greater levels of 59Fe than 111In in liver and spleen, but lower levels of 14C. Conclusions: While there is some degree of dissociation between the 111In labeled component of the nanoparticle and the iron oxide core, there is extensive dissociation of the oleic acid component

  7. Magnetically-modified natural biogenic iron oxides for organic xenobiotics removal

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Filip, J.; Horská, Kateřina; Nowakova, M.; Tuček, J.; Šafaříková, Miroslava; Hashimoto, H.; Takada, J.; Zbořil, R.

    2015-01-01

    Roč. 12, č. 2 (2015), s. 673-682. ISSN 1735-1472 R&D Projects: GA MŠk(CZ) LH11111; GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : Biogenic iron oxides * Leptothrix ochracea * Magnetic fluid * Magnetic adsorbents * Xenobiotics Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.190, year: 2014

  8. Antibacterial Efficacy of Iron-Oxide Nanoparticles against Biofilms on Different Biomaterial Surfaces

    Directory of Open Access Journals (Sweden)

    Monica Thukkaram

    2014-01-01

    Full Text Available Biofilm growth on the implant surface is the number one cause of the failure of the implants. Biofilms on implant surfaces are hard to eliminate by antibiotics due to the protection offered by the exopolymeric substances that embed the organisms in a matrix, impenetrable for most antibiotics and immune cells. Application of metals in nanoscale is considered to resolve biofilm formation. Here we studied the effect of iron-oxide nanoparticles over biofilm formation on different biomaterial surfaces and pluronic coated surfaces. Bacterial adhesion for 30 min showed significant reduction in bacterial adhesion on pluronic coated surfaces compared to other surfaces. Subsequently, bacteria were allowed to grow for 24 h in the presence of different concentrations of iron-oxide nanoparticles. A significant reduction in biofilm growth was observed in the presence of the highest concentration of iron-oxide nanoparticles on pluronic coated surfaces compared to other surfaces. Therefore, combination of polymer brush coating and iron-oxide nanoparticles could show a significant reduction in biofilm formation.

  9. Chemical Insight into the Adsorption of Chromium(III) on Iron Oxide/Mesoporous Silica Nanocomposites.

    Science.gov (United States)

    Egodawatte, Shani; Datt, Ashish; Burns, Eric A; Larsen, Sarah C

    2015-07-14

    Magnetic iron oxide/mesoporous silica nanocomposites consisting of iron oxide nanoparticles embedded within mesoporous silica (MCM-41) and modified with aminopropyl functional groups were prepared for application to Cr(III) adsorption followed by magnetic recovery of the nanocomposite materials from aqueous solution. The composite materials were extensively characterized using physicochemical techniques, such as powder X-ray diffraction, thermogravimetric and elemental analysis, nitrogen adsorption, and zeta potential measurements. For aqueous Cr(III) at pH 5.4, the iron oxide/mesoporous silica nanocomposite exhibited a superior equilibrium adsorption capacity of 0.71 mmol/g, relative to 0.17 mmol/g for unmodified mesoporous silica. The aminopropyl-functionalized iron oxide/mesoporous silica nanocomposites displayed an equilibrium adsorption capacity of 2.08 mmol/g, the highest adsorption capacity for Cr(III) of all the materials evaluated in this study. Energy-dispersive spectroscopy (EDS) with transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) experiments provided insight into the chemical nature of the adsorbed chromium species. PMID:26134074

  10. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    Science.gov (United States)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  11. Melting and freezing of ice in relation to iron oxidation of meteorites

    Czech Academy of Sciences Publication Activity Database

    Hrubá, J.; Kletetschka, Günther

    2015-01-01

    Roč. 50, Supplement 1 SI (2015). ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /78./. 27.07.2015-31.07.2015, Berkeley] Institutional support: RVO:67985831 Keywords : meteorites * iron oxidation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    Czech Academy of Sciences Publication Activity Database

    Smolkova, I.S.; Kazantseva, N.E.; Babayan, V.; Smolka, P.; Parmar, H.; Vilcakova, J.; Schneeweiss, Oldřich; Pizúrová, Naděžda

    2015-01-01

    Roč. 374, JAN (2015), s. 508-515. ISSN 0304-8853 Institutional support: RVO:68081723 Keywords : Iron oxide nanoparticles * Coprecipitation * Magnetic interactions * Specific loss power * Hyperthermia Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.970, year: 2014

  13. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Czech Academy of Sciences Publication Activity Database

    Henych, Jiří; Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš; Janoš, P.; Kuráň, P.; Šťastný, M.

    2015-01-01

    Roč. 344, JUL (2015), s. 9-16. ISSN 0169-4332 R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : Titania-iron oxides * Homogeneous hydrolysis * Degradation of organophosphates * Parathion methyl Subject RIV: CA - Inorganic Chemistry Impact factor: 2.711, year: 2014

  14. Spectral characteristics of the iron oxides with application to the Martian bright region mineralogy

    Science.gov (United States)

    Sherman, D. M.; Burns, R. G.; Mee Burns, V.

    1982-01-01

    Reflectance spectra of eight polymorphs of FeOOH and Fe2O3 are determined in order to clarify the nature and significance of the iron oxide mineralogy on Mars. The effect of other components that might interfere with iron oxide absorption features is qualitatively constrained through the use of the Kebulka-Munk theory. It is found that the effect of temperature complicates the identification of a given Fe(3+) phase based on the position of the 6A1-4T1 absorption feature. While the Fe(3+) crystal field transitions are spin forbidden, most of the iron oxide polymorphs exhibit anomalously intense crystal field absorption features due to magnetic coupling between adjacent FeO6 octahedra. It is suggested that the resulting deviations from observed remotely sensed reflectance spectra of Mars may provide a basis for the exclusion of many iron oxide phases as significant components of the Martian Fe(3+) mineralogy. A comparison of these results with the visible region spectra of Martian bright regions indicates that the predominant Fe(3+)-bearing phase may be a magnetically disordered material, such as amorphous gels, some ferric sulphates, and other minerals in which Fe(3+) ions in the crystal structure are not magnetically coupled.

  15. Multifunctional Silver Coated E-33/Iron Oxide Water Filters: Inhibition of Biofilm Growth and Arsenic Removal

    Science.gov (United States)

    Bayoxide® E33 (E-33, Goethite) is a widely used commercial material for arsenic adsorption. It is a mixture of iron oxyhydroxide and oxides. E-33 is primarily used to remove arsenic from water and to a lesser extent, other anions, but generally lacks multifunctuality. It is a non...

  16. Magnetic coupling among spinel iron oxide microparticles by Mössbauer spectroscopy

    OpenAIRE

    Tronc, E.; Bonnin, D.

    1985-01-01

    Mössbauer spectra of hydrous spinel iron oxide colloids and their evolution with thermal treatment have been interpreted using a modified Weiss local field model. It is found that inter-particle interactions overcome the single particle anisotropy energy. Existence of a crystalline texture within aggregates is suggested.

  17. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio early life stages.

    Directory of Open Access Journals (Sweden)

    Xiaoshan Zhu

    Full Text Available Iron oxide nanoparticles have been explored recently for their beneficial applications in many biomedical areas, in environmental remediation, and in various industrial applications. However, potential risks have also been identified with the release of nanoparticles into the environment. To study the ecological effects of iron oxide nanoparticles on aquatic organisms, we used early life stages of the zebrafish (Danio rerio to examine such effects on embryonic development in this species. The results showed that ≥10 mg/L of iron oxide nanoparticles instigated developmental toxicity in these embryos, causing mortality, hatching delay, and malformation. Moreover, an early life stage test using zebrafish embryos/larvae is also discussed and recommended in this study as an effective protocol for assessing the potential toxicity of nanoparticles. This study is one of the first on developmental toxicity in fish caused by iron oxide nanoparticles in aquatic environments. The results will contribute to the current understanding of the potential ecotoxicological effects of nanoparticles and support the sustainable development of nanotechnology.

  18. Synthesis and visible light photocatalytic properties of iron oxide-silver orthophosphate composites

    Science.gov (United States)

    Febiyanto, Eliani, Irma Vania; Riapanitra, Anung; Sulaeman, U.

    2016-04-01

    The iron oxide-silver orthophosphate composites were successfully synthesized by co-precipitation method using Fe(NO3)3.9H2O, AgNO3, and Na2HPO4.12 H2O, followed by calcination at 500°C for 5 hours. The Fe/Ag mole ratios of iron oxide-silver orthophosphate composites were designed at 0, 0.1, 0.2, 0.3 and 0.4. The samples were characterized using X-ray Diffraction, Diffuse Reflectance Spectroscopy, Scanning Electron Microscopy and Specific Surface Area. The photocatalytic activities were evaluated using Rhodamine B degradation under visible light irradiation. The iron oxide-silver orthophosphate composite with the Fe/Ag mole ratio of 0.2 exhibited higher photocatalytic activity compared to the pure Ag3PO4 under visible light irradiation. The enhanced photocatalytic activity could be attributed to the effective separation of hole (+) and electron pairs in the iron oxide-silver orthophosphate composite.

  19. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui, E-mail: sgzhou@soil.gd.cn

    2015-08-15

    Highlights: • Paddy soil contaminated with benzoate incubated with hematite and magnetite. • Iron oxides addition enhanced methanogenic benzoate degradation by 25–53%. • The facilitated syntrophy might involve direct interspecies electron transfer. • Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved. - Abstract: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89–94% of the electrons released from benzoate oxidation were recovered in CH{sub 4} production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.

  20. Synthesis and characterization of L-carnosine coated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Research highlights: → L-Carnosine coated iron oxide nanoparticles (CCIO NPs) have been prepared via co-precipitation of Fe3O4 (magnetite) in the presence of L-carnosine. → FTIR analysis showed that the binding of carnosine onto the surface of iron oxide is through unidentate linkage of carboxyl group. → Magnetization measurements revealed that L-carnosine iron oxide composite has immeasurable coercivity and remanence with absence of hysteritic behavior, which implies superparamagnetic behaviour at room temperature. → The synthesized amino acid-coated magnetic nanoparticles might be applied to cell separation, diagnosis and targeted drug delivery for cancer therapy. - Abstract: L-Carnosine coated iron oxide nanoparticles (CCIO NPs) have been prepared via co-precipitation of iron oxide in the presence of L-carnosine. Crystalline phase was identified as magnetite with an average crystallite size of 8 nm as estimated from X-ray line profile fitting. Particle size estimated from TEM by log-normal fitting was ∼11 nm. FTIR analysis showed that the binding of carnosine onto the surface of iron oxide is through unidentate linkage of carboxyl group. CCIO NPs showed superparamagnetic charactersitic at room temperature. The magnetic core size of superparamagnetic CCIO NPs was found slightly smaller than the size obtained from TEM, due to the presence of magnetically dead layer. Magnetization measurements revealed that L-carnosine iron oxide composite has immeasurable coercivity and remanence with absence of hysteritic behavior, which implies superparamagnetic behavior at room temperature. The low value of saturation magnetization compared to the bulk magnetite has been explained by spin canting. LDH activity tests showed slight cytotoxicity of high dose of CCIO NPs. The ac conductivity of CCIO NPs was found to be greater than that of carnosine and the effective conduction mechanism was found as correlated barrier hopping (CBH). dc activation energy of the product at

  1. What's the real role of iron-oxides in the optical properties of dust aerosols?

    Directory of Open Access Journals (Sweden)

    X. L. Zhang

    2015-02-01

    Full Text Available Iron oxides compounds constitute an important component of mineral dust aerosol. Several previous studies have shown that these minerals are strong absorbers at visible wavelengths and thus that they play a critical role in the overall climate forcing caused by dust aerosol. When compiling a database of complex refractive indices of possible mineral species of iron-oxides to study their optical properties, we found that uniformly continuous optical constants for a single type of iron-oxides in the wavelength range between 0.2 and 50 μm is very scarce and that the use of hematite to represent all molecular or mineral iron-oxides types is a popular hypothesis. However, the crucial problem is that three continuous datasets for complex refractive indices of hematite are employed in climate models, but there are significant differences between them. Thus, the real role of iron-oxides in the optical properties of dust aerosols becomes a key scientific question, and we address this problem by considering different refractive indices, size distributions, and more logical weight fractions and mixing states of hematite. Based on the microscopic observations, a semi-external mixture that employs an external mixture between Fe-aggregates and other minerals and partly internal mixing between iron-oxides and aluminosilicate particles is advised as the optimal approximation. The simulations demonstrate that hematite with a spectral refractive indices from Longtin et al. (1988 shows approximately equal absorbing capacity to the mineral illite over the whole wavelength region from 0.55 to 2.5 μm, and only enhances the optical absorption of aerosol mixture at λ < 0.55 μm. Using the dataset from Querry (1985 may overestimate the optical absorption of hematite at both visible and near-infrared wavelengths. More laboratory measurements of the refractive index of iron-oxides, especially for hematite and goethite in the visible spectrum, should therefore be taken

  2. Synthesis and characterization of L-carnosine coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Durmus, Z. [Department of Chemistry, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Kavas, H. [Department of Physics, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Baykal, A., E-mail: hbaykal@fatih.edu.tr [Department of Chemistry, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Sozeri, H. [TUBITAK-UME, National Metrology Institute, PO Box 54, 41470 Gebze-Kocaeli (Turkey); Alpsoy, L. [Department of Biology, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Celik, S.U. [Department of Chemistry, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Toprak, M.S. [Department of Functional Materials, Royal Institute of Technology, SE16440 Kista-Stockholm (Sweden)

    2011-02-03

    Research highlights: > L-Carnosine coated iron oxide nanoparticles (CCIO NPs) have been prepared via co-precipitation of Fe{sub 3}O{sub 4} (magnetite) in the presence of L-carnosine. > FTIR analysis showed that the binding of carnosine onto the surface of iron oxide is through unidentate linkage of carboxyl group. > Magnetization measurements revealed that L-carnosine iron oxide composite has immeasurable coercivity and remanence with absence of hysteritic behavior, which implies superparamagnetic behaviour at room temperature. > The synthesized amino acid-coated magnetic nanoparticles might be applied to cell separation, diagnosis and targeted drug delivery for cancer therapy. - Abstract: L-Carnosine coated iron oxide nanoparticles (CCIO NPs) have been prepared via co-precipitation of iron oxide in the presence of L-carnosine. Crystalline phase was identified as magnetite with an average crystallite size of 8 nm as estimated from X-ray line profile fitting. Particle size estimated from TEM by log-normal fitting was {approx}11 nm. FTIR analysis showed that the binding of carnosine onto the surface of iron oxide is through unidentate linkage of carboxyl group. CCIO NPs showed superparamagnetic charactersitic at room temperature. The magnetic core size of superparamagnetic CCIO NPs was found slightly smaller than the size obtained from TEM, due to the presence of magnetically dead layer. Magnetization measurements revealed that L-carnosine iron oxide composite has immeasurable coercivity and remanence with absence of hysteritic behavior, which implies superparamagnetic behavior at room temperature. The low value of saturation magnetization compared to the bulk magnetite has been explained by spin canting. LDH activity tests showed slight cytotoxicity of high dose of CCIO NPs. The ac conductivity of CCIO NPs was found to be greater than that of carnosine and the effective conduction mechanism was found as correlated barrier hopping (CBH). dc activation energy of the

  3. Magnetically modified natural biogenic iron oxides for organic xenobiotics removal

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Filip, J.; Horská, Kateřina; Nowakova, M.; Tuček, J.; Šafaříková, Miroslava; Hashimoto, H.; Takada, J.; Zbořil, R.

    Elsevier. Roč. 24, S1 (2013), S77-S77. ISSN 0958-1669. [European Biotechnology Congress. 16.05.2013-18.05.2013, Bratislava] Institutional support: RVO:67179843 Keywords : organic xenobiotics * biogenic iron * Magnetically modified Subject RIV: EI - Biotechnology ; Bionics http://ac.els-cdn.com/S0958166913003340/1-s2.0-S0958166913003340-main.pdf?_tid=55b04b50-cbc0-11e4-8cb5-00000aab0f6c&acdnat=1426498946_517d901283c9cd0d7b198ceb605f1435

  4. Nitric oxide releasing iron oxide magnetic nanoparticles for biomedical applications: cell viability, apoptosis and cell death evaluations

    International Nuclear Information System (INIS)

    Nitric oxide (NO) is involved in several physiological and pathophysiological processes, such as control of vascular tone and immune responses against microbes. Thus, there is great interest in the development of NO-releasing materials to carry and deliver NO for biomedical applications. Magnetic iron oxide nanoparticles have been used in important pharmacological applications, including drug-delivery. In this work, magnetic iron oxide nanoparticles were coated with thiol-containing hydrophilic ligands: mercaptosuccinic acid (MSA) and dimercaptosuccinic acid (DMSA). Free thiol groups on the surface of MSA- or DMSA- coated nanoparticles were nitrosated, leading to the formation of NO-releasing iron oxide nanoparticles. The cytotoxicity of MSA- or DMSA-coated magnetic nanoparticles (MNP) (thiolated nanoparticles) and nitrosated MSA- or nitrosated DMSA- coated MNPs (NO-releasing nanoparticles) were evaluated towards human lymphocytes. The results showed that MNP-MSA and MNP-DMSA have low cytotoxicity effects. On the other hand, NO-releasing MNPs were found to increase apoptosis and cell death compared to free NO-nanoparticles. Therefore, the cytotoxicity effects observed for NO-releasing MNPs may result in important biomedical applications, such as the treatment of tumors cells.

  5. Abundance of iron-oxidizing thiobacilli and biological sulfur oxidation potential from soil impacted by coal and coal refuse piles

    International Nuclear Information System (INIS)

    A study was conducted to assess the abundance of iron-oxidizing bacteria and biological sulfur oxidation potential from soil impacted by coal and coal refuse from two coal-burning electric power facilities located at the US Department of Energy's Savannah River Site (Aiken, S.C.) and the South Carolina Electric and Gas Site at Beech Island, S.C. Significantly higher most probable number (MPN) counts of iron-oxidizing bacteria were obtained from samples collected at the confluence of a coal storage runoff containment basin, a coal reject (refuse) pile, and an adjacent wetland at the Savannah River Site. Significant differences in pH, sulfate-S, ferrous- and ferric-iron were also obtained between sampling locations. No significant differences in ferric/ferrous ratios were determined. These ratios however, exceeded a value of 2.0 when sample pH values were less than 4.5. Under optimal conditions, biological thiosulfate-S oxidation potentials (in vitro) showed a 4- to 7-day lag in the appearance of sulfate-S, and a final pH (after twenty-four days of perfusion) of 1.97 to 3.90. These results indicate that contamination of subsurface water by acidic leachate derived from thionic bacterial activity will occur if coal and coal refuse piles are not confined by an impermeable surface or containment facility. 19 refs., 2 figs., 7 tabs

  6. Study of iron oxide nanoparticles in soil for remediation of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, Heather J., E-mail: heather.shipley@utsa.edu; Engates, Karen E.; Guettner, Allison M. [University of Texas at San Antonio, Department of Civil and Environmental Engineering (United States)

    2011-06-15

    There is a growing interest in the use of nanoparticles for environmental applications due to their unique physical and chemical properties. One possible application is the removal of contaminants from water. In this study, the use of iron oxide nanoparticles (19.3 nm magnetite and 37.0 nm hematite) were examined to remove arsenate and arsenite through column studies. The columns contained 1.5 or 15 wt% iron oxide nanoparticles and soil. Arsenic experiments were conducted with 1.5 wt% iron oxides at 1.5 and 6 mL/h with initial arsenate and arsenite concentrations of 100 {mu}g/L. Arsenic release occurred after 400 PV, and 100% release was reached. A long-term study was conducted with 15 wt% magnetite nanoparticles in soil at 0.3 mL/h with an initial arsenate concentration of 100 {mu}g/L. A negligible arsenate concentration occurred for 3559.6 pore volumes (PVs) (132.1 d). Eventually, the arsenate concentration reached about 20% after 9884.1 PV (207.9 d). A retardation factor of about 6742 was calculated indicating strong adsorption of arsenic to the magnetite nanoparticles in the column. Also, increased adsorption was observed after flow interruption. Other experiments showed that arsenic and 12 other metals (V, Cr, Co, Mn, Se, Mo, Cd, Pb, Sb, Tl, Th, U) could be simultaneously removed by the iron oxide nanoparticles in soil. Effluent concentrations were less than 10% for six out of the 12 metals. Desorption experiment showed partial irreversible sorption of arsenic to the iron oxide nanoparticle surface. Strong adsorption, large retardation factor, and resistant desorption suggest that magnetite and hematite nanoparticles have the potential to be used to remove arsenic in sandy soil possibly through in situ techniques.

  7. Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells

    Directory of Open Access Journals (Sweden)

    Shi S

    2012-10-01

    Full Text Available Si-Feng Shi,1 Jing-Fu Jia,2 Xiao-Kui Guo,3 Ya-Ping Zhao,2 De-Sheng Chen,1 Yong-Yuan Guo,1 Tao Cheng,1 Xian-Long Zhang11Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, School of Medicine, 2School of Chemistry and Chemical Technology, 3Department of Medical Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University Shanghai, ChinaBackground: Bone disorders (including osteoporosis, loosening of a prosthesis, and bone infections are of great concern to the medical community and are difficult to cure. Therapies are available to treat such diseases, but all have drawbacks and are not specifically targeted to the site of disease. Chitosan is widely used in the biomedical community, including for orthopedic applications. The aim of the present study was to coat chitosan onto iron oxide nanoparticles and to determine its effect on the proliferation and differentiation of osteoblasts.Methods: Nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, x-ray diffraction, zeta potential, and vibrating sample magnetometry. Uptake of nanoparticles by osteoblasts was studied by transmission electron microscopy and Prussian blue staining. Viability and proliferation of osteoblasts were measured in the presence of uncoated iron oxide magnetic nanoparticles or those coated with chitosan. Lactate dehydrogenase, alkaline phosphatase, total protein synthesis, and extracellular calcium deposition was studied in the presence of the nanoparticles.Results: Chitosan-coated iron oxide nanoparticles enhanced osteoblast proliferation, decreased cell membrane damage, and promoted cell differentiation, as indicated by an increase in alkaline phosphatase and extracellular calcium deposition. Chitosan-coated iron oxide nanoparticles showed good compatibility with osteoblasts.Conclusion: Further research is necessary to optimize magnetic nanoparticles for the treatment of bone disease

  8. Development of a new aluminium matrix composite reinforced with iron oxide (Fe3O4

    Directory of Open Access Journals (Sweden)

    E. Bayraktar

    2010-01-01

    Full Text Available Purpose: of this paper is to develop new aluminium matrix (intermetallic composites reinforced with iron oxide (Fe3O4 that will be used in aeronautical engineering or in electronic industry. Different parameters such as sintering time and temperature, reinforcement, compact pressure were evaluated. The final purpose of this project is going on to improve conductivity and magnetic permeability of this new composite.Design/methodology/approach: In this paper, a new alternative materials “aluminium–iron oxide (Fe3O4, naturally as the mineral magnetite powder composite” has been developed by using a microwave (in the laboratory scale sintering programme with various aspect ratios, that iron oxide (Fe3O4 particle sizes and aluminium powders together were prepared. This paper contains partially preliminary results of our going-on research project.Findings: Green density increased regularly depending on the compact pressure and percentage of the iron oxide (Fe3O4. Micro and macro porosity was not found due to very clean microwave sintering. Density after microwave sintering was higher than that of traditional sintering in an electrical oven.Research limitations/implications: This project is going on and magnetic permeability and conductivity of this composite will be improved.Practical implications: This composite is new and clean and thanks to the new microwave sintering basically will be used in aeronautical engineering. Microwave heating results in lower energy costs and decreased processing times for many industrial processes.Originality/value: Originality of this paper is to use a new reinforcement in the aluminium matrix composite; Fe3O4-iron oxide. A new method - microwave sintering- has been carried out on this composite.

  9. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  10. Investigation on the Thermal Crack Evolution and Oxidation Effect of Compacted Graphite Iron Under Thermal Shock

    Science.gov (United States)

    Wang, Xiaosong; Zhang, Weizheng; Guo, Bingbin

    2015-09-01

    For a better understanding of the thermal fatigue behavior in compacted graphite cast iron (CGI), the cyclic thermal shock test is carried out through alternating induction heating and water quenching. The optical and scanning electron microscopy observations are used to examine the cracks and oxidation behavior on the cross section and heating surface of the material specimen, respectively. The results show that the thermal cracks in CGI initiate at the graphite phases mostly, and the multi-sourced thermal cracks would result in stable cracks morphology finally through crack shielding effect. In the oxidation analysis, it is found that the oxidation of graphite is selective, and the graphite is the potential channels for oxygen diffusion from the outside into the matrix, resulting in local oxidation of matrix around graphite and continuous oxygen diffusion paths in the microstructure. Thermal cracks nucleate from the oxidation holes at graphite caused by decarburization, and they prefer to propagate and coalesce by penetrating the oxide bridges.

  11. Role of iron oxide catalysts in selective catalytic reduction of NOx and soot from vehicular emission

    International Nuclear Information System (INIS)

    This study deals with Iron containing catalysts i.e Iron oxide Fe/sub 2/O/sub 3/) Iron potassium oxide Fe/sub 1.9/K/sub 0.1/O/sub 3/, copper iron oxide Cu/sub 0.9/K/sub 0.1/, Fe/sub 2/O/sub 3/, nickel iron oxide Ni Fe/sub 2/O/sub 4/, and Nickel potassium iron oxide Ni/sub 0.95/K/sub 0.05/ Fe/sub 2/O/sub 4/ catalyst were synthesized by using PVA technique. By X-ray Diffraction technique these catalysts were characterized to ensure the formation of crystalline structure. Energy Dispersive X-rays analysis (EDX) was used for the confirmation of presence of different metals and Scanning Electron Microscopy (SEM) for Surface Morphology. Then the catalytic investigations of the prepared catalyst were carried out for their activity measurement toward simultaneous conversion of NOx and Soot from an engine exhaust. Some Iron containing oxide catalysts were partially modified by alkali metal potassium and were used for NOx -Soot reaction in a model exhaust gas. Fe/sub 1.9 K /sub 0.1/O/sub 3/ show high catalytic performance for N/sub 2/ formation in the prepared catalyst. Further studies have shown that Fe/sub 1.9/ K/sub 0.1/ O/sub 3/ was deactivated in a substantial way after about 20 Temperature. Temperature Programmed Reaction (TPR) experiments due to agglomeration of the promoter potassium. Experiments carried out over the aged Fe/sub 1.9/K/sub 0.1/O/sub 3/ catalyst have shown that NOx-soot reaction was suppressed at higher oxygen concentration, since O/sub 2/-soot conversion was kindly favored. More over nitrite species formed at the catalyst surface might play an important role in NOx-soot conversion. (author)

  12. Iron Oxide Biominerals in Protein Nanocages, the Ferritins: Easing Into Life With Oxygen?

    Science.gov (United States)

    Theil, E. C.

    2008-12-01

    Organisms with ferritins could represent the progenitors of organisms that successfully made the transition to aerobic life. Ferritins are protein nanocages (8 or 12 nm diameter) that catalyze reactions between Fe(II) and O2 or H2O2 to synthesize ferrihydrite-like biominerals of Fe2O3(H2 O)n; phosphate is sometimes incorporated during mineralization. All groups of organisms, archea, bacteria, plants and animals have ferritins. Catalytic reactions between Fe and O occur in the protein cage with the products moving into the central protein cavity (5 or 8 nm diameter) where mineralization occurs; mineral sizes reach 4500 Fe with more than 7000 O atoms in the large cavities of maxi-ferritins and 500 Fe with more than 800 O atoms in the smaller, mini-ferritins, also called Dps proteins. H2O2 is preferentially used by mini-ferritins in archea and bacteria, contrasting with O2, preferentially used by maxi-ferritins in bacteria plants and animals, and some bacterial mini-ferritins that use either H2O2 or O2, to oxidize Fe(II) during biomineralization. The study of ferritins in contemporary organisms can illuminate mechanisms for oxygen and oxidant responses in changing environments now and in the past. Multiple genes encoding ferritins are often regulated by different environmental stimuli and in multi-cellular organisms, by tissue-specific, differentiation programs. The single celled E.coli has four ferritin genes, encoding three maxi-ferritins, one with a heme cofactor (bacterioferritin), and one mini-ferritin (Dps), expressed at different points in the culture cycle and/or in response to different stresses. Environmental iron, oxygen and peroxide all change the amounts of ferritin. When iron is plentiful, mineralized ferritin accumulates. Ferritin iron is recovered during periods of iron deficiency, apparently by selective unfolding of gated pores in ferritin protein nanocage that expose the mineral to reductants. Gene (DNA) transcription is the genetic target for iron

  13. Magnetization and Mössbauer study of partially oxidized iron cluster films deposited on HOPG

    Science.gov (United States)

    Tarras-Wahlberg, Nils; Kamali, Saeed; Andersson, Mats; Johansson, Christer; Rosén, Arne

    2014-10-01

    Iron clusters produced in a laser vaporization source were deposited to form cluster-assembled thin films with different thicknesses on highly oriented pyrolytic graphite substrates. The development of oxidation of the clusters with time, up to three years, was investigated by magnetic measurements using an alternating gradient magnetometer. Furthermore, to receive information about the oxidation states, clusters of 57Fe were studied using Mössbauer spectroscopy. The magnetic analysis shows a time evolution of the saturation magnetization, remanence, and coercivity, determined from the hysteresis curves characteristic of a progressing oxidation. The different thicknesses of the iron cluster films as well as a protective layer of vanadium influence the magnetic properties when the samples are subjected to oxidation with time. While the saturation magnetization and remanence decrease and reach half the initial values for almost all the samples after three years, the coercivity increases for all samples and is more substantial for the thickest sample with a vanadium protective layer. This value is three folded after three years. Furthermore, based on a core-shell model and using the saturation magnetization values we have been able to quantitatively calculate the amount of the increase of Fe-oxide as a function of time. The Mössbauer spectroscopy shows peaks corresponding to iron metal and maghemite.

  14. Aging of iron (hydr)oxides by heat treatment and effects on heavy metal binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Starckpoole, M. M.; Frenkel, A. I.;

    2000-01-01

    their transformations caused by heat treatment prior to disposal or aging at a proper disposal site. The transformations were investigated by XRD, SEM, XANES, EXAFS, surface area measurements, pH static leaching tests, and extractions with oxalate and weak hydrochloric acid. It was found that at 600 and 900 °C the iron...... oxides were transformed to hematite, which had a greater thermodynamic stability but less surface area than the initial products. Heat treatment also caused some volatilization of heavy metals (most notably, Hg). Leaching with water at pH 9 (L/S 10, 24 h) and weak acid extraction showed that heat...... treatment caused a part of the metals bound in the oxides to be released, thus increasing metals leachability by 1-2 orders of magnitude depending on the metal. Pb and Cd were released in particularly significant concentrations, suggesting less incorporation into the iron oxides after heat...

  15. Role of iron oxide impurities in electrocatalysis by multiwall carbon nanotubes: An investigation using a novel magnetically modified ITO electrodes

    Indian Academy of Sciences (India)

    Kanchan M Samant; Vrushali S Joshi; Kashinath R Patil; Santosh K Haram

    2014-04-01

    The role of iron oxide impurities in the electrocatalytic properties of multiwall carbon nanotubes (MWCNTs) prepared by catalytic chemical vapour decomposition method (CCVD) is studied in detail. A novel magnetically modified electrodes have been developed by which MWCNTs were immobilized on indium-tin oxide (ITO) electrodes, without any chemical binders. The electro-catalytic oxidation of dopamine, and reduction of hydrogen peroxide have been studied by cyclic voltammetry on magnetically modified electrodes with (i) MWCNTs with occluded iron oxide impurities (Fe-MWCNTs), (ii) MWCNTs grown on iron oxide nanoparticle particulate films (Io-MWCNTs) and (iii) pristine iron oxide nanoparticle particulate film (Io-NPs). A shift towards less positive potentials for the oxidation of dopamine was observed which is in the order of Fe-MWCNTs < Io-MWCNTs < Io-NPs. Similarly, trend towards less negative potentials for the reduction of hydrogen peroxide was observed. Thus, the electrocatalytic activities displayed by MWCNTs have been attributed to the iron oxide impurities associated with it. The systematic variation was related to the nature of interaction of iron oxide nanoparticles with MWCNT surface.

  16. On the kinetics of the initial oxidation of iron and iron nitride

    DEFF Research Database (Denmark)

    Graat, P.C.J.; Somers, Marcel A.J.; Mittemeijer, E.J.

    2002-01-01

    concentration in the surface region; subsequent annealing at 573 K led to restoration of the N concentration. Oxidation in pure O2 (generally pO2 1•10 4 Pa) was performed at temperatures ranging from 300 K to 600 K. The oxidised samples were investigated with X-ray photoelectron spectroscopy (XPS......The initial oxidation of alfa-Fe and epsilon Fe2N1-x was investigated. Prior to oxidation the sample surfaces were either sputter cleaned with Ar+ ions or sputter cleaned followed by annealing. It was shown that the sputter cleaning pretreatment of epsilon Fe2N1-x led to a reduction of the N...... evolution of the work functions of alfa-Fe could be related to the change of the oxide film composition, as determined with XPS: it evolved with increasing film thickness from approximately FeO to a composition close to Fe3O4. Upon oxidation of epsilon Fe2N1-x, the nitrogen atoms accumulated underneath...

  17. Pyrene Removal from Contaminated Soils by Modified Fenton Oxidation Using Iron Nano Particles

    Directory of Open Access Journals (Sweden)

    Sahand Jorfi

    2013-07-01

    Full Text Available Background:The problems related to conventional Fenton oxidation, including low pH required and production of considerable amounts of sludge have led researchers to investigate chelating agents which might improve the operating range of pH and the use of nano iron particle to reduce the excess sludge. The pyrene removal from contaminated soils by modified Fenton oxidation at neutral pH was defined as the main objective of the current study.Methods:Varying concentrations of H2O2 (0-500 mM and iron nano oxide (0-60 mM, reaction times of 0.5-24 hours and variety of chelating agents including sodium pyrophosphate, sodium citrate, ethylene diamine tetraacetic, fulvic and humic acid were all investigated at pyrene concentration levels of 100 – 500 mg/kg.Results:By applying the following conditions (H2O2 concentration of 300 mM, iron nano oxide of 30 mM, sodium pyrophosphate as chelating agent, pH 3 and reaction time of 6 hours the pyrene removal efficiency at an initial concentration of 100 mg/kg was found to be 99%. As a result, the pyrene concentration was reduced from 100 to 93 mg/kg once the above optimum conditions are met.Conclusions:In this research, the modified Fenton oxidation using iron nano oxide at optimum conditions is introduced as an efficient alternative method in lab scale for chemical remediation or pre-treatment of soils contaminated by pyrene at neutral pH.

  18. Nanophase iron oxides as a key ultraviolet sunscreen for ancient photosynthetic microbes

    Science.gov (United States)

    Bishop, Janice L.; Louris, Stephanie K.; Rogoff, Dana A.; Rothschild, Lynn J.

    2006-07-01

    We propose that nanophase iron-oxide-bearing materials provided important niches for ancient photosynthetic microbes on the Earth that ultimately led to the oxygenation of the Earth's atmosphere and the formation of iron-oxide deposits. Atmospheric oxygen and ozone attenuate ultraviolet radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose early and played a critical role in subsequent evolution. Of primary importance was protection below 290 nm, where peak nucleic acid (~260 nm) and protein (~280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal ultraviolet radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Furthermore, they were available in early environments, and are synthesized by many organisms. Based on experiments using nanophase ferric oxide/oxyhydroxide minerals as a sunscreen for photosynthetic microbes, we suggest that iron, an abundant element widely used in biological mechanisms, may have provided the protection that early organisms needed in order to be able to use photosynthetically active radiation while being protected from ultraviolet-induced damage. The results of this study are broadly applicable to astrobiology because of the abundance of iron in other potentially habitable bodies and the evolutionary pressure to utilize solar radiation when available as an energy source. This model could apply to a potential life form on Mars or other bodies where liquid water and ultraviolet radiation could have been present at significant levels. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the

  19. In situ synthesis of hydroxyapatite nanocomposites using iron oxide nanofluids at ambient conditions.

    Science.gov (United States)

    Sheikh, Lubna; Mahto, Neha; Nayar, Suprabha

    2015-01-01

    This paper describes a simple method for the room temperature synthesis of magnetite/hydroxyapatite composite nanocomposites using ferrofluids. The in situ synthesis of magnetic-hydroxyapatite results in a homogenous distribution of the two phases as seen both in transmission electron micrographs and assembled to a micron range in the confocal micrographs. The selected area diffraction pattern analysis shows the presence of both phases of iron oxide and hydroxyapatite. To the dialyzed ferrofluid, the constituents of hydroxyapatite synthesis was added, the presence of the superparamagnetic iron oxide particles imparts directionality to the hydroxyapatite crystal growth. Electron probe microanalysis confirms the co-existence of both iron and calcium atoms. Vibrating Sample magnetometer data shows magnetization three times more than the parent ferrofluid, the local concentration of iron oxide nanoparticles affects the strength of dipolar interparticle interactions changing the energy barrier for determining the collective magnetic behavior of the sample. The limitations inherent to the use of external magnetic fields which can be circumvented by the introduction of internal magnets located in the proximity of the target by a minimal surgery or by using a superparamagnetic scaffold under the influence of externally applied magnetic field inspires us to increase the magnetization of our samples. The composite in addition shows anti-bacterial properties against the two gram (-ve) bacteria tested. This work is significant as magnetite-hydroxyapatite composites are attracting a lot of attention as adsorbents, catalysts, hyperthermia agents and even as regenerative medicine. PMID:25589209

  20. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Raid A., E-mail: raidismail@yahoo.com [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Sulaiman, Ghassan M. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq); Abdulrahman, Safa A. [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Marzoog, Thorria R. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq)

    2015-08-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe{sub 2}O{sub 3}) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field.

  1. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates

    Indian Academy of Sciences (India)

    M Nidhin; R Indumathy; K J Sreeram; Balachandran Unni Nair

    2008-02-01

    We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharide templates. Interaction between iron (II) sulfate and template has been carried out in aqueous phase, followed by the selective and controlled removal of the template to achieve narrow distribution of particle size. Particles of iron oxide obtained have been characterized for their stability in solvent media, size, size distribution and crystallinity and found that when the negative value of the zeta potential increases, particle size decreases. A narrow particle size distribution with 100 = 275 nm was obtained with chitosan and starch templates. SEM measurements further confirm the particle size measurement. Diffuse reflectance UV–vis spectra values show that the template is completely removed from the final iron oxide particles and powder XRD measurements show that the peaks of the diffractogram are in agreement with the theoretical data of hematite. The salient observations of our study shows that there occurs a direct correlation between zeta potential, polydispersity index, bandgap energy and particle size. The crystallite size of the particles was found to be 30–35 nm. A large negative zeta potential was found to be advantageous for achieving lower particle sizes, owing to the particles remaining discrete without agglomeration.

  2. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    Science.gov (United States)

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4.7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  3. Origin of iron oxide spherules in the banded iron formation of the Bababudan Group, Dharwar Craton, Southern India

    Science.gov (United States)

    Orberger, Beate; Wagner, Christiane; Wirth, Richard; Quirico, Eric; Gallien, Jean Paul; Derré, Colette; Montagnac, Gilles; Noret, Aurélie; Jayananda, Mudlappa; Massault, Marc; Rouchon, Virgile

    2012-06-01

    The banded iron formation of the Bababudan Group (Western Dharwar Craton, India) is composed of millimetric to centimetric alternating quartz and grey to red Fe-oxide bands. Major phases are quartz and martite (hematized magnetite) with minor Fe-sulfides and Ca-Mg-Fe-carbonates. Micrometric Fe-oxide spherules fill cavities in discontinuous micrometric layers of Fe-oxides that occur in the massive quartz layers and at the interface of massive Fe-oxide and quartz layers. The spherules are composed of micrometric radial plates of hematite intergrown with nanometric magnetite. These spherules contain carbonaceous matter (CM) with nanometric Fe-particles and have low N contents (˜900 ppm; CM1). The spherule formation is attributed to a low temperature hydrothermal process (150-200 °C) at around 2.52 Ga, possibly favored by the presence of CM. These hydrothermal fluids dissolved diagenetic interstitial sulfides or carbonates creating cavities which, provided space for the spherule precipitation. Carbonaceous matter of semi-anthracite maturity is encapsulated in quartz grains adjacent to the Fe-oxide spherules (CM2) and it is thus concluded that CM1 and CM2 are most likely contemporaneous and of the same origin, either incorporated at the time of BIF formation or during the hydrothermal event at 2.52 Ga from the underlying phyllitised black shales. Carbonaceous matter (CM3) was also found around the Fe-oxide spherules and the martite grains. CM3 has much higher N contents (>5000 ppm), is of a lower maturity than CM1 and CM2, and is related to weathering, which is also indicated by the presence of goethite and kaolinite. The δ13C of all CMs varies from -19.4 to -24.7‰, similar to values measured in the underlying phyllitised black shales and likely reflect denitrifying microbial activity.

  4. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Combining ab initio modeling and 57Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces

  5. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Brymora, Katarzyna [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Fouineau, Jonathan; Eddarir, Asma; Chau, François [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Yaacoub, Nader; Grenèche, Jean-Marc [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Pinson, Jean; Ammar, Souad [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Calvayrac, Florent, E-mail: florent.calvayrac@univ-lemans.fr [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France)

    2015-11-15

    Combining ab initio modeling and {sup 57}Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  6. Fixation of Selenium by Clay Minerals and Iron Oxides

    DEFF Research Database (Denmark)

    Hamdy, A. A.; Nielsen, Gunnar Gissel

    1977-01-01

    In studying Se fixation, soil components capable of retaining Se were investigated. The importance of Fe hydrous oxides in the fixation of Se was established. The clay minerals common to soils, such as kaolinite, montmorillonite and vermiculite, all exhibited Se fixation, but greater fixation...

  7. Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica

    International Nuclear Information System (INIS)

    Ultra-small superparamagnetic iron oxide nanoparticles were synthesized by co-precipitation of iron chloride salts with ammonia and then encapsulated with thin (∼2 nm) layers of silica. The particles have been characterized for size, diffraction pattern, surface charge, and magnetic properties. This rapid and economical synthesis has a number of industrial applications; however, the silica-coated particles have been optimized for use in medical applications such as magnetic resonance contrast agents and biosensors, and in DNA capturing, bioseparation and enzyme immobilization

  8. Morphology, chemical compositions and size distribution of rare earth oxides in pure iron

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The pure iron was melted and deoxidized by metallic Al and rare earth elements La, Ce and Y respectively at 1600℃ in avertical resistance furnace. The morphology, chemical composition and size distribution of the inclusions in deoxidized liquid ironhave been investigated by using of SEM and image-analysis techniques. The investigated results show that the deoxidation productsin molten iron are complex inclusions of rare earth oxide or Al2O3 combined with FeO finely distributed. The proper holding timeand rapid cooling rate can make inclusions finer. La, Y and Al are more effective than Ce for obtaining finely distributed inclusions.

  9. Effect of iron oxide content on the crystallisation of a diopside glass–ceramic glaze

    OpenAIRE

    Romero, Maximina; Rincón López, Jesús María; Acosta, Anselmo

    2002-01-01

    The effect of iron oxide content on the crystallisation of a diopside glass–ceramic glaze was investigated using a glass–ceramic frit in the K2O–ZnO–MgO–CaO–Al2O3–SiO2 system and a granite waste glass. Measurements by X-ray diffraction (XRD) combined with scanning electron microscopy (SEM) and EDX microanalysis showed that the distribution of Fe3+ ions among different crystalline phases such as franklinite (ZnFe2O4) and hematite Fe2O3 depends on the iron content in the original diopside mixtu...

  10. The influence of thermal annealing on structure and oxidation of iron nanowires

    Directory of Open Access Journals (Sweden)

    Krajewski Marcin

    2015-03-01

    Full Text Available Raman spectroscopy as well as Mössbauer spectroscopy were applied in order to study the phase composition of iron nanowires and its changes, caused by annealing in a neutral atmosphere at several temperatures ranging from 200°C to 800°C. As-prepared nanowires were manufactured via a simple chemical reduction in an external magnetic field. Both experimental techniques proved formation of the surface layer covered by crystalline iron oxides, with phase composition dependent on the annealing temperature (Ta. At higher Ta, hematite was the dominant phase in the nanowires.

  11. Synthesis and magnetic properties of magnetite-silicate nanocomposites derived from iron oxide of bacterial origin

    International Nuclear Information System (INIS)

    Magnetic nanocomposites containing magnetite (Fe3O4) nanoparticles were prepared from iron oxide microtubules produced by Leptothrix ochracea, a species of water-habitant iron-oxidizing bacteria. The microtubules were mainly composed of Si-containing ferric hydroxide that shows a broad X-ray diffraction pattern similar to that of 2-line ferrihydrite. After moderate heat treatment in a reductive atmosphere above 325 °C, the ferric ions were partially reduced to a ferrous state, and nanocrystalline Fe3O4 with a spinel-type structure was formed in a noncrystalline silicate matrix. The average crystallite size of the Fe3O4 nanoparticles was estimated to be in the order of a few nanometers. The sample heat-treated at 500 °C exhibited considerable magnetization together with superparamagnetic behavior at room temperature, and super-spin-glass interaction occurred at low temperature. On further heat treatment above 530 °C, Fe3O4 was reduced to wüstite (Fe1−xO) and finally crystallized into iron metal (α-Fe) and ferrous silicate (Fe2SiO4). -- Highlights: ► Iron oxides of bacterial origin are unique sources of magnetic nanocomposites. ► Fe3O4 nanoparticles with silicates were formed by reduction of the bacterial iron oxide. ► The sample heat-treated at 500 °C was a magnetic nanocomposite of Fe3O4 and amorphous silicate. ► It exhibits unique magnetic properties including superparamagnetism and super-spin-glass states.

  12. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes.

    Science.gov (United States)

    Huang, Li-Zhi; Hansen, Hans Christian B; Bjerrum, Morten Jannik

    2016-04-01

    Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30μAcm(-2) was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400μM of the nitroaromatic compound at a potential of -0.7V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant=0.28h(-1)) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant=6.9μM h(-1)). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and low over potential. PMID:26716570

  13. Two kinds of ferritin protect ixodid ticks from iron overload and consequent oxidative stress.

    Directory of Open Access Journals (Sweden)

    Remil Linggatong Galay

    Full Text Available Ticks are obligate hematophagous parasites that have successfully developed counteractive means against their hosts' immune and hemostatic mechanisms, but their ability to cope with potentially toxic molecules in the blood remains unclear. Iron is important in various physiological processes but can be toxic to living cells when in excess. We previously reported that the hard tick Haemaphysalis longicornis has an intracellular (HlFER1 and a secretory (HlFER2 ferritin, and both are crucial in successful blood feeding and reproduction. Ferritin gene silencing by RNA interference caused reduced feeding capacity, low body weight and high mortality after blood meal, decreased fecundity and morphological abnormalities in the midgut cells. Similar findings were also previously reported after silencing of ferritin genes in another hard tick, Ixodes ricinus. Here we demonstrated the role of ferritin in protecting the hard ticks from oxidative stress. Evaluation of oxidative stress in Hlfer-silenced ticks was performed after blood feeding or injection of ferric ammonium citrate (FAC through detection of the lipid peroxidation product, malondialdehyde (MDA and protein oxidation product, protein carbonyl. FAC injection in Hlfer-silenced ticks resulted in high mortality. Higher levels of MDA and protein carbonyl were detected in Hlfer-silenced ticks compared to Luciferase-injected (control ticks both after blood feeding and FAC injection. Ferric iron accumulation demonstrated by increased staining on native HlFER was observed from 72 h after iron injection in both the whole tick and the midgut. Furthermore, weak iron staining was observed after Hlfer knockdown. Taken together, these results show that tick ferritins are crucial antioxidant molecules that protect the hard tick from iron-mediated oxidative stress during blood feeding.

  14. Iron and hydroxyl radicals in lipid oxidation: Fenton reactions in lipid and nucleic acids co-oxidized with lipid

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.; Schaich, K.M.

    1987-01-01

    Hydroxyl radicals can initiate lipid peroxidation in liquids, but their high reactivity affords reaction paths so short that they are unlikely to reach lipids in membrane bilayers when formed exteriorly. EPR studies of Fenton-like reactions inducing oxidation in bulk lipids indicate that iron-dependent initiation of lipid oxidation in organelles and vesicles may result from hydroxyl radicals formed within the hydrophobic membrane interiors, where they would be inaccessible to typical hydrophilic radical scavengers. The cytotoxic or cytogenetic results of lipid peroxidation, especially in nuclear membranes, may include radiominetic chemical damage to adjacent DNA or nucleoprotein. Preliminary product analyses of nucleic acid basis cooxidized with lipids in vitro support this view.

  15. Magnetic mineralogy of Jurassic argillite specimens from Eastern Paris Basin (France): coexisting iron-sulphides and iron-oxides

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, L.; Bouchez, J.L.; Siqueira, R. [Universite Paul-Sabatier, Lab. des Mecanismes et Transferts en Geologie (LMTG - UMR 5563 CNRS), 31 - Toulouse (France); Esteban, L. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France); Geraud, Y. [Ecole et Observatoire des Sciences de la Terre de Strasbourg (EOST), 67 - Strasbourg (France)

    2005-07-01

    Core-specimens belonging to the top and basal parts of the Callovo-Oxfordian dark-grey clay-rich sediment (Cox) of Eastern Paris Basin that were drilled by Andra (the French radioactive waste management agency), were subjected to a thorough magnetic mineralogy study and SEM observations, in order to characterize the nature and origin of the ferromagnetic fraction. Specimens from the top part of the Cox, best represented by T1-337, have large magnetic variabilities while those from the base, typified by T1-455, have very constant properties. Susceptibility magnitudes that vary from 12 to 94 {mu}SI (T1-337) and from 116 to 133 {mu}SI (T1-455), call for a dominant paramagnetic fraction mainly due to the iron-bearing clay fraction (smectite, illite) that make up to 45% of the rock-volume. The ferromagnetic contributions to susceptibility range from {approx}25% in T1-337 to {approx}12% in T1-455 and result from the addition of two main ferromagnetic fractions, or phases, as evidenced from coercivity spectra obtained after progressive AF-demagnetization of both the natural and the induced remanence. A soft fraction systematically appears in-between 4 and 8 mT, and a hard one in-between 10 and 22 mT. Interestingly, the natural remanence of the soft fraction keeps the memory of the (sub) present magnetic north, allowing core-reorientation, while the hard fraction has a random NRM vector. The soft magnetic fraction is argued to equate with the ubiquitous early diagenetic iron-sulphides, as observed in SEM, and that form various arrangements of framboidal aggregates of micron-size pyrite grains to which greigite is likely associated. Likewise, the hard fraction is equated with the less abundant Ti-Fe-oxide clastic grains, consistent with the random nature of the NRM. Hence, the coexistence in the same sediment of iron-sulphides and iron-oxides, classical environmental markers of redox conditions, is here related to distinct origins rather than to changing conditions during

  16. The iron and cerium oxide influence on the electric conductivity and the corrosion resistance of anodized aluminium

    International Nuclear Information System (INIS)

    The influence of different treatments on the aluminum system covered with aluminum oxide is investigated. The aluminum anodization in sulphuric media and in mixed sulphuric and phosphoric media was used to alter the corrosion resistance, thickness, coverage degree and microhardness of the anodic oxide. Iron electrodeposition inside the anodic oxide was used to change its electric conductivity and corrosion resistance. Direct and pulsed current were used for iron electrodeposition and the Fe(SO4)2(NH4)2.6H2O electrolyte composition was changed with the addition of boric and ascorbic acids. To the sealing treatment the CeCl3 composition was varied. The energy dispersive x-ray (EDS), the x-ray fluorescence spectroscopy (FRX) and the morphologic analysis by scanning electronic microscopy (SEM) allowed to verify that, the pulsed current increase the iron content inside the anodic layer and that the use of the additives inhibits the iron oxidation. The chronopotentiometric curves obtained during iron electrodeposition indicated that the boric and ascorbic acids mixture increased the electrodeposition process efficiency. The electrochemical impedance spectroscopy (EIE), the Vickers (Hv) microhardness measurements and morphologic analysis evidenced that the sealing treatment improves the corrosion resistance of the anodic film modified with iron. The electrical impedance (EI) technique allowed to prove the electric conductivity increase of the anodized aluminum with iron electrodeposited even after the cerium low concentration treatment. Iron nanowires were prepared by using the anodic oxide pores as template. (author)

  17. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    Science.gov (United States)

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology. PMID:22954182

  18. Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays

    International Nuclear Information System (INIS)

    Here we demonstrate how monodisperse iron oxide nanocubes and nanospheres with average sizes between 5 and 27 nm can be synthesized by thermal decomposition. The relative importance of the purity of the reactants, the ratio of oleic acid and sodium oleate, the maximum temperature, and the rate of temperature increase, on robust and reproducible size and shape-selective iron oxide nanoparticle synthesis are identified and discussed. The synthesis conditions that generate highly monodisperse iron oxide nanocubes suitable for producing large ordered arrays, or mesocrystals are described in detail. (paper)

  19. Zeta-Fe2O3 – A new stable polymorph in iron(III) oxide family

    OpenAIRE

    Jiří Tuček; Libor Machala; Shigeaki Ono; Asuka Namai; Marie Yoshikiyo; Kenta Imoto; Hiroko Tokoro; Shin-ichi Ohkoshi; Radek Zbořil

    2015-01-01

    Iron(III) oxide shows a polymorphism, characteristic of existence of phases with the same chemical composition but distinct crystal structures and, hence, physical properties. Four crystalline phases of iron(III) oxide have previously been identified: α-Fe2O3 (hematite), β-Fe2O3, γ-Fe2O3 (maghemite), and ε-Fe2O3. All four iron(III) oxide phases easily undergo various phase transformations in response to heating or pressure treatment, usually forming hexagonal α-Fe2O3, which is the most thermo...

  20. Moessbauer study of natural iron-oxide complexes

    International Nuclear Information System (INIS)

    Typical Fe-oxide complex assemblage in rock samples taken from Lake Victoria Goldfield in Tanzania was studied using Moessbauer spectroscopy between room temperature and 4.2 K. The room temperature Moessbauer spectrum of a typical rock sample from the region is a mixture of two-line patterns and a six-line pattern. At 200 K the two-line pattern starts to develop into a rather asymmetric, broad width six-line pattern which at 4.2 K has hyperfine field, B82, of about 50 T, δ = -0.20 mm/s and δ= 0.24 mm/s. The analysis of the 57Fe-Moessbauer spectra shows that the rock sample is composed of hexagonal pyrrhotite, amphibole silicate and α-FeOOH. Details of the characterisation of the phases of the Fe-oxide complex, α-FeOOH is the basis of the report

  1. Magnetism in iron implanted oxides: a status report

    International Nuclear Information System (INIS)

    Emission Mössbauer spectroscopy on 57Fe fed by 57Mn ions implanted in the metal oxides ZnO, MgO and Al2O3 has been performed. The implanted ions occupy different lattice sites and charge states. A magnetic part of the spectra in each oxide can be assigned to Fe3 +  ions in a paramagnetic state with unusually long relaxation time observable to temperatures up to several hundreds Kelvin. Earlier expectations that the magnetic spectra could correspond to an ordered magnetic state could not be confirmed. A clear decision for paramagnetism and against an ordered magnetic state was achieved by applying a strong magnetic field of 0.6 Tesla. The relaxation times deduced were compared to spin–lattice relaxation times from electron paramagnetic resonance (EPR).

  2. Multiferroic Iron Oxide Thin Films at Room-Temperature

    OpenAIRE

    Gich, Marti; Fina, Ignasi; Morelli, Alessio; Sanchez, Florencio; Alexe, Marin; Gazquez, Jaume; Fontcuberta, Josep; Roig, Anna

    2014-01-01

    In spite of being highly relevant for the development of a new generation of information storage devices, not many single-phase materials displaying magnetic and ferroelectric orders above room temperature are known. Moreover, these uncommon materials typically display insignificant values of the remanent moment in one of the ferroic orders or are complex multicomponent oxides which will be very challenging to integrate in devices. Here we report on the strategy to stabilize the metastable ep...

  3. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications

    International Nuclear Information System (INIS)

    Iron oxide magnetic nano-particles (MNPs) have been prepared in aqueous solution by a modified co-precipitation method. Surface modifications have been carried out using tetraethoxysilane (TEOS), triethoxysilane (TES) and 3-aminopropyltrimethoxysilane (APTMS). The uncoated and coated particle products have been characterized with transmission electron microscope (TEM), energy dispersive X-ray (EDX) spectroscopy, infrared (IR) and Raman spectroscopy, and thermal gravimetric analysis (TGA). The particle sizes were determined from TEM images and found to have mean diameters of 13, 16 and 14 nm for Fe3O4, TES/Fe3O4 and APTMS/Fe3O4, respectively. IR and Raman spectroscopy has been applied to study the effect of thermal annealing on the uncoated and coated particles. The results have shown that magnetite nano-particles are converted to maghemite at 109 °C and then to hematite by 500 °C. In contrast, the study of the effect of thermal annealing of micro-crystalline magnetite by IR spectroscopy revealed that the conversion to hematite began by 300 °C and that no maghemite could be identified as an intermediate phase. IR spectra and TGA measurements revealed that the Si–H and 3-aminopropyl functional groups in TES and APTMS coated magnetite nano-particles decomposed below 500 °C while the silica layer around the iron oxide core remained unchanged. The molecular ratio of APTMS coating to iron oxide core was determined to be 1:7 from the TGA data. Raman scattering signals have indicated that MNPs could be converted to maghemite and then to hematite using increasing power of laser irradiation in a manner similar to that observed for thermal annealing. - Highlights: ► A modified co-precipitation method to prepare dispersive iron oxide magnetic nano-particles. ► Coating the nano-particle with different silicas. ► Estimating the numbers of iron oxide and 3-aminopropylsilica in the coated particles. ► Silica coating may help to protect iron oxide nano-particles from

  4. Biogenic oxides from neutrophilic iron bacteria and possibilities for application in the nanotechnology

    International Nuclear Information System (INIS)

    The aim of this study is to obtain and characterize the ferric oxides/(oxy)hydroxides formed after cultivation of bacteria under laboratory conditions. The pure cultures of these bacteria isolated from natural habitats are identified by the methods of classical and molecular taxonomy as strains of the Leptothrix genus. Adler (AM) and Silicon iron glucose peptone (SIGP) media are the most appropriate ones for obtaining the iron oxides. The characterization of the oxides and sheaths is performed by different physical methods. The sheaths are formed in a SIGP medium. Light micrograph images and SEM revealed the average size and diameter of the sheaths. The XRD measurements showed the composition of the oxides obtained, as well as the average size of the iron particles (up to 30 nm). The TEM micrographs showed the shape of the biogenic nanoparticles, while the magnetic measurements demonstrated the superparamagnetic character of the magnetic part of the biomaterials. The new biogenic materials are promising for application in magneto electronic for building biosensors

  5. Strain induced anomalous red shift in mesoscopic iron oxide prepared by a novel technique

    Indian Academy of Sciences (India)

    T N Narayanan; D Sakthi Kumar; Yasuhiko Yoshida; M R Anantharaman

    2008-10-01

    Nano magnetic oxides are promising candidates for high density magnetic storage and other applications. Nonspherical mesoscopic iron oxide particles are also candidate materials for studying the shape, size and strain induced modifications of various physical properties viz. optical, magnetic and structural. Spherical and nonspherical iron oxides having an aspect ratio, ∼2, are synthesized by employing starch and ethylene glycol and starch and water, respectively by a novel technique. Their optical, structural, thermal and magnetic properties are evaluated. A red shift of 0.24 eV is observed in the case of nonspherical particles when compared to spherical ones. The red shift is attributed to strain induced changes in internal pressure inside the elongated iron oxide particles. Pressure induced effects are due to the increased overlap of wave functions. Magnetic measurements reveal that particles are superparamagnetic. The marked increase in coercivity in the case of elongated particles is a clear evidence for shape induced anisotropy. The decreased specific saturation magnetization of the samples is explained on the basis of weight percentage of starch, a nonmagnetic component and is verified by TGA and FTIR studies. This technique can be modified for tailoring the aspect ratio and these particles are promising candidates for drug delivery and contrast enhancement agents in magnetic resonance imaging.

  6. Hydrogen Production from the Water-Gas Shift Reaction on Iron Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    R. Bouarab

    2014-01-01

    Full Text Available Unsupported and supported iron oxide catalysts were prepared by incipient wetness impregnation method and studied in the water-gas shift reaction (WGSR in the temperature range 350–450°C. The techniques of characterization employed were BET, X-ray diffraction, acid-base measurements by microcalorimetry and in situ diffuse reflectance infrared Fourier transform spectroscopy. MgO, TiO2, or SiO2 was added in order to (i obtain a catalyst exempt of chromium oxide and (ii study the effect of their acid-base properties on catalytic activity of Fe2O3. X-ray diffraction studies, and calorimetric and diffuse reflectance infrared Fourier transform measurements reveal a complete change in the physicochemical properties of the iron oxide catalyst after MgO addition due to the formation of the spinel oxide phase. These results could indicate that the MgFe2O4 phase stabilizes the reduced iron phase, preventing its sintering under realistic WGSR conditions (high H2O partial pressures.

  7. Preparation and characterization of nanomaterials based on bifacial carbon nanotubes and iron oxides: Application in catalysis

    Directory of Open Access Journals (Sweden)

    Zafour-Hadj-Ziane A.

    2013-09-01

    Full Text Available The application of magnetic particles technology for the development of new nanomaterials has received considerable attention in recent years. In this context, the objective of this study is firstly, to prepare new catalytic materials that gather the strong adsorption capacities of carbon nanotubes and magnetic properties of iron, it concerns nanocomposites based on a mixture of carbon nanotubes in a very small amounts and iron oxide. Secondly we want to appear their capacities in catalytic oxidation reactions of phenol. Synthesis under the optimal conditions was carried out at different pH. And the characterization of this new nanomaterial reveals a good specific surface area BET, the identification of carbon nanotubes within the matrix was performed by infrared spectroscopy and transmission electron microscopy. The use of this new material as a catalytic support in catalytic oxidation reactions of phenol indicates the high selectivity of this latter and a yield better than this obtained with iron oxide supported by activated carbon. The good catalyst regeneration of the new catalysis and the improvement in their properties are the interesting parameters for the new type nanomaterials.

  8. Degradation of toluene, ethylbenzene, and xylene using heat and chelated-ferrous iron activated persulfate oxidation

    Science.gov (United States)

    Mondal, P.; Sleep, B.

    2014-12-01

    Toluene, ethylbenze, and xylene (TEX) are common contaminants in the subsurface. Activated persulfate has shown promise for degrading a wide variety of organic compounds. However, studies of persulfate application for in situ degradation of TEX and effects on the subsequent bioremediation are limited. In this work, degradation studies of TEX in aqueous media and soil are being conducted using heat activated and chelated-ferrous iron activated persulfate oxidation in batch and flow-through column experiments. In the batch experiments, sodium persulfate is being used at different concentrations to provide an initial persulfate to TEX molar ratios between 10:1 and 100:1. Sodium persulfate solutions are being activated at 20, 37, 60, and 80 oC temperatures for the heat activated oxidation. For the chelated-ferrous iron activated oxidation, ferrous iron and citric acid, both are being used at concentration of 5 mM. In the experiments with soil slurry, a soil to water ratio of 1 to 5 is being used. Flow through water saturated column experiments are being conducted with glass columns (45 cm in length and 4 cm in diameter) uniformly packed with soils, and equilibrated with water containing TEX at the target concentrations. Both the heat activation and chelated-ferrous iron activation of persulfate are being employed in the column experiments. Future experiments are planned to determine the suitability of persulfate oxidation of TEX on the subsequent biodegradation using batch microcosms containing TEX degrading microbial cultures. In these experiments, the microbial biomass will be monitored using total phospholipids, and the microbial community will be determined using quantitative real-time polymerase chain reaction (qPCR) on the extracted DNA. This study is expected to provide suitable operating conditions for in situ chemical oxidation of TEX with activated persulfate followed by bioremediation.

  9. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues.

    Science.gov (United States)

    Zhu, Feng; Li, Yubing; Xue, Shengguo; Hartley, William; Wu, Hao

    2016-05-01

    In order to successfully establish vegetation on bauxite residue, properties such as aggregate structure and stability require improvement. Spontaneous plant colonization on the deposits in Central China over the last 20 years has revealed that natural processes may improve the physical condition of bauxite residues. Samples from three different stacking ages were selected to determine aggregate formation and stability and its relationship with iron-aluminium oxides and organic carbon. The residue aggregate particles became coarser in both dry and wet sieving processes. The mean weight diameter (MWD) and geometry mean diameter (GMD) increased significantly, and the proportion of aggregate destruction (PAD) decreased. Natural stacking processes could increase aggregate stability and erosion resistant of bauxite residues. Free iron oxides and amorphous aluminium oxides were the major forms in bauxite residues, but there was no significant correlation between the iron-aluminium oxides and aggregate stability. Aromatic-C, alkanes-C, aliphatic-C and alkenes-C were the major functional groups present in the residues. With increasing stacking age, total organic carbon content and aggregate-associated organic carbon both increased. Alkanes-C, aliphatic-C and alkenes-C increased and were mainly distributed in macro-aggregates, whereas aromatic-C was mainly distributed in <0.05-mm aggregates. Organic carbon stability in micro-aggregates was higher than that in macro-aggregates and became more stable. Organic carbon contents in total residues, and within different aggregate sizes, were all negatively correlated with PAD. It indicated that organic materials had a more significant effect on macro-aggregate stability and the effects of iron-aluminium oxides maybe more important for stability of micro-aggregates. PMID:26832865

  10. Reduction of iron oxides during the pyrometallurgical processing of red mud

    Science.gov (United States)

    Raspopov, N. A.; Korneev, V. P.; Averin, V. V.; Lainer, Yu. A.; Zinoveev, D. V.; Dyubanov, V. G.

    2013-01-01

    The results of experiments on the use of red mud in traditional pyrometallurgical processes and plants are presented. The red muds of the Ural Aluminum Plant (UAZ, Kamensk-Ural'skii) and the Alyum Plant (Tul'chiya) are shown to have similar phase and chemical compositions. The morphology of the iron oxides in red mud samples taken from mud storage is studied by Mössbauer spectroscopy. It is found that the metallic (cast iron) and slag phases that form during the pyrometallurgical processing of red mud by melting with a carbon reducer in the temperature range 1200-1500°C are clearly separated. Cast iron can be used in steelmaking, and the slag can be used for hydrometallurgical processing and extraction of nonferrous metals and for the building industry after correcting its composition.

  11. Electrode reactions of iron oxide-hydroxide colloids.

    Science.gov (United States)

    Mahmoudi, Leila; Kissner, Reinhard

    2014-11-01

    Small-sized FeO(OH) colloids stabilised by sugars, commercially available for the clinical treatment of iron deficiency, show two waves during cathodic polarographic sweeps, or two current maxima with stationary electrodes, in neutral to slightly alkaline aqueous medium. Similar signals are observed with Fe(III) in alkaline media, pH > 12, containing citrate in excess. Voltammetric and polarographic responses reveal a strong influence of fast adsorption processes on gold and mercury. Visible spontaneous accumulation was also observed on platinum. The voltammetric signal at more positive potential is caused by Fe(III)→Fe(II) reduction, while the one at more negative potential has previously been assigned to Fe(II)→Fe(0) reduction. However, the involvement of adsorption phenomena leads us to the conclusion that the second cathodic current is caused again by Fe(III)→Fe(II), of species deeper inside the particles than those causing the first wave. This is further supported by X-ray photoelectron spectra obtained after FeO(OH) particle adsorption and reduction on a gold electrode surface. The same analysis suggests that sucrose stabilising the colloid is still bound to the adsorbed material, despite dilution and rinsing. PMID:25188440

  12. Biomolecular crystals for material applications and a mechanistic study of an iron oxide nanoparticle synthesis

    Science.gov (United States)

    Falkner, Joshua Charles

    The three projects within this work address the difficulties of controlling biomolecular crystal formats (i.e. size and shape), producing 3-D ordered composite materials from biomolecular crystal templates, and understanding the mechanism of a practical iron oxide synthesis. The unifying thread consistent throughout these three topics is the development of methods to manipulate nanomaterials using a bottom-up approach. Biomolecular crystals are nanometer to millimeter sized crystals that have well ordered mesoporous solvent channels. The overall physical dimensions of these crystals are highly dependent on crystallization conditions. The controlled growth of micro- and nanoprotein crystals was studied to provide new pathways for creating smaller crystalline protein materials. This method produced tetragonal hen egg-white lysozyme crystals (250--100,000 nm) with near monodisperse size distributions (membranes or templates. In this work, the porous structure of larger cowpea mosaic virus crystals was used to template metal nanoparticle growth within the body centered cubic crystalline network. The final composite material was found to have long range ordering of palladium and platinum nonocrystal aggregates (10nm) with symmetry consistent to the virus template. Nanoparticle synthesis itself is an immense field of study with an array of diverse applications. The final piece of this work investigates the mechanism behind a previously developed iron oxide synthesis to gain more understanding and direction to future synthesis strategies. The particle growth mechanism was found to proceed by the formation of a solvated iron(III)oleate complex followed by a reduction of iron (III) to iron (II). This unstable iron(II) nucleates to form a wustite (FeO) core which serves as an epitaxial surface for the magnetite (Fe3O4) shell growth. This method produces spherical particles (6-60nm) with relative size distributions of less than 15%.

  13. Research and application of the intensification of activities of iron and manganese oxidizing bacteria's for drinking water treatment

    OpenAIRE

    Mažeikienė, Aušra

    2005-01-01

    Iron and manganese – the main components in Lithuanian groundwater, not following requirements of norms regulate the water quality. Now the most advanced method for removal of the mentioned substances is non-reagent technologies, where the important role is the on biological oxidation. This work includes experimental examination of the hypothesis, affirming that bacteria’s, oxidising iron and manganese can grow in some Lithuanian water treatment and can increase the removal of iron and mangan...

  14. Amoxicillin Oxidative Degradation Synthesized by Nano Zero Valent Iron

    Directory of Open Access Journals (Sweden)

    AR Yazdanbakhsh

    2016-03-01

    Full Text Available Introduction: Amoxicillin is one of the most important groups of pharmaceuticals that benefits humans and animals. However, antibiotics excertion in wastewaters and environment have emerged as a serious risk to the biotic environment, and their toxic effects can harm the organisms. Iron-based metallic nanoparticles have received special attention in regard with remediation of groundwater contaminants. In the typical nZVI-based bimetallic particle system, Fe acts as the reducing agent. Thus, the present study aimed to evaluate the synthesis and characteristics of nZVI in regard with degrading AMX. Methods: In this study, nZVI nanoparticles were synthesized using the liquid-phase reduction method by EDTA as a stabilizer material. Structure and properties of nanoparticles were characterized by BET, SEM, XRD and EDX analysis. A multi-variate analysis was applied using a response surface methodology (RSM in order to develop a quadratic model as a functional relationship between AMX removal efficiency and independent variables ( initial pH values, dosage of nZVI, contact time and amoxicillin concentration. The four independent variables of solution pH (2–10, AMX concentration (5-45mg/l, contact time (5-85 min and nanoparticles dose (0.25 – 1.25 g were transformed to the coded values. Results: The study results demonstrated that more than 69 % of AMX was removed by nZVI. The optimal AMX removal conditions using nZVI were found as 1.25 g of nZVI, pH 4, contact time of 80 min and concentration of 30 mg/l. Conclusions: The ability of nZVI in degradation of AMX revealed that these materials can serve as a potential nano material with respect to the environmental remediation.

  15. Computational searches for iron oxides at high pressures

    Science.gov (United States)

    Weerasinghe, Gihan L.; Pickard, Chris J.; Needs, R. J.

    2015-11-01

    We have used density-functional-theory methods and the ab initio random structure searching (AIRSS) approach to predict stable structures and stoichiometries of mixtures of iron and oxygen at high pressures. Searching was performed for 12 different stoichiometries at pressures of 100, 350 and 500 GPa, which involved relaxing more than 32 000 structures. We find that Fe2O3 and FeO2 are the only phases stable to decomposition at 100 GPa, while at 350 and 500 GPa several stoichiometries are found to be stable or very nearly stable. We report a new structure of Fe2O3 with P{{2}1}{{2}1}{{2}1} symmetry which is found to be more stable than the known Rh2O3(II) phase at pressures above  ˜233 GPa. We also report two new structures of FeO, with Pnma and R\\bar{3}m symmetries, which are found to be stable within the ranges 195-285 GPa and 285-500 GPa, respectively, and two new structures of Fe3O4 with Pca21 and P21/c symmetries, which are found to be stable within the ranges 100-340 GPa and 340-500 GPa, respectively. Finally, we report two new structures of Fe4O5 with P42/n and P\\bar{3}m1 symmetries, which are found to be stable within the ranges 100-231 GPa and 231-500 GPa, respectively. Our new structures of Fe3O4 and Fe4O5 are found to have lower enthalpies than their known structures within their respective stable pressure ranges.

  16. Biological Properties of Iron Oxide Nanoparticles for Cellular and Molecular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Claus-Christian Glüer

    2010-12-01

    Full Text Available Superparamagnetic iron-oxide particles (SPIO are used in different ways as contrast agents for magnetic resonance imaging (MRI: Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite, different coatings (none, dextran, carboxydextran, polystyrene and different hydrodynamic diameters (20–850 nm for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC, which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe3O4 particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.

  17. Briquetting of self-reducing blendings of waste iron oxide mixtures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Derungs, P.; Brouhon, J.M.; Harp, G. [ProfilARBED, Esch-sur Alzette (Luxembourg)

    2002-07-01

    The objectives of this project were to develop technologies to manufacture self-reducing briquettes out of waste iron oxides and to recycle them in an electric arc furnace or a cupola furnace. CRM has investigated and determined the optimal characteristics (binder, size, grain size, compositions and activator for the reduction reaction) for briquettes containing mixtures of mill scales, mill sludges, electric arc furnace (EAF) dust and coal as reduction agent. The goal of obtaining briquettes, in which iron oxides are totally reduced when these briquettes are loaded with the scrap into an electric arc furnace, was achieved. Trials at ProfilARBED have shown that it is possible to recycle mill and EAF by-products conditioned in self-reducing briquettes in an electric arc furnace without influence on the performance and on the environment. The iron content of the slag does not increase as the iron of the by-product is almost completely reduced. Zinc is completely removed and the concentration in the EAF dust increases. BFI has investigated the best recycling method for sludge and dust of the blast furnace and basic oxygen furnace, by laboratory testing and industrial trials in a cupola furnace. Self-reducing briquettes have been produced and reduced. The best conditions for achieving the required briquetting have been determined.

  18. Briquetting of self-reducing blendings of waste iron oxides mixture

    Energy Technology Data Exchange (ETDEWEB)

    Derungs, P.; Brouhon, J.M.; Harp, G. [ProfilARBED, Esch-sur-Alzette (Luxembourg)

    2002-07-01

    Protection of the environment increasingly requires the reuse of by-products from the steel industry. The objectives of the project were to develop technologies to manufacture self-reducing briquettes out of waste iron oxides and to recycle them in an electric arc furnace or a cupola furnace. CRM has investigated and determinated the optimal characteristics (binder, size, grain size, compositions and activator for the reduction reaction) for briquettes containing mixtures of mill scales, mill sludges, electric arc furnace (EAF) dust and coal as reduction agent. The goal to obtain briquettes, in which iron oxides are totally reduced when these briquettes are loaded with the scrap into an electric are furnace, was achieved. Trials at ProfilARBED have shown that it is possible to recycle mill and EAF by-products conditioned in self-reducing briquettes in an electric arc furnace without influence on the performance and on the environment. The iron content of the slag does not increase as the iron of the by-products is almost completely reduced. Zinc is completely removed and the concentration in the EAF dust increases. BFI has investigated the best recycling method for sludge and dust of the blast furnace (BF) and basic oxygen furnace (BOF), by laboratory testing and industrial trials in a cupola furnace. Self-reducing briquettes have been produced and reduced. The best conditions to achieve the required briquetting strength have been determinated. 29 refs., 74 figs., 38 tabs.

  19. Characterization and Localization of Iron-Oxidizing Proteins in Acid Mine Drainage Biofilms

    Science.gov (United States)

    Chan, C. S.; Thelen, M. P.; Hwang, M.; Banfield, J. F.

    2005-12-01

    As molecular geomicrobiologists, we are interested in the microbially-produced molecules that effect geochemical transformations, particularly proteins involved in lithotrophic energy generation. We have identified two such proteins produced by Leptospirillum group II microbes, which dominate biofilms floating on acidic waters in the Richmond Mine at Iron Mountain, CA. Leptospirillum generates energy by iron oxidation, producing the ferric iron catalyst responsible for pyrite oxidation, subsequent acid generation and toxic metal release. We have shown that a small (~16 kDa) soluble protein, cytochrome-579, extracted from environmental biofilm samples is capable of iron oxidation in vitro, consistent with prior studies on similar cytochromes from L. ferriphilum and ferrooxidans (Blake et al., 1993; Hart et al., 1991). The abundance of cyt579 and its ability to oxidize iron makes it a key link between microbial metabolism and acid mine drainage. Given the importance of cyt579 in biofilm sustenance as well as acid generation, we want to understand more about its distribution and also the architecture of the biofilm environment in which it functions. Using transmission electron microscopy (TEM) on ultrathin sections, we observe biofilms as thin as 15 microns with densely-packed cells in a matrix of polymers. To localize cyt579 in the biofilm, we purified the protein and developed antibodies for immunolabeling. The antibodies were shown to be highly specific for cyt579 using Western blots of whole biofilm lysate. Fluorescence- and gold-labeled secondary antibodies were used to visualize immunolabeled biofilms by confocal laser scanning microscopy and TEM, respectively. Preliminary results suggest that the cytochrome is on the bacterial cell surface or in the periplasm but not throughout the biofilm, as we had postulated due to the abundance of cytochrome in extracellular fractions of biofilm samples. These localization studies will be helpful in determining the

  20. A novel nanostructured iron oxide-gold bioelectrode for hydrogen peroxide sensing

    International Nuclear Information System (INIS)

    Fe3O4 nanoparticles covalently linked to a gold electrode have been used for immobilizing catalase (CAT) enzyme to sense the presence of various concentrations of H2O2. These nanoparticles ranging from 20 to 30 nm were synthesized by thermal co-precipitation of ferric and ferrous chlorides. SEM and XRD have been used for morphological and structural characterization of Fe3O4 nanoparticles. CAT enzyme was linked covalently to the surface of iron oxide using carbodiimide in phosphate buffer (pH 7.4) at 4 deg. C. The enzyme-iron oxide link was confirmed by FT-IR spectroscopy. Sensing studies carried out using cyclic voltammetry showed a linear response of the CAT/nano Fe3O4/Au bioelectrode towards H2O2 between 1.5 and 13.5 μM with a very sharp response time of 2 s.

  1. Facile one-step solvothermal synthesis of iron oxide/polypyrrole nanocomposites and their magnetic properties.

    Science.gov (United States)

    Wang, Hong; Lai, Xiaoyong

    2013-02-01

    Iron oxide/polypyrrole (PPy) nanocomposites (NCs) were prepared by a facile one-step solvothermal process using FeCl3 x 6H2O and pyrrole as starting materials. The resultant products were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and superconducting quantum interference device magnetometer (SQUID). TEM image suggested the mesoporosity of the iron oxide/polypyrrole nanocomposites and pyrrole is found to play an important role in controlling the final morphology and porosity of the products. Magnetic hysteresis measurement reveals that nanocomposite shows a superparamagnetic behavior, and possesses a larger saturation magnetization strength (M(s)) of about 15.06 emu/g at room temperature, which allows its application in adsorption or separation as magnetically recyclable materials. PMID:23646672

  2. Engineering of radiolabeled iron oxide nanoparticles for dual-modality imaging.

    Science.gov (United States)

    Ai, Fanrong; Ferreira, Carolina A; Chen, Feng; Cai, Weibo

    2016-07-01

    Over the last decade, radiolabeled iron oxide nanoparticles have been developed as promising contrast agents for dual-modality positron emission tomography/magnetic resonance imaging (PET/MRI) or single-photon emission computed tomography/magnetic resonance imaging (SPECT/MRI). The combination of PET (or SPECT) with MRI can offer synergistic advantages for noninvasive, sensitive, high-resolution, and quantitative imaging, which is suitable for early detection of various diseases such as cancer. Here, we summarize the recent advances on radiolabeled iron oxide nanoparticles for dual-modality imaging, through the use of a variety of PET (and SPECT) isotopes by using both chelator-based and chelator-free radiolabeling techniques. WIREs Nanomed Nanobiotechnol 2016, 8:619-630. doi: 10.1002/wnan.1386. PMID:26692551

  3. LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI

    International Nuclear Information System (INIS)

    This paper shows that superparamagnetic iron oxide nanoparticles (SPIONs) conjugated to luteinizing hormone releasing hormone (LHRH) (LHRH-SPIONs), can be used to target breast cancer cells. They also act as contrast enhancement agents during the magnetic resonance imaging of breast cancer xenografts. A combination of transmission electron microscopy (TEM) and spectrophotometric analysis was used in our experiments, to investigate the specific accumulation of the functionalized superparamagnetic iron oxide nanoparticles (SPIONs) in cancer cells. The contrast enhancement of conventional T2 images obtained from the tumor tissue and of breast cancer xenograft bearing mice is shown to be much greater than that in saline controls, when the tissues were injected with LHRH-SPIONs. Magnetic anisotropy multi-CRAZED images of tissues extracted from mice injected with SPIONs were also found to have enhanced MRI contrast in breast cancer xenografts and metastases in the lungs.

  4. T1-MRI Fluorescent Iron Oxide Nanoparticles by Microwave Assisted Synthesis

    Directory of Open Access Journals (Sweden)

    Riju Bhavesh

    2015-11-01

    Full Text Available Iron oxide nanoparticles have long been studied as a T2 contrast agent in MRI due to their superparamagnetic behavior. T1-based positive contrast, being much more favorable for clinical application due to brighter and more accurate signaling is, however, still limited to gadolinium- or manganese-based imaging tools. Though being the only available commercial positive-contrast agents, they lack an efficient argument when it comes to biological toxicity and their circulatory half-life in blood. The need arises to design a biocompatible contrast agent with a scope for easy surface functionalization for long circulation in blood and/or targeted imaging. We hereby propose an extremely fast microwave synthesis for fluorescein-labeled extremely-small iron oxide nanoparticles (fdIONP, in a single step, as a viable tool for cell labeling and T1-MRI. We demonstrate the capabilities of such an approach through high-quality magnetic resonance angiographic images of mice.

  5. LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J.; Fan, J. [Princeton Institute of Science and Technology of Materials and the Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Galiana, G. [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Branca, R.T. [Department of Chemistry, Duke University, Durham, NC 27708-0354 (United States); Clasen, P.L.; Ma, S. [Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015-3195 (United States); Zhou, J. [Princeton Institute of Science and Technology of Materials and the Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Leuschner, C. [Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808 (United States); Kumar, C.S.S.R.; Hormes, J. [Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy, Baton Rouge, LA 70806 (United States); Otiti, T. [Department of Physics, Makerere University, Kampala (Uganda); Beye, A.C. [Department of Physics, Cheikh Anta Diop University, Dakar (Senegal); Harmer, M.P.; Kiely, C.J. [Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015-3195 (United States); Warren, W. [Department of Chemistry, Duke University, Durham, NC 27708-0354 (United States); Haataja, M.P. [Princeton Institute of Science and Technology of Materials and the Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Soboyejo, W.O., E-mail: soboyejo@princeton.edu [Princeton Institute of Science and Technology of Materials and the Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-05-05

    This paper shows that superparamagnetic iron oxide nanoparticles (SPIONs) conjugated to luteinizing hormone releasing hormone (LHRH) (LHRH-SPIONs), can be used to target breast cancer cells. They also act as contrast enhancement agents during the magnetic resonance imaging of breast cancer xenografts. A combination of transmission electron microscopy (TEM) and spectrophotometric analysis was used in our experiments, to investigate the specific accumulation of the functionalized superparamagnetic iron oxide nanoparticles (SPIONs) in cancer cells. The contrast enhancement of conventional T2 images obtained from the tumor tissue and of breast cancer xenograft bearing mice is shown to be much greater than that in saline controls, when the tissues were injected with LHRH-SPIONs. Magnetic anisotropy multi-CRAZED images of tissues extracted from mice injected with SPIONs were also found to have enhanced MRI contrast in breast cancer xenografts and metastases in the lungs.

  6. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongyan [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Klem, Michael T.; Sebby, Karl B.; Singel, David J. [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Young, Mark [Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Douglas, Trevor [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Idzerda, Yves U. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States)], E-mail: Idzerda@montana.edu

    2009-02-15

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.

  7. Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells

    DEFF Research Database (Denmark)

    Maxwell, Dustin J; Bonde, Jesper; Hess, David A;

    2008-01-01

    The use of nanometer-sized iron oxide particles combined with molecular imaging techniques enables dynamic studies of homing and trafficking of human hematopoietic stem cells (HSC). Identifying clinically applicable strategies for loading nanoparticles into primitive HSC requires strictly defined...... culture conditions to maintain viability without inducing terminal differentiation. In the current study, fluorescent molecules were covalently linked to dextran-coated iron oxide nanoparticles (Feridex) to characterize human HSC labeling to monitor the engraftment process. Conjugating fluorophores to the...... vivo. Transplantation of purified primary human cord blood lineage-depleted and CD34(+) cells into immunodeficient mice allowed detection of labeled human HSC in the recipient bones. Flow cytometry was used to precisely quantitate the cell populations that had sequestered the nanoparticles and to...

  8. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia.

    Science.gov (United States)

    Blanco-Andujar, Cristina; Walter, Aurelie; Cotin, Geoffrey; Bordeianu, Catalina; Mertz, Damien; Felder-Flesch, Delphine; Begin-Colin, Sylvie

    2016-07-01

    Iron oxide nanoparticles are widely used for biological applications thanks to their outstanding balance between magnetic properties, surface-to-volume ratio suitable for efficient functionalization and proven biocompatibility. Their development for MRI or magnetic particle hyperthermia concentrates much of the attention as these nanomaterials are already used within the health system as contrast agents and heating mediators. As such, the constant improvement and development for better and more reliable materials is of key importance. On this basis, this review aims to cover the rational design of iron oxide nanoparticles to be used as MRI contrast agents or heating mediators in magnetic hyperthermia, and reviews the state of the art of their use as nanomedicine tools. PMID:27389703

  9. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)

    Science.gov (United States)

    Bauer, Lisa M.; Situ, Shu F.; Griswold, Mark A.; Samia, Anna Cristina S.

    2016-06-01

    Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI).Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal

  10. Sol-gel synthesis and characterization of mesoporous iron-titanium mixed oxide for catalytic application

    International Nuclear Information System (INIS)

    A mixed phase of mesoporous iron-titanium mixed oxide (ITMO) has been successfully synthesized by simple sol-gel technique by taking iron (II) sulphate and Ti-isopropoxide as the precursors and sodium dodecyl sulphate (SDS) as the surfactant. The prepared catalysts were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-vis spectra (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic absorption spectroscopy (AAS), N2 adsorption-desorptions isotherm, temperature programmed desorption (TPD) and gas chromatography (GC). Low-angle XRD (LAXRD) as well as surface area analysis confirms the mesoporosity nature of the catalysts. The phase and crystallinity were revealed by XRD study. The crystallinity of the catalysts increased with increase in calcinations temperature. Catalysts screening were performed for oxidation of cyclohexane to cyclohexanol and cyclohexanone.

  11. Surface modification of iron oxide nanoparticles and their conjuntion with water soluble polymers for biomedical application

    International Nuclear Information System (INIS)

    Superparamagnetic iron oxide nanoparticles (SPION) coated with suitable bio-compatible substances have been used in biomedicine, particularly in magnetic resonance imaging (MRI), tissue engineering, and hyperthermia and drug delivery. In this study, we describe the synthesis of SPION and its surface modification for in-vitro experiments. The particle diameter and structure were estimated by FESEM, TEM, XRD analyses. The saturation magnetization was characterized. SPION with a mean size of 12 nm have been prepared under N2 atmosphere, with support of natural polymeric starch, by controlling chemical coprecipitation of magnetite phase from aqueous solutions containing suitable salts ratios of Fe2+ and Fe3+. The surface of SPION-nanoparticles was treated with a coordinatable agent for higher dispersion ability in water and remaining the superparamagnetic behavior. The prepared iron oxide nanoparticles were coated with starch, dextran, PEG or MPEG to extend the application potential in the quite different engineering field of nano biomedicine.

  12. Surface modification of iron oxide nanoparticles and their conjuntion with water soluble polymers for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Thanh Huong; Lam Thi Kieu Giang; Nguyen Thanh Binh; Le Quoc Minh [Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)], E-mail: nthuong@ims.vast.ac.vn

    2009-09-01

    Superparamagnetic iron oxide nanoparticles (SPION) coated with suitable bio-compatible substances have been used in biomedicine, particularly in magnetic resonance imaging (MRI), tissue engineering, and hyperthermia and drug delivery. In this study, we describe the synthesis of SPION and its surface modification for in-vitro experiments. The particle diameter and structure were estimated by FESEM, TEM, XRD analyses. The saturation magnetization was characterized. SPION with a mean size of 12 nm have been prepared under N{sub 2} atmosphere, with support of natural polymeric starch, by controlling chemical coprecipitation of magnetite phase from aqueous solutions containing suitable salts ratios of Fe{sup 2+} and Fe{sup 3+}. The surface of SPION-nanoparticles was treated with a coordinatable agent for higher dispersion ability in water and remaining the superparamagnetic behavior. The prepared iron oxide nanoparticles were coated with starch, dextran, PEG or MPEG to extend the application potential in the quite different engineering field of nano biomedicine.

  13. Manipulating the dimensional assembly pattern and crystalline structures of iron oxide nanostructures with a functional polyolefin

    Science.gov (United States)

    He, Qingliang; Yuan, Tingting; Wang, Yiran; Guleria, Abhishant; Wei, Suying; Zhang, Guoqi; Sun, Luyi; Liu, Jingjing; Yu, Jingfang; Young, David P.; Lin, Hongfei; Khasanov, Airat; Guo, Zhanhu

    2016-01-01

    Controlled crystalline structures (α- and γ-phase) and assembly patterns (1-D, 2-D and 3-D) were achieved in the synthesized iron oxide (Fe2O3) nanoparticles (NPs) using polymeric surfactant-polypropylene grafted maleic anhydride (PP-g-MA) with different concentrations. In addition, the change of the crystalline structure from the α- and γ-phase also led to the significantly increased saturation magnetization and coercivity.Controlled crystalline structures (α- and γ-phase) and assembly patterns (1-D, 2-D and 3-D) were achieved in the synthesized iron oxide (Fe2O3) nanoparticles (NPs) using polymeric surfactant-polypropylene grafted maleic anhydride (PP-g-MA) with different concentrations. In addition, the change of the crystalline structure from the α- and γ-phase also led to the significantly increased saturation magnetization and coercivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07213a

  14. Toxicity, toxicokinetics and biodistribution of dextran stabilized Iron oxide Nanoparticles for biomedical applications.

    Science.gov (United States)

    Remya, N S; Syama, S; Sabareeswaran, A; Mohanan, P V

    2016-09-10

    Advancement in the field of nanoscience and technology has alarmingly raised the call for comprehending the potential health effects caused by deliberate or unintentional exposure to nanoparticles. Iron oxide magnetic nanoparticles have an increasing number of biomedical applications and hence a complete toxicological profile of the nanomaterial is therefore a mandatory requirement prior to its intended usage to ensure safety and to minimize potential health hazards upon its exposure. The present study elucidates the toxicity of in house synthesized Dextran stabilized iron oxide nanoparticles (DINP) in a regulatory perspective through various routes of exposure, its associated molecular, immune, genotoxic, carcinogenic effects and bio distribution profile. Synthesized ferrite nanomaterials were successfully coated with dextran (behavior changes or visible pathological lesions. Furthermore no anticipated health hazards are likely to be associated with the use of DINP and could be concluded that the synthesized DINP is nontoxic/safe to be used for biomedical applications. PMID:27451271

  15. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core-PNIPAM Shell Nanoparticles.

    Science.gov (United States)

    Kurzhals, Steffen; Zirbs, Ronald; Reimhult, Erik

    2015-09-01

    Superparamagnetic nanoparticles have been proposed for many applications in biotechnology and medicine. In this paper, it is demonstrated how the excellent colloidal stability and magnetic properties of monodisperse and individually densely grafted iron oxide nanoparticles can be used to manipulate reversibly the solubility of nanoparticles with a poly(N-isopropylacrylamide)nitrodopamine shell. "Grafting-to" and "grafting-from" methods for synthesis of an irreversibly anchored brush shell to monodisperse, oleic acid coated iron oxide cores are compared. Thereafter, it is shown that local heating by magnetic fields as well as global thermal heating can be used to efficiently and reversibly aggregate, magnetically extract nanoparticles from solution and spontaneously redisperse them. The coupling of magnetic and thermally responsive properties points to novel uses as smart materials, for example, in integrated devices for molecular separation and extraction. PMID:26270412

  16. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes

    Science.gov (United States)

    Geppert, Mark; Hohnholt, Michaela C.; Thiel, Karsten; Nürnberger, Sylvia; Grunwald, Ingo; Rezwan, Kurosch; Dringen, Ralf

    2011-04-01

    Magnetic iron oxide nanoparticles (Fe-NP) are currently considered for various diagnostic and therapeutic applications in the brain. However, little is known on the accumulation and biocompatibility of such particles in brain cells. We have synthesized and characterized dimercaptosuccinic acid (DMSA) coated Fe-NP and have investigated their uptake by cultured brain astrocytes. DMSA-coated Fe-NP that were dispersed in physiological medium had an average hydrodynamic diameter of about 60 nm. Incubation of cultured astrocytes with these Fe-NP caused a time- and concentration-dependent accumulation of cellular iron, but did not lead within 6 h to any cell toxicity. After 4 h of incubation with 100-4000 µM iron supplied as Fe-NP, the cellular iron content reached levels between 200 and 2000 nmol mg - 1 protein. The cellular iron content after exposure of astrocytes to Fe-NP at 4 °C was drastically lowered compared to cells that had been incubated at 37 °C. Electron microscopy revealed the presence of Fe-NP-containing vesicles in cells that were incubated with Fe-NP at 37 °C, but not in cells exposed to the nanoparticles at 4 °C. These data demonstrate that cultured astrocytes efficiently take up DMSA-coated Fe-NP in a process that appears to be saturable and strongly depends on the incubation temperature.

  17. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Geppert, Mark; Hohnholt, Michaela C; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Thiel, Karsten; Grunwald, Ingo [Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Wiener Strasse 12, D-28359 Bremen (Germany); Nuernberger, Sylvia [Department of Traumatology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Rezwan, Kurosch, E-mail: ralf.dringen@uni-bremen.de [Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, D-28359 Bremen (Germany)

    2011-04-08

    Magnetic iron oxide nanoparticles (Fe-NP) are currently considered for various diagnostic and therapeutic applications in the brain. However, little is known on the accumulation and biocompatibility of such particles in brain cells. We have synthesized and characterized dimercaptosuccinic acid (DMSA) coated Fe-NP and have investigated their uptake by cultured brain astrocytes. DMSA-coated Fe-NP that were dispersed in physiological medium had an average hydrodynamic diameter of about 60 nm. Incubation of cultured astrocytes with these Fe-NP caused a time- and concentration-dependent accumulation of cellular iron, but did not lead within 6 h to any cell toxicity. After 4 h of incubation with 100-4000 {mu}M iron supplied as Fe-NP, the cellular iron content reached levels between 200 and 2000 nmol mg{sup -1} protein. The cellular iron content after exposure of astrocytes to Fe-NP at 4 deg. C was drastically lowered compared to cells that had been incubated at 37 deg. C. Electron microscopy revealed the presence of Fe-NP-containing vesicles in cells that were incubated with Fe-NP at 37 deg. C, but not in cells exposed to the nanoparticles at 4 deg. C. These data demonstrate that cultured astrocytes efficiently take up DMSA-coated Fe-NP in a process that appears to be saturable and strongly depends on the incubation temperature.

  18. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes

    International Nuclear Information System (INIS)

    Magnetic iron oxide nanoparticles (Fe-NP) are currently considered for various diagnostic and therapeutic applications in the brain. However, little is known on the accumulation and biocompatibility of such particles in brain cells. We have synthesized and characterized dimercaptosuccinic acid (DMSA) coated Fe-NP and have investigated their uptake by cultured brain astrocytes. DMSA-coated Fe-NP that were dispersed in physiological medium had an average hydrodynamic diameter of about 60 nm. Incubation of cultured astrocytes with these Fe-NP caused a time- and concentration-dependent accumulation of cellular iron, but did not lead within 6 h to any cell toxicity. After 4 h of incubation with 100-4000 μM iron supplied as Fe-NP, the cellular iron content reached levels between 200 and 2000 nmol mg-1 protein. The cellular iron content after exposure of astrocytes to Fe-NP at 4 deg. C was drastically lowered compared to cells that had been incubated at 37 deg. C. Electron microscopy revealed the presence of Fe-NP-containing vesicles in cells that were incubated with Fe-NP at 37 deg. C, but not in cells exposed to the nanoparticles at 4 deg. C. These data demonstrate that cultured astrocytes efficiently take up DMSA-coated Fe-NP in a process that appears to be saturable and strongly depends on the incubation temperature.

  19. Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface

    DEFF Research Database (Denmark)

    Yu, R.; Gan, P.; Mackay, A.A.; Zhang, S.; Smets, Barth F.

    2010-01-01

    We examined the presence of iron-oxidizing bacteria (IOB) at a groundwater surface water interface (GSI) impacted by reduced groundwater originating as leachate from an upgradient landfill. IOB enrichments and quantifications were obtained, at high vertical resolution, by an iron/oxygen opposing...

  20. Lactate Oxidation Coupled to Iron or Electrode Reduction by Geobacter sulfurreducens PCA

    KAUST Repository

    Call, D. F.

    2011-10-14

    Geobacter sulfurreducens PCA completely oxidized lactate and reduced iron or an electrode, producing pyruvate and acetate intermediates. Compared to the current produced by Shewanella oneidensis MR-1, G. sulfurreducens PCA produced 10-times-higher current levels in lactate-fed microbial electrolysis cells. The kinetic and comparative analyses reported here suggest a prominent role of G. sulfurreducens strains in metaland electrode-reducing communities supplied with lactate. © 2011, American Society for Microbiology.

  1. Synthesis and Application of Carbon–Iron Oxide Microspheres’ Black Pigments in Electrophoretic Displays

    Directory of Open Access Journals (Sweden)

    Meng Xianwei

    2010-01-01

    Full Text Available Abstract Carbon–iron oxide microspheres’ black pigments (CIOMBs had been prepared via ultrasonic spray pyrolysis of aqueous solutions containing ferrous chloride and glucose. Due to the presence of carbon, CIOMBs not only exhibited remarkably acid resistance, but also could be well dispersed in both polar solvents and nonpolar solvent. Finally, dispersions of hollow CIOMBs in tetrachloroethylene had successfully been applied in electrophoretic displays.

  2. Biologically Inspired Design of Biocompatible Iron Oxide Nanoparticles for Biomedical Applications

    OpenAIRE

    Demirer, Gözde S.; Okur, Aysu C; Kızılel, Seda

    2015-01-01

    During the last couple of decades considerable research efforts have been directed towards the synthesis and coating of iron oxide nanoparticles (IONPs) for biomedical applications. To address the current limitations, recent studies have focused on the design of new generation nanoparticle systems whose internalization and targeting capabilities have been improved through surface modifications. This review covers the most recent challenges and advances in the development of IONPs with enhance...

  3. Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide

    OpenAIRE

    Delstanche, Séverine; Opfergelt, Sophie; Cardinal, Damien; Elsass, Francoise; André, Luc; Delvaux, Bruno

    2009-01-01

    The quantification of silicon isotopic fractionation by biotic and abiotic processes contributes to the understanding of the Si continental cycle. In soils, light Si isotopes are selectively taken up by plants, and concentrate in secondary clay-sized minerals. Si an readily be retrieved from soil solution through the specific adsorption of monosilicic acid () by iron oxides. Here, we report on the Si-isotopic fractionation during adsorption on synthesized ferrihydrite and goethite in batch ex...

  4. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia

    OpenAIRE

    Gonzales-Weimuller, Marcela; Zeisberger, Matthias; Krishnan, Kannan M

    2009-01-01

    Using the thermal decomposition of organometallics method we have synthesized high-quality, iron oxide nanoparticles of tailorable size up to ~15nm and transferred them to a water phase by coating with a biocompatible polymer. The magnetic behavior of these particles was measured and fit to a log-normal distribution using the Chantrell method and their polydispersity was confirmed to be very narrow. By performing calorimetry measurements with these monodisperse particles we have unambiguously...

  5. In vivo monitoring of rat macrophages labeled with poly(l-lysine)-iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Babič, Michal; Schmiedtová, M.; Poledne, R.; Herynek, Vít; Horák, Daniel

    2015-01-01

    Roč. 103, č. 6 (2015), s. 1141-1148. ISSN 1552-4973 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR(CZ) GAP304/12/1370 Institutional support: RVO:61389013 ; RVO:68378041 Keywords : iron oxide * nanoparaticles * labeling Subject RIV: CE - Biochemistry; FH - Neurology (UEM-P) Impact factor: 2.759, year: 2014

  6. Simultaneous oxidation and decarburization of cast iron powder during plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Schneeweiss, Oldřich; Chráska, Tomáš; Dubský, Jiří; Písačka, Jan

    2009-01-01

    Roč. 47, č. 1 (2009), s. 19-24. ISSN 0023-432X R&D Projects: GA AV ČR IAA1041404 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z20410507 Keywords : cast iron powder * plasma spraying * oxidation * decarburization Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.345, year: 2007 http://kovmat.sav.sk/abstract.php?rr=47&cc=1&ss=19

  7. One-step magnetic modification of yeast cells by microwave-synthesized iron oxide microparticles

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Procházková, G.; Šafařík, Ivo

    2013-01-01

    Roč. 56, č. 6 (2013), s. 456-461. ISSN 0266-8254 R&D Projects: GA MŠk(CZ) LD13023; GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : invert sugar formation * magnetic iron oxide microparticles * magnetic modification * magnetic separation * microwave-assisted synthesis * whole-cell biocatalyst * yeast cells Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.749, year: 2013

  8. Radial Combustion Propagation in Iron(III) Oxide/Aluminum Thermite Mixtures

    OpenAIRE

    Durães, Luísa; Campos, José; Portugal, António

    2006-01-01

    The self-sustained thermite reaction between iron oxide (Fe2O3) and aluminum is a classical source of energy. In this work the radial combustion propagation on thin circular samples of stoichiometric and over aluminized Fe2O3/Al thermite mixtures is studied. The radial geometry allows an easy detection of sample heterogeneities and the observation of the combustion behavior in their vicinity. The influence of factors like reactant mixtures stoichiometry, samples green density and system geome...

  9. Tissue Plasminogen Activator Binding to Superparamagnetic Iron Oxide Nanoparticle—Covalent Versus Adsorptive Approach

    Science.gov (United States)

    Friedrich, Ralf P.; Zaloga, Jan; Schreiber, Eveline; Tóth, Ildikó Y.; Tombácz, Etelka; Lyer, Stefan; Alexiou, Christoph

    2016-06-01

    Functionalized superparamagnetic iron oxide nanoparticles are frequently used to develop vehicles for drug delivery, hyperthermia, and photodynamic therapy and as tools used for magnetic separation and purification of proteins or for biomolecular imaging. Depending on the application, there are various possible covalent and non-covalent approaches for the functionalization of particles, each of them shows different advantages and disadvantages for drug release and activity at the desired location.

  10. T1-MRI Fluorescent Iron Oxide Nanoparticles by Microwave Assisted Synthesis

    OpenAIRE

    Riju Bhavesh; Lechuga-Vieco, Ana V; Jesús Ruiz-Cabello; Fernando Herranz

    2015-01-01

    Iron oxide nanoparticles have long been studied as a T2 contrast agent in MRI due to their superparamagnetic behavior. T1-based positive contrast, being much more favorable for clinical application due to brighter and more accurate signaling is, however, still limited to gadolinium- or manganese-based imaging tools. Though being the only available commercial positive-contrast agents, they lack an efficient argument when it comes to biological toxicity and their circulatory half-life in blood....

  11. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    OpenAIRE

    Bloemen, Maarten; Brullot, Ward; Luong, Thien Tai; Geukens, Nick; Gils, Ann; Verbiest, Thierry

    2012-01-01

    Superparamagnetic iron oxide nanoparticles can provide multiple benefits for biomedical applications in aqueous environments such as magnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane excha...

  12. Potentiometric urea biosensor utilizing nanobiocomposite of chitosan-iron oxide magnetic nanoparticles

    OpenAIRE

    Ali, A.; AlSalhi, M. S.; Atif, M.; Ansari, Anees A.; Israr, Muhammad Qadir; Sadaf, J.R.; Ahmed, E; Nur, Omer; Willander, Magnus

    2013-01-01

    The iron oxide (Fe3O4) magnetic nanoparticles have been fabricated through a simple, cheap and reproducible approach. Scanning electron microscope, x-rays powder diffraction of the fabricated nanoparticles. Furthermore, the fabrication of potentiometric urea biosensor is carried out through drop casting the initially prepared isopropanol and chitosan solution, containing Fe3O4 nanoparticles, on the glass fiber filter with a diameter of 2 cm and a copper wire (of thickness −500 μm) has been ut...

  13. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    OpenAIRE

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; Velde, Ype

    2014-01-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phos...

  14. Surfactant free superparamagnetic iron oxide nanoparticles for stable ferrofluids in physiological solutions.

    Science.gov (United States)

    Mandel, K; Straßer, M; Granath, T; Dembski, S; Sextl, G

    2015-02-18

    A process is reported to obtain a nanoparticle sol from co-precipitated iron oxide particles without using any surfactant. The sol - a true ferrofluid - is not only stable over a wide range of pH but also in physiological solutions. This is a decisive step towards biomedical applications where nanoparticle agglomeration could so far only be prevented by using unwanted surfactants. PMID:25580829

  15. Polymer/Iron Oxide Nanoparticle Composites—A Straight Forward and Scalable Synthesis Approach

    OpenAIRE

    Jens Sommertune; Abhilash Sugunan; Anwar Ahniyaz; Rebecca Stjernberg Bejhed; Anna Sarwe; Christer Johansson; Christoph Balceris; Frank Ludwig; Oliver Posth; Andrea Fornara

    2015-01-01

    Magnetic nanoparticle systems can be divided into single-core nanoparticles (with only one magnetic core per particle) and magnetic multi-core nanoparticles (with several magnetic cores per particle). Here, we report multi-core nanoparticle synthesis based on a controlled precipitation process within a well-defined oil in water emulsion to trap the superparamagnetic iron oxide nanoparticles (SPION) in a range of polymer matrices of choice, such as poly(styrene), poly(lactid acid), poly(methyl...

  16. Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals

    OpenAIRE

    Pragnesh N. Dave; Lakhan V. Chopda

    2014-01-01

    In the 21st century water polluted by heavy metal is one of the environment problems. Various methods for removal of the heavy metal ions from the water have extensively been studied. Application of iron oxide nanaparticles based nanomaterials for removal of heavy metals is well-known adsorbents for remediation of water. Due to its important physiochemical property, inexpensive method and easy regeneration in the presence of external magnetic field make them more attractive toward water purif...

  17. Shape and size controlled synthesis of uniform iron oxide nanocrystals through new non-hydrolytic routes.

    Science.gov (United States)

    Li, Wenlu; Lee, Seung Soo; Wu, Jiewei; Hinton, Carl H; Fortner, John D

    2016-08-12

    New, non-hydrolytic routes to synthesize highly crystalline iron oxide nanocrystals (8-40 nm, magnetite) are described in this report whereby particle size and morphology were precisely controlled through reactant (precursor, e.g. (FeO(OH)) ratios, co-surfactant and organic additive, and/or reaction time. Particle size, with high monodispersivity (materials synthesized/purified in organic solvents are broadly water dispersible through a variety of phase (aqueous) transfer method(s). PMID:27354334

  18. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy

    OpenAIRE

    Sneha M; Sundaram NM

    2015-01-01

    Murugesan Sneha, Nachiappan Meenakshi Sundaram Department of Biomedical Engineering, PSG College of Technology, Tamil Nadu, India Abstract: Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatit...

  19. Correction: Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    Science.gov (United States)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Correction for `Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents' by Roxanne Hachani et al., Nanoscale, 2015, DOI: 10.1039/c5nr03867g.

  20. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin

    Directory of Open Access Journals (Sweden)

    Yanyan Li

    2016-01-01

    Full Text Available Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD. As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories were cotreated by quercetin or deferoxamine (DFO for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD.