WorldWideScience

Sample records for choline kinase isoforms

  1. Highly specific antibodies for co-detection of human choline kinase α1 and α2 isoforms.

    Directory of Open Access Journals (Sweden)

    Wei Cun See Too

    Full Text Available BACKGROUND: Choline kinase is the first enzyme in the CDP-choline pathway that synthesizes phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. In humans, choline kinase exists as three isoforms (CKα1, α2, and β. Specific inhibition of CKα has been reported to selectively kill tumoral cells. Monoclonal and polyclonal antibodies against CKα used in previous studies to detect the level of this isozyme in different cellular or biochemical contexts were able to detect either the α1 or the α2 isoform. METHODOLOGY/PRINCIPAL FINDINGS: In this study, an antiserum against CKα was produced by immunizing rabbits with denatured, purified recombinant CKα2 full-length protein. This antiserum was highly specific for CKα when tested with extracts from different cell lines, and there was no cross reactivity with purified CKβ and other related proteins like human ethanolamine kinases (EK and yeast choline or ethanolamine kinases. The antiserum simultaneously detected both CKα1 and α2 isoforms in MCF-7 and HepG2 cell extracts, but not in HeLa, HCT-116, and mouse embryonic stem cell extracts. Subsequent protein dot blot assay of total CKα in a human normal/tumor protein array of 30 tissue samples by using the antiserum showed that CKα was not overexpressed in all tumor tissues when compared to their normal counterparts. Most striking differences between tumor and normal CKα expression levels were observed in kidney (11-fold higher in tumor and liver (15-fold lower in tumor samples. CONCLUSION/SIGNIFICANCE: Apart from its high sensitivity and specificity, the antiserum produced in this work, which does not require further purification, has the advantage of co-detecting both α1 and α2 isoforms in cell extracts for direct comparison of their expression levels.

  2. Crystal Structures of Human Choline Kinase Isoforms in Complex with Hemicholinium-3 Single Amino Acid near the Active Site Influences Inhibitor Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bum Soo; Allali-Hassani, Abdellah; Tempel, Wolfram; Finerty, Jr., Patrick J.; MacKenzie, Farrell; Dimov, Svetoslav; Vedadi, Masoud; Park, Hee-Won (Toronto)

    2010-07-06

    Human choline kinase (ChoK) catalyzes the first reaction in phosphatidylcholine biosynthesis and exists as ChoK{alpha} ({alpha}1 and {alpha}2) and ChoK{beta} isoforms. Recent studies suggest that ChoK is implicated in tumorigenesis and emerging as an attractive target for anticancer chemotherapy. To extend our understanding of the molecular mechanism of ChoK inhibition, we have determined the high resolution x-ray structures of the ChoK{alpha}1 and ChoK{beta} isoforms in complex with hemicholinium-3 (HC-3), a known inhibitor of ChoK. In both structures, HC-3 bound at the conserved hydrophobic groove on the C-terminal lobe. One of the HC-3 oxazinium rings complexed with ChoK{alpha}1 occupied the choline-binding pocket, providing a structural explanation for its inhibitory action. Interestingly, the HC-3 molecule co-crystallized with ChoK{beta} was phosphorylated in the choline binding site. This phosphorylation, albeit occurring at a very slow rate, was confirmed experimentally by mass spectroscopy and radioactive assays. Detailed kinetic studies revealed that HC-3 is a much more potent inhibitor for ChoK{alpha} isoforms ({alpha}1 and {alpha}2) compared with ChoK{beta}. Mutational studies based on the structures of both inhibitor-bound ChoK complexes demonstrated that Leu-401 of ChoK{alpha}2 (equivalent to Leu-419 of ChoK{alpha}1), or the corresponding residue Phe-352 of ChoK{beta}, which is one of the hydrophobic residues neighboring the active site, influences the plasticity of the HC-3-binding groove, thereby playing a key role in HC-3 sensitivity and phosphorylation.

  3. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    Science.gov (United States)

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  4. Differential role of human choline kinase α and β enzymes in lipid metabolism: Implications in cancer onset and treatment

    OpenAIRE

    Gallego Ortega, David; Ramírez de Molina, Ana; Ramos, Maria Angeles; Valdés Mora, Fátima; Barderas, Maria Gonzalez; Sarmentero Estrada, Jacinto; Lacal, Juan Carlos

    2009-01-01

    Background The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK) is the first enzyme of the Kennedy branch of synthesis of 1phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKα and ChoKβ isoforms, the first one with two different variants of splicing. Recently ChoKα has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. Howev...

  5. Differential role of human choline kinase alpha and beta enzymes in lipid metabolism: implications in cancer onset and treatment.

    Directory of Open Access Journals (Sweden)

    David Gallego-Ortega

    Full Text Available BACKGROUND: The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK is the first enzyme of the Kennedy branch of synthesis of phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKalpha and ChoKbeta isoforms, the first one with two different variants of splicing. Recently ChoKalpha has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKbeta in carcinogenesis has been reported. METHODOLOGY/PRINCIPAL FINDINGS: Here we compare the in vitro and in vivo properties of ChoKalpha1 and ChoKbeta in lipid metabolism, and their potential role in carcinogenesis. Both ChoKalpha1 and ChoKbeta showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKbeta display an ethanolamine kinase role, ChoKalpha1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKalpha1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKbeta overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKalpha1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKbeta mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKalpha1 than ChoKbeta. CONCLUSION/SIGNIFICANCE: This study represents the first evidence of the distinct metabolic role of ChoKalpha and ChoKbeta isoforms, suggesting different physiological roles and implications in human

  6. Plasmodium falciparum Choline Kinase Inhibition Leads to a Major Decrease in Phosphatidylethanolamine Causing Parasite Death

    Science.gov (United States)

    Serrán-Aguilera, Lucía; Denton, Helen; Rubio-Ruiz, Belén; López-Gutiérrez, Borja; Entrena, Antonio; Izquierdo, Luis; Smith, Terry K.; Conejo-García, Ana; Hurtado-Guerrero, Ramon

    2016-01-01

    Malaria is a life-threatening disease caused by different species of the protozoan parasite Plasmodium, with P. falciparum being the deadliest. Increasing parasitic resistance to existing antimalarials makes the necessity of novel avenues to treat this disease an urgent priority. The enzymes responsible for the synthesis of phosphatidylcholine and phosphatidylethanolamine are attractive drug targets to treat malaria as their selective inhibition leads to an arrest of the parasite’s growth and cures malaria in a mouse model. We present here a detailed study that reveals a mode of action for two P. falciparum choline kinase inhibitors both in vitro and in vivo. The compounds present distinct binding modes to the choline/ethanolamine-binding site of P. falciparum choline kinase, reflecting different types of inhibition. Strikingly, these compounds primarily inhibit the ethanolamine kinase activity of the P. falciparum choline kinase, leading to a severe decrease in the phosphatidylethanolamine levels within P. falciparum, which explains the resulting growth phenotype and the parasites death. These studies provide an understanding of the mode of action, and act as a springboard for continued antimalarial development efforts selectively targeting P. falciparum choline kinase. PMID:27616047

  7. Phosphorylation of Human Choline Kinase Beta by Protein Kinase A: Its Impact on Activity and Inhibition

    Science.gov (United States)

    Chang, Ching Ching; Few, Ling Ling; Konrad, Manfred; See Too, Wei Cun

    2016-01-01

    Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme’s activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis. PMID:27149373

  8. Comparison of the cellular and biochemical properties of Plasmodium falciparum choline and ethanolamine kinases

    OpenAIRE

    Alberge, Blandine; Gannoun-Zaki, Leila; Bascunana, Céline; Tran Van Ba, Christophe; Vial, Henri; Cerdan, Rachel

    2009-01-01

    Abstract The proliferation of the malaria-causing parasite Plasmodium falciparum within the erythrocyte is concomitant with massive phosphatidylcholine and phosphatidylethanolamine biosynthesis. Based on pharmacological and genetic data, de novo biosynthesis pathways of both phospholipids appear essential for parasite survival. The present study characterizes P. falciparum choline kinase (PfCK) and ethanolamine kinase (PfEK), which catalyse the first enzymatic steps of these essent...

  9. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    DEFF Research Database (Denmark)

    Naik, M U; Benedikz, Eirikur; Hernandez, I;

    2000-01-01

    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region of......, protein kinase Mzeta (PKMzeta). In this study, we used immunoblot and immunocytochemical techniques with isoform-specific antisera to examine the distribution of the complete family of PKC isozymes and PKMzeta in rat brain. Each form of PKC showed a widespread distribution in the brain with a distinct...

  10. Different phosphoinositide 3-kinase isoforms mediate carrageenan nociception and inflammation.

    Science.gov (United States)

    Pritchard, Rory A; Falk, Lovissa; Larsson, Mathilda; Leinders, Mathias; Sorkin, Linda S

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated.

  11. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target

    Science.gov (United States)

    Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.

    2016-01-01

    Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335

  12. Synthesis of Benzofuran Analogue of Go6976, an Isoform Selective Protein Kinase C Inhibitor

    Institute of Scientific and Technical Information of China (English)

    MA, Da-Wei; ZHANG, Xin-Rong; WU, Shi-Hui; TAO, Feng-Gang

    2001-01-01

    Based on the structure of Go6976, a known isoform-selective protein kinase C inhibitor, a benzofuran analogue (1) was designed. This analogue was synthesized by coupling of benzofuran 3-acetic acid and 8-oxo-tryptamine and subsequent intramolecular Dieckmann condensation, alkylation, oxidative photocyclization and cyanation reaction of mesylate.

  13. Choline kinase alpha and hexokinase-2 protein expression in hepatocellular carcinoma: association with survival.

    Directory of Open Access Journals (Sweden)

    Sandi A Kwee

    Full Text Available PURPOSE: Hexokinase-2 (HK2 and more recently choline kinase alpha (CKA expression has been correlated with clinical outcomes in several major cancers. This study examines the protein expression of HK2 and CKA in hepatocellular carcinoma (HCC in association with patient survival and other clinicopathologic parameters. METHODS: Immunohistochemical analysis for HK2 and CKA expression was performed on a tissue microarray of 157 HCC tumor samples. Results were analyzed in relation to clinicopathologic data from Surveillance, Epidemiology, and End-Results Program registries. Mortality rates were assessed by Kaplan-Meier estimates and compared using log-rank tests. Predictors of overall survival were assessed using proportional hazards regression. RESULTS: Immunohistochemical expression of HK2 and CKA was detected in 71 (45% and 55 (35% tumor samples, respectively. Differences in tumor HK2 expression were associated with tumor grade (p = 0.008 and cancer stage (p = 0.001, while CKA expression differed significantly only across cancer stage (p = 0.048. Increased mortality was associated with tumor HK2 expression (p = 0.003 as well as CKA expression (p = 0.03 with hazard ratios of 1.86 (95% confidence interval (CI 1.23-2.83 and 1.59 (95% CI 1.04-2.41, respectively. Similar effects on overall survival were noted in a subset analysis of early stage (I and II HCC. Tumor HK2 expression, but not CKA expression, remained a significant predictor of survival in multivariable analyses. CONCLUSION: HK2 and CKA expression may have biologic and prognostic significance in HCC, with tumor HK2 expression being a potential independent predictor of survival.

  14. Differential co-localization with choline acetyltransferase in nervus terminalis suggests functional differences for GnRH isoforms in bonnethead sharks (Sphyrna tiburo).

    Science.gov (United States)

    Moeller, John F; Meredith, Michael

    2010-12-17

    The nervus terminalis (NT) is a vertebrate cranial nerve whose function in adults is unknown. In bonnethead sharks, the nerve is anatomically independent of the olfactory system, with two major cell populations within one or more ganglia along its exposed length. Most cells are immunoreactive for either gonadotropin-releasing hormone (GnRH) or RF-amide-like peptides. To define further the cell populations and connectivity, we used double-label immunocytochemistry with antisera to different isoforms of GnRH and to choline acetyltransferase (ChAT). The labeling patterns of two GnRH antisera revealed different populations of GnRH-immunoreactive (ir) cell profiles in the NT ganglion. One antiserum labeled a large group of cells and fibers, which likely contain mammalian GnRH (GnRH-I) as described in previous studies and which were ChAT immunoreactive. The other antiserum labeled large club-like structures, which were anuclear, and a sparse number of fibers, but with no clear labeling of cell bodies in the ganglion. These club structures were choline acetyltrasferase (ChAT)-negative, and preabsorption control tests suggest they may contain chicken-GnRH-II (GnRH-II) or dogfish GnRH. The second major NT ganglion cell-type was immunoreactive for RF-amides, which regulate GnRH release in other vertebrates, and may provide an intraganglionic influence on GnRH release. The immunocytochemical and anatomical differences between the two GnRH-immunoreactive profile types indicate possible functional differences for these isoforms in the NT. The club-like structures may be sites of GnRH release into the general circulation since these structures were observed near blood vessels and resembled structures seen in the median eminence of rats. PMID:20950589

  15. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A., E-mail: roberto.perego@unimib.it

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  16. Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms

    Science.gov (United States)

    Liu, Z.; Xia, M.; Poovaiah, B. W.

    1998-01-01

    cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants.

  17. Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes

    Science.gov (United States)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2004-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta, and -epsilon was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms delta and epsilon were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1-g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cgamma in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.

  18. Protein kinase d isoforms differentially modulate cofilin-driven directed cell migration.

    Directory of Open Access Journals (Sweden)

    Heike Döppler

    Full Text Available BACKGROUND: Protein kinase D (PKD enzymes regulate cofilin-driven actin reorganization and directed cell migration through both p21-activated kinase 4 (PAK4 and the phosphatase slingshot 1L (SSH1L. The relative contributions of different endogenous PKD isoforms to both signaling pathways have not been elucidated, sufficiently. METHODOLOGY/PRINCIPAL FINDINGS: We here analyzed two cell lines (HeLa and MDA-MB-468 that express the subtypes protein kinase D2 (PKD2 and protein kinase D3 (PKD3. We show that under normal growth conditions both isoforms can form a complex, in which PKD3 is basally-active and PKD2 is inactive. Basal activity of PKD3 mediates PAK4 activity and downstream signaling, but does not significantly inhibit SSH1L. This signaling constellation was required for facilitating directed cell migration. Activation of PKD2 and further increase of PKD3 activity leads to additional phosphorylation and inhibition of endogenous SSH1L. Net effect is a dramatic increase in phospho-cofilin and a decrease in cell migration, since now both PAK4 and SSH1L are regulated by the active PKD2/PKD3 complex. CONCLUSIONS/SIGNIFICANCE: Our data suggest that PKD complexes provide an interface for both cofilin regulatory pathways. Dependent on the activity of involved PKD enzymes signaling can be balanced to guarantee a functional cofilin activity cycle and increase cell migration, or imbalanced to decrease cell migration. Our data also provide an explanation of how PKD isoforms mediate different effects on directed cell migration.

  19. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis

    Science.gov (United States)

    Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)

    2003-01-01

    Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.

  20. Investigating the role of class-IA PI 3-kinase isoforms in adipocyte differentiation

    International Nuclear Information System (INIS)

    PI 3-kinases, in particular class-IA, are key signalling molecules controlling many cellular processes including growth, proliferation, migration and differentiation. In this study, we have used a collection of isoform selective PI 3-kinase inhibitors to determine whether attenuation of signalling through class-IA PI 3-kinase isoforms will impact adipocyte differentiation. First, we analysed the expression profiles and found that fibroblastic pre-adipocytes express detectable levels of p110α and p110δ and that after differentiation, p110δ levels fall while p110α levels rise, together with C/EBPα and PPARγ. When using specific inhibitors during the differentiation process, we observed that neither p110β nor p110δ inhibition, had any significant effect. In contrast PIK-75, a selective p110α inhibitor completely abolished adipocyte differentiation as assessed by morphology, transcript and protein levels of adipocyte markers. These results indicate that long term treatment with p110α inhibitors could potentially have a severe impact on fat cell numbers in vivo.

  1. Degradable Dextran Nanopolymer as a Carrier for Choline Kinase (ChoK siRNA Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Zhihang Chen

    2016-02-01

    Full Text Available Although small interfering RNA (siRNA therapy has proven to be a specific and effective treatment in cells, the delivery of siRNA is a challenge for the applications of siRNA therapy. We present a degradable dextran with amine groups as an siRNA nano-carrier. In our nano-carrier, the amine groups are conjugated to the dextran platform through the acetal bonds, which are acid sensitive. Therefore this siRNA carrier is stable in neutral and basic conditions, while the amine groups can be cleaved and released from dextran platform under weak acid conditions (such as in endosomes. The cleavage and release of amine groups can reduce the toxicity of cationic polymer and enhance the transfection efficiency. We successfully applied this nano-carrier to deliver choline kinase (ChoK siRNA for ChoK inhibition in cells.

  2. Comparison of fecal pyruvate kinase isoform M2 and calprotectin in acute diarrhea in hospitalized children

    OpenAIRE

    Czub, Elzbieta; Jan K. Nowak; Moczko, Jerzy; Lisowska, Aleksandra; Banaszkiewicz, Aleksandra; Banasiewicz, Tomasz; Walkowiak, Jaroslaw

    2014-01-01

    Fecal concentrations of pyruvate kinase isoform M2 (M2-PK) and calprotectin (FC) serve as biomarkers of inflammation of gastrointestinal mucosa. The value of M2-PK in discriminating between patients with viral and bacterial acute diarrhea (AD) is currently unknown. We analyzed M2-PK and FC concentrations in fifty hospitalized children with AD (29 of which were caused by rotavirus and 21 by Salmonella enteritidis) as well as 32 healthy subjects. There was no difference in the areas under the r...

  3. Nonmetabolic functions of pyruvate kinase isoform M2 in controlling cell cycle progression and tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Zhimin Lu

    2012-01-01

    Pyruvate kinase catalyzes the rate-limiting final step of glycolysis,generating adenosine triphosphate (ATP) and pyruvate.The M2 tumor-specific isoform of pyruvate kinase (PKM2) promotes glucose uptake and lactate production in the presence of oxygen,known as aerobic glycolysis or the Warburg effect.As recently reported in Nature,PKM2,besides its metabolic function,has a nonmetabolic function in the direct control of cell cycle progression by activating β-catenin and inducing expression of the β-catenin downstream gene CCND1 (encoding for cyclin D1).This nonmetabolic function of PKM2 is essential for epidermal growth factor receptor (EGFR) activation-induced tumorigenesis.

  4. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells.

    Science.gov (United States)

    Abbot, Emily L; McCormack, James G; Reynet, Christine; Hassall, David G; Buchan, Kevin W; Yeaman, Stephen J

    2005-06-01

    The pyruvate dehydrogenase complex occupies a central and strategic position in muscle intermediary metabolism and is primarily regulated by phosphorylation/dephosphorylation. The identification of multiple isoforms of pyruvate dehydrogenase kinase (PDK1-4) and pyruvate dehydrogenase phosphatase (PDP1-2) has raised intriguing new possibilities for chronic pyruvate dehydrogenase complex control. Experiments to date suggest that PDK4 is the major isoenzyme responsible for changes in pyruvate dehydrogenase complex activity in response to various different metabolic conditions. Using a cultured human skeletal muscle cell model system, we found that expression of both PDK2 and PDK4 mRNA is upregulated in response to glucose deprivation and fatty acid supplementation, the effects of which are reversed by insulin treatment. In addition, insulin directly downregulates PDK2 and PDK4 mRNA transcript abundance via a phosphatidylinositol 3-kinase-dependent pathway, which may involve glycogen synthase kinase-3 but does not utilize the mammalian target of rapamycin or mitogen-activated protein kinase signalling pathways. In order to further elucidate the regulation of PDK, the role of the peroxisome proliferators-activated receptors (PPAR) was investigated using highly potent subtype selective agonists. PPARalpha and PPARdelta agonists were found to specifically upregulate PDK4 mRNA expression, whereas PPARgamma activation selectively decreased PDK2 mRNA transcript abundance. PDP1 mRNA expression was unaffected by all conditions analysed. These results suggest that in human muscle, hormonal and nutritional conditions may control PDK2 and PDK4 mRNA expression via a common signalling mechanism. In addition, PPARs appear to independently regulate specific PDK isoform transcipt levels, which are likely to impart important metabolic mediation of fuel utilization by the muscle. PMID:15955060

  5. Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator

    Directory of Open Access Journals (Sweden)

    Fabian V Filipp

    2013-01-01

    Full Text Available Pyruvate kinase activity is controlled by a tightly woven regulatory network. The oncofetal isoform of pyruvate kinase (PKM2 is a master regulator of cancer metabolism. PKM2 engages in parallel, feed-forward, positive and negative feedback control contributing to cancer progression. Besides its metabolic role, non-metabolic functions of PKM2 as protein kinase and transcriptional coactivator for c-MYC and hypoxia-inducible factor 1-alpha are essential for epidermal growth factor receptor activation-induced tumorigenesis. These biochemical activities are controlled by a shift in the oligomeric state of PKM2 that includes acetylation, oxidation, phosphorylation, prolyl hydroxylation and sumoylation. Metabolically active PKM2 tetramer is allosterically regulated and responds to nutritional and stress signals. Metabolically inactive PKM2 dimer is imported into the nucleus and can function as protein kinase stimulating transcription. A systems biology approach to PKM2 at the genome, transcriptome, proteome, metabolome and fluxome level reveals how differences in biomolecular structure translate into a global rewiring of cancer metabolism. Cancer systems biology takes us beyond the Warburg effect, opening unprecedented therapeutic opportunities.

  6. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    Science.gov (United States)

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2016-06-24

    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα. PMID:27151216

  7. Direct binding and activation of protein kinase C isoforms by steroid hormones.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2008-10-01

    The non-genomic action of steroid hormones regulates a wide variety of cellular responses including regulation of ion transport, cell proliferation, migration, death and differentiation. In order to achieve such plethora of effects steroid hormones utilize nearly all known signal transduction pathways. One of the key signalling molecules regulating the non-genomic action of steroid hormones is protein kinase C (PKC). It is thought that rapid action of steroids hormones results from the activation of plasma membrane receptors; however, their molecular identity remains elusive. In recent years, an increasing number of studies have pointed at the selective binding and activation of specific PKC isoforms by steroid hormones. This has led to the hypothesis that PKC could act as a receptor as well as a transducer of the non-genomic effects of these hormones. In this review we summarize the current knowledge of the direct binding and activation of PKC by steroid hormones.

  8. Myophilin of Echinococcus granulosus: isoforms and phosphorylation by protein kinase C.

    Science.gov (United States)

    Martin, R M; Csar, X F; Gasser, R B; Felleisen, R; Lightowlers, M W

    1997-08-01

    Myophilin is a muscle-associated antigen of the taeniid cestode Echinococcus granulosus. This protein shows a high amino acid sequence homology with calponins and calponin-like proteins, which are proposed to be associated with the regulation of smooth muscle contraction. In order to provide supportive evidence for a relationship between these proteins, we characterized myophilin using electrophoretic, biochemical and molecular biological approaches. Two-dimensional protein electrophoretic separation of E. granulosus larval proteins defined 4 isoelectric isoforms of myophilin (alpha, beta, gamma and delta), which appeared to be a consequence of post-translational modification of a single gene product. It was also demonstrated biochemically that E. granulosus myophilin undergoes specific phosphorylation in vitro by protein kinase C (PKC). Finally, myophilin homologues were identified in extracts of Taenia hydatigena and T. ovis by immunoblot. A partial cDNA of the closely related species, E. multilocularis, was isolated by cloning procedures and showed 99% homology with the E. granulosus myophilin gene. The similarities of E. granulosus myophilin with calponins in their tissue localization, protein isoforms patterns, ability to be phosphorylated in vitro by PKC, and the relatively conserved nature of the protein among related parasites suggest that myophilin may be associated with smooth muscle contraction.

  9. mRNA expression of diacylglycerol kinase isoforms in insulin-sensitive tissues: effects of obesity and insulin resistance.

    Science.gov (United States)

    Mannerås-Holm, Louise; Kirchner, Henriette; Björnholm, Marie; Chibalin, Alexander V; Zierath, Juleen R

    2015-04-01

    Diacylglycerol kinase (DGK) isoforms regulate signal transduction and lipid metabolism. DGKδ deficiency leads to hyperglycemia, peripheral insulin resistance, and metabolic inflexibility. Thus, dysregulation of other DGK isoforms may play a role in metabolic dysfunction. We investigated DGK isoform mRNA expression in extensor digitorum longus (EDL) and soleus muscle, liver as well as subcutaneous and epididymal adipose tissue in C57BL/6J mice and obese and insulin-resistant ob/ob mice. All DGK isoforms, except for DGKκ, were detectable, although with varying mRNA expression. Liver DGK expression was generally lowest, with several isoforms undetectable. In soleus muscle, subcutaneous and epididymal adipose tissue, DGKδ was the most abundant isoform. In EDL muscle, DGKα and DGKζ were the most abundant isoforms. In liver, DGKζ was the most abundant isoform. Comparing obese insulin-resistant ob/ob mice to lean C57BL/6J mice, DGKβ, DGKι, and DGKθ were increased and DGKε expression was decreased in EDL muscle, while DGKβ, DGKη and DGKθ were decreased and DGKδ and DGKι were increased in soleus muscle. In liver, DGKδ and DGKζ expression was increased in ob/ob mice. DGKη was increased in subcutaneous fat, while DGKζ was increased and DGKβ, DGKδ, DGKη and DGKε were decreased in epididymal fat from ob/ob mice. In both adipose tissue depots, DGKα and DGKγ were decreased and DGKι was increased in ob/ob mice. In conclusion, DGK mRNA expression is altered in an isoform- and tissue-dependent manner in obese insulin-resistant ob/ob mice. DGK isoforms likely have divergent functional roles in distinct tissues, which may contribute to metabolic dysfunction. PMID:25847921

  10. PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70-KILODALTON HEAT SHOCK PROTEIN HSPA2

    Science.gov (United States)

    THE PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70 kDa HEAT SHOCK PROTEIN HSPA2* Gabor Huszar1, Kathryn Stone2, David Dix3 and Lynne Vigue11The Sperm Physiology Laboratory, Department of Obstetrics and Gynecology, 2 W.M. Keck Foundatio...

  11. New splicing mutation in the choline kinase beta (CHKB) gene causing a muscular dystrophy detected by whole-exome sequencing.

    Science.gov (United States)

    Oliveira, Jorge; Negrão, Luís; Fineza, Isabel; Taipa, Ricardo; Melo-Pires, Manuel; Fortuna, Ana Maria; Gonçalves, Ana Rita; Froufe, Hugo; Egas, Conceição; Santos, Rosário; Sousa, Mário

    2015-06-01

    Muscular dystrophies (MDs) are a group of hereditary muscle disorders that include two particularly heterogeneous subgroups: limb-girdle MD and congenital MD, linked to 52 different genes (seven common to both subgroups). Massive parallel sequencing technology may avoid the usual stepwise gene-by-gene analysis. We report the whole-exome sequencing (WES) analysis of a patient with childhood-onset progressive MD, also presenting mental retardation and dilated cardiomyopathy. Conventional sequencing had excluded eight candidate genes. WES of the trio (patient and parents) was performed using the ion proton sequencing system. Data analysis resorted to filtering steps using the GEMINI software revealed a novel silent variant in the choline kinase beta (CHKB) gene. Inspection of sequence alignments ultimately identified the causal variant (CHKB:c.1031+3G>C). This splice site mutation was confirmed using Sanger sequencing and its effect was further evaluated with gene expression analysis. On reassessment of the muscle biopsy, typical abnormal mitochondrial oxidative changes were observed. Mutations in CHKB have been shown to cause phosphatidylcholine deficiency in myofibers, causing a rare form of CMD (only 21 patients reported). Notwithstanding interpretative difficulties that need to be overcome before the integration of WES in the diagnostic workflow, this work corroborates its utility in solving cases from highly heterogeneous groups of diseases, in which conventional diagnostic approaches fail to provide a definitive diagnosis. PMID:25740612

  12. Comparison of fecal pyruvate kinase isoform M2 and calprotectin in acute diarrhea in hospitalized children

    Science.gov (United States)

    Czub, Elzbieta; Nowak, Jan K.; Moczko, Jerzy; Lisowska, Aleksandra; Banaszkiewicz, Aleksandra; Banasiewicz, Tomasz; Walkowiak, Jaroslaw

    2014-01-01

    Fecal concentrations of pyruvate kinase isoform M2 (M2-PK) and calprotectin (FC) serve as biomarkers of inflammation of gastrointestinal mucosa. The value of M2-PK in discriminating between patients with viral and bacterial acute diarrhea (AD) is currently unknown. We analyzed M2-PK and FC concentrations in fifty hospitalized children with AD (29 of which were caused by rotavirus and 21 by Salmonella enteritidis) as well as 32 healthy subjects. There was no difference in the areas under the receiver operating characteristic curves plotted for the two tests in differentiating rotaviral from bacterial AD. The sensitivity and specificity of M2-PK at optimal cut-off (20 U/g) were 75.9% and 71.4%, respectively. M2-PK and FC had similar values in distinguishing between children with AD caused by rotavirus and Salmonella enteritidis. The performance of both tests in hospitalized patients did not meet the needs of everyday clinical practice. Moreover, no advantage of fecal tests over the measurement of CRP was documented. PMID:24759699

  13. Purification and characterization of an isoform of protein kinase C from bovine neutrophils

    International Nuclear Information System (INIS)

    Protein kinase C (PKC) from bovine neutrophils was purified 1,420-fold. Subcellular fractionation analysis of bovine neutrophil homogenate in the presence of EGTA indicated that more than 95% of the PKC activity was present in the soluble fraction. Whereas bovine brain PKC could be resolved into four isoenzymatic forms by chromatography on a hydroxylapatite column, bovine neutrophil PKC was eluted in a single peak, suggesting that it corresponded to a single isoform. The apparent molecular weight of bovine neutrophil PKC was 82,000, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bovine neutrophil PKC was autophosphorylated in the presence of [γ-32P]ATP, provided that the medium was supplemented with Mg2+, Ca2+, phosphatidylserine, and diacylglycerol; phorbol myristate acetate could substitute for diacylglycerol. Autophosphorylated PKC could be cleaved by trypsin to generate two radiolabeled peptides of Mr 48,000 and 39,000. The labeled amino acids were serine and threonine. During the course of the purification procedure of bovine neutrophil PKC, a protein of Mr 23,000 was found to exhibit a strong propensity to PKC-dependent phosphorylation in the presence of [γ-32P]ATP, Mg2+, Ca2+, phosphatidylserine, and diacylglycerol. This protein was recovered together with PKC in one of the two active peaks eluted from the Mono Q column at the second step of PKC purification. It is suggested that the Mr 23,000 protein might be a natural substrate for bovine neutrophil PKC

  14. Facilitated interaction between the pyruvate dehydrogenase kinase isoform 2 and the dihydrolipoyl acetyltransferase.

    Science.gov (United States)

    Hiromasa, Yasuaki; Roche, Thomas E

    2003-09-01

    The dihydrolipoyl acetyltransferase (E2) has an enormous impact on pyruvate dehydrogenase kinase (PDK) phosphorylation of the pyruvate dehydrogenase (E1) component by acting as a mobile binding framework and in facilitating and mediating regulation of PDK activity. Analytical ultracentrifugation (AUC) studies established that the soluble PDK2 isoform is a stable dimer. The interaction of PDK2 with the lipoyl domains of E2 (L1, L2) and the E3-binding protein (L3) were characterized by AUC. PDK2 interacted very weakly with L2 (Kd approximately 175 microM for 2 L2/PDK2) but much tighter with dimeric glutathione S-transferase (GST)-L2 (Kd approximately 3 microM), supporting the importance of bifunctional binding. Reduction of lipoyl groups resulted in approximately 8-fold tighter binding of PDK2 to GST-L2red, which was approximately 300-fold tighter than binding of 2 L2red and also much tighter than binding by GST-L1red and GST-L3red. The E2 60-mer bound approximately 18 PDK2 dimers with a Kd similar to GST-L2. E2.E1 bound more PDK2 (approximately 27.6) than E2 with approximately 2-fold tighter affinity. Lipoate reduction fostered somewhat tighter binding at more sites by E2 and severalfold tighter binding at the majority of sites on E2.E1. ATP and ADP decreased the affinity of PDK2 for E2 by 3-5-fold and adenosine 5'-(beta,gamma-imino)triphosphate or phosphorylation of E1 similarly reduced PDK2 binding to E2.E1. Reversible bifunctional binding to L2 with the mandatory singly held transition fits the proposed "hand-over-hand" movement of a kinase dimer to access E1 without dissociating from the complex. The gain in binding interactions upon lipoate reduction likely aids reduction-engendered stimulation of PDK2 activity; loosening of binding as a result of adenine nucleotides and phosphorylation may instigate movement of lipoyl domain-held kinase to a new E1 substrate. PMID:12816949

  15. Choline metabolism-based molecular diagnosis of cancer: an update

    OpenAIRE

    Glunde, Kristine; Penet, Marie-France; Jiang, Lu; Jacobs, Michael A.; Zaver M Bhujwalla

    2015-01-01

    Abnormal choline metabolism continues to be identified in multiple cancers. Molecular causes of abnormal choline metabolism are changes in choline kinase-α, ethanolamine kinase-α, phosphatidylcholine-specific phospholipase C and -D and glycerophosphocholine phosphodiesterases, as well as several choline transporters. The net outcome of these enzymatic changes is an increase in phosphocholine and total choline (tCho) and, in some cancers, a relative decrease of glycerophosphocholine. The incre...

  16. Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression.

    Science.gov (United States)

    Zhang, Yi; Ma, Ke; Sadana, Prabodh; Chowdhury, Farhana; Gaillard, Stephanie; Wang, Fang; McDonnell, Donald P; Unterman, Terry G; Elam, Marshall B; Park, Edwards A

    2006-12-29

    The pyruvate dehydrogenase complex (PDC) catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the oxidation of glucose to acetyl-CoA. Phosphorylation of PDC by the pyruvate dehydrogenase kinases (PDK2 and PDK4) inhibits PDC activity. Expression of the PDK genes is elevated in diabetes, leading to the decreased oxidation of pyruvate to acetyl-CoA. In these studies we have investigated the transcriptional regulation of the PDK4 gene by the estrogen-related receptors (ERRalpha and ERRgamma). The ERRs are orphan nuclear receptors whose physiological roles include the induction of fatty acid oxidation in heart and muscle. Previously, we found that the peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of PDK4. Here we report that ERRalpha and ERRgamma stimulate the PDK4 gene in hepatoma cells, suggesting a novel role for ERRs in controlling pyruvate metabolism. In addition, both ERR isoforms recruit PGC-1alpha to the PDK4 promoter. Insulin, which decreases the expression of the PDK4 gene, inhibits the induction of PDK4 by ERRalpha and ERRgamma. The forkhead transcription factor (FoxO1) binds the PDK4 gene and contributes to the induction of PDK4 by ERRs and PGC-1alpha. Insulin suppresses PDK4 expression in part through the dissociation of FoxO1 and PGC-1alpha from the PDK4 promoter. Our data demonstrate a key role for the ERRs in the induction of hepatic PDK4 gene expression. PMID:17079227

  17. Bisphenol A differentially activates protein kinase C isoforms in murine placental tissue

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wenjuan; Huang, Hui; Wang, Yanfei [Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Wong, Tsz Yan [Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Wang, C.C. [Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Leung, Lai K., E-mail: laikleung@cuhk.edu.hk [Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong)

    2013-06-01

    Bisphenol A is utilized to make polycarbonate plastics and is an environmental pollutant. Recent research has indicated that it is an endocrine disruptor and may interfere with reproductive processes. Our lab has previously shown that bisphenol A could regulate corticotrophin releasing hormone and aromatase in cultured placental cells. In the present study, the effect of bisphenol A on these two genes in the placenta was investigated in mice. Pregnant ICR mice were gavaged with bisphenol A at 2, 20 and 200 mg/kg body weight/day from E13 to E16 and were euthanized at E17. Compared to the control mice, increased plasma estrogen and corticotrophin releasing hormone were observed in bisphenol A-treated mice. Messenger RNA quantification indicated that placental crh but not cyp19 was induced in mice treated with bisphenol A. Tracking the related signaling pathway, we found that protein kinase C ζ/λ and δ were activated in the placentas of bisphenol A-treated mice. As the gene promoter of crh contains CRE and the half site of ERE, either phospho-PKC or estrogen could stimulate the gene transactivation. These results indicate that bisphenol A might increase plasma concentrations of estradiol, testosterone, corticotrophin releasing hormone and placental phospho-PKC ζ/λ and δ in mice. Ultimately, the incidence of premature birth in these mice could increase. - Highlights: • The pollutant bisphenol A differentially activated PKC isoforms in the placenta. • CRE-binding activity in the nuclear protein of placenta was increased. • Bisphenol A induces CRH mRNA expression in mice.

  18. Bisphenol A differentially activates protein kinase C isoforms in murine placental tissue

    International Nuclear Information System (INIS)

    Bisphenol A is utilized to make polycarbonate plastics and is an environmental pollutant. Recent research has indicated that it is an endocrine disruptor and may interfere with reproductive processes. Our lab has previously shown that bisphenol A could regulate corticotrophin releasing hormone and aromatase in cultured placental cells. In the present study, the effect of bisphenol A on these two genes in the placenta was investigated in mice. Pregnant ICR mice were gavaged with bisphenol A at 2, 20 and 200 mg/kg body weight/day from E13 to E16 and were euthanized at E17. Compared to the control mice, increased plasma estrogen and corticotrophin releasing hormone were observed in bisphenol A-treated mice. Messenger RNA quantification indicated that placental crh but not cyp19 was induced in mice treated with bisphenol A. Tracking the related signaling pathway, we found that protein kinase C ζ/λ and δ were activated in the placentas of bisphenol A-treated mice. As the gene promoter of crh contains CRE and the half site of ERE, either phospho-PKC or estrogen could stimulate the gene transactivation. These results indicate that bisphenol A might increase plasma concentrations of estradiol, testosterone, corticotrophin releasing hormone and placental phospho-PKC ζ/λ and δ in mice. Ultimately, the incidence of premature birth in these mice could increase. - Highlights: • The pollutant bisphenol A differentially activated PKC isoforms in the placenta. • CRE-binding activity in the nuclear protein of placenta was increased. • Bisphenol A induces CRH mRNA expression in mice

  19. Early detection of skeletal muscle injury by assay of creatine kinase MM isoforms in serum after acute exercise

    DEFF Research Database (Denmark)

    Apple, F. S.; Hellsten, Ylva; Clarkson, P. M.

    1988-01-01

    We could detect skeletal muscle injury early after an acute exercise bout by measuring creatine kinase (CK, EC 2.7.3.2) MM isoforms in serum. Eleven men performed 120 alternating-arm, eccentric (muscle lengthening) biceps contractions with the intensity of each contraction being 110% of maximal...... concentric strength--a form of exercise previously shown to cause significant increases of CK in serum at 24 h and muscle soreness 48 h after exercise. Total CK and CK-MM isoform activities in serum were determined before and at 0.5, 0.75, 1, 1.5, 2, and 6 h after exercise. Using thin-film agarose gels...... and a rapid isoelectric focusing technique, we separated the MM isoforms into MM3 (skeletal muscle form), MM2, and MM1 (in vivo conversion forms). The isoforms reflected the MM form released into the serum from tissue as well as the conversion of one form to another. There were no significant increases...

  20. Progesterone receptor isoforms PRA and PRB differentially contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes.

    Science.gov (United States)

    Bellance, Catherine; Khan, Junaid A; Meduri, Geri; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2013-05-01

    Progesterone receptor (PR) and progestins affect mammary tumorigenesis; however, the relative contributions of PR isoforms A and B (PRA and PRB, respectively) in cancer cell migration remains elusive. By using a bi-inducible MDA-MB-231 breast cancer cell line expressing PRA and/or PRB, we analyzed the effect of conditional PR isoform expression. Surprisingly, unliganded PRB but not PRA strongly enhanced cell migration as compared with PR(-) cells. 17,21-Dimethyl-19-norpregna-4,9-dien-3,20-dione (R5020) progestin limited this effect and was counteracted by the antagonist 11β-(4-dimethyl-amino)-phenyl-17β-hydroxy-17-(1-propynyl)-estra-4,9-dien-3-one (RU486). Of importance, PRA coexpression potentiated PRB-mediated migration, whereas PRA alone was ineffective. PR isoforms differentially regulated expressions of major players of cell migration, such as urokinase plasminogen activator (uPA), its inhibitor plasminogen activator inhibitor type 1, uPA receptor (uPAR), and β1-integrin, which affect focal adhesion kinase (FAK) signaling. Moreover, unliganded PRB but not PRA enhanced FAK Tyr397 phosphorylation and colocalized with activated FAK in cell protrusions. Because PRB, as well as PRA, coimmunoprecipitated with FAK, both isoforms can interact with FAK complexes, depending on their respective nucleocytoplasmic trafficking. In addition, FAK degradation was coupled to R5020-dependent turnovers of PRA and PRB. Such an effect of PRB/PRA expression on FAK signaling might thus affect adhesion/motility, underscoring the implication of PR isoforms in breast cancer invasiveness and metastatic evolution with underlying therapeutic outcomes.

  1. Biochemical characterization of the initial steps of the Kennedy pathway in Trypanosoma brucei : the ethanolamine and choline kinases

    OpenAIRE

    GIBELLINI, FEDERICA; Hunter, William N.; Smith, Terry K.

    2008-01-01

    Ethanolamine and choline are major components of the trypanosome membrane phospholipids, in the form of GPEtn (glycero-phosphoethanolamine) and GPCho (glycerophosphocholine). Ethanolamine is also found as an integral component of the GPI (glycosylpliosphatidylinositol) anchor that is required for membrane attachment of cell-surface proteins, most notably the variant-surface glycoproteins. The de novo synthesis of GPEtn and GPCho starts with the generation of phosphoethanolamine and phosphocho...

  2. Biochemical characterisation of the initial steps of the kennedy pathway in Trypanosoma brucei - the ethanolamine and choline kinases

    OpenAIRE

    GIBELLINI, FEDERICA; Hunter, William N.; Smith, Terry K.

    2008-01-01

    Abstract Ethanolamine (EtN) and choline (Cho) are major components of the trypanosome membrane phospholipids, in the form of phosphatidylethanolamine (GPEtn) and phosphatidylcholine (GPCho). Ethanolamine is also found as an integral component of the glycosylphosphatidylinositol (GPI) anchor that is required for membrane attachment of cell surface proteins, most notably the variant surface glycoproteins. The de novo synthesis of GPEth and GPCho starts with the generation of phosphoe...

  3. A tail-anchored myotonic dystrophy protein kinase isoform induces perinuclear clustering of mitochondria, autophagy, and apoptosis.

    Directory of Open Access Journals (Sweden)

    Ralph J A Oude Ophuis

    Full Text Available BACKGROUND: Studies on the myotonic dystrophy protein kinase (DMPK gene and gene products have thus far mainly concentrated on the fate of length mutation in the (CTGn repeat at the DNA level and consequences of repeat expansion at the RNA level in DM1 patients and disease models. Surprisingly little is known about the function of DMPK protein products. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate here that transient expression of one major protein product of the human gene, the hDMPK A isoform with a long tail anchor, results in mitochondrial fragmentation and clustering in the perinuclear region. Clustering occurred in a variety of cell types and was enhanced by an intact tubulin cytoskeleton. In addition to morphomechanical changes, hDMPK A expression induces physiological changes like loss of mitochondrial membrane potential, increased autophagy activity, and leakage of cytochrome c from the mitochondrial intermembrane space accompanied by apoptosis. Truncation analysis using YFP-hDMPK A fusion constructs revealed that the protein's tail domain was necessary and sufficient to evoke mitochondrial clustering behavior. CONCLUSION/SIGNIFICANCE: Our data suggest that the expression level of the DMPK A isoform needs to be tightly controlled in cells where the hDMPK gene is expressed. We speculate that aberrant splice isoform expression might be a codetermining factor in manifestation of specific DM1 features in patients.

  4. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    Directory of Open Access Journals (Sweden)

    Evgeny Bychkov

    Full Text Available G protein-coupled receptor kinases (GRKs and arrestins mediate desensitization of G protein-coupled receptors (GPCR. Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  5. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms.

    NARCIS (Netherlands)

    Zandt, H.J.A. in t; Groof, A.J.C. de; Renema, W.K.J.; Oerlemans, F.T.J.J.; Klomp, D.W.J.; Wieringa, B.; Heerschap, A.

    2003-01-01

    We assessed the relationship between phosphocreatine (PCr) and creatine (Cr) content and creatine kinase (CK) activity in skeletal muscle of mice. The PCr and total Cr (tCr) concentrations, as well as CK activity, in hindlimb muscles of mice, with or without the cytosolic and mitochondrial isoforms

  6. Diacylglycerol kinase theta and zeta isoforms : regulation of activity, protein binding partners and physiological functions

    NARCIS (Netherlands)

    Los, Alrik Pieter

    2007-01-01

    Diacylglycerol kinases (DGKs) phosphorylate the second messenger diacylglycerol (DAG) yielding phosphatidic acid (PA). In this thesis, we investigated which structural domains of DGKtheta are required for DGK activity. Furthermore, we showed that DGKzeta binds to and is activated by the Retinoblasto

  7. Heterologous expression and biochemical characterization of two calcium-dependent protein kinase isoforms CaCPK1 and CaCPK2 from chickpea.

    Science.gov (United States)

    Syam Prakash, S R; Jayabaskaran, Chelliah

    2006-11-01

    In plants, calcium-dependent protein kinases (CPKs) constitute a unique family of enzymes consisting of a protein kinase catalytic domain fused to carboxy-terminal autoregulatory and calmodulin-like domains. We isolated two cDNAs encoding calcium-dependent protein kinase isoforms (CaCPK1 and CaCPK2) from chickpea. Both isoforms were expressed as fusion proteins in Escherichia coli. Biochemical analyses have identified CaCPK1 and CaCPK2 as Ca(2+)-dependent protein kinases since both enzymes phosphorylated themselves and histone III-S as substrate only in the presence of Ca(2+). The kinase activity of the recombinant enzymes was calmodulin independent and sensitive to CaM antagonists W7 [N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide] and calmidazoilum. Phosphoamino acid analysis revealed that the isoforms transferred the gamma-phosphate of ATP only to serine residues of histone III-S and their autophosphorylation occurred on serine and threonine residues. These two isoforms showed considerable variations with respect to their biochemical and kinetic properties including Ca(2+) sensitivities. The recombinant CaCPK1 has a pH and temperature optimum of pH 6.8-8.6 and 35-42 degrees C, respectively, whereas CaCPK2 has a pH and temperature optimum of pH 7.2-9 and 35-42 degrees C, respectively. Taken together, our results suggest that CaCPK1 and CaCPK2 are functional serine/threonine kinases and may play different roles in Ca(2+)-mediated signaling in chickpea plants.

  8. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    DEFF Research Database (Denmark)

    Massip, L; Garand, C; Labbé, A;

    2010-01-01

    show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1...... activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCdelta and PKCbetaII in the membrane fraction of cells. In contrast......), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease...

  9. Diacylglycerol kinase theta and zeta isoforms: regulation of activity, protein binding partners and physiological functions

    OpenAIRE

    Los, Alrik Pieter

    2007-01-01

    Diacylglycerol kinases (DGKs) phosphorylate the second messenger diacylglycerol (DAG) yielding phosphatidic acid (PA). In this thesis, we investigated which structural domains of DGKtheta are required for DGK activity. Furthermore, we showed that DGKzeta binds to and is activated by the Retinoblastoma tumour suppressor protein (pRB) and the pRB-related proteins p107 and p130, key regulators of the cell-cycle, differentiation and apoptosis. The interaction between pRB and DGKzeta is regulated ...

  10. Cloning and Characterization of Two NAD Kinases from Arabidopsis. Identification of a Calmodulin Binding Isoform1[w

    Science.gov (United States)

    Turner, William L.; Waller, Jeffrey C.; Vanderbeld, Barb; Snedden, Wayne A.

    2004-01-01

    NAD kinase (NADK; ATP:NAD 2′-phosphotransferase, EC 2.7.1.23), an enzyme found in both prokaryotes and eukaryotes, generates the important pyridine nucleotide NADP from substrates ATP and NAD. The role of NADKs in plants is poorly understood, and cDNAs encoding plant NADKs have not previously been described to our knowledge. We have cloned two cDNAs from Arabidopsis predicted to encode NADK isoforms, designated NADK1 and NADK2, respectively. Expressed as recombinant proteins in bacteria, both NADK1 and NADK2 were catalytically active, thereby confirming their identity as NADKs. Transcripts for both isoforms were detected in all tissues examined and throughout development. Although the predicted catalytic regions for NADK1 and NADK2 show sequence similarity to NADKs from other organisms, NADK2 possesses a large N-terminal extension that appears to be unique to plants. Using recombinant glutathione-S-transferase fusion proteins and calmodulin (CaM)-affinity chromatography, we delineated a Ca2+-dependent CaM-binding domain to a 45-residue region within the N-terminal extension of NADK2. Although recombinant NADK2 was not responsive to CaM in vitro, immunoblot analysis suggests that native NADK2 is a CaM-binding protein. In Arabidopsis crude extracts, CaM-dependent NADK activity was much greater than CaM-independent activity throughout development, particularly in young seedlings. A native CaM-dependent NADK was partially purified from Arabidopsis seedlings (KmNAD = 0.20 mM, KmMg2+−ATP = 0.17 mM). The enzyme was fully activated by conserved CaM (S0.5 = 2.2 nm) in the presence of calcium but displayed differential responsiveness to eight CaM-like Arabidopsis proteins. Possible roles for NADKs in plants are discussed in light of our observations. PMID:15247403

  11. Pyruvate dehydrogenase kinase isoform 2 activity stimulated by speeding up the rate of dissociation of ADP.

    Science.gov (United States)

    Bao, Haiying; Kasten, Shane A; Yan, Xiaohua; Hiromasa, Yasuaki; Roche, Thomas E

    2004-10-26

    Pyruvate dehydrogenase kinase 2 (PDK2) activity is stimulated by NADH and NADH plus acetyl-CoA via the reduction and reductive acetylation of the lipoyl groups of the dihydrolipoyl acetyltransferase (E2) component. Elevated K(+) and Cl(-) were needed for significant stimulation. Stimulation substantially increased both k(cat) and the K(m) for ATP; the fractional stimulation increased with the level of ATP. With an E2 structure lacking the pyruvate dehydrogenase (E1) binding domain, stimulation of PDK2 was retained, the K(m) for E1 decreased, and the equilibrium dissociation constant for ATP increased but remained much lower than the K(m) for ATP. Stimulation of PDK2 activity greatly reduced the fraction of bound ADP. These results fit an ordered reaction mechanism with ATP binding before E1 and stimulation increasing the rate of dissociation of ADP. Conversion of all of the lipoyl groups in the E2 60mer to the oxidized form (E2(ox)) greatly reduced k(cat) and the K(m) of PDK2 for ATP. Retention over an extended period of time of a low portion of reduced lipoyl groups maintains E2 in a state that supported much higher PDK2 activity than short-term (5 min) reduction of a large portion of lipoyl groups of E2(ox), but reduction of E2(ox) produced a larger fold stimulation. Reduction and to a greater extent reductive acetylation increased PDK2 binding to E2; conversion to E2(ox) did not significantly hinder binding. We suggest that passing even limited reducing equivalents among lipoyl groups maintains E2 lipoyl domains in a conformation that aids kinase function. PMID:15491151

  12. Switching of pyruvate kinase isoform L to M2 promotes metabolic reprogramming in hepatocarcinogenesis.

    Directory of Open Access Journals (Sweden)

    Carmen Chak-Lui Wong

    Full Text Available Hepatocellular carcinoma (HCC is an aggressive tumor, with a high mortality rate due to late symptom presentation and frequent tumor recurrences and metastasis. It is also a rapidly growing tumor supported by different metabolic mechanisms; nevertheless, the biological and molecular mechanisms involved in the metabolic reprogramming in HCC are unclear. In this study, we found that pyruvate kinase M2 (PKM2 was frequently over-expressed in human HCCs and its over-expression was associated with aggressive clinicopathological features and poor prognosis of HCC patients. Furthermore, knockdown of PKM2 suppressed aerobic glycolysis and cell proliferation in HCC cell lines in vitro. Importantly, knockdown of PKM2 hampered HCC growth in both subcutaneous injection and orthotopic liver implantation models, and reduced lung metastasis in vivo. Of significance, PKM2 over-expression in human HCCs was associated with a down-regulation of a liver-specific microRNA, miR-122. We further showed that miR-122 interacted with the 3UTR of the PKM2 gene. Re-expression of miR-122 in HCC cell lines reduced PKM2 expression, decreased glucose uptake in vitro, and suppressed HCC tumor growth in vivo. Our clinical data and functional studies have revealed a novel biological mechanism involved in HCC metabolic reprogramming.

  13. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells

    Science.gov (United States)

    Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)

    2002-01-01

    Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.

  14. Urochordate ascidians possess a single isoform of Aurora kinase that localizes to the midbody via TPX2 in eggs and cleavage stage embryos.

    Directory of Open Access Journals (Sweden)

    Celine Hebras

    Full Text Available Aurora kinases are key proteins found throughout the eukaryotes that control mitotic progression. Vertebrate Aurora-A and B kinases are thought to have evolved from a single Aurora-kinase isoform closest to that found in present day urochordates. In urochordate ascidians Aurora binds both TPX2 (a vertebrate AURKA partner and INCENP (a vertebrate AURKB partner and localizes to centrosomes and spindle microtubules as well as chromosomes and midbody during both meiosis and mitosis. Ascidian Aurora also displays this localization pattern during mitosis in echinoderms, strengthening the idea that non-vertebrate deuterostomes such as the urochordates and echinoderms possess a single form of Aurora kinase that has properties of vertebrate Aurora-kinase A and B. In the ascidian, TPX2 localizes to the centrosome and the spindle poles also as in vertebrates. However, we were surprised to find that TPX2 also localized strongly to the midbody in ascidian eggs and embryos. We thus examined more closely Aurora localization to the midbody by creating two separate point mutations of ascidian Aurora predicted to perturb binding to TPX2. Both forms of mutated Aurora behaved as predicted: neither localized to spindle poles where TPX2 is enriched. Interestingly, neither form of mutated Aurora localized to the midbody where TPX2 is also enriched, suggesting that ascidian Aurora midbody localization required TPX2 binding in ascidians. Functional analysis revealed that inhibition of Aurora kinase with a pharmacological inhibitor or with a dominant negative kinase dead form of Aurora caused cytokinesis failure and perturbed midbody formation during polar body extrusion. Our data support the view that vertebrate Aurora-A and B kinases evolved from a single non-vertebrate deuterostome ancestor. Moreover, since TPX2 localizes to the midbody in ascidian eggs and cleavage stage embryos it may be worthwhile re-assessing whether Aurora A kinase or TPX2 localize to the midbody

  15. Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway

    DEFF Research Database (Denmark)

    Migliaccio, E; Mele, S; Salcini, A E;

    1997-01-01

    66shc expression varies from cell type to cell type. p66shc differs from p52shc/p46shc in its inability to transform mouse fibroblasts in vitro. Like p52shc/p46shc, p66shc is tyrosine-phosphorylated upon epidermal growth factor (EGF) stimulation, binds to activated EGF receptors (EGFRs) and forms...... on the EGFR-MAP kinase and other signalling pathways that control fos promoter activity. Regulation of p66shc expression might, therefore, influence the cellular response to growth factors.......Shc proteins are targets of activated tyrosine kinases and are implicated in the transmission of activation signals to Ras. The p46shc and p52shc isoforms share a C-terminal SH2 domain, a proline- and glycine-rich region (collagen homologous region 1; CH1) and a N-terminal PTB domain. We have...

  16. Nesfatin-1 Suppresses Cardiac L-type Ca2+ Channels Through Melanocortin Type 4 Receptor and the Novel Protein Kinase C Theta Isoform Pathway

    Directory of Open Access Journals (Sweden)

    Jiaoqian Ying

    2015-05-01

    Full Text Available Background/Aims: Nesfatin-1 (NF-1, an anorexic nucleobindin-2 (NUCB2-derived hypothalamic peptide, acts as a peripheral cardiac modulator and it can induce negative inotropic effects. However, the mechanisms underlying these effects in cardiomyocytes remain unclear. Methods: Using patch clamp, protein kinase assays, and western blot analysis, we studied the effect of NF-1 on L-type Ca2+ currents (ICa,L and to explore the regulatory mechanisms of this effect in adult ventricular myocytes. Results: NF-1 reversibly decreased ICa,L in a dose-dependent manner. This effect was mediated by melanocortin 4 receptor (MC4-R and was associated with a hyperpolarizing shift in the voltage-dependence of inactivation. Dialysis of cells with GDP-β-S or anti-Gβ antibody as well as pertussis toxin pretreatment abolished the inhibitory effects of NF-1 on ICa,L. Protein kinase C (PKC antagonists abolished NF-1-induced responses, whereas inhibition of PKA activity or intracellular application of the fast Ca2+-chelator BAPTA elicited no such effects. Application of NF-1 increased membrane abundance of PKC theta isoform (PKCθ, and PKCθ inhibition abolished the decrease in ICa,L induced by NF-1. Conclusion: These data suggest that NF-1 suppresses L-type Ca2+ channels via the MC4-R that couples sequentially to the βγ subunits of Gi/o-protein and the novel PKCθ isoform in adult ventricular myocytes.

  17. Choline Magnesium Trisalicylate

    Science.gov (United States)

    Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis and painful ... used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal anti- ...

  18. Deficiency of p110δ Isoform of the Phosphoinositide 3 Kinase Leads to Enhanced Resistance to Leishmania donovani

    OpenAIRE

    Forough Khadem; Zhirong Mou; Dong Liu; Sanjay Varikuti; Abhay Satoskar; Uzonna, Jude E.

    2014-01-01

    Background Visceral leishmaniasis is the most clinically relevant and dangerous form of human leishmaniasis. Most traditional drugs for treatment of leishmaniasis are toxic, possess many adverse reactions and drug resistance is emerging. Therefore, there is urgent need for identification of new therapeutic targets. Recently, we found that mice with an inactivating knock-in mutation in the p110δ isoform of pi3k, (p110δd910a) are hyper resistant to L. major, develop minimal cutaneous lesion and...

  19. The ζ isoform of diacylglycerol kinase plays a predominant role in regulatory T cell development and TCR-mediated ras signaling.

    Science.gov (United States)

    Joshi, Rohan P; Schmidt, Amanda M; Das, Jayajit; Pytel, Dariusz; Riese, Matthew J; Lester, Melissa; Diehl, J Alan; Behrens, Edward M; Kambayashi, Taku; Koretzky, Gary A

    2013-11-26

    Diacylglycerol (DAG) is a critical second messenger that mediates T cell receptor (TCR)-stimulated signaling. The abundance of DAG is reduced by the diacylglycerol kinases (DGKs), which catalyze the conversion of DAG to phosphatidic acid (PA) and thus inhibit DAG-mediated signaling. In T cells, the predominant DGK isoforms are DGKα and DGKζ, and deletion of the genes encoding either isoform enhances DAG-mediated signaling. We found that DGKζ, but not DGKα, suppressed the development of natural regulatory T (T(reg)) cells and predominantly mediated Ras and Akt signaling downstream of the TCR. The differential functions of DGKα and DGKζ were not attributable to differences in protein abundance in T cells or in their localization to the contact sites between T cells and antigen-presenting cells. RasGRP1, a key DAG-mediated activator of Ras signaling, associated to a greater extent with DGKζ than with DGKα; however, in silico modeling of TCR-stimulated Ras activation suggested that a difference in RasGRP1 binding affinity was not sufficient to cause differences in the functions of each DGK isoform. Rather, the model suggested that a greater catalytic rate for DGKζ than for DGKα might lead to DGKζ exhibiting increased suppression of Ras-mediated signals compared to DGKα. Consistent with this notion, experimental studies demonstrated that DGKζ was more effective than DGKα at catalyzing the metabolism of DAG to PA after TCR stimulation. The enhanced effective enzymatic production of PA by DGKζ is therefore one possible mechanism underlying the dominant functions of DGKζ in modulating T(reg) cell development.

  20. Structure-Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants.

    Science.gov (United States)

    Shen, Kui; Ramirez, Benjamin; Mapes, Brandon; Shen, Grace R; Gokhale, Vijay; Brown, Mary E; Santarsiero, Bernard; Ishii, Yoshitaka; Dudek, Steven M; Wang, Ting; Garcia, Joe G N

    2015-01-01

    The MYLK gene encodes the multifunctional enzyme, myosin light chain kinase (MLCK), involved in isoform-specific non-muscle and smooth muscle contraction and regulation of vascular permeability during inflammation. Three MYLK SNPs (P21H, S147P, V261A) alter the N-terminal amino acid sequence of the non-muscle isoform of MLCK (nmMLCK) and are highly associated with susceptibility to acute lung injury (ALI) and asthma, especially in individuals of African descent. To understand the functional effects of SNP associations, we examined the N-terminal segments of nmMLCK by 1H-15N heteronuclear single quantum correlation (HSQC) spectroscopy, a 2-D NMR technique, and by in silico molecular modeling. Both NMR analysis and molecular modeling indicated SNP localization to loops that connect the immunoglobulin-like domains of nmMLCK, consistent with minimal structural changes evoked by these SNPs. Molecular modeling analysis identified protein-protein interaction motifs adversely affected by these MYLK SNPs including binding by the scaffold protein 14-3-3, results confirmed by immunoprecipitation and western blot studies. These structure-function studies suggest novel mechanisms for nmMLCK regulation, which may confirm MYLK as a candidate gene in inflammatory lung disease and advance knowledge of the genetic underpinning of lung-related health disparities.

  1. Generation and characterization of polyclonal antibodies specific to N-terminal extension of p85 isoform of ribosomal protein S6 kinase 1 (p85 S6K1

    Directory of Open Access Journals (Sweden)

    Savinska L. O.

    2015-08-01

    Full Text Available Aim. Generation of polyclonal antibodies specific to the ribosomal protein S6 kinase isoform – p85S6K1 and directed to the N-terminal (1–23 aa extension of p85S6K1. Methods. Animal immunization with synthetic (1–23 aa peptide, ELISA, Western blot, Immunoprecipitation, immunofluorescent analysis. Results. Polyclonal antibodies have been generated, which specifically recognize only p85 but not p70 isoform of S6K1 in western blot, immunoprecipitation and immunofluorescence analysis. Conclusions. The obtained antibodies can be recommended for studies on the p85S6K1 and other S6K1 isoforms possessing the N-terminal extension – the identification of binding protein partners, analysis of subcellular localization under different physiological conditions, elucidation of the signal transduction pathways involving different S6K1 isoforms.

  2. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells.

    Science.gov (United States)

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-07-15

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca(2+)- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations ("spiking") at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K(+) depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca(2+) concentration ([Ca(2+)]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca(2+)]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca(2+)]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function.

  3. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells*

    Science.gov (United States)

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-01-01

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca2+- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations (“spiking”) at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K+ depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca2+ concentration ([Ca2+]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca2+]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca2+]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function. PMID:27226533

  4. Troponin I Assessment of Cardiac Involvement in Patients With Connective Tissue Disease and an Elevated Creatine Kinase MB Isoform Report of Four Cases and Review of the Literature.

    Science.gov (United States)

    Badsha, H; Gunes, B; Grossman, J; Brahn, E

    1997-06-01

    Levels of creatine kinase MB isoform (CKMB) can be elevated in patients with myopathy, neuropathy, skeletal muscle injury, or renal failure in the absence of myocardial injury. These elevated CKMB levels make it difficult to identify cardiac involvement in conditions that can be associated with a variety of cardiac abnormalities or with symptoms that mimic them. Cardiac troponin I (cTnI), a myocardial regulatory protein, has a high specificity for cardiac muscle and can be used to clarify the etiology of CKMB elevations in such patients. In this report, four patients with diverse causes for increased CKMB levels are discussed with respect to cill.The first three patients, with tentative diagnoses of mixed connective tissue disease, amyotrophic lateral sclerosis, and polymyositis presented with increasing shortness of breath, tachycardia, nonspecific electrocardiogram changes, high creative kinase, and CKMB levels. A normal cTnI helped exclude a diagnosis of a cardiac cause of their symptoms. Patient 4 had a scleroderma variant and experienced sudden, fatal, cardiac decompensation caused by a dilated cardiomyopathy, accompanied by an increased cTnl.The cTnI is a reliable, specific, and quick wav of excluding or determining cardiac involvement in patients with connective tissue disease. As this test is inexpensive and becoming increasingly available, it could become the test of choice, especially in scenarios in which urgent management decisions are needed.

  5. Activation of medullary dorsal horn γ isoform of protein kinase C interneurons is essential to the development of both static and dynamic facial mechanical allodynia.

    Science.gov (United States)

    Pham-Dang, Nathalie; Descheemaeker, Amélie; Dallel, Radhouane; Artola, Alain

    2016-03-01

    The γ isoform of protein kinase C (PKCγ), which is concentrated in a specific class of interneurons within inner lamina II (IIi ) of the spinal dorsal horn and medullary dorsal horn (MDH), is known to be involved in the development of mechanical allodynia, a widespread and intractable symptom of inflammatory or neuropathic pain. However, although genetic and pharmacological impairment of PKCγ were shown to prevent mechanical allodynia in animal models of pain, after nerve injury or reduced inhibition, the functional consequences of PKCγ activation alone on mechanical sensitivity are still unknown. Using behavioural and anatomical approaches in the rat MDH, we tested whether PKCγ activation in naive animals is sufficient for the establishment of mechanical allodynia. Intracisternal injection of the phorbol ester, 12,13-dibutyrate concomitantly induced static as well as dynamic facial mechanical allodynia. Monitoring neuronal activity within the MDH with phospho-extracellular signal-regulated kinases 1 and 2 immunoreactivity revealed that activation of both lamina I-outer lamina II and IIi -outer lamina III neurons, including lamina IIi PKCγ-expressing interneurons, was associated with the manifestation of mechanical allodynia. Phorbol ester, 12,13-dibutyrate-induced mechanical allodynia and associated neuronal activations were all prevented by inhibiting selectively segmental PKCγ with KIG31-1. Our findings suggest that PKCγ activation, without any other experimental manipulation, is sufficient for the development of static and dynamic mechanical allodynia. Lamina IIi PKCγ interneurons have been shown to be directly activated by low-threshold mechanical inputs carried by myelinated afferents. Thus, the level of PKCγ activation within PKCγ interneurons might gate the transmission of innocuous mechanical inputs to lamina I, nociceptive output neurons, thus turning touch into pain.

  6. The molecular, temporal and region-specific requirements of the beta isoform of Calcium/Calmodulin-dependent protein kinase type 2 (CAMK2B) in mouse locomotion.

    Science.gov (United States)

    Kool, Martijn J; van de Bree, Jolet E; Bodde, Hanna E; Elgersma, Ype; van Woerden, Geeske M

    2016-01-01

    Genetic approaches using temporal and brain region-specific restricted gene deletions have provided a wealth of insight in the brain regions and temporal aspects underlying spatial and associative learning. However, for locomotion such extensive studies are still scarce. Previous studies demonstrated that Camk2b(-/-) mice, which lack the β isoform of Calcium/Calmodulin-dependent protein kinase 2 (CAMK2B), show very severe locomotion deficits. However, where these locomotion deficits originate is unknown. Here we made use of novel Camk2b mutants (Camk2b(f/f) and Camk2b(T287A)), to explore the molecular, temporal and brain region-specific requirements of CAMK2B for locomotion. At the molecular level we found that normal locomotion requires Calcium/Calmodulin mediated activation of CAMK2B, but CAMK2B autonomous activity is largely dispensable. At a systems level, we found that global deletion of Camk2b in the adult mouse causes only mild locomotion deficits, suggesting that the severe locomotion deficits of Camk2b(-/-) mice are largely of developmental origin. However, early onset deletion of Camk2b in cerebellum, striatum or forebrain did not recapitulate the locomotion deficits, suggesting that these deficits cannot be attributed to a single brain area. Taken together, these results provide the first insights into the molecular, temporal and region-specific role of CAMK2B in locomotion. PMID:27244486

  7. Deficiency of p110δ isoform of the phosphoinositide 3 kinase leads to enhanced resistance to Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Forough Khadem

    2014-06-01

    Full Text Available Visceral leishmaniasis is the most clinically relevant and dangerous form of human leishmaniasis. Most traditional drugs for treatment of leishmaniasis are toxic, possess many adverse reactions and drug resistance is emerging. Therefore, there is urgent need for identification of new therapeutic targets. Recently, we found that mice with an inactivating knock-in mutation in the p110δ isoform of pi3k, (p110δ(d910a are hyper resistant to L. major, develop minimal cutaneous lesion and rapidly clear their parasite. Here, we investigated whether pi3k signaling also regulates resistance to L. donovani, one of the causative agents of visceral leishmaniasis.WT and p110δ(D910A mice (on a BALB/c background were infected with L. donovani. At different time points, parasite burden and granuloma formation were assessed. T and B cell responses in the liver and spleen were determined. In addition, Tregs were expanded in vivo and its impact on resistance was assessed. We found that p110δ(D910A mice had significantly reduced splenomegaly and hepatomegaly and these organs harbored significantly fewer parasites than those of WT mice. Interestingly, infected p110δ(D910A mice liver contains fewer and less organized granulomas than their infected WT counterparts. Cells from p110δ(D910A mice were significantly impaired in their ability to produce cytokines compared to WT mice. The percentage and absolute numbers of Tregs in infected p110δ(D910A mice were lower than those in WT mice throughout the course of infection. In vivo expansion of Tregs in infected p110δ(D910A mice abolished their enhanced resistance to L. donovani infection.Our results indicate that the enhanced resistance of p110δ(D910A mice to L. donovani infection is due to impaired activities of Tregs. They further show that resistance to Leishmania in the absence of p110δ signaling is independent of parasite species, suggesting that targeting the PI3K signaling pathway may be useful for

  8. Protein kinase A type I activates a CRE-element more efficiently than protein kinase A type II regardless of C subunit isoform

    Directory of Open Access Journals (Sweden)

    Kvissel Anne-Katrine

    2011-02-01

    Full Text Available Abstract Background Protein kinase A type I (PKAI and PKAII are expressed in most of the eukaryotic cells examined. PKA is a major receptor for cAMP and specificity is achieved partly through tissue-dependent expression and subcellular localization of subunits with different biochemical properties. In addition posttranslational modifications help fine tune PKA activity, distribution and interaction in the cell. In spite of this the functional significance of two forms of PKA in one cell has not been fully determined. Here we have tested the ability of PKAI and PKAII formed by expression of the regulatory (R subunits RIα or RIIα in conjunction with Cα1 or Cβ2 to activate a co-transfected luciferace reporter gene, controlled by the cyclic AMP responsive element-binding protein (CREB in vivo. Results We show that PKAI when expressed at equal levels as PKAII was significantly (p Conclusion We suggest that differential effects of PKAI and PKAII in inducing Cre-luciferace activity depend on R and not C subunit identity.

  9. Pyruvate dehydrogenase kinase isoform 2 activity limited and further inhibited by slowing down the rate of dissociation of ADP.

    Science.gov (United States)

    Bao, Haiying; Kasten, Shane A; Yan, Xiaohua; Roche, Thomas E

    2004-10-26

    Pyruvate dehydrogenase kinase 2 (PDK2) activity is enhanced by the dihydrolipoyl acetyltransferase core (E2 60mer) that binds PDK2 and a large number of its pyruvate dehydrogenase (E1) substrate. With E2-activated PDK2, K(+) at approximately 90 mM and Cl(-) at approximately 60 mM decreased the K(m) of PDK2 for ATP and competitive K(i) for ADP by approximately 3-fold and enhanced pyruvate inhibition. Comparing PDK2 catalysis +/- E2, E2 increased the K(m) of PDK2 for ATP by nearly 8-fold (from 5 to 39 microM), increased k(cat) by approximately 4-fold, and decreased the requirement for E1 by at least 400-fold. ATP binding, measured by a cold-trapping technique, occurred at two active sites with a K(d) of 5 microM, which equals the K(m) and K(d) of PDK2 for ATP measured in the absence of E2. During E2-aided catalysis, PDK2 had approximately 3 times more ADP than ATP bound at its active site, and the pyruvate analogue, dichloroacetate, led to 16-fold more ADP than ATP being bound (no added ADP). Pyruvate functioned as an uncompetitive inhibitor versus ATP, and inclusion of ADP transformed pyruvate inhibition to noncompetitive. At high pyruvate levels, pyruvate was a partial inhibitor but also induced substrate inhibition at high ATP levels. Our results indicate that, at physiological salt levels, ADP dissociation is a limiting step in E2-activated PDK2 catalysis, that PDK2.[ADP or ATP].pyruvate complexes form, and that PDK2.ATP.pyruvate.E1 reacts with PDK2.ADP.pyruvate accumulating. PMID:15491150

  10. The Glycogen Synthase Kinase 3α and β Isoforms Differentially Regulates Interleukin-12p40 Expression in Endothelial Cells Stimulated with Peptidoglycan from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Ricarda Cortés-Vieyra

    Full Text Available Glycogen synthase kinase 3 (GSK3 is a constitutively active regulatory enzyme that is important in cancer, diabetes, and cardiovascular, neurodegenerative, and psychiatric diseases. While GSK3α is usually important in neurodegenerative and psychiatric diseases GSK3β is fundamental in the inflammatory response caused by bacterial components. Peptidoglycan (PGN, one of the most abundant cell-wall structures of Gram-positive bacteria, is an important inducer of inflammation. To evaluate whether inhibition of GSK3α and GSK3β activity in bovine endothelial cells (BEC regulates the expression of the pro-inflammatory cytokine IL-12p40, we treated BEC with SDS-purified PGN from Staphylococcus aureus. We found that PGN triggered a TLR2/PI3K/Akt-dependent phosphorylation of GSK3α at Ser21, GSK3β at Ser9, and NF-κB p65 subunit (p65 at Ser536, and the phosphorylation of GSK3α was consistently higher than that of GSK3β. The expression of IL-12p40 was inhibited in BEC stimulated with PGN and pre-treated with a specific neutralizing anti-TLR2 antibody that targets the extracellular domain of TLR2 or by the addition of Akt-i IV (an Akt inhibitor. Inhibition of GSK3α and GSK3β with LiCl or SB216763 induced an increase in IL-12p40 mRNA and protein. The effect of each isoform on IL-12p40 expression was evaluated by siRNA-gene expression silencing of GSK3α and GSK3β. GSK3α gene silencing resulted in a marked increase in IL-12p40 mRNA and protein while GSK3β gene silencing had the opposite effect on IL-12p40 expression. These results indicate that the TLR2/PI3K/Akt-dependent inhibition of GSK3α activity also plays an important role in the inflammatory response caused by stimulation of BEC with PGN from S. aureus.

  11. CHOLINE METABOLISM ALTERATION: A FOCUS ON OVARIAN CANCER

    Directory of Open Access Journals (Sweden)

    Marina eBagnoli

    2016-06-01

    Full Text Available Compared to normal differentiated cells, cancer cells require a metabolic reprogramming to support their high proliferation rates and survival. Aberrant choline metabolism is a fairly new metabolic hallmark reflecting the complex reciprocal interactions between oncogenic signaling and cellular metabolism. Alterations of the involved metabolic network may be sustained by changes in activity of several choline transporters as well as of enzymes like choline kinase-alpha (ChoK-α and phosphatidylcholine-specific phospholipases C and D. Of note, the net outcome of these enzymatic alterations is an increase of phosphocholine and total choline-containing compounds, a cholinic phenotype that can be monitored in cancer by magnetic resonance spectroscopy. This review will highlight the molecular basis for targeting this pathway in epithelial ovarian carcinoma (EOC, a highly heterogeneous and lethal malignancy characterized by late diagnosis, frequent relapse and development of chemoresistance. Modulation of ChoK-α expression impairs only EOC but not normal ovarian cells, thus supporting the hypothesis that cholinic phenotype is a peculiar feature of transformed cells, and indicating ChoK-α targeting as a novel approach to improve efficacy of standard EOC chemotherapeutic treatments.

  12. AMYGDALA KINDLING-INDUCED SEIZURES SELECTIVELY IMPAIR SPATIAL MEMORY .1. BEHAVIORAL-CHARACTERISTICS AND EFFECTS ON HIPPOCAMPAL NEURONAL PROTEIN-KINASE-C ISOFORMS

    NARCIS (Netherlands)

    BELDHUIS, HJA; EVERTS, HGJ; VANDERZEE, EA; LUITEN, PGM; BOHUS, B

    1992-01-01

    Protein kinase C (PKC) comprises a family of kinases consisting of nine subspecies that are differentially distributed in the central nervous system. This implies distinct functions. Its involvement is suggested in cellular and molecular mechanisms by which the hippocampus exerts influence on inform

  13. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo

    DEFF Research Database (Denmark)

    Sapkota, Gopal P; Cummings, Lorna; Newell, Felicity S;

    2007-01-01

    , RSK3 and RSK4 in vitro with an IC(50) of 10-30 nM, but does not signi-ficantly inhibit ten other AGC kinase members and over 40 other protein kinases tested at 100-fold higher concentrations. BI-D1870 is cell permeant and prevents the RSK-mediated phorbol ester- and EGF (epidermal growth factor...

  14. Human mesenchymal stem cell proliferation is regulated by PGE2 through differential activation of cAMP-dependent protein kinase isoforms

    DEFF Research Database (Denmark)

    Kleiveland, Charlotte Ramstad; Kassem, Moustapha; Lea, Tor

    2008-01-01

    . Furthermore, PGE2 treatment leads to enhanced nuclear translocation of beta-catenin, thus influencing cell proliferation. The presence of two PKA isoforms, types I and II, prompted us to investigate their individual contribution in PGE2-mediated regulation of proliferation. Specific activation of PKA type II...... of PGE2 on proliferation of hMSC. We here demonstrate that one of the main control molecules in the Wnt pathway, GSK-3 beta, is phosphorylated at the negative regulatory site ser-9 after treating the cells with PGE2. This phosphorylation is mediated by elevation of cAMP and subsequent activation of PKA...... with synthetic cAMP analogues, resulted in enhancement of proliferation. On the other side, we found that treatment of hMSC with high concentrations of PGE2 inhibited cell proliferation by arresting the cells in G0/G1 phase, an effect we found to be mediated by PKA I. Hence, the two different PKA isoforms seem...

  15. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Fabiana Salm

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.

  16. Ca2+-DEPENDENT PROTEIN KINASE C ISOFORMS ARE CRITICAL TO ESTRADIOL 17β-D-GLUCURONIDE-INDUCED CHOLESTASIS IN THE RAT

    OpenAIRE

    Crocenzi, Fernando A.; Enrique J Sánchez Pozzi; Ruiz, María Laura; Zucchetti, Andrés E.; Roma, Marcelo G.; Mottino, Aldo D.; Vore, Mary

    2008-01-01

    The endogenous estradiol metabolite estradiol 17β-D-glucuronide (E217G) induces an acute cholestasis in rat liver coincident with retrieval of the canalicular transporters Bsep (Abcc11) and Mrp2 (Abcc2) and their associated loss of function. We assessed the participation of Ca2+-dependent PKC isoforms (cPKC) in the cholestatic manifestations of E217G in the perfused rat liver (PRL) and in isolated rat hepatocyte couplets (IRHC). In the PRL, E217G (2 μmol/liver; intraportal, single injection) ...

  17. Chromosomal mapping and mutational analysis of the coding region of the glycogen synthase kinase-3alpha and beta isoforms in patients with NIDDM

    DEFF Research Database (Denmark)

    Hansen, L; Arden, K C; Rasmussen, S B;

    1997-01-01

    Activation of glycogen synthesis in skeletal muscle in response to insulin results from the combined inactivation of glycogen synthase kinase-3 (GSK-3) and activation of the protein phosphatase-1, changing the ratio between the inactive phosphorylated state of the glycogen synthase to the active ...

  18. BCR-ABL isoforms associated with intrinsic or acquired resistance to imatinib : more heterogeneous than just ABL kinase domain point mutations?

    NARCIS (Netherlands)

    Gruber, Franz X.; Lundan, Tuija; Goll, Rasmus; Silye, Aleksandra; Mikkola, Ingvild; Rekvig, Ole Petter; Knuutila, Sakari; Remes, Kari; Gedde-Dahl, Tobias; Porkka, Kimmo; Hjorth-Hansen, Henrik

    2012-01-01

    Imatinib, a small molecule inhibitor of ABL, PDGFR and C-KIT, has revolutionized treatment of chronic myeloid leukaemia (CML). However, resistance to treatment is of increasing importance and often is due to point mutations in the Abl kinase domain (Abl KD). Here, we analysed clinical outcome and mu

  19. Endogenous type II cGMP-dependent protein kinase exists as a dimer in membranes and can Be functionally distinguished from the type I isoforms

    NARCIS (Netherlands)

    A.B. Vaandrager (Arie); M.J. Edixhoven (Marcel); A.G. Bot (Alice); M.A. Kroos (Marian); T. Jarchau; S. Lohmann; H.G. Genieser; H.R. de Jonge (Hugo)

    1997-01-01

    textabstractIn mammalian tissues two types of cGMP-dependent protein kinase (cGK) have been identified. In contrast to the dimeric cGK I, cGK II purified from pig intestine was shown previously to behave as a monomer. However, recombinant rat cGK II was found to have hy

  20. Exploring levels of hexosamine biosynthesis pathway intermediates and protein kinase C isoforms in muscle and fat tissue of Zucker Diabetic Fatty rats.

    NARCIS (Netherlands)

    Bosch, R.R.; Janssen, S.W.J.; Span, P.N.; Olthaar, A.J.; Emst-de Vries, S.E. van; Willems, P.H.G.M.; Martens, G.J.M.; Hermus, A.R.M.M.; Sweep, C.G.J.

    2003-01-01

    Many studies suggest that insulin resistance develops and/or is maintained by an increased flux of glucose through the hexosamine biosynthesis pathway. This pathway may attenuate insulin-stimulated glucose uptake by activating protein kinase C (PKC). Therefore, we investigated whether the concentrat

  1. Evaluation of the choline status in mink fed different levels and sources of choline

    DEFF Research Database (Denmark)

    Hedemann, Mette Skou; Damgaard, Birthe Marie; Clausen, T.N.;

    2012-01-01

    plasma samples were extracted to analyze the content of free choline and betaine by liquid chromatography-mass spectrometry. Plasma choline was only increased in mink kits fed the highest level of choline whereas plasma choline dit not change in full-grown mink irrespectively of choline level in the feed....... Plasma betaine increased when the level of choline in the diet increased. The changes in plasma betaine were most prominent in mink kits. The present study shows that plasma betaine may be a more reliable marker of choline status than plasma choline, especially in mink kits....

  2. Therapeutic Targeting the Cell Division Cycle 25 (CDC25 Phosphatases in Human Acute Myeloid Leukemia — The Possibility to Target Several Kinases through Inhibition of the Various CDC25 Isoforms

    Directory of Open Access Journals (Sweden)

    Annette K. Brenner

    2014-11-01

    Full Text Available The cell division cycle 25 (CDC25 phosphatases include CDC25A, CDC25B and CDC25C. These three molecules are important regulators of several steps in the cell cycle, including the activation of various cyclin-dependent kinases (CDKs. CDC25s seem to have a role in the development of several human malignancies, including acute myeloid leukemia (AML; and CDC25 inhibition is therefore considered as a possible anticancer strategy. Firstly, upregulation of CDC25A can enhance cell proliferation and the expression seems to be controlled through PI3K-Akt-mTOR signaling, a pathway possibly mediating chemoresistance in human AML. Loss of CDC25A is also important for the cell cycle arrest caused by differentiation induction of malignant hematopoietic cells. Secondly, high CDC25B expression is associated with resistance against the antiproliferative effect of PI3K-Akt-mTOR inhibitors in primary human AML cells, and inhibition of this isoform seems to reduce AML cell line proliferation through effects on NFκB and p300. Finally, CDC25C seems important for the phenotype of AML cells at least for a subset of patients. Many of the identified CDC25 inhibitors show cross-reactivity among the three CDC25 isoforms. Thus, by using such cross-reactive inhibitors it may become possible to inhibit several molecular events in the regulation of cell cycle progression and even cytoplasmic signaling, including activation of several CDKs, through the use of a single drug. Such combined strategies will probably be an advantage in human cancer treatment.

  3. DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jennifer M A Tullet

    2014-02-01

    Full Text Available The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK, which has α, β and γ subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory γ subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ∼75% of total γ subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 γ subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK β subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be

  4. DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans.

    Science.gov (United States)

    Tullet, Jennifer M A; Araiz, Caroline; Sanders, Matthew J; Au, Catherine; Benedetto, Alexandre; Papatheodorou, Irene; Clark, Emily; Schmeisser, Kathrin; Jones, Daniel; Schuster, Eugene F; Thornton, Janet M; Gems, David

    2014-02-01

    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, β and γ subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory γ subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ∼75% of total γ subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 γ subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK β subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be evolutionarily conserved

  5. Involvement of class II phosphoinositide 3-kinase α-isoform in antigen-induced degranulation in RBL-2H3 cells.

    Directory of Open Access Journals (Sweden)

    Kiyomi Nigorikawa

    Full Text Available In this study, we present findings that suggest that PI3K-C2α, a member of the class II phosphoinositide 3-kinase (PI3K subfamily, regulates the process of FcεRI-triggered degranulation. RBL-2H3 cells were transfected with shRNA targeting PI3K-C2α. The knockdown impaired the FcεRI-induced release of a lysosome enzyme, β-hexosaminidase, without affecting the intracellular Ca2+ mobilization. The release of mRFP-tagged neuropeptide-Y, a reporter for the regulated exocytosis, was also decreased in the PI3K-C2α-deficient cells. The release was increased significantly by the expression of the siRNA-resistant version of PI3K-C2α. In wild-type cells, FcεRI stimulation induced the formation of large vesicles, which were associated with CD63, a marker protein of secretory granules. On the vesicles, the existence of PI3K-C2α and PtdIns(3,4P2 was observed. These results indicated that PI3K-C2α and its product PtdIns(3,4P2 may play roles in the secretory process.

  6. Differential water permeability and regulation of three aquaporin 4 isoforms

    DEFF Research Database (Denmark)

    Fenton, Robert A.; Moeller, Hanne B; Zelenina, Marina;

    2010-01-01

    Aquaporin 4 (AQP4) is expressed in the perivascular glial endfeet and is an important pathway for water during formation and resolution of brain edema. In this study, we examined the functional properties and relative unit water permeability of three functional isoforms of AQP4 expressed...... in the brain (M1, M23, Mz). The M23 isoform gave rise to square arrays when expressed in Xenopus laevis oocytes. The relative unit water permeability differed significantly between the isoforms in the order of M1 > Mz > M23. None of the three isoforms were permeable to small osmolytes nor were they affected...... by changes in external K(+) concentration. Upon protein kinase C (PKC) activation, oocytes expressing the three isoforms demonstrated rapid reduction of water permeability, which correlated with AQP4 internalization. The M23 isoform was more sensitive to PKC regulation than the longer isoforms...

  7. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone.

    Science.gov (United States)

    Holness, Mark J; Bulmer, Karen; Smith, Nicholas D; Sugden, Mary C

    2003-02-01

    Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or

  8. Activation of AMPK alpha and gamma-isoform complexes in the intact ischemic rat heart

    Science.gov (United States)

    AMP-activated protein kinase (AMPK) plays a key role in modulating cellular metabolic processes. AMPK, a serine-threonine kinase, is a heterotrimeric complex of catalytic alpha-subunits and regulatory beta- and gamma-subunits with multiple isoforms. Mutations in the cardiac gamma(2)-isoform have bee...

  9. Reduction of choline acetyltransferase activities in APP770 transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transgenic mice overexpressing the 770-amino acid isoform of human Alzheimer amyloid precursor protein exhibit extracellular b -amyloid deposits in brain regions including cerebral cortex and hippocampus, which are severely affected in Alzheimer's disease patients. Significant reduction in choline acetyltransferase (ChAT) activities has been observed in both cortical and hippocampal brain regions in the transgenic mice at the age of 10 months compared with the age-matched non-transgenic mice, but such changes have not been observed in any brain regions of the transgenic mice under the age of 5 months. These results suggest that deposition of b -amyloid can induce changes in the brain cholinergic system of the transgenic mice.

  10. Chemische contaminanten in diervoeder additief Choline Chloride

    NARCIS (Netherlands)

    Traag, W.A.; Hoogenboom, L.A.P.; Jong, de J.; Egmond, van H.J.; Dam, ten G.

    2010-01-01

    Dit briefrapport beschrijft de resultaten van een onderzoek naar chemische contaminanten in Choline Chloride. De doelstellingen waren: 1) Inzicht te verkrijgen in het voorkomen van (gebromeerde) vlamvertragers en broomdioxines in het diervoederadditief Choline Chloride en het, op basis van de result

  11. 21 CFR 172.370 - Iron-choline citrate complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline,...

  12. A novel finding: Anti-androgen flutamide kills androgen-independent PC-3 cells: A radiolabelled methyl-choline incorporation into tumour cells

    International Nuclear Information System (INIS)

    Full text: [Methyl-11C]-choline was introduced to image many types of cancers especially the prostate cancer. Al-Saeedi et al. reported that the incorporation of [Methyl-3H]-choline into breast tumour (MCF-7) cells correlated strongly with proliferation as determined by [Methyl-14C]- thymidine uptake. Also, Al-Saeedi, et al. showed that the chemotherapy using MCF-7 cells treated with 5-Fluorouracil (5-FU) induced modulation in [Methyl-3H]-choline incorporation and certain mechanisms for this modulation were reported. In this study, the androgen-dependent prostate tumour (LNCaP) cells were treated with the well known pure anti-androgen drug, flutamide, for three days. The cells were then incubated with [Methyl-3H]-choline for 10 mint to detect the effect of flutamide on both cell proliferation and choline incorporation. At the same time, a preliminary work was established using androgen-independent PC-3 cells treated with flutamide as controls in this study. PC-3 cells were treated with a range of doses of flutamide inhibiting growth by 20[Methyl-3H]-Choline Incorporation into MCF-7 Cells: Correlation with Proliferation: choline kinase and phospholipase D assay. [Methyl-3H]-Choline Incorporation into MCF-7 Cells: Correlation with Proliferation: choline kinase and phospholipase D assay. - 70%. Treated and control cells were incubated with [Methyl-3H]-choline for 10 min, then in non-radioactive medium to simulate the rapid blood clearance of [Methyl-11C]-choline tracer in control and treated PC-3 cells, and then extracted with organic and aqueous solvents to determine its effect on the intracellular distribution of this tracer. Interesting results showed that flutamide killed the androgen-independent prostate cancer cells, PC-3 and mechanisms responsible for flutamide-induced modulation on [Methyl-3H]- choline incorporation were reported. The PC-3 cells' proliferation was inhibited by flutamide. In addition, treatment of PC-3 cells with flutamide for 3 days resulted

  13. Does litomosoides sigmodontis synthesize dimethylethanolamine from choline?

    OpenAIRE

    Houston, K.M.; Babayan, S.; Allen, J. E.; Harnett, W

    2008-01-01

    Juvenile female Litomosoides sigmodontis secrete a protein (Juv-p120) highly modified with dimethylethanolamine (DMAE). In an attempt to establish the source of this decoration worms were pulsed with [3H]-choline and [3H]-ethanolamine and the radio-isotope labelled products analysed. Both isotope labels were successfully taken up by the worms, as demonstrated by labelling of phospholipids with [3H]-choline, being predominantly incorporated into phosphatidylcholine and [3H]-ethanolamine into p...

  14. Does Litomosoides sigmodontis synthesize dimethylethanolamine from choline?

    OpenAIRE

    Houston, K.M.; Babayan, S. A.; Allen, J. E.; Harnett, W; Allen, Judith

    2008-01-01

    Juvenile female Litomosoides sigmodontis secrete a protein (Juv-p120) highly modified with dimethylethanolamine (DMAE). In an attempt to establish the source of this decoration worms were pulsed with [3H]-choline and [3H]-ethanolamine and the radio-isotope labelled products analysed. Both isotope labels were successfully taken up by the worms, as demonstrated by labelling of phospholipids with [3H]-choline, being predominantly incorporated into phosphatidylcholine and [3H]-ethanolamine into p...

  15. Yeast mutants auxotrophic for choline or ethanolamine.

    OpenAIRE

    Atkinson, K D; Jensen, B.; Kolat, A I; Storm, E M; Henry, S. A.; Fogel, S

    1980-01-01

    Three mutants of the yeast Saccharomyces cerevisiae which require exogenous ethanolamine or choline were isolated. The mutants map to a single locus (cho1) on chromosome V. The lipid composition suggests that cho1 mutants do not synthesize phosphatidylserine under any growth conditions. If phosphatidylethanolamine or phosphatidylcholine, which are usually derived from phosphatidylserine, were synthesized from exogenous ethanolamine or choline, the mutants grew and divided relatively normally....

  16. Choline incorporation by Schistosoma mansoni: distribution of choline metabolites during development and after sexual differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ancelin, M.L.; Torpier, G.; Vial, H.J.; Capron, A.

    1987-06-01

    Choline metabolism was investigated in Schistosoma mansoni during the main phases of its development, namely, schistosomula, 11- and 15-day-old worms, and adults. At the physiological choline concentration used in the assay (20 microM), betaine was, along with phosphatidylcholine, one of the most abundant choline metabolites, revealing considerable choline oxidation activity. Very little radioactivity was associated with CDP-choline, whereas a sustained incorporation into phosphocholine occurred. These results provide good evidence that CTP:phosphocholine cytidylyltransferase plays a regulatory role in the de novo pathway of phosphatidylcholine biosynthesis. During development, the incorporation of choline into its various metabolites was maximal in 11-day-old worms. At this stage, the oxidative pathway predominated over the Kennedy pathway, whereas at all other stages the de novo phosphatidylcholine biosynthesis was predominant. Furthermore, choline incorporation into betaine was much more important in the adult female worm than in the male, indicating a major difference in choline incorporation and distribution between the 2 sexes of the adult worms.

  17. The Uses of Isoforms of Creatine Kinase CK-MM in the Early Diagnosis of the Patient with Duchenne Muscular Dystrophy%肌型肌酸激酶同工酶亚型在早期诊断假肥大型肌营养不良中的价值

    Institute of Scientific and Technical Information of China (English)

    赵昕; 韩靖云; 李红; 叶贤坤; 赵振军

    2001-01-01

    Objective To study the changes of isoforms of creatine kinaseCK-MM in patients with Duchenne muscular dystrophy for the purpose of early diagnosis as well as evaluation of seriousness of the disease. Methods A dis-continuous buffer system was used. CK-MM isoform was separated by electrophoresis under the condition of constant current and low voltage, then fluorescence scanning. Results The nature of DMD patient was gradually getting worse along with the age increase. There was a statistically significant change of the isoform ratio MM2/MM1 in each stage of DMD compared with the normal control ( P< 0.05 ); there was also significant change of the isoform ratio MM2/MM1 between each stage of the subject ( P < 0.05 ). Conclusions The change of CK-MM isoforms is a specific indicator in early diagnosis of DMD. It is a important indicator for evaluation of seriousness of the disease. It is also useful in the evaluation of the real effect of some treatment methods.%目的 研究假肥大型肌营养不良(DMD)患者肌型肌酸激酶(CK-MM)亚型的变化,为早期诊断和正确评价病情提供依据。方法 采用不连续缓冲体系,在稳流低压条件下电泳分离CK-MM亚型,荧光扫描。结果 随着DMD患者病情的加重,其不同阶段的MM2/MM1均与对照组差异显著(P<0.05);DMD患者不同阶段的MM2/MM1值差异也显著(P<0.05)。结论 CK-MM亚型的改变是DMD的早期诊断指标,是判断病情及科学评价治疗效果的依据。

  18. Protein Kinase Cδ mediates the activation of Protein Kinase D2 in Platelets

    OpenAIRE

    Bhavanasi, Dheeraj; Kim, Soochong; Goldfinger, Lawrence E.; Kunapuli, Satya P.

    2011-01-01

    Protein Kinase D (PKD) is a subfamily of serine/threonine specific family of kinases, comprised of PKD1, PKD2 and PKD3 (PKCμ, PKD2 and PKCν in humans). It is known that PKCs activate PKD, but the relative expression of isoforms of PKD or the specific PKC isoform/s responsible for its activation in platelets is not known. This study is aimed at investigating the pathway involved in activation of PKD in platelets. We show that PKD2 is the major isoform of PKD that is expressed in human as well ...

  19. Choline-containing bacteriophage receptors in Streptococcus pneumoniae.

    OpenAIRE

    Lopez, R. (Rafael); Garcia, E.; Garcia, P.; Ronda, C; Tomasz, A.

    1982-01-01

    Choline-containing teichoic acid seems to be essential for the adsorption of bacteriophage Dp-1 to pneumococci. This conclusion is based on the following observations: In contrast to pneumococci grown in choline-containing medium, cells grown in medium containing ethanolamine or other submethylated aminoalcohols instead of choline were found to be resistant to infection by Dp-1. Live choline-grown bacteria and heat- or UV-inactivated cells and purified cell walls prepared from these cells wer...

  20. 21 CFR 573.580 - Iron-choline citrate complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron-choline citrate complex. 573.580 Section 573.580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made...

  1. Gebromeerde vlamvertragers en broomdioxines in Choline Chloride

    NARCIS (Netherlands)

    Egmond, van H.J.; Traag, W.A.; Hoogenboom, L.A.P.

    2008-01-01

    Sinds begin 2008 worden in het Nationaal Plan Diervoeder Choline Chloride monsters (= diervoeder additief) gevonden waarbij de DR CALUX screenings-assay een sterk verdacht signaal geeft, maar bij de GC-HRMS geen dioxines en dl-PCB's worden gevonden. Dit rapport beschrijft de resultaten van nader ond

  2. Choline and choline metabolite patterns and associations in blood and milk during lactation in dairy cows.

    Directory of Open Access Journals (Sweden)

    Virginia M Artegoitia

    Full Text Available Milk and dairy products are an important source of choline, a nutrient essential for human health. Infant formula derived from bovine milk contains a number of metabolic forms of choline, all contribute to the growth and development of the newborn. At present, little is known about the factors that influence the concentrations of choline metabolites in milk. The objectives of this study were to characterize and then evaluate associations for choline and its metabolites in blood and milk through the first 37 weeks of lactation in the dairy cow. Milk and blood samples from twelve Holstein cows were collected in early, mid and late lactation and analyzed for acetylcholine, free choline, betaine, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine and sphingomyelin using hydrophilic interaction liquid chromatography-tandem mass spectrometry, and quantified using stable isotope-labeled internal standards. Total choline concentration in plasma, which was almost entirely phosphatidylcholine, increased 10-times from early to late lactation (1305 to 13,535 µmol/L. In milk, phosphocholine was the main metabolite in early lactation (492 µmol/L, which is a similar concentration to that found in human milk, however, phosphocholine concentration decreased exponentially through lactation to 43 µmol/L in late lactation. In contrast, phosphatidylcholine was the main metabolite in mid and late lactation (188 µmol/L and 659 µmol/L, respectively, with the increase through lactation positively correlated with phosphatidylcholine in plasma (R2 = 0.78. Unlike previously reported with human milk we found no correlation between plasma free choline concentration and milk choline metabolites. The changes in pattern of phosphocholine and phosphatidylcholine in milk through lactation observed in the bovine suggests that it is possible to manufacture infant formula that more closely matches these metabolites profile in human milk.

  3. Choline-PET/CT for imaging prostate cancer; Cholin-PET/CT zur Bildgebung des Prostatakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Bernd Joachim [Klinik- und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany); Treiber, U.; Schwarzenboeck, S.; Souvatzoglou, M. [Klinik fuer Urologie, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany)

    2010-09-15

    PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives are increasingly being used for imaging of prostate cancer. The value of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in biochemical recurrence of prostate cancer has been examined in many studies and demonstrates an increasing importance. Primary prostate cancer can be detected with moderate sensitivity using PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives - the differentiation between benign prostatic hyperplasia, prostatitis or high-grade intraepithelial neoplasia (HGPIN) is not always possible. At the present time [{sup 11}C]choline PET/CT is not recommended in the primary setting but may be utilized in clinically suspected prostate cancer with repeatedly negative prostate biopsies, in preparation of a focused re-biopsy. Promising results have been obtained for the use of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in patients with biochemical recurrence. The detection rate of choline PET and PET/CT for local, regional, and distant recurrence in patients with a biochemical recurrence shows a linear correlation with PSA values at the time of imaging and reaches about 75% in patients with PSA > 3 ng/mL. At PSA values below 1 ng/mL, the recurrence can be diagnosed with choline PET/CT in approximately 1/3 of the patients. PET and PET/CT with [{sup 11}C]- and [{sup 18}F]choline derivates can be helpful for choosing a therapeutic strategy in the sense of an individualized treatment: since an early diagnosis of recurrence is crucial to the choice of optimal treatment. The localization of the site of recurrence - local recurrence, lymph node metastasis or systemic dissemination - has important influence on the therapy regimen. (orig.)

  4. The Comparative effects of synthetic choline and herbal choline on hepatic lipid metabolism in broilers

    Directory of Open Access Journals (Sweden)

    G.R.Gangane1

    Full Text Available An experiment of 0-42 days in day old 150 Vencobb broiler chickens was conducted to determine comparative effects of synthetic choline and herbal sources of choline on hepatic lipid metabolism in broilers. Birds were randomly distributed into three groups (T0- T2, one untreated control and two treatments. Chicks in Group T0 were given feed without any additional source choline chloride. Chicks of Group T1 were fed with feed mixed with herbal product (Repchol supplied by Ayurvet Ltd., Baddi, India @ 500gm/tonne of feed and T2 was given combination of synthetic choline chloride@1kg/tonne (60% and biotin @ 150 mg/ton of feed. To study the effect of inclusion of herbal sources of choline and synthetic choline on hepatic lipid metabolism, serum triglycerides and cholesterol were estimated on day 21st and 42nd of experimental study. Gross pathological changes in liver were recorded on representative birds per group at the end of the study. It was recorded that inclusion of either synthetic choline or herbal source of choline exerted a hypocholesterolemic effect and also decreased the level of triglycerides as compared to untreated control thus minimizing the incidence of fatty liver, however the two treatment do not differ significantly. Gross pathological study also revealed no significant changes in the architecture of liver as compared to control. It can be concluded that the herbal supplements can successfully replace their synthetic analogues from broiler ration. [Veterinary World 2010; 3(7.000: 318-320

  5. Caffeine potentiates the enhancement by choline of striatal acetylcholine release

    Science.gov (United States)

    Johnson, D. A.; Ulus, I. H.; Wurtman, R. J.

    1992-01-01

    We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.

  6. DAF-16/FoxO Directly Regulates an Atypical AMP-Activated Protein Kinase Gamma Isoform to Mediate the Effects of Insulin/IGF-1 Signaling on Aging in Caenorhabditis elegans

    OpenAIRE

    Tullet, J. M.; Araiz, C.; Sanders, M J; Au, C.; Benedetto, A.; Papatheodorou, I.; Clark, E.; Schmeisser, K.; Jones, D.; Schuster, E F; Thornton, J M; Gems, D.

    2014-01-01

    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, ...

  7. DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans.

    OpenAIRE

    Tullet, Jennifer M. A.; Caroline Araiz; Sanders, Matthew J.; Catherine Au; Alexandre Benedetto; Irene Papatheodorou; Emily Clark; Kathrin Schmeisser; Daniel Jones; Eugene F Schuster; Thornton, Janet M.; David Gems

    2014-01-01

    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, ...

  8. Pyruvate Dehydrogenase Kinase 4

    OpenAIRE

    Cadoudal, Thomas; Distel, Emilie; Durant, Sylvie; Fouque, Françoise; Blouin, Jean-Marc; Collinet, Martine; Bortoli, Sylvie; Forest, Claude; Benelli, Chantal

    2008-01-01

    OBJECTIVE—Pyruvate dehydrogenase complex (PDC) serves as the metabolic switch between glucose and fatty acid utilization. PDC activity is inhibited by PDC kinase (PDK). PDC shares the same substrate, i.e., pyruvate, as glyceroneogenesis, a pathway controlling fatty acid release from white adipose tissue (WAT). Thiazolidinediones activate glyceroneogenesis. We studied the regulation by rosiglitazone of PDK2 and PDK4 isoforms and tested the hypothesis that glyceroneogenesis could be controlled ...

  9. Exercise and neuromodulators: choline and acetylcholine in marathon runners

    Science.gov (United States)

    Conlay, L. A.; Sabounjian, L. A.; Wurtman, R. J.

    1992-01-01

    Certain neurotransmitters (i.e., acetylcholine, catecholamines, and serotonin) are formed from dietary constituents (i.e., choline, tyrosine and tryptophan). Changing the consumption of these precursors alters release of their respective neurotransmitter products. The neurotransmitter acetylcholine is released from the neuromuscular junction and from brain. It is formed from choline, a common constituent in fish, liver, and eggs. Choline is also incorporated into cell membranes; membranes may likewise serve as an alternative choline source for acetylcholine synthesis. In trained athletes, running a 26 km marathon reduced plasma choline by approximately 40%, from 14.1 to 8.4 uM. Changes of similar magnitude have been shown to reduce acetylcholine release from the neuromuscular junction in vivo. Thus, the reductions in plasma choline associated with strenuous exercise may reduce acetylcholine release, and could thereby affect endurance or performance.

  10. Crystal Structure of Pyridoxal Kinase from the Escherichia coli pdxK Gene: Implications for the Classification of Pyridoxal Kinases

    OpenAIRE

    Safo, Martin K.; Musayev, Faik N.; di Salvo, Martino L.; Hunt, Sharyn; Claude, Jean-Baptiste; Schirch, Verne

    2006-01-01

    The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were deter...

  11. Choline Transporters in Human Lung Adenocarcinoma: Expression and Functional Implications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Choline is an essential nutrient for cell survival and proliferation, however, the expression and function of choline transporters have not been well identified in cancer. In this study, we detected the mRNA and protein expression of organic cation transporter OCT3, carnitine/cation transporters OCTN 1 and OCTN2,and choline transporter-like protein CTL1 in human lung adenocarcinoma cell lines A549, H1299 and SPC-A-1.Their expression pattern was further confirmed in 25 human primary adenocarcinoma tissues. The choline uptake in these cell lines was significantly blocked by CTL1 inhibitor, but only partially inhibited by OCT or OCTN inhibitors. The efficacy of these inhibitors on cell proliferation is closely correlated with their abilities to block choline transport. Under the native expression of these transporters, the total choline uptake was notably blocked by specific PI3K/AKT inhibitors. These results describe the expression of choline transporters and their relevant function in cell proliferation of human lung adenocarcinoma, thus providing a potential"choline-starvation" strategy of cancer interference through targeting choline transporters, especially CTL1.

  12. Diacylglycerol Kinase Inhibition and Vascular Function

    OpenAIRE

    Choi, Hyehun; Allahdadi, Kyan J.; Tostes, Rita C A; Webb, R. Clinton

    2009-01-01

    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structu...

  13. Ets and GATA transcription factors play a critical role in PMA-mediated repression of the ckβ promoter via the protein kinase C signaling pathway.

    Directory of Open Access Journals (Sweden)

    Chee Sian Kuan

    Full Text Available BACKGROUND: Choline kinase is the most upstream enzyme in the CDP-choline pathway. It catalyzes the phosphorylation of choline to phosphorylcholine in the presence of ATP and Mg2+ during the biosynthesis of phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. In humans, choline kinase (CK is encoded by two separate genes, ckα and ckβ, which produce three isoforms, CKα1, CKα2, and CKβ. Previous studies have associated ckβ with muscle development; however, the molecular mechanism underlying the transcriptional regulation of ckβ has never been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the distal promoter region of the ckβ gene was characterized. Mutational analysis of the promoter sequence and electrophoretic mobility shift assays (EMSA showed that Ets and GATA transcription factors were essential for the repression of ckβ promoter activity. Supershift and chromatin immunoprecipitation (ChIP assays further identified that GATA3 but not GATA2 was bound to the GATA site of ckβ promoter. In addition, phorbol-12-myristate-13-acetate (PMA decreased ckβ promoter activity through Ets and GATA elements. PMA also decreased the ckβ mRNA and protein levels about 12 hours after the promoter activity was down-regulated. EMSA further revealed that PMA treatment increased the binding of both Ets and GATA transcription factors to their respective DNA elements. The PMA-mediated repressive effect was abolished by chronic PMA treatment and by treatment with the PKC inhibitor PKC412, but not the PKC inhibitor Go 6983, suggesting PKCε or PKCη as the PKC isozyme involved in the PMA-mediated repression of ckβ promoter. Further confirmation by using PKC isozyme specific inhibitors identified PKCε as the isozyme that mediated the PMA repression of ckβ promoter. CONCLUSION/SIGNIFICANCE: These results demonstrate the participation of the PKC signaling pathway in the regulation of ckβ gene transcription by Ets and GATA

  14. Choline alphoscerate (alpha-glyceryl-phosphoryl-choline) an old choline- containing phospholipid with a still interesting profile as cognition enhancing agent.

    Science.gov (United States)

    Traini, Enea; Bramanti, Vincenzo; Amenta, Francesco

    2013-12-01

    Cholinergic precursors have represented the first approach to counter cognitive impairment occurring in adultonset dementia disorders. These compounds were early leaved because their clinical efficacy was not clearly demonstrated. This is probably not true for some choline-containing phospholipids including choline alphoscerate. Choline alphoscerate increases the release of acetylcholine in rat hippocampus, facilitates learning and memory in experimental animals, improves brain transduction mechanisms and decreases age-dependent structural changes occurring in rat brain areas involved in learning and memory. The compound exerts neuroprotective effects in models of altered cholinergic neurotransmission and of brain vascular injury. In clinical studies choline alphoscerate improved memory and attention impairment, as well as affective and somatic symptoms in dementia disorders. An ongoing trial indicates that association between the acetylcholinesterase inhibitor donepezil and choline alphoscerate is accompanied by an improvement in several cognitive tests superior to that induced by donepezil alone. It is suggested that this association may represent a therapeutic option to prolong beneficial effects of cholinergic therapies in Alzheimer's disease patients with concomitant ischemic cerebrovascular disorders. In summary, choline alphoscerate has significant effects on cognitive function with a good safety profile and tolerability. Although limited both in terms of size of the samples investigated and of the length of treatment, preclinical and clinical results presented suggest that cognitive enhancing capabilities of choline alphoscerate merit of being further investigated in appropriate trials.

  15. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    Science.gov (United States)

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  16. A systematic evaluation of protein kinase A-A-kinase anchoring protein interaction motifs

    NARCIS (Netherlands)

    Burgers, Pepijn P; van der Heyden, MAG; Kok, Bart; Heck, Albert J R; Scholten, Arjen

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  17. Differential and Conditional Activation of PKC-Isoforms Dictates Cardiac Adaptation during Physiological to Pathological Hypertrophy

    OpenAIRE

    Shaon Naskar; Kaberi Datta; Arkadeep Mitra; Kanchan Pathak; Ritwik Datta; Trisha Bansal; Sagartirtha Sarkar

    2014-01-01

    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week ...

  18. Legionella bozemanae synthesizes phosphatidylcholine from exogenous choline.

    Science.gov (United States)

    Palusinska-Szysz, Marta; Janczarek, Monika; Kalitynski, Rafal; Dawidowicz, Andrzej L; Russa, Ryszard

    2011-02-20

    The phospholipid class and fatty acid composition of Legionella bozemanae were determined using thin-layer chromatography, gas-liquid chromatography, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Phosphatidylcholine, phosphatidylethanolamine, and diphosphatidylglycerol were the predominant phospholipids, while phosphatidyl-N-monomethylethanolamine, phosphatidylglycerol, and phosphatidyl-N,N-dimethylethanolamine were present at low concentrations. With the use of the LC/MS technique, PC16:0/15:0, PC17:/15:0, and PE16:1/15:0 were shown to be the dominant phospholipid constituents, which may be taxonomically significant. Two independent phosphatidylcholine synthesis pathways (the three-step methylation and the one-step CDP-choline pathway) were present and functional in L. bozemanae. In the genome of L. bozemanae, genes encoding two potential phosphatidylcholine forming enzymes, phospholipid N-methyl transferase (PmtA) and phosphatidylcholine synthase (Pcs), homologous to L. longbeachae, L. drancourtii, and L. pneumophila pmtA and pcs genes were identified. Genes pmtA and pcs from L. bozemanae were sequenced and analyzed on nucleotide and amino acid levels. Bacteria grown on an artificial medium with labelled choline synthesized phosphatidylcholine predominantly via the phosphatidylcholine synthase pathway, which indicates that L. bozemanae phosphatidylcholine, similarly as in other bacteria associated with eukaryotes, is an important determinant of host-microbe interactions. PMID:20338739

  19. Choline associated hypersexuality in a 79-year-old man.

    Science.gov (United States)

    Calabrò, Rocco Salvatore; Cordici, Francesco; Genovese, Carmelo; Bramanti, Placido

    2014-01-01

    Hypersexuality, also referred to as sexually inappropriate behavior and sexual disinhibition, involves persistent, uninhibited sexual behaviors directed at oneself or at others, sometimes associated with neurodegenerative disorders. Choline is a water-soluble essential nutrient, used as a dietary supplement in different diseases. This report was aimed at considering choline intake as a possible cause of iatrogenic hypersexuality. After an evaluation, a 79-year-old man affected by memory loss was diagnosed with mild cognitive impairment and treated with oral choline. After 6 weeks of regular choline assumption, the patient showed a pathological increase in libido with sexual urges. As choline was withdrawn, the hypersexuality disappeared within 5 days. Since hypersexuality may be an underreported and overlooked adverse effect of drugs and dietary supplements acting on the cholinergic pathway, this should be considered when treating and counselling patients with inappropriate sexual behavior. PMID:23733158

  20. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Science.gov (United States)

    Fearnley, Gareth W.; Smith, Gina A.; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A.; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T.; Zachary, Ian C.; Tomlinson, Darren C.; Harrison, Michael A.; Wheatcroft, Stephen B.; Ponnambalam, Sreenivasan

    2016-01-01

    ABSTRACT Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. PMID:27044325

  1. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  2. Bioelectrochemical response of a choline biosensor fabricated by using polyaniline

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    On the basis of the isoelectric point of an enzyme and the doping principle of conducting polymers,choline oxidase was doped in a polyaniline film to form a biosensor. The amperometric detection of choline is based on the oxidation of the H2O2 enzymatically produced on the choline biosensor. The response current of the biosensor as a function of temperature was determined from 3 to 40℃. An apparent activation energy of 22.8 kJ·mol-1 was obtained. The biosensor had a wide linear response range from 5 × 10-7 to 1 × 10-4 M choline with a correlation coefficient of 0.9999 and a detection limit of 0.2 μM,and had a high sensitivity of 61.9 mA·M-1·cm-2 at 0.50 V and at pH 8.0. The apparent Michaelis constant and the optimum pH for the immobilized enzyme are 1.4 mM choline and 8.4,respectively,which are very close to those of choline oxidase in solution. The effect of selected organic compounds on the response of the choline biosensor was studied.

  3. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Directory of Open Access Journals (Sweden)

    Delphine M Béziau

    Full Text Available Phospholipase C (PLC comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA, pulmonary (PA and middle cerebral arteries (MCA. mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA, δ4 (only expressed in MCA, η1 (expressed in all but MA and ζ (not detected in any vascular beds tested. The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1 in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found

  4. Identification and characterization of a novel isoform of hepatopoietin

    Institute of Scientific and Technical Information of China (English)

    Jun Lu; Wang-Xiang Xu; Yi-Qun Zhan; Xiao-Lin Cui; Wei-Min Cai; Fu-Chu He; Xiao-Ming Yang

    2002-01-01

    AIM: To isolate a novel isoform of human HPO (HPO-205)human fetal liver Marathon-reedy cDNA andcharacterize its primary biological function.METHODS: 5'-RACE (rapid amplification of cDNA 5' ends)was used to isolate a novel isoform of hHPO in this paperThe constructed pcDNAHPO-205, pcDNAHPO and pcDNA eukaryotic expression vectors were respectively transfectedby lipofectamine method and the stimulation of DNAsynthesis was observed by 3H-TdR incorporation assay.Proteins extracted from different cells were analyzed byWestern blot.RESULTS: A novel isoform of hHPO (HPO-205) encoding a205 amino acid ORF corresponding to a translatedproduction of 23 kDa was isolated and distinguished fromthe previous HPO that lacked the N-terminal 80 amino acids.The dnse-dspendent stimulation of DNA synthesis of HepG2hepatoma cells by HPO-205 demonstrated its similarbiological activity with HPO in vitro. The level of MAPK(Mitogen-activated protein kinase) phnsphorylarion byWestern blot analysis revealed that HPO-205 might have thestronger activity of stimulating hepatic cell proliferation thanthat of HPO.CONCLUSION: A novel isoform of hHPO (HPO-205) wasisolated from hepatic-derived cells. The comparison of HPO-205 and HPO will lead to a new insight into the structure andfunction of hHPO, and provide the new way of thinking todeeply elucidate the biological roles of HPO/ALR.

  5. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL isoforms.

    Directory of Open Access Journals (Sweden)

    Christian Krintel

    Full Text Available BACKGROUND: Hormone-sensitive lipase (HSL is a key enzyme in the mobilization of energy in the form of fatty acids from intracellular stores of neutral lipids. The enzyme has been shown to exist in different isoforms with different molecular masses (84 kDa, 89 kDa and 117 kDa expressed in a tissue-dependent manner, where the predominant 84 kDa form in adipocytes is the most extensively studied. METHODOLOGY/PRINCIPAL FINDINGS: In this study we employed negative stain electron microscopy (EM to analyze the quarternary structure of the different HSL isoforms. The results show that all three isoforms adopt a head-to-head homodimeric organization, where each monomer contains two structural domains. We also used enzymatic assays to show that despite the variation in the size of the N-terminal domain all three isoforms exhibit similar enzymological properties with regard to psychrotolerance and protein kinase A (PKA-mediated phosphorylation and activation. CONCLUSIONS/SIGNIFICANCE: We present the first data on the quaternary structure and domain organization of the three HSL isoforms. We conclude that despite large differences in the size of the N-terminal, non-catalytic domain all three HSL isoforms exhibit the same three-dimensional architecture. Furthermore, the three HSL isoforms are very similar with regard to two unique enzymological characteristics of HSL, i.e., cold adaptation and PKA-mediated activation.

  6. Dorsal root ganglion progenitors differentiate to gamma-aminobutyric acid- and choline acetyltransferase-positive neurons

    Institute of Scientific and Technical Information of China (English)

    Lingli Yu; Yindi Ding; Ambre Spencer; Ji Ma; Ruisheng Lu; Brian B. Rudkin; Chonggang Yuan

    2012-01-01

    This study examined the isolation and differentiation of dorsal root ganglion progenitor cells for therapeutic use in neurodegenerative diseases.Rat embryonic dorsal root ganglia progenitors were isolated and purified using the differential adhesion method combined with cytosine arabinoside treatment.After culture in serum-free medium supplemented with B27, basic fibroblast growth factor and epidermal growth factor, these cells remained viable and survived for more than 18 months in vitro.Most cells differentiated to neurons that were immunoreactive for gamma-aminobutyric acid and choline acetyltransferase as detected by immunohistochemical staining.In addition, nerve growth factor and neurotrophic tyrosine kinase receptor expression were also observed in dorsal root ganglion progenitors and differentiated cells.K252a, an inhibitor that blocks nerve growth factor-induced signaling, inhibited cell survival, suggesting the possible existence of a nerve growth factor autocrine loop in these proliferating cells.

  7. Choline on the Move: Perspectives on the Molecular Physiology and Pharmacology of the Presynaptic Choline Transporter.

    Science.gov (United States)

    Ennis, E A; Blakely, R D

    2016-01-01

    Genetic, biochemical, physiological, and pharmacological approaches have advanced our understanding of cholinergic biology for over 100 years. High-affinity choline uptake (HACU) was one of the last features of cholinergic signaling to be defined at a molecular level, achieved through the cloning of the choline transporter (CHT, SLC5A7). In retrospect, the molecular era of CHT studies initiated with the identification of hemicholinium-3 (HC-3), a potent, competitive CHT antagonist, though it would take another 30 years before HC-3, in radiolabeled form, was used by Joseph Coyle's laboratory to identify and monitor the dynamics of CHT proteins. Though HC-3 studies provided important insights into CHT distribution and regulation, another 15 years would pass before the structure of CHT genes and proteins were identified, a full decade after the cloning of most other neurotransmitter-associated transporters. The availability of CHT gene and protein probes propelled the development of cell and animal models as well as efforts to gain insights into how human CHT gene variation affects the risk for brain and neuromuscular disorders. Most recently, our group has pursued a broadening of CHT pharmacology, elucidating novel chemical structures that may serve to advance cholinergic diagnostics and medication development. Here we provide a short review of the transformation that has occurred in HACU research and how such advances may promote the development of novel therapeutics. PMID:27288078

  8. Henry’s constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems

    International Nuclear Information System (INIS)

    Highlights: • A new set of Henry’s constant for the system carbon dioxide-aqueous deep eutectic solvents were measured. • The DESs used were: ethaline, glyceline, and maline. • The measured data were reported as functions of temperature and composition. • The measured data were represented satisfactorily by the applied correlations. -- Abstract: In this study, we present a new set of Henry’s constant data for the system carbon dioxide-aqueous deep eutectic solvent (DES) (20 to 80 wt% DES) at T = (303.15, 308.15, and 313.15) K. The DESs used were choline chloride-based: ethaline (choline chloride/ethylene glycol), glyceline (choline chloride/glycerol), and maline (choline chloride/malonic acid). A differential Henry’s coefficient model was used to describe the behaviour of Henry’s constant, and correlate it with temperature and concentration of DES in the aqueous DES solution. The correlation was found satisfactory such that the proposed model can be used in engineering calculations with reasonable accuracy

  9. CHKA and PCYT1A gene polymorphisms, choline intake and spina bifida risk in a California population

    Directory of Open Access Journals (Sweden)

    Lammer Edward J

    2006-12-01

    Full Text Available Abstract Background Neural tube defects (NTDs are among the most common of all human congenital defects. Over the last two decades, accumulating evidence has made it clear that periconceptional intake of folic acid can significantly reduce the risk of NTD affected pregnancies. This beneficial effect may be related to the ability of folates to donate methyl groups for critical physiological reactions. Choline is an essential nutrient and it is also a methyl donor critical for the maintenance of cell membrane integrity and methyl metabolism. Perturbations in choline metabolism in vitro have been shown to induce NTDs in mouse embryos. Methods This study investigated whether single nucleotide polymorphisms (SNPs in human choline kinase A (CHKA gene and CTP:phosphocholine cytidylytransferase (PCYT1A gene were risk factors for spina bifida. Fluorescence-based allelic discrimination analysis was performed for the two CHKA intronic SNPs hCV1562388 (rs7928739 and hCV1562393, and PCYT1A SNP rs939883 and rs3772109. The study population consisted of 103 infants with spina bifida and 338 non-malformed control infants who were born in selected California counties in the period 1989–1991. Results The CHKA SNP hCV1562388 genotypes with at least one C allele were associated with a reduced risk of spina bifida (odds ratio = 0.60, 95%CI = 0.38–0.94. The PCYT1A SNP rs939883 genotype AA was associated with a twofold increased risk of spina bifida (odds ratio = 1.89, 95% CI = 0.97–3.67. These gene-only effects were not substantially modified by analytic consideration to maternal periconceptional choline intake. Conclusion Our analyses showed genotype effects of CHKA and PCYT1A genes on spina bifida risk, but did not show evidence of gene-nutrient interactions. The underlying mechanisms are yet to be resolved.

  10. Synthesis, isolation and purification of [(11)C]-choline.

    Science.gov (United States)

    Szydło, Marcin; Jadwiński, Michał; Chmura, Agnieszka; Gorczewski, Kamil; Sokół, Maria

    2016-01-01

    [(11)C]-choline is an effective PET tracer used for imaging of neoplastic lesions and metastases of the prostate cancer. However, its production can be a challenge for manufacturers, as it has not yet been described in Polish or European pharmacopoeia. In this study the technical aspects of [(11)C]-choline production are described and detailed process parameters are provided. The quality control procedures for releasing [(11)C]-choline as solutio iniectabilis are also presented. The purity and quality of the radiopharmaceutical obtained according to the proposed method were find to be high enough to safely administrate the radiopharmaceutical to patients. Application of an automated synthesizer makes it possible to carry out the entire process of [(11)C]-choline production, isolation and purification within 20 minutes. It is crucial to maintain all aspects of the process as short as possible, since the decay half-time of carbon-11 is 20.4 minutes. The resulting radiopharmaceutical is sterile and pyrogen-free and of a high chemical, radiochemical, and radionuclide purity proved by chromatographic techniques. The yield of the process is up to 20%. [(11)C]-choline PET scanning can be used as accurate and effective diagnostic tool in all centers equipped with [(11)C]-target containing cyclotron. PMID:27660552

  11. Learning-dependent gene expression of CREB1 isoforms in the molluscan brain

    Directory of Open Access Journals (Sweden)

    Hisayo Sadamoto

    2010-05-01

    Full Text Available Cyclic AMP-responsive element binding protein1 (CREB1 has multiple functions in gene regulation. Various studies have reported that CREB1-dependent gene induction is necessary for memory formation and long-lasting behavioral changes in both vertebrates and invertebrates. In the present study, we characterized Lymnaea CREB1 (LymCREB1 mRNA isoforms of spliced variants in the central nervous system (CNS of the pond snail Lymnaea stagnalis. Among these spliced variants, the three isoforms that code a whole LymCREB1 protein are considered to be the activators for gene regulation. The other four isoforms, which code truncated LymCREB1 proteins with no kinase inducible domain, are the repressors. For a better understanding of the possible roles of different LymCREB1 isoforms, the expression level of these isoform mRNAs was investigated by a real-time quantitative RT-PCR method. Further, we examined the changes in gene expression for all the isoforms in the CNS after conditioned taste aversion (CTA learning or backward conditioning as a control. The results showed that CTA learning increased LymCREB1 gene expression, but it did not change the activator/repressor ratio. Our findings showed that the repressor isoforms, as well as the activator ones, are expressed in large amounts in the CNS, and the gene expression of CREB1 isoforms appeared to be specific for the given stimulus. This was the first quantitative analysis of the expression patterns of CREB1 isoforms at the mRNA level and their association with learning behavior.

  12. The mechanism of protein kinase C regulation

    Institute of Scientific and Technical Information of China (English)

    Julhash U. KAZI

    2011-01-01

    Protein kinase C (PKC) is a family ofserine/threonine protein kinases that plays a central role in transducing extracellular signals into a variety of intracellular responses ranging from cell proliferation to apoptosis.Nine PKC genes have been identified in the human genome,which encode 10 proteins.Each member of this protein kinase family displays distinct biochemical characteristics and is enriched in different cellular and subcellular locations.Activation of PKC has been implicated in the regulation of cell growth and differentiation.This review summarizes works of the past years in the field of PKC biochemistry that covers regulation and activation mechanism of different PKC isoforms.

  13. Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models

    International Nuclear Information System (INIS)

    Increased concentrations of choline-containing compounds are frequently observed in breast carcinomas, and may serve as biomarkers for both diagnostic and treatment monitoring purposes. However, underlying mechanisms for the abnormal choline metabolism are poorly understood. The concentrations of choline-derived metabolites were determined in xenografted primary human breast carcinomas, representing basal-like and luminal-like subtypes. Quantification of metabolites in fresh frozen tissue was performed using high-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS). The expression of genes involved in phosphatidylcholine (PtdCho) metabolism was retrieved from whole genome expression microarray analyses. The metabolite profiles from xenografts were compared with profiles from human breast cancer, sampled from patients with estrogen/progesterone receptor positive (ER+/PgR+) or triple negative (ER-/PgR-/HER2-) breast cancer. In basal-like xenografts, glycerophosphocholine (GPC) concentrations were higher than phosphocholine (PCho) concentrations, whereas this pattern was reversed in luminal-like xenografts. These differences may be explained by lower choline kinase (CHKA, CHKB) expression as well as higher PtdCho degradation mediated by higher expression of phospholipase A2 group 4A (PLA2G4A) and phospholipase B1 (PLB1) in the basal-like model. The glycine concentration was higher in the basal-like model. Although glycine could be derived from energy metabolism pathways, the gene expression data suggested a metabolic shift from PtdCho synthesis to glycine formation in basal-like xenografts. In agreement with results from the xenograft models, tissue samples from triple negative breast carcinomas had higher GPC/PCho ratio than samples from ER+/PgR+ carcinomas, suggesting that the choline metabolism in the experimental models is representative for luminal-like and basal-like human breast cancer. The differences in choline metabolite

  14. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Directory of Open Access Journals (Sweden)

    Ralph D Hector

    Full Text Available Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5 cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR, which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  15. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Science.gov (United States)

    Hector, Ralph D; Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  16. Antagonistic functions of two stardust isoforms in Drosophila photoreceptor cells.

    Science.gov (United States)

    Bulgakova, Natalia A; Rentsch, Michaela; Knust, Elisabeth

    2010-11-15

    Membrane-associated guanylate kinases (MAGUKs) are scaffolding proteins that organize supramolecular protein complexes, thereby partitioning the plasma membrane into spatially and functionally distinct subdomains. Their modular organization is ideally suited to organize protein complexes with cell type- or stage-specific composition, or both. Often more than one MAGUK isoform is expressed by one gene in the same cell, yet very little is known about their individual in vivo functions. Here, we show that two isoforms of Drosophila stardust, Sdt-H (formerly called Sdt-B2) and Sdt-D, which differ in their N terminus, are expressed in adult photoreceptors. Both isoforms associate with Crumbs and PATJ, constituents of the conserved Crumbs-Stardust complex. However, they form distinct complexes, localized at the stalk, a restricted region of the apical plasma membrane. Strikingly, Sdt-H and Sdt-D have antagonistic functions. While Sdt-H overexpression increases stalk membrane length and prevents light-dependent retinal degeneration, Sdt-D overexpression reduces stalk length and enhances light-dependent retinal degeneration. These results suggest that a fine-tuned balance of different Crumbs complexes regulates photoreceptor homeostasis.

  17. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse

    Science.gov (United States)

    Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C.; Bailey, Mark E. S.; Cobb, Stuart R.

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3’-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders. PMID:27315173

  18. Protein Kinase D family kinases: roads start to segregate.

    Science.gov (United States)

    Wille, Christoph; Seufferlein, Thomas; Eiseler, Tim

    2014-01-01

    Highly invasive pancreatic tumors are often recognized in late stages due to a lack of clear symptoms and pose major challenges for treatment and disease management. Broad-band Protein Kinase D (PKD) inhibitors have recently been proposed as additional treatment option for this disease. PKDs are implicated in the control of cancer cell motility, angiogenesis, proliferation and metastasis. In particular, PKD2 expression is elevated in pancreatic cancer, whereas PKD1 expression is comparably lower. In our recent study we report that both kinases control PDAC cell invasive properties in an isoform-specific, but opposing manner. PKD1 selectively mediates anti-migratory/anti-invasive features by preferential regulation of the actin-regulatory Cofilin-phosphatase Slingshot1L (SSH1L). PKD2, on the other hand enhances invasion and angiogenesis of PDAC cells in 3D-ECM cultures and chorioallantois tumor models by stimulating expression and secretion of matrix-metalloproteinase 7 and 9 (MMP7/9). MMP9 also enhances PKD2-mediated tumor angiogenesis releasing extracellular matrix-bound VEGF-A. We thus suggest high PKD2 expression and loss of PKD1 may be beneficial for tumor cells to enhance their matrix-invading abilities. In our recent study we demonstrate for the first time PKD1 and 2 isoform-selective effects on pancreatic cancer cell invasion, in-vitro and in-vivo, defining isoform-specific regulation of PKDs as a major future issue. PMID:24847910

  19. Inference of Isoforms from Short Sequence Reads

    Science.gov (United States)

    Feng, Jianxing; Li, Wei; Jiang, Tao

    Due to alternative splicing events in eukaryotic species, the identification of mRNA isoforms (or splicing variants) is a difficult problem. Traditional experimental methods for this purpose are time consuming and cost ineffective. The emerging RNA-Seq technology provides a possible effective method to address this problem. Although the advantages of RNA-Seq over traditional methods in transcriptome analysis have been confirmed by many studies, the inference of isoforms from millions of short sequence reads (e.g., Illumina/Solexa reads) has remained computationally challenging. In this work, we propose a method to calculate the expression levels of isoforms and infer isoforms from short RNA-Seq reads using exon-intron boundary, transcription start site (TSS) and poly-A site (PAS) information. We first formulate the relationship among exons, isoforms, and single-end reads as a convex quadratic program, and then use an efficient algorithm (called IsoInfer) to search for isoforms. IsoInfer can calculate the expression levels of isoforms accurately if all the isoforms are known and infer novel isoforms from scratch. Our experimental tests on known mouse isoforms with both simulated expression levels and reads demonstrate that IsoInfer is able to calculate the expression levels of isoforms with an accuracy comparable to the state-of-the-art statistical method and a 60 times faster speed. Moreover, our tests on both simulated and real reads show that it achieves a good precision and sensitivity in inferring isoforms when given accurate exon-intron boundary, TSS and PAS information, especially for isoforms whose expression levels are significantly high.

  20. Diacylglycerol Kinase Inhibition and Vascular Function.

    Science.gov (United States)

    Choi, Hyehun; Allahdadi, Kyan J; Tostes, Rita C A; Webb, R Clinton

    2009-01-01

    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction. PMID:21547002

  1. Protein kinase D2 induces invasion of pancreatic cancer cells by regulating matrix metalloproteinases

    OpenAIRE

    Wille, Christoph; Köhler, Conny; Armacki, Milena; Jamali, Arsia; Gössele, Ulrike; Pfizenmaier, Klaus; Seufferlein, Thomas; Eiseler, Tim

    2014-01-01

    Pancreatic cancer cell invasion, metastasis, and angiogenesis are major challenges for the development of novel therapeutic strategies. Protein kinase D (PKD) isoforms are involved in controlling tumor cell motility, angiogenesis, and metastasis. In particular PKD2 expression is up-regulated in pancreatic cancer, whereas PKD1 expression is lowered. We report that both kinases control pancreatic cancer cell invasive properties in an isoform-specific manner. PKD2 enhances invasion in three-dime...

  2. Phosphoryl choline-grafted water-soluble carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Kai Xi; Min Gu; Zheng Sheng Jiang

    2008-01-01

    Water-soluble property is the precondition of biomedical evaluation and application of carbon nanotube (CNT). Novel watersoluble CNT was synthesized in this letter by grafting phosphoryi choline (PC) onto multi-wall CNTs. Utilizing FTIR, XPS, TGAand TEM, the title CNTs were characterized and it was found that the target products could facilely dissolve in water.

  3. Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery

    OpenAIRE

    Auger Kurt R; Brown James R

    2011-01-01

    Abstract Background Phosphoinositide lipid kinases (PIKs) generate specific phosphorylated variants of phosatidylinositols (PtdIns) that are critical for second messenger signaling and cellular membrane remodeling. Mammals have 19 PIK isoforms spread across three major families: the PtIns 3-kinases (PI3Ks), PtdIns 4-kinases (PI4Ks), and PtdIns-P (PIP) kinases (PIPKs). Other eukaryotes have fewer yet varying PIK complements. PIKs are also an important, emerging class of drug targets for many t...

  4. Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata

    OpenAIRE

    Nieto Gutiérrez, Joaquín José; Cánovas, David; Vargas, C.; Csonka, Laszlo N.; Ventosa Ucero, Antonio

    1998-01-01

    The role of choline in osmoprotection in the moderate halophile Halomonas elongata has been examined. Transport and conversion of choline to betaine began immediately after addition of choline to the growth medium. Intracellular accumulation of betaine synthesized from choline was salt dependent up to 2.5 M NaCl. Oxidation of choline was enhanced at 2.0 M NaCl in the presence or absence of externally provided betaine. This indicates that the NaCl concentration in the growth medium has major e...

  5. Mechanism of choline deficiency and membrane alteration in postural orthostatic tachycardia syndrome primary skin fibroblasts.

    Science.gov (United States)

    Schenkel, Laila C; Singh, Ratnesh K; Michel, Vera; Zeisel, Steven H; da Costa, Kerry-Ann; Johnson, Amy R; Mudd, Harvey S; Bakovic, Marica

    2015-05-01

    Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2-3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired.

  6. Isolation and characterization of patatin isoforms

    NARCIS (Netherlands)

    Pots, A.M.; Gruppen, H.; Hessing, M.; Boekel, M.A.J.S. van; Voragen, A.G.J.

    1999-01-01

    Patatin has, so far, been considered a homogeneous group of proteins. A comparison of the isoforms in terms of structural properties or stability has not been reported. A method to obtain various isoform fractions as well as a comparison of the physicochemical properties of these pools is presented.

  7. Structural evolution of the protein kinase-like superfamily.

    Directory of Open Access Journals (Sweden)

    Eric D Scheeff

    2005-10-01

    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  8. Structural Evolution of the Protein Kinase-Like Superfamily.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  9. Influence of dietary protein and excess methionine on choline needs for young bobwhite quail

    Science.gov (United States)

    Serafin, J.A.

    1982-01-01

    Experiments were conducted with young Bobwhite quail (Colinus virginianus) to investigate the effect of differing dietary protein levels and nondetrimental amounts of excess methionine on choline needs. Growth and feed consumption of quail fed an adequate (27.3%) protein purified diet supplemented with 2000 mg/kg of choline were unaffected by increasing the level of excess methionine to 1.75%; however, greater amounts (2.0%, 2.25%) of excess methionine depressed growth (P less than .01), reduced feed consumption (P less than .01), and decreased feed utilization (P less than .05). Quail fed a purified diet containing 13.85% protein and 515 mg/kg of choline grew poorly. Growth was unaffected by additional choline in this diet. Growth was suboptimal among quail fed purified diets containing adequate or high (41.55%) levels of protein in which choline was limiting; however, a high level of protein did not in itself affect performance. Growth was improved by supplemental choline in these diets. Growth of quail fed purified diets with up to 1.35% excess methionine which were limiting (531 mg/kg) in choline was less than that of groups fed 2000 mg/kg of added dietary choline (P less than .01); however, excess methionine did not significantly influence growth of quail fed choline-deficient diets. These experiments indicate that neither high dietary protein nor excess methionine, fed at non-growth-depressing levels, increases dietary choline needs for young Bobwhite quail.

  10. The reaction of choline dehydrogenase with some electron acceptors.

    Science.gov (United States)

    Barrett, M C; Dawson, A P

    1975-12-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  11. PKC isoforms interact with and phosphorylate DNMT1

    Directory of Open Access Journals (Sweden)

    Pradhan Sriharsa

    2011-05-01

    Full Text Available Abstract Background DNA methyltransferase 1 (DNMT1 has been shown to be phosphorylated on multiple serine and threonine residues, based on cell type and physiological conditions. Although recent studies have suggested that protein kinase C (PKC may be involved, the individual contribution of PKC isoforms in their ability to phosphorylate DNMT1 remains unknown. The PKC family consists of at least 12 isoforms that possess distinct differences in structure, substrate requirement, expression and localization. Results Here we show that PKCα, βI, βII, δ, γ, η, ζ and μ preferentially phosphorylate the N-terminal domain of human DNMT1. No such phosphorylation of DNMT1 was observed with PKCε. Using PKCζ as a prototype model, we also found that PKC physically interacts with and phosphorylates DNMT1. In vitro phosphorylation assays conducted with recombinant fragments of DNMT1 showed that PKCζ preferentially phosphorylated the N-terminal region of DNMT1. The interaction of PKCζ with DNMT1 was confirmed by GST pull-down and co-immunoprecipitation experiments. Co-localization experiments by fluorescent microscopy further showed that endogenous PKCζ and DNMT1 were present in the same molecular complex. Endogenous PKCζ activity was also detected when DNMT1 was immunoprecipitated from HEK-293 cells. Overexpression of both PKCζ and DNMT1 in HEK-293 cells, but not of either alone, reduced the methylation status of genes distributed across the genome. Moreover, in vitro phosphorylation of DNMT1 by PKCζ reduced its methytransferase activity. Conclusions Our results indicate that phosphorylation of human DNMT1 by PKC is isoform-specific and provides the first evidence of cooperation between PKCζ and DNMT1 in the control of the DNA methylation patterns of the genome.

  12. Structures of alternatively spliced isoforms of human ketohexokinase.

    Science.gov (United States)

    Trinh, Chi H; Asipu, Aruna; Bonthron, David T; Phillips, Simon E V

    2009-03-01

    A molecular understanding of the unique aspects of dietary fructose metabolism may be the key to understanding and controlling the current epidemic of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism is initiated by its phosphorylation to fructose 1-phosphate, which is performed by ketohexokinase (KHK). Here, the crystal structures of the two alternatively spliced isoforms of human ketohexokinase, hepatic KHK-C and the peripheral isoform KHK-A, and of the ternary complex of KHK-A with the substrate fructose and AMP-PNP are reported. The structure of the KHK-A ternary complex revealed an active site with both the substrate fructose and the ATP analogue in positions ready for phosphorylation following a reaction mechanism similar to that of the pfkB family of carbohydrate kinases. Hepatic KHK deficiency causes the benign disorder essential fructosuria. The effects of the disease-causing mutations (Gly40Arg and Ala43Thr) have been modelled in the context of the KHK structure.

  13. Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Chur Chin

    2010-04-01

    Full Text Available Chur Chin1, In Kyeom Kim2, Dong Yoon Lim3, Ki Suk Kim4, Hyang Ae Lee4, Eun Joo Kim41Department of Pediatrics, Fatima Hospital, Daegu, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea; 3Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea; 4Korea Institute of Toxicology, Daejeon, KoreaAbstract: We identified a novel class of direct ion-channel blockers of ligand-gated ion channels called the gold nanoparticle–choline complex. Negatively charged gold nanoparticles (1.4 nm block ion pores by binding to the sulfur group of the cysteine loop of nicotinic acetylcholine receptors (nAChRs, and currents evoked by acetylcholine (Ach can break these bonds. The current evoked by ACh in nAChRs was blocked directly in ion pores by the gold nanoparticle–choline complex. In adrenal-gland perfusion studies, the complex also blocked nAChRs by diminishing catecholamine release by about 75%. An in vivo study showed muscle relaxation in rats after injection of the complex. These results will foster the application of gold nanoparticles as a direct ion-channel blocker. Keywords: negatively charged gold nanoparticle, choline, gold–sulfur bond, nicotinic acetylcholine receptor, direct ion-channel blocker

  14. Functional studies of sodium pump isoforms

    DEFF Research Database (Denmark)

    Clausen, Michael Jakob

    unique expression profiles and specialized functional features. We use a Two Electrode Voltage Clamp setup to determine pre-steady-state and steady-state characteristics of each isoform and design chimeras to pin-point the structural elements responsible for observed differences. With this strategy we...... and glial cells express multiple isoforms of the Na+,K+-ATPase that are sorted to different specialized subcellular compartments. We are setting up a novel assay to study the details of Na+,K+-ATPase trafficking in polarized cells. With SNAP and CLIP tagged Na+,K+-ATPase isoforms we can track newly...

  15. Dietary choline and betaine intake, choline-metabolising genetic polymorphisms and breast cancer risk: a case-control study in China.

    Science.gov (United States)

    Du, Yu-Feng; Luo, Wei-Ping; Lin, Fang-Yu; Lian, Zhen-Qiang; Mo, Xiong-Fei; Yan, Bo; Xu, Ming; Huang, Wu-Qing; Huang, Jing; Zhang, Cai-Xia

    2016-09-01

    Choline and betaine are essential nutrients involved in one-carbon metabolism and have been hypothesised to affect breast cancer risk. Functional polymorphisms in genes encoding choline-related one-carbon metabolism enzymes, including phosphatidylethanolamine N-methyltransferase (PEMT), choline dehydrogenase (CHDH) and betaine-homocysteine methyltransferase (BHMT), have important roles in choline metabolism and may thus interact with dietary choline and betaine intake to modify breast cancer risk. This study aimed to investigate the interactive effect of polymorphisms in PEMT, BHMT and CHDH genes with choline/betaine intake on breast cancer risk among Chinese women. This hospital-based case-control study consecutively recruited 570 cases with histologically confirmed breast cancer and 576 age-matched (5-year interval) controls. Choline and betaine intakes were assessed by a validated FFQ, and genotyping was conducted for PEMT rs7946, CHDH rs9001 and BHMT rs3733890. OR and 95 % CI were estimated using unconditional logistic regression. Compared with the highest quartile of choline intake, the lowest intake quartile showed a significant increased risk of breast cancer. The SNP PEMT rs7946, CHDH rs9001 and BHMT rs3733890 had no overall association with breast cancer, but a significant risk reduction was observed among postmenopausal women with AA genotype of BHMT rs3733890 (OR 0·49; 95 % CI 0·25, 0·98). Significant interactions were observed between choline intake and SNP PEMT rs7946 (P interaction=0·029) and BHMT rs3733890 (P interaction=0·006) in relation to breast cancer risk. Our results suggest that SNP PEMT rs7946 and BHMT rs3733890 may interact with choline intake on breast cancer risk.

  16. Influence of androgen deprivation therapy on choline PET/CT in recurrent prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dost, Rutger J.; Breeuwsma, Anthonius J.; Jong, Igle J. de [University of Groningen, University Medical Center Groningen, Department of Urology, Groningen (Netherlands); Glaudemans, Andor W.J.M. [University of Groningen, University Medical Center Groningen, Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2013-07-15

    Recurrent prostate cancer is usually treated by combining radiotherapy and androgen deprivation therapy. To stage the cancer, choline positron emission tomography (PET)/CT can be performed. It is generally thought that androgen deprivation therapy does not influence choline PET/CT. In this article we focus on the molecular backgrounds of choline and androgens, and the results of preclinical and clinical studies performed using PET/CT. Using PubMed, we looked for the relevant articles about androgen deprivation therapy and choline PET/CT. During ADT, a tendency of decreased uptake of choline in prostate cancer was observed, in particular in hormone-naive patients. We conclude that in order to prevent false-negative choline PET/CT scans androgen deprivation should be withheld prior to scanning, especially in hormone-naive patients. (orig.)

  17. Influence of androgen deprivation therapy on choline PET/CT in recurrent prostate cancer

    International Nuclear Information System (INIS)

    Recurrent prostate cancer is usually treated by combining radiotherapy and androgen deprivation therapy. To stage the cancer, choline positron emission tomography (PET)/CT can be performed. It is generally thought that androgen deprivation therapy does not influence choline PET/CT. In this article we focus on the molecular backgrounds of choline and androgens, and the results of preclinical and clinical studies performed using PET/CT. Using PubMed, we looked for the relevant articles about androgen deprivation therapy and choline PET/CT. During ADT, a tendency of decreased uptake of choline in prostate cancer was observed, in particular in hormone-naive patients. We conclude that in order to prevent false-negative choline PET/CT scans androgen deprivation should be withheld prior to scanning, especially in hormone-naive patients. (orig.)

  18. Central injection of captopril inhibits the blood pressure response to intracerebroventricular choline

    Directory of Open Access Journals (Sweden)

    N. Isbil-Buyukcoskun

    2001-06-01

    Full Text Available In the present study, we investigated the involvement of the brain renin-angiotensin system in the effects of central cholinergic stimulation on blood pressure in conscious, freely moving normotensive rats. In the first step, we determined the effects of intracerebroventricular (icv choline (50, 100 and 150 µg on blood pressure. Choline increased blood pressure in a dose-dependent manner. In order to investigate the effects of brain renin-angiotensin system blockade on blood pressure increase induced by choline (150 µg, icv, an angiotensin-converting enzyme inhibitor, captopril (25 and 50 µg, icv, was administered 3 min before choline. Twenty-five µg captopril did not block the pressor effect of choline, while 50 µg captopril blocked it significantly. Our results suggest that the central renin-angiotensin system may participate in the increase in blood pressure induced by icv choline in normotensive rats.

  19. Rumen protected choline supplementation in beef cattle: effect on growth performance

    Directory of Open Access Journals (Sweden)

    Vittorio Dell’Orto

    2010-01-01

    Full Text Available The aim of this study was to investigate the effect of rumen-protected choline administration on growth performance in beef cattle. Thirty-two newly received Charolais steers (420 kg ± 8 kg initial BW, were assigned randomly to one of the two experimental groups: control (CTR, no choline supplementation; choline (RPC, supplemented with 5 g/day choline chloride in rumenprotected form. Experimental period was 122 d long. DMI at different times did not differ between treatments. Supplementation of 5 g of choline increased body weight, and average daily gain on day 89 of the experiment,but not later on. Feed conversion rate and killing out percentage were not affected by the treatment. Therefore ruminally protected choline can improve growth performance of newly received beef cattle, and its inclusion in receiving diet can be useful.

  20. A time frame permissive for Protein Kinase D2 activity to direct angiogenesis in mouse embryonic stem cells

    OpenAIRE

    Müller, Martin; Schröer, Jana; Azoitei, Ninel; Eiseler, Tim; Bergmann, Wendy; Köhntop, Ralf; Lin, Qiong; Costa, Ivan G; Zenke, Martin; Genze, Felicitas; Weidgang, Clair; Seufferlein, Thomas; Liebau, Stefan; Kleger, Alexander

    2015-01-01

    The protein kinase D isoenzymes PKD1/2/3 are prominent downstream targets of PKCs (Protein Kinase Cs) and phospholipase D in various biological systems. Recently, we identified PKD isoforms as novel mediators of tumour cell-endothelial cell communication, tumour cell motility and metastasis. Although PKD isoforms have been implicated in physiological/tumour angiogenesis, a role of PKDs during embryonic development, vasculogenesis and angiogenesis still remains elusive. We investigated the rol...

  1. Significance of yeast peroxisomes in the metabolism of choline and ethanolamine

    OpenAIRE

    Zwart, Kor B.; Veenhuis, Marten; Harder, Wim

    1983-01-01

    The yeasts Candida utilis and Hansenula polymorpha were able to grow in media containing choline or ethanolamine as the sole nitrogen source. During growth in the presence of these substrates, large peroxisomes developed in the cells, and extracts of choline-grown C. utilis cells contained increased levels of amine oxidase and catalase. Incubation of whole cells with choline in the presence of the amine oxidase inhibitor aminoacetonitrile led to excretion of dimethylamine and methylamine. Cyt...

  2. Effects of CDP-choline on macrophages and oligodendrocytes in neuroinflammation

    OpenAIRE

    Wolf, Rebecca

    2016-01-01

    1) Background and objective of the project Cytidine-5'-diphosphocholine (CDP-choline) has gained some importance as an add-on therapy in neurodegenerative, neurovascular and traumatic brain disorders due to its neuroprotective and regenerative properties. Exogenously applied CDP-choline displays a very high bioavailability and readily disperses throughout the organism, also crossing the blood-brain barrier. Along with a favorable toxicity profile, these characteristics render CDP-choline a...

  3. Moderate Perinatal Choline Deficiency Elicits Altered Physiology and Metabolomic Profiles in the Piglet.

    Science.gov (United States)

    Getty, Caitlyn M; Dilger, Ryan N

    2015-01-01

    Few studies have evaluated the impact of dietary choline on the health and well-being of swine, and those pivotal papers were aimed at determining dietary requirements for sows and growing pigs. This is of importance as the piglet is becoming a widely accepted model for human infant nutrition, but little is known about the impacts of perinatal choline status on overall health and metabolism of the growing piglet. In the present study, sows were provided either a choline deficient (CD, 625 mg choline/kg dry matter) or choline sufficient (CS, 1306 mg choline/kg dry matter) diet for the last 65 d of gestation (prenatal intervention). Piglets were weaned from the sow 48 h after farrowing and provided either a CD (477 mg choline/kg dry matter) or CS (1528 mg choline/kg dry matter) milk replacer (postnatal intervention) for 29 ± 2 d, resulting in a factorial arrangement of 4 treatment (prenatal/postnatal) groups: CS/CS, CS/CD, CD/CS, and CD/CD. Piglet growth was normal for artificially-reared piglets, and was not impacted by perinatal choline status. Piglets receiving the postnatal CD treatment had lower (P piglets receiving the postnatal CS treatment. Hepatic lipid content of piglets receiving the postnatal CD treatment was higher (P piglets receiving the postnatal CS treatment. Additionally, postnatally CD piglets had lower (P = 0.01) plasma cholesterol than postnatally CS piglets. Brain development was also impacted by perinatal choline status, with brains of piglets exposed to prenatal CD being smaller (P = 0.01) than those of prenatally CS piglets. These findings support the hypothesis that the piglet is a sensitive model for choline deficiency during the perinatal period. In the present study, piglets exhibited similarities in health markers and metabolomic profiles to rodents and humans when exposed to moderate choline deficiency.

  4. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.

    Science.gov (United States)

    Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner

    2013-02-26

    In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.

  5. Moderate Perinatal Choline Deficiency Elicits Altered Physiology and Metabolomic Profiles in the Piglet.

    Science.gov (United States)

    Getty, Caitlyn M; Dilger, Ryan N

    2015-01-01

    Few studies have evaluated the impact of dietary choline on the health and well-being of swine, and those pivotal papers were aimed at determining dietary requirements for sows and growing pigs. This is of importance as the piglet is becoming a widely accepted model for human infant nutrition, but little is known about the impacts of perinatal choline status on overall health and metabolism of the growing piglet. In the present study, sows were provided either a choline deficient (CD, 625 mg choline/kg dry matter) or choline sufficient (CS, 1306 mg choline/kg dry matter) diet for the last 65 d of gestation (prenatal intervention). Piglets were weaned from the sow 48 h after farrowing and provided either a CD (477 mg choline/kg dry matter) or CS (1528 mg choline/kg dry matter) milk replacer (postnatal intervention) for 29 ± 2 d, resulting in a factorial arrangement of 4 treatment (prenatal/postnatal) groups: CS/CS, CS/CD, CD/CS, and CD/CD. Piglet growth was normal for artificially-reared piglets, and was not impacted by perinatal choline status. Piglets receiving the postnatal CD treatment had lower (P alkaline phosphatase and gamma-glutamyl transferase) values compared with piglets receiving the postnatal CS treatment. Hepatic lipid content of piglets receiving the postnatal CD treatment was higher (P < 0.01) compared with piglets receiving the postnatal CS treatment. Additionally, postnatally CD piglets had lower (P = 0.01) plasma cholesterol than postnatally CS piglets. Brain development was also impacted by perinatal choline status, with brains of piglets exposed to prenatal CD being smaller (P = 0.01) than those of prenatally CS piglets. These findings support the hypothesis that the piglet is a sensitive model for choline deficiency during the perinatal period. In the present study, piglets exhibited similarities in health markers and metabolomic profiles to rodents and humans when exposed to moderate choline deficiency. PMID:26196148

  6. FSH isoform pattern in classic galactosemia

    OpenAIRE

    Gubbels, Cynthia S.; Thomas, Chris M.G.; Wodzig, Will K. W. H.; Olthaar, André J.; Jaeken, Jaak; Sweep, Fred C. G. J.; Rubio-Gozalbo, M. Estela

    2010-01-01

    Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfunction. An earlier study showed less acidic isoforms of FSH in serum samples of two classic galactosemia patients compared to controls, indicating hypoglycosylation. In this study, FSH isoform patterns...

  7. Rumen-protected choline: A significance effect on dairy cattle nutrition.

    Science.gov (United States)

    Jayaprakash, G; Sathiyabarathi, M; Robert, M Arokia; Tamilmani, T

    2016-08-01

    Choline is a vitamin-like substance it has multi-function in animal production, reproduction, and health. The transition period is most crucial stage in lactation cycle of dairy cows due to its association with negative hormonal and energy balances. Unfortunately, unprotected choline easily degrades in the rumen; therefore, choline added to the diet in a rumen-protected form. The use of rumen-protected choline (RPC) is a preventive measurement for the fatty liver syndrome and ketosis; may improve milk production as well as milk composition and reproduction parameters. This review summarizes the effectiveness of RPC on animal production, health, and reproduction. PMID:27651671

  8. Utilization of choline from crude soybean lecithin by chicks. 1. Growth and prevention of perosis.

    Science.gov (United States)

    Lipstein, B; Bornstein, S; Budowski, P

    1977-01-01

    Data obtained with growing chicks fed a semi-purified diet indicate that choline from crude soybean lecithin is as well utilized as synthetic choline chloride, on the basis of growth, relative liver weight and prevention of perosis. Extrapolation of the results on growth and perosis prevention, obtained between 1 and 3 weeks of age, to performance on practical-type diets yields choline requirements for broiler-type chicks ranging from 800 to 1000 mg./kg. diet (as choline chloride). The requirement seems to decrease with age. PMID:564504

  9. Feeding a diet devoid of choline to lactating rodents restricts growth and lymphocyte development in offspring.

    Science.gov (United States)

    Lewis, E D; Goruk, S; Richard, C; Dellschaft, N S; Curtis, J M; Jacobs, R L; Field, C J

    2016-09-01

    The nutrient choline is necessary for membrane synthesis and methyl donation, with increased requirements during lactation. The majority of immune development occurs postnatally, but the importance of choline supply for immune development during this critical period is unknown. The objective of this study was to determine the importance of maternal supply of choline during suckling on immune function in their offspring among rodents. At parturition, Sprague-Dawley dams were randomised to either a choline-devoid (ChD; n 7) or choline-sufficient (ChS, 1 g/kg choline; n 10) diet with their offspring euthanised at 3 weeks of age. In a second experiment, offspring were weaned to a ChS diet until 10 weeks of age (ChD-ChS, n 5 and ChS-ChS, n 9). Splenocytes were isolated, and parameters of immune function were measured. The ChD offspring received less choline in breast milk and had lower final body and organ weight compared with ChS offspring (Pstimulation (lower stimulation index and less IFN-γ production) ex vivo (Pstimulation compared with cells from ChS-ChS (P<0·05). Our study suggests that choline is required in the suckling diet to facilitate immune development, and choline deprivation during this critical period has lasting effects on T cell function later in life.

  10. Rumen-protected choline: A significance effect on dairy cattle nutrition

    Directory of Open Access Journals (Sweden)

    G. Jayaprakash

    2016-08-01

    Full Text Available Choline is a vitamin-like substance it has multi-function in animal production, reproduction, and health. The transition period is most crucial stage in lactation cycle of dairy cows due to its association with negative hormonal and energy balances. Unfortunately, unprotected choline easily degrades in the rumen; therefore, choline added to the diet in a rumenprotected form. The use of rumen-protected choline (RPC is a preventive measurement for the fatty liver syndrome and ketosis; may improve milk production as well as milk composition and reproduction parameters. This review summarizes the effectiveness of RPC on animal production, health, and reproduction.

  11. Bioelectrochemical Response and Kinetics of Choline Oxidase Entrapped in Polyaniline—Polyacrylonitrile Composite Film

    Institute of Scientific and Technical Information of China (English)

    薛怀国; 沈芝荃

    2002-01-01

    A novel choline oxidase electrode was constructed by entrapping choline oxidase into polyaniline-polyacrylonitrile composite film,The enzyme film was prepared by in situ electropolyme-ritztion of aniline into porous polyacrylonitrile-coated platinum electrode in the presence of choline oxidase ,the enzyme electrode exhibited sensitive and stable electrochemical response to choline ,The kinetics analysis,showed that the mass transport is partially rate-liniting.The influences of pH,applied potential and temperature on the response of the enzyme electrode were also desribed.

  12. Bioelectrochemical Response and Kinetics of Choline Oxidase Entrapped in Polyaniline-Polyacrylonitrile Composite Film

    Institute of Scientific and Technical Information of China (English)

    XUE,Huai-Guo(薛怀国); SHEN,Zhi-Quan(沈之荃)

    2002-01-01

    A novel choline oxidase electrode was constructed by entrapping choline oxidase into polyaniline-polyacrylonitrile composite film. The enzyme film was prepared by in situ electropolymerization of aniline into porous polyacrylonitrile-coated platinum electrode in the presence of choline oxidase. The enzyme electrode exhibited sensitive and stable electrochemical response to choline. The kinetics analysis showed that the mass transport is partially rate-limiting. The influences of pH, applied potential and temperature on the response of the enzyme electrode were also described.

  13. PKC Isoform Expression in Modeled Microgravity

    Science.gov (United States)

    Risin, Diana; Sundaresan, Alamelu; Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Our previous studies showed that modeled (MMG) and true (USA Space Shuttle Missions STS-54 and STS-56) microgravity (MG) inhibit human lymphocyte locomotion, Modeled MG also suppressed polyclonal and antigen-specific lymphocyte activation. Activation of PKC by phorbol myristate acetate (PMA) restored the microgravity-inhibited lymphocyte locomotion as well as activation by phytohaemagglutinin (PHA), whereas calcium ionophore (ionomycin) was unable to restore these functions. Based on these results we hypothesized that MG-induced changes in lymphocyte functions are caused by a fundamental defect in signal transduction mechanism. This defect may be localized either at the PKC level or upstream of PKC, most likely, at the cell membrane level. In this study we examined the expression of PKC isoforms alpha, epsilon and delta in PBMC cultured in rotating wall vessel bioreactor, developed at NASA JSC, which models microgravity by sustaining cells in continuous free fall. The assessment of the isoforms was performed by FACS analysis following cell permeabilization. A decrease in the expression of isoforms epsilon and delta, but not isoform a, was observed in PBMC cultured in microgravity conditions. These data suggest that MMG might selectively affect the expression of Ca2+ independent isoforms of PKC Molecular analysis confirm selective suppression of Ca2+ independent isoforms of PKC.

  14. Presenilin dependence of phospholipase C and protein kinase C signaling

    DEFF Research Database (Denmark)

    Dehvari, Nodi; Cedazo-Minguez, Angel; Isacsson, Ola;

    2007-01-01

    -stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha...

  15. 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients.

    Science.gov (United States)

    Brogsitter, Claudia; Zöphel, Klaus; Kotzerke, Jörg

    2013-07-01

    Prostate cancer (PCA) is the second most common tumour in men worldwide. Whereas prostate specific antigen (PSA) is an established biochemical marker, the optimal imaging method for all clinical scenarios has not yet been found. With the rising number of PET centres there is an increasing availability and use of (18)F-/(11)C-choline or (11)C-acetate for staging of PCA. However, to date no final conclusion has been reached as to whether acetate or choline tracers should be preferred. In this review we provide an overview of the performance of choline and acetate PET for staging the primary and recurrent disease and lymph nodes in PCA, based on the literature of the last 10 years. Although predominantly choline has been used rather than acetate, both tracers performed in a similar manner in published studies. Choline as well as acetate have insufficient diagnostic accuracy for the staging of the primary tumour, due to a minimum detectable tumour size of 5 mm and inability to differentiate PCA from benign prostate hyperplasia, chronic prostatitis and high-grade intraepithelial neoplasia. Regarding lymph node staging, choline tracers have demonstrated a high specificity. Unfortunately, the sensitivity is only moderate. For staging recurrent disease, sensitivity depends on the level of serum PSA (PSA should be >2 ng/ml). This applies to both choline and acetate. However, despite these limitations, a significant number of patients with recurrent disease can benefit from PET imaging by a change in treatment planning.

  16. {sup 18}F-Choline, {sup 11}C-choline and {sup 11}C-acetate PET/CT: comparative analysis for imaging prostate cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Brogsitter, Claudia; Zoephel, Klaus; Kotzerke, Joerg [Carl Gustav Carus Medical School, University of Dresden, Department of Nuclear Medicine, Dresden (Germany)

    2013-07-15

    Prostate cancer (PCA) is the second most common tumour in men worldwide. Whereas prostate specific antigen (PSA) is an established biochemical marker, the optimal imaging method for all clinical scenarios has not yet been found. With the rising number of PET centres there is an increasing availability and use of {sup 18}F-/{sup 11}C-choline or {sup 11}C-acetate for staging of PCA. However, to date no final conclusion has been reached as to whether acetate or choline tracers should be preferred. In this review we provide an overview of the performance of choline and acetate PET for staging the primary and recurrent disease and lymph nodes in PCA, based on the literature of the last 10 years. Although predominantly choline has been used rather than acetate, both tracers performed in a similar manner in published studies. Choline as well as acetate have insufficient diagnostic accuracy for the staging of the primary tumour, due to a minimum detectable tumour size of 5 mm and inability to differentiate PCA from benign prostate hyperplasia, chronic prostatitis and high-grade intraepithelial neoplasia. Regarding lymph node staging, choline tracers have demonstrated a high specificity. Unfortunately, the sensitivity is only moderate. For staging recurrent disease, sensitivity depends on the level of serum PSA (PSA should be >2 ng/ml). This applies to both choline and acetate. However, despite these limitations, a significant number of patients with recurrent disease can benefit from PET imaging by a change in treatment planning. (orig.)

  17. The α and Δ isoforms of CREB1 are required to maintain normal pulmonary vascular resistance.

    Directory of Open Access Journals (Sweden)

    Lili Li

    Full Text Available Chronic hypoxia causes pulmonary hypertension associated with structural alterations in pulmonary vessels and sustained vasoconstriction. The transcriptional mechanisms responsible for these distinctive changes are unclear. We have previously reported that CREB1 is activated in the lung in response to alveolar hypoxia but not in other organs. To directly investigate the role of α and Δ isoforms of CREB1 in the regulation of pulmonary vascular resistance we examined the responses of mice in which these isoforms of CREB1 had been inactivated by gene mutation, leaving only the β isoform intact (CREB(αΔ mice. Here we report that expression of CREB regulated genes was altered in the lungs of CREB(αΔ mice. CREB(αΔ mice had greater pulmonary vascular resistance than wild types, both basally in normoxia and following exposure to hypoxic conditions for three weeks. There was no difference in rho kinase mediated vasoconstriction between CREB(αΔ and wild type mice. Stereological analysis of pulmonary vascular structure showed characteristic wall thickening and lumen reduction in hypoxic wild-type mice, with similar changes observed in CREB(αΔ. CREB(αΔ mice had larger lungs with reduced epithelial surface density suggesting increased pulmonary compliance. These findings show that α and Δ isoforms of CREB1 regulate homeostatic gene expression in the lung and that normal activity of these isoforms is essential to maintain low pulmonary vascular resistance in both normoxic and hypoxic conditions and to maintain the normal alveolar structure. Interventions that enhance the actions of α and Δ isoforms of CREB1 warrant further investigation in hypoxic lung diseases.

  18. Casein kinases

    DEFF Research Database (Denmark)

    Issinger, O G

    1993-01-01

    , no genetic changes are necessarily involved; the observed changes may be entirely due to a signal transduction pathway where CK-2 could be phosphorylated by another kinase(s). CK-2 cDNAs from various organisms have been isolated and characterized. From the deduced amino acid sequence it turns out that CK-2......-specific expression of CK-2 at the mRNA and at the protein level has also been given attention. The fact that the enzyme activity is surprisingly high in brain and low in heart and lung may be indicative of involvement of CK-2 in processes other than proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)...

  19. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    Science.gov (United States)

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN.

  20. Antiangiogenic VEGF Isoform in Inflammatory Myopathies

    Directory of Open Access Journals (Sweden)

    Nila Volpi

    2013-01-01

    Full Text Available Objective. To investigate expression of vascular endothelial growth factor (VEGF antiangiogenic isoform A-165b on human muscle in idiopathic inflammatory myopathies (IIM and to compare distribution of angiogenic/antiangiogenic VEGFs, as isoforms shifts are described in other autoimmune disorders. Subjects and Methods. We analyzed VEGF-A165b and VEGF-A by western blot and immunohistochemistry on skeletal muscle biopsies from 21 patients affected with IIM (polymyositis, dermatomyositis, and inclusion body myositis and 6 control muscle samples. TGF-β, a prominent VEGF inductor, was analogously evaluated. Intergroup differences of western blot bands density were statistically examined. Endomysial vascularization, inflammatory score, and muscle regeneration, as pathological parameters of IIM, were quantitatively determined and their levels were confronted with VEGF expression. Results. VEGF-A165b was significantly upregulated in IIM, as well as TGF-β. VEGF-A was diffusely expressed on unaffected myofibers, whereas regenerating/atrophic myofibres strongly reacted for both VEGF-A isoforms. Most inflammatory cells and endomysial vessels expressed both isoforms. VEGF-A165b levels were in positive correlation to inflammatory score, endomysial vascularization, and TGF-β. Conclusions. Our findings indicate skeletal muscle expression of antiangiogenic VEGF-A165b and preferential upregulation in IIM, suggesting that modulation of VEGF-A isoforms may occur in myositides.

  1. Autophosphorylation of serine 608 in the p85 regulatory subunit of wild type or cancer-associated mutants of phosphoinositide 3-kinase does not affect its lipid kinase activity

    OpenAIRE

    Layton Meredith J; Saad Mirette; Church Nicole L; Pearson Richard B; Mitchell Christina A; Phillips Wayne A

    2012-01-01

    Abstract Background The α-isoform of the Type 1A Phosphoinositide 3-kinases (PI3Kα) has protein kinase activity as well as phosphoinositide lipid kinase activity. The best described substrate for its protein kinase activity is its regulatory subunit, p85α, which becomes phosphorylated on Serine 608. Phosphorylation of Serine 608 has been reported to down-regulate its lipid kinase activity. Results We have assessed whether oncogenic mutants of PI3Kα, which have up-regulated lipid kinase activi...

  2. Are dietary choline and betaine intakes determinants of total homocysteine concentration?

    Science.gov (United States)

    Elevated homocysteine concentrations are associated with an increased risk of cardiovascular disease and a decline in cognitive function. Intakes of choline and betaine, as methyl donors, may affect homocysteine concentrations. The objective was to examine whether choline and betaine intakes, assess...

  3. Choline uptake in Agrobacterium tumefaciens by the high-affinity ChoXWV transporter.

    Science.gov (United States)

    Aktas, Meriyem; Jost, Kathinka A; Fritz, Christiane; Narberhaus, Franz

    2011-10-01

    Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called "Venus flytrap mechanism" of substrate binding. PMID:21803998

  4. Plasma choline and betaine and their relation to plasma homocysteine in normal pregnancy

    NARCIS (Netherlands)

    Velzing-Aarts, Francien V; Holm, Pål I; Fokkema, M Rebecca; van der Dijs, Fey P; Ueland, Per M; Muskiet, Frits A

    2005-01-01

    Background: Plasma concentrations of total homocysteine (tHcy) decrease during pregnancy. This reduction has been investigated in relation to folate status, but no study has addressed the possible role of betaine and its precursor choline. Objective: We investigated the courses of plasma choline and

  5. Prenatal Choline Availability Alters the Context Sensitivity of Pavlovian Conditioning in Adult Rats

    Science.gov (United States)

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3-4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline…

  6. Choline evokes fluid secretion by perfused rat mandibular gland without desensitization

    DEFF Research Database (Denmark)

    Murakami, M; Novak, I; Young, J A

    1986-01-01

    The secretomotor action of choline on salivary secretion has been studied in the isolated perfused mandibular gland of the rat. Choline made up in substituted Ringer solutions (Na concentrations of 40, 70, or 100 mM) was an effective secretomotor agonist in the concentration range of 1-100 mM and...

  7. What Choline Metabolism Can Tell Us About the Underlying Mechanisms of Fetal Alcohol Spectrum Disorders

    Science.gov (United States)

    2013-01-01

    The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or or ofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD. PMID:21259123

  8. Oxygen-18 and deuterium labeling studies of choline oxidation by spinach and sugar beet.

    Science.gov (United States)

    Lerma, C; Hanson, A D; Rhodes, D

    1988-11-01

    Chenopods synthesize betaine by a two-step oxidation of choline: choline --> betaine aldehyde --> betaine. The pathway is chloroplastic; the first step has been shown in isolated spinach (Spinacia oleracea L.) chloroplasts to be O(2)- and light-dependent, the role of light being to provide reducing power (P Weigel, EA Weretilnyk, AD Hanson 1988 Plant Physiol 86: 54-60). Here, we report use of in vivo(18)O- and (2)H-labeling in conjunction with fast atom bombardment mass spectrometry to test for two hypothetical choline-oxidizing reactions that would explain the observed requirements for O(2) and reductant: a desaturase or an oxygenase. Simple syntheses for (2)H(3)-choline, (2)H(3), (18)O-choline, and (2)H(3), (18)O-betaine are given. A desaturase mechanism was sought by giving choline deuterated at the 2-carbon, or choline unlabeled at this position together with (2)H(2)O and by analyzing newly synthesized betaine. About 15% of the (2)H at C-2 was lost during oxidation of choline to betaine, and about 10% of the betaine made in the presence of 50% (2)H(2)O was monodeuterated. These small effects are more consistent with chemical exchange than with a desaturase, because 10 to 15% losses of (2)H from the C-2 position also occurred if choline was converted to betaine by a purified bacterial choline oxidase. To test for an oxygenase, the incorporation of (18)O from (18)O(2) into newly synthesized betaine was compared with that from (18)O-labeled choline, in light and darkness. Incorporation of (18)O from (18)O-choline was readily detectable and varied from about 15 to 50% of the theoretical maximum value; the (18)O losses were attributable to exchange of the intermediate betaine aldehyde with water. In darkness, incorporation of (18)O from (18)O(2) approached that from (18)O-choline, but in the light was severalfold lower, presumably due to isotopic dilution by photosynthetic (16)O(2). These data indicate that the chloroplast choline-oxidizing enzyme is an oxygenase

  9. Oxygen-18 and Deuterium Labeling Studies of Choline Oxidation by Spinach and Sugar Beet 1

    Science.gov (United States)

    Lerma, Claudia; Hanson, Andrew D.; Rhodes, David

    1988-01-01

    Chenopods synthesize betaine by a two-step oxidation of choline: choline → betaine aldehyde → betaine. The pathway is chloroplastic; the first step has been shown in isolated spinach (Spinacia oleracea L.) chloroplasts to be O2- and light-dependent, the role of light being to provide reducing power (P Weigel, EA Weretilnyk, AD Hanson 1988 Plant Physiol 86: 54-60). Here, we report use of in vivo18O- and 2H-labeling in conjunction with fast atom bombardment mass spectrometry to test for two hypothetical choline-oxidizing reactions that would explain the observed requirements for O2 and reductant: a desaturase or an oxygenase. Simple syntheses for 2H3-choline, 2H3, 18O-choline, and 2H3, 18O-betaine are given. A desaturase mechanism was sought by giving choline deuterated at the 2-carbon, or choline unlabeled at this position together with 2H2O and by analyzing newly synthesized betaine. About 15% of the 2H at C-2 was lost during oxidation of choline to betaine, and about 10% of the betaine made in the presence of 50% 2H2O was monodeuterated. These small effects are more consistent with chemical exchange than with a desaturase, because 10 to 15% losses of 2H from the C-2 position also occurred if choline was converted to betaine by a purified bacterial choline oxidase. To test for an oxygenase, the incorporation of 18O from 18O2 into newly synthesized betaine was compared with that from 18O-labeled choline, in light and darkness. Incorporation of 18O from 18O-choline was readily detectable and varied from about 15 to 50% of the theoretical maximum value; the 18O losses were attributable to exchange of the intermediate betaine aldehyde with water. In darkness, incorporation of 18O from 18O2 approached that from 18O-choline, but in the light was severalfold lower, presumably due to isotopic dilution by photosynthetic 16O2. These data indicate that the chloroplast choline-oxidizing enzyme is an oxygenase. PMID:16666370

  10. Moderate Perinatal Choline Deficiency Elicits Altered Physiology and Metabolomic Profiles in the Piglet.

    Directory of Open Access Journals (Sweden)

    Caitlyn M Getty

    Full Text Available Few studies have evaluated the impact of dietary choline on the health and well-being of swine, and those pivotal papers were aimed at determining dietary requirements for sows and growing pigs. This is of importance as the piglet is becoming a widely accepted model for human infant nutrition, but little is known about the impacts of perinatal choline status on overall health and metabolism of the growing piglet. In the present study, sows were provided either a choline deficient (CD, 625 mg choline/kg dry matter or choline sufficient (CS, 1306 mg choline/kg dry matter diet for the last 65 d of gestation (prenatal intervention. Piglets were weaned from the sow 48 h after farrowing and provided either a CD (477 mg choline/kg dry matter or CS (1528 mg choline/kg dry matter milk replacer (postnatal intervention for 29 ± 2 d, resulting in a factorial arrangement of 4 treatment (prenatal/postnatal groups: CS/CS, CS/CD, CD/CS, and CD/CD. Piglet growth was normal for artificially-reared piglets, and was not impacted by perinatal choline status. Piglets receiving the postnatal CD treatment had lower (P < 0.01 plasma choline and choline-containing phospholipid concentrations and higher (P < 0.05 liver enzyme (alkaline phosphatase and gamma-glutamyl transferase values compared with piglets receiving the postnatal CS treatment. Hepatic lipid content of piglets receiving the postnatal CD treatment was higher (P < 0.01 compared with piglets receiving the postnatal CS treatment. Additionally, postnatally CD piglets had lower (P = 0.01 plasma cholesterol than postnatally CS piglets. Brain development was also impacted by perinatal choline status, with brains of piglets exposed to prenatal CD being smaller (P = 0.01 than those of prenatally CS piglets. These findings support the hypothesis that the piglet is a sensitive model for choline deficiency during the perinatal period. In the present study, piglets exhibited similarities in health markers and

  11. Effects of Choline on DNA Methylation and Macronutrient Metabolic Gene Expression in In Vitro Models of Hyperglycemia

    OpenAIRE

    Xinyin Jiang; Esther Greenwald; Chauntelle Jack-Roberts

    2016-01-01

    Choline is an essential nutrient that plays an important role in lipid metabolism and DNA methylation. Studies in rodents suggest that choline may adversely affect glycemic control, yet studies in humans are lacking. Using the human hepatic and placental cells, HepG2 and BeWo, respectively, we examined the interaction between choline and glucose treatments. In HepG2 cells, choline supplementation (1 mM) increased global DNA methylation and DNA methyltransferase expression in both low-glucose ...

  12. Carbon Nanotubes/Gold Nanoparticles Composite Film for the Construction of a Novel Amperometric Choline Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2011-01-01

    Full Text Available This study develops a facile method to fabricate a novel choline biosensor based on multiwalled carbon nanotubes (MWCNTs and gold nanoparticles (AuNPs. Chitosan, a natural biocompatible polymer, was used to solubilize MWCNTs for constructing the aqueous Chit-MWCNTs solution. Then Chit-MWCNTs were first dropped on the surface of a cleaned platinum electrode. Finally, a thiolated silica sol containing AuNPs and choline oxidase (ChOx was immobilized on the surface of the Chit-MWCNTs-modified electrode. The MWCNTs/AuNPs/Pt electrode showed excellent electrocatalytic activity for choline. The resulting choline biosensor showed high sensitivity of choline (3.56 μA/mM, and wide linear range from 0.05 to 0.8 mM with the detection limit of 15 μM. In addition, good reproducibility and stability were obtained.

  13. Choline-based ionic liquids-enhanced biodegradation of azo dyes.

    Science.gov (United States)

    Sekar, Sudharshan; Surianarayanan, Mahadevan; Ranganathan, Vijayaraghavan; MacFarlane, Douglas R; Mandal, Asit Baran

    2012-05-01

    Industrial wastewaters such as tannery and textile processing effluents are often characterized by a high content of dissolved organic dyes, resulting in large values of chemical and biological oxygen demand (COD and BOD) in the aquatic systems into which they are discharged. Such wastewater streams are of rapidly growing concern as a major environmental issue in developing countries. Hence there is a need to mitigate this challenge by effective approaches to degrade dye-contaminated wastewater. In this study, several choline-based salts originally developed for use as biocompatible hydrated ionic liquids (i.e., choline sacchrinate (CS), choline dihydrogen phosphate (CDP), choline lactate (CL), and choline tartarate (CT)) have been successfully employed as the cosubstrate with S. lentus in the biodegradation of an azo dye in aqueous solution. We also demonstrate that the azo dye has been degraded to less toxic components coupled with low biomass formation.

  14. Ikaros isoforms:The saga continues

    Institute of Scientific and Technical Information of China (English)

    Laura; A; Perez-Casellas; Aleksandar; Savic; Sinisa; Dovat

    2011-01-01

    Through alternate splicing,the Ikaros gene produces multiple proteins.Ikaros is essential for normal hematopoiesis and possesses tumor suppressor activity.Ikaros isoforms interact to form dimers and potentially multimeric complexes.Diverse Ikaros complexes produced by the presence of different Ikaros isoforms are hypothesized to confer distinct functions.Small dominantnegative Ikaros isoforms have been shown to inhibit the tumor suppressor activity of full-length Ikaros.Here,we describe how Ikaros activity is regulated by the coordinated expression of the largest Ikaros isoforms IK-1 and IK-H.Although IK-1 is described as full-length Ikaros,IK-H is the longest Ikaros isoform.IK-H,which includes residues coded by exon 3B (60 bp that lie between exons 3 and 4),is abundant in human but not murine hematopoietic cells.Specific residues that lie within the 20 amino acids encoded by exon 3B give IK-H DNA-binding characteristics that are distinct from those of IK-1.Moreover,IK-H can potentiate or inhibit the ability of IK-1 to bind DNA.IK-H binds to the regulatory regions of genes that are upregulated by Ikaros,but not genes that are repressed by Ikaros.Although IK-1 localizes to pericentromeric heterochromatin,IK-H can be found in both pericentromeric and non-pericentromeric locations.Anti-silencing activity of gamma satellite DNA has been shown to depend on the binding of IK-H,but not other Ikaros isoforms.The unique features of IK-H,its influence on Ikaros activity,and the lack of IK-H expression in mice suggest that Ikaros function in humans may be more complex and possibly distinct from that in mice.

  15. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Science.gov (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  16. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    Science.gov (United States)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  17. Protein Kinase D as a Potential Chemotherapeutic Target for Colorectal Cancer

    OpenAIRE

    Wei, Ning; Chu, Edward; Wipf, Peter; Schmitz, John C.

    2014-01-01

    Protein kinase D (PKD) signaling plays a critical role in the regulation of DNA synthesis, proliferation, cell survival, adhesion, invasion/migration, motility, and angiogenesis. To date, relatively little is known about the potential role of PKD in the development and/or progression of human colorectal cancer (CRC). We evaluated the expression of different PKD isoforms in CRC and investigated the antitumor activity of PKD inhibitors against human CRC. PKD2 was the dominant isoform expressed ...

  18. Crystal structure of pyridoxal kinase from the Escherichia coli pdxK gene: implications for the classification of pyridoxal kinases.

    Science.gov (United States)

    Safo, Martin K; Musayev, Faik N; di Salvo, Martino L; Hunt, Sharyn; Claude, Jean-Baptiste; Schirch, Verne

    2006-06-01

    The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were determined in the unliganded and binary complexes with either MgATP or pyridoxal to 2.1-, 2.6-, and 3.2-A resolutions, respectively. The active site of ePL kinase 1 does not show significant conformational change upon binding of either pyridoxal or MgATP. Like sheep PL kinase, ePL kinase 1 exhibits a sequential random mechanism. Unlike sheep pyridoxal kinase, ePL kinase 1 may not tolerate wide variation in the size and chemical nature of the 4' substituent on the substrate. This is the result of differences in a key residue at position 59 on a loop (loop II) that partially forms the active site. Residue 59, which is His in ePL kinase 1, interacts with the formyl group at C-4' of pyridoxal and may also determine if residues from another loop (loop I) can fill the active site in the absence of the substrate. Both loop I and loop II are suggested to play significant roles in the functions of PL kinases.

  19. New isoforms of rat Aquaporin-4

    DEFF Research Database (Denmark)

    Moe, Svein Erik; Sorbo, Jan Gunnar; Søgaard, Rikke;

    2008-01-01

    an intracellular localization when expressed in cell lines and do not transport water when expressed in Xenopus oocytes. In contrast, the largest of the new isoforms, AQP4e, which contains a novel N-terminal domain, is localized at the plasma membrane in cell lines and functions as a water transporter in Xenopus...

  20. p53 isoforms change p53 paradigm

    OpenAIRE

    Bourdon, JC

    2014-01-01

    Although p53 defines cellular responses to cancer treatment it is not clear how p53 can be used to control cell fate outcome. Data demonstrate that so-called p53 does not exist as a single protein, but is in fact a group of p53 protein isoforms whose expression can be manipulated to control the cellular response to treatment.

  1. 加压素对缺氧血管平滑肌细胞蛋白激酶C亚型表达的调节及其机制%Effect of vasopressin on the expression of protein kinase C isoforms of vascular smooth muscle cell after hypoxia and its mechanisms

    Institute of Scientific and Technical Information of China (English)

    杨光明; 李涛; 明佳; 徐竞; 陈玮; 刘良明

    2009-01-01

    目的 探讨精氨酸血管加压素(AVP)对缺氧血管平滑肌细胞(VSMC)中PKC-α、δ和ε亚型蛋白表达的调节作用及其可能机制.方法 取50只Wistar大鼠的血管进行原代VSMC培养,观察AVP对缺氧VSMC胞质和胞膜成分中PKC-α、δ和ε亚型蛋白表达的影响,同时检测缺氧VSMC中3种磷脂酶(PLC、PLD、PLA:)的活性变化及AVP和PKC亚型抑制剂对其的作用.结果 缺氧后VSMC胞膜成分中PKC.α和亚ε型的表达分别升高为正常组的1.5和2.0倍,而胞质成分中表达降低,AVP处理进一步升高胞膜PKC-α和ε亚型的表达(分别为正常组的2.4和2.6倍,P<0.05);而胞质和胞膜PKC-δ亚型有相似的变化趋势,但差异无统计学意义.同时,缺氧后PLC和PLD活性升高,AVP处理使PLC和PLD的活性进一步升高为正常组的1.6和2.1倍;PKC-α抑制剂Go 6976预处理可拮抗AVP诱导PLD活性升高的作用(PLD活性降低为AVP组的40.8%),而PKC-δ和ε抑制剂无明显作用;各组PLA2活性差异无统计学意义.结论 AVP可通过促进VSMC胞质中的PKC-α和ε亚型向胞膜转位而激活,进而调节休克后血管反应性;PLC和PLD可能参与了AVP介导的PKC激活过程.%Objective To observe the effect of arginine vasopressin (AVP) on the expression of PKC-ot,8 and e isoforms of vascular smooth muscle cell (VSMC) after hypoxia and its mechanisms. Methods With cultured VSMC from 50 Wistar ruts,the effect of AVP on the expression of PKC-α,δ and ε isoforms in the cytosol and particulate fractions of VSMC after hypoxia were observed. At the same time, the activity of phospholipase C (PLC) , phospholipase D (PLD) ,phospholipase A2 (PLA2) and the effects of AVP and PKC isoform inhibitors were also observed. Results The expression of particulate PKC-α and ε increased about 1.5 and 2.0 folds, respectively after 90-min hypoxia, with a concomitant decrease in cy-tosolic fractions. AVP treatment further increased expression of PKC-α and e in the particulate

  2. Sat-Nav for T cells: Role of PI3K isoforms and lipid phosphatases in migration of T lymphocytes.

    Science.gov (United States)

    Ward, Stephen G; Westwick, John; Harris, Stephanie

    2011-07-01

    Phosphoinositide 3-kinase (PI3K)-dependent signaling has been placed at the heart of conserved biochemical mechanisms that facilitate cell migration of leukocytes in response to a range of chemoattractant stimuli. This review assesses the evidence for and against PI3K-dependent mechanisms of T lymphocyte migration and whether pharmacological targeting of PI3K isoforms is likely to offer potential benefit for T cell mediated pathologies. PMID:21333676

  3. Effects of temperature, moisture and choline chloride on vitamin A stability in broiler premix

    Institute of Scientific and Technical Information of China (English)

    SUN Haixia; SHAN Anshan; SHI Baoming

    2007-01-01

    A 2×2×2 factorial design was adopted to study the effects of temperature, moisture and choline chloride on vitamin A stability in premix. The results indicated that temperature, moisture and choline chloride damaged vitamin A significantly. The regression equations of vitamin A disappearance rate and storage time were as follows: in room temperature (18±3) ℃, y=14.368Ln(x)+ 4.1425,R2=978; in high temperature (4℃), y=22.24Ln(x)+13.27, R2=O.9918; in low moisture (2%-3%), y=10.408Ln(x)+9.5418, R2=O.9322; in high moisture (8%-9%), y=26.199Ln(x)+7.8741, R2=0.9949; in the condition of choline chloride free, y=9.5125Ln(x)+ 8.9869, R2=O.9826; supplemented with choline chloride, y=27.094Ln(x)+8.4276, R2=0.9984. Temperature had highly significant interaction with moisure and choline chloride on destruction of vitamin A, respectively from the periods of two months storage. However, from the period of the first month storage, the interaction of moisture and choline chloride, as well as the interaction of temperature, moisture and choline destroyed vitamin A remarkably.

  4. Dietary Intake and Plasma Levels of Choline and Betaine in Children with Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Joanna C. Hamlin

    2013-01-01

    Full Text Available Abnormalities in folate-dependent one-carbon metabolism have been reported in many children with autism. Because inadequate choline and betaine can negatively affect folate metabolism and in turn downstream methylation and antioxidant capacity, we sought to determine whether dietary intake of choline and betaine in children with autism was adequate to meet nutritional needs based on national recommendations. Three-day food records were analyzed for 288 children with autism (ASDs who participated in the national Autism Intervention Research Network for Physical Health (AIR-P Study on Diet and Nutrition in children with autism. Plasma concentrations of choline and betaine were measured in a subgroup of 35 children with ASDs and 32 age-matched control children. The results indicated that 60–93% of children with ASDs were consuming less than the recommended Adequate Intake (AI for choline. Strong positive correlations were found between dietary intake and plasma concentrations of choline and betaine in autistic children as well as lower plasma concentrations compared to the control group. We conclude that choline and betaine intake is inadequate in a significant subgroup of children with ASDs and is reflected in lower plasma levels. Inadequate intake of choline and betaine may contribute to the metabolic abnormalities observed in many children with autism and warrants attention in nutritional counseling.

  5. Choline and betaine consumption lowers cancer risk: a meta-analysis of epidemiologic studies

    Science.gov (United States)

    Sun, Shanwen; Li, Xiao; Ren, Anjing; Du, Mulong; Du, Haina; Shu, Yongqian; Zhu, Lingjun; Wang, Wei

    2016-01-01

    A number of human and animal in vitro or in vivo studies have investigated the relationship between dietary choline and betaine and cancer risk, suggesting that choline and betaine consumption may be protective for cancer. There are also a few epidemiologic studies exploring this relationship, however, with inconsistent conclusions. The PubMed and Embase were searched, from their inception to March 2016, to identify relevant studies and we brought 11 articles into this meta-analysis eventually. The pooled relative risks (RRs) of cancer for the highest versus the lowest range were 0.82 (95% CI, 0.70 to 0.97) for choline consumption only, 0.86 (95%CI, 0.76 to 0.97) for betaine consumption only and 0.60 (95%CI, 0.40 to 0.90) for choline plus betaine consumption, respectively. Significant protective effect of dietary choline and betaine for cancer was observed when stratified by study design, location, cancer type, publication year, sex and quality score of study. An increment of 100 mg/day of choline plus betaine intake helped reduce cancer incidence by 11% (0.89, 95% CI, 0.87 to 0.92) through a dose-response analysis. To conclude, choline and betaine consumption lowers cancer incidence in this meta-analysis, but further studies are warranted to verify the results. PMID:27759060

  6. Egg Production and Quality of Quails Fed Diets with Varying Levels of Methionine and Choline Chloride

    Directory of Open Access Journals (Sweden)

    Khairani

    2016-04-01

    Full Text Available The aim of the present study was to determine the effect of choline chloride supplementation at 1500 ppm in diets containing various levels of methionine on egg production and egg quality in quails. A total of 180 birds, at 6 week-old quail were divided into 18 experimental units, and assigned to a 2 x 3 factorial design experiment with 3 replications (10 birds each in each treatment. The birds were offered diets containing choline chloride at either 0 (A1 or 1500 ppm (A2, with three levels of methionine namely, low (0.19%, B1, standard (0.79%, B2 and, high (1.05%, B3. The feeding trial lasted for 8 weeks. Supplementation of choline chloride in low methionine diet significantly (P<0.05 increased egg production, egg mass, and egg weight as compared to those without choline chloride supplementation. Supplementation of choline chloride significantly (P<0.05 increased egg yolk weight but decreased albumen and egg shell weight as compared to those fed diets without choline chloride supplementation. It can be concluded that supplementation of choline chloride to a diet containing low methionine increased egg production, without affecting egg quality.

  7. No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults.

    Science.gov (United States)

    Lippelt, D P; van der Kint, S; van Herk, K; Naber, M

    2016-01-01

    Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0-2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants.

  8. No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults.

    Directory of Open Access Journals (Sweden)

    D P Lippelt

    Full Text Available Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0-2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants.

  9. Experience in using ceretone (choline alfoscerate in brain concussion

    Directory of Open Access Journals (Sweden)

    N G Voropay

    2010-01-01

    Full Text Available Nootropics are used to treat patients who have sustained concussion of the brain and complain of reductions in memory and working capacity, as well as emotional disorders. The efficacy of ceretone® (choline alfoscerate was studied in 76 patients (45 men and 31 women whose age was 21-56 years who had sustained brain concussion and had complaints of headache, easy fatigability, nocturnal sleep disorders, daytime sleepiness, anxiety, and bad mood. Thirty-nine patients received intravenous ceretone® in a dose of 1000 mg/day for 10 days; the other 37 patients formed a control group. A one-year follow-up indicated that ceretone® had a positive effect on health, autonomic, and emotional status and working capacity.

  10. Protein Kinase D family kinases

    OpenAIRE

    Wille, Christoph; Seufferlein, Thomas; Eiseler, Tim

    2014-01-01

    Highly invasive pancreatic tumors are often recognized in late stages due to a lack of clear symptoms and pose major challenges for treatment and disease management. Broad-band Protein Kinase D (PKD) inhibitors have recently been proposed as additional treatment option for this disease. PKDs are implicated in the control of cancer cell motility, angiogenesis, proliferation and metastasis. In particular, PKD2 expression is elevated in pancreatic cancer, whereas PKD1 expression is comparably lo...

  11. Dietary Supplementation of Alternative Methionine and Choline Sources in the Organic Broiler Production in Brazil

    Directory of Open Access Journals (Sweden)

    LC Demattê Filho

    2015-12-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the use of natural and alternative sources of methionine and choline which can be allowed to use in organic livestock systems to feed broilers produced in Brazil. Seven hundred and twenty one-d-old male Cobb broilers were randomly allocated to four treatments with six replicates of 24 birds each. The treatments consisted in substituting the commonly used DL-methionine 99% by a vegetable source of methionine and cholinechloride 60% by alternative source of choline in the form of phosphatidylcholine. The following treatments were evaluated: I feed with DL-methionine 99% and choline chloride 60%, II feed with an vegetable methionine source and choline chloride 60%, III feed with DL-methionine 99% and choline as phosphatidylcholine, and IV feed with vegetable methionine source and choline as phosphatidylcholine. Daily weight gain, body weight, feed intake, feed conversion ratio, and mortality were evaluated for the periods of 1 to 21 and 1 to 42 days of age. During both periods, broilers fed the vegetable methionine source presented lower daily gain and lower body weight. When only choline chloride was substituted by the alternative choline source, broiler performance was not different compared with that of the control group. The group fed the diet with substitution of both DL-methionine 99% and choline chloride 60% by natural sources presented lower daily weight gain, final body weight, and feed intake. Further research on alternative nutrient sources are required for the development of the organic production chain.

  12. PI3K in cancer: divergent roles of isoforms, modes of activation, and therapeutic targeting

    Science.gov (United States)

    Thorpe, Lauren M.; Yuzugullu, Haluk; Zhao, Jean J.

    2015-01-01

    Preface Phosphatidylinositol 3-Kinases (PI3Ks) are critical coordinators of intracellular signaling in response to extracellular stimuli. Hyperactivation of PI3K signaling cascades is one of the most common events in human cancers. In this Review, we discuss recent advances in our knowledge of the roles of distinct PI3K isoforms in normal and oncogenic signaling, the different ways in which PI3K can be upregulated, and the current state and future potential of targeting this pathway in the clinic. PMID:25533673

  13. Isoforms of murine and human serum amyloid P component

    DEFF Research Database (Denmark)

    Nybo, Mads; Hackler, R; Kold, B;

    1998-01-01

    Isoelectric focusing (IEF) and immunofixation of murine serum amyloid P component (SAP), purified and in serum, showed a distinct and strain-dependent isoform pattern with up to seven bands (pI 5.1-5.7). Neuraminidase treatment caused a shift of the isoforms to more basic pI values, but did...... of isoforms of human SAP required the presence of urea and higher SAP concentrations. TEF and immunofixation of SAP monomers showed five to eight isoforms, ranging from pI 4.7-5.7. IEF of SAP in human serum resulted in a less distinct pattern and more acidic isoforms. As with murine SAP, neuraminidase...

  14. Methionine-choline deprivation alters liver and brain acetylcholinesterase activity in C57BL6 mice.

    Science.gov (United States)

    Vučević, Danijela B; Cerović, Ivana B; Mladenović, Dušan R; Vesković, Milena N; Stevanović, Ivana; Jorgačević, Bojan Z; Ješić Vukićević, Rada; Radosavljević, Tatjana S

    2016-07-01

    Choline and methionine are precursors of acetylcholine, whose hydrolysis is catalyzed by acetylcholinesterase (AChE). Considering the possibility of their common deficiency, we investigated the influence of methionine-choline deprivation on AChE activity in liver and various brain regions (hypothalamus, hippocampus, cerebral cortex and striatum) in mice fed with methionine-choline deficient (MCD) diet. Male C57BL/6 mice (n = 28) were randomly and equally divided into following groups: control group fed with standard diet for 6 weeks (C) and groups fed with MCD diet for 2 weeks (MCD2), 4 weeks (MCD4) and for 6 weeks (MCD6). After the diet, mice were sacrificied and AChE activity in liver and brain was determined spectrophotometrically. Hepatic AChE activity was higher in MCD2, MCD4 and MCD6 compared to control (p methionine-choline deprivation.

  15. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons

    Science.gov (United States)

    Wurtman, R. J.

    1992-01-01

    The unique propensity of cholinergic neurons to use choline for two purposes--ACh and membrane phosphatidylcholine synthesis--may contribute to their selective vulnerability in Alzheimer's disease and other cholinergic neurodegenerative disorders. When physiologically active, the neurons use free choline taken from the 'reservoir' in membrane phosphatidylcholine to synthesize ACh; this can lead to an actual decrease in the quantity of membrane per cell. Alzheimer's disease (but not Down's syndrome, or other neurodegenerative disorders) is associated with characteristic neurochemical lesions involving choline and ethanolamine: brain levels of these compounds are diminished, while those of glycerophosphocholine and glycerophosphoethanolamine (breakdown products of their respective membrane phosphatides) are increased, both in cholinergic and noncholinergic brain regions. Perhaps this metabolic disturbance and the tendency of cholinergic neurons to 'export' choline--in the form of ACh--underlie the selective vulnerability of the neurons. Resulting changes in membrane composition could abnormally expose intramembraneous proteins such as amyloid precursor protein to proteases.

  16. Lecithin: a by-product of biodiesel production and a source of choline for dairy cows

    Directory of Open Access Journals (Sweden)

    Igino Andrighetto

    2012-04-01

    Full Text Available The aim of the present study was to compare the effects of soy lecithins (L, a by-product of the biodiesel production process, and choline chloride microencapsulated with hydrogenated vegetable oils (C on dry matter intake, milk yield,  milk quality traits, milk choline and haematological profile of dairy cows. A total of 12 mid-lactating Holstein Friesian cows were assigned to one of two experimental groups and fed according to cross-over design (2 diets x 2 periods. Diets were isoenergetic, isofibrous and isonitrogenous and had the same content of choline. Dry matter intake was not affected by the diet, but L led to lower milk choline (P

  17. EASI—enrichment of alternatively spliced isoforms

    OpenAIRE

    Julian P Venables; Burn, John

    2006-01-01

    Alternative splicing produces more than one protein from the majority of genes and the rarer forms can have dominant functions. Instability of alternative transcripts can also hinder the study of regulation of gene expression by alternative splicing. To investigate the true extent of alternative splicing we have developed a simple method of enriching alternatively spliced isoforms (EASI) from PCRs using beads charged with Thermus aquaticus single-stranded DNA-binding protein (T.Aq ssb). This ...

  18. Quantum Chemical Insight into the Interactions and Thermodynamics Present in Choline Chloride Based Deep Eutectic Solvents.

    Science.gov (United States)

    Wagle, Durgesh V; Deakyne, Carol A; Baker, Gary A

    2016-07-14

    We report quantum chemical calculations performed on three popular deep eutectic solvents (DESs) in order to elucidate the molecular interactions, charge transfer interactions, and thermodynamics associated with these systems. The DESs studied comprise 1:2 choline chloride/urea (reline), 1:2 choline chloride/ethylene glycol (ethaline), and 1:1 choline chloride/malonic acid (maloline). The excellent correlation between calculated and experimental vibrational spectra allowed for identification of dominant interactions in the DES systems. The DESs were found to be stabilized by both conventional hydrogen bonds and C-H···O/C-H···π interactions between the components. The hydrogen-bonding network established in the DES is clearly distinct from that which exists within the neat hydrogen-bond donor dimer. Charge decomposition analysis indicates significant charge transfer from choline and chloride to the hydrogen-bond donor with a higher contribution from the cation, and a density of states analysis confirms the direction of the charge transfer. Consequently, the sum of the bond orders of the choline-Cl(-) interactions in the DESs correlates directly with the melting temperatures of the DESs, a correlation that offers insight into the effect of the tuning of the choline-Cl(-) interactions by the hydrogen-bond donors on the physical properties of the DESs. Finally, the differences in the vibrational entropy changes upon DES formation are consistent with the trend in the overall entropy changes upon DES formation. PMID:27268431

  19. PET/CT in prostate cancer: non-choline radiopharmaceuticals.

    Science.gov (United States)

    Castellucci, P; Jadvar, H

    2012-08-01

    In this brief review, the major potential clinical applications of 18F-FDG, 11C-acetate, 18F-FDHT, 18F-FLT, 18F-FMAU, and anti-18F-FACBC in the imaging evaluation of men with prostate cancer are discussed. 18F-FDG has a limited role in primary diagnosis and staging but it may be able to reflect tumour aggressiveness, detect sites of recurrence in some men with high serum PSA after biochemical failure and assess response to chemo- and hormonal treatment in metastatic disease. 11C-acetate has been investigated for intra-prostatic primary tumour detection and staging as well as for re-staging in case of biochemical relapse with results that are overall similar to those with 18F- and 11C-labeled choline. 18F-FDHT targets the androgen receptor and may be particularly useful in the assessment of the pharmacodynamics of the androgen signalling pathway. PET in conjunction with 18F-FLT or 18F-FMAU that track the thymidine salvage pathway of DNA synthesis has also been investigated for imaging cellular proliferation in prostate cancer. Initial experience with the radiolabeled synthetic amino acid, anti-18F-FACBC, which displays slow urinary excretion has been encouraging but further studies will be needed to decipher its exact role in the imaging management of men with prostate cancer.

  20. Kinetics of [{sup 11}C]choline uptake in prostate cancer: a PET stydy

    Energy Technology Data Exchange (ETDEWEB)

    Sutinen, Eija; Minn, Heikki [Turku PET Centre, Turku University Central Hospital, Turku (Finland); Department of Oncology and Radiotherapy, Turku University Central Hospital, PO Box 52, 20521, Turku (Finland); Nurmi, Martti [Department of Surgery, Turku University Central Hospital, Turku (Finland); Roivainen, Anne; Tolvanen, Tuula; Lehikoinen, Pertti [Turku PET Centre, Turku University Central Hospital, Turku (Finland); Varpula, Matti [Department of Radiology, Turku University Central Hospital, Turku (Finland)

    2004-03-01

    Carbon-11 choline has recently been introduced as a potential tracer for tumour imaging with positron emission tomography (PET). We evaluated the kinetics of the uptake of [{sup 11}C]choline in prostate cancer and benign prostatic hyperplasia. We also evaluated the association between the uptake of [{sup 11}C]choline and the histological grade of malignancy, Gleason score, volume of the prostate and prostate-specific antigen (PSA). Fourteen patients with histologically confirmed prostate cancer and five patients with benign prostatic hyperplasia were studied with [{sup 11}C]choline PET. A mean dose of 430{+-}31 MBq of [{sup 11}C]choline was injected intravenously and a dynamic emission acquisition of prostate was performed for 30 min. The uptake of [{sup 11}C]choline was measured as a standardised uptake value (SUV) and as a kinetic influx constant (K{sub i}) obtained from graphical analysis. Both cancerous and hyperplastic prostate were well visualised with [{sup 11}C]choline against low or moderate tracer accumulation in the bladder and rectal wall. The measured radioactivity in urine was invariably low. In the graphical analysis, linear plots were achieved. The mean K{sub i} of the untreated tumour was 0.205{+-}0.089 min{sup -1} (range 0.128-0.351; n=7) and the mean SUV was 5.6{+-}3.2 (range 1.9-15.5; n=15). K{sub i} values and SUVs correlated closely (r=0.964, P=0.0005), whereas no correlation could be demonstrated between the tumour uptake of [{sup 11}C]choline and the histological grade, Gleason score, volume of the prostate or PSA. The mean SUV and the mean K{sub i} of benign hyperplastic prostate were 3.5{+-}1.0 (range 2.0-4.5; n=4) and 0.119{+-}0.076 min{sup -1} (range 0.065-0.173; n=2). In conclusion, a high uptake of [{sup 11}C]choline characterises not only carcinomatous but also hyperplastic prostatic tissue. Dynamic imaging of the uptake of [{sup 11}C]choline in the prostate shows a good applicability of the graphical analysis model with an

  1. Quantification of choline concentration following liver cell apoptosis using 1H magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Wei Shen; Zhen Cao; Ke-Zeng You; Zhong-Xian Yang; Ye-Yu Xiao; Xiao-Fang Cheng; Yao-Wen Chen

    2012-01-01

    AIM:To evaluate the feasibility of quantifying liver choline concentrations in both normal and apoptotic rabbit livers in vivo,using 1H magnetic resonance spectroscopy (1H-MRS).METHODS:1H-MRS was performed in 18 rabbits using a 1.5T GE MR system with an eight-channel head/neck receiving coil.Fifteen rabbits were injected with sodium selenite at a dose of 10 μmol/kg to induce the liver cell apoptosis.Point-resolved spectroscopy sequencelocalized spectra were obtained from 10 livers once before and once 24 h after sodium selenite injection in vivo.T1 and T2 relaxation time of water and choline was measured separately in the livers of three healthy rabbits and three selenite-treated rabbits.Hematoxylin and eosin and dUTP-biotin nick end labeling (TUNEL) staining was used to detect and confirm apoptosis.Choline peak areas were measured relative to unsuppressed water using LCModel.Relaxation attenuation was corrected using the average of T1 and T2 relaxation time.The choline concentration was quantified using a formula,which was tested by a phantom with a known concentration.RESULTS:Apoptosis of hepatic cells was confirmed by TUNEL assay.In phantom experiment,the choline concentration (3.01 mmol/L),measured by 1H-MRS,was in good agreement with the actual concentration (3 mmol/L).The average T1 and T2 relaxation time of choline was 612 ± 15 ms and 74 ± 4 ms in the control group and 670 ± 27 ms and 78 ± 5 ms in apoptotic livers in vivo,respectively.Choline was quantified in 10 rabbits,once before and once after the injection with sodium selenite.The choline concentration decreased from 14.5 ± 7.57 mmol/L before sodium selenite injection to 10.8 ± 6.58 mmol/L (mean ± SD,n =10) after treatment (Z =-2.395,P < 0.05,two-sample paired Wilcoxon test).CONCLUSION:1H-MRS can be used to quantify liver choline in vivo using unsuppressed water as an internal reference.Decreased liver choline concentrations are found in sodium selenite-treated rabbits undergoing liver cell

  2. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    Science.gov (United States)

    Eilers, Wouter; Gevers, Wouter; van Overbeek, Daniëlle; de Haan, Arnold; Jaspers, Richard T.; Hilbers, Peter A.; van Riel, Natal; Flück, Martin

    2014-01-01

    We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII) contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE) coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis) and slow-type muscle (soleus) for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02). In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII. PMID:25054156

  3. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    Directory of Open Access Journals (Sweden)

    Wouter Eilers

    2014-01-01

    Full Text Available We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis and slow-type muscle (soleus for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02. In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII.

  4. Higher Dietary Choline and Betaine Intakes Are Associated with Better Body Composition in the Adult Population of Newfoundland, Canada.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Choline is an essential nutrient and betaine is an osmolyte and methyl donor. Both are important to maintain health including adequate lipid metabolism. Supplementation of dietary choline and betaine increase muscle mass and reduce body fat in animals. However, little data is available regarding the role of dietary choline and betaine on body composition in humans.To investigate the association between dietary choline and betaine intakes with body composition in a large population based cross-sectional study.A total of 3214 subjects from the CODING (Complex Disease in Newfoundland population: Environment and Genetics study were assessed. Dietary choline and betaine intakes were computed from the Willett Food Frequency questionnaire. Body composition was measured using dual-energy X-ray absorptiometry following a 12-hour fast. Major confounding factors including age, sex, total calorie intake and physical activity level were controlled in all analyses.Significantly inverse correlations were found between dietary choline and betaine intakes, with all obesity measurements: total percent body fat (%BF, percent trunk fat (%TF, percent android fat (%AF, percent gynoid fat (%GF and anthropometrics: weight, body mass index, waist circumference, waist-to-hip ratio in both women and men (r range from -0.13 to -0.47 for choline and -0.09 to -0.26 for betaine, p<0.001 for all. Dietary choline intake had stronger association than betaine. Moreover, obese subjects had the lowest dietary choline and betaine intakes, with overweight subjects in the middle, and normal weight subjects consumed the highest dietary choline and betaine (p<0.001. Vice versa, when subjects were ranked according to dietary choline and betaine intakes, subjects with the highest intake of both had the lowest %TF, %AF, %GF, %BF and highest %LM among the groups in both sexes.Our findings indicate that high dietary choline and betaine intakes are significantly associated with favorable body

  5. Pivotal Role of the C-terminal DW-motif in Mediating Inhibition of Pyruvate Dehydrogenase Kinase 2 by Dichloroacetate*

    OpenAIRE

    Li, Jun; Kato, Masato; Chuang, David T.

    2009-01-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) is down-regulated by phosphorylation catalyzed by pyruvate dehydrogenase kinase (PDK) isoforms 1–4. Overexpression of PDK isoforms and therefore reduced PDC activity prevails in cancer and diabetes. In the present study, we investigated the role of the invariant C-terminal DW-motif in inhibition of human PDK2 by dichloroacetate (DCA). Substitutions were made in the DW-motif (Asp-382 and Trp-383) and its interacting residues (Tyr-145 and A...

  6. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Sergey V., E-mail: Sergey.Ivanov@med.nyu.edu [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States); Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I. [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States)

    2009-05-08

    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  7. Developmental expression of two Haliotis asinina hemocyanin isoforms.

    Science.gov (United States)

    Streit, Klaus; Jackson, Daniel; Degnan, Bernard M; Lieb, Bernhard

    2005-09-01

    Hemocyanins are large copper-containing respiratory proteins that play a role in oxygen transport in many molluscs. In some species only one hemocyanin isoform is present while in others two are expressed. The physiological relevance of these isoforms is unclear and the developmental and tissue-specific expression of hemocyanin genes is largely unknown. Here we show that two hemocyanin genes in the gastropod Haliotis asinina, which encode H. asinina hemocyanin (HaH1) and HaH2 isoforms, are developmentally expressed. These genes initially are expressed in a small number of mesenchyme cells at trochophore and pre-torsional veliger stages, with HaH1 expression slightly preceding HaH2. These cells largely are localized to the visceral mass, although a small number of cells are present in head and foot regions. Following metamorphosis the isoforms show overlapping as well as isoform-specific expression profiles, suggesting some degree of isoform-specific function.

  8. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies.

    Science.gov (United States)

    Gong, Yan; Bourhis, Eric; Chiu, Cecilia; Stawicki, Scott; DeAlmeida, Venita I; Liu, Bob Y; Phamluong, Khanhky; Cao, Tim C; Carano, Richard A D; Ernst, James A; Solloway, Mark; Rubinfeld, Bonnee; Hannoush, Rami N; Wu, Yan; Polakis, Paul; Costa, Mike

    2010-01-01

    β-Catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may allow for

  9. Improved human visuomotor performance and pupil constriction after choline supplementation in a placebo-controlled double-blind study.

    Science.gov (United States)

    Naber, Marnix; Hommel, Bernhard; Colzato, Lorenza S

    2015-01-01

    Only few nutrients are known to enhance cognition. Here we explore whether visuomotor performance can be improved through the intake of the nutrient choline, an essential chemical compound in a vertebrate's diet. Choline is abundant in for example eggs and shrimps and many animal studies suggest that it serves as a cognitive enhancer. As choline is important for the communication between motor neurons and the control of skeletal muscles, we assumed that choline supplementation may have positive effects on action coordination in humans. A group of twenty-eight individuals ingested two grams of choline bitartrate or a placebo in two separate sessions. Seventy minutes post ingestion, participants performed a visuomotor aiming task in which they had to rapidly hit the centers of targets. Results showed that participants hit targets more centrally after choline supplementation. Pupil size (a cognition-sensitive biomarker) also significantly decreased after choline intake and correlated positively with the hit distance to the targets and the number of target misses, and negatively with reaction times. These findings point to a choline-induced bias towards action precision in the trade-off between speed and accuracy. The changes in pupil size suggest that choline uptake alters cholinergic functions in the nervous system. PMID:26271904

  10. Androgen receptor isoforms in human and rat prostate

    Institute of Scientific and Technical Information of China (English)

    Shu-JieXIA; Gang-YaoHAO; Xiao-DaTANG

    2000-01-01

    Aim: To investigate the androgen receptor (AR) isoforms and its variability of expression in human and rat prostatic tissues. Methods: Human benign prostatic hyperplasia (BPH) and prostatic cancer tissues were obtained from patients undergoing prostatectomy, and rat ventral prostate was incised 3 days after castration. Forty-one AR-positive BPH specimens, 3 prostatic cancer specimens, and 6 rat prostates were used. After processing at 4℃, the tissues were examined by means of high resolution isoelectric focusing (IEF) technique to determine their AR isoforms. Results:From the prostatic specimens, 3 types of AR isoforms were detected with pI values at 6.5, 6.0, and 5.3. In human BPH tissues, 15/41 (36.6%) specimens showed all the three types of isoforms, while 19/41 (46.3%) showed 2 isoforms at various combinations and 7/41(17.1%), 1 isoform. For the 3 prostatic cancer specimens, one showed 3 isoforms, one, 2 isoforms, and the other failed to show any isoform. All rat prostatic tissues showed 2 isoforms at different combinations. Binding of 3H-dihydrotestosterone (DHT) to the isoforms was inhibited by the addition of 100-fold excess of DHT or testosterone, but not progesterone, oestradiol or diethylstilboestrol. Conclusion: AR isoforms are different in different patients. Although their genesis is not clear, the therapeutic implication of the present observation appears to be interesting, that may help clarifying the individual differences in the response to hormonal therapy.(Asian J Androl 2000 Dec;2:307-310)

  11. Unexpected Discovery of Dichloroacetate Derived Adenosine Triphosphate Competitors Targeting Pyruvate Dehydrogenase Kinase To Inhibit Cancer Proliferation.

    Science.gov (United States)

    Zhang, Shao-Lin; Hu, Xiaohui; Zhang, Wen; Tam, Kin Yip

    2016-04-14

    Pyruvate dehydrogenase kinases (PDKs) have recently emerged as an attractive target for cancer therapy. Herein, we prepared a series of compounds derived from dichloroacetate (DCA) which inhibited cancer cells proliferation. For the first time, we have successfully developed DCA derived inhibitors that preferentially bind to the adenosine triphosphate (ATP) pocket of PDK isoform 1 (PDK1).

  12. Serine is a natural ligand and allosteric activator of pyruvate kinase M2

    NARCIS (Netherlands)

    Chaneton, Barbara; Hillmann, Petra; Zheng, Liang; Martin, Agnes C. L.; Maddocks, Oliver D. K.; Chokkathukalam, Achuthanunni; Coyle, Joseph E.; Jankevics, Andris; Holding, Finn P.; Vousden, Karen H.; Frezza, Christian; O'Reilly, Marc; Gottlieb, Eyal

    2012-01-01

    Cancer cells exhibit several unique metabolic phenotypes that are critical for cell growth and proliferation(1). Specifically, they overexpress the M2 isoform of the tightly regulated enzyme pyruvate kinase (PKM2), which controls glycolytic flux, and are highly dependent on de novo biosynthesis of s

  13. Choline Ameliorates Disease Phenotypes in Human iPSC Models of Rett Syndrome.

    Science.gov (United States)

    Chin, Eunice W M; Marcy, Guillaume; Yoon, Su-In; Ma, Dongliang; Rosales, Francisco J; Augustine, George J; Goh, Eyleen L K

    2016-09-01

    Rett syndrome (RTT) is a postnatal neurodevelopmental disorder that primarily affects girls. Mutations in the methyl-CpG-binding protein 2 (MECP2) gene account for approximately 95 % of all RTT cases. To model RTT in vitro, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of two RTT patients with different mutations (MECP2 (R306C) and MECP2 (1155Δ32)) in their MECP2 gene. We found that these iPSCs were capable of differentiating into functional neurons. Compared to control neurons, the RTT iPSC-derived cells had reduced soma size and a decreased amount of synaptic input, evident both as fewer Synapsin 1-positive puncta and a lower frequency of spontaneous excitatory postsynaptic currents. Supplementation of the culture media with choline rescued all of these defects. Choline supplementation may act through changes in the expression of choline acetyltransferase, an important enzyme in cholinergic signaling, and also through alterations in the lipid metabolite profiles of the RTT neurons. Our study elucidates the possible mechanistic pathways for the effect of choline on human RTT cell models, thereby illustrating the potential for using choline as a nutraceutical to treat RTT. PMID:27379379

  14. Choline Ameliorates Disease Phenotypes in Human iPSC Models of Rett Syndrome.

    Science.gov (United States)

    Chin, Eunice W M; Marcy, Guillaume; Yoon, Su-In; Ma, Dongliang; Rosales, Francisco J; Augustine, George J; Goh, Eyleen L K

    2016-09-01

    Rett syndrome (RTT) is a postnatal neurodevelopmental disorder that primarily affects girls. Mutations in the methyl-CpG-binding protein 2 (MECP2) gene account for approximately 95 % of all RTT cases. To model RTT in vitro, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of two RTT patients with different mutations (MECP2 (R306C) and MECP2 (1155Δ32)) in their MECP2 gene. We found that these iPSCs were capable of differentiating into functional neurons. Compared to control neurons, the RTT iPSC-derived cells had reduced soma size and a decreased amount of synaptic input, evident both as fewer Synapsin 1-positive puncta and a lower frequency of spontaneous excitatory postsynaptic currents. Supplementation of the culture media with choline rescued all of these defects. Choline supplementation may act through changes in the expression of choline acetyltransferase, an important enzyme in cholinergic signaling, and also through alterations in the lipid metabolite profiles of the RTT neurons. Our study elucidates the possible mechanistic pathways for the effect of choline on human RTT cell models, thereby illustrating the potential for using choline as a nutraceutical to treat RTT.

  15. Choline requirements of White Pekin ducks from hatch to 21 days of age.

    Science.gov (United States)

    Wen, Z G; Tang, J; Hou, S S; Guo, Y M; Huang, W; Xie, M

    2014-12-01

    A dose-response experiment with 8 dietary choline levels (302, 496, 778, 990, 1,182, 1,414, 1,625, and 1,832 mg/kg) was conducted with male White Pekin ducks to estimate the choline requirement from hatch to 21 d of age. Three hundred eighty-four 1-d-old male White Pekin ducks were randomly assigned to 8 dietary treatments, each containing 6 replicate pens with 8 birds per pen. At 21 d of age, weight gain, feed intake, and feed/gain from each pen were calculated for feeding period, and 2 ducks selected randomly from each pen were euthanized and the liver was collected to determine total lipids, triglycerides, and phospholipids. In our study, perosis, poor growth, and high liver fat were all observed in choline-deficient ducks and incidence of perosis was zero when dietary choline was 1,182 mg/kg. As dietary choline increased, the weight gain and feed intake increased linearly or quadratically (P perosis and excess liver lipid deposition completely. PMID:25260528

  16. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine.

    Science.gov (United States)

    Yamada, Nana; Takahashi, Hiroyuki; Kitou, Kunihide; Sahashi, Kosuke; Tamagake, Hideto; Tanaka, Yoshito; Takabe, Teruhiro

    2015-11-01

    Glycine betaine (GB) is an important osmoprotectant and synthesized by two-step oxidation of choline. Choline monooxygenase (CMO) catalyzes the first step of the pathway and is believed to be a rate limiting step for GB synthesis. Recent studies have shown the importance of choline-precursor supply for GB synthesis. In order to investigate the role of CMO for GB accumulation in sugar beet (Beta vulgaris), transgenic plants carrying the antisense BvCMO gene were developed. The antisense BvCMO plants showed the decreased activity of GB synthesis from choline compared to wild-type (WT) plants which is well related to the suppressed level of BvCMO protein. However, GB contents were similar between transgenic and WT plants with the exception of young leaves and storage roots. Transgenic plants showed enhanced susceptibility to salt stress than WT plants. These results suggest the importance of choline-precursor-supply for GB accumulation, and young leaves and storage root are sensitive sites for GB accumulation.

  17. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine.

    Science.gov (United States)

    Yamada, Nana; Takahashi, Hiroyuki; Kitou, Kunihide; Sahashi, Kosuke; Tamagake, Hideto; Tanaka, Yoshito; Takabe, Teruhiro

    2015-11-01

    Glycine betaine (GB) is an important osmoprotectant and synthesized by two-step oxidation of choline. Choline monooxygenase (CMO) catalyzes the first step of the pathway and is believed to be a rate limiting step for GB synthesis. Recent studies have shown the importance of choline-precursor supply for GB synthesis. In order to investigate the role of CMO for GB accumulation in sugar beet (Beta vulgaris), transgenic plants carrying the antisense BvCMO gene were developed. The antisense BvCMO plants showed the decreased activity of GB synthesis from choline compared to wild-type (WT) plants which is well related to the suppressed level of BvCMO protein. However, GB contents were similar between transgenic and WT plants with the exception of young leaves and storage roots. Transgenic plants showed enhanced susceptibility to salt stress than WT plants. These results suggest the importance of choline-precursor-supply for GB accumulation, and young leaves and storage root are sensitive sites for GB accumulation. PMID:26302482

  18. C-11 Choline and FDG PET/CT Imaging of Primary Cholangiocarcinoma – a Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Chanisa Chotipanich

    2015-01-01

    Full Text Available Objective(s: This study aimed to compare the diagnostic values of 11C-choline and 18F-fluorodeoxyglucose (18F-FDG positron emission tomography/computed tomography (PET/CT in patients with cholangiocarcinoma (CCA. Methods: This prospective study was conducted on 10 patients (6 males and 4 females, aged 42-69 years, suspected of having CCA based on CT or magnetic resonance imaging (MRI results. 11C-choline and 18F-FDG PET/CT studies were performed in all patients over 1 week. PET/CT results were visually analyzed by 2 independent nuclear medicine physicians and quantitatively by calculating the tumor-to-background ratio (T/B. Results: No 11C-choline PET/CT uptake was observed in primary extrahepatic or intrahepatic CCA cases. Intense 18F-FDG avidity was detected in the tumors of 8 patients (%80. Two patients, who were 18F-FDG negative, had primary extrahepatic CCA. Ki-67 measurements were positive in all patients (range; 14.2%-39.9%. The average T/B values of 11C-choline and 18F-FDG were 0.4±0.2 and 2.0±1.0 in all cases of primary CCA, respectively; these values were significantly lower for 11C-choline (P

  19. Physical and chemical immobilization of choline oxidase onto different porous solid supports: Adsorption studies.

    Science.gov (United States)

    Passos, Marieta L C; Ribeiro, David S M; Santos, João L M; Saraiva, M Lúcia M F S

    2016-08-01

    This work carries out for the first time the comparison between the physical and chemical immobilization of choline oxidase onto aminated silica-based porous supports. The influence on the immobilization efficiency of concentration, pH, temperature and contact time between the support and choline oxidase, was evaluated. The immobilization efficiency was estimated taking into consideration the choline oxidase activity, which was assessed by using cadmium telluride (CdTe) quantum dots (QDs), obtained by hydrothermal synthesis, as photoluminescent probes. Hydrogen peroxide produced by enzyme activity was capable of quenching CdTe QDs photoluminescence. The magnitude of the PL quenching process was directly related with the enzyme activity. By comparing the chemical process with the physical adsorption, it was observed that the latter provided the highest choline oxidase immobilization. The equilibrium data were analyzed using Langmuir and Freundlich isotherms and kinetic data were fitted to the pseudo-first-order and pseudo-second-order models. Thermodynamic parameters, such as Gibbs free energy and entropy were also calculated. These results will certainly contribute to the development of new sensing schemes for choline, taking into account the growing demand for its quantification in biological samples. PMID:27241295

  20. Amperometric Choline Biosensor Fabricated through Electrostatic Assembly of Bienzyme/Polyelectrolyte Hybrid Layers on Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2006-03-01

    We report a flow injection amperometric choline biosensors based on the electrostatic assembly of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO and horseradish peroxidase (HRP) onto multi-wall carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes. These choline biosensors were fabricated by immobilization of enzymes on the negatively charged MWCNT surface through alternatively assembling a cationic polydiallydiimethylammonium chloride (PDDA) layer and an enzyme layer. Using this layer-by-layer assembling approach, bioactive nanocomposite film of a PDDA/ChO/PDDA/HRP/PDDA/CNT (ChO/HRP/CNT) and a PDDA/ChO/PDDA/ CNT (ChO/ CNT) were fabricated on GC surface, respectively. Owning to the electrocatalytic effect of carbon nanotubes, the measurement of faradic responses resulting from enzymatic reactions has been realized at low potential with acceptable sensitivity. It is found the ChO/HRP/CNT biosensor is more sensitive than the ChO/CNT one. Experimental parameters affecting the sensitivity of biosensors, e.g. applied potential, flow rate, etc. were optimized and potential interference was examined. The response time for this choline biosensor is fast (less than a few seconds). The linear range of detection for the choline biosensor is from 5 x 10-5 to 5 x 10-3 M and the detection limit is determined to be about 1.0 x 10-5 M.

  1. Pachastrissamine (jaspine B) and its stereoisomers inhibit sphingosine kinases and atypical protein kinase C.

    Science.gov (United States)

    Yoshimitsu, Yuji; Oishi, Shinya; Miyagaki, Jun; Inuki, Shinsuke; Ohno, Hiroaki; Fujii, Nobutaka

    2011-09-15

    Sphingosine kinases (SphKs) are oncogenic enzymes that regulate the critical balance between ceramide and sphingosine-1-phosphate. Much effort has been dedicated to develop inhibitors against these enzymes. Naturally occurring pachastrissamine (jaspine B) and all its stereoisomers were prepared and evaluated for their inhibitory effects against SphKs. All eight stereoisomers exhibited moderate to potent inhibitory activity against SphK1 and SphK2. Inhibitory effects were profiled against protein kinase C (PKC) isoforms by in vitro experiments. Atypical PKCs (PKCζ and PKCι) were inhibited by several pachastrissamine stereoisomers. The improved activity over N,N-dimethylsphingosine suggests that the cyclic scaffold in pachastrissamines facilitates potential favorable interactions with SphKs and PKCs.

  2. Experience with carbon-11 choline positron emission tomography in prostate carcinoma

    International Nuclear Information System (INIS)

    We investigated the potential of carbon-11 choline positron emission tomography (PET) for the detection of lymph node and bone metastases in prostate cancer. A total of 23 patients were studied (known metastases: 8; suspicion of metastases: 3; primary staging: 12). Whole-body PET imaging was performed 5 min after injection of the tracer and completed within 1 h. Focally increased tracer uptake in bone or abdominal lymph node regions was interpreted as representing tumour involvement. All known bone and lymph node metastases could be recognized by [11C]choline PET. One out of ten negative scans for primary staging was false-negative (lymph node 11C]choline PET is a promising new tool for the primary staging of prostate cancer, with lymph node and bone metastases demonstrating high tracer uptake. Therapeutic management could be influenced by these results in that the technique may permit avoidance of surgical lymph node exploration. (orig.)

  3. A Facile, Choline Chloride/Urea Catalyzed Solid Phase Synthesis of Coumarins via Knoevenagel Condensation

    Directory of Open Access Journals (Sweden)

    Hosanagara N. Harishkumar

    2011-01-01

    Full Text Available The influence of choline chloride/urea ionic liquid in solid phase on the Knoevenagel condensation is demonstrated. The active methylene compounds such as meldrum’s acid, diethylmalonate, ethyl cyanoacetate, dimethylmalonate, were efficiently condensed with various salicylaldehydes in presence of choline chloride/urea ionic liquid without using any solvents or additional catalyst. The reaction is remarkably facile because of the air and water stability of the catalyst, and needs no special precautions. The reactions were completed within 1hr with excellent yields (95%. The products formed were sufficiently pure, and can be easily recovered. The use of ionic liquid choline chloride/urea in solid phase offered several significant advantages such as low cost, greater selectivity and easy isolation of products.

  4. How polar are choline chloride-based deep eutectic solvents?

    Science.gov (United States)

    Pandey, Ashish; Rai, Rewa; Pal, Mahi; Pandey, Siddharth

    2014-01-28

    Developing and characterizing green solvents with low toxicity and cost is one of the most important issues in chemistry. Deep Eutectic Solvents (DESs), in this regard, have shown tremendous promise. Compared to popular organic solvents, DESs possess negligible VOCs and are non-flammable. Compared to ionic liquids, which share many characteristics but are ionic compounds and not ionic mixtures, DESs are cheaper to make, much less toxic and mostly biodegradable. An estimate of the polarity associated with DESs is essential if they are to be used as green alternatives to common organic solvents in industries and academia. As no one physical parameter can satisfactorily represent solute-solvent interactions within a medium, polarity of DESs is assessed through solvatochromic optical spectroscopic responses of several UV-vis absorbance and molecular fluorescence probes. Information on the local microenvironment (i.e., the cybotactic region) that surrounds several solvatochromic probes [betaine dye, pyrene, pyrene-1-carboxaldehyde, 1-anilino-8-naphthalene sulfonate (ANS), p-toluidinyl-6-naphthalene sulfonate (TNS), 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN), coumarin-153, and Nile Red] for four common and popular DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, urea, and malonic acid, respectively, in 1 : 2 molar ratios termed ethaline, glyceline, reline, and maline is obtained and used to assess the effective polarity afforded by each of these DESs. The four DESs as indicated by these probe responses are found to be fairly dipolar in nature. Absorbance probe betaine dye and fluorescence probes ANS, TNS, PRODAN, coumarin-153, and Nile Red, whose solvatochromic responses are based on photoinduced charge-transfer, imply ethaline and glyceline, DESs formed using alcohol-based H-bond donors, to be relatively more dipolar in nature as compared to reline and maline. The pyrene polarity scale, which is based on polarity-induced changes in

  5. In vivo uptake of [C-11]choline does not correlate with cell proliferation in human prostate cancer

    NARCIS (Netherlands)

    Pruim, J; Jongen, MM; Suurmeijer, AJ; Vaalburg, W; Nijman, RJ; de Jong, IJ; Breeuwsma, J.

    2005-01-01

    Purpose: Prostate cancer is the second leading cause of death from cancer among US men. Positron emission tomography (PET) with [C-11] choline has been shown to be useful in the staging and detection of prostate cancer. The background of the increased uptake of choline in human prostate cancer is no

  6. Dietary folate and choline status differentially affect lipid metabolism and behavior-mediated neurotransmitters in young rats

    Science.gov (United States)

    The relationship between choline and folate metabolisms is an important issue due to the essential role of these nutrients in brain plasticity and cognitive functions. Present study was designed to investigate whether modification of the dietary folate-choline status in young rats would affect brain...

  7. Multiple host kinases contribute to Akt activation during Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Bernhard Roppenser

    Full Text Available SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4 P2/PI(3-5 P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4 P2/PI(3-5 P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.

  8. Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress.

    Science.gov (United States)

    Deshnium, P; Los, D A; Hayashi, H; Mustardy, L; Murata, N

    1995-12-01

    Choline oxidase, isolated from the soil bacterium Arthrobacter globiformis, converts choline to glycinebetaine (N-trimethylglycine) without a requirement for any cofactors. The gene for this enzyme, designated codA, was cloned and introduced into the cyanobacterium Synechococcus sp. PCC 7942. The codA gene was expressed under the control of a strong constitutive promoter, and the transformed cells accumulated glycinebetaine at intracellular levels of 60-80 mM. Consequently the cells acquired tolerance to salt stress, as evaluated in terms of growth, accumulation of chlorophyll and photosynthetic activity. PMID:8555454

  9. Osmoprotectants in Halomonas elongata: High-affinity betaine transport system and choline-betaine pathway

    OpenAIRE

    Nieto Gutiérrez, Joaquín José; Cánovas, David; Vargas, C.; Ventosa Ucero, Antonio; Csonka, Laszlo N.

    1996-01-01

    The osmoregulatory pathways of the moderately halophilic bacterium Halomonas elongata DSM 3043 have been investigated. This strain grew optimally at 1.5 to 2 M NaCl in M63 glucose-defined medium. It required at least 0.5 M NaCl for growth, which is a higher concentration than that exhibited by the H. elongata type strain ATCC 33173. Externally provided betaine, choline, or choline-O-sulfate (but not proline, ectoine, or proline betaine) enhanced the growth of H. elongata on 3 M NaCl-glucose-M...

  10. Effect of choline on carbon assimilation and phosphorus uptake by ginseng

    International Nuclear Information System (INIS)

    The results showed that the choline sprayed at green fruit stage of 4 years old ginseng, photosynthetic rate increased by 14.22%, transfer rate of 14C-assimilates increased by 21.82%, a mount of 14C-assimilates transported in total ginsensidi of root increased by 10.66%. Choline treatment also promoted phosphorus absorption in ginseng, the ratio of 32P absorption increased by 17.81%, and the 32P accumulated in root increased by 31.2%. The yield of ginseng root was increased by 28.78%

  11. A kinase-anchoring proteins and adenylyl cyclase in cardiovascular physiology and pathology.

    Science.gov (United States)

    Efendiev, Riad; Dessauer, Carmen W

    2011-10-01

    3'-5'-Cyclic adenosine monophosphate (cAMP), generated by adenylyl cyclase (AC), serves as a second messenger in signaling pathways regulating many aspects of cardiac physiology, including contraction rate and action potential duration, and in the pathophysiology of hypertrophy and heart failure. A kinase-anchoring proteins localize the effect of cAMP in space and time by organizing receptors, AC, protein kinase A, and other components of the cAMP cascade into multiprotein complexes. In this review, we discuss how the interaction of A kinase-anchoring proteins with distinct AC isoforms affects cardiovascular physiology.

  12. Evidence for leptin receptor isoforms heteromerization at the cell surface.

    Science.gov (United States)

    Bacart, Johan; Leloire, Audrey; Levoye, Angélique; Froguel, Philippe; Jockers, Ralf; Couturier, Cyril

    2010-06-01

    Leptin mediates its metabolic effects through several leptin receptor (LEP-R) isoforms. In humans, long (LEPRb) and short (LEPRa,c,d) isoforms are generated by alternative splicing. Most of leptin's effects are believed to be mediated by the OB-Rb isoform. However, the role of short LEPR isoforms and the possible existence of heteromers between different isoforms are poorly understood. Using BRET1 and optimized co-immunoprecipitation, we observed LEPRa/b and LEPRb/c heteromers located at the plasma membrane and stabilized by leptin. Given the widespread coexpression of LEPRa and LEPRb, our results suggest that LEPRa/b heteromers may represent a major receptor species in most tissues.

  13. Temperature-Driven Mixing-Demixing Behavior of Binary Mixtures of the Ionic Liquid Choline Bis(trifluoromethylsulfonyl)imide and Water

    OpenAIRE

    Nockemann, Peter; Binnemans, Koen; Thijs, Ben; Parac-Vogt, Tatjana; Merz, Klaus; Mudring, Anja-Verena; Menon, Preethy Chirukandath; Rajesh, Ravindran Nair; George, Cordoyiannis; Thoen, Jan; Leys, Jan; Glorieux, Christ

    2009-01-01

    The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point = 30 °C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion ar...

  14. CK (Creatine Kinase) Test

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Creatine Kinase Share this page: Was this page helpful? Also known as: CK; Total CK; Creatine Phosphokinase; CPK Formal name: Creatine Kinase Related tests: ...

  15. Method of empirical dependences in estimation and prediction of activity of creatine kinase isoenzymes in cerebral ischemia

    Science.gov (United States)

    Sergeeva, Tatiana F.; Moshkova, Albina N.; Erlykina, Elena I.; Khvatova, Elena M.

    2016-04-01

    Creatine kinase is a key enzyme of energy metabolism in the brain. There are known cytoplasmic and mitochondrial creatine kinase isoenzymes. Mitochondrial creatine kinase exists as a mixture of two oligomeric forms - dimer and octamer. The aim of investigation was to study catalytic properties of cytoplasmic and mitochondrial creatine kinase and using of the method of empirical dependences for the possible prediction of the activity of these enzymes in cerebral ischemia. Ischemia was revealed to be accompanied with the changes of the activity of creatine kinase isoenzymes and oligomeric state of mitochondrial isoform. There were made the models of multiple regression that permit to study the activity of creatine kinase system in cerebral ischemia using a calculating method. Therefore, the mathematical method of empirical dependences can be applied for estimation and prediction of the functional state of the brain by the activity of creatine kinase isoenzymes in cerebral ischemia.

  16. Pantothenate kinase-associated neurodegeneration.

    Science.gov (United States)

    Hartig, Monika B; Prokisch, Holger; Meitinger, Thomas; Klopstock, Thomas

    2012-08-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is a hereditary progressive disorder and the most frequent form of neurodegeneration with brain iron accumulation (NBIA). PKAN patients present with a progressive movement disorder, dysarthria, cognitive impairment and retinitis pigmentosa. In magnetic resonance imaging, PKAN patients exhibit the pathognonomic "eye of the tiger" sign in the globus pallidus which corresponds to iron accumulation and gliosis as shown in neuropathological examinations. The discovery of the disease causing mutations in PANK2 has linked the disorder to coenzyme A (CoA) metabolism. PANK2 is the only one out of four PANK genes encoding an isoform which localizes to mitochondria. At least two other NBIA genes (PLA2G6, C19orf12) encode proteins that share with PANK2 a mitochondrial localization and all are suggested to play a role in lipid homeostasis. With no causal therapy available for PKAN until now, only symptomatic treatment is possible. A multi-centre retrospective study with bilateral pallidal deep brain stimulation in patients with NBIA revealed a significant improvement of dystonia. Recently, studies in the PANK Drosophila model "fumble" revealed improvement by the compound pantethine which is hypothesized to feed an alternate CoA biosynthesis pathway. In addition, pilot studies with the iron chelator deferiprone that crosses the blood brain barrier showed a good safety profile and some indication of efficacy. An adequately powered randomized clinical trial will start in 2012. This review summarizes clinical presentation, neuropathology and pathogenesis of PKAN. PMID:22515741

  17. The existence of two distinct Wee1 isoforms in Xenopus: implications for the developmental regulation of the cell cycle

    OpenAIRE

    Okamoto, Kengo; Nakajo, Nobushige; Sagata, Noriyuki

    2002-01-01

    In eukaryotic cells, the Wee1 protein kinase phosphorylates and inhibits Cdc2, thereby creating an interphase of the cell cycle. In Xenopus, the conventional Wee1 homolog (termed Xe-Wee1A, or Wee1A for short) is maternally expressed and functions in pregastrula embryos with rapid cell cycles. Here, we have isolated a second, zygotic isoform of Xenopus Wee1, termed Xe-Wee1B (or Wee1B for short), that is expressed in postgastrula embryos and various adult tissues. When ectopically expressed in ...

  18. Choline chloride-based deep eutectic solvents as additives for optimizing chromatographic behavior of caffeic acid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guizhen; Zhu, Tao; Lei, Yingjie [Tianjin University of Technology, Tianjin (China)

    2015-10-15

    A series of deep eutectic solvents (DESs) were prepared using glycerol and choline chloride (ChCl), and Fourier transform infrared spectrometer (FT-IR) was used to analyze the spectra of glycerol, choline chloride and DESs based on glycerol and choline chloride. Then DESs were used as the additives of mobile phase to optimize chromatographic behavior of caffeic acid in high performance liquid chromatography (HPLC). A 17-run Box-Behnken design (BBD) was employed to evaluate effect of DESs as additives by analyzing the maximum theoretical plate number. Three factors, reaction temperature (60 .deg. C, 80 .deg. C, 100 .deg. C), molar ratio of glycerol and choline chloride (2 : 1, 3 : 1, 4 : 1, n/n), and volume percent of additives (0.05%, 0.10%, 0.15%, v/v), were investigated in BBD. The optimum experiment condition was that of reaction temperature (80 .deg. C), molar ratio of glycerol and ChCl (3 : 1, n/n), and volume percent of additive (0.10%, v/v). The mean chromatographic theoretical plate number of the caffeic acid this condition was 1567.5, and DESs as additives shorten the retention time and modify the chromatogram shape, proving DESs as additives for effective theoretical plate number and column efficiency in HPLC.

  19. Mechanisms of Indomethacin-Induced Alterations in the Choline Phospholipid Metabolism of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kristine Glunde

    2006-09-01

    Full Text Available Human mammary epithelial cells (HMECs exhibit an increase in phosphocholine (PC and total cholinecontaining compounds, as well as a switch from high glycerophosphocholine (GPC/low PC to low GPC/high PC, with progression to malignant phenotype. The treatment of human breast cancer cells with a nonsteroidal anti-inflammatory agent, indomethacin, reverted the high PC/low GPC pattern to a low PC/high GPC pattern indicative of a less malignant phenotype, supported by decreased invasion. Here, we have characterized mechanisms underlying indomethacininduced alterations in choline membrane metabolism in malignant breast cancer cells and nonmalignant HMECs labeled with [1,2-13C]choline using 1H and 13C magnetic resonance spectroscopy. Microarray gene expression analysis was performed to understand the molecular mechanisms underlying these changes. In breast cancer cells, indomethacin treatment activated phospholipases that, combined with an increased choline phospholipid biosynthesis, led to increased GPC and decreased PC levels. However, in nonmalignant HMECs, activation of the anabolic pathway alone was detected following indomethacin treatment. Following indomethacin treatment in breast cancer cells, several candidate genes, such as interleukin 8, NGFB, CSF2, RHOB, EDN1, and JUNB, were differentially expressed, which may have contributed to changes in choline metabolism through secondary effects or signaling cascades leading to changes in enzyme activity.

  20. Studies on the riboflavin, niacin, pantothenic acid and choline requirements of young bobwhite quail

    Science.gov (United States)

    Serafin, J.A.

    1974-01-01

    Four experiments were conducted to examine the riboflavin, niacin, pantothenic acid and choline requirements of young Bobwhite quail. Quail fed purified diets deficient in either riboflavin, niacin, pantothenic acid or choline grew poorly and high mortality occurred by 5 weeks of age. Under the conditions of these experiments, it was found that: (1) young quail require approximately 3.8 mg. riboflavin/kg. diet for satisfactory growth and survival; (2) no more than 31 mg. niacin/kg. diet are required for normal growth and survival of young quail; (3) the requirement for pantothenic acid is higher than has previously been reported, quail in these studies requiring 12.6 mg. pantothenic acid/kg. feed for growth and survival; and (4) the requirement for choline for reducing mortality is approximately 1000 mg./kg., while the amount necessary for normal growth of young quail is no greater than 1500 mg./kg. when the diet contains ample amounts of methionine. Quail fed a niacin-deficient diet developed stiff, shortened feathers and an erythema about the head; those receiving a riboflavin-deficient ration developed enlarged hocks and bowed legs, as did quail fed diets low or devoid of choline. Aside from slow growth, poor feathering was the only other indication that a deficient diet was being fed when quail were placed on a basal ration without pantothenic acid for five weeks.

  1. Studies on the riboflavin, pantothenic acid, nicotinic acid and choline requirements of young Embden geese

    Science.gov (United States)

    Serafin, J.A.

    1981-01-01

    Four experiments were conducted to examine the riboflavin, pantothenic acid, nicotinic acid, and choline requirements of young Embden geese fed purified diets. Goslings fed diets deficient in either riboflavin, pantothenic acid, nicotinic acid, or choline grew poorly. Feeding a pantothenic acid-deficient diet resulted in 100% mortality. Goslings fed diets containing 530 mg/kg of choline or less developed perosis. Under the conditions of these experiments it was found that: 1) goslings require no more than 3.84 mg/kg of riboflavin and 31.2 mg/kg of nicotinic acid in the diet for rapid growth and normal development, 2) the pantothenic acid requirement of goslings is no more than 12.6 mg/kg of diet, and 3) a dietary choline level of 1530 mg/kg is adequate for both the prevention of perosis and rapid growth of goslings. The levels of vitamins found to support normal growth and development of goslings appear to be similar to requirements of other species that have been examined.

  2. Studies on the riboflavin, pantothenic acid, nicotinic acid, and choline requirements of young Embden geese.

    Science.gov (United States)

    Serafin, J A

    1981-08-01

    Four experiments were conducted to examine the riboflavin, pantothenic acid, nicotinic acid, and choline requirements of young Embden geese fed purified diets. Goslings fed diets deficient in either riboflavin, pantothenic acid, nicotinic acid, or choline grew poorly. Feeding a pantothenic acid-deficient diet resulted in 100% mortality. Goslings fed diets containing 530 mg/kg of choline or less developed perosis. Under the conditions of these experiments it was found that: 1) goslings require no more than 3.84 mg/kg of riboflavin and 31.2 mg/kg of nicotinic acid in the diet for rapid growth and normal development, 2) the pantothenic acid requirement of goslings is no more than 12.6 mg/kg of diet, and 3) a dietary choline level of 1530 mg/kg is adequate for both the prevention of perosis and rapid growth of goslings. The levels of vitamins found to support normal growth and development of goslings appear to be similar to requirements of other species that have been examined. PMID:7322986

  3. 75 FR 760 - Choline chloride; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-01-06

    ... participant of animal and human metabolism. Choline chloride has been used as a widespread nutrient in animal... Findings In the Federal Register of December 3, 2008 (73 FR 73648) (FRL- 8391-3), EPA issued a notice... exposure through drinking water and in residential settings, but does not include occupational...

  4. Prospective study on dietary intakes of folate, betaine, and choline and cardiovascular disease risk in women

    NARCIS (Netherlands)

    Dalmeijer, G.W.; Olthof, M.R.; Verhoef, P.; Bots, M.L.; Schouw, van der Y.T.

    2008-01-01

    Objective: To investigate the association between dietary intakes of folate, betaine and choline and the risk of cardiovascular disease (CVD). Design: Prospective cohort study. Subjects: A total of 16 165 women aged 49¿70 years without prior CVD. Subjects were breast cancer screening participants in

  5. The unmediated choline sensor based on layered double hydroxides in hydrogen peroxide detection mode

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this work,we have developed a novel choline biosensor on the basis of immobilization of choline oxidase (ChOx) by the attractive materials layered double hydroxides (LDHs). Amperometric detection of choline was evaluated by holding the modified electrode at 0.5 V (vs. SCE). Due to the special properties of LDHs ([Zn3-Al-Cl]),such as chemical inertness,high porosity,and swelling property,the [Zn3-Al-Cl]/ChOx modified electrode exhibited an enhanced analytical performance. The biosensor provided a linear response to choline over a concentration range from 3.7 × 10-6 to 6.3 × 10-4 M with a low detection limit of 3 × 10-7 M based on S/N=3. The apparent Michaelis-Menten constant was calculated to be 1.38 mM. In addition,the interaction between ChOx and LDHs has also been investigated using FT-IR spectroscopy.

  6. Solubilities and thermodynamic properties of CO2 in choline-chloride based deep eutectic solvents

    International Nuclear Information System (INIS)

    Highlights: • Solubilities of carbon dioxide in three deep eutectic solvents (DESs) have been reported. • The experimental data were reduced to Henry’s law constants. • The Gibbs free energy, enthalpy, and entropy changes were calculated. • Relationship between solubility and structure of DESs was developed. - Abstract: The solubilities of CO2 in three kinds of deep eutectic solvents, (choline chloride + phenol), (choline chloride + diethylene glycol) and (choline chloride + triethylene glycol), were determined at temperatures ranging from 293.15 K to 323.15 K under pressures up to 600.0 kPa using isochoric saturation method. The mole ratios of choline chloride to phenol were selected as 1:2, 1:3 and 1:4, the others as 1:3 and 1:4. Henry’s constants and thermodynamic properties such as standard Gibbs free energy, enthalpy, and entropy changes of CO2 solvation were calculated from the correlation of solubility data. Results revealed that the solubility of CO2 increased with increasing pressure and decreased with increasing temperature. The enthalpies of solution were negative at all conditions

  7. Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity

    Directory of Open Access Journals (Sweden)

    Belén Mezquita

    2014-02-01

    Full Text Available One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT and a truncated isoform of VEGFR-1 (i21-VEGFR-1, which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer.

  8. S-Propargyl-cysteine Exerts a Novel Protective Effect on Methionine and Choline Deficient Diet-Induced Fatty Liver via Akt/Nrf2/HO-1 Pathway

    Directory of Open Access Journals (Sweden)

    Wenwen Li

    2016-01-01

    Full Text Available This study investigated the antioxidative effect of S-propargyl-cysteine (SPRC on nonalcoholic fatty liver (NAFLD by treating mice fed a methionine and choline deficient (MCD diet with SPRC for four weeks. We found that SPRC significantly reduced hepatic reactive oxygen species (ROS and methane dicarboxylic aldehyde (MDA levels. Moreover, SPRC also increased the superoxide dismutase (SOD activity. By Western blot, we found that this protective effect of SPRC was importantly attributed to the regulated hepatic antioxidant-related proteins, including protein kinase B (Akt, heme oxygenase-1 (HO-1, nuclear factor erythroid 2-related factor 2 (Nrf2, and cystathionine γ-lyase (CSE, an enzyme that synthesizes hydrogen sulfide. Next, we examined the detailed molecular mechanism of the SPRC protective effect using oleic acid- (OA- induced HepG2 cells. The results showed that SPRC significantly decreased intracellular ROS and MDA levels in OA-induced HepG2 cells by upregulating the phosphorylation of Akt, the expression of HO-1 and CSE, and the translocation of Nrf2. SPRC-induced HO-1 expression and Nrf2 translocation were abolished by the phosphoinositide 3-kinase (PI3K inhibitor LY294002. Moreover, the antioxidative effect of SPRC was abolished by CSE inhibitor DL-propargylglycine (PAG and HO-1 siRNA. Therefore, these results proved that SPRC produced an antioxidative effect on NAFLD through the PI3K/Akt/Nrf2/HO-1 signaling pathway.

  9. p53 Family: Role of Protein Isoforms in Human Cancer

    Directory of Open Access Journals (Sweden)

    Jinxiong Wei

    2012-01-01

    Full Text Available TP53, TP63, and TP73 genes comprise the p53 family. Each gene produces protein isoforms through multiple mechanisms including extensive alternative mRNA splicing. Accumulating evidence shows that these isoforms play a critical role in the regulation of many biological processes in normal cells. Their abnormal expression contributes to tumorigenesis and has a profound effect on tumor response to curative therapy. This paper is an overview of isoform diversity in the p53 family and its role in cancer.

  10. Methionine- and choline-deficient diet induces hepatic changes characteristic of non-alcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    Éder Marcolin

    2011-03-01

    Full Text Available CONTEXT: Non-alcoholic steatohepatitis is a disease with a high incidence, difficult diagnosis, and as yet no effective treatment. So, the use of experimental models for non-alcoholic steatohepatitis induction and the study of its routes of development have been studied. OBJECTIVES: This study was designed to develop an experimental model of non-alcoholic steatohepatitis based on a methionine- and choline-deficient diet that is manufactured in Brazil so as to evaluate the liver alterations resulting from the disorder. METHODS: Thirty male C57BL6 mice divided in two groups (n = 15 were used: the experimental group fed a methionine- and choline-deficient diet manufactured by Brazilian company PragSoluções®, and the control group fed a normal diet, for a period of 2 weeks. The animals were then killed by exsanguination to sample blood for systemic biochemical analyses, and subsequently submitted to laparotomy with total hepatectomy and preparation of the material for histological analysis. The statistical analysis was done using the Student's t-test for independent samples, with significance level of 5%. RESULTS: The mice that received the methionine- and choline-deficient diet showed weight loss and significant increase in hepatic damage enzymes, as well as decreased systemic levels of glycemia, triglycerides, total cholesterol, HDL and VLDL. The diagnosis of non-alcoholic steatohepatitis was performed in 100% of the mice that were fed the methionine- and choline-deficient diet. All non-alcoholic steatohepatitis animals showed some degree of macrovesicular steatosis, ballooning, and inflammatory process. None of the animals which were fed the control diet presented histological alterations. All non-alcoholic steatohepatitis animals showed significantly increased lipoperoxidation and antioxidant enzyme GSH activity. CONCLUSION: The low cost and easily accessible methionine- and choline-deficient diet explored in this study is highly effective in

  11. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent.

    Science.gov (United States)

    Ashworth, Claire R; Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2016-07-21

    Deep eutectic solvents (DESs) are exemplars of systems with the ability to form neutral, ionic and doubly ionic H-bonds. Herein, the pairwise interactions of the constituent components of the choline chloride-urea DES are examined. Evidence is found for a tripodal CHCl doubly ionic H-bond motif. Moreover it is found that the covalency of doubly ionic H-bonds can be greater than, or comparable with, neutral and ionic examples. In contrast to many traditional solvents, an "alphabet soup" of many different types of H-bond (OHO[double bond, length as m-dash]C, NHO[double bond, length as m-dash]C, OHCl, NHCl, OHNH, CHCl, CHO[double bond, length as m-dash]C, NHOH and NHNH) can form. These H-bonds exhibit substantial flexibility in terms of number and strength. It is anticipated that H-bonding will have a significant impact on the entropy of the system and thus could play an important role in the formation of the eutectic. The 2 : 1 urea : choline-chloride eutectic point of this DES is often associated with the formation of a [Cl(urea)2](-) complexed anion. However, urea is found to form a H-bonded urea[choline](+) complexed cation that is energetically competitive with [Cl(urea)2](-). The negative charge on [Cl(urea)2](-) is found to remain localised on the chloride, moreover, the urea[choline](+) complexed cation forms the strongest H-bond studied here. Thus, there is potential to consider a urea[choline](+)·urea[Cl](-) interaction. PMID:27328990

  12. Diacylglycerol Kinase-ε: Properties and Biological Roles

    Science.gov (United States)

    Epand, Richard M.; So, Vincent; Jennings, William; Khadka, Bijendra; Gupta, Radhey S.; Lemaire, Mathieu

    2016-01-01

    In mammals there are at least 10 isoforms of diacylglycerol kinases (DGK). All catalyze the phosphorylation of diacylglycerol (DAG) to phosphatidic acid (PA). Among DGK isoforms, DGKε has several unique features. It is the only DGK isoform with specificity for a particular species of DAG, i.e., 1-stearoyl-2-arachidonoyl glycerol. The smallest of all known DGK isoforms, DGKε, is also the only DGK devoid of a regulatory domain. DGKε is the only DGK isoform that has a hydrophobic segment that is predicted to form a transmembrane helix. As the only membrane-bound, constitutively active DGK isoform with exquisite specificity for particular molecular species of DAG, the functional overlap between DGKε and other DGKs is predicted to be minimal. DGKε exhibits specificity for DAG containing the same acyl chains as those found in the lipid intermediates of the phosphatidylinositol-cycle. It has also been shown that DGKε affects the acyl chain composition of phosphatidylinositol in whole cells. It is thus likely that DGKε is responsible for catalyzing one step in the phosphatidylinositol-cycle. Steps of this cycle take place in both the plasma membrane and the endoplasmic reticulum membrane. DGKε is likely present in both of these membranes. DGKε is the only DGK isoform that is associated with a human disease. Indeed, recessive loss-of-function mutations in DGKε cause atypical hemolytic-uremic syndrome (aHUS). This condition is characterized by thrombosis in the small vessels of the kidney. It causes acute renal insufficiency in infancy and most patients develop end-stage renal failure before adulthood. Disease pathophysiology is poorly understood and there is no therapy. There are also data suggesting that DGKε may play a role in epilepsy and Huntington disease. Thus, DGKε has many unique molecular and biochemical properties when compared to all other DGK isoforms. DGKε homologs also contain a number of conserved sequence features that are distinctive

  13. Take your PIK: PI-3-kinase inhibitors race through the clinic and towards cancer therapy

    OpenAIRE

    Ihle, Nathan T.; Powis, Garth

    2009-01-01

    The phosphatidylinositol-3-kinase / Akt signaling pathway is currently one of the most exciting drug targets in oncology. However only a short time ago, the paradigm existed that drugs targeted to the four PI3K class 1 isoforms would be too toxic for use in cancer therapy due to effects on physiological signaling. Since that time studies have delineated the roles of these four isoforms in non-pathological signaling as well as their roles in cancer. An extensive effort has gone into developing...

  14. DEVELOPMENTAL REGULATION OF PROTEIN KINASE B ACTIVATION IS ISOFORM SPECIFIC IN SKELETAL MUSCLE OF NEONATAL PIGS

    Science.gov (United States)

    The postprandial activation of the insulin signaling pathway that leads to translation initiation is enhanced in skeletal muscle of the neonate and decreases with development in parallel with the developmental decline in muscle protein synthesis. Our previous study showed that the activity of protei...

  15. ALTERATIONS IN BRAIN PROTEIN KINASE C ISOFORMS FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYL MIXTURE.

    Science.gov (United States)

    PCBs have been shown to alter several neurochemical end-points and are implicated in the etiology of some neurological diseases. Recent in vivo studies from our laboratory indicated that developmental exposure to a commercial PCB mixture, Aroclor 1254, caused perturbations in cal...

  16. Autophosphorylation of serine 608 in the p85 regulatory subunit of wild type or cancer-associated mutants of phosphoinositide 3-kinase does not affect its lipid kinase activity

    Directory of Open Access Journals (Sweden)

    Layton Meredith J

    2012-12-01

    Full Text Available Abstract Background The α-isoform of the Type 1A Phosphoinositide 3-kinases (PI3Kα has protein kinase activity as well as phosphoinositide lipid kinase activity. The best described substrate for its protein kinase activity is its regulatory subunit, p85α, which becomes phosphorylated on Serine 608. Phosphorylation of Serine 608 has been reported to down-regulate its lipid kinase activity. Results We have assessed whether oncogenic mutants of PI3Kα, which have up-regulated lipid kinase activity, have altered levels of Serine 608 phosphorylation compared to wild type PI3Kα, and whether differential phosphorylation of Serine 608 contributes to increased activity of oncogenic forms of PI3Kα with point mutations in the helical or the kinase domains. Despite markedly increased lipid kinase activity, protein kinase activity was not altered in oncogenic compared to wild type forms of PI3Kα. By manipulating levels of phosphorylation of Serine 608 in vitro, we found no evidence that the protein kinase activity of PI3Kα affects its phosphoinositide lipid kinase activity in either wild-type or oncogenic mutants of PI3Kα. Conclusions Phosphorylation of p85α S608 is not a significant regulator of wild-type or oncogenic PI3Kα lipid kinase activity.

  17. Degradable Dextran Nanopolymer as a Carrier for Choline Kinase (ChoK) siRNA Cancer Therapy

    OpenAIRE

    Zhihang Chen; Balaji Krishnamachary; Zaver M. Bhujwalla

    2016-01-01

    Although small interfering RNA (siRNA) therapy has proven to be a specific and effective treatment in cells, the delivery of siRNA is a challenge for the applications of siRNA therapy. We present a degradable dextran with amine groups as an siRNA nano-carrier. In our nano-carrier, the amine groups are conjugated to the dextran platform through the acetal bonds, which are acid sensitive. Therefore this siRNA carrier is stable in neutral and basic conditions, while the amine groups can be cleav...

  18. Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation

    NARCIS (Netherlands)

    A.B. Vaandrager (Arie); A. Smolenski; B.C. Tilly (Bernard); A.B. Houtsmuller (Adriaan); E.M.E. Ehlert (Ehrich); A.G. Bot (Alice); M.J. Edixhoven (Marcel); W.E. Boomaars (Wendy); S.M. Lohmann (Suzanne); H.R. de Jonge (Hugo)

    1998-01-01

    textabstractA recently cloned isoform of cGMP-dependent protein kinase (cGK), designated type II, was implicated as the mediator of cGMP-provoked intestinal Cl- secretion based on its localization in the apical membrane of enterocytes and on its capacity to activate cys

  19. Alternative splicing of the porcine glycogen synthase kinase 3β (GSK-3β gene with differential expression patterns and regulatory functions.

    Directory of Open Access Journals (Sweden)

    Linjie Wang

    Full Text Available BACKGROUND: Glycogen synthase kinase 3 (GSK3α and GSK3β are serine/threonine kinases involved in numerous cellular processes and diverse diseases including mood disorders, Alzheimer's disease, diabetes, and cancer. However, in pigs, the information on GSK3 is very limited. Identification and characterization of pig GSK3 are not only important for pig genetic improvement, but also contribute to the understanding and development of porcine models for human disease prevention and treatment. METHODOLOGY: Five different isoforms of GSK3β were identified in porcine different tissues, in which three isoforms are novel. These isoforms had differential expression patterns in the fetal and adult of the porcine different tissues. The mRNA expression level of GSK3β isoforms was differentially regulated during the course of the insulin treatment, suggesting that different GSK3β isoforms may have different roles in insulin signaling pathway. Moreover, GSK3β5 had a different role on regulating the glycogen synthase activity, phosphorylation and the expression of porcine GYS1 and GYS2 gene compared to other GSK3β isoforms. CONCLUSIONS: We are the first to report five different isoforms of GSK3β identified from the porcine different tissues. Splice variants of GSK3β exhibit differential activity towards glycogen synthase. These results provide new insight into roles of the GSK3β on regulating glycogen metabolism.

  20. Cell-specific expression of TLR9 isoforms in inflammation.

    Science.gov (United States)

    McKelvey, Kelly J; Highton, John; Hessian, Paul A

    2011-02-01

    Toll-like receptors (TLRs) are key pattern recognition receptors during an immune response. With five isoforms of human TLR9 described, we hypothesised that differential expression of TLR9 isoforms in different cell types would result in variable contributions to the overall input from TLR9 during inflammation. We assessed the molecular expression of the TLR9 isoforms, TLR9-A, -C and -D. In normal peripheral blood mononuclear cells, B-lymphocytes express ∼100-fold more TLR9-A transcript than monocytes or T-lymphocytes, which predominantly express the TLR9-C transcript. Switches in isoform predominance accompany B-lymphocyte development. TLR9 protein expression in rheumatoid inflammatory lesions reflected the TLR9 isoform expression by immune cells. Herein we suggest that B-lymphocytes and plasmacytoid dendritic cells contribute the ∼3-fold higher TLR9-A transcript levels observed in inflamed synovium when compared to subcutaneous rheumatoid nodules. In contrast, macrophages and T-lymphocytes contribute the ∼4-fold higher TLR9-C transcript levels seen in nodules, compared to synovia. From protein sequence, predictions of subcellular localisation suggest TLR9-B may locate to the mitochondria, whereas TLR9-D adopts an opposing orientation in the endoplasmic reticulum. Consistent with this, structure models raise the possibility of alternative ligands for the TLR9-B and TLR9-D variants. Our results highlight differences in the expression of human TLR9 isoforms in normal and inflamed tissues, with differing contributions to inflammation.

  1. High-throughput, cell-free, liposome-based approach for assessing in vitro activity of lipid kinases.

    Science.gov (United States)

    Demian, Douglas J; Clugston, Susan L; Foster, Meta M; Rameh, Lucia; Sarkes, Deborah; Townson, Sharon A; Yang, Lily; Zhang, Melvin; Charlton, Maura E

    2009-08-01

    Lipid kinases are central players in lipid signaling pathways involved in inflammation, tumorigenesis, and metabolic syndrome. A number of these kinase targets have proven difficult to investigate in higher throughput cell-free assay systems. This challenge is partially due to specific substrate interaction requirements for several of the lipid kinase family members and the resulting incompatibility of these substrates with most established, homogeneous assay formats. Traditional, cell-free in vitro investigational methods for members of the lipid kinase family typically involve substrate incorporation of [gamma-32P] and resolution of signal by thin-layer chromatography (TLC) and autoradiograph densitometry. This approach, although highly sensitive, does not lend itself to high-throughput testing of large numbers of small molecules (100 s to 1 MM+). The authors present the development and implementation of a fully synthetic, liposome-based assay for assessing in vitro activity of phosphatidylinositol-5-phosphate-4-kinase isoforms (PIP4KIIbeta and alpha) in 2 commonly used homogeneous technologies. They have validated these assays through compound testing in both traditional TLC and radioactive filterplate approaches as well as binding validation using isothermic calorimetry. A directed library representing known kinase pharmacophores was screened against type IIbeta phosphatidylinositol-phosphate kinase (PIPK) to identify small-molecule inhibitors. This assay system can be applied to other types and isoforms of PIPKs as well as a variety of other lipid kinase targets. PMID:19641220

  2. High-throughput, cell-free, liposome-based approach for assessing in vitro activity of lipid kinases.

    Science.gov (United States)

    Demian, Douglas J; Clugston, Susan L; Foster, Meta M; Rameh, Lucia; Sarkes, Deborah; Townson, Sharon A; Yang, Lily; Zhang, Melvin; Charlton, Maura E

    2009-08-01

    Lipid kinases are central players in lipid signaling pathways involved in inflammation, tumorigenesis, and metabolic syndrome. A number of these kinase targets have proven difficult to investigate in higher throughput cell-free assay systems. This challenge is partially due to specific substrate interaction requirements for several of the lipid kinase family members and the resulting incompatibility of these substrates with most established, homogeneous assay formats. Traditional, cell-free in vitro investigational methods for members of the lipid kinase family typically involve substrate incorporation of [gamma-32P] and resolution of signal by thin-layer chromatography (TLC) and autoradiograph densitometry. This approach, although highly sensitive, does not lend itself to high-throughput testing of large numbers of small molecules (100 s to 1 MM+). The authors present the development and implementation of a fully synthetic, liposome-based assay for assessing in vitro activity of phosphatidylinositol-5-phosphate-4-kinase isoforms (PIP4KIIbeta and alpha) in 2 commonly used homogeneous technologies. They have validated these assays through compound testing in both traditional TLC and radioactive filterplate approaches as well as binding validation using isothermic calorimetry. A directed library representing known kinase pharmacophores was screened against type IIbeta phosphatidylinositol-phosphate kinase (PIPK) to identify small-molecule inhibitors. This assay system can be applied to other types and isoforms of PIPKs as well as a variety of other lipid kinase targets.

  3. Thymidine kinases in archaea

    DEFF Research Database (Denmark)

    Clausen, A.R.; Matakos, A.; Sandrini, Michael;

    2006-01-01

    Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarchaea...... that a functional deoxyribonucleoside salvage pathway is not crucial for the archaeal cell....

  4. Structural diversity and evolution of the N-terminal isoform-specific region of ecdysone receptor-A and -B1 isoforms in insects

    Directory of Open Access Journals (Sweden)

    Kubo Takeo

    2010-02-01

    Full Text Available Abstract Background The ecdysone receptor (EcR regulates various cellular responses to ecdysteroids during insect development. Insects have multiple EcR isoforms with different N-terminal A/B domains that contain the isoform-specific activation function (AF-1 region. Although distinct physiologic functions of the EcR isoforms have been characterized in higher holometabolous insects, they remain unclear in basal direct-developing insects, in which only A isoform has been identified. To examine the structural basis of the EcR isoform-specific AF-1 regions, we performed a comprehensive structural comparison of the isoform-specific region of the EcR-A and -B1 isoforms in insects. Results The EcR isoforms were newly identified in 51 species of insects and non-insect arthropods, including direct-developing ametabolous and hemimetabolous insects. The comprehensive structural comparison revealed that the isoform-specific region of each EcR isoform contained evolutionally conserved microdomain structures and insect subgroup-specific structural modifications. The A isoform-specific region generally contained four conserved microdomains, including the SUMOylation motif and the nuclear localization signal, whereas the B1 isoform-specific region contained three conserved microdomains, including an acidic activator domain-like motif. In addition, the EcR-B1 isoform of holometabolous insects had a novel microdomain at the N-terminal end. Conclusions Given that the nuclear receptor AF-1 is involved in cofactor recruitment and transcriptional regulation, the microdomain structures identified in the isoform-specific A/B domains might function as signature motifs and/or as targets for cofactor proteins that play essential roles in the EcR isoform-specific AF-1 regions. Moreover, the novel microdomain in the isoform-specific region of the holometabolous insect EcR-B1 isoform suggests that the holometabolous insect EcR-B1 acquired additional transcriptional

  5. beta-Amyloid precursor protein isoforms show correlations with neurones but not with glia of demented subjects.

    Science.gov (United States)

    Procter, A W; Francis, P T; Holmes, C; Webster, M T; Qume, M; Stratmann, G C; Doshi, R; Mann, D M; Harrison, P J; Pearson, R C

    1994-01-01

    Post-mortem cerebral cortex from 15 demented patients was specially collected to minimise autolysis and two membrane fractions and one soluble fraction were quantitatively examined for the major species of beta-amyloid precursor protein (APP) of high apparent molecular mass (> or = 80 kDa) together with the major mRNA species encoding APP isoforms. The number of pyramidal neurones and astrocytes, putative biochemical indices of interneurones and pyramidal neurones, and choline acetyl transferase activity were also determined. Multiple regression analysis has been used to investigate intercorrelations of APP species with biochemical and morphometric measures, free of any effects of confounding demographic variables. Subjects with Alzheimer's disease showed a loss of cholinergic activity and D-aspartate uptake compared with patients with other causes of dementia. The major finding of the study is that measures of neurones rather than astrocytes most closely correlate with the concentration of APP. Pyramidal cell numbers were positively correlated with mRNA for APP695. APP in the soluble fraction showed a negative correlation with pyramidal cell numbers and cholinergic activity. These results indicate that neurones within the cerebral cortex are the major source of APP, and that secretion of APP is dependent upon cortical pyramidal neuronal activity and cholinergic activity. PMID:7879601

  6. Choline PET and PET/CT in Primary Diagnosis and Staging of Prostate Cancer

    Directory of Open Access Journals (Sweden)

    S. Schwarzenböck, M. Souvatzoglou, B. J. Krause

    2012-01-01

    Full Text Available PET and PET/CT using [11C]- and [18F]-labelled choline derivates is increasingly being used for imaging of primary and recurrent prostate cancer. While PET and PET/CT with [11C]- and [18F]-labelled choline derivates in patients suffering from biochemical recurrence of prostate cancer has been examined in many studies that demonstrate an increasing importance, its role in the primary staging of prostate cancer is still a matter of debate.Morphological and functional imaging techniques such as CT, MRI and TRUS have demonstrated only limited accuracy for the diagnosis of primary prostate cancer. Molecular imaging with PET and PET/CT could potentially increase accuracy to localize primary prostate cancer. A considerable number of studies have examined the value of PET/CT with [11C]- and [18F]- labelled choline derivates for the diagnosis of primary prostate cancer with mixed results. Primary prostate cancer can only be detected with moderate sensitivity using [11C]- and [18F]choline PET and PET/CT. The detection rate depends on the tumour configuration. Detection is also limited by a considerable number of microcarcinomas that cannot be detected due to partial volume effects. Therefore small and in part rind-like tumours can often not be visualized. Furthermore, the differentiation between benign changes like prostatitis, high-grade intraepithelial neoplasia (HGPIN or prostatic hyperplasia is not always possible. Therefore, at the present time, the routine use of PET/CT with [11C]- and [18F]-labelled choline derivates cannot be recommended as a first-line screening procedure for primary prostate cancer in men at risk. A potential application of choline PET and PET/CT may be to increase the detection rate of clinically suspected prostate cancer with multiple negative prostate biopsies, for example in preparation of a focused re-biopsy and may play a role in patient stratification with respect to primary surgery and radiation therapy in the future.

  7. Selective synthesis of 2',3'-cyclic nucleotide 3'-phosphodiesterase isoform 2 and identification of specifically phosphorylated serine residues.

    Science.gov (United States)

    O'Neill, R C; Braun, P E

    2000-02-01

    2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) is a protein found abundantly in the cytoplasmic compartments of CNS myelin. Two isoforms of this protein, CNP1 and CNP2, are detectable. They differ by a 20-amino acid extension exclusive to CNP2. Additionally, CNP2 is essentially the only isoform to be phosphorylated in vivo. In this study, we examine the phosphorylation of CNP2 in transfected cells. CNP2 was selectively expressed ectopically in 293T cells and labeled with 32P. Immunoprecipitation of labeled CNP2 and tryptic phosphopeptide mapping analyses identified serines 9 and 22 as the major sites of phosphorylation. Only serine 22 was phosphorylated initially in oligodendrocyte-enriched cultures of neonatal rat brain glial cells. However, 4beta-phorbol 12,13-dibutyrate (PDB) induced the phosphorylation of serine 9, thereby producing the same pattern seen in 293T cells. These results suggest that serine 9 is phosphorylated by a PDB-sensitive kinase, likely protein kinase C, and that serine 22 appears to be constitutively phosphorylated. PMID:10646504

  8. Isoform-specific regulation of the Na+-K+ pump by adenosine in guinea pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Zhe ZHANG; Hui-cai GUO; Li-nan ZHANG; Yong-li WANG

    2009-01-01

    Aim: The present study investigated the effect of adenosine on Na+-K+ pumps in acutely isolated guinea pig (C, avia sp.) ven-tricular myocytes.Methods: The whole-cell, patch-damp technique was used to record the Na+-K+ pump current (Ip) in acutely isolated guinea pig ventricular myocytes.Results: Adenosine inhibited the high DHO-affinity pump current (Ih) in a concentration-dependent manner, which was blocked by the selective adenosine A1 receptor antagonist DPCPX and the general protein kinase C (PKC) antagonists stau-rosporine, GF 109203X or the specific δ isoform antagonist rottlerin. In addition, the inhibitory action of adenosine was mimicked by a selective A1 receptor agonist CCPA and a specific activator peptide of PKC-δ, PP114. In contrast, the selec-tive A2A receptor agonist CGS21680 and A3 receptor agonist Cl-IB-MECA did not affect lb. Application of the selective A2A receptor antagonist SCH58261 and A3 receptor antagonist MRS1191 also failed to block the effect of adenosine. Further-more, H89, a selective protein kinase A (PKA) antagonist, did not exert any effect on adenosine-induced Ih inhibition.Conclusion: The present study provides the electrophysiological evidence that adenosine can induce significant inhibition of Ih via adenosine A1 receptors and the PKC-δ isoform.

  9. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M;

    1996-01-01

    that in vitro protein kinase CK2 catalyzed phosphorylation of human NDPK A inhibits its enzymatic activity by inhibiting the first step of its ping-pong mechanism of catalysis: its autophosphorylation. Upon in vivo 32P labeling of HeLa cells, we observed that both human NDPKs, A and B, were autophosphorylated......Although a number of nucleoside diphosphate kinases (NDPKs) have been reported to act as inhibitors of metastasis or as a transcription factor in mammals, it is not known whether these functions are linked to their enzymatic activity or how this protein is regulated. In this report, we show...... on histidine residues, however, only the B isoform appeared to be serine phosphorylated....

  10. Phosphoinositide-dependent kinase-2 is a distinct protein kinase enriched in a novel cytoskeletal fraction associated with adipocyte plasma membranes.

    Science.gov (United States)

    Hresko, Richard C; Murata, Haruhiko; Mueckler, Mike

    2003-06-13

    By recombining subcellular components of 3T3-L1 adipocytes in a test tube, early insulin signaling events dependent on phosphatidylinositol 3-kinase (PI 3-kinase) were successfully reconstituted, up to and including the phosphorylation of glycogen synthase kinase-3 by the serine/threonine kinase, Akt (Murata, H., Hresko, R.C., and Mueckler, M. (2003) J. Biol. Chem. 278, 21607-21614). Utilizing the advantages provided by a cell-free methodology, we characterized phosphoinositide-dependent kinase 2 (PDK2), the putative kinase responsible for phosphorylating Akt on Ser-473. Immunodepleting cytosolic PDK1 from an in vitro reaction containing plasma membrane and cytosol markedly inhibited insulin-stimulated phosphorylation of Akt at the PDK1 site (Thr-308) but had no effect on phosphorylation at the PDK2 site (Ser-473). In contrast, PDK2 activity was found to be highly enriched in a novel cytoskeletal subcellular fraction associated with plasma membranes. Akt isoforms 1-3 and a kinase-dead Akt1 (K179A) mutant were phosphorylated in a phosphatidylinositol 3,4,5-trisphosphate-dependent manner at Ser-473 in an in vitro reaction containing this novel adipocyte subcellular fraction. Our data indicate that this PDK2 activity is the result of a kinase distinct from PDK1 and is not due to autophosphorylation or transphosphorylation of Akt. PMID:12682057

  11. An alternative splicing isoform of MITA antagonizes MITA-mediated induction of type I IFNs.

    Science.gov (United States)

    Chen, Honghe; Pei, Rongjuan; Zhu, Wandi; Zeng, Rui; Wang, Yun; Wang, Yanyi; Lu, Mengji; Chen, Xinwen

    2014-02-01

    Mediator of IFN regulatory transcription factor 3 activation (MITA) is an important adaptor protein to mediate the induction of type I IFNs. In this study, we identified an alternatively spliced isoform of MITA lacking exon 7, termed MITA-related protein (MRP). MRP shares the N-terminal portion aa 1-253 with MITA but possesses a unique 30-aa sequence at the carboxyl terminal part, therefore lacking the conserved domains including TANK-binding kinase 1 (TBK1) and cyclic diguanylate binding domain. MRP is expressed in multiple tissues and distinct cell lines. Overexpression of MRP inhibited MITA-mediated activation of IFN-β promoter by sendai virus infection and cyclic diguanylate treatment but enhanced that in HSV-1 infection. Interestingly, MRP expression was reduced after Sendai virus infection but was upregulated after HSV-1 infection. Overexpression of MRP inhibited MITA-mediated induction of IFN-β via TBK1-IFN regulatory transcription factor 3 by disrupting the MITA-TBK1 interaction. However, NF-κB pathway was still activated by MRP, as MRP retained the ability to interact with inducible inhibitor of NF-κB (iκB) kinase. Thus, MRP acts as a dominant negative regulator of MITA-mediated induction of IFN production.

  12. Early second trimester maternal plasma choline and betaine are related to measures of early cognitive development in term infants.

    Directory of Open Access Journals (Sweden)

    Brian T F Wu

    Full Text Available BACKGROUND: The importance of maternal dietary choline for fetal neural development and later cognitive function has been well-documented in experimental studies. Although choline is an essential dietary nutrient for humans, evidence that low maternal choline in pregnancy impacts neurodevelopment in human infants is lacking. We determined potential associations between maternal plasma free choline and its metabolites betaine and dimethylglycine in pregnancy and infant neurodevelopment at 18 months of age. METHODOLOGY: This was a prospective study of healthy pregnant women and their full-term, single birth infants. Maternal blood was collected at 16 and 36 weeks of gestation and infant neurodevelopment was assessed at 18 months of age for 154 mother-infant pairs. Maternal plasma choline, betaine, dimethylglycine, methionine, homocysteine, cysteine, total B12, holotranscobalamin and folate were quantified. Infant neurodevelopment was evaluated using the Bayley Scales of Infant Development-III. Multivariate regression, adjusting for covariates that impact development, was used to determine the associations between maternal plasma choline, betaine and dimethylglycine and infant neurodevelopment. RESULTS: The maternal plasma free choline at 16 and 36 weeks gestation was median (interquartile range 6.70 (5.78-8.03 and 9.40 (8.10-11.3 µmol/L, respectively. Estimated choline intakes were (mean ± SD 383 ± 98.6 mg/day, and lower than the recommended 450 mg/day. Betaine intakes were 142 ± 70.2 mg/day. Significant positive associations were found between infant cognitive test scores and maternal plasma free choline (B=6.054, SE=2.283, p=0.009 and betaine (B=7.350, SE=1.933, p=0.0002 at 16 weeks of gestation. Maternal folate, total B12, or holotranscobalamin were not related to infant development. CONCLUSION: We show that choline status in the first half of pregnancy is associated with cognitive development among healthy term gestation infants. More work

  13. Apoptosis induced by a HIPK2 full-length-specific siRNA is due to off-target effects rather than prevalence of HIPK2-Δe8 isoform.

    Science.gov (United States)

    Di Rocco, Giuliana; Verdina, Alessandra; Gatti, Veronica; Virdia, Ilaria; Toietta, Gabriele; Todaro, Matilde; Stassi, Giorgio; Soddu, Silvia

    2016-01-12

    Small interfering RNAs (siRNAs) are widely used to study gene function and extensively exploited for their potential therapeutic applications. HIPK2 is an evolutionary conserved kinase that binds and phosphorylates several proteins directly or indirectly related to apoptosis. Recently, an alternatively spliced isoform skipping 81 nucleotides of exon 8 (Hipk2-Δe8) has been described. Selective depletion of Hipk2 full-length (Hipk2-FL) with a specific siRNA that spares the Hipk2-Δe8 isoform has been shown to strongly induce apoptosis, suggesting an unpredicted dominant-negative effect of Hipk2-FL over the Δe8 isoform. From this observation, we sought to take advantage and assessed the therapeutic potential of generating Hipk2 isoform unbalance in tumor-initiating cells derived from colorectal cancer patients. Strong reduction of cell viability was induced in vitro and in vivo by the originally described exon 8-specific siRNA, supporting a potential therapeutic application. However, validation analyses performed with additional exon8-specific siRNAs with different stabilities showed that all exon8-targeting siRNAs can induce comparable Hipk2 isoform unbalance but only the originally reported e8-siRNA promotes cell death. These data show that loss of viability does not depend on the prevalence of Hipk2-Δe8 isoform but it is rather due to microRNA-like off-target effects. PMID:26625198

  14. Radiosynthesis and pre-clinical evaluation of [{sup 18}F]fluoro-[1,2-{sup 2}H{sub 4}]choline

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Graham [Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN (United Kingdom); Zhao Yongjun [MDx Discovery (part of GE Healthcare) at Hammersmith Imanet, Ltd., Hammersmith Hospital, Du Cane Road, London W12 0NN (United Kingdom); Leyton, Julius [Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN (United Kingdom); Shan Bo [MDx Discovery (part of GE Healthcare) at Hammersmith Imanet, Ltd., Hammersmith Hospital, Du Cane Road, London W12 0NN (United Kingdom); Nguyen, Quang-de; Perumal, Meg [Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN (United Kingdom); Turton, David [GE-Imanet, Hammersmith Hospital, Du Cane Road, London, W12 0NN (United Kingdom); Arstad, Erik; Luthra, Sajinder K.; Robins, Edward G. [MDx Discovery (part of GE Healthcare) at Hammersmith Imanet, Ltd., Hammersmith Hospital, Du Cane Road, London W12 0NN (United Kingdom); Aboagye, Eric O., E-mail: eric.aboagye@imperial.ac.u [Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN (United Kingdom)

    2011-01-15

    Introduction: Choline radiotracers are widely used for clinical PET diagnosis in oncology. [{sup 11}C]Choline finds particular utility in the imaging of brain and prostate tumor metabolic status, where 2-[{sup 18}F]fluoro-2-deoxy-D-glucose ('FDG') shows high background uptake. More recently we have extended the clinical utility of [{sup 11}C]choline to breast cancer where radiotracer uptake correlates with tumor aggressiveness (grade). In the present study, a new choline analog, [{sup 18}F]fluoro-[1,2-{sup 2}H{sub 4}]choline, was synthesized and evaluated as a potential PET imaging probe. Methods: [{sup 18}F]Fluorocholine, [{sup 18}F]fluoro-[1-{sup 2}H{sub 2}]choline and [{sup 18}F]fluoro-[1,2-{sup 2}H{sub 4}]choline were synthesized by alkylation of the relevant precursor with [{sup 18}F]fluorobromomethane or [{sup 18}F]fluoromethyl tosylate. Radiosynthesis of [{sup 18}F]fluoromethyl tosylate required extensive modification of the existing method. [{sup 18}F]Fluorocholine and [{sup 18}F]fluoro-[1,2-{sup 2}H{sub 4}]choline were then subjected to in vitro oxidative stability analysis in a chemical oxidation model using potassium permanganate and an enzymatic model using choline oxidase. The two radiotracers, together with the corresponding di-deuterated compound, [{sup 18}F]fluoro-[1-{sup 2}H{sub 2}]choline, were then evaluated in vivo in a time-course biodistribution study in HCT-116 tumor-bearing mice. Results: Alkylation with [{sup 18}F]fluoromethyl tosylate proved to be the most reliable radiosynthetic route. Stability models indicate that [{sup 18}F]fluoro-[1,2-{sup 2}H{sub 4}]choline possesses increased chemical and enzymatic (choline oxidase) oxidative stability relative to [{sup 18}F]fluorocholine. The distribution of the three radiotracers, [{sup 18}F]fluorocholine, [{sup 18}F]fluoro-[1-{sup 2}H{sub 2}]choline and [{sup 18}F]fluoro-[1,2-{sup 2}H{sub 4}]choline, showed a similar uptake profile in most organs. Crucially, tumor uptake of [{sup 18}F

  15. Protein kinase C controls activation of the DNA integrity checkpoint

    Science.gov (United States)

    Soriano-Carot, María; Quilis, Inma; Bañó, M. Carmen; Igual, J. Carlos

    2014-01-01

    The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKCδ is able to activate the DNA integrity checkpoint. Finally, downregulation of PKCδ activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans. PMID:24792164

  16. Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts.

    Science.gov (United States)

    Cuddy, Leah K; Winick-Ng, Warren; Rylett, Rebecca Jane

    2014-03-01

    The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH-SY5Y cells expressing rat CHT with filipin, methyl-β-cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol-saturated MβC. Kinetic analysis of binding of [(3)H]hemicholinium-3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax ); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol-rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis. The sodium-coupled choline transporter CHT moves choline into cholinergic nerve terminals to serve as substrate for acetylcholine synthesis. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts, and decreasing membrane cholesterol significantly reduces both choline uptake activity and cell surface CHT protein levels. CHT association with cholesterol-rich rafts is critical for its function, and alterations in plasma membrane cholesterol could diminish cholinergic

  17. Brain choline concentrations may not be altered in euthymic bipolar disorder patients chronically treated with either lithium or sodium valproate

    OpenAIRE

    Wu, Ren H; O'Donnell, Tina; Ulrich, Michele; Asghar, Sheila J; Hanstock, Christopher C; Silverstone, Peter H

    2004-01-01

    Background It has been suggested that lithium increases choline concentrations, although previous human studies examining this possibility using 1H magnetic resonance spectroscopy (1H MRS) have had mixed results: some found increases while most found no differences. Methods The present study utilized 1H MRS, in a 3 T scanner to examine the effects of both lithium and sodium valproate upon choline concentrations in treated euthymic bipolar patients utilizing two different methodologies. In the...

  18. Rapid Amplification of 5′ cDNA End of S. Liaotungensis Choline Monooxygenase Using Inverse PCR RACE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on part of a known cDNA sequence of Suaeda Liaotungensis choline monooxygenase, the authors successfully cloned the 5′ cDNA end of Suaeda Lianotungensis choline monooxygenase using Inverse PCR RACE with a specially designed 5′-phosphated RT primer and two pairs of specific inverse PCR primers. Compared with the anchored PCR RACE, inverse PCR RACE has better specificity and higher amplification.

  19. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  20. Choline Chloride Catalyzed Amidation of Fatty Acid Ester to Monoethanolamide: A Green Approach.

    Science.gov (United States)

    Patil, Pramod; Pratap, Amit

    2016-01-01

    Choline chloride catalyzed efficient method for amidation of fatty acid methyl ester to monoethanolamide respectively. This is a solvent free, ecofriendly, 100% chemo selective and economically viable path for alkanolamide synthesis. The Kinetics of amidation of methyl ester were studied and found to be first order with respect to the concentration of ethanolamine. The activation energy (Ea) for the amidation of lauric acid methyl ester catalyzed by choline chloride was found to be 50.20 KJ mol(-1). The 98% conversion of lauric acid monoethanolamide was obtained at 110°C in 1 h with 6% weight of catalyst and 1:1.5 molar ratio of methyl ester to ethanolamine under nitrogen atmosphere. PMID:26666271

  1. Daunorubicin and doxorubicin inhibit the [{sup 11}C]choline accumulation in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mikecz, Pal [Department of Nuclear Medicine, University of Debrecen, Medical and Health Science Centre, 4012 Debrecen, Nagyerdei krt. 98 (Hungary)], E-mail: pal@pet.dote.hu; Marian, Terez; Miklovicz, Tuende; Galuska, Laszlo [Department of Nuclear Medicine, University of Debrecen, Medical and Health Science Centre, 4012 Debrecen, Nagyerdei krt. 98 (Hungary); Krasznai, Zoltan; Toth, Agnes; Goda, Katalin [Department of Biophysics and Cell Biology, University of Debrecen, Medical and Health Science Centre, 4012 Debrecen, Nagyerdei krt. 98 (Hungary); Tron, Lajos [Department of Nuclear Medicine, University of Debrecen, Medical and Health Science Centre, 4012 Debrecen, Nagyerdei krt. 98 (Hungary); Hernadi, Zoltan; Krasznai, Zoard T. [Department of Obstetrics and Gynecology, University of Debrecen, Medical and Health Science Centre, 4012 Debrecen, Nagyerdei krt. 98 (Hungary)

    2009-10-15

    We studied how very short (10-40 min) incubation with anthracycline derivatives modifies the accumulation of PET tumor-diagnostic radiotracers in cancer cells. The human ovarian A2780 and A2780AD, human B lymphoid JY, human epidermoid KB-3-1 and KB-V-1, and smooth muscle DDT1 MF-2 cells were pre-incubated with daunorubicin and doxorubicin, and the uptake of [{sup 18}F]FDG and [{sup 11}C]choline was measured. Anthracycline treatment decreased remarkably the [{sup 11}C]choline accumulation in a concentration dependent manner, while it did not modify significantly the [{sup 18}F]FDG uptake of the cells.

  2. [Histochemistry and choline acetyltransferase in cat spinal cord and spinal ganglia].

    Science.gov (United States)

    Motavkin, P A; Okhotin, V E

    1978-09-01

    Cytochemical activity of choline acetyltransferase has been studied in the pericaryon of motor neurons of the spinal enlargement and sensitive neurocytes of the intervertebral ganglia in the cat by means of Burt's method. It has been demonstrated that cytoplasm of all motor neurons positively reacts with acetyl KoA. According to the activity of choline acetyltransferase, four groups of neurons have been determined. In cerebrospinal ganglia, the enzyme is present in 58% of pseudounipolar cells, which seem to be cholinergic neurocytes. It has been stated that for all nonspecific reactions the presence of massive and dense residue in all the neurons, walls of small blood vessels and sometimes in astrocytes is a characteristic feature. PMID:718431

  3. Characterization of a novel Eph receptor tyrosine kinase, EphA10, expressed in testis.

    Science.gov (United States)

    Aasheim, Hans-Christian; Patzke, Sebastian; Hjorthaug, Hanne Sagsveen; Finne, Eivind Farmen

    2005-05-25

    In mammals, 14 members of the Eph receptor tyrosine kinase family have been described so far. Here we present a not yet described member of this family denoted EphA10. We report the identification of three putative EphA10 isoforms: one soluble and two transmembrane isoforms. One of the latter isoforms lacked the sterile alpha motif commonly found in Eph receptors. The gene encoding EphA10 is located on chromosome 1p34 and expression studies show that EphA10 mRNA is mainly expressed in testis. Binding studies to ephrin ligands suggests that this receptor belongs to the EphA subclass of Eph receptors binding mainly to ephrin-A ligands. PMID:15777695

  4. Pharmacological Targeting of AMP-Activated Protein Kinase and Opportunities for Computer-Aided Drug Design.

    Science.gov (United States)

    Miglianico, Marie; Nicolaes, Gerry A F; Neumann, Dietbert

    2016-04-14

    As a central regulator of metabolism, the AMP-activated protein kinase (AMPK) is an established therapeutic target for metabolic diseases. Beyond the metabolic area, the number of medical fields that involve AMPK grows continuously, expanding the potential applications for AMPK modulators. Even though indirect AMPK activators are used in the clinics for their beneficial metabolic outcome, the few described direct agonists all failed to reach the market to date, which leaves options open for novel targeting methods. As AMPK is not actually a single molecule and has different roles depending on its isoform composition, the opportunity for isoform-specific targeting has notably come forward, but the currently available modulators fall short of expectations. In this review, we argue that with the amount of available structural and ligand data, computer-based drug design offers a number of opportunities to undertake novel and isoform-specific targeting of AMPK. PMID:26510622

  5. Usefulness of Choline-PET for the detection of residual hemangiopericytoma in the skull base: comparison with FDG-PET

    Directory of Open Access Journals (Sweden)

    Ito Shin

    2012-02-01

    Full Text Available Abstract Background Choline is a new PET tracer that is useful for the detection of malignant tumor. Choline is a precursor of the biosynthesis of phosphatidylcholine, a major phospholipid in the cell membrane of eukaryotic cells. Malignant tumors have an elevated level of phosphatidylcholine in cell membrane. Thus, choline is a marker of tumor malignancy. Method The patient was a 51-year-old man with repeated recurrent hemangiopericytoma in the skull base. We performed Choline-PET in this patient after various treatments and compared findings with those of FDG-PET. Results Choline accumulated in this tumor, but FDG did not accumulate. We diagnosed this tumor as residual hemangiopericytoma and performed the resection of the residual tumor. FDG-PET is not appropriate for skull base tumor detection because uptake in the brain is very strong. Conclusion We emphasize the usefulness of Choline-PET for the detection of residual hemangiopericytoma in the skull base after various treatments, compared with FDG-PET.

  6. Highly sensitive choline biosensor based on carbon nanotube-modified Pt electrode combined with sol-gel immobilization

    Institute of Scientific and Technical Information of China (English)

    SONG Zhao; ZHAO Zixia; QIN Xia; HUANG Jiadong; SHI Haibin; WU Baoyan; CHEN Qiang

    2007-01-01

    A novel amperometric choline biosensor has been fabricated with choline oxidase (ChOx) immobilized by the sol-gel method on the surface of multi-walled carbon nanotubes (MWCNT) modified platinum electrode to improve the sensitivity and the anti-interferential property of the sensor.By analyzing the electrocatalytic activity of the modified electrode by MWCNT,it was found that MWCNT could not only improve the current response to H2O2 but also decrease the electrocatalytic potential.The effects of experimental variables such as the buffer solutions,pH and the amount of loading enzyme were investigated for the optimum analytical performance.This sensor shows sensitive determination of choline with a linear range from 5.0×10-6 to 1.0×10-4 mol/L when the operating pH and potential are 7.2 and 0.15 V,respectively.The detection limit of choline was 5.0×10-7 mol/L.Selectivity for choline was 9.48 μA.(mmol/L)-1.The biosensor exhibits excellent anti-interferential property and good stability,retaining 85% of its original current value even after a month.It has been applied to the determination of choline in human serum.

  7. Effect of choline supplementation on rapid weight loss and biochemical variables among female taekwondo and judo athletes.

    Science.gov (United States)

    Elsawy, Gehan; Abdelrahman, Osama; Hamza, Amr

    2014-03-27

    Taekwondo and judo competitions are divided into weight categories. Many athletes reduce their body mass a few days before competition in order to obtain a competitive advantage over lighter opponents. To achieve fast body mass reduction, athletes use a number of nutritional strategies, including choline supplementation. The goal of this study was to identify the effects of choline supplementation on body mass reduction and leptin levels among female taekwondo and judo athletes. Twenty-two female athletes (15 taekwondo and 7 judo athletes) were selected from different weight categories and divided into two groups, according to weight. The players in the experimental group took choline tablets for one week before a competition. The results revealed significant differences between pre- and post-competition measurements of leptin, free plasma choline, urine choline and urine malondialdehyde levels; body mass was also reduced in the post-competition measurements. In conclusion, choline supplementation could rapidly reduce body mass without any side effects on biochemical levels or static strength.

  8. Choline supplementation alters some amino acid concentrations with no change in homocysteine in children with cystic fibrosis and pancreatic insufficiency.

    Science.gov (United States)

    Alshaikh, Belal; Schall, Joan I; Maqbool, Asim; Mascarenhas, Maria; Bennett, Michael J; Stallings, Virginia A

    2016-05-01

    The present study determined the plasma amino acid status in children with cystic fibrosis (CF) and pancreatic insufficiency (PI) in the modern medical and nutritional care setting and investigated the effect of choline supplementation on amino acid status. A total of 110 children aged 5 to 18 years with CF and PI were randomized to receive choline-enriched structured lipid (LYM-X-SORB) or placebo with similar energy and fat content. Plasma amino acids were measured at baseline and 3 and 12 months. We hypothesized that choline supplementation would result in lower plasma homocysteine concentrations in children with CF. At baseline, dietary protein intake was high and the amino acid profile was within laboratory reference ranges in most participants. Alanine and cysteine were elevated in 24% and 36% of participants, respectively. Children with baseline alanine above reference range had improved weight, body mass index, and fat-free mass. Low homocysteine was found in 62% of children 11 years and older. After 3 and 12 months, there was no effect of choline supplementation on methionine or homocysteine status. Compared with placebo, choline supplementation resulted in increased glycine and decreased threonine, histidine, valine, and total branch chained amino acids at 12 months. In conclusion, daily choline supplementation with LYM-X-SORB did not alter methionine-homocysteine metabolism but did result in alterations in other amino acids in children with CF and PI.

  9. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A;

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  10. The Pathogenesis of Ethanol versus Methionine and Choline Deficient Diet-Induced Liver Injury

    OpenAIRE

    Gyamfi, Maxwell Afari; Damjanov, Ivan; French, Samuel; Wan, Yu-Jui Yvonne

    2007-01-01

    The differences and similarities of the pathogenesis of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH) were examined. Mice (6/group) received 1 of 4 Lieber-Decarli liquid diets for 6 weeks: (1) paired-fed control diet; (2) control diet with ethanol (ethanol); (3) paired-fed methionine/choline deficient (MCD) diet; and (4) MCD plus ethanol (combination). Hepatotoxicity, histology, and gene expression changes were examined. Both MCD and ethanol induced macrovesicular steatosis. Howeve...

  11. Comparable Stability of Hoogsteen and Watson–Crick Base Pairs in Ionic Liquid Choline Dihydrogen Phosphate

    OpenAIRE

    Hisae Tateishi-Karimata; Miki Nakano; Naoki Sugimoto

    2014-01-01

    The instability of Hoogsteen base pairs relative to Watson–Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson–Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stabi...

  12. Phosphoinositide-3-kinases p110alpha and p110beta mediate S phase entry in astroglial cells in the marginal zone of rat neocortex

    Directory of Open Access Journals (Sweden)

    Rabea eMüller

    2013-03-01

    Full Text Available In cells cultured from neocortex of newborn rats, phosphoinositide-3-kinases of class I regulate the DNA synthesis in a subgroup of astroglial cells. We have studied the location of these cells as well as the kinase isoforms which facilitate the S phase entry. Using dominant negative isoforms as well as selective pharmacological inhibitors we quantified S phase entry by nuclear labeling with bromodeoxyuridine. Only in astroglial cells harvested from the marginal zone of the neocortex inhibition of phosphoinositide-3-kinases reduced the nuclear labeling with bromodeoxyuridine, indicating that neocortical astroglial cells differ in the regulation of proliferation. The two kinase isoforms p110 and p110were essential for S phase entry. p110 diminished the level of the p27Kip1 which inactivates the complex of cyclin E and CDK2 necessary for entry into the S phase. p110phosphorylated and inhibited glycogen synthase kinase-3which can prevent S-phase entry. Taken together, both isoforms mediated S phase in a subgroup of neocortical astroglial cells and acted via distinct pathways.

  13. {sup 11}C-Choline PET/pathology image coregistration in primary localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Grosu, Anca-Ligia; Prokic, Vesna [University of Freiburg, Department of Radiation Oncology, Freiburg (Germany); Technical University of Munich, Department of Radiation Oncology, Munich (Germany); Weirich, Gregor [Technical University of Munich, Institute of Pathology, Munich (Germany); Wendl, Christina; Geinitz, Hans; Molls, Michael [Technical University of Munich, Department of Radiation Oncology, Munich (Germany); Kirste, Simon [University of Freiburg, Department of Radiation Oncology, Freiburg (Germany); Souvatzoglou, Michael; Schwaiger, Markus [Technical University of Munich, Department of Nuclear Medicine, Munich (Germany); Gschwend, Juergen E.; Treiber, Uwe [Technical University of Munich, Department of Urology, Munich (Germany); Weber, Wolfgang A. [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, New York (United States); Krause, Bernd Joachim [Technical University of Munich, Department of Nuclear Medicine, Munich (Germany); University of Rostock, Department of Nuclear Medicine, Rostock (Germany)

    2014-12-15

    The aim of this study was to develop a methodology for the comparison of pathology specimens after prostatectomy (post-S) with PET images obtained before surgery (pre-S). This method was used to evaluate the merit of {sup 11}C-choline PET/CT for delineation of gross tumour volume (GTV) in prostate cancer (PC). In 28 PC patients, {sup 11}C-choline PET/CT was performed before surgery. PET/CT data were coregistered with the pathology specimens. GTV on PET images (GTV-PET) was outlined automatically and corrected manually. Tumour volume in the prostate (TVP) was delineated manually on the pathology specimens. Based on the coregistered PET/pathology images, the following parameters were assessed: SUVmax and SUVmean in the tumoral and nontumoral prostate (NP), GTV-PET (millilitres) and TVP (millilitres). PET/pathology image coregistration was satisfactory. Mean SUVmax in the TVP was lower than in the NP: 5.0 and 5.5, respectively (p = 0.093). Considering the entire prostate, SUVmax was located in the TVP in two patients, in the TVP and NP in 12 patients and exclusively in NP in 14 patients. Partial overlap the TVP and GTV-PET was seen in 71 % of patients, and complete overlap in 4 %. PET/pathology image coregistration can be used for evaluation of different imaging modalities. {sup 11}C-Choline PET failed to distinguish tumour from nontumour tissue. (orig.)

  14. Choline Modulation of the Aβ P1-40 Channel Reconstituted into a Model Lipid Membrane

    Directory of Open Access Journals (Sweden)

    Daniela Meleleo

    2010-01-01

    Full Text Available Nicotinic acetylcholine receptors (AChRs, implicated in memory and learning, in subjects affected by Alzheimer's disease result altered. Stimulation of α7-nAChRs inhibits amyloid plaques and increases ACh release. β-amyloid peptide (AβP forms ion channels in the cell and model phospholipid membranes that are retained responsible in Alzheimer disease. We tested if choline, precursor of ACh, could affect the AβP1-40 channels in oxidized cholesterol (OxCh and in palmitoyl-oleoyl-phosphatidylcholine (POPC:Ch lipid bilayers. Choline concentrations of 5 × 10−11 M–1.5 × 10−8 M added to the cis- or trans-side of membrane quickly increased AβP1-40 ion channel frequency (events/min and ion conductance in OxCh membranes, but not in POPC:Ch membranes. Circular Dichroism (CD spectroscopy shows that after 24 and 48 hours of incubation with AβP1-40, choline stabilizes the random coil conformation of the peptide, making it less prone to fibrillate. These actions seem to be specific in that ACh is ineffective either in solution or on AβP1-40 channel incorporated into PLMs.

  15. Different modulation of the outputs of yeast MAPK-mediated pathways by distinct stimuli and isoforms of the dual-specificity phosphatase Msg5.

    Science.gov (United States)

    Marín, María José; Flández, Marta; Bermejo, Clara; Arroyo, Javier; Martín, Humberto; Molina, María

    2009-03-01

    The activity of protein phosphatases on mitogen-activated protein kinases (MAPKS) is essential in the modulation of the final outcome of MAPK-signalling pathways. The yeast dual-specificity phosphatase (DSP) Msg5, expressed as two isoforms of different length, dephosphorylates the MAPKs of mating and cell integrity pathways, Fus3 and Slt2, respectively, but its action on the MAPK Kss1 is unclear. Here we analyse the global impact of Msg5 on the yeast transcriptome. Both Fus3- and Slt2- but not Kss1-mediated gene expression is induced in cells lacking Msg5. However, although these cells show high Slt2 phosphorylation, the Rlm1-dependent Slt2-regulated transcriptional response is weak. Therefore, mechanisms concomitant with Slt2 phosphorylation are required for a strong Rlm1 activation. The limited Slt2 activity on Rlm1 is not a specific effect on this substrate but a consequence of its low kinase activity in msg5Delta cells. Lack of Msg5 does not increase Kss1 phosphorylation although both proteins physically interact. Both Msg5 isoforms interact similarly with Slt2, whereas the long form binds Fus3 with higher affinity and consequently down-regulates it more efficiently than the short one. We propose that specific binding of DSP isoforms to distinct MAPKs provides a novel mechanism for fine tuning different pathways by the same phosphatase. PMID:19123063

  16. Differential regulation of renal phospholipase C isoforms by catecholamines.

    Science.gov (United States)

    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A

    1995-01-01

    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam or pramipexole) or antinatriuresis (NE) occurred, the kidneys were removed for analysis of PLC isoform protein expression activity. Western blot analysis revealed that in renal cortical membranes, fenoldopam and pramipexole increased expression of PLC beta 1 and decreased expression of PLC gamma 1; PLC delta was unchanged. In the cytosol, pramipexole and fenoldopam increased expression of both PLC beta 1 and PLC gamma 1. No effects were noted in the medulla. A preferential D1 antagonist, SKF 83742, which by itself had no effect, blocked the effects of pramipexole, thus confirming the involvement of the D1 receptor. In contrast, NE also increased PLC beta 1 but did not affect PLC gamma 1 protein expression in membranes. The changes in PLC isoform expression were accompanied by similar changes in PLC isoform activity. These studies demonstrate for the first time differential regulation of PLC isoforms by catecholamines. PMID:7814630

  17. SURVIV for survival analysis of mRNA isoform variation.

    Science.gov (United States)

    Shen, Shihao; Wang, Yuanyuan; Wang, Chengyang; Wu, Ying Nian; Xing, Yi

    2016-01-01

    The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types. Alternative splicing-based survival predictors consistently outperform gene expression-based survival predictors, and the integration of clinical, gene expression and alternative splicing profiles leads to the best survival prediction. We anticipate that SURVIV will have broad utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq projects. PMID:27279334

  18. Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion.

    Science.gov (United States)

    Durand, Nisha; Borges, Sahra; Storz, Peter

    2016-01-01

    The Protein Kinase D (PKD) isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs) and diacylglycerol (DAG). PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT) and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development. PMID:26848698

  19. Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Nisha Durand

    2016-02-01

    Full Text Available The Protein Kinase D (PKD isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs and diacylglycerol (DAG. PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development.

  20. Proteinase K processing of rabbit muscle creatine kinase

    DEFF Research Database (Denmark)

    Leydier, C; Andersen, Jens S.; Couthon, F;

    1997-01-01

    Proteinase K cleaves selectively both cytosolic and mitochondrial isoforms of creatine kinase leading to the appearance of two fragments, a large N-terminal one (K1) and a small C-terminal peptide (K2) which remain associated together. The loss of enzymatic activity correlates with the extent...... of monomer cleavage. N-terminal sequencing of the K2 fragments from rabbit cytosolic and pig mitochondrial creatine kinase shows that these peptides begin with A328 and A324, respectively. Electrospray ionization mass spectrometry demonstrates that K2 peptide is composed of 53 residues (A328-K380). However......, the C-terminal end of the K1 fragment is not A327 as expected, but D325. Thus, the amino acids residues T326 and A327 have been eliminated by the protease....

  1. Protein kinase D2 induces invasion of pancreatic cancer cells by regulating matrix metalloproteinases.

    Science.gov (United States)

    Wille, Christoph; Köhler, Conny; Armacki, Milena; Jamali, Arsia; Gössele, Ulrike; Pfizenmaier, Klaus; Seufferlein, Thomas; Eiseler, Tim

    2014-02-01

    Pancreatic cancer cell invasion, metastasis, and angiogenesis are major challenges for the development of novel therapeutic strategies. Protein kinase D (PKD) isoforms are involved in controlling tumor cell motility, angiogenesis, and metastasis. In particular PKD2 expression is up-regulated in pancreatic cancer, whereas PKD1 expression is lowered. We report that both kinases control pancreatic cancer cell invasive properties in an isoform-specific manner. PKD2 enhances invasion in three-dimensional extracellular matrix (3D-ECM) cultures by stimulating expression and secretion of matrix metalloproteinases 7 and 9 (MMP7/9), by which MMP7 is likely to act upstream of MMP9. Knockdown of MMP7/9 blocks PKD2-mediated invasion in 3D-ECM assays and in vivo using tumors growing on chorioallantois membranes. Furthermore, MMP9 enhances PKD2-mediated tumor angiogenesis by releasing extracellular matrix-bound vascular endothelial growth factor A, increasing its bioavailability and angiogenesis. Of interest, specific knockdown of PKD1 in PKD2-expressing pancreatic cancer cells further enhanced the invasive properties in 3D-ECM systems by generating a high-motility phenotype. Loss of PKD1 thus may be beneficial for tumor cells to enhance their matrix-invading abilities. In conclusion, we define for the first time PKD1 and 2 isoform-selective effects on pancreatic cancer cell invasion and angiogenesis, in vitro and in vivo, addressing PKD isoform specificity as a major factor for future therapeutic strategies. PMID:24336522

  2. Effects of ethanolamine and choline on thiotepa cellular accumulation and cytotoxicity in L1210 cells

    International Nuclear Information System (INIS)

    The amino alcohols, ethanolamine and choline, were studied for their effects on (a) L1210 cell growth, (b) N,N',N double-prime-triethylenetheiphosphoramide (thiotepa)-induced growth inhibition of L1210 cells, and (c) 14C accumulation by L1210 cells incubated with [14C]thiotepa. Ethanolamine, at concentrations up to 300 microM, had no effect on L1210 cell growth but, at concentrations greater than 300 microM, produced a dose-dependent reduction in cell growth. Choline, at concentrations up to 20 mM, had no effect on L1210 cell growth. Neither ethanolamine, at 250 microM, nor choline, at 10 mM, altered the ability of thiotepa to reduce L1210 cell growth. Neither ethanolamine, at 250 microM, nor choline, at 10 mM, affected the rapid phase of 14C accumulation by L1210 cells incubated with [14C]thiotepa. The slow phase of 14C accumulation by L1210 cells incubated with 5 microM [14C]thiotepa, a process which is 80-85% due to production of [14C]phosphatidylethanolamine, was not affected by 250 microM choline. In contrast, ethanolamine produced a dose-dependent reduction in this slow rate of 14C accumulation. The reduction in the slow rate of 14C accumulation produced by ethanolamine was due almost entirely to a decrease in the accumulation of nonexchangeable 14C. Kinetic analysis of the inhibition of 14C accumulation produced by 25, 100, and 250 microM ethanolamine was compatible with competitive inhibition. Thin layer chromatography of cell extracts showed that the ability of ethanolamine to reduce 14C accumulation by L1210 cells incubated with [14C]thiotepa was due solely to reduction in production of [14C]phosphatidylethanolamine. These results are all compatible with and predicted by our previously described scheme wherein thiotepa enters cells by simple diffusion and serves as a prodrug for aziridine

  3. Myotonic dystrophy protein kinase (DMPK) and its role in the pathogenesis of myotonic dystrophy 1.

    Science.gov (United States)

    Kaliman, Perla; Llagostera, Esther

    2008-11-01

    Myotonic dystrophy 1 (DM1) is an autosomal, dominant inherited, neuromuscular disorder. The DM1 mutation consists in the expansion of an unstable CTG-repeat in the 3'-untranslated region of a gene encoding DMPK (myotonic dystrophy protein kinase). Clinical expression of DM1 is variable, presenting a progressive muscular dystrophy that affects distal muscles more than proximal and is associated with the inability to relax muscles appropriately (myotonia), cataracts, cardiac arrhythmia, testicular atrophy and insulin resistance. DMPK is a Ser/Thr protein kinase homologous to the p21-activated kinases MRCK and ROCK/rho-kinase/ROK. The most abundant isoform of DMPK is an 80 kDa protein mainly expressed in smooth, skeletal and cardiac muscles. Decreased DMPK protein levels may contribute to the pathology of DM1, as revealed by gene target studies. Here we review current understanding of the structural, functional and pathophysiological characteristics of DMPK. PMID:18583094

  4. Proteogenomic Analysis Identifies a Novel Human SHANK3 Isoform

    Directory of Open Access Journals (Sweden)

    Fahad Benthani

    2015-05-01

    Full Text Available Mutations of the SHANK3 gene have been associated with autism spectrum disorder. Individuals harboring different SHANK3 mutations display considerable heterogeneity in their cognitive impairment, likely due to the high SHANK3 transcriptional diversity. In this study, we report a novel interaction between the Mutated in colorectal cancer (MCC protein and a newly identified SHANK3 protein isoform in human colon cancer cells and mouse brain tissue. Hence, our proteogenomic analysis identifies a new human long isoform of the key synaptic protein SHANK3 that was not predicted by the human reference genome. Taken together, our findings describe a potential new role for MCC in neurons, a new human SHANK3 long isoform and, importantly, highlight the use of proteomic data towards the re-annotation of GC-rich genomic regions.

  5. Laminin isoforms in endothelial and perivascular basement membranes

    Science.gov (United States)

    Yousif, Lema F.; Di Russo, Jacopo; Sorokin, Lydia

    2013-01-01

    Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis. PMID:23263631

  6. Oxygenation properties and isoform diversity of snake hemoglobins

    DEFF Research Database (Denmark)

    Storz, Jay F.; Natarajan, Chandrasekhar; Moriyama, Hideaki;

    2015-01-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer- dimer dissociation. However, standardized comparative data are lacking...... for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying - and -type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2......) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis...

  7. Identification and characterization of novel NuMA isoforms

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin, E-mail: petersdu2112@hotmail.com [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Xu, Zhe [Department of Clinical Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); He, Dacheng [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Lu, Guanting, E-mail: guantlv@126.com [Beijing DnaLead Science and Technology Co., LTD, Beijing (China)

    2014-11-21

    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.

  8. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  9. A Review of Metallothionein Isoforms and their Role in Pathophysiology

    OpenAIRE

    Senthil kumar M; Manisenthil Kumar KT; Shyam Sunder A; Thirumoorthy N; Ganesh GNK; Chatterjee Malay

    2011-01-01

    Abstract The Metallothionein (MT) is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological s...

  10. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy

    International Nuclear Information System (INIS)

    The aim of this study was to assess the accuracy and clinical impact of [11C]choline PET/CT for localizing occult relapse of prostate adenocarcinoma after radical prostatectomy. Fourty-nine patients with prostate adenocarcinoma, radical prostatectomy, no evidence of metastatic disease, and occult relapse underwent [11C]choline PET/CT. Thirty-six of the patients had biochemical evidence and histological evaluation of local recurrence. Thirteen patients had PSA 11C]choline uptake in the prostatic fossa was visually assessed and graded on a five point scale. Maximum standardized radioactivity uptake value (SUVmax) and the lesion size were measured. A receiver operating characteristic (ROC) analysis was performed and the clinical impact of the PET/CT study was determined. [11C]choline PET/CT was true positive in 23/33 patients and true negative in 12/13 controls. SUVmax of local recurrence was 3.0 (median, range 0.6-7.4) and 1.1 (0.4-1.6) in controls (p = 0.0002). Lesion size was 1.7 cm (range 0.9-3.7). Area under the ROC curve for detecting relapse was 0.90 ± 0.05 and 0.83 ± 0.06 for visual evaluation and SUVmax, respectively. Sensitivity and specificity of [11C]choline PET/CT were 0.73 and 0.88, respectively. [11C]choline PET/CT identified 12/17 (71%) patients with a favourable biochemical response to local radiotherapy at 2 year (median, 0.8-3.2 range) follow-up. Focally increased [11C]choline uptake in the prostatic bed reliably predicted local low volume occult relapsing prostate adenocarcinoma after radical prostatectomy and identified 71% of patients with a favourable biochemical response to local radiotherapy. (orig.)

  11. Value of {sup 11}C-choline PET and PET/CT in patients with suspected prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Scher, Bernhard; Albinger, Wolfram; Tiling, Reinhold; Gildehaus, Franz-Josef; Dresel, Stefan [University of Munich, Department of Nuclear Medicine, Munich (Germany); Seitz, Michael [University of Munich, Department of Urology, Munich (Germany); Scherr, Michael; Becker, Hans-Christoph [University of Munich, Department of Radiology, Munich (Germany); Souvatzogluou, Michael; Wester, Hans-Juergen [Technical University of Munich, Department of Nuclear Medicine, Munich (Germany)

    2007-01-15

    The value and limitations of {sup 11}C-choline PET and PET/CT for the detection of prostate cancer remain controversial. The aim of this study was to investigate the diagnostic efficacy of {sup 11}C-choline PET and PET/CT in a large group of patients with suspected prostate cancer. Fifty-eight patients with clinical suspicion of prostate cancer underwent {sup 11}C-choline PET (25/58, Siemens ECAT Exact HR+) or PET/CT (33/58, Philips Gemini) scanning. On average, 500 MBq of {sup 11}C-choline was administered intravenously. Studies were interpreted by raters blinded to clinical information and other diagnostic procedures. Qualitative image analysis as well as semiquantitative SUV measurement was carried out. The reference standard was histopathological examination of resection specimens or biopsy. Prevalence of prostate cancer in this selected patient population was 63.8% (37/58). {sup 11}C-choline PET and PET/CT showed a sensitivity of 86.5% (32/37) and a specificity of 61.9% (13/21) in the detection of the primary malignancy. With regard to metastatic spread, PET showed a per-patient sensitivity of 81.8% (9/11) and produced no false positive findings. Based on our findings, differentiation between benign prostatic changes, such as benign prostatic hyperplasia or prostatitis, and prostate cancer is feasible in the majority of cases when image interpretation is primarily based on qualitative characteristics. SUV{sub max} may serve as guidance. False positive findings may occur due to an overlap of {sup 11}C-choline uptake between benign and malignant processes. By providing functional information regarding both the primary malignancy and its metastases, {sup 11}C-choline PET may prove to be a useful method for staging prostate cancer. (orig.)

  12. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers.

    Science.gov (United States)

    Peng, Sheng-Bin; Henry, James R; Kaufman, Michael D; Lu, Wei-Ping; Smith, Bryan D; Vogeti, Subha; Rutkoski, Thomas J; Wise, Scott; Chun, Lawrence; Zhang, Youyan; Van Horn, Robert D; Yin, Tinggui; Zhang, Xiaoyi; Yadav, Vipin; Chen, Shih-Hsun; Gong, Xueqian; Ma, Xiwen; Webster, Yue; Buchanan, Sean; Mochalkin, Igor; Huber, Lysiane; Kays, Lisa; Donoho, Gregory P; Walgren, Jennie; McCann, Denis; Patel, Phenil; Conti, Ilaria; Plowman, Gregory D; Starling, James J; Flynn, Daniel L

    2015-09-14

    LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation.

  13. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner.

    Directory of Open Access Journals (Sweden)

    Jee-Hyun Um

    Full Text Available BACKGROUND: AMP protein kinase (AMPK plays an important role in food intake and energy metabolism, which are synchronized to the light-dark cycle. In vitro, AMPK affects the circadian rhythm by regulating at least two clock components, CKIα and CRY1, via direct phosphorylation. However, it is not known whether the catalytic activity of AMPK actually regulates circadian rhythm in vivo. METHODOLOGY/PRINCIPAL FINDING: THE CATALYTIC SUBUNIT OF AMPK HAS TWO ISOFORMS: α1 and α2. We investigate the circadian rhythm of behavior, physiology and gene expression in AMPKα1-/- and AMPKα2-/- mice. We found that both α1-/- and α2-/- mice are able to maintain a circadian rhythm of activity in dark-dark (DD cycle, but α1-/- mice have a shorter circadian period whereas α2-/- mice showed a tendency toward a slightly longer circadian period. Furthermore, the circadian rhythm of body temperature was dampened in α1-/- mice, but not in α2-/- mice. The circadian pattern of core clock gene expression was severely disrupted in fat in α1-/- mice, but it was severely disrupted in the heart and skeletal muscle of α2-/- mice. Interestingly, other genes that showed circadian pattern of expression were dysreguated in both α1-/- and α2-/- mice. The circadian rhythm of nicotinamide phosphoryl-transferase (NAMPT activity, which converts nicotinamide (NAM to NAD+, is an important regulator of the circadian clock. We found that the NAMPT rhythm was absent in AMPK-deficient tissues and cells. CONCLUSION/SIGNIFICANCE: This study demonstrates that the catalytic activity of AMPK regulates circadian rhythm of behavior, energy metabolism and gene expression in isoform- and tissue-specific manners.

  14. Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms

    Directory of Open Access Journals (Sweden)

    Yu Jun

    2009-03-01

    Full Text Available Abstract Background Tarantula has been used as a model system for studying skeletal muscle structure and function, yet data on the genes expressed in tarantula muscle are lacking. Results We constructed a cDNA library from Aphonopelma sp. (Tarantula skeletal muscle and got 2507 high-quality 5'ESTs (expressed sequence tags from randomly picked clones. EST analysis showed 305 unigenes, among which 81 had more than 2 ESTs. Twenty abundant unigenes had matches to skeletal muscle-related genes including actin, myosin, tropomyosin, troponin-I, T and C, paramyosin, muscle LIM protein, muscle protein 20, a-actinin and tandem Ig/Fn motifs (found in giant sarcomere-related proteins. Matches to myosin light chain kinase and calponin were also identified. These results support the existence of both actin-linked and myosin-linked regulation in tarantula skeletal muscle. We have predicted full-length as well as partial cDNA sequences both experimentally and computationally for myosin heavy and light chains, actin, tropomyosin, and troponin-I, T and C, and have deduced the putative peptides. A preliminary analysis of the structural and functional properties was also carried out. Sequence similarities suggested multiple isoforms of most myofibrillar proteins, supporting the generality of multiple isoforms known from previous muscle sequence studies. This may be related to a mix of muscle fiber types. Conclusion The present study serves as a basis for defining the transcriptome of tarantula skeletal muscle, for future in vitro expression of tarantula proteins, and for interpreting structural and functional observations in this model species.

  15. The β isoform of GSK3 mediates podocyte autonomous injury in proteinuric glomerulopathy.

    Science.gov (United States)

    Li, Changbin; Ge, Yan; Dworkin, Lance; Peng, Ai; Gong, Rujun

    2016-05-01

    Converging evidence points to glycogen synthase kinase (GSK) 3 as a key player in the pathogenesis of podocytopathy and proteinuria. However, it remains unclear if GSK3 is involved in podocyte autonomous injury in glomerular disease. In normal kidneys, the β isoform of GSK3 was found to be the major GSK3 expressed in glomeruli and intensely stained in podocytes. GSK3β expression in podocytes was markedly elevated in experimental or human proteinuric glomerulopathy. Podocyte-specific somatic ablation of GSK3β in adult mice attenuated proteinuria and ameliorated podocyte injury and glomerular damage in experimental adriamycin (ADR) nephropathy. Mechanistically, actin cytoskeleton integrity in podocytes was largely preserved in GSK3β knockout mice following ADR insult, concomitant with a correction of podocyte hypermotility and lessened phosphorylation and activation of paxillin, a focal adhesion-associated adaptor protein. In addition, GSK3β knockout diminished ADR-induced NFκB RelA/p65 phosphorylation selectively at serine 467; suppressed de novo expression by podocytes of NFκB-dependent podocytopathic mediators, including B7-1, cathepsin L, and MCP-1; but barely affected the induction of NFκB target pro-survival factors, such as Bcl-xL. Moreover, the ADR-elicited podocytopenia and podocyte death were significantly attenuated in GSK3β knockout mice, associated with protection against podocyte mitochondrial damage and reduced phosphorylation and activation of cyclophilin F, a structural component of mitochondria permeability transition pores. Overall, our findings suggest that the β isoform of GSK3 mediates autonomous podocyte injury in glomerulopathy by integrating multiple podocytopathic signalling pathways. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:26876299

  16. ApoE isoform-dependent changes in hippocampal synaptic function

    Directory of Open Access Journals (Sweden)

    Sullivan Patrick M

    2009-05-01

    Full Text Available Abstract The lipoprotein receptor system in the hippocampus is intimately involved in the modulation of synaptic transmission and plasticity. The association of specific apoE isoform expression with human neurodegenerative disorders has focused attention on the role of these apoE isoforms in lipoprotein receptor-dependent synaptic modulation. In the present study, we used the apoE2, apoE3 and apoE4 targeted replacement (TR mice along with recombinant human apoE isoforms to determine the role of apoE isoforms in hippocampus area CA1 synaptic function. While synaptic transmission is unaffected by apoE isoform, long-term potentiation (LTP is significantly enhanced in apoE4 TR mice versus apoE2 TR mice. ApoE isoform-dependent differences in LTP induction require NMDA-receptor function, and apoE isoform expression alters activation of both ERK and JNK signal transduction. Acute application of specific apoE isoforms also alters LTP induction while decreasing NMDA-receptor mediated field potentials. Furthermore, acute apoE isoform application does not have the same effects on ERK and JNK activation. These findings demonstrate specific, isoform-dependent effects of human apoE isoforms on adult hippocampus synaptic plasticity and highlight mechanistic differences between chronic apoE isoform expression and acute apoE isoform exposure.

  17. Tropomyosin-binding properties modulate competition between tropomodulin isoforms.

    Science.gov (United States)

    Colpan, Mert; Moroz, Natalia A; Gray, Kevin T; Cooper, Dillon A; Diaz, Christian A; Kostyukova, Alla S

    2016-06-15

    The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities.

  18. Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus.

    Directory of Open Access Journals (Sweden)

    Apiruck Watthanasurorot

    2011-06-01

    Full Text Available The Down syndrome cell adhesion molecule, also known as Dscam, is a member of the immunoglobulin super family. Dscam plays an essential function in neuronal wiring and appears to be involved in innate immune reactions in insects. The deduced amino acid sequence of Dscam in the crustacean Pacifastacus leniusculus (PlDscam, encodes 9(Ig-4(FNIII-(Ig-2(FNIII-TM and it has variable regions in the N-terminal half of Ig2 and Ig3 and the complete Ig7 and in the transmembrane domain. The cytoplasmic tail can generate multiple isoforms. PlDscam can generate more than 22,000 different unique isoforms. Bacteria and LPS injection enhanced the expression of PlDscam, but no response in expression occurred after a white spot syndrome virus (WSSV infection or injection with peptidoglycans. Furthermore, PlDscam silencing did not have any effect on the replication of the WSSV. Bacterial specific isoforms of PlDscam were shown to have a specific binding property to each tested bacteria, E. coli or S. aureus. The bacteria specific isoforms of PlDscam were shown to be associated with bacterial clearance and phagocytosis in crayfish.

  19. Role of p53 isoforms and aggregations in cancer.

    Science.gov (United States)

    Kim, SeJin; An, Seong Soo A

    2016-06-01

    p53 is a master regulatory protein that is involved in diverse cellular metabolic processes such as apoptosis, DNA repair, and cell cycle arrest. The protective function of p53 (in its homotetrameric form) as a tumor suppressor is lost in more than 50% of human cancers.Despite considerable experimental evidence suggesting the presence of multiple p53 states, it has been difficult to correlate the status of p53 with cancer response to treatments and clinical outcomes, which suggest the importance of complex but essential p53 regulatory pathways.Recent studies have indicated that the expression pattern of p53 isoforms may play a crucial role in regulating normal and cancer cell fates in response to diverse stresses. The human TP53 gene encodes at least 12 p53 isoforms, which are produced in normal tissue through alternative initiation of translation, usage of alternative promoters, and alternative splicing. Furthermore, some researchers have suggested that the formation of mutant p53 aggregates may be associated with cancer pathogenesis due to loss-of function (LoF), dominant-negative (DN), and gain-of function (GoF) effects.As different isoforms or the aggregation state of p53 may influence tumorigenesis, this review aims to examine the correlation of p53 isoforms and aggregation with cancer. PMID:27368003

  20. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    2015-01-01

    Full Text Available Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.

  1. Isoforms of transferrin in psoriasis patients abusing alcohol

    NARCIS (Netherlands)

    P. Hoefkens (Peter); E.M. Higgins; R.J. Ward (Roberta); H.G. van Eijk (Henk)

    1997-01-01

    textabstractThe different isoforms of transferrin have been quantified by isoelectric focusing in the sera of psoriasis patients with and without a history of abusing alcohol. In both male and female psoriasis subjects abusing alcohol, there were significant increases in the 2-sial

  2. Tropomyosin-binding properties modulate competition between tropomodulin isoforms.

    Science.gov (United States)

    Colpan, Mert; Moroz, Natalia A; Gray, Kevin T; Cooper, Dillon A; Diaz, Christian A; Kostyukova, Alla S

    2016-06-15

    The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities. PMID:27091317

  3. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, Luana; Ramondo, Fabio, E-mail: fabio.ramondo@univaq.it [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, L’Aquila I-67100 (Italy); Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo, E-mail: lorenzo.gontrani@uniroma1.it [Department of Chemistry, University of Rome ‘La Sapienza’, P.le Aldo Moro 5, I-00185 Rome (Italy)

    2015-09-21

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.

  4. Rapamycin induces mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) expression through activation of protein kinase B and mitogen-activated protein kinase kinase pathways.

    Science.gov (United States)

    Rastogi, Ruchi; Jiang, Zhongliang; Ahmad, Nisar; Rosati, Rita; Liu, Yusen; Beuret, Laurent; Monks, Robert; Charron, Jean; Birnbaum, Morris J; Samavati, Lobelia

    2013-11-22

    Mitogen-activated protein kinase phosphatase-1 (MKP-1), also known as dual specificity phosphatase-1 (DUSP-1), plays a crucial role in the deactivation of MAPKs. Several drugs with immune-suppressive properties modulate MKP-1 expression as part of their mechanism of action. We investigated the effect of mTOR inhibition through rapamycin and a dual mTOR inhibitor (AZD2014) on MKP-1 expression. Low dose rapamycin led to a rapid activation of both AKT and ERK pathways with a subsequent increase in MKP-1 expression. Rapamycin treatment led to phosphorylation of CREB, transcription factor 1 (ATF1), and ATF2, three transcription factors that bind to the cyclic AMP-responsive elements on the Mkp-1 promoter. Inhibition of either the MEK/ERK or the AKT pathway attenuated rapamycin-mediated MKP-1 induction. AZD2014 did not activate AKT but activated the ERK pathway, leading to a moderate MKP-1 induction. Using bone marrow-derived macrophages (BMDMs) derived from wild-type (WT) mice or mice deficient in AKT1 and AKT2 isoforms or BMDM from targeted deficiency in MEK1 and MEK2, we show that rapamycin treatment led to an increased MKP1 expression in BMDM from WT but failed to do so in BMDMs lacking the AKT1 isoform or MEK1 and MEK2. Importantly, rapamycin pretreatment inhibited LPS-mediated p38 activation and decreased nitric oxide and IL-6 production. Our work provides a conceptual framework for the observed immune modulatory effect of mTOR inhibition.

  5. Cloning, expression and alternative splicing of the novel isoform of hTCP11 gene

    DEFF Research Database (Denmark)

    Ma, Yong-xin; Zhang, Si-zhong; Wu, Qia-qing;

    2003-01-01

    To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing.......To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing....

  6. Exposure to chronic psychosocial stress and corticosterone in the rat : Effects on spatial discrimination learning and hippocampal protein kinase C gamma immunoreactivity

    NARCIS (Netherlands)

    Krugers, HJ; Douma, BRK; Bohus, B; Korf, J; Luiten, PGM; Krugers, Harm J.

    1997-01-01

    Previous reports have demonstrated a striking increase of the immunoreactivity of the gamma-isoform of protein kinase C (PKC gamma-ir) in Ammon's horn and dentate gyrus (DC) of rodent hippocampus after training in a spatial orientation task. In the present study, we investigated how 8 days of psycho

  7. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles - Possible role in rescuing cellular energy homeostasis

    NARCIS (Netherlands)

    ter Veld, F; Jeneson, JAL; Nicolay, K

    2005-01-01

    Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single- a

  8. Effects of genotype and environment on the contents of betaine, choline, and trigonelline in cereal grains.

    Science.gov (United States)

    Corol, Delia-Irina; Ravel, Catherine; Raksegi, Mariann; Bedo, Zoltan; Charmet, Gilles; Beale, Michael H; Shewry, Peter R; Ward, Jane L

    2012-05-30

    This study examined the environmental and genetic variation in methyl donor contents and compositions of 200 cereal genotypes. Glycine betaine, choline, and trigonelline contents were determined by (1)H NMR, and significant differences were observed between cereal types (G) and across harvesting years and growing locations (E). Glycine betaine was the most abundant methyl donor in all of the 200 lines grown on a single site, and concentrations ranged from 0.43 ± 0.09 mg/g dm in oats to 2.57 ± 0.25 mg/g dm in diploid Einkorn varieties. In bread wheat genotypes there was a 3-fold difference in glycine betaine content. Choline contents, in the same lines, were substantially lower, and mean concentrations ranged from 0.17 mg/g dm in oats to 0.27 mg/g dm in durum wheat. Trigonelline was by far the least abundant of the methyl donors studied. Despite this, however, there were large differences between cereal types. Twenty-six wheat genotypes were grown in additional years at four European locations. The average glycine betaine content was highest in grains grown in Hungary and lowest in those grown in the United Kingdom. Across the six environments, there was a 3.8-fold difference in glycine betaine content. Glycine betaine levels, although moderately heritable (0.36), were found to be the most susceptible to the environmental conditions. Free choline concentrations were less variable across genotypes, but heritability of this component was the lowest of all methyl donor components (0.25) and showed a high G × E interaction. Trigonelline showed the most variation due to genotype. Heritability of this metabolite was the highest (0.59), but given that it is at a very low concentration in wheat, it is probably not attractive to plant breeders.

  9. Growth hormone isoforms in a girl with gigantism.

    Science.gov (United States)

    Ng, L L; Chasalow, F I; Escobar, O; Blethen, S L

    1999-01-01

    Several previous investigations have suggested that there may be different growth hormone isoforms in patients with acromegaly. We used three different site-specific monoclonal antibodies (MAbs) to investigate growth hormone (GH) isoforms in serum from an 8 year-old girl with a GH and prolactin secreting adenoma. The pattern of GH-immunoreactivity was dependent on the circumstances of collection. Serum obtained after oral glucose had very little cross reactivity with MAb 352 although concentrations of up to 15 micrograms/l were found with two other MAbs, 033 and 665. MAb 352 does not recognize the 20,000 dalton isoform of GH (20K) while both MAb 033 and 665 do. The same pattern of GH immunoreactivity (low MAb 352, equal and higher MAb 033 and 665) was seen in other baseline samples. In contrast, samples obtained after TRH/GnRH showed immunoreactivity patterns expected for a mixture of 22,000 dalton isoform of GH (22K) with only a small amount of 20K. GH samples obtained during sleep showed both patterns with episodic peaks with equal immunoreactivity superimposed on the basal pattern (decreased activity with MAb 352). Affinity chromatography of basal samples showed that a portion of the GH immunoreactivity was neither 22K nor 20K, although in stimulated samples, over 70% of GH was 22K or 20K GH. In conclusion, the nature of GH isoforms present in serum varies with GH concentration. These differences may contribute to the known difficulty in correlating disease activity and random GH measurements in patients with GH secreting adenomas. PMID:10392356

  10. An Incidental Renal Oncocytoma: 18F-Choline PET/MRI

    Directory of Open Access Journals (Sweden)

    Andrew Mallia

    2016-04-01

    Full Text Available PET/MRI is a new hybrid imaging modality and has the potential to become a powerful imaging tool. It is currently one of the most active areas of research in diagnostic imaging. The characterisation of an incidental renal lesion can be difficult. In particular, the differentiation of an oncocytoma from other solid renal lesions such as renal cell carcinoma (RCC represents a diagnostic challenge. We describe the detection of an incidental renal oncocytoma in a 79-year gentleman who underwent a re-staging 18F-Choline PET/MRI following a rise in PSA values (4.07, nadir 1.3.

  11. Full-Length Human Placental sFlt-1-e15a Isoform Induces Distinct Maternal Phenotypes of Preeclampsia in Mice

    OpenAIRE

    Gabor Szalai; Roberto Romero; Tinnakorn Chaiworapongsa; Yi Xu; Bing Wang; Hyunyoung Ahn; Zhonghui Xu; Po Jen Chiang; Birgitta Sundell; Rona Wang; Yang Jiang; Olesya Plazyo; Mary Olive; Adi L Tarca; Zhong Dong

    2015-01-01

    Objective Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in no...

  12. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors

    DEFF Research Database (Denmark)

    Khan, N.; Jeffers, M.; Kumar, S.;

    2008-01-01

    ) against a panel of rhHDAC (recombinant human HDAC) isoforms. Eight rhHDACs were expressed using a baculoviral system, and a Fluor de Lystrade mark (Biomol International) HDAC assay was optimized for each purified isoform. The potency and selectivity of ten HDACs on class I isoforms (rhHDAC1, rhHDAC2, rh...

  13. Expression, purification and enzymatic characterization of the catalytic domains of human tryptophan hydroxylase isoforms

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Boesen, Jane; Karlsen, Pernille Efferbach;

    2009-01-01

    Tryptophan hydroxylase exists in two isoforms: Isoform 1 catalyses the first and rate-limiting step in the synthesis of serotonin in the peripheral parts of the body while isoform 2 catalyses this step in the brain. The catalytic domains of human tryptophan hydroxylase 1 and 2 have been expressed...

  14. Dietary choline regulates antibacterial activity, inflammatory response and barrier function in the gills of grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Zhao, Hua-Fu; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-05-01

    An 8-week feeding trial was conducted to determine the effects of graded levels of choline (197-1795 mg/kg) on antibacterial properties, inflammatory status and barrier function in the gills of grass carp. The results showed that optimal dietary choline supplementation significantly improved lysozyme and acid phosphatase activities, complement component 3 (C3) content, and the liver expressed antimicrobial peptide 2 and Hepcidin mRNA levels in the gills of fish (P C3 content and AHR activity, the dietary choline requirements for young grass carp (266.5-787.1 g) were estimated to be 1191.0 and 1555.0 mg/kg diet, respectively. PMID:26988287

  15. PINCH proteins regulate cardiac contractility by modulating integrin-linked kinase-protein kinase B signaling.

    Science.gov (United States)

    Meder, Benjamin; Huttner, Inken G; Sedaghat-Hamedani, Farbod; Just, Steffen; Dahme, Tillman; Frese, Karen S; Vogel, Britta; Köhler, Doreen; Kloos, Wanda; Rudloff, Jessica; Marquart, Sabine; Katus, Hugo A; Rottbauer, Wolfgang

    2011-08-01

    Integrin-linked kinase (ILK) is an essential component of the cardiac mechanical stretch sensor and is bound in a protein complex with parvin and PINCH proteins, the so-called ILK-PINCH-parvin (IPP) complex. We have recently shown that inactivation of ILK or β-parvin activity leads to heart failure in zebrafish via reduced protein kinase B (PKB/Akt) activation. Here, we show that PINCH proteins localize at sarcomeric Z disks and costameres in the zebrafish heart and skeletal muscle. To investigate the in vivo role of PINCH proteins for IPP complex stability and PKB signaling within the vertebrate heart, we inactivated PINCH1 and PINCH2 in zebrafish. Inactivation of either PINCH isoform independently leads to instability of ILK, loss of stretch-responsive anf and vegf expression, and progressive heart failure. The predominant cause of heart failure in PINCH morphants seems to be loss of PKB activity, since PKB phosphorylation at serine 473 is significantly reduced in PINCH-deficient hearts and overexpression of constitutively active PKB reconstitutes cardiac function in PINCH morphants. These findings highlight the essential function of PINCH proteins in controlling cardiac contractility by granting IPP/PKB-mediated signaling.

  16. Choline supplementation mitigates trace, but not delay, eyeblink conditioning deficits in rats exposed to alcohol during development.

    Science.gov (United States)

    Thomas, Jennifer D; Tran, Tuan D

    2012-03-01

    Children exposed to alcohol prenatally suffer from a range of physical, neuropathological, and behavioral alterations, referred to as fetal alcohol spectrum disorders (FASD). Both the cerebellum and hippocampus are affected by alcohol exposure during development, which may contribute to behavioral and cognitive deficits observed in children with FASD. Despite the known neuropathology associated with prenatal alcohol exposure, many pregnant women continue to drink (heavy drinkers, in particular), creating a need to identify effective treatments for their children who are adversely affected by alcohol. We previously reported that choline supplementation can mitigate alcohol's effects on cognitive development, specifically on tasks which depend on the functional integrity of the hippocampus. The present study examined whether choline supplementation could differentially mitigate alcohol's effects on trace eyeblink classical conditioning (ECC, a hippocampal-dependent task) and delay ECC (a cerebellar-dependent task). Long-Evans rats were exposed to 5.25 g/kg/day alcohol via gastric intubation from postnatal days (PD) 4-9, a period of brain development equivalent to late gestation in humans. A sham-intubated control group was included. From PD 10-30, subjects received subcutaneous injections of 100 mg/kg choline chloride or vehicle. Beginning on PD 32-34, subjects were trained on either delay or trace eyeblink conditioning. Performance of subjects exposed to alcohol was significantly impaired on both tasks, as indicated by significant reductions in percentage and amplitude of conditioned eyeblink responses, an effect that was attenuated by choline supplementation on the trace, but not delay conditioning task. Indeed, alcohol-exposed subjects treated with choline performed at control levels on the trace eyeblink conditioning task. There were no significant main or interactive effects of sex. These data indicate that choline supplementation can significantly reduce the

  17. N-methyl-D-aspartate increases acetylcholine release from rat striatum and cortex: its effect is augmented by choline

    Science.gov (United States)

    Ulus, I. H.; Buyukuysal, R. L.; Wurtman, R. J.

    1992-01-01

    We examined the effects of N-methyl-D-aspartate (NMDA), a glutamate agonist, and of glutamate itself, on acetylcholine (ACh) release from superfused rat striatal slices. In a Mg(++)-free medium, NMDA (32-1000 microM) as well as glutamate (1 mM) increased basal ACh release by 35 to 100% (all indicated differences, P less than .05), without altering tissue ACh or choline contents. This augmentation was blocked by Mg++ (1.2 mM) or by MK-801 (10 microM). Electrical stimulation (15 Hz, 75 mA) increased ACh release 9-fold (from 400 to 3660 pmol/mg of protein): this was enhanced (to 4850 pmol/mg of protein) by NMDA (100 microM). ACh levels in stimulated slices fell by 50 or 65% depending on the absence or presence of NMDA. The addition of choline (40 microM) increased ACh release both basally (570 pmol/mg of protein) and with electrical stimulation (6900 pmol/mg of protein). In stimulated slices choline acted synergistically with NMDA, raising ACh release to 10,520 pmol/mg of protein. The presence of choline also blocked the fall in tissue ACh. No treatment affected tissue phospholipid or protein levels. NMDA (32-320 microM) also augmented basal ACh release from cortical but not hippocampal slices. Choline efflux from striatal and cortical (but not hippocampal) slices decreased by 34 to 50% in Mg(++)-free medium. These data indicate that NMDA-like drugs may be useful, particularly in combination with choline, to enhance striatal and cortical cholinergic activity. ACh release from rat hippocampus apparently is not affected by NMDA receptors.

  18. Immunohistochemical determination of the extracellular matrix modulation in a rat model of choline-deprived myocardium: the effects of carnitine.

    Science.gov (United States)

    Strilakou, Athina; Perelas, Apostolos; Lazaris, Andreas; Papavdi, Asteria; Karkalousos, Petros; Giannopoulou, Ioanna; Kriebardis, Anastasios; Panayiotides, Ioannis; Liapi, Charis

    2016-02-01

    Choline has been identified as an essential nutrient with crucial role in many vital biological functions. Recent studies have demonstrated that heart dysfunction can develop in the setting of choline deprivation even in the absence of underlying heart disease. Matrix metalloproteinases (MMPs) are responsible for extracellular matrix degradation, and the dysregulation of MMP-2 and MMP-9 has been involved in the pathogenesis of various cardiovascular disorders. The aim of the study was to investigate the role of MMPs and their inhibitors (TIMPs), in the pathogenesis of choline deficiency-induced cardiomyopathy, and the way they are affected by carnitine supplementation. Male Wistar Albino adult rats were divided into four groups and received standard or choline-deficient diet with or without L-carnitine in drinking water (0.15% w/v) for 1 month. Heart tissue immunohistochemistry for MMP-2, MMP-9, TIMP-1, and TIMP-2 was performed. Choline deficiency was associated with suppressed immunohistochemical expression of MMP-2 and an increased expression of TIMP-2 compared to control, while it had no impact on TIMP-1. MMP-9 expression was decreased without, however, reaching statistical significance. Carnitine did not affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. The pattern of TIMP and MMP modulation observed in a choline deficiency setting appears to promote fibrosis. Carnitine, although shown to suppress fibrosis, does not seem to affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. Further studies will be required to identify the mechanism underlying the beneficial effects of carnitine.

  19. Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein

    International Nuclear Information System (INIS)

    The kinase domain (residues 1–331) of human tau-tubulin kinase 2 was expressed in insect cells, purified and crystallized. Diffraction data have been collected to 2.9 Å resolution. Tau-tubulin kinase 2 (TTBK2) is a Ser/Thr kinase that putatively phosphorylates residues Ser208 and Ser210 (numbered according to a 441-residue human tau isoform) in tau protein. Functional analyses revealed that a recombinant kinase domain (residues 1–331) of human TTBK2 expressed in insect cells with a baculovirus overexpression system retains kinase activity for tau protein. The kinase domain of TTBK2 was crystallized using the hanging-drop vapour-diffusion method. The crystals belong to space group P212121, with unit-cell parameters a = 55.6, b = 113.7, c = 117.3 Å, α = β = γ = 90.0°. Diffraction data were collected to 2.9 Å resolution using synchrotron radiation at BL24XU of SPring-8

  20. PET as a possible indicator of the prognosis of head and neck squamous cell carcinoma. Comparative analysis of FDG-PET and choline-PET

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) using 18F-fluoro-2-deoxy-D-glucose (FDG), which reflects glucose metabolism, has been reported to be useful for staging head and neck cancers and for investigating the primary lesion of unknown origin, double cancer, recurrence and residual cancer after treatment. It has also been reported that the degree of accumulation before treatment may be utilized as a prognostic factor. The usefulness of PET using 11C-choline, which reflects cell membrane phospholipid metabolism, for cancer diagnosis has been reported as well. In this study, we investigated differences in the prognosis based on the degree of 11C-choline-PET and FDG-PET accumulation. 11C-choline-PET and FDG-PET were taken before treatment in patients with squamous cell carcinoma of the head and neck. To indicate the degree of accumulation, the standard uptake value (SUV) was used. Choline and FDG were accumulated in the primary lesion in all patients. The SUVs in both choline and FDG were higher in patients who responded poorly to primary treatment than in those who responded well. The cumulative survival rate of patients with a high SUV of choline was significantly lower than that of patients with a low SUV of choline. SUV of choline-PET before treatment may be utilized as a prognostic factor. (author)

  1. Pre-Conditioning with CDP-Choline Attenuates Oxidative Stress-Induced Cardiac Myocyte Death in a Hypoxia/Reperfusion Model

    Directory of Open Access Journals (Sweden)

    Héctor González-Pacheco

    2014-01-01

    Full Text Available Background. CDP-choline is a key intermediate in the biosynthesis of phosphatidylcholine, which is an essential component of cellular membranes, and a cell signalling mediator. CDP-choline has been used for the treatment of cerebral ischaemia, showing beneficial effects. However, its potential benefit for the treatment of myocardial ischaemia has not been explored yet. Aim. In the present work, we aimed to evaluate the potential use of CDP-choline as a cardioprotector in an in vitro model of ischaemia/reperfusion injury. Methods. Neonatal rat cardiac myocytes were isolated and subjected to hypoxia/reperfusion using the coverslip hypoxia model. To evaluate the effect of CDP-choline on oxidative stress-induced reperfusion injury, the cells were incubated with H2O2 during reperfusion. The effect of CDP-choline pre- and postconditioning was evaluated using the cell viability MTT assay, and the proportion of apoptotic and necrotic cells was analyzed using the Annexin V determination by flow cytometry. Results. Pre- and postconditioning with 50 mg/mL of CDP-choline induced a significant reduction of cells undergoing apoptosis after hypoxia/reperfusion. Preconditioning with CDP-choline attenuated postreperfusion cell death induced by oxidative stress. Conclusion. CDP-choline administration reduces cell apoptosis induced by oxidative stress after hypoxia/reperfusion of cardiac myocytes. Thus, it has a potential as cardioprotector in ischaemia/reperfusion-injured cardiomyocytes.

  2. Biodistribution and radiation dosimetry of [{sup 11}C]choline: a comparison between rat and human data

    Energy Technology Data Exchange (ETDEWEB)

    Tolvanen, Tuula; Ujula, Tiina; Autio, Anu [Turku University Hospital, Turku PET Centre, Turku (Finland); Yli-Kerttula, Timo [Turku University Hospital, Department of Internal Medicine, Turku (Finland); Lehikoinen, Pertti [Turku University Hospital, Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, Turku (Finland); Minn, Heikki [Turku University Hospital, Turku PET Centre, Turku (Finland); Turku University Hospital, Department of Oncology and Radiotherapy, Turku (Finland); Roivainen, Anne [Turku University Hospital, Turku PET Centre, Turku (Finland); University of Turku, Turku Centre for Disease Modelling, Turku (Finland)

    2010-05-15

    Methyl-{sup 11}C-choline ([{sup 11}C]choline) is a radiopharmaceutical used for oncological PET studies. We investigated the biodistribution and biokinetics of [{sup 11}C]choline and provide estimates of radiation doses in humans. The distribution of [{sup 11}C]choline was evaluated ex vivo in healthy rats (n=9) by measuring the radioactivity of excised organs, and in vivo in tumour-bearing rats (n=4) by PET. In addition to estimates of human radiation doses extrapolated from rat data, more accurate human radiation doses were calculated on the basis of PET imaging of patients with rheumatoid arthritis (n=6) primarily participating in a synovitis imaging project with [{sup 11}C]choline. Dynamic data were acquired from the thorax and abdomen after injection of 423{+-}11 MBq (mean{+-}SD) of tracer. Following PET imaging, the radioactivity in voided urine was measured. The experimental human data were used for residence time estimations. Radiation doses were calculated with OLINDA/EXM. In rats, the radioactivity distributed mainly to the kidneys, lungs, liver and adrenal gland. The effective dose in a human adult of about 70 kg was 0.0044 mSv/MBq, which is equivalent to 2.0 mSv from 460 MBq of [{sup 11}C]choline PET. The highest absorbed doses in humans were 0.021 mGy/MBq in the kidneys, 0.020 mGy/MBq in the liver and 0.029 mGy/MBq in the pancreas. Only 2.0% of injected radioactivity was excreted in the urine during the 1.5 h after injection. The absorbed radiation doses after administration of 460 MBq of [{sup 11}C]choline were low. Except for the pancreas, biodistribution in the rat was in accordance with that in humans, but rat data may underestimate the effective dose, suggesting that clinical measurements are needed for a more detailed estimation. The observed effective doses suggest the feasibility of [{sup 11}C]choline PET for human studies. (orig.)

  3. Electrochemical Deposition of Niobium onto the Surface of Copper Using a Novel Choline Chloride-Based Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Wixtroma, Alex I. [Christopher Newport U.; Buhlera, Jessica E. [Christopher Newport U.; Reece, Charles E. [JLAB; Abdel-Fattah, Tarek M. [Christopher Newport U.

    2013-06-01

    Recent research has shown that choline chloride-based solutions can be used to replace acid-based electrochemical polishing solutions. In this study niobium metal was successfully deposited on the surface of copper substrate via electrochemical deposition using a novel choline chloride-based ionic liquid. The niobium metal used for deposition on the Cu had been dissolved in the solution from electrochemical polishing of a solid niobium piece prior to the deposition. The visible coating on the surface of the Cu was analyzed using scanning electron microscopy (SEM) and electron dispersive x-ray spectroscopy (EDX). This deposition method effectively recycles previously dissolved niobium from electrochemical polishing.

  4. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    Science.gov (United States)

    Guillaudeau, Angélique; Durand, Karine; Bessette, Barbara; Chaunavel, Alain; Pommepuy, Isabelle; Projetti, Fabrice; Robert, Sandrine; Caire, François; Rabinovitch-Chable, Hélène; Labrousse, François

    2012-01-01

    The EGFR (epidermal growth factor receptor) is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a), normal and tumor cells produce soluble EGFR isoforms (sEGFR) that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2), 3 (v3) and 4 (v4) mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab) and intracellular domain targeted antibody (ICD-Ab). EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade), histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS). PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types. PMID:22623992

  5. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    Directory of Open Access Journals (Sweden)

    Angélique Guillaudeau

    Full Text Available The EGFR (epidermal growth factor receptor is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a, normal and tumor cells produce soluble EGFR isoforms (sEGFR that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2, 3 (v3 and 4 (v4 mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab and intracellular domain targeted antibody (ICD-Ab. EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade, histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS. PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types.

  6. Differential regulation of macropinocytosis by Abi1/Hssh3bp1 isoforms.

    Directory of Open Access Journals (Sweden)

    Patrycja M Dubielecka

    Full Text Available BACKGROUND: Macropinocytosis, which is a constitutive cellular process of fluid and macromolecule uptake, is regulated by actin cytoskeleton rearrangements near the plasma membrane. Activation of Rac1, which is proposed to act upstream of the actin polymerization regulatory Wave 2 complex, has been found to correlate with enhanced macropinocytosis. One of the components of the Wave 2 complex is Abi1. Multiple, alternatively spliced isoforms of Abi1 are expressed in mammalian cells, but the functional significance of the various isoforms is unknown. PRINCIPAL FINDINGS: Here, using flow cytometric assay analysis for Alexa Fluor 647, we demonstrate that Abi1 isoforms 2 and 3 differentially regulate macropinocytosis. LNCaP cells expressing isoform 3 had increased macropinocytic uptake that correlated with enhanced cell spreading and higher Rac1 activation in comparison to cells expressing isoform 2. Isoform 2 expressing cells had decreased macropinocytic uptake, but demonstrated greater sensitivity to Rac1 activation. Moreover, more isoform 2 was localized within the cytoplasm in comparison to isoform 3, which was more associated with the plasma membrane. Activated Rac1 was found to specifically bind to a site in exon 10 of isoform 2 in vitro. Because of alternative mRNA splicing, exon 10 is absent from isoform 3, precluding similar binding of activated Rac1. Both isoforms, however, bound to inactive Rac1 through the same non-exon 10 site. Thus, Abi1 isoform 3-containing Wave 2 complex exhibited a differential binding to activated vs. inactive Rac1, whereas isoform 2-containing Wave 2 complex bound activated or inactive Rac1 comparably. CONCLUSION: Based on these observations, we postulate that Abi1 isoforms differentially regulate macropinocytosis as a consequence of their different relative affinities for activated Rac1 in Wave 2 complex. These findings also raise the possibility that isoform-specific roles occur in other Abi1 functions.

  7. Immunolocalization of choline acetyltransferase of common type in the central brain mass of Octopus vulgaris

    Directory of Open Access Journals (Sweden)

    A. Casini

    2012-07-01

    Full Text Available Acetylcholine, the first neurotransmitter to be identified in the vertebrate frog, is widely distributed among the animal kingdom. The presence of a large amount of acetylcholine in the nervous system of cephalopods is well known from several biochemical and physiological studies. However, little is known about the precise distribution of cholinergic structures due to a lack of a suitable histochemical technique for detecting acetylcholine. The most reliable method to visualize the cholinergic neurons is the immunohistochemical localization of the enzyme choline acetyltransferase, the synthetic enzyme of acetylcholine. Following our previous study on the distribution patterns of cholinergic neurons in the Octopus vulgaris visual system, using a novel antibody that recognizes choline acetyltransferase of the common type (cChAT, now we extend our investigation on the octopus central brain mass. When applied on sections of octopus central ganglia, immunoreactivity for cChAT was detected in cell bodies of all central brain mass lobes with the notable exception of the subfrontal and subvertical lobes. Positive varicosed nerves fibers where observed in the neuropil of all central brain mass lobes.

  8. Immunolocalization of choline acetyltransferase of common type in the central brain mass of Octopus vulgaris.

    Science.gov (United States)

    Casini, A; Vaccaro, R; D'Este, L; Sakaue, Y; Bellier, J P; Kimura, H; Renda, T G

    2012-07-19

    Acetylcholine, the first neurotransmitter to be identified in the vertebrate frog, is widely distributed among the animal kingdom. The presence of a large amount of acetylcholine in the nervous system of cephalopods is well known from several biochemical and physiological studies. However, little is known about the precise distribution of cholinergic structures due to a lack of a suitable histochemical technique for detecting acetylcholine. The most reliable method to visualize the cholinergic neurons is the immunohistochemical localization of the enzyme choline acetyltransferase, the synthetic enzyme of acetylcholine. Following our previous study on the distribution patterns of cholinergic neurons in the Octopus vulgaris visual system, using a novel antibody that recognizes choline acetyltransferase of the common type (cChAT), now we extend our investigation on the octopus central brain mass. When applied on sections of octopus central ganglia, immunoreactivity for cChAT was detected in cell bodies of all central brain mass lobes with the notable exception of the subfrontal and subvertical lobes. Positive varicosed nerves fibers where observed in the neuropil of all central brain mass lobes.

  9. Electrochemical synthesis of nanosized TiO{sub 2} nanopowder involving choline chloride based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Anicai, Liana, E-mail: lanicai@itcnet.ro [POLITEHNICA University of Bucharest, Center of Surface Science and Nanotechnology, Splaiul Independentei 313, Bucharest, 060042 (Romania); Petica, Aurora [Leather and Footwear Research Institute (ICPI), Ion Minulescu 93, Bucharest, 031215 (Romania); Patroi, Delia; Marinescu, Virgil; Prioteasa, Paula [INCDIE ICPE-Advanced Research, Splaiul Unirii 313, Bucharest (Romania); Costovici, Stefania [POLITEHNICA University of Bucharest, Center of Surface Science and Nanotechnology, Splaiul Independentei 313, Bucharest, 060042 (Romania)

    2015-09-15

    Highlights: • TiO{sub 2} nanopowder electrochemically prepared using choline chloride based ionic liquids. • The new proposed method allowed high anodic synthesis efficiencies of minimum 92%. • High surface area of the electrochemically synthesized titania nanopowders. • Enhanced photocatalytic activity. - Abstract: The paper presents some experimental results regarding the electrochemical synthesis of TiO{sub 2} nanopowders through anodic dissolution of Ti metal in choline chloride based eutectic mixtures (DES). A detailed characterization of the obtained titania has been performed, using various techniques, including XRD, Raman spectroscopy, XPS, SEM associated with EDX analysis, BET and UV–vis diffuse reflectance spectra. The anodic behavior of Ti electrode in DES has been also investigated. The photoreactivity of the synthesized materials was evaluated for the degradation of Orange II dye under UV (λ = 365 nm) and visible light irradiation. An anodic synthesis efficiency of minimum 92% has been determined. The as-synthesized TiO{sub 2} showed amorphous structure and a calcination post-treatment at temperatures between 400 and 600 °C yielded anatase. The anodically obtained nanocrystalline oxides have crystallite sizes of 8–18 nm, a high surface area and enhanced photocatalytic effect.

  10. Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures

    International Nuclear Information System (INIS)

    Highlights: ► The solubilities of carbon dioxide in a eutectic mixture of choline chloride and glycerol were measured. ► The pressure was up to 6.3 MPa. ► The temperature studied was (303.15 to 343.15) K. ► The measured data were reported as functions of temperature and pressure. ► The measured data were represented satisfactorily by the applied correlation. - Abstract: In this work, we present new measurements on the solubility of carbon dioxide in a deep eutectic solvent (DES) containing choline chloride and glycerol (1:2 mole ratio) over the temperature range (303.15 to 343.15) K and pressures up to 6.3 MPa. Experimental measurements were carried out in a thermogravimetric microbalance, and the effects of buoyancy on the measurements were accounted for. Results indicated that the solubility of the gas in the solvent increased almost linearly with pressure and decreased with increasing temperature. The dependence of the carbon dioxide solubility in the DES (in molality) on temperature and pressure were accurately represented by an extended Henry’s law model at an average absolute deviation of 1.4%.

  11. The role of rumen-protected choline in hepatic function and performance of transition dairy cows.

    Science.gov (United States)

    Shahsavari, Arash; D'Occhio, Michael J; Al Jassim, Rafat

    2016-07-01

    High-producing dairy cows enter a period of negative energy balance during the first weeks of lactation. Energy intake is usually sufficient to cover the increase in energy requirements for fetal growth during the period before calving, but meeting the demand for energy is often difficult during the early stages of lactation. A catabolic state predominates during the transition period, leading to the mobilisation of energy reserves (NEFA and amino acids) that are utilised mainly by the liver and muscle. Increased uptake of mobilised NEFA by the liver, combined with the limited capacity of hepatocytes to either oxidise fatty acids for energy or to incorporate esterified fatty acids into VLDL results in fatty liver syndrome and ketosis. This metabolic disturbance can affect the general health, and it causes economic losses. Different nutritional strategies have been used to restrict negative effects associated with the energy challenge in transition cows. The provision of choline in the form of rumen-protected choline (RPC) can potentially improve liver function by increasing VLDL exportation from the liver. RPC increases gene expression of microsomal TAG transfer protein and APOB100 that are required for VLDL synthesis and secretion. Studies with RPC have looked at gene expression, metabolic hormones, metabolite profiles, milk production and postpartum reproduction. A reduction in liver fat and enhanced milk production has been observed with RPC supplementation. However, the effects of RPC on health and reproduction are equivocal, which could reflect the lack of sufficient dose-response studies. PMID:27138530

  12. From Phosphosites to Kinases

    DEFF Research Database (Denmark)

    Munk, Stephanie; Refsgaard, Jan C; Olsen, Jesper V;

    2016-01-01

    Kinases play a pivotal role in propagating the phosphorylation-mediated signaling networks in living cells. With the overwhelming quantities of phosphoproteomics data being generated, the number of identified phosphorylation sites (phosphosites) is ever increasing. Often, proteomics investigations...... sequence motifs, mostly based on large scale in vivo and in vitro experiments. The context of the kinase and the phosphorylated proteins in a biological system is equally important for predicting association between the enzymes and substrates, an aspect that is also being tackled with available...

  13. Phosphatidylinositol kinase from rabbit reticulocytes

    International Nuclear Information System (INIS)

    Phosphatidylinositol (PI) kinase was isolated from the postribosomal supernatant of rabbit reticulocytes. This activity was identified by the formation of a product that comigrated with phosphatidylinositol-4-phosphate (PIP) when purified PI was phosphorylated in the presence of [32P]ATP and Mg2+. Three major peaks of PI kinase activity were resolved by chromatography on DEAE-cellulose. The first peak eluted at 50-100 mM NaCl together with several serine protein kinases, casein kinase (CK) I and protease activated kinase (PAK) I and II. The PI kinase was subsequently separated from the protein kinases by chromatography on phosphocellulose. The second peak eluted at 125-160 mM NaCl and contained another lipid kinase activity that produced a product which comigrated with phosphatidic acid on thin layer chromatography. The third peak, which eluted at 165-200 mM NaCl, partly comigrated with casein kinase (CK) II and an active protein kinase(s) which phosphorylated mixed histone and histone I. CK II and the histone kinase activities were also separated by chromatography on phosphocelluslose. The different forms of PI kinase were characterized and compared with respect to substrate and salt requirements

  14. Characterization of four hemocyanin isoforms in Litopenaeus vannamei

    Institute of Scientific and Technical Information of China (English)

    XU Jingxiang; RUAN Lingwei; LI Zhen; YU Xiaoman; LI Sedong; SHI Hong; XU Xun

    2015-01-01

    In this study, the gene encoding hemocyanin subunit L, LvHcL, was cloned from Litopenaeus vannamei and the genomic organization was characterized. This gene was diverse with many SNPs and also had at least four isoforms, while one of them (LvHcL4) only had two exons and the exon2 was missed. Transcription analysis showed that these isoforms of LvHcL were up-regulated after WSSV challenge in WSSV-resistant shrimp, while the transcriptions were decreased constantly in WSSV-susceptible shrimp. It is suggested that the hemocyanin had rich polymorphism and was involved in the antiviral response. These results could extend our previous findings and provide insights into the immune feature of hemocyanin, which would be helpful for further studies aimed at antiviral mechanism in inver-tebrate.

  15. Differential regulation of renal phospholipase C isoforms by catecholamines.

    OpenAIRE

    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A

    1995-01-01

    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam ...

  16. GABAB(1) receptor subunit isoforms differentially regulate stress resilience

    OpenAIRE

    O’Leary, Olivia F.; Felice, Daniela; Galimberti, Stefano; Savignac, Hélène M.; Bravo, Javier A.; Crowley, Tadhg; El Yacoubi, Malika; Vaugeois, Jean-Marie; Gassmann, Martin; Bettler, Bernhard; Dinan, Timothy G.; Cryan, John F.

    2014-01-01

    Stress can increase susceptibility to developing psychiatric disorders, including depression. Understanding the neurobiological mechanisms underlying stress resilience and susceptibility is key to identifying novel targets for the development of more effective treatments for stress-related psychiatric disorders. Here we show that specific isoforms of GABAB receptor subunits differentially regulate stress resilience. Specifically, GABAB(1a)−/− mice are more susceptible whereas GABAB(1b)−/− mic...

  17. Kinase Inhibitors from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Ana Zivanovic

    2011-10-01

    Full Text Available Protein kinases play a critical role in cell regulation and their deregulation is a contributing factor in an increasing list of diseases including cancer. Marine sponges have yielded over 70 novel compounds to date that exhibit significant inhibitory activity towards a range of protein kinases. These compounds, which belong to diverse structural classes, are reviewed herein, and ordered based upon the kinase that they inhibit. Relevant synthetic studies on the marine natural product kinase inhibitors have also been included.

  18. PSA doubling time for prediction of [11C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy

    International Nuclear Information System (INIS)

    Previous studies have shown that the positive detection rate of [11C]choline positron emission tomography/computed tomography (PET/CT) depends on prostate-specific antigen (PSA) plasma levels. This study compared PSA levels and PSA doubling time (PSADT) to predict [11C]choline PET/CT findings. PSADT was retrospectively calculated in 170 prostate cancer (PCa) patients with biochemical failure after radical prostatectomy who underwent [11C]choline PET/CT. PSADT was calculated as PSADT = ln2/m, where m is the slope of the linear regression line of the natural log of PSA values. At least three PSA measurements were used (median: 4; range: 3-16), separated by at least 3 months, each with a minimum increase of 0.20 ng/ml. PET/CT findings were validated using criteria based on histological analysis and clinical and imaging data. Statistical analysis was performed using the t test, chi-square test, analysis of variance and binary logistic regression. Regression-based coefficients were used to develop a nomogram predicting the probability of positive [11C]choline PET/CT and 200 bootstrap resamples were used for internal validation. The median PSA was 1.25 ng/ml (range: 0.23-48.6 ng/ml), and the median PSADT was 7.0 months (range: 0.97-45.3 months). [11C]choline PET/CT was positive in 75 of 170 patients (44%). PET/CT findings were validated using histological criteria (11%) and clinical and imaging criteria (89%). The overall accuracy of [11C]choline PET/CT was 88%. Multivariate logistic regression showed that high PSA and short PSADT were significant (p 11C]choline PET/CT [PSA: odds ratio (OR) = 1.43; 95% confidence interval (CI): 1.15-1.78; PSADT: OR = 1.12; 95% CI: 1.04-1.21]. The percentage of patients with positive [11C]choline PET/CT was 27% for PSADT >6 months, 61% for PSADT between 3 and 6 months and 81% for PSADT 11C]choline uptake in the skeleton significantly increased (p 6 months to 52% for PSADT 11C]choline uptake in the prostatectomy bed were 0% for PSADT 6

  19. Efficacy of oral nicotinic acid and choline in the treatment and prevention of fatty liver in dairy cow

    Institute of Scientific and Technical Information of China (English)

    TianWenru; YangDianjun; 等

    1994-01-01

    Nicotinic acid (N.C.)and choline were given orally to the periparturient cows to treat and prevent fatty liver.Blood parameters of glucose,β-hydroxybutyrate,albumin,total protein,magnesium,aspartate aminotransferase(AST) and non-esterified fatty acid(NEFA) were measured.There were no significant differences between the reated and untreated groups in the plasma concentrations of albumin,total,protein and magnsium.Significant decrease in plasma concentrations of β-hydroxybutyrate,NEFA and AST were observed in the treated cows following administration of N.C.and choline.All the fatty liver cows(100%) treated with N.C.and choline recovered within 5 weeks after calving compared with 71.4%(5/7) of untreated cows recovered.The incident ate of fatty liver postpartum in the cows with N.C.and choline given 2 weeks before calving was 30%(3/10),and the affected cows had a range of mild to moderate fatty liver whilst the incident rate was 50%(5/10)in the untreated cows.which had a range of mild to of severe fatty liver,Meanwhile,the treated cows had a significant higher prodection of milk and shorter intervals from calving to uterine involution,to the first postpartum ovulation and to conception.

  20. Crotoxin, the major toxin from the rattlesnake Crotalus durissus terrificus, inhibits ³H-choline uptake in guinea pig ileum

    Directory of Open Access Journals (Sweden)

    L.S. Kattah

    2000-09-01

    Full Text Available We examined the effect of crotoxin, the neurotoxic complex from the venom of the South American rattlesnake Crotalus durissus terrificus, on the uptake of ³H-choline in minces of smooth muscle myenteric plexus from guinea pig ileum. In the concentration range used (0.03-1 µM and up to 10 min of treatment, crotoxin decreased ³H-choline uptake by 50-75% compared to control. This inhibition was time dependent and did not seem to be associated with the disruption of the neuronal membrane, because at least for the first 20 min of tissue exposure to the toxin (up to 1 µM the levels of lactate dehydrogenase (LDH released into the supernatant were similar to those of controls. Higher concentrations of crotoxin or more extensive incubation times with this toxin resulted in elevation of LDH activity detected in the assay supernatant. The inhibitory effect of crotoxin on ³H-choline uptake seems to be associated with its phospholipase activity since the equimolar substitution of Sr2+ for Ca2+ in the incubation medium or the modification of the toxin with p-bromophenacyl bromide substantially decreased this effect. Our results show that crotoxin inhibits ³H-choline uptake with high affinity (EC25 = 10 ± 5 nM. We suggest that this inhibition could explain, at least in part, the blocking effect of crotoxin on neurotransmission.

  1. Molecular mechanical differences between isoforms of contractile actin in the presence of isoforms of smooth muscle tropomyosin.

    OpenAIRE

    Lennart Hilbert; Genevieve Bates; Roman, Horia N.; Jenna L Blumenthal; Zitouni, Nedjma B.; Apolinary Sobieszek; Mackey, Michael C.; Anne-Marie Lauzon

    2013-01-01

    The proteins involved in smooth muscle's molecular contractile mechanism - the anti-parallel motion of actin and myosin filaments driven by myosin heads interacting with actin - are found as different isoforms. While their expression levels are altered in disease states, their relevance to the mechanical interaction of myosin with actin is not sufficiently understood. Here, we analyzed in vitro actin filament propulsion by smooth muscle myosin for [Formula: see text]-actin ([Formula: see text...

  2. Effect of rumen-protected choline on performance, blood metabolites, and hepatic triacylglycerols of periparturient dairy cattle

    NARCIS (Netherlands)

    Zom, R.L.G.; Baal, van J.; Goselink, R.M.A.; Bakker, J.A.; Veth, M.J.; Vuuren, van A.M.

    2011-01-01

    The effects of a dietary supplement of rumen-protected choline on feed intake, milk yield, milk composition, blood metabolites, and hepatic triacylglycerol were evaluated in periparturient dairy cows. Thirty-eight multiparous cows were blocked into 19 pairs and then randomly allocated to either one

  3. Effect of rumen-protected choline supplementation on liver and adipose gene expression during the transition period in dairy cattle

    NARCIS (Netherlands)

    Goselink, R.M.A.; Baal, van J.; Widjaja, H.C.A.; Dekker, R.A.; Zom, R.L.G.; Veth, M.J.; Vuuren, van A.M.

    2013-01-01

    We previously reported that supplementation of rumen-protected choline (RPC) reduces the hepatic triacylglycerol concentration in periparturient dairy cows during early lactation. Here, we investigated the effect of RPC on the transcript levels of lipid metabolism-related genes in liver and adipose

  4. No up-regulation of the phosphatidylethanolamine N-methyltransferase pathway and choline production by sex hormones in cats

    NARCIS (Netherlands)

    Valtolina, Chiara; Vaandrager, Arie B; Favier, Robert P; Robben, Joris H; Tuohetahuntila, Maidina; Kummeling, Anne; Jeusette, Isabelle; Rothuizen, Jan

    2015-01-01

    BACKGROUND: Feline hepatic lipidosis (FHL) is a common cholestatic disease affecting cats of any breed, age and sex. Both choline deficiency and low hepatic phosphatidylethanolamine N-methyltransferase (PEMT) activity are associated with hepatic lipidosis (HL) in humans, mice and rats. The PEMT expr

  5. Suppression Effects of Betaine-Enriched Spinach on Hyperhomocysteinemia Induced by Guanidinoacetic Acid and Choline Deficiency in Rats

    Directory of Open Access Journals (Sweden)

    Yi-Qun Liu

    2014-01-01

    Full Text Available Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed 25% casein diet (25C was significantly suppressed by supplementation with betaine or spinach, and it was completely suppressed by taking 11.0% spinach supplementation. The choline deprivation-induced enhancement of plasma homocysteine concentration in rats fed 25% soybean protein diet (25S was markedly suppressed by 3.82% spinach. Supplementation with betaine or spinach partially prevented the effects of GAA on hepatic concentrations of methionine metabolites. The decrease in activity of betaine-homocysteine S-methyltransferase (BHMT and cystathionine β-synthase (CBS in GAA-induced hyperhomocysteinemia was recovered by supplementation with betaine or spinach. Supplementation with betaine or spinach did not affect BHMT activity, whereas it partially restored CBS activity in choline-deprived 25S. The results indicated that betaine or spinach could completely suppress the hyperhomocysteinemia induced by choline deficiency resulting from stimulating the homocysteine removal by both remethylation and cystathionine formation.

  6. SALT ACCLIMATION OF TRITICUM-AESTIVUM BY CHOLINE CHLORIDE - PLANT-GROWTH, MINERAL-CONTENT, AND CELL-PERMEABILITY

    NARCIS (Netherlands)

    MANSOUR, MM; STADELMANN, EJ; LEESTADELMANN, OY

    1993-01-01

    Seedlings of a salt sensitive line of Triticum aestivum were grown in Hoagland solution supplemented with 100 mM NaCl following a pretreatment with choline chloride (ChCl). Changes in growth, mineral content of roots and shoots, and passive permeability of the cell membrane were measured. Relative g

  7. Effects of Flutamide on [Methyl-3H]-Choline Uptake in Human Prostate Cancer-3 Cells: A Pilot Study

    OpenAIRE

    Al-Saeedi, Fatma

    2007-01-01

    Background: Positron emission tomography using [methyl-11C]-choline is effective in imaging many types of cancer, especially prostate cancer (PC). The antiandrogen flutamide is often used as part of the initial treatment of PC. Data on the effect of flutamide on and methylcholine incorporation into PC-3 cells are lacking in the experimental and literature work.

  8. The role of Protein Kinase Cη in T cell biology

    Directory of Open Access Journals (Sweden)

    Nicholas R.J. Gascoigne

    2012-06-01

    Full Text Available Protein kinase Cη (PKCη is a member of the novel PKC subfamily, which also includes δ, ε, and θ isoforms. Compared to the other novel PKCs, the function of PKCη in the immune system is largely unknown. Several studies have started to reveal the role of PKCη, particularly in T cells. PKCη is highly expressed in T cells, and is upregulated during thymocyte positive selection. Interestingly, like the θ isoform, PKCη is also recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell. However, unlike PKCθ, which becomes concentrated to the central region of the synapse, PKCη remains in a diffuse pattern over the whole area of the synapse, suggesting distinctive roles of these two isoforms in signal transduction. Although PKCη is dispensable for thymocyte development, further analysis of PKCη− or PKCθ−deficient and double knockout mice revealed the redundancy of these two isoforms in thymocyte development. In contrast, PKCη rather than PKCθ, plays an important role for T cell homeostatic proliferation, which requires recognition of self-antigen. Another piece of evidence demonstrating that PKCη and PKCθ have isoform specific as well as redundant roles come from the analysis of CD4 to CD8 T cell ratios in the periphery of these knockout mice. Deficiency in PKCη or PKCθ had opposing effects as PKCη knockout mice had a higher ratio of CD4 to CD8 T cells compared to that of wild-type mice, whereas PKCθ-deficient mice had a lower ratio. Biochemical studies showed that calcium flux and NFκB translocation is impaired in PKCη-deficient T cells upon TCR crosslinking stimulation, a character shared with PKCθ-deficient T cells. However, unlike the case with PKCθ, the mechanistic study of PKCη is at early stage and the signaling pathways involving PKCη, at least in T cells, are essentially unknown. In this review, we will cover the topics mentioned above as well as provide some

  9. Fatigue resistance of rat extraocular muscles does not depend on creatine kinase activity

    Directory of Open Access Journals (Sweden)

    Hayeß Katrin

    2005-08-01

    Full Text Available Abstract Background Creatine kinase (CK links phosphocreatine, an energy storage system, to cellular ATPases. CK activity serves as a temporal and spatial buffer for ATP content, particularly in fast-twitch skeletal muscles. The extraocular muscles are notoriously fast and active, suggesting the need for efficient ATP buffering. This study tested the hypotheses that (1 CK isoform expression and activity in rat extraocular muscles would be higher, and (2 the resistance of these muscles to fatigue would depend on CK activity. Results We found that mRNA and protein levels for cytosolic and mitochondrial CK isoforms were lower in the extraocular muscles than in extensor digitorum longus (EDL. Total CK activity was correspondingly decreased in the extraocular muscles. Moreover, cytoskeletal components of the sarcomeric M line, where a fraction of CK activity is found, were downregulated in the extraocular muscles as was shown by immunocytochemistry and western blotting. CK inhibition significantly accelerated the development of fatigue in EDL muscle bundles, but had no major effect on the extraocular muscles. Searching for alternative ATP buffers that could compensate for the relative lack of CK in extraocular muscles, we determined that mRNAs for two adenylate kinase (AK isoforms were expressed at higher levels in these muscles. Total AK activity was similar in EDL and extraocular muscles. Conclusion These data indicate that the characteristic fatigue resistance of the extraocular muscles does not depend on CK activity.

  10. Expression patterns of protein kinase D 3 during mouse development

    Directory of Open Access Journals (Sweden)

    Lutz Sylke

    2008-04-01

    Full Text Available Abstract Background The PKD family of serine/threonine kinases comprises a single member in Drosophila (dPKD, two isoforms in C. elegans (DKF-1 and 2 and three members, PKD1, PKD2 and PKD3 in mammals. PKD1 and PKD2 have been the focus of most studies up to date, which implicate these enzymes in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, immune responses, apoptosis and cell proliferation. Concerning PKD3, a role in the formation of vesicular transport carriers at the trans-Golgi network (TGN and in basal glucose transport has been inferred from in vitro studies. So far, however, the physiological functions of the kinase during development remain unknown. Results We have examined the expression pattern of PKD3 during the development of mouse embryos by immunohistochemistry. Using a PKD3 specific antibody we demonstrate that the kinase is differentially expressed during organogenesis. In the developing heart a strong PKD3 expression is constantly detected from E10 to E16.5. From E12.5 on PKD3 is increasingly expressed in neuronal as well as in the supporting connective tissue and in skeletal muscles. Conclusion The data presented support an important role for PKD3 during development of these tissues.

  11. Calcium-Dependent Protein Kinase Genes in Corn Roots

    Science.gov (United States)

    Takezawa, D.; Patil, S.; Bhatia, A.; Poovaiah, B. W.

    1996-01-01

    Two cDNAs encoding Ca-2(+) - Dependent Protein Kinases (CDPKs), Corn Root Protein Kinase 1 and 2 (CRPK 1, CRPK 2) were isolated from the root tip library of corn (Zea mays L., cv. Merit) and their nucleotide sequences were determined. Deduced amino acid sequences of both the clones have features characteristic of plant CDPKS, including all 11 conserved serine/threonine kinase subdomains, a junction domain and a calmodulin-like domain with four Ca-2(+), -binding sites. Northern analysis revealed that CRPKI mRNA is preferentially expressed in roots, especially in the root tip; whereas, the expression of CRPK2 mRNA was very low in all the tissues tested. In situ hybridization experiments revealed that CRPKI mRNA is highly expressed in the root apex, as compared to other parts of the root. Partially purified CDPK from the root tip phosphorylates syntide-2, a common peptide substrate for plant CDPKs, and the phosphorylation was stimulated 7-fold by the addition of Ca-2(+). Our results show that two CDPK isoforms are expressed in corn roots and they may be involved in the Ca-2(+)-dependent signal transduction process.

  12. Analysis of the genotype of diacylglycerol kinase delta single-nucleotide polymorphisms in Parkinson disease in the Han Chinese population

    OpenAIRE

    Wei Song; Yong Ping Chen; Rui Huang; Ke Chen; Ping Lei Pan; Jianpeng Li; Yuan Yang; Hui-Fang Shang

    2012-01-01

    Numerous Single-Nucleotide Polymorphisms (SNPs) of the Diacylglycerol Kinase Delta (DGKD) isoform 1 gene have been associated with Parkinson Disease (PD) in the genome-wide association studies of Caucasian population. This association has not been proven in the Han Chinese PD patients. This study included 376 unrelated Han Chinese PD patients from West China and 273 unrelated healthy controls from the same region. Five SNPs (rs2971859, rs1550532, rs2305539, rs2034762, and rs2242102) were geno...

  13. The relationship between choline plus creatine- to-citrate ratio in magnetic resonance spectroscopy with the invasion of prostate cancer

    Directory of Open Access Journals (Sweden)

    M Ghafoori

    2012-12-01

    Full Text Available Background: Prostate cancer is the most common cancer and the second cause of cancer mortality in men. Although histopathological examination is the gold-standard for its diagnosis, tendency toward less invasive methods is growing. The purpose of this study was to evaluate the relationship between choline plus creatine- to-citrate ratio in magnetic resonance spectroscopy (MRS with the invasion of prostate cancer in a series of patients with prostate cancer.Methods: Totally, 200 patients with pathologically proven prostate cancer were enrolled in this cross-sectional study by a non-probability sampling method in Hazrat Rasul Akram Hospital in Tehran, Iran during 2009-2010. Pathological staging was the gold standard for the diagnosis of prostate cancer while the patients underwent MRS for choline plus creatine- to-citrate ratio determination. MRS and pathological results were compared and analyzed.Results: The mean (±SD values of choline plus creatine- to-citrate ratio in patients with Gleason scores less than 3, 3 to 4 and greater than 4 were 245.8±146.8, 427.1±173.6 and 427.1±173.6, respectively (P<0.001. The mean (±SD values of choline plus creatine- to-citrate ratio in patients with PSA levels less than 4, 4 to 10 and greater than 10 were 180.7±58.3, 247±93.5 and 385.1±106.6, respectively (P<0.001.Conclusion: Choline plus creatine- to-citrate ratio determined by magnetic resonance spectroscopy has a significant relationship with the degree of invasion of prostate cancer and can be used for the staging of the disease.

  14. PET imaging of hepatocellular carcinoma with {sup 18}F-fluoroethylcholine and {sup 11}C-choline

    Energy Technology Data Exchange (ETDEWEB)

    Kolthammer, Jeffrey A.; Tenley, Nathan [Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH (United States); Corn, David J.; Wu, Chunying; Tian, Haibin; Wang, Yanming [University Hospitals Case Medical Center, Nuclear Medicine Division, Department of Radiology, Cleveland, OH (United States); Lee, Zhenghong [Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH (United States); University Hospitals Case Medical Center, Nuclear Medicine Division, Department of Radiology, Cleveland, OH (United States)

    2011-07-15

    Choline-based radiotracers have been studied for PET imaging of hepatocellular carcinoma (HCC). Using an {sup 18}F-labeled choline analog, instead of the {sup 11}C-labeled native choline, would facilitate its widespread use in the clinic. In this study, PET with {sup 18}F-fluoroethylcholine (FEC) and {sup 11}C-choline (CHOL) were compared using an animal model of HCC. The effects of fasting on the performance of choline-based tracers were also investigated. A woodchuck model of HCC was used to compare the two tracers, which were administered and imaged in sequence during the same imaging session. Dynamic PET images were generated spanning 50 min starting from tracer injection. Time-activity curves and tracer contrast were calculated in liver regions with tracer accumulation, and the contrast at a late time-point with the two tracers, and between fasted and nonfasted states, were compared. Foci of HCC with increased uptake ranged in size from 1.0 to 1.6 cm, with mean tumor-to-background contrast of 1.3 with FEC and 1.5 with CHOL at 50 min after injection. The tracers show similar patterns of uptake immediately following administration, and both activities plateaued at 10 min after injection. No significant differences in uptake dynamics or final contrast were observed between the fasted and nonfasted states. PET imaging of HCC is possible with both CHOL and FEC. Fasting was not found to affect accumulation of either tracer. These results encourage further investigation into the clinical utility of FEC for HCC imaging. (orig.)

  15. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes.

    Science.gov (United States)

    Wu, I; Shin, S C; Cao, Y; Bender, I K; Jafari, N; Feng, G; Lin, S; Cidlowski, J A; Schleimer, R P; Lu, N Z

    2013-01-01

    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids. PMID:23303127

  16. Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.

    Science.gov (United States)

    Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J

    2015-12-01

    Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration. PMID:26540438

  17. The Semi-automatic Synthesis of 18F-fluoroethyl-choline by Domestic FDG Synthesizer

    Directory of Open Access Journals (Sweden)

    ZHOU Ming

    2016-02-01

    Full Text Available As an important complementary imaging agent for 18F-FDG, 18F-fluoroethyl-choline (18F-FECH has been demonstrated to be promising in brain and prostate cancer imaging. By using domestic PET-FDG-TI-I CPCU synthesizer, 18F-FECH was synthesized by different reagents and consumable supplies. The C18 column was added before the product collection bottle to remove K2.2.2. The 18F-FECH was synthesized by PET-FDG-IT-I synthesizer efficiently about 30 minutes by radiochemical yield of 42.0% (no decay corrected, n=5, and the radiochemical purity was still more than 99.0% after 6 hours. The results showed the domestic PET-FDG-IT-I synthesizer could semi-automatically synthesize injectable 18F-FECH in high efficiency and radiochemical purity

  18. Effect Of Choline Chloride (CC On 'Monroe' Peach Fruit Quality And Leaf Characteristics

    Directory of Open Access Journals (Sweden)

    Melike ÇETİNBAŞ

    2014-07-01

    Full Text Available The effect of choline chloride (CC were evaluated on fruit quality of ‘Monroe’ peach over 2-year period in a commercial orchard. Spray treatments of CC (0, 1000, 2000 and 3000 ppm were applied to 7, 21 and 30 days before commercial harvest (DBH. Some fruit quality parameters fruit weight (g, fruit flesh firmness (N, soluble solids content (SSC, %, titratable acidity (TA, %, fruit colour (CIELab, sugars, ethylene production, respiration rate were assessed for per treatments. All treatments were increased fruit size and fruit weight. In the applications of CC the most determined results have occurred on colourness which is the one of significant quality parameter in peaches and they had positive effect on the development red colour.Treatments of CC have been increased of total sugar contents

  19. Synthesis of cadmium and zinc semiconductor compounds from an ionic liquid containing choline chloride and urea

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Phillip J. [Department of Chemistry, University of Bath, BA2 7AY (United Kingdom)]. E-mail: p.j.dale@bath.ac.uk; Samantilleke, Anura P. [Department of Chemistry, University of Bath, BA2 7AY (United Kingdom); Shivagan, Dilip D. [Department of Chemistry, University of Bath, BA2 7AY (United Kingdom); Peter, Laurence M. [Department of Chemistry, University of Bath, BA2 7AY (United Kingdom)

    2007-05-31

    A eutectic mixture of choline chloride and urea (commercially known as Reline) has been used as a medium from which CdS, CdSe, and ZnS thin films have been electrodeposited for the first time. Reline is a conductive room temperature ionic liquid (RTIL) with a wide electrochemical window, which is suitable for use as a medium for electrodeposition. The voltammetric behaviour of the Reline-Cd(II)-sulfur system has been investigated. Thin films of CdS deposited at constant potential were characterized by photocurrent and electrolyte electroabsorbance spectroscopies. Thin films of CdSe and ZnS have also been prepared, and their photocurrent excitation spectra have been measured.

  20. Electrochemical Polishing Applications and EIS of a Novel Choline Chloride-Based Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Wixtrom, Alex I. [Christopher Newport University, Newport News, VA (United States); Buhler, Jessica E. [Christopher Newport University, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Abdel-Fattah, Tarek M. [Christopher Newport University, Newport News, VA (United States)

    2013-06-01

    Minimal surface roughness is a critical feature for high-field superconducting radio frequency (SRF) cavities used to engineer particle accelerators. Current methods for polishing Niobium cavities typically utilize solutions containing a mixture of concentrated sulfuric and hydrofluoric acid. Polishing processes such as these are effective, yet there are many hazards and costs associated with the use (and safe disposal) of the concentrated acid solutions. An alternative method for electrochemical polishing of the cavities was explored using a novel ionic liquid solution containing choline chloride. Potentiostatic electrochemical impedance spectroscopy (EIS) was used to analyze the ionic polishing solution. Final surface roughness of the Nb was found to be comparable to that of the acid-polishing method, as assessed by atomic force microscopy (AFM). This indicates that ionic liquid-based electrochemical polishing of Nb is a viable replacement for acid-based methods for preparation of SRF cavities.

  1. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  2. Rat model of nonalcoholic steatohepatitis created by methionine and choline deficiency: biochemical and histological analyses

    Directory of Open Access Journals (Sweden)

    Seki A

    2011-07-01

    Full Text Available Shinichi Nagai1, Jun Iwamoto2, Masakazu Suzuki1, Azusa Seki11Hamri Co Ltd, Koga, Ibaraki, Japan; 2Institute for Integrated Sports Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, JapanBackground: The purpose of this study was to establish a Sprague-Dawley rat model of nonalcoholic steatohepatitis (NASH due to combined methionine and choline deficiency (MCD. Methods: Eighty nine-week-old male Sprague-Dawley rats were randomized into two groups (n = 40, comprising an MCD diet group and a standard diet (control group. After fasting blood was collected, 10 rats from each group were scheduled to be sacrificed at weeks 4, 8, 12, and 16 from the start of the experiment. Body weight and liver wet weight were measured, and histological examination of the liver was performed after hematoxylin and eosin and Oil Red O staining. Results: In the MCD group, body weight and liver wet weight were decreased compared with the control group, while serum levels of albumin, γ-glutamyltranspeptidase, alkaline phosphatase, and total bilirubin were increased, but serum levels of total cholesterol and triglycerides were decreased. Histological examination of the liver revealed centrilobular hepatocellular fatty change from as early as four weeks, with mild fibrosis after 12 weeks. Conclusion: These findings suggested the onset of NASH with liver dysfunction and bile duct damage in rats fed with the MCD diet. Increased fatty acid uptake and decreased cholesterol secretion were considered to be important mechanisms by which the MCD diet promoted intrahepatic lipid accumulation in this model.Keywords: nonalcoholic steatohepatitis, rat, methionine, choline, fatty liver 

  3. Green synthesis of choline chloride%氯化胆碱的绿色合成

    Institute of Scientific and Technical Information of China (English)

    陈瑞瑞; 袁存光

    2012-01-01

    以环氧乙烷和三甲胺盐酸盐为原料,用经过酸碱活化的绿色环保阴离子交换树脂为催化剂合成氯化胆碱.用质量分数为0.5%的活化的阴离子交换树脂作催化剂,在n(环氧乙烷)∶n(三甲胺盐酸盐)=1.1∶1,反应温度为60℃,反应时间为1h的条件下,合成的氯化胆碱产品的产率≥96%.催化剂经酸碱活化1次可重复使用若干次而不影响催化效果.%In this paper, a kind of environment friendly anion exchange resin catalyst which was activated by acid and base was applied in synthesizing choline chloride. The ethylene oxide and trimethylamine hydrochlorate were used as the raw material in this study. When the weight of catalyst is 0. 5% of total reactant mass, molar ratio of C2H4O and ( CH3 )3N-HC1 is 1. 1 ,the reaction temperature is 601 and the reaction time is 1 hour,the yield of choline chloride is above 96%. The activity of catalyst is almost the same as the one activated once,when it is used several times.

  4. Dietary choline supplementation to dams during pregnancy and lactation mitigates the effects of in utero stress exposure on adult anxiety-related behaviors

    Science.gov (United States)

    Schulz, Kalynn M.; Pearson, Jennifer N.; Gasparrini, Mary E.; Brooks, Kayla F.; Drake-Frazier, Chakeer; Zajkowski, Megan E.; Kreisler, Alison D.; Adams, Catherine E.; Leonard, Sherry; Stevens, Karen E.

    2014-01-01

    Brain cholinergic dysfunction is associated with neuropsychiatric illnesses such as depression, anxiety, and schizophrenia. Maternal stress exposure is associated with these same illnesses in adult offspring, yet the relationship between prenatal stress and brain cholinergic function is largely unexplored. Thus, using a rodent model, the current study implemented an intervention aimed at buffering the potential effects of prenatal stress on the developing brain cholinergic system. Specifically, control and stressed dams were fed choline-supplemented or control chow during pregnancy and lactation, and the anxiety-related behaviors of adult offspring were assessed in the open field, elevated zero maze and social interaction tests. In the open field test, choline supplementation significantly increased center investigation in both stressed and nonstressed female offspring, suggesting that choline-supplementation decreases female anxiety-related behavior irrespective of prenatal stress exposure. In the elevated zero maze, prenatal stress increased anxiety-related behaviors of female offspring fed a control diet (normal choline levels). However, prenatal stress failed to increase anxiety-related behaviors in female offspring receiving supplemental choline during gestation and lactation, suggesting that dietary choline supplementation ameliorated the effects of prenatal stress on anxiety-related behaviors. For male rats, neither prenatal stress nor diet impacted anxiety-related behaviors in the open field or elevated zero maze. In contrast, perinatal choline supplementation mitigated prenatal stress-induced social behavioral deficits in males, whereas neither prenatal stress nor choline supplementation influenced female social behaviors. Taken together, these data suggest that perinatal choline supplementation ameliorates the sex-specific effects of prenatal stress. PMID:24675162

  5. Oncoprotein protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA); Davis, Roger (Princeton, MA); Derijard, Benoit (Shrewsbury, MA)

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. Cyclin-dependent kinases.

    Science.gov (United States)

    Malumbres, Marcos

    2014-01-01

    Cyclin-dependent kinases (CDKs) are protein kinases characterized by needing a separate subunit - a cyclin - that provides domains essential for enzymatic activity. CDKs play important roles in the control of cell division and modulate transcription in response to several extra- and intracellular cues. The evolutionary expansion of the CDK family in mammals led to the division of CDKs into three cell-cycle-related subfamilies (Cdk1, Cdk4 and Cdk5) and five transcriptional subfamilies (Cdk7, Cdk8, Cdk9, Cdk11 and Cdk20). Unlike the prototypical Cdc28 kinase of budding yeast, most of these CDKs bind one or a few cyclins, consistent with functional specialization during evolution. This review summarizes how, although CDKs are traditionally separated into cell-cycle or transcriptional CDKs, these activities are frequently combined in many family members. Not surprisingly, deregulation of this family of proteins is a hallmark of several diseases, including cancer, and drug-targeted inhibition of specific members has generated very encouraging results in clinical trials. PMID:25180339

  7. Low-Q peak in X-ray patterns of choline-phenylalanine and -homophenylalanine: A combined effect of chain and stacking

    Science.gov (United States)

    Campetella, Marco; Martino, Delia Chillura; Scarpellini, Eleonora; Gontrani, Lorenzo

    2016-09-01

    In this contribution we report for the first time the X-ray patterns of choline-phenylalanine and choline-homophenylalanine ionic liquids. The presence of a low Q peak in both systems is another evidence that a long alkyl chain is not always needed to establish a nanodomain segregation in the liquid sufficient to be revealed by the diffraction experiment. These new data are compared with the diffraction patterns and the theoretical calculations of other choline-aminoacid ionic liquids recently reported. A significant role might be played by the stacking interactions between aromatic rings.

  8. [{sup 11}C]Choline PET/CT predicts survival in hormone-naive prostate cancer patients with biochemical failure after radical prostatectomy

    Energy Technology Data Exchange (ETDEWEB)

    Giovacchini, Giampiero [Stadtspital Triemli, Department of Radiology and Nuclear Medicine, Zurich (Switzerland); Incerti, Elena; Mapelli, Paola; Gianolli, Luigi; Picchio, Maria [IRCCS San Raffaele Scientific Institute, Department of Nuclear Medicine, Milano (Italy); Kirienko, Margarita [University of Milano-Bicocca, Milano (Italy); Briganti, Alberto; Gandaglia, Giorgio; Montorsi, Francesco [IRCCS San Raffaele Scientific Institute, Department of Urology, Milano (Italy)

    2015-05-01

    Over the last decade, PET/CT with radiolabelled choline has been shown to be useful for restaging patients with prostate cancer (PCa) who develop biochemical failure. The limitations of most clinical studies have been poor validation of [{sup 11}C]choline PET/CT-positive findings and lack of survival analysis. The aim of this study was to assess whether [{sup 11}C]choline PET/CT can predict survival in hormone-naive PCa patients with biochemical failure. This retrospective study included 302 hormone-naive PCa patients treated with radical prostatectomy who underwent [{sup 11}C]choline PET/CT from 1 December 2004 to 31 July 2007 because of biochemical failure (prostate-specific antigen, PSA, >0.2 ng/mL). Median PSA was 1.02 ng/mL. PCa-specific survival was estimated using Kaplan-Meier curves. Cox regression analysis was used to evaluate the association between clinicopathological variables and PCa-specific survival. The coefficients of the covariates included in the Cox regression analysis were used to develop a novel nomogram. Median follow-up was 7.2 years (1.4 - 18.9 years). [{sup 11}C]Choline PET/CT was positive in 101 of 302 patients (33 %). Median PCa-specific survival after prostatectomy was 14.9 years (95 % CI 9.7 - 20.1 years) in patients with positive [{sup 11}C]choline PET/CT. Median survival was not achieved in patients with negative [{sup 11}C]choline PET/CT. The 15-year PCa-specific survival probability was 42.4 % (95 % CI 31.7 - 53.1 %) in patients with positive [{sup 11}C]choline PET/CT and 95.5 % (95 % CI 93.5 - 97.5 %) in patients with negative [{sup 11}C]choline PET/CT. In multivariate analysis, [{sup 11}C]choline PET/CT (hazard ratio 6.36, 95 % CI 2.14 - 18.94, P < 0.001) and Gleason score >7 (hazard ratio 3.11, 95 % CI 1.11 - 8.66, P = 0.030) predicted PCa-specific survival. An internally validated nomogram predicted 15-year PCa-specific survival probability with an accuracy of 80 %. Positive [{sup 11}C]choline PET/CT after biochemical failure

  9. [11C]Choline PET/CT predicts survival in hormone-naive prostate cancer patients with biochemical failure after radical prostatectomy

    International Nuclear Information System (INIS)

    Over the last decade, PET/CT with radiolabelled choline has been shown to be useful for restaging patients with prostate cancer (PCa) who develop biochemical failure. The limitations of most clinical studies have been poor validation of [11C]choline PET/CT-positive findings and lack of survival analysis. The aim of this study was to assess whether [11C]choline PET/CT can predict survival in hormone-naive PCa patients with biochemical failure. This retrospective study included 302 hormone-naive PCa patients treated with radical prostatectomy who underwent [11C]choline PET/CT from 1 December 2004 to 31 July 2007 because of biochemical failure (prostate-specific antigen, PSA, >0.2 ng/mL). Median PSA was 1.02 ng/mL. PCa-specific survival was estimated using Kaplan-Meier curves. Cox regression analysis was used to evaluate the association between clinicopathological variables and PCa-specific survival. The coefficients of the covariates included in the Cox regression analysis were used to develop a novel nomogram. Median follow-up was 7.2 years (1.4 - 18.9 years). [11C]Choline PET/CT was positive in 101 of 302 patients (33 %). Median PCa-specific survival after prostatectomy was 14.9 years (95 % CI 9.7 - 20.1 years) in patients with positive [11C]choline PET/CT. Median survival was not achieved in patients with negative [11C]choline PET/CT. The 15-year PCa-specific survival probability was 42.4 % (95 % CI 31.7 - 53.1 %) in patients with positive [11C]choline PET/CT and 95.5 % (95 % CI 93.5 - 97.5 %) in patients with negative [11C]choline PET/CT. In multivariate analysis, [11C]choline PET/CT (hazard ratio 6.36, 95 % CI 2.14 - 18.94, P < 0.001) and Gleason score >7 (hazard ratio 3.11, 95 % CI 1.11 - 8.66, P = 0.030) predicted PCa-specific survival. An internally validated nomogram predicted 15-year PCa-specific survival probability with an accuracy of 80 %. Positive [11C]choline PET/CT after biochemical failure predicts PCa-specific survival in hormone-naive PCa patients

  10. Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups

    OpenAIRE

    da Costa, Kerry-Ann; Corbin, Karen D.; Niculescu, Mihai D.; Galanko, Joseph A.; Zeisel, Steven H

    2014-01-01

    Effect alleles (alleles with a polymorphism that is associated with the effect being measured) in a small number of single-nucleotide polymorphisms (SNPs) are known to influence the dietary requirement for choline. In this study, we examined a much larger number of SNPs (n=200) in 10 genes related to choline metabolism for associations with development of organ dysfunction (liver or muscle) when 79 humans were fed a low-choline diet. We confirmed that effect alleles in SNPs such as the C alle...

  11. Differential expression of five protein kinase C isoenzymes in FAO and HepG2 hepatoma cell lines compared with normal rat hepatocytes.

    Science.gov (United States)

    Ducher, L; Croquet, F; Gil, S; Davy, J; Féger, J; Bréhier, A

    1995-12-14

    We analyzed the expression of five protein kinase C (PKC) isoforms in cytosolic and membrane fractions from normal rat hepatocytes compared with those of two tumorigenic cell lines FAO and HepG2. Western blots with PKC-specific isoenzymes polyclonal antibodies provide evidences for the presence of the five isoforms alpha, beta II, delta, epsilon and zeta in normal rat hepatocytes. In hepatoma cells, we show differences in the level of expression, the molecular sizes and the responses to Phorbol 12-myristate 13-acetate (PMA).

  12. Activation of protein kinase Ceta triggers cortical granule exocytosis in Xenopus oocytes.

    Science.gov (United States)

    Gundersen, Cameron B; Kohan, Sirus A; Chen, Qian; Iagnemma, Joseph; Umbach, Joy A

    2002-03-15

    Previous work has shown that phorbol esters or diacylglycerol trigger cortical granule exocytosis in Xenopus oocytes. We sought to identify the isoform(s) of protein kinase C (PKC) that mediate(s) this regulated secretory event. Because this process is initiated by lipid activators of PKC but is independent of calcium ions, we focused on the family of novel (calcium-independent) PKCs. Pharmacological investigations using Gö6976 and Gö6983 tended to exclude PKCdelta, epsilon and mu as secretory triggers. Subcellular fractionation and immunoblot data revealed that these oocytes expressed all five members of the novel PKC family, but it was only PKCeta that colocalized with cortical granules. Finally, expression of wild type or constitutively active forms of PKCdelta and eta strongly supported the conclusion that it is PKCeta that initiates cortical granule exocytosis in these cells. These observations represent an important step in identifying the mechanism of secretory triggering in this system. PMID:11884530

  13. The FU gene and its possible protein isoforms

    Directory of Open Access Journals (Sweden)

    Nöthen Markus M

    2004-07-01

    Full Text Available Abstract Background FU is the human homologue of the Drosophila gene fused whose product fused is a positive regulator of the transcription factor Cubitus interruptus (Ci. Thus, FU may act as a regulator of the human counterparts of Ci, the GLI transcription factors. Since Ci and GLI are targets of Hedgehog signaling in development and morphogenesis, it is expected that FU plays an important role in Sonic, Desert and/or Indian Hedgehog induced cellular signaling. Results The FU gene was identified on chromosome 2q35 at 217.56 Mb and its exon-intron organization determined. The human developmental disorder Syndactyly type 1 (SD1 maps to this region on chromosome 2 and the FU coding region was sequenced using genomic DNA from an affected individual in a linked family. While no FU mutations were found, three single nucleotide polymorphisms were identified. The expression pattern of FU was thoroughly investigated and all examined tissues express FU. It is also clear that different tissues express transcripts of different sizes and some tissues express more than one transcript. By means of nested PCR of specific regions in RT/PCR generated cDNA, it was possible to verify two alternative splicing events. This also suggests the existence of at least two additional protein isoforms besides the FU protein that has previously been described. This long FU and a much shorter isoform were compared for the ability to regulate GLI1 and GLI2. None of the FU isoforms showed any effects on GLI1 induced transcription but the long form can enhance GLI2 activity. Apparently FU did not have any effect on SUFU induced inhibition of GLI. Conclusions The FU gene and its genomic structure was identified. FU is a candidate gene for SD1, but we have not identified a pathogenic mutation in the FU coding region in a family with SD1. The sequence information and expression analyses show that transcripts of different sizes are expressed and subjected to alternative splicing

  14. Functional differences between L- and T-plastin isoforms

    OpenAIRE

    1994-01-01

    Fimbrins/plastins are a family of highly conserved actin-bundling proteins. They are present in all eukaryotic cells including yeast, but each isoform displays a remarkable tissue specificity. T-plastin is normally found in epithelial and mesenchymal cells while L-plastin is present in hematopoietic cells. However, L-plastin has been also found in tumor cells of non-hematopoietic origin (Lin, C.-S., R. H. Aebersold, S. B. Kent, M. Varma, and J. Leavitt. 1988. Mol. Cell. Biol. 8:4659-4668; Lin...

  15. Soluble malate dehydrogenase of Geophagus brasiliensis (Cichlidae, Perciformes: isolated isoforms and kinetics properties

    Directory of Open Access Journals (Sweden)

    Maria Regina de Aquino-Silva

    2008-01-01

    Full Text Available Kinetic properties and thermal stabilities of Geophagus brasiliensis skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to examine a possible sMDH-B* locus duplication in a fixation process influenced by genetic drift. Two optimal pHs were detected: 7.5 for AB1 unfractionated muscle phenotype and its B1 isoform, and 8.0 for AB1B2 unfractionated muscle phenotype, A and B2 isoforms. While G. brasiliensis A isoform could be characterized as thermostable, the duplicated B isoform cannot be assumed as thermolabile. Km values for isolated B2 isoforms were 1.6 times lower than for B1. A duplication event in progress best explains the electrophoretic six-band pattern detected in G. brasiliensis, which would be caused by genetic drift.

  16. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  17. Induction of Chemokine Expression by Adiponectin In Vitro is Isoform-Dependent

    OpenAIRE

    Song, Huijuan; Chan, James; Rovin, Brad H.

    2009-01-01

    Adiponectin is reported to have both pro- and anti-inflammatory effects. Because adiponectin circulates in isoforms of various sizes, and some responses to adiponectin are isoform-dependent, it was postulated that the pro-inflammatory effects of adiponectin may isoform-specific. To test this, peripheral blood mononuclear cells (PBMC), microvascular endothelial cells (MVEC), and human glomerular mesangial cells (HMC) were treated with high or low molecular weight (HMW, LMW) recombinant human a...

  18. MetaDiff: differential isoform expression analysis using random-effects meta-regression

    OpenAIRE

    Jia, Cheng; Guan, Weihua; Yang, Amy; Xiao, Rui; Tang, W. H. Wilson; Moravec, Christine S.; Margulies, Kenneth B.; Cappola, Thomas P.; Li, Mingyao; Li, Chun

    2015-01-01

    Background RNA sequencing (RNA-Seq) allows an unbiased survey of the entire transcriptome in a high-throughput manner. A major application of RNA-Seq is to detect differential isoform expression across experimental conditions, which is of great biological interest due to its direct relevance to protein function and disease pathogenesis. Detection of differential isoform expression is challenging because of uncertainty in isoform expression estimation owing to ambiguous reads and variability i...

  19. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes

    OpenAIRE

    Wu, I; Shin, S. C.; Cao, Y; Bender, I K; N Jafari; Feng, G.; Lin, S.; Cidlowski, J. A.; Schleimer, R. P.; Lu, N Z

    2013-01-01

    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expres...

  20. PDH activation during in vitro muscle contractions in PDH kinase 2 knockout mice: effect of PDH kinase 1 compensation.

    Science.gov (United States)

    Dunford, Emily C; Herbst, Eric A; Jeoung, Nam Ho; Gittings, William; Inglis, J Greig; Vandenboom, Rene; LeBlanc, Paul J; Harris, Robert A; Peters, Sandra J

    2011-06-01

    Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate oxidation in skeletal muscle. PDH is deactivated by a set of PDH kinases (PDK1, PDK2, PDK3, PDK4), with PDK2 and PDK4 being the most predominant isoforms in skeletal muscle. Although PDK2 is the most abundant isoform, few studies have examined its physiological role. The role of PDK2 on PDH activation (PDHa) at rest and during muscle stimulation at 10 and 40 Hz (eliciting low- and moderate-intensity muscle contractions, respectively) in isolated extensor digitorum longus muscles was studied in PDK2 knockout (PDK2KO) and wild-type (WT) mice (n = 5 per group). PDHa activity was unexpectedly 35 and 77% lower in PDK2KO than WT muscle (P = 0.043), while total PDK activity was nearly fourfold lower in PDK2KO muscle (P = 0.006). During 40-Hz contractions, initial force was lower in PDK2KO than WT muscle (P PDK2 and was 1.8-fold higher in PDK2KO than WT muscle (P = 0.019). This likely contributed to ensuring that resting PDHa activity was similar between the groups and accounts for the lower PDH activation during muscle contraction, as PDK1 is a very potent inhibitor of the PDH complex. Increased PDK1 expression appears to be regulated by hypoxia inducible factor-1α, which was 3.5-fold higher in PDK2KO muscle. It is clear that PDK2 activity is essential, even at rest, in regulation of carbohydrate oxidation and production of reducing equivalents for the electron transport chain. In addition, these results underscore the importance of the overall kinetics of the PDK isoform population, rather than total PDK activity, in determining transformation of the PDH complex and PDHa activity during muscle contraction. PMID:21411764

  1. IsoformEx: isoform level gene expression estimation using weighted non-negative least squares from mRNA-Seq data

    Directory of Open Access Journals (Sweden)

    Gupta Ravi

    2011-07-01

    Full Text Available Abstract Background mRNA-Seq technology has revolutionized the field of transcriptomics for identification and quantification of gene transcripts not only at gene level but also at isoform level. Estimating the expression levels of transcript isoforms from mRNA-Seq data is a challenging problem due to the presence of constitutive exons. Results We propose a novel algorithm (IsoformEx that employs weighted non-negative least squares estimation method to estimate the expression levels of transcript isoforms. Validations based on in silico simulation of mRNA-Seq and qRT-PCR experiments with real mRNA-Seq data showed that IsoformEx could accurately estimate transcript expression levels. In comparisons with published methods, the transcript expression levels estimated by IsoformEx showed higher correlation with known transcript expression levels from simulated mRNA-Seq data, and higher agreement with qRT-PCR measurements of specific transcripts for real mRNA-Seq data. Conclusions IsoformEx is a fast and accurate algorithm to estimate transcript expression levels and gene expression levels, which takes into account short exons and alternative exons with a weighting scheme. The software is available at http://bioinformatics.wistar.upenn.edu/isoformex.

  2. The role of the Drosophila LAMMER protein kinase DOA in somatic sex determination

    Indian Academy of Sciences (India)

    Leonard Rabinow; Marie-Laure Samson

    2010-09-01

    DOA kinase, the Drosophila member of the LAMMER/Clk protein kinase family, phosphorylates SR and SR-like proteins, including TRA, TRA2 and RBP1, which are responsible for the alternative splicing of transcripts encoding the key regulator of sex-specific expression in somatic cells of the fly, DOUBLESEX. Specific Doa alleles induce somatic female-to-male sex transformations, which can be enhanced when combined with mutations in loci encoding SR and SR-like proteins. The Doa locus encodes six different kinases, of which a 69-kDa isoform is expressed solely in females. Expression of this isoform is itself under the regulation of the somatic sex determination regulatory network, thus forming a putative positive autoregulatory loop which would reinforce the choice of the female cell-fate. We speculate that this loop is part of the evolutionary ancestral sex-determination machinery, based upon evidence demonstrating the existence of an autoregulatory loop involving TRA and TRA2 in several other insect species.

  3. Multiforms of mammalian adenylate kinase and its monoclonal antibody against AK1.

    Science.gov (United States)

    Kurokawa, Y; Takenaka, H; Sumida, M; Oka, K; Hamada, M; Kuby, S A

    1990-01-01

    An attempt has been made to determine the intracellular distribution of the multiforms of the adenylate kinase (AK) isoenzymes in mammalian tissues, to shed some light on their physiological roles, especially in energy metabolism. The adenylate kinase zymograms obtained from isoelectric focusing yielded two typical isoform patterns: (1) with a pI greater than or equal to 9 and 8.6, specific for bovine skeletal muscle, heart, aorta and brain, and (2) with a pI = 7.9 and 7.1, specific for liver and kidney. Pattern (1) was attributed to the cytosolic isoenzyme (AK1) as demonstrated by immunostaining with anti-AK1. Pattern (2) was attributed to the mitochondrial isoenzyme (AK2). These results were largely confirmed by chromatofocusing experiments. The AK1 isoenzyme was partially purified from the cytosol fraction of bovine aortic smooth muscle and had an apparent Mr of 23.5 kilodaltons. Its kinetic features are discussed from a comparative standpoint. Finally, the human serum AK1 isoform was also detected by Western blotting with a monoclonal antibody directed against crystalline porcine muscle AK1. These results are to form the basis of further studies on the 'aberrant' adenylate kinase isoenzyme from the serum of Duchenne muscular dystrophics.

  4. Prostaglandin D Synthase Isoforms from Cerebrospinal Fluid Vary with Brain Pathology

    Directory of Open Access Journals (Sweden)

    Michael G. Harrington

    2006-01-01

    Full Text Available Glutathione independent prostaglandin D synthase (Swissprot P41222, PTGDS has been identified in human cerebrospinal fluid and some changes in PTGDS in relation to disease have been reported. However, little is known of the extent that PTGDS isoforms fluctuate across a large range of congenital and acquired diseases. The purpose of this study was to examine changes in PTGDS isoforms in such a population. Spinal fluid from 22 healthy study participants (normal controls with no classifiable neurological or psychiatric diagnosis was obtained and PTGDS isoforms were identified by specific immunostaining and mass spectrometry after denaturing 2D gel electrophoresis. The PTGDS isoforms in controls consisted of five charge isoforms that were always present and a small number of occasional, low abundance isoforms. A qualitative survey of 98 different people with a wide range of congenital and acquired diseases revealed striking changes. Loss of the control isoforms occurred in congenital malformations of the nervous system. Gain of additional isoforms occurred in some degenerative, most demyelinating and vasculitic diseases, as well as in Creutzfeldt-Jakob disease. A retrospective analysis of published data that quantified relative amounts of PTGDS in multiple sclerosis, schizophrenia and Parkinson’s disease compared to controls revealed significant dysregulation. It is concluded that qualitative and quantitative fluctuations of cerebrospinal fluid PTGDS isoforms reflect both major and subtle brain pathophysiology.

  5. Proteomic Analysis of Cytokeratin Isoforms Uncovers Association with Survival in Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Tarek G. Gharib

    2002-01-01

    Full Text Available Cytokeratins. (CK are intermediate filaments whose expression is often altered in epithelial cancer. Systematic identification of lung adenocarcinoma proteins using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry has uncovered numerous CK isoforms. In this study, 93 lung adenocarcinomas. (64 stage I and 29 stage III and 10 uninvolved lung samples were quantitatively examined for protein expression. Fourteen of 21 isoforms of CK 7, 8, 18, 19 occurred at significantly higher levels. (P<.05 in tumors compared to uninvolved adjacent tissue. Specific isoforms of the four types of CK identified correlated with either clinical outcome or individual clinical-pathological parameters. All five of the CK7 isoforms associated with patient survival represented cleavage products. Two of five CK7 isoforms. (nos. 2165 and 2091, one of eight CK8 isoforms. (no. 439, one of three CK19 isoforms. (no. 1955 were associated with survival and significantly correlated to their mRNA levels, suggesting that transcription underlies overexpression of these CK isoforms. Our data indicate substantial heterogeneity among CK in lung adenocarcinomas resulting from posttranslational modifications, some of which correlated with patient survival and other clinical parameters. Therefore, specific isoforms of individual CK may have utility as diagnostic or predictive markers in lung adenocarcinomas.

  6. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance

    Science.gov (United States)

    Gautheron, Jérémie; Vucur, Mihael; Schneider, Anne T.; Severi, Ilenia; Roderburg, Christoph; Roy, Sanchari; Bartneck, Matthias; Schrammen, Peter; Diaz, Mauricio Berriel; Ehling, Josef; Gremse, Felix; Heymann, Felix; Koppe, Christiane; Lammers, Twan; Kiessling, Fabian; Van Best, Niels; Pabst, Oliver; Courtois, Gilles; Linkermann, Andreas; Krautwald, Stefan; Neumann, Ulf P.; Tacke, Frank; Trautwein, Christian; Green, Douglas R.; Longerich, Thomas; Frey, Norbert; Luedde, Mark; Bluher, Matthias; Herzig, Stephan; Heikenwalder, Mathias; Luedde, Tom

    2016-01-01

    Receptor-interacting protein kinase 3 (RIPK3) mediates necroptosis, a form of programmed cell death that promotes inflammation in various pathological conditions, suggesting that it might be a privileged pharmacological target. However, its function in glucose homeostasis and obesity has been unknown. Here we show that RIPK3 is over expressed in the white adipose tissue (WAT) of obese mice fed with a choline-deficient high-fat diet. Genetic inactivation of Ripk3 promotes increased Caspase-8-dependent adipocyte apoptosis and WAT inflammation, associated with impaired insulin signalling in WAT as the basis for glucose intolerance. Similarly to mice, in visceral WAT of obese humans, RIPK3 is overexpressed and correlates with the body mass index and metabolic serum markers. Together, these findings provide evidence that RIPK3 in WAT maintains tissue homeostasis and suppresses inflammation and adipocyte apoptosis, suggesting that systemic targeting of necroptosis might be associated with the risk of promoting insulin resistance in obese patients. PMID:27323669

  7. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  8. Map kinases in fungal pathogens.

    Science.gov (United States)

    Xu, J R

    2000-12-01

    MAP kinases in eukaryotic cells are well known for transducing a variety of extracellular signals to regulate cell growth and differentiation. Recently, MAP kinases homologous to the yeast Fus3/Kss1 MAP kinases have been identified in several fungal pathogens and found to be important for appressorium formation, invasive hyphal growth, and fungal pathogenesis. This MAP kinase pathway also controls diverse growth or differentiation processes, including conidiation, conidial germination, and female fertility. MAP kinases homologous to yeast Slt2 and Hog1 have also been characterized in Candida albicans and Magnaporthe grisea. Mutants disrupted of the Slt2 homologues have weak cell walls, altered hyphal growth, and reduced virulence. The Hog1 homologues are dispensable for growth but are essential for regulating responses to hyperosmotic stress in C. albicans and M. grisea. Overall, recent studies have indicated that MAP kinase pathways may play important roles in regulating growth, differentiation, survival, and pathogenesis in fungal pathogens. PMID:11273677

  9. Inhibition of formyl peptide-stimulated superoxide anion generation by Fal-002-2 occurs mainly through the blockade of the p21-activated kinase and protein kinase C signaling pathways in ratneutrophils.

    Science.gov (United States)

    Tsai, Ya-Ru; Huang, Li-Jiau; Lin, Hui-Yi; Hung, Yun-Jie; Lee, Miau-Rong; Kuo, Sheng-Chu; Hsu, Mei-Feng; Wang, Jih-Pyang

    2013-02-15

    In formyl-Met-Leu-Phe (fMLP)-stimulated rat neutrophils, a synthetic compound, 6-chloro-2-(2-chlorophenyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (Fal-002-2), inhibited superoxide anion (O2(•-)) generation with an IC50 value of about 11μM, which was not mediated by scavenging the generated O2(•-) or by a cytotoxic effect on neutrophils. Fal-002-2 effectively attenuated the phosphorylation of Ser residues in p47(phox) and the association between p47(phox) and p22(phox) in fMLP-stimulated neutrophils. The interaction of p47(phox) with protein kinase C (PKC) isoforms (α, βI, βII, δ and ζ) was attenuated by Fal-002-2 with a similar IC50 value to that required for inhibition of O2(•-) generation, whereas Fal-002-2 had no prominent effect on PKC isoform membrane translocation and did not affect the kinase activity. Moreover, Fal-002-2 had no effect on the phosphorylation of Akt and downstream glycogen synthase kinase-3β, only slightly affected the intracellular free Ca(2+) concentration, phosphorylation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase (MAPK), but effectively attenuated the downstream MAPK-activated protein kinase-2 phosphorylation. The interaction of p21-activated kinase (PAK) 1with p47(phox), phosphorylation of PAK1 (Thr423/Ser144) and the membrane recruitment of PAK1 were effectively inhibited by Fal-002-2. Fal-002-2 also blocked the activation of Rac1 and Cdc42 in a concentration range that effectively inhibited PAK activation. Taken together, these results suggest that Fal-002-2 inhibits fMLP-stimulated O2(•-) generation in neutrophils mainly through the blockade of PKC and PAK signaling pathways and partly through p38 MAPK signaling.

  10. Entropy-based model for miRNA isoform analysis.

    Directory of Open Access Journals (Sweden)

    Shengqin Wang

    Full Text Available MiRNAs have been widely studied due to their important post-transcriptional regulatory roles in gene expression. Many reports have demonstrated the evidence of miRNA isoform products (isomiRs in high-throughput small RNA sequencing data. However, the biological function involved in these molecules is still not well investigated. Here, we developed a Shannon entropy-based model to estimate isomiR expression profiles of high-throughput small RNA sequencing data extracted from miRBase webserver. By using the Kolmogorov-Smirnov statistical test (KS test, we demonstrated that the 5p and 3p miRNAs present more variants than the single arm miRNAs. We also found that the isomiR variant, except the 3' isomiR variant, is strongly correlated with Minimum Free Energy (MFE of pre-miRNA, suggesting the intrinsic feature of pre-miRNA should be one of the important factors for the miRNA regulation. The functional enrichment analysis showed that the miRNAs with high variation, particularly the 5' end variation, are enriched in a set of critical functions, supporting these molecules should not be randomly produced. Our results provide a probabilistic framework for miRNA isoforms analysis, and give functional insights into pre-miRNA processing.

  11. A New View of Ras Isoforms in Cancers.

    Science.gov (United States)

    Nussinov, Ruth; Tsai, Chung-Jung; Chakrabarti, Mayukh; Jang, Hyunbum

    2016-01-01

    Does small GTPase K-Ras4A have a single state or two states, one resembling K-Ras4B and the other N-Ras? A recent study of K-Ras4A made the remarkable observation that even in the absence of the palmitoyl, K-Ras4A can be active at the plasma membrane. Importantly, this suggests that K-Ras4A may exist in two distinct signaling states. In state 1, K-Ras4A is only farnesylated, like K-Ras4B; in state 2, farnesylated and palmitoylated, like N-Ras. The K-Ras4A hypervariable region sequence is positively charged, in between K-Ras4B and N-Ras. Taken together, this raises the possibility that the farnesylated but nonpalmitoylated state 1, like K-Ras4B, binds calmodulin and is associated with colorectal and other adenocarcinomas like lung cancer and pancreatic ductal adenocarcinoma. On the other hand, state 2 may be associated with melanoma and other cancers where N-Ras is a major contributor, such as acute myeloid leukemia. Importantly, H-Ras has two, singly and doubly, palmitoylated states that may also serve distinct functional roles. The multiple signaling states of palmitoylated Ras isoforms question the completeness of small GTPase Ras isoform statistics in different cancer types and call for reevaluation of concepts and protocols. They may also call for reconsideration of oncogenic Ras therapeutics. PMID:26659836

  12. A Review of Metallothionein Isoforms and their Role in Pathophysiology

    Directory of Open Access Journals (Sweden)

    Senthil kumar M

    2011-05-01

    Full Text Available Abstract The Metallothionein (MT is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological systems. Strong evidence exists that MT modulates complex diseases and the immune system in the body but the primary function of MT still remains unknown. This review's main objective is to explore the capability to specifically manipulate MT levels in cells and in animals to provide answers regarding how MT could impact those complex disease scenarios. The experimental result mentioned in this review related among MT, zinc, cadmium, diabetic, heart disease, bone retardation, neuro toxicity, kidney dysfunction, cancer, and brain suggest novel method for exploration and contribute significantly to the growing scientist to research further in this field.

  13. Therapeutic targeting of Janus kinases

    OpenAIRE

    Pesu, Marko; Laurence, Arian; Kishore, Nandini; Zwillich, Sam; Chan, Gary; O’Shea, John J.

    2008-01-01

    Cytokines play pivotal roles in immunity and inflammation, and targeting cytokines and their receptors is an effective means of treating such disorders. Type I and II cytokine receptors associate with Janus family kinases (JAKs) to effect intracellular signaling. These structurally unique protein kinases play essential and specific roles in immune cell development and function. One JAK, JAK3, has particularly selective functions. Mutations of this kinase underlie severe combined immunodeficie...

  14. Visualizing autophosphorylation in histidine kinases

    OpenAIRE

    Casino, Patricia; Miguel-Romero, Laura; Marina, Alberto

    2014-01-01

    Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two dir...

  15. Protein kinase C expression in salivary gland acinar epithelial cells in non-obese diabetic mice, an experimental model for Sjögren's syndrome.

    Science.gov (United States)

    Tensing, E-K; Ma, J; Hukkanen, M; Fox, H S; Li, T-F; Törnwall, J; Konttinen, Y T

    2005-01-01

    We planned to investigate the expression of protein kinase C (PKC) isoforms in acinar epithelial cells of salivary glands in the non-obese diabetic (NOD) mouse to find out if they develop changes of the PKC system like those seen in the human counterpart, i.e. in Sjögren's syndrome. Parotid, submandibular, and sublingual glands from NOD and control BALB/c mice were stained with a panel of monoclonal antibodies directed against conventional (alpha, beta, and gamma), novel (delta, epsilon, and theta), and atypical (lambda and iota) PKC isoforms using the streptavidin/HRP method. Similarly to human labial salivary glands, acinar epithelial cells of the healthy control BALB/c mice contained two of the conventional PKC isoforms, alpha and beta. Acinar and ductal epithelial cells also contained the atypical PKC isoforms lambda and iota. PKC isoforms gamma, delta, epsilon, and theta were not found. NOD mice which displayed focal sialadenitis contained the same conventional and atypical PKC isoforms. The acinar cells in NOD mice, in contrast to the Sjögren's syndrome patients, did not lack PKC alpha or beta. On the contrary, PKC alpha and beta staining was stronger than in the control BALB/c mice. The present results demonstrate that both conventional and atypical PKC isoforms participate in the salivary epithelial cell biology and that there are mouse strain-associated and/or disease state-associated changes in their expression. The lack of PKC alpha and beta isoforms found in Sjögren's syndrome was not reproduced in NOD mice, which discloses one more difference between the human disease and its NOD mouse model.

  16. Phosphatidylinositol 3-kinase in myogenesis.

    Science.gov (United States)

    Kaliman, P; Zorzano, A

    1997-08-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) has been cloned and characterized in a wide range of organisms. PI 3-kinases are activated by a diversity of extracellular stimuli and are involved in multiple cell processes such as cell proliferation, protein trafficking, cell motility, differentiation, regulation of cytoskeletal structure, and apoptosis. It has recently been shown that PI 3-kinase is a crucial second messenger in the signaling of myogenesis. Two structurally unrelated highly specific inhibitors of PI 3-kinase-wortmannin and LY294002-block the morphological and biochemical differentiation program of different skeletal-muscle cell models. Moreover, L6E9 myoblasts overexpressing a dominant-negative mutant of PI 3-kinase p85 regulatory subunit (Δp85) are unable to differentiate. Furthermore, PI 3-kinase is specifically involved in the insulinlike growth factor (IGF)-dependent myogenic pathway. Indeed, the ability of IGF-I, des-1,3-IGF-I, and IGF-II to promote cell fusion and muscle-specific protein expression is impaired after treatment with PI 3-kinase inhibitors or in cells overexpressing Δp85. The identification of additional key downstream elements of the IGF/PI 3-kinase myogenic cascade is crucial to a detailed understanding of the process of muscle differentiation and may generate new tools for skeletal and cardiac muscle regeneration therapies. (Trends Cardiovasc Med 1997;7:198-202). © 1997, Elsevier Science Inc. PMID:21235885

  17. Mining frequent patterns for AMP-activated protein kinase regulation on skeletal muscle

    Directory of Open Access Journals (Sweden)

    Chen Yi-Ping

    2006-08-01

    Full Text Available Abstract Background AMP-activated protein kinase (AMPK has emerged as a significant signaling intermediary that regulates metabolisms in response to energy demand and supply. An investigation into the degree of activation and deactivation of AMPK subunits under exercise can provide valuable data for understanding AMPK. In particular, the effect of AMPK on muscle cellular energy status makes this protein a promising pharmacological target for disease treatment. As more AMPK regulation data are accumulated, data mining techniques can play an important role in identifying frequent patterns in the data. Association rule mining, which is commonly used in market basket analysis, can be applied to AMPK regulation. Results This paper proposes a framework that can identify the potential correlation, either between the state of isoforms of α, β and γ subunits of AMPK, or between stimulus factors and the state of isoforms. Our approach is to apply item constraints in the closed interpretation to the itemset generation so that a threshold is specified in terms of the amount of results, rather than a fixed threshold value for all itemsets of all sizes. The derived rules from experiments are roughly analyzed. It is found that most of the extracted association rules have biological meaning and some of them were previously unknown. They indicate direction for further research. Conclusion Our findings indicate that AMPK has a great impact on most metabolic actions that are related to energy demand and supply. Those actions are adjusted via its subunit isoforms under specific physical training. Thus, there are strong co-relationships between AMPK subunit isoforms and exercises. Furthermore, the subunit isoforms are correlated with each other in some cases. The methods developed here could be used when predicting these essential relationships and enable an understanding of the functions and metabolic pathways regarding AMPK.

  18. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts.

    Science.gov (United States)

    Kacena, Melissa A; Eleniste, Pierre P; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E; Mayo, Lindsey D; Bruzzaniti, Angela

    2012-05-18

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  19. Megakaryocytes Regulate Expression of Pyk2 Isoforms and Caspase-mediated Cleavage of Actin in Osteoblasts*

    Science.gov (United States)

    Kacena, Melissa A.; Eleniste, Pierre P.; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E.; Mayo, Lindsey D.; Bruzzaniti, Angela

    2012-01-01

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  20. Effects of irradiation on the [methyl-{sup 3}H]choline uptake in the human prostate cancer cell lines LNCaP and PC3

    Energy Technology Data Exchange (ETDEWEB)

    Holzapfel, K.; Mueller, S.A.; Seidl, C.; Schwaiger, M.; Senekowitsch-Schmidtke, R. [Dept. of Nuclear Medicine, Technical Univ. of Munich (Germany); Grosu, A.L. [Dept. of Radiation Oncology, Technical Univ. of Munich (Germany)

    2008-06-15

    Background and purpose: choline positron emission tomography (PET) can help to optimize radiation treatment strategy of prostate cancer. Therefore, the aim of this study was to elucidate the effects of ionizing radiation on the choline uptake in an androgen-dependent (LNCaP) and an androgen-independent (PC3) prostate cancer cell line. Material and methods: uptake of [methyl-{sup 3}H]choline chloride was investigated between 4 and 96 h after irradiation with 6 Gy. Dose dependence of choline uptake was examined following irradiation with 2-12 Gy, and cell survival was analyzed via the clonogenic assay. Michaelis-Menten kinetics was determined 24 h (PC3) and 48 h (LNCaP) after irradiation with 6 Gy. Results: PC3 cells showed a significant transitory increase of [methyl-{sup 3}H]choline uptake with a maximum at 24 h after irradiation. In LNCaP cells irradiation induced a significant decrease with a minimum at 48 h. Changes in choline uptake in both cell lines were almost dose-independent up to 12 Gy. Following irradiation with 6 Gy, transport capacity (v{sub max}) increased and Michaelis-Menten constant (K{sub M}) decreased in PC3 cells, while in LNCaP cells the two parameters behaved vice versa. Conclusion: changes in choline uptake following irradiation might be due to metabolic changes associated with initiation of processes that finally cause cell death. Thus, changes in tumor choline uptake monitored by PET after radiotherapy might not exclusively reflect therapeutic success but also altered tracer uptake as a consequence of irradiation. (orig.)

  1. Utility of 18F-choline photon emission tomography/computed tomography in the diagnosis of parathyroid adenoma

    Science.gov (United States)

    Damle, Nishikant Avinash; Tripathi, Madhavi; Behera, Abhishek; Aggarwal, Sameer; Bal, Chandrasekhar; Aggarwal, Shipra; Aggarwal, Vivek; Kandasamy, Devasenathipathi; Taywade, Sameer

    2016-01-01

    Recently, the role of 18F-choline in the detection of parathyroid adenomas has been reported. At our institution, we are currently studying the role of this tracer in comparison to the standard methoxy-isobutyl-isonitrile.(MIBI) scan with single photon emission tomography/computed tomography. Our initial results show that 18F-choline is at least as good as 99mTc-MIBI scan. We present here a representative case of a 45-year-old woman with multiple skeletal lytic lesions and a high parathyroid hormone.(PTH) who underwent both these imaging techniques with concordant results, further confirmed by histopathology and postoperative fall in serum PTH levels. PMID:27385893

  2. Differential sensitivity of rat voltage-sensitive sodium channel isoforms to pyrazoline-type insecticides.

    Science.gov (United States)

    Silver, Kristopher S; Soderlund, David M

    2006-07-15

    Pyrazoline-type insecticides are potent inhibitors of insect and mammalian voltage-sensitive sodium channels. In mammals, there are nine sodium channel alpha subunit isoforms that have unique distributions and pharmacological properties, but no published data exist that compare the relative sensitivity of these different mammalian sodium channel isoforms to inhibition by pyrazoline-type insecticides. This study employed the Xenopus oocyte expression system to examine the relative sensitivity of rat Na(v)1.2a, Na(v)1.4, Na(v)1.5, and Na(v)1.8 sodium channel alpha subunit isoforms to the pyrazoline-type insecticides indoxacarb, DCJW, and RH 3421. Additionally, we assessed the effect of coexpression with the rat beta1 auxiliary subunit on the sensitivity of the Na(v)1.2a and Na(v)1.4 isoforms to these compounds. The relative sensitivity of the four sodium channel alpha subunits differed for each of the three compounds we examined. With DCJW, the order of sensitivity was Na(v)1.4 > Na(v)1.2a > Na(v)1.5 > Na(v)1.8. In contrast, the relative sensitivity of these isoforms to indoxacarb differed from that to DCJW: the Na(v)1.8 isoform was most sensitive, the Na(v)1.4 isoform was completely insensitive, and the sensitivities of the Na(v)1.5 and Na(v)1.2a isoforms were intermediate between these two extremes. Moreover, the pattern of sensitivity to RH 3421 among these four isoforms was different from that for either indoxacarb or DCJW: the Na(v)1.4 isoform was most sensitive to RH 3421, whereas the sensitivities of the remaining three isoforms were substantially less than that of the Na(v)1.4 isoform and were approximately equivalent. The only statistically significant effect of coexpression of either the Na(v)1.2a or Na(v)1.4 isoforms with the beta1 subunit was the modest reduction in the sensitivity of the Na(v)1.2a isoform to RH 3421. These results demonstrate that mammalian sodium channel isoforms differ in their sensitivities to pyrazoline-type insecticides.

  3. Nesprins: tissue-specific expression of epsilon and other short isoforms.

    Directory of Open Access Journals (Sweden)

    Nguyen Thuy Duong

    Full Text Available Nesprin-1-giant and nesprin-2-giant regulate nuclear positioning by the interaction of their C-terminal KASH domains with nuclear membrane SUN proteins and their N-terminal calponin-homology domains with cytoskeletal actin. A number of short isoforms lacking the actin-binding domains are produced by internal promotion. We have evaluated the significance of these shorter isoforms using quantitative RT-PCR and western blotting with site-specific monoclonal antibodies. Within a complete map of nesprin isoforms, we describe two novel nesprin-2 epsilon isoforms for the first time. Epsilon isoforms are similar in size and structure to nesprin-1-alpha. Expression of nesprin isoforms was highly tissue-dependent. Nesprin-2-epsilon-1 was found in early embryonic cells, while nesprin-2-epsilon-2 was present in heart and other adult tissues, but not skeletal muscle. Some cell lines lack shorter isoforms and express only one of the two nesprin genes, suggesting that either of the giant nesprins is sufficient for basic cell functions. For the first time, localisation of endogenous nesprin away from the nuclear membrane was shown in cells where removal of the KASH domain by alternative splicing occurs. By distinguishing between degradation products and true isoforms on western blots, it was found that previously-described beta and gamma isoforms are expressed either at only low levels or with a limited tissue distribution. Two of the shortest alpha isoforms, nesprin-1-alpha-2 and nesprin-2-alpha-1, were found almost exclusively in cardiac and skeletal muscle and a highly conserved and alternatively-spliced exon, available in both nesprin genes, was always included in these tissues. These "muscle-specific" isoforms are thought to form a complex with emerin and lamin A/C at the inner nuclear membrane and mutations in all three proteins cause Emery-Dreifuss muscular dystrophy and/or inherited dilated cardiomyopathy, disorders in which only skeletal muscle and

  4. Effects of rumen-protected choline supplementation on metabolic and performance responses of transition dairy cows.

    Science.gov (United States)

    Leiva, T; Cooke, R F; Brandão, A P; Marques, R S; Vasconcelos, J L M

    2015-04-01

    The objective of this experiment was to compare metabolic and milk production parameters in dairy cows supplemented and nonsupplemented with rumen-protected choline (RPC) during the transition period. Twenty-three nonlactating, multiparous, pregnant Holstein cows were ranked by BW and BCS 21 d before expected date of calving and immediately were assigned to receive (n = 12) or not receive (control; n = 11) RPC until 45 d in milk (DIM). Cows supplemented with RPC received (as-fed basis) 50 and 100 g/d of RPC (18.8% choline) before and after calving, respectively. Before calving, cows were maintained in 2 drylot pens according to treatment with ad libitum access to corn silage, and individually they received (as-fed basis) 3 kg/cow daily of a concentrate. Upon calving, cows were moved to 2 adjacent drylot pens according to treatment, milked twice daily, offered (as-fed basis) 35 kg/cow daily of corn silage, and individually received a concentrate formulated to meet their nutritional requirements after milking. The RPC was individually offered to cows as a topdressing into the morning concentrate feeding. Before calving, cow BW and BCS were recorded weekly, and blood samples were collected every 5 d beginning on d -21 relative to expected calving date. Upon calving and until 45 DIM, BW and BCS were recorded weekly, individual milk production was recorded daily, and milk samples were collected once a week and analyzed for fat, protein, and total solids. Blood samples were collected every other day from 0 to 20 DIM and every 5 d from 20 to 45 DIM. Based on actual calving dates, cows receiving RPC or control began receiving treatments 16.8 ± 1.7 and 17.3 ± 2.0 d before calving, respectively. No treatment effects were detected (P ≥ 0.18) on postpartum concentrate intake, BW and BCS, or serum concentrations of cortisol, β-hydroxybutyrate, NEFA, glucose, and IGF-I. Cows supplemented with RPC had greater (P ≤ 0.01) mean serum haptoglobin and insulin concentrations

  5. Effects of rumen-protected choline supplementation on metabolic and performance responses of transition dairy cows.

    Science.gov (United States)

    Leiva, T; Cooke, R F; Brandão, A P; Marques, R S; Vasconcelos, J L M

    2015-04-01

    The objective of this experiment was to compare metabolic and milk production parameters in dairy cows supplemented and nonsupplemented with rumen-protected choline (RPC) during the transition period. Twenty-three nonlactating, multiparous, pregnant Holstein cows were ranked by BW and BCS 21 d before expected date of calving and immediately were assigned to receive (n = 12) or not receive (control; n = 11) RPC until 45 d in milk (DIM). Cows supplemented with RPC received (as-fed basis) 50 and 100 g/d of RPC (18.8% choline) before and after calving, respectively. Before calving, cows were maintained in 2 drylot pens according to treatment with ad libitum access to corn silage, and individually they received (as-fed basis) 3 kg/cow daily of a concentrate. Upon calving, cows were moved to 2 adjacent drylot pens according to treatment, milked twice daily, offered (as-fed basis) 35 kg/cow daily of corn silage, and individually received a concentrate formulated to meet their nutritional requirements after milking. The RPC was individually offered to cows as a topdressing into the morning concentrate feeding. Before calving, cow BW and BCS were recorded weekly, and blood samples were collected every 5 d beginning on d -21 relative to expected calving date. Upon calving and until 45 DIM, BW and BCS were recorded weekly, individual milk production was recorded daily, and milk samples were collected once a week and analyzed for fat, protein, and total solids. Blood samples were collected every other day from 0 to 20 DIM and every 5 d from 20 to 45 DIM. Based on actual calving dates, cows receiving RPC or control began receiving treatments 16.8 ± 1.7 and 17.3 ± 2.0 d before calving, respectively. No treatment effects were detected (P ≥ 0.18) on postpartum concentrate intake, BW and BCS, or serum concentrations of cortisol, β-hydroxybutyrate, NEFA, glucose, and IGF-I. Cows supplemented with RPC had greater (P ≤ 0.01) mean serum haptoglobin and insulin concentrations

  6. Changes in brain striatum dopamine and acetylcholine receptors induced by chronic CDP-choline treatment of aging mice.

    OpenAIRE

    Giménez, R.; Raïch, J.; Aguilar, J.

    1991-01-01

    1. Spiroperidol binding (dopamine D2 receptors) and quinuclidinyl benzilate binding (muscarinic receptors) in striata of 19-month old mice was analyzed for animals that had received chronic administration of cytidine 5'-diphosphocholine (CDP-choline) incorporated into the chow consumed (100 or 500 mg kg-1 added per day) for the 7 months before they were killed. 2. Treated animals displayed an increase in the dopamine receptor densities of 11% for those receiving 100 mg kg-1 and 18% for those ...

  7. Diagnostic value of combining 11C-choline and 18F-FDG PET/CT in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    In this prospective study, our goal was to emphasize the diagnostic value of combining 11C-choline and 18F-FDG PET/CT for hepatocellular carcinoma (HCC) in patients with chronic liver disease. Thirty-three consecutive patients were enrolled. All patients were suspected to have HCC based on CT and/or MRI imaging. A final diagnosis was obtained by histopathological examination or by imaging alone according to American Association for the Study of Liver Disease criteria. All patients underwent PET/CT with both tracers within a median of 5 days. All lesions showing higher tracer uptake than normal liver were considered positive for HCC. We examined how tracer uptake was related to biological (serum α-fetoprotein levels) and pathological (differentiation status, peritumoral capsule and vascular invasion) prognostic markers of HCC, as well as clinical observations at 6 months (recurrence and death). Twenty-eight HCC, four cholangiocarcinomas and one adenoma were diagnosed. In the HCC patients, the sensitivity of 11C-choline, 18F-FDG and combined 11C-choline and 18F-FDG PET/CT for the detection of HCC was 75 %, 36 % and 93 %, respectively. Serum α-fetoprotein levels >200 ng/ml were more frequent among patients with 18F-FDG-positive lesions than those with 18F-FDG-negative lesions (p < 0.05). Early recurrence (n=2) or early death (n=5) occurred more frequently in patients with 18F-FDG-positive lesions than in those with 18F-FDG-negative lesions (p < 0.05). The combined use of 11C-choline and 18F-FDG PET/CT detected HCC with high sensitivity. This approach appears to be of potential prognostic value and may facilitate the selection of patients for surgical resection or liver transplantation. (orig.)

  8. No evidence for role of extracellular choline-acetyltransferase in generation of gamma oscillations in rat hippocampal slices in vitro.

    Science.gov (United States)

    Hollnagel, J O; ul Haq, R; Behrens, C J; Maslarova, A; Mody, I; Heinemann, U

    2015-01-22

    Acetylcholine (ACh) is well known to induce persistent γ-oscillations in the hippocampus when applied together with physostigmine, an inhibitor of the ACh degrading enzyme acetylcholinesterase (AChE). Here we report that physostigmine alone can also dose-dependently induce γ-oscillations in rat hippocampal slices. We hypothesized that this effect was due to the presence of choline in the extracellular space and that this choline is taken up into cholinergic fibers where it is converted to ACh by the enzyme choline-acetyltransferase (ChAT). Release of ACh from cholinergic fibers in turn may then induce γ-oscillations. We therefore tested the effects of the choline uptake inhibitor hemicholinium-3 (HC-3) on persistent γ-oscillations either induced by physostigmine alone or by co-application of ACh and physostigmine. We found that HC-3 itself did not induce γ-oscillations and also did not prevent physostigmine-induced γ-oscillation while washout of physostigmine and ACh-induced γ-oscillations was accelerated. It was recently reported that ChAT might also be present in the extracellular space (Vijayaraghavan et al., 2013). Here we show that the effect of physostigmine was prevented by the ChAT inhibitor (2-benzoylethyl)-trimethylammonium iodide (BETA) which could indicate extracellular synthesis of ACh. However, when we tested for effects of extracellularly applied acetyl-CoA, a substrate of ChAT for synthesis of ACh, physostigmine-induced γ-oscillations were attenuated. Together, these findings do not support the idea that ACh can be synthesized by an extracellularly located ChAT. PMID:25453770

  9. A novel PGC-1α isoform in brain localizes to mitochondria and associates with PINK1 and VDAC

    International Nuclear Information System (INIS)

    Highlights: •Novel 35 kDa PGC-1α localizes to mitochondrial inner membrane and matrix in brain. •Mitochondrial localization of 35 kDa PGC-1α depends on VDAC protein. •Mitochondrial localization of 35 kDa PGC-1α depends on membrane potential. •The 35 kDa PGC-1α associates and colocalizes with PINK in brain mitochondria. -- Abstract: Peroxisome proliferator-activated receptor-gamma co-activator 1α (PGC-1α) and PTEN-induced putative kinase 1 (PINK1) are powerful regulators of mitochondrial function. Here, we report that a previously unrecognized, novel 35 kDa PGC-1α isoform localizes to the mitochondrial inner membrane and matrix in brain as determined by protease protection and carbonate extraction assays, as well as by immunoelectron microscopy. Immunoelectron microscopy and import experiments in vitro revealed that 35 kDa PGC-1α colocalizes and interacts with the voltage-dependent anion channel (VDAC), and that its import depends on VDAC. Valinomycin treatment which depolarizes the membrane potential, abolished mitochondrial localization of the 35 kDa PGC-1α. Using blue native-PAGE, co-immunoprecipitation, and immunoelectron microscopy analyses, we found that the 35 kDa PGC-1α binds and colocalizes with PINK1 in brain mitochondria. This is the first report regarding mitochondrial localization of a novel 35 kDa PGC-1α isoform and its association with PINK1, suggesting possible regulatory roles for mitochondrial function in the brain

  10. Laminin isoforms differentially regulate adhesion, spreading, proliferation, and ERK activation of β1 integrin-null cells

    International Nuclear Information System (INIS)

    The presence of many laminin receptors of the β1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin α6β4 and dystroglycan. We therefore tested the binding of a β1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin α6Aβ4A variant. GD25 β1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin α6 antibody, but not by a dystroglycan antibody. Hence, integrin α6Aβ4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin α6Aβ4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin α6Aβ4A

  11. Studies of the cytosolic thymidine kinase in human cells and comparison to the recombinantly expressed enzyme

    DEFF Research Database (Denmark)

    Kock Jensen, Helle

    Thymidine kinase (TK) is a key enzyme in the salvage pathway of the nucleoside metabolism catalyzing the first phosphorylation step in TTP synthesis. Human cytosolic TK (TKl) is highly cell cycle regulated. TKl is regulated on many different levels of expression and isoforms with altered enzymatic...... identical but further investigations showed some interesting differences. Recombinant TKl is about 10 fold more sensitive towards TTP as inhibitor. Furthermore the effect of removal of ATP from the native TKl on the enzyme kinetics and native molecular weight was not found for recombinant TKl. Native TKl...

  12. M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation

    OpenAIRE

    Morgan, Hugh P.; O???Reilly, Francis J.; Wear, Martin A.; O'Neill, Robert; Fothergill-Gilmore, Linda A.; Hupp, Ted; Walkinshaw, Malcolm D.

    2013-01-01

    We show that the M2 isoform of pyruvate kinase (M2PYK) exists in equilibrium between monomers and tetramers regulated by allosteric binding of naturally occurring small-molecule metabolites. Phenylalanine stabilizes an inactive T-state tetrameric conformer and inhibits M2PYK with an IC50 value of 0.24 mM, whereas thyroid hormone (triiodo-l-thyronine, T3) stabilizes an inactive monomeric form of M2PYK with an IC50 of 78 nM. The allosteric activator fructose-1,6-bisphosphate [F16BP, AC50 (conce...

  13. Solubilities of carbon dioxide in the eutectic mixture of levulinic acid (or furfuryl alcohol) and choline chloride

    International Nuclear Information System (INIS)

    Highlights: • Solubilities of carbon dioxide in six renewable deep eutectic solvents (DESs) have been reported. • The experimental data were well correlated by Henry’s law. • The dissolution Gibbs free energy, enthalpy, and entropy changes were derived. • The absorption capacities of CO2 in present DESs and other DESs as well as several ionic liquids were compared. - Abstract: The solubilities of carbon dioxide (CO2) in the renewable deep eutectic solvents (DESs) containing levulinic acid (or furfuryl alcohol) and choline chloride were determined at temperatures (303.15, 313.15, 323.15, and 333.15) K and pressures up to 600.0 kPa using an isochoric saturation method. The mole ratios of levulinic acid (or furfuryl alcohol) to choline chloride were fixed at 3:1, 4:1 and 5:1. Standard Gibbs free energy, dissolution enthalpy and dissolution entropy were calculated from Henry’s law constant of CO2 in the DESs. Results indicated that levulinic acid based DESs are more effective to capture CO2 than furfuryl alcohol based ones. The solubility of CO2 in the DESs increased with increasing mole ratio of levulinic acid (or furfuryl alcohol) to choline chloride as well as pressure and decreased with increasing temperature

  14. INS, DFT and temperature dependent IR investigations of dynamical properties of low temperature phase of choline chloride

    Energy Technology Data Exchange (ETDEWEB)

    Pawlukojć, A., E-mail: andrzej@jinr.ru [Institute of Nuclear Chemistry and Technology, Dorodna 16 str., 03-195 Warsaw (Poland); Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Hetmańczyk, Ł. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Faculty of Chemistry, Jagiellonian University, Ingardena 3 str., 30-060 Cracow (Poland)

    2014-12-05

    Highlights: • Choline chloride was investigated by INS and IR. • DFT calculations for solids state model were performed. • Full vibrational analysis was performed. • Activation energy for the CH{sub 3} group reorientation was obtained. - Abstract: Within the framework of the research the inelastic neutron scattering and temperature dependent infra-red spectroscopy investigations of the low temperature phase of choline chloride were performed. The infra-red spectra in wavenumber region 4000–80 cm{sup −1} and in a temperature range 9–300 K were collected. The density functional theory calculations with the periodic boundary conditions for determination and description of the normal modes in the vibration spectra of choline chloride were applied. Bands assigned to the CH{sub 3} torsional vibration were observed at 288 and 249 cm{sup −1}. From the analysis of the temperature dependence of the full-width-at-half-maximum the activation energy for CH{sub 3} group reorientation is found to be equal to 1.6 ± 0.2 kcal/mol.

  15. Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase α1 following overload in LKB1 knockout mice

    Science.gov (United States)

    McGee, Sean L; Mustard, Kirsty J; Hardie, D Grahame; Baar, Keith

    2008-01-01

    The activation of the AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin complex 1 (mTORC1) is hypothesized to underlie the fact that muscle growth following resistance exercise is decreased by concurrent endurance exercise. To directly test this hypothesis, the capacity for muscle growth was determined in mice lacking the primary upstream kinase for AMPK in skeletal muscle, LKB1. Following either 1 or 4 weeks of overload, there was no difference in muscle growth between the wild type (wt) and LKB1−/− mice (1 week: wt, 38.8 ± 7.75%; LKB1−/−, 27.8 ± 12.98%; 4 week: wt, 75.8 ± 15.2%; LKB1−/−, 85.0 ± 22.6%). In spite of the fact that the LKB1 had been knocked out in skeletal muscle, the phosphorylation and activity of the α1 isoform of AMPK were markedly increased in both the wt and the LKB1−/− mice. To identify the upstream kinase(s) responsible, we studied potential upstream kinases other than LKB1. The activity of both Ca2+–calmodulin-dependent protein kinase kinase α(CaMKKα) (5.05 ± 0.86-fold) and CaMKKβ (10.1 ± 2.59-fold) increased in the overloaded muscles, and this correlated with their increased expression. Phosphorylation of TAK-1 also increased 10-fold following overload in both the wt and LKB1 mice. Even though the α1 isoform of AMPK was activated by overload, there were no increases in expression of mitochondrial proteins or GLUT4, indicating that the α1 isoform is not involved in these metabolic adaptations. The phosphorylation of TSC2, an upstream regulator of the TORC1 pathway, at the AMPK site (Ser1345) was increased in response to overload, and this was not affected by LKB1 deficiency. Taken together, these data suggest that the α1 isoform of AMPK is preferentially activated in skeletal muscle following overload in the absence of metabolic adaptations, suggesting that this isoform might be important in the regulation of growth but not metabolism. PMID:18202101

  16. Nuclear Magnetic Resonance Detects Phosphoinositide 3-Kinase/Akt-Independent Traits Common to Pluripotent Murine Embryonic Stem Cells and Their Malignant Counterparts

    Directory of Open Access Journals (Sweden)

    Hanna M. Romanska

    2009-12-01

    Full Text Available Pluripotent embryonic stem (ES cells, a potential source of somatic precursors for cell therapies, cause tumors after transplantation. Studies of mammalian carcinogenesis using nuclear magnetic resonance (NMR spectroscopy have revealed changes in the choline region, particularly increased phosphocholine (PCho content. High PCho levels in murine ES (mES cells have recently been attributed to cell pluripotency. The phosphoinositide 3-kinase (PI3K/Akt pathway has been implicated in tumor-like properties of mES cells. This study aimed to examine a potential link between the metabolic profile associated with choline metabolism of pluripotent mES cells and PI3K/Akt signaling. We used mES (ES-D3 and murine embryonal carcinoma cells (EC-F9 and compared the metabolic profiles of 1 pluripotent mES (ESD0, 2 differentiated mES (ESD14, and 3 pluripotent F9 cells. Involvement of the PI3K/Akt pathway was assessed using LY294002, a selective PI3K inhibitor. Metabolic profiles were characterized in the extracted polar fraction by 1H NMR spectroscopy. Similarities were found between the levels of choline phospholipid metabolites (PCho/total choline and PCho/glycerophosphocholine [GPCho] in ESD0 and F9 cell spectra and a greater-than five-fold decrease of the PCho/GPCho ratio associated with mES cell differentiation. LY294002 caused no significant change in relative PCho levels but led to a greater-than two-fold increase in PCho/GPCho ratios. These results suggest that the PCho/GPCho ratio is a metabolic trait shared by pluripotent and malignant cells and that PI3K does not underlie its development. It is likely that the signature identified here in a mouse model may be relevant for safe therapeutic applications of human ES cells.

  17. Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease.

    Science.gov (United States)

    Kamphuis, Willem; Middeldorp, Jinte; Kooijman, Lieneke; Sluijs, Jacqueline A; Kooi, Evert-Jan; Moeton, Martina; Freriks, Michel; Mizee, Mark R; Hol, Elly M

    2014-03-01

    In Alzheimer's disease (AD), amyloid plaques are surrounded by reactive astrocytes with an increased expression of intermediate filaments including glial fibrillary acidic protein (GFAP). Different GFAP isoforms have been identified that are differentially expressed by specific subpopulations of astrocytes and that impose different properties to the intermediate filament network. We studied transcript levels and protein expression patterns of all known GFAP isoforms in human hippocampal AD tissue at different stages of the disease. Ten different transcripts for GFAP isoforms were detected at different abundancies. Transcript levels of most isoforms increased with AD progression. GFAPδ-immunopositive astrocytes were observed in subgranular zone, hilus, and stratum-lacunosum-moleculare. GFAPδ-positive cells also stained for GFAPα. In AD donors, astrocytes near plaques displayed increased staining of both GFAPα and GFAPδ. The reading-frame-shifted isoform, GFAP(+1), staining was confined to a subset of astrocytes with long processes, and their number increased in the course of AD. In conclusion, the various GFAP isoforms show differential transcript levels and are upregulated in a concerted manner in AD. The GFAP(+1) isoform defines a unique subset of astrocytes, with numbers increasing with AD progression. These data indicate the need for future exploration of underlying mechanisms concerning the functions of GFAPδ and GFAP(+1) isoforms in astrocytes and their possible role in AD pathology.

  18. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    Science.gov (United States)

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases. PMID:27090236

  19. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H(3) receptor

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Goodman, M W; Burstein, E S;

    2002-01-01

    The pharmacology of histamine H(3) receptors suggests the presence of distinct receptor isoforms or subtypes. We herein describe multiple, functionally distinct, alternatively spliced isoforms of the human H(3) receptor. Combinatorial splicing at three different sites creates at least six distinc...

  20. Activation of antithrombin III isoforms by heparan sulphate glycosaminoglycans and other sulphated polysaccharides.

    Science.gov (United States)

    Carlson, T H; Kolman, M R; Piepkorn, M

    1995-07-01

    Antithrombin III occurs naturally as two functionally distinct molecular species that differ in glycosylation at Asn135. Whereas the predominant, glycosylated isoform has high affinity for heparin, a quantitatively minor isoform lacking glycosylation at that site displays relatively higher affinity for both heparins and heparinoids. We characterized the ability of various sulphated polysaccharides to potentiate the rates of thrombin inhibition by the isoforms. High-molecular-weight dextran sulphate was the most effective of those studied, increasing thrombin inhibition by the higher-affinity antithrombin III isoform up to five-fold more efficiently than did heparin fractions with low-affinity for antithrombin III. In addition, dextran sulphate activated the higher-affinity isoform as much as twelve times more effectively than it did the lower-affinity isoform. Pentosan polysulphate was up to three-fold, and some heparan sulphate fractions up to two-fold, more effective with the higher, compared with the lower affinity, isoform. Heparan sulphate preparations less effectively increased the rate of thrombin inhibition than did the other low-affinity polysaccharides. Structure-function studies indicated positive correlations between activity and both polymer length and anionic group density of low-affinity sulphated polysaccharides. The observed effects of the heparan sulphates on this anticoagulant pathway, although of low potency, are consistent with the hypotheses that these substances naturally regulate blood homeostasis in vascular tissues and that much of this function may be mediated by the higher-affinity antithrombin III isoform. PMID:8589216

  1. Roles of the troponin isoforms during indirect flight muscle development in Drosophila

    Indian Academy of Sciences (India)

    Salam Herojeet Singh; Prabodh Kumar; Nallur B. Ramachandra; Upendra Nongthomba

    2014-08-01

    Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to another depending on physiological demands and pathological conditions. In Drosophila, amajority of themyofibrillar proteins in the indirect flight muscles (IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed exclusively in the IFMs, during later stages of development, we have looked at the developmental and functional importance of each of the troponin subunits (troponin-I, troponin-T and troponin-C) and their isoforms. We show that all the troponin subunits are required for normal myofibril assembly and flight, except for the troponin-C isoform 1 (TnC1). Moreover, rescue experiments conducted with troponin-I embryonic isoform in the IFMs, where flies were rendered flightless, show developmental and functional differences of TnI isoforms and importance of maintaining the right isoform.

  2. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    Science.gov (United States)

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  3. Translational control of C/EBPalpha and C/EBPbeta isoform expression

    NARCIS (Netherlands)

    Calkhoven, C F; Müller, C; Leutz, A

    2000-01-01

    Transcription factors derived from CCAAT/enhancer binding protein (C/EBP)alpha and C/EBPbeta genes control differentiation and proliferation in a number of cell types. Various C/EBP isoforms arise from unique C/EBPbeta and C/EBPalpha mRNAs by differential initiation of translation. These isoforms re

  4. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    Science.gov (United States)

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases.

  5. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution

    DEFF Research Database (Denmark)

    Aachmann-Andersen, Niels Jacob; Just Christensen, Søren; Lisbjerg, Kristian;

    2014-01-01

    -acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3) % (mean (SD)). High-dose Epoetin beta decreased PMI...

  6. Differences in expression, actions and cocaine regulation of two isoforms for the brain transcriptional regulator NAC1.

    Science.gov (United States)

    Korutla, L; Wang, P J; Lewis, D M; Neustadter, J H; Stromberg, M F; Mackler, S A

    2002-01-01

    BTB/POZ proteins can influence the cell cycle and contribute to oncogenesis. Many family members are present in the mammalian CNS. Previous work demonstrated elevated NAC1 mRNA levels in the rat nucleus accumbens in response to cocaine. NAC1 acts like other BTB/POZ proteins that regulate transcription but is unusual because of the absence of identifiable DNA binding domains. cDNAs were isolated encoding two NAC1 isoforms differing by only 27 amino acids (the longer isoform contains 514 amino acids). The mRNAs for both isoforms were simultaneously expressed throughout the rat brain and peripheral tissues. Semi-quantitative reverse transcription-polymerase chain reaction analysis revealed that the mRNA of the longer isoform was more abundant than the mRNA of the shorter isoform. Western blot analysis demonstrated a similar unequal distribution between the isoforms in the CNS. The longer isoform was the more abundant of the two NAC1 proteins and the ratio between them differed throughout the rat brain. The shorter isoform was not detected in most of the examined peripheral tissues, suggesting differences from the CNS in post-transcriptional processing. Both isoforms repressed transcription in H293T cells using a Gal4-luciferase reporter system. However, the shorter isoform did not repress transcription as effectively as the longer isoform. Transfection of different ratios for both isoforms, in order to replicate the relative amounts observed throughout the CNS, supported an interaction between the isoforms. The net effect on transcriptional repression was determined by the ratio of the two NAC1 isoforms. Each isoform exhibited the subnuclear localization that is characteristic of many BTB/POZ proteins. A rapid and transient increase in the level of the shorter isoform occurred in the nucleus accumbens 2 h following a single i.p. cocaine injection. We conclude that the two isoforms of NAC1 may differentially affect neuronal functions, including the regulation of

  7. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization.

    Science.gov (United States)

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher

    2016-01-01

    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer's disease.

  8. Choline-induced selective fluorescence quenching of acetylcholinesterase conjugated Au@BSA clusters.

    Science.gov (United States)

    Mathew, Meegle S; Baksi, Ananya; Pradeep, T; Joseph, Kuruvilla

    2016-07-15

    We have developed a highly selective sensitive fluorescent detection of acetylcholine (ACh) using bovine serum albumin (BSA) protected atomically precise clusters of gold. The gold quantum clusters (AuQC@BSA) synthesized using bovine serum albumin and conjugated with acetylcholinesterase (AChE), an enzyme specific for acetylcholine, resulting in AuQC@BSA-AChE. The enzyme, AChE hydrolyzes acetylcholine (ACh) to choline (Ch) which in turn interacts with AuQC@BSA-AChE and quenches its fluorescence, enabling sensing. We have carried out the real time monitoring of the hydrolysis of ACh using electrospray ionization mass spectrometry (ESI MS) to find out the mechanism of fluorescent quenching. The validity of present method for determination of concentration of acetylcholine in real system such as blood was demonstrated. Further, the sensor, AuQC@BSA-AChE can be easily coated on paper and an efficient and cheap sensor can be developed and detection limit for ACh is found to be 10nM. The fluorescent intensity of AuQC@BSA-AChE is sensitive towards acetylcholine in range of 10nM to 6.4µM. This suggests that AuQC@BSA-AChE has an excellent potential to be used for diagnosis of various neuropsychological and neuropsychiatric disorders.

  9. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    Directory of Open Access Journals (Sweden)

    Kyungha Shin

    2016-01-01

    Full Text Available Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs overexpressing choline acetyltransferase (ChAT improve cognitive function of Alzheimer’s disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level.

  10. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury.

    Science.gov (United States)

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  11. Effects of choline chloride on electrodeposited Ni coating from a Watts-type bath

    Science.gov (United States)

    Wang, Yurong; Yang, Caihong; He, Jiawei; Wang, Wenchang; Mitsuzak, Naotoshi; Chen, Zhidong

    2016-05-01

    Electrodeposition of bright nickel (Ni) was carried out in a Watts-type bath. Choline chloride (ChCl) was applied as a multifunctional additive and substitute for nickel chloride (NiCl2) in a Watts-type bath. The function of ChCl was investigated through conductivity tests, anodic polarization, and cathodic polarization experiments. The studies revealed that ChCl performed well as a conducting salt, anodic activator, and cathodic inhibitor. The effects of ChCl on deposition rate, preferred orientation, grain size, surface morphology, and microhardness of Ni coatings were also studied. The deposition rate reached a maximum value of greater than 27 μm h-1 when 20 g L-1 ChCl was introduced to the bath. Using X-ray diffraction, it was confirmed that progressive addition of ChCl promoted the preferred crystal orientation modification from (2 0 0) and (2 2 0) to (1 1 1), refined grain size, and enhanced microhardness. The presence of ChCl lowered the roughness of the coating.

  12. Interaction Mechanism Insights on the Solvation of Fullerene B(80)with Choline-based Ionic Liquids.

    Science.gov (United States)

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-09-24

    Beyond carbon allotropes, other nanostructures such as fullerene B80 are attracting a growing interest due to their potential applications. The use of new materials based on fullerene B80 is still in a premature stage; however many of these applications would require the use of B80 in solution. This paper reports an unprecedented density functional theory (DFT) analysis on the interaction mechanism between B80 and two choline-based ionic liquids as a first insight for the fullerene B80 solvation by ionic liquids. The analysis of properties such as binding energies, charge distributions or intermolecular interactions shed light on the main features, which should govern interaction between ionic liquids and fullerene B80. In addition, the optimization of systems composed by six ionic pairs around a fullerene B80 has supplied some information about the first solvation shell at the molecular level. As a summary, this paper provides the first insights in the rational design of ionic liquids with suitable properties for the solvation of B80.

  13. Initial prostate cancer diagnosis and disease staging--the role of choline-PET-CT.

    Science.gov (United States)

    Mapelli, Paola; Picchio, Maria

    2015-09-01

    An early and correct diagnosis together with accurate staging of prostate cancer is necessary in order to plan the most appropriate treatment strategy. Morphological imaging modalities such as transrectal ultrasonography (TRUS), CT, and MRI can have some limitations regarding their accuracy for primary diagnosis and staging of prostate cancer; for instance, they have limited specificity in differentiating cancer from benign prostatic conditions and, by using size as the only criterion to characterize lymph node metastases, they might not be accurate enough for tumour characterization. In this scenario, PET-CT with (11)C-labelled or (18)F-labelled choline derivatives provides morphological and functional characterization and could overcome the limitations of the conventional imaging techniques. PET-CT is one of the most investigated molecular imaging modalities for prostate cancer diagnosis and staging. Currently, the main investigations on the role of PET-CT in the diagnosis and staging of prostate cancer have been performed on a retrospective basis and this type of analysis might be one of the main reasons why different results regarding its diagnostic accuracy have been reported.

  14. Electrolysis of solid copper oxide to copper in Choline chloride-EG eutectic melt

    International Nuclear Information System (INIS)

    Electrochemical deoxygenation of porous CuO pellet to prepare copper was investigated in the 33.3-66.7 mol% Choline chloride (ChCl)-EG eutectic melt at 353 K. Cyclic voltammetry of the Pt-powder cavity microelectrode loaded with CuO powder exhibited that the solid CuO can be electrochemically reduced in solid state in the eutectic melt. Constant-voltage (2.0 to 2.4 V) electrolysis, with an assembled cathode of a sintered porous CuO pellet and a graphite anode, that performed in the eutectic melt demonstrated the conversion process of oxide-to metal as confirmed by scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction spectra. A mechanism for this reduction process has been proposed on the basis of the in situ formation of numerous gas at the cathode, emphasizing that the oxidation of cathodically generated O2− ions occurred nearby along with the copper electroreduction, in which the new formed metal was served as a temporary anode, oxygen was generated at the interface of the reduced copper and electrolyte inside the cathode

  15. Enzyme-Catalyzed Henry Reaction in Choline Chloride-Based Deep Eutectic Solvents.

    Science.gov (United States)

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-01-01

    The enzyme-catalyzed Henry reaction was realized using deep eutectic solvents (DESs) as a reaction medium. The lipase from Aspergillus niger (lipase AS) showed excellent catalytic activity toward the substrates aromatic aldehydes and nitromethane in choline chloride:glycerol at a molar ratio of 1:2. Addition of 30 vol% water to DES further improved the lipase activity and inhibited DES-catalyzed transformation. A final yield of 92.2% for the lipase AS-catalyzed Henry reaction was achieved under optimized reaction conditions in only 4 h. In addition, the lipase AS activity was improved by approximately 3-fold in a DES-water mixture compared with that in pure water, which produced a final yield of only 33.4%. Structural studies with fluorescence spectroscopy showed that the established strong hydrogen bonds between DES and water may be the main driving force that affects the spatial conformation of the enzyme, leading to a change in lipase activity. The methodology was also extended to the aza-Henry reaction, which easily occurred in contrast to that in pure water. The enantioselectivity of both Henry and aza-Henry reactions was not found. However, the results are still remarkable, as we report the first use of DES as a reaction medium in a lipase-catalyzed Henry reaction. PMID:26437947

  16. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish.

    Science.gov (United States)

    Juneidi, Ibrahim; Hayyan, Maan; Mohd Ali, Ozair

    2016-04-01

    An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl2 exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC50) of the same DESs on C. carpio fish. The inhibition range and LC50 of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC50 of ChCl:MADES is much higher than that of ChCl:MAMix. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds. PMID:26743645

  17. Positive correlations between cerebral choline and renal dysfunction in chronic renal failure

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Osamu; Nakahama, Hajime; Nakamura, Satoko; Inenaga, Takashi; Kawano, Yuhei [National Cardiovascular Center, Division of Hypertension and Nephrology, Department of Internal Medicine, Osaka (Japan); Hattori, Noriaki; Inoue, Noriko; Sawada, Tohru [BF Research Institute, Osaka (Japan); Kohno, Shigeru [Nagasaki University School of Medicine, Second Department of Internal Medicine, Nagasaki (Japan)

    2006-05-15

    Cerebral metabolism in chronic renal failure (CRF) patients has not been fully evaluated. This study examined cerebral metabolites in CRF, using proton magnetic resonance spectroscopy (MRS). Subjects comprised 19 CRF patients and 21 healthy volunteers. Spectra were acquired from voxels of interest positioned in the parietal gray and white matter, and concentrations of the following cerebral metabolites were measured: N-acetyl group (NA), creatine + phosphocreatine (Cr), choline-containing compounds (Cho), myo-inositol and glutamate + glutamine. Among the 19 CRF patients, 9 who were started on hemodialysis (HD) underwent careful follow-up. Proton MRS was performed before and about 2 weeks after starting HD. In six patients in whom follow-up was possible, a third MRS was performed after about 18 months. The NA/Cr ratio was not significantly changed in CRF. However, elevations in the Cho/Cr ratio were found in both gray and white matter compared with controls. To the best of our knowledge, this is the first report of positive correlations between the Cho/Cr ratio in both regions and serum osmotic pressure. (orig.)

  18. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization.

    Science.gov (United States)

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher

    2016-01-01

    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer's disease. PMID:27507101

  19. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration.

    Science.gov (United States)

    Turnquist, C; Horikawa, I; Foran, E; Major, E O; Vojtesek, B; Lane, D P; Lu, X; Harris, B T; Harris, C C

    2016-09-01

    Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. PMID:27104929

  20. Troponin T isoform expression is modulated during Atlantic Halibut metamorphosis

    Directory of Open Access Journals (Sweden)

    Llewellyn Lynda

    2007-06-01

    Full Text Available Abstract Background Flatfish metamorphosis is a thyroid hormone (TH driven process which leads to a dramatic change from a symmetrical larva to an asymmetrical juvenile. The effect of THs on muscle and in particular muscle sarcomer protein genes is largely unexplored in fish. The change in Troponin T (TnT, a pivotal protein in the assembly of skeletal muscles sarcomeres and a modulator of calcium driven muscle contraction, during flatfish metamophosis is studied. Results In the present study five cDNAs for halibut TnT genes were cloned; three were splice variants arising from a single fast TnT (fTnT gene; a fourth encoded a novel teleost specific fTnT-like cDNA (AfTnT expressed exclusively in slow muscle and the fifth encoded the teleost specific sTnT2. THs modified the expression of halibut fTnT isoforms which changed from predominantly basic to acidic isoforms during natural and T4 induced metamorphosis. In contrast, expression of red muscle specific genes, AfTnT and sTnT2, did not change during natural metamorphosis or after T4 treatment. Prior to and after metamorphosis no change in the dorso-ventral symmetry or temporal-spatial expression pattern of TnT genes and muscle fibre organization occurred in halibut musculature. Conclusion Muscle organisation in halibut remains symmetrical even after metamorphosis suggesting TH driven changes are associated with molecular adaptations. We hypothesize that species specific differences in TnT gene expression in teleosts underlies different larval muscle developmental programs which better adapts them to the specific ecological constraints.

  1. Exo70 Isoform Switching upon Epithelial-Mesenchymal Transition Mediates Cancer Cell Invasion

    Science.gov (United States)

    Lu, Hezhe; Liu, Jianglan; Liu, Shujing; Zeng, Jingwen; Ding, Deqiang; Carstens, Russ P.; Cong, Yusheng; Xu, Xiaowei; Guo, Wei

    2014-01-01

    Summary Epithelial-mesenchymal transition (EMT) is an important developmental process hijacked by cancer cells for their dissemination. Here we show that Exo70, a component of the exocyst complex, undergoes isoform switching mediated by ESRP1, a pre-mRNA splicing factor that regulates EMT. Expression of the epithelial isoform of Exo70 affects the levels of key EMT transcriptional regulators such as Snail and ZEB2, and is sufficient to drive the transition to epithelial phenotypes. Differential Exo70 isoforms expression in human tumors correlates with cancer progression, and increased expression of the epithelial isoform of Exo70 inhibits tumor metastasis in mice. At the molecular level, the mesenchymal but not the epithelial isoform of Exo70 interacts with the Arp2/3 complex and stimulates actin polymerization for tumor invasion. Our findings provide a mechanism by which the exocyst function and actin dynamics are modulated for EMT and tumor invasion. PMID:24331928

  2. [{sup 11}C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Picchio, Maria [San Raffaele Scientific Institute, Nuclear Medicine Department, Milan (Italy); National Research Council (IBFM-CNR), Institute for Bioimaging and Molecular Physiology, Milan (Italy); Spinapolice, Elena Giulia; Crivellaro, Cinzia [University of Milano-Bicocca, Center for Molecular Bioimaging, Milan (Italy); Fallanca, Federico; Gianolli, Luigi [San Raffaele Scientific Institute, Nuclear Medicine Department, Milan (Italy); Giovacchini, Giampiero [University of Milano-Bicocca, Center for Molecular Bioimaging, Milan (Italy); University Hospital Basel, Institute of Nuclear Medicine, Basel (Switzerland); Messa, Cristina [National Research Council (IBFM-CNR), Institute for Bioimaging and Molecular Physiology, Milan (Italy); University of Milano-Bicocca, Center for Molecular Bioimaging, Milan (Italy); San Gerardo Hospital, Department of Nuclear Medicine, Monza (Italy)

    2012-01-15

    The aim of this study was to evaluate the clinical usefulness of [{sup 11}C]choline positron emission tomography (PET)/CT in comparison with bone scintigraphy (BS) in detecting bone metastases (BM) of patients with biochemical progression after radical treatment for prostate cancer (PCa). Seventy-eight consecutive patients with biochemical progression of PCa (mean prostate-specific antigen 21.1 ng/ml, range 0.2-500.0 ng/ml) referred for both [{sup 11}C]choline PET/CT and BS for restaging purposes were retrospectively analysed. The diagnostic accuracy of [{sup 11}C]choline PET/CT and BS was assessed by using morphological imaging and/or follow-up as standards of reference. As equivocal findings were found, the accuracy analysis was performed twice, once including them as positive and once as negative. A separate analysis was also performed in hormone-resistant patients and data compared with those of patients who did not receive anti-androgenic treatment. Equivocal findings occurred in 1 of 78 (1%) cases in [{sup 11}C]choline PET/CT and in 21 of 78 (27%) cases in BS. Depending on their attribution as either positive or negative, the ranges of sensitivity, specificity, positive predictive value, negative predictive value and accuracy for [{sup 11}C]choline PET/CT were 89-89%, 98-100%, 96-100%, 94-96% and 95-96%, respectively. For BS they were 100-70%, 75-100%, 68-100%, 100-86% and 83-90%, respectively. Concordant findings between [{sup 11}C]choline PET/CT and BS occurred in 55 of 78 (71%) cases. The accuracy of [{sup 11}C]choline PET/CT did not significantly (p = 0.30) differ between hormone-resistant patients (97%) and those who did not receive anti-androgenic treatment (95%). In clinical practice, [{sup 11}C]choline PET/CT may not replace BS because of its lower sensitivity. However, for its high specificity, [{sup 11}C]choline PET/CT positive findings may accurately predict the presence of BM. Equivocal findings are more frequent in BS than [{sup 11}C]choline PET

  3. Identification of an amino acid sequence motif in the cytoplasmic domain of the NCAM-140 kDa isoform essential for its neuritogenic activity

    DEFF Research Database (Denmark)

    Kolkova, K; Pedersen, N; Berezin, V;

    2000-01-01

    that expression of cytNCAM-180 had no effect on NCAM-stimulated neuritogenesis, whereas expression of cytNCAM-140 strongly inhibited this process. However, if MEK2 was expressed concomitantly with cytNCAM-140, neurite outgrowth was rescued, indicating that cytNCAM-140 is involved in signaling via the Ras...... (cytNCAM-140) and of the 180-kDa NCAM isoform (cytNCAM-180) in NCAM-induced neurite extension by estimating NCAM-dependent neurite outgrowth from PC12-E2 cells grown in coculture with NCAM-negative or NCAM-positive fibroblasts. PC12-E2 cells were transiently transfected with expression plasmids...... encoding cytNCAM-140, cytNCAM-180, the constitutively active form of the mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase kinase (MEK2), and the enhanced variant of the green fluorescent protein (EGFP). EGFP expression was used for identification of transfected cells. We found...

  4. Pyruvate kinase M2 is a phosphotyrosine-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Christofk, H.R.; Vander Heiden, M.G.; Wu, N.; Asara, J.M.; Cantley, L.C. (Harvard-Med)

    2008-06-03

    Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.

  5. Different associations of CD45 isoforms with STAT3, PKC and ERK regulate IL-6-induced proliferation in myeloma.

    Directory of Open Access Journals (Sweden)

    Xu Zheng

    Full Text Available In response to interleukin 6 (IL-6 stimulation, both CD45RO and CD45RB, but not CD45RA, translocate to lipid rafts. However, the significance of this distinct translocation and the downstream signals in CD45 isoforms-participated IL-6 signal are not well understood. Using sucrose fractionation, we found that phosphorylated signal transducer and activator of transcription (STAT3 and STAT1 were mainly localized in lipid rafts in response to IL-6 stimulation, despite both STAT3 and STAT1 localizing in raft and non-raft fractions in the presence or absence of IL-6. On the other hand, extracellular signal-regulated kinase (ERK, and phosphorylated ERK were localized in non-raft fractions regardless of the existence of IL-6. The rafts inhibitor significantly impeded the phosphorylation of STAT3 and STAT1 and nuclear translocation, but had little effect on (and only postponing the phosphorylation of ERK. This data suggests that lipid raft-dependent STAT3 and STAT1 pathways are dominant pathways of IL-6 signal in myeloma cells. Interestingly, the phosphorylation level of STAT3 but not STAT1 in CD45+ cells was significantly higher compared to that of CD45- cells, while the phosphorylation level of ERK in CD45+ myeloma cells was relatively low. Furthermore, exogenously expressed CD45RO/RB significantly enhanced STAT3, protein kinase C (PKC and downstream NF-κB activation; however, CD45RA/RB inhibited IL-6-induced ERK phosphorylation. CD45 also enhanced the nuclear localization of STAT3 but not that of STAT1. In response to IL-6 stimulation, CD45RO moved into raft compartments and formed a complex with STAT3 and PKC in raft fraction, while CD45RA remained outside of lipid rafts and formed a complex with ERK in non-raft fraction. This data suggests a different role of CD45 isoforms in IL-6-induced signaling, indicating that while CD45RA/RB seems inhibit the rafts-unrelated ERK pathway, CD45RO/RB may actually work to enhance the rafts-related STAT3 and PKC

  6. Effect of proteasome inhibitors on expression of HLA-G isoforms.

    Science.gov (United States)

    Poláková, K; Bandzuchová, E; Bystrická, M; Pancuchárová, H; Russ, G

    2006-01-01

    HLA-G primary transcript is alternatively spliced into a number of mRNAs. In addition to full length HLA-G1 protein isoform these mRNAs might also encode truncated HLA-G protein isoforms lacking one or two extracellular domains. Whereas HLA-G1 protein isoform is regularly identified, truncated HLAG protein isoforms are not detected even if all alternative spliced mRNAs are present in cells. The absence of entire domain(s) renders the truncated HLA-G protein isoforms incapable of binding peptide and beta2-microglobulin. These features of truncated HLA-G protein isoforms may result in their rapid degradation by proteasomes. Here we show that despite the presence of all alternatively spliced HLA-G transcripts in JEG-3 cells pretreated with proteasome inhibitors only a full length HLA-G1 protein isoform was regularly detected. Interestingly, immunoblot analysis showed slight increase of HLA-G1 protein in cells pretreated with proteasome inhibitors, although the expression of HLA-G1 transcript was basically not affected. Expression of HLA-G3 transcript increased in JEG-3 cells pre-incubated with LLL, however, neither HLA-G3 nor other HLA-G short protein isoform was regularly detected. In K562 transfectants proteasome inhibitor LLL greatly enhanced expression of the HLA-G1 and -G2 transcripts as well as corresponding protein isoforms. Flow cytometry analysis showed that in cells pre-treated with proteasome inhibitors cell surface expression of HLA-G1 protein decreased but the quantity of intracellularly localized HLA-G antigens increased. Altogether our results suggest that truncated HLA-G proteins isoforms are not detected in JEG-3 cells as a result of their instability and the low translation efficiency of truncated HLA-G transcripts.

  7. Characterization of ductal and lobular breast carcinomas using novel prolactin receptor isoform specific antibodies

    Directory of Open Access Journals (Sweden)

    Heger Christopher D

    2010-12-01

    Full Text Available Abstract Background Prolactin is a polypeptide hormone responsible for proliferation and differentiation of the mammary gland. More recently, prolactin's role in mammary carcinogenesis has been studied with greater interest. Studies from our laboratory and from others have demonstrated that three specific isoforms of the prolactin receptor (PRLR are expressed in both normal and cancerous breast cells and tissues. Until now, reliable isoform specific antibodies have been lacking. We have prepared and characterized polyclonal antibodies against each of the human PRLR isoforms that can effectively be used to characterize human breast cancers. Methods Rabbits were immunized with synthetic peptides of isoform unique regions and immune sera affinity purified prior to validation by Western blot and immunohistochemical analyses. Sections of ductal and lobular carcinomas were stained with each affinity purified isoform specific antibody to determine expression patterns in breast cancer subclasses. Results We show that the rabbit antibodies have high titer and could specifically recognize each isoform of PRLR. Differences in PRLR isoform expression levels were observed and quantified using histosections from xenografts of established human breast cancer cells lines, and ductal and lobular carcinoma human biopsy specimens. In addition, these results were verified by real-time PCR with isoform specific primers. While nearly all tumors contained LF and SF1b, the majority (76% of ductal carcinoma biopsies expressed SF1a while the majority of lobular carcinomas lacked SF1a staining (72% and 27% had only low levels of expression. Conclusions Differences in the receptor isoform expression profiles may be critical to understanding the role of PRL in mammary tumorigenesis. Since these antibodies are specifically directed against each PRLR isoform, they are valuable tools for the evaluation of breast cancer PRLR content and have potential clinical importance in

  8. Fibronectin matrix assembly requires distinct contributions from Rho kinases I and -II

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Ushakov, Dmitriy; Multhaupt, Hinke A B;

    2006-01-01

    , the effect of ROCK I deficiency on fibronectin matrix assembly was secondary to altered cell surface morphology, rich in filopodia, resulting from high GTP-Cdc42 levels. Total internal reflection microscopy revealed that a submembranous pool of myosin light chain in control cells was missing in ROCK II......Extracellular matrix is integral to tissue architecture and regulates many aspects of cell behavior. Fibronectin matrix assembly involves the actin cytoskeleton and the small GTPase RhoA, but downstream signaling is not understood. Here, down-regulation of either rho kinase isoform (ROCK I or -II......) by small interfering RNA treatment blocked fibronectin matrix assembly, although the phenotypes were distinct and despite persistence of the alternate kinase. Remnant fibronectin on ROCK-deficient fibroblasts was mostly punctate and more deoxycholate soluble compared with controls. Fibronectin matrix...

  9. Structure Guided Optimization, in Vitro Activity, and in Vivo Activity of Pan-PIM Kinase Inhibitors.

    Science.gov (United States)

    Burger, Matthew T; Han, Wooseok; Lan, Jiong; Nishiguchi, Gisele; Bellamacina, Cornelia; Lindval, Mika; Atallah, Gordana; Ding, Yu; Mathur, Michelle; McBride, Chris; Beans, Elizabeth L; Muller, Kristine; Tamez, Victoriano; Zhang, Yanchen; Huh, Kay; Feucht, Paul; Zavorotinskaya, Tatiana; Dai, Yumin; Holash, Jocelyn; Castillo, Joseph; Langowski, John; Wang, Yingyun; Chen, Min Y; Garcia, Pablo D

    2013-12-12

    Proviral insertion of Moloney virus (PIM) 1, 2, and 3 kinases are serine/threonine kinases that normally function in survival and proliferation of hematopoietic cells. As high expression of PIM1, 2, and 3 is frequently observed in many human malignancies, including multiple myeloma, non-Hodgkins lymphoma, and myeloid leukemias, there is interest in determining whether selective PIM inhibition can improve outcomes of these human cancers. Herein, we describe our efforts toward this goal. The structure guided optimization of a singleton high throughput screening hit in which the potency against all three PIM isoforms was increased >10,000-fold to yield compounds with pan PIM K is < 10 pM, nanomolar cellular potency, and in vivo activity in an acute myeloid leukemia Pim-dependent tumor model is described. PMID:24900629

  10. Redundant role of protein kinase C delta and epsilon during mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Sergio Carracedo

    Full Text Available Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.

  11. [11C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy

    International Nuclear Information System (INIS)

    The accuracy of positron emission tomography (PET)/CT with [11C]choline for the detection of prostate cancer is not well established. We assessed the dependence of [11C]choline maximum standardized uptake values (SUVmax) in the prostate gland on cell malignancy, prostate-specific antigen (PSA) levels, Gleason score, tumour stage and anti-androgenic hormonal therapy. In this prospective study, PET/CT with [11C]choline was performed in 19 prostate cancer patients who subsequently underwent prostatectomy with histologic sextant analysis (group A) and in six prostate cancer patients before and after anti-androgenic hormonal therapy (bicalutamide 150 mg/day; median treatment of 4 months; group B). In group A, based on a sextant analysis with a [11C]choline SUVmax cutoff of 2.5 (as derived from a receiver-operating characteristic analysis), PET/CT showed sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 72, 43, 64, 51 and 60%, respectively. In the patient-by-patient analysis, no significant correlation was detected between SUVmax and PSA levels, Gleason score or pathological stage. On the contrary, a significant (P max and anti-androgenic therapy both in univariate (r 2 = 0.24) and multivariate (r 2 = 0.48) analyses. Prostate [11C]choline uptake after bicalutamide therapy significantly (P 11C]choline is not suitable for the initial diagnosis and local staging of prostate cancer. PET/CT with [11C]choline could be used to monitor the response to anti-androgenic therapy. (orig.)

  12. Comparison of {sup 18}F-FACBC and {sup 11}C-choline PET/CT in patients with radically treated prostate cancer and biochemical relapse: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Nanni, Cristina; Boschi, Stefano [Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, OU Nuclear Medicine, Bologna (Italy); Schiavina, Riccardo; Ambrosini, Valentina; Brunocilla, Eugenio; Martorana, Giuseppe; Fanti, Stefano [Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, OU Urology, Bologna (Italy); Pettinato, Cinzia [Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, OU Medical Physics, Bologna (Italy)

    2013-07-15

    We assessed the rate of detection rate of recurrent prostate cancer by PET/CT using anti-3-{sup 18}F-FACBC, a new synthetic amino acid, in comparison to that using {sup 11}C-choline as part of an ongoing prospective single-centre study. Included in the study were 15 patients with biochemical relapse after initial radical treatment of prostate cancer. All the patients underwent anti-3-{sup 18}F-FACBC PET/CT and {sup 11}C-choline PET/CT within a 7-day period. The detection rates using the two compounds were determined and the target-to-background ratios (TBR) of each lesion are reported. No adverse reactions to anti-3-{sup 18}F-FACBC PET/CT were noted. On a patient basis, {sup 11}C-choline PET/CT was positive in 3 patients and negative in 12 (detection rate 20 %), and anti-3-{sup 18}F-FACBC PET/CT was positive in 6 patients and negative in 9 (detection rate 40 %). On a lesion basis, {sup 11}C-choline detected 6 lesions (4 bone, 1 lymph node, 1 local relapse), and anti-3-{sup 18}F-FACBC detected 11 lesions (5 bone, 5 lymph node, 1 local relapse). All {sup 11}C-choline-positive lesions were also identified by anti-3-{sup 18}F-FACBC PET/CT. The TBR of anti-3-{sup 18}F-FACBC was greater than that of {sup 11}C-choline in 8/11 lesions, as were image quality and contrast. Our preliminary results indicate that anti-3-{sup 18}F-FACBC may be superior to {sup 11}C-choline for the identification of disease recurrence in the setting of biochemical failure. Further studies are required to assess efficacy of anti-3-{sup 18}F-FACBC in a larger series of prostate cancer patients. (orig.)

  13. Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the tx-j mouse model of Wilson disease

    Science.gov (United States)

    Medici, Valentina; Shibata, Noreene M; Kharbanda, Kusum K; Islam, Mohammad S; Keen, Carl L; Kim, Kyoungmi; Tillman, Brittany; French, Samuel W; Halsted, Charles H; LaSalle, Janine M

    2014-01-01

    Maternal diet can affect fetal gene expression through epigenetic mechanisms. Wilson disease (WD), which is caused by autosomal recessive mutations in ATP7B encoding a biliary copper transporter, is characterized by excessive hepatic copper accumulation, but variability in disease severity. We tested the hypothesis that gestational supply of dietary methyl groups modifies fetal DNA methylation and expression of genes involved in methionine and lipid metabolism that are impaired prior to hepatic steatosis in the toxic milk (tx-j) mouse model of WD. Female C3H control and tx-j mice were fed control (choline 8 mmol/Kg of diet) or choline-supplemented (choline 36 mmol/Kg of diet) diets for 2 weeks throughout mating and pregnancy to gestation day 17. A second group of C3H females, half of which were used to cross foster tx-j pups, received the same diet treatments that extended during lactation to 21 d postpartum. Compared with C3H, fetal tx-j livers had significantly lower copper concentrations and significantly lower transcript levels of Cyclin D1 and genes related to methionine and lipid metabolism. Maternal choline supplementation prevented the transcriptional deficits in fetal tx-j liver for multiple genes related to cell growth and metabolism. Global DNA methylation was increased by 17% in tx-j fetal livers after maternal choline treatment (P < 0.05). Maternal dietary choline rescued the lower body weight of 21 d tx-j mice. Our results suggest that WD pathogenesis is modified by maternal in utero factors, including dietary choline. PMID:24220304

  14. Effect of hypoxia on the uptake of [methyl-3H]choline, [1-14C] acetate and [18F]FDG in cultured prostate cancer cells

    International Nuclear Information System (INIS)

    Introduction: Choline, acetate and glucose ([2-18F]fluoro-2-deoxyglucose, [18F]FDG) analogs are under investigation as positron emission tomography (PET) tracers for the imaging of prostate cancer; however, their response to tumor hypoxia has not been clarified. Methods: The uptake of [methyl-3H]choline, [1-14C]acetate and [18F]FDG was monitored in androgen-independent PC-3 cells and androgen-sensitive LNCaP cells under aerobic or anoxic conditions. The effect of androgen depletion was also examined. Results: PC-3 cells exhibited aerobic choline and acetate uptake five to six times higher than FDG uptake, whereas LNCaP cells showed choline uptake 2.2-fold higher than acetate uptake and 10-fold higher than FDG uptake. After 4 h of anoxia, PC-3 cells showed an 85% increase in FDG uptake, a 15% decrease in choline uptake and a 36% increase in acetate uptake, whereas LNCaP cells showed a 212% increase in FDG uptake, a 28% decrease in choline uptake and no change in acetate uptake. Androgen depletion resulted in a marked decrease in the uptake of all tracers in LNCaP cells but no changes in PC-3 cells. Conclusion: In aerobic conditions, both PC-3 and LNCaP cells exhibited an order of uptake preference as follows: choline>acetate>FDG. In hypoxic cells, the order is reversed, reflecting diverse biochemical responses to hypoxia. These findings may help to explain PET imaging findings of the diverse responses of these tracers in different stages and locations of prostate cancer. Androgen depletion markedly suppressed the uptake of all three tracers in LNCaP cells, which suggests the potential for underestimation of the disease state when PET imaging is performed subsequent to antiandrogen therapy

  15. Characterization of the biological effects of a novel protein kinase D inhibitor in endothelial cells.

    Science.gov (United States)

    Evans, Ian M; Bagherzadeh, Azadeh; Charles, Mark; Raynham, Tony; Ireson, Chris; Boakes, Alexandra; Kelland, Lloyd; Zachary, Ian C

    2010-08-01

    VEGF (vascular endothelial growth factor) plays an essential role in angiogenesis during development and in disease largely mediated by signalling events initiated by binding of VEGF to its receptor, VEGFR2 (VEGF receptor 2)/KDR (kinase insert domain receptor). Recent studies indicate that VEGF activates PKD (protein kinase D) in endothelial cells to regulate a variety of cellular functions, including signalling events, proliferation, migration and angiogenesis. To better understand the role of PKD in VEGF-mediated endothelial function, we characterized the effects of a novel pyrazine benzamide PKD inhibitor CRT5 in HUVECs (human umbilical vein endothelial cells). The activity of the isoforms PKD1 and PKD2 were blocked by this inhibitor as indicated by reduced phosphorylation, at Ser916 and Ser876 respectively, after VEGF stimulation. The VEGF-induced phosphorylation of three PKD substrates, histone deacetylase 5, CREB (cAMP-response-element-binding protein) and HSP27 (heat-shock protein 27) at Ser82, was also inhibited by CRT5. In contrast, CRT6, an inactive analogue of CRT5, had no effect on PKD or HSP27 Ser82 phosphorylation. Furthermore, phosphorylation of HSP27 at Ser78, which occurs solely via the p38 MAPK (mitogen-activated protein kinase) pathway, was also unaffected by CRT5. In vitro kinase assays show that CRT5 did not significantly inhibit several PKC isoforms expressed in endothelial cells. CRT5 also decreased VEGF-induced endothelial migration, proliferation and tubulogenesis, similar to effects seen when the cells were transfected with PKD siRNA (small interfering RNA). CRT5, a novel specific PKD inhibitor, will greatly facilitate the study of the role of PKD signalling mechanisms in angiogenesis. PMID:20497126

  16. MAP Kinases in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Yongliang Zhang; Chen Dong

    2005-01-01

    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses.

  17. MAP Kinases in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    YongliangZhang; ChenDong

    2005-01-01

    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses. Cellular & Molecular Immunology. 2005;2(1):20-27.

  18. Structure-guided development of specific pyruvate dehydrogenase kinase inhibitors targeting the ATP-binding pocket.

    Science.gov (United States)

    Tso, Shih-Chia; Qi, Xiangbing; Gui, Wen-Jun; Wu, Cheng-Yang; Chuang, Jacinta L; Wernstedt-Asterholm, Ingrid; Morlock, Lorraine K; Owens, Kyle R; Scherer, Philipp E; Williams, Noelle S; Tambar, Uttam K; Wynn, R Max; Chuang, David T

    2014-02-14

    Pyruvate dehydrogenase kinase isoforms (PDKs 1-4) negatively regulate activity of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation. PDK isoforms are up-regulated in obesity, diabetes, heart failure, and cancer and are potential therapeutic targets for these important human diseases. Here, we employed a structure-guided design to convert a known Hsp90 inhibitor to a series of highly specific PDK inhibitors, based on structural conservation in the ATP-binding pocket. The key step involved the substitution of a carbonyl group in the parent compound with a sulfonyl in the PDK inhibitors. The final compound of this series, 2-[(2,4-dihydroxyphenyl)sulfonyl]isoindoline-4,6-diol, designated PS10, inhibits all four PDK isoforms with IC50 = 0.8 μM for PDK2. The administration of PS10 (70 mg/kg) to diet-induced obese mice significantly augments pyruvate dehydrogenase complex activity with reduced phosphorylation in different tissues. Prolonged PS10 treatments result in improved glucose tolerance and notably lessened hepatic steatosis in the mouse model. The results support the pharmacological approach of targeting PDK to control both glucose and fat levels in obesity and type 2 diabetes. PMID:24356970

  19. Effects of pseudo-phosphorylated rat cardiac troponin T are differently modulated by α- and β-myosin heavy chain isoforms.

    Science.gov (United States)

    Michael, John Jeshurun; Gollapudi, Sampath K; Chandra, Murali

    2014-01-01

    Interplay between the protein kinase C (PKC)-mediated phosphorylation of troponin T (TnT)- and myosin heavy chain (MHC)-mediated effects on thin filaments takes on a new significance because: (1) there is significant interaction between the TnT- and MHC-mediated effects on cardiac thin filaments; (2) although the phosphorylation of TnT by PKC isoforms is common to both human and rodent hearts, human hearts predominantly express β-MHC while rodent hearts predominantly express α-MHC. Therefore, we tested how α- and β-MHC isoforms differently affected the functional effects of phosphorylated TnT. Contractile measurements were made on cardiac muscle fibers from normal rats (α-MHC) and propylthiouracil-treated rats (β-MHC), reconstituted with the recombinant phosphomimetic-TnT (T204E; threonine 204 replaced by glutamate). Ca2+ -activated maximal tension decreased differently in α-MHC + T204E (~68%) and β-MHC + T204E (~35%). However, myofilament Ca2+ sensitivity decreased similarly in α-MHC + T204E and β-MHC + T204E, demonstrating that a decrease in Ca2+ sensitivity alone cannot explain the greater attenuation of tension in α-MHC + T204E. Interestingly, dynamic contractile parameters (rates of tension redevelopment, crossbridge (XB) recruitment dynamics, XB distortion dynamics, and XB detachment kinetics) decreased only in α-MHC + T204E. Thus, the transition of thin filaments from the blocked- to closed-state was attenuated in α-MHC + T204E and β-MHC + T204E, but the closed- to open-state transition was attenuated only in α-MHC + T204E. Our study demonstrates that the effects of phosphorylated TnT and MHC isoforms interact to bring about different functional states of cardiac thin filaments. PMID:25301196

  20. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants.

    Directory of Open Access Journals (Sweden)

    Thomas L Prince

    Full Text Available The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.