WorldWideScience

Sample records for choline kinase isoforms

  1. Highly specific antibodies for co-detection of human choline kinase α1 and α2 isoforms.

    Directory of Open Access Journals (Sweden)

    Wei Cun See Too

    Full Text Available BACKGROUND: Choline kinase is the first enzyme in the CDP-choline pathway that synthesizes phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. In humans, choline kinase exists as three isoforms (CKα1, α2, and β. Specific inhibition of CKα has been reported to selectively kill tumoral cells. Monoclonal and polyclonal antibodies against CKα used in previous studies to detect the level of this isozyme in different cellular or biochemical contexts were able to detect either the α1 or the α2 isoform. METHODOLOGY/PRINCIPAL FINDINGS: In this study, an antiserum against CKα was produced by immunizing rabbits with denatured, purified recombinant CKα2 full-length protein. This antiserum was highly specific for CKα when tested with extracts from different cell lines, and there was no cross reactivity with purified CKβ and other related proteins like human ethanolamine kinases (EK and yeast choline or ethanolamine kinases. The antiserum simultaneously detected both CKα1 and α2 isoforms in MCF-7 and HepG2 cell extracts, but not in HeLa, HCT-116, and mouse embryonic stem cell extracts. Subsequent protein dot blot assay of total CKα in a human normal/tumor protein array of 30 tissue samples by using the antiserum showed that CKα was not overexpressed in all tumor tissues when compared to their normal counterparts. Most striking differences between tumor and normal CKα expression levels were observed in kidney (11-fold higher in tumor and liver (15-fold lower in tumor samples. CONCLUSION/SIGNIFICANCE: Apart from its high sensitivity and specificity, the antiserum produced in this work, which does not require further purification, has the advantage of co-detecting both α1 and α2 isoforms in cell extracts for direct comparison of their expression levels.

  2. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    Science.gov (United States)

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  3. Choline kinase alpha expression during RA-induced neuronal differentiation: role of C/EBPβ.

    Science.gov (United States)

    Domizi, Pablo; Aoyama, Chieko; Banchio, Claudia

    2014-04-01

    Neuronal differentiation is a complex process characterized by a halt in proliferation and extension of neurites from the cell body. This process is accompanied by changes in gene expression that mediate the redirection leading to neurite formation and function. Acceleration of membrane phospholipids synthesis is associated with neurite elongation, and phosphatidylcholine (PtdCho) is the major membrane phospholipid in mammalian cells. The transcription of two genes in particular encoding key enzymes in the CDP-choline pathway for PtdCho biosynthesis are stimulated; the Chka gene for choline kinase (CK) alpha isoform and the Pcyt1a gene for the CTP:phosphocholine cytidylyltransferase (CCT) alpha isoform. We report that the stimulation of CKα expression during retinoic acid (RA) induced differentiation depends on a promoter region that contains two CCAAT/Enhancer-binding Protein-β (C/EBPβ) sites. We demonstrate that during neuronal differentiation of Neuro-2a cells, RA induces Chka expression by a mechanism that involves ERK1/2 activation which triggers C/EBPβ expression. Elevated levels of C/EBPβ bind to the Chka proximal promoter (Box1) inducing CKα expression. In addition we identified a downstream sequence named Box2 which together with Box1 is required for the promoter to reach the full induction. This is the first elucidation of the mechanism by which the expression of Chka is coordinately regulated during neuronal differentiation. PMID:24440820

  4. Differential role of human choline kinase α and β enzymes in lipid metabolism: Implications in cancer onset and treatment

    OpenAIRE

    Gallego Ortega, David; Ramírez de Molina, Ana; Ramos, Maria Angeles; Valdés Mora, Fátima; Barderas, Maria Gonzalez; Sarmentero Estrada, Jacinto; Lacal, Juan Carlos

    2009-01-01

    Background The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK) is the first enzyme of the Kennedy branch of synthesis of 1phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKα and ChoKβ isoforms, the first one with two different variants of splicing. Recently ChoKα has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. Howev...

  5. Spinach pyruvate kinase isoforms: partial purification and regulatory properties

    Energy Technology Data Exchange (ETDEWEB)

    Baysdorfer, C.; Bassham, J.A.

    1984-02-01

    Pyruvate kinase from spinach (Spinacea oleracea L.) leaves consists of two isoforms, separable by blue agarose chromatography. Both isoforms share similar pH profiles and substrate and alternate nucleotide K/sub m/ values. In addition, both isoforms are inhibited by oxalate and ATP and activated by AMP. The isoforms differ in their response to three key metabolites; citrate, aspartate, and glutamate. The first isoform is similar to previously reported plant pyruvate kinases in its sensitivity to citrate inhibition. The K/sub i/ for this inhibition is 1.2 millimolar citrate. The second isoform is not affected by citrate but is regulated by aspartate and glutamate. Aspartate is an activator with a K/sub a/ of 0.05 millimolar, and glutamate is an inhibitor with a K/sub i/ of 0.68 millimolar. A pyruvate kinase with these properties has not been previously reported. Based on these considerations, the authors suggest that the activity of the first isoform is regulated by respiratory metabolism. The second isoform, in contrast, may be regulated by the demand for carbon skeletons for use in ammonia assimilation.

  6. Alterations of choline phospholipid metabolism in endometrial cancer are caused by choline kinase alpha overexpression and a hyperactivated deacylation pathway.

    Science.gov (United States)

    Trousil, Sebastian; Lee, Patrizia; Pinato, David J; Ellis, James K; Dina, Roberto; Aboagye, Eric O; Keun, Hector C; Sharma, Rohini

    2014-12-01

    Metabolic rearrangements subsequent to malignant transformation are not well characterized in endometrial cancer. Identification of altered metabolites could facilitate imaging-guided diagnosis, treatment surveillance, and help to identify new therapeutic options. Here, we used high-resolution magic angle spinning magnetic resonance mass spectroscopy on endometrial cancer surgical specimens and normal endometrial tissue to investigate the key modulators that might explain metabolic changes, incorporating additional investigations using qRT-PCR, Western blotting, tissue microarrays (TMA), and uptake assays of [(3)H]-labeled choline. Lipid metabolism was severely dysregulated in endometrial cancer with various amino acids, inositols, nucleobases, and glutathione also altered. Among the most important lipid-related alterations were increased phosphocholine levels (increased 70% in endometrial cancer). Mechanistic investigations revealed that changes were not due to altered choline transporter expression, but rather due to increased expression of choline kinase α (CHKA) and an activated deacylation pathway, as indicated by upregulated expression of the catabolic enzymes LYPLA1, LYPLA2, and GPCPD1. We confirmed the significance of CHKA overexpression on a TMA, including a large series of endometrial hyperplasia, atypical hyperplasia, and adenocarcinoma tissues, supporting a role for CHKA in malignant transformation. Finally, we documented several-fold increases in the uptake of [(3)H]choline in endometrial cancer cell lines compared with normal endometrial stromal cells. Our results validate deregulated choline biochemistry as an important source of noninvasive imaging biomarkers for endometrial cancer. PMID:25267063

  7. Dysregulated choline metabolism in T-cell lymphoma: role of choline kinase-α and therapeutic targeting

    International Nuclear Information System (INIS)

    Cancer cells have distinct metabolomic profile. Metabolic enzymes regulate key oncogenic signaling pathways and have an essential role on tumor progression. Here, serum metabolomic analysis was performed in 45 patients with T-cell lymphoma (TCL) and 50 healthy volunteers. The results showed that dysregulation of choline metabolism occurred in TCL and was related to tumor cell overexpression of choline kinase-α (Chokα). In T-lymphoma cells, pharmacological and molecular silencing of Chokα significantly decreased Ras-GTP activity, AKT and ERK phosphorylation and MYC oncoprotein expression, leading to restoration of choline metabolites and induction of tumor cell apoptosis/necropotosis. In a T-lymphoma xenograft murine model, Chokα inhibitor CK37 remarkably retarded tumor growth, suppressed Ras-AKT/ERK signaling, increased lysophosphatidylcholine levels and induced in situ cell apoptosis/necropotosis. Collectively, as a regulatory gene of aberrant choline metabolism, Chokα possessed oncogenic activity and could be a potential therapeutic target in TCL, as well as other hematological malignancies with interrupted Ras signaling pathways

  8. Differential role of human choline kinase alpha and beta enzymes in lipid metabolism: implications in cancer onset and treatment.

    Directory of Open Access Journals (Sweden)

    David Gallego-Ortega

    Full Text Available BACKGROUND: The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK is the first enzyme of the Kennedy branch of synthesis of phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKalpha and ChoKbeta isoforms, the first one with two different variants of splicing. Recently ChoKalpha has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKbeta in carcinogenesis has been reported. METHODOLOGY/PRINCIPAL FINDINGS: Here we compare the in vitro and in vivo properties of ChoKalpha1 and ChoKbeta in lipid metabolism, and their potential role in carcinogenesis. Both ChoKalpha1 and ChoKbeta showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKbeta display an ethanolamine kinase role, ChoKalpha1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKalpha1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKbeta overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKalpha1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKbeta mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKalpha1 than ChoKbeta. CONCLUSION/SIGNIFICANCE: This study represents the first evidence of the distinct metabolic role of ChoKalpha and ChoKbeta isoforms, suggesting different physiological roles and implications in human

  9. Phosphorylation of Human Choline Kinase Beta by Protein Kinase A: Its Impact on Activity and Inhibition

    Science.gov (United States)

    Chang, Ching Ching; Few, Ling Ling; Konrad, Manfred; See Too, Wei Cun

    2016-01-01

    Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme’s activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis. PMID:27149373

  10. Comparison of the cellular and biochemical properties of Plasmodium falciparum choline and ethanolamine kinases

    OpenAIRE

    Alberge, Blandine; Gannoun-Zaki, Leila; Bascunana, Céline; Tran Van Ba, Christophe; Vial, Henri; Cerdan, Rachel

    2009-01-01

    Abstract The proliferation of the malaria-causing parasite Plasmodium falciparum within the erythrocyte is concomitant with massive phosphatidylcholine and phosphatidylethanolamine biosynthesis. Based on pharmacological and genetic data, de novo biosynthesis pathways of both phospholipids appear essential for parasite survival. The present study characterizes P. falciparum choline kinase (PfCK) and ethanolamine kinase (PfEK), which catalyse the first enzymatic steps of these essent...

  11. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    DEFF Research Database (Denmark)

    Naik, M U; Benedikz, Eirikur; Hernandez, I;

    2000-01-01

    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region of......, protein kinase Mzeta (PKMzeta). In this study, we used immunoblot and immunocytochemical techniques with isoform-specific antisera to examine the distribution of the complete family of PKC isozymes and PKMzeta in rat brain. Each form of PKC showed a widespread distribution in the brain with a distinct...

  12. Different phosphoinositide 3-kinase isoforms mediate carrageenan nociception and inflammation.

    Science.gov (United States)

    Pritchard, Rory A; Falk, Lovissa; Larsson, Mathilda; Leinders, Mathias; Sorkin, Linda S

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated. PMID:26313408

  13. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target

    Science.gov (United States)

    Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.

    2016-01-01

    Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335

  14. A critical role for Choline Kinase alpha in the aggressiveness of bladder carcinomas

    Science.gov (United States)

    Hernando, Eva; Sarmentero-Estrada, Jacinto; Koppie, Theresa; Belda-Iniesta, Cristóbal; de Molina, Victor Ramírez; Cejas, Paloma; Ozu, Choichiro; Le, Carl; Sánchez, Jose Javier; González-Barón, Manuel; Koutcher, Jason; Cordón-Cardó, Carlos; Bochner, Bernard H.; Lacal, Juan Carlos; Ramírez de Molina, Ana

    2010-01-01

    Bladder cancer is one of the most common causes of death in industrialized countries. New tumor markers and therapeutic approaches are still needed to improve management of bladder cancer patients. Choline Kinase alpha (ChoKα) is a metabolic enzyme that has a role in cell proliferation and transformation. Inhibitors of ChoKα display antitumoral activity and are expected to be soon in clinical trials. This study is aimed to asses whether ChoKα plays a role in the aggressiveness of bladder tumors and constitute a new approach for bladder cancer treatment. We demonstrate here that ChoKα is constitutively altered in human bladder tumor cells. Furthermore, in vivo murine models including an orthotopic model to mimic as much as possible the physiological conditions, revealed that increased levels of ChoKα potentiates both tumor formation (p≤0.0001) and aggressiveness of the disease over different endpoints (p=0.011). Accordingly, increased levels of ChoKα significantly reduces survival of mice with bladder cancer (p=0.05). Finally, treatment with ChoKα specific inhibitor resulted in a significant inhibition of tumor growth (p=0.02) and in a relevant increase in survival (p=0.03). PMID:19448670

  15. Synthesis of Benzofuran Analogue of Go6976, an Isoform Selective Protein Kinase C Inhibitor

    Institute of Scientific and Technical Information of China (English)

    MA, Da-Wei; ZHANG, Xin-Rong; WU, Shi-Hui; TAO, Feng-Gang

    2001-01-01

    Based on the structure of Go6976, a known isoform-selective protein kinase C inhibitor, a benzofuran analogue (1) was designed. This analogue was synthesized by coupling of benzofuran 3-acetic acid and 8-oxo-tryptamine and subsequent intramolecular Dieckmann condensation, alkylation, oxidative photocyclization and cyanation reaction of mesylate.

  16. Differential co-localization with choline acetyltransferase in nervus terminalis suggests functional differences for GnRH isoforms in bonnethead sharks (Sphyrna tiburo).

    Science.gov (United States)

    Moeller, John F; Meredith, Michael

    2010-12-17

    The nervus terminalis (NT) is a vertebrate cranial nerve whose function in adults is unknown. In bonnethead sharks, the nerve is anatomically independent of the olfactory system, with two major cell populations within one or more ganglia along its exposed length. Most cells are immunoreactive for either gonadotropin-releasing hormone (GnRH) or RF-amide-like peptides. To define further the cell populations and connectivity, we used double-label immunocytochemistry with antisera to different isoforms of GnRH and to choline acetyltransferase (ChAT). The labeling patterns of two GnRH antisera revealed different populations of GnRH-immunoreactive (ir) cell profiles in the NT ganglion. One antiserum labeled a large group of cells and fibers, which likely contain mammalian GnRH (GnRH-I) as described in previous studies and which were ChAT immunoreactive. The other antiserum labeled large club-like structures, which were anuclear, and a sparse number of fibers, but with no clear labeling of cell bodies in the ganglion. These club structures were choline acetyltrasferase (ChAT)-negative, and preabsorption control tests suggest they may contain chicken-GnRH-II (GnRH-II) or dogfish GnRH. The second major NT ganglion cell-type was immunoreactive for RF-amides, which regulate GnRH release in other vertebrates, and may provide an intraganglionic influence on GnRH release. The immunocytochemical and anatomical differences between the two GnRH-immunoreactive profile types indicate possible functional differences for these isoforms in the NT. The club-like structures may be sites of GnRH release into the general circulation since these structures were observed near blood vessels and resembled structures seen in the median eminence of rats. PMID:20950589

  17. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A., E-mail: roberto.perego@unimib.it

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  18. Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms

    Science.gov (United States)

    Liu, Z.; Xia, M.; Poovaiah, B. W.

    1998-01-01

    cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants.

  19. Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes

    Science.gov (United States)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2004-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta, and -epsilon was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms delta and epsilon were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1-g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cgamma in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.

  20. MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells

    International Nuclear Information System (INIS)

    Dysregulated expression and splicing of cell adhesion marker CD44 is found in many types of cancer. In prostate cancer (PC) specifically, the standard isoform (CD44s) has been found to be downregulated compared with benign tissue whereas predominant variant isoform CD44v7-10 is upregulated. Mitogen-activated protein kinase pathways and paracrine calcitonin are two common factors linked to dysregulated expression and splicing of CD44 in cancer. Calcitonin has been found to increase proliferation and invasion in PC acting through the protein kinase A pathway. In androgen-independent PC with known high CD44v7-10 expression, CD44 total and CD44v7-10 RNA or protein were assessed in response to exogenous and endogenous calcitonin and to inhibitors of protein kinase A, MEK, JNK, or p38 kinase. Benign cells and calcitonin receptor-negative PC cells were also tested. MEK or p38 but not JNK reduced CD44 total RNA by 40%–65% in cancer and benign cells. Inhibition of protein kinase A reduced CD44 total and v7-10 protein expression. In calcitonin receptor-positive cells only, calcitonin increased CD44 variant RNA and protein by 3 h and persisting to 48 h, apparently dependent on an uninhibited p38 pathway. Cells with constitutive CT expression showed an increase in CD44v7-10 mRNA but a decrease in CD44 total RNA. The MEK pathway increases CD44 RNA, while calcitonin, acting through the protein kinase A and p38 pathway, facilitates variant splicing. These findings could be used in the formulation of therapeutic methods for PC targeting CD44 alternate splicing

  1. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis

    Science.gov (United States)

    Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)

    2003-01-01

    Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.

  2. Investigating the role of class-IA PI 3-kinase isoforms in adipocyte differentiation

    International Nuclear Information System (INIS)

    PI 3-kinases, in particular class-IA, are key signalling molecules controlling many cellular processes including growth, proliferation, migration and differentiation. In this study, we have used a collection of isoform selective PI 3-kinase inhibitors to determine whether attenuation of signalling through class-IA PI 3-kinase isoforms will impact adipocyte differentiation. First, we analysed the expression profiles and found that fibroblastic pre-adipocytes express detectable levels of p110α and p110δ and that after differentiation, p110δ levels fall while p110α levels rise, together with C/EBPα and PPARγ. When using specific inhibitors during the differentiation process, we observed that neither p110β nor p110δ inhibition, had any significant effect. In contrast PIK-75, a selective p110α inhibitor completely abolished adipocyte differentiation as assessed by morphology, transcript and protein levels of adipocyte markers. These results indicate that long term treatment with p110α inhibitors could potentially have a severe impact on fat cell numbers in vivo.

  3. Degradable Dextran Nanopolymer as a Carrier for Choline Kinase (ChoK siRNA Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Zhihang Chen

    2016-02-01

    Full Text Available Although small interfering RNA (siRNA therapy has proven to be a specific and effective treatment in cells, the delivery of siRNA is a challenge for the applications of siRNA therapy. We present a degradable dextran with amine groups as an siRNA nano-carrier. In our nano-carrier, the amine groups are conjugated to the dextran platform through the acetal bonds, which are acid sensitive. Therefore this siRNA carrier is stable in neutral and basic conditions, while the amine groups can be cleaved and released from dextran platform under weak acid conditions (such as in endosomes. The cleavage and release of amine groups can reduce the toxicity of cationic polymer and enhance the transfection efficiency. We successfully applied this nano-carrier to deliver choline kinase (ChoK siRNA for ChoK inhibition in cells.

  4. RAS and RHO Families of GTPases Directly Regulate Distinct Phosphoinositide 3-Kinase Isoforms

    OpenAIRE

    Fritsch, Ralph; de Krijger, Inge; Fritsch, Kornelia; George, Roger; Reason, Beth; Kumar, Madhu S.; Diefenbacher, Markus; Stamp, Gordon; Downward, Julian

    2013-01-01

    Summary RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110β isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110β, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind an...

  5. Comparison of fecal pyruvate kinase isoform M2 and calprotectin in acute diarrhea in hospitalized children

    OpenAIRE

    Czub, Elzbieta; Jan K. Nowak; Moczko, Jerzy; Lisowska, Aleksandra; Banaszkiewicz, Aleksandra; Banasiewicz, Tomasz; Walkowiak, Jaroslaw

    2014-01-01

    Fecal concentrations of pyruvate kinase isoform M2 (M2-PK) and calprotectin (FC) serve as biomarkers of inflammation of gastrointestinal mucosa. The value of M2-PK in discriminating between patients with viral and bacterial acute diarrhea (AD) is currently unknown. We analyzed M2-PK and FC concentrations in fifty hospitalized children with AD (29 of which were caused by rotavirus and 21 by Salmonella enteritidis) as well as 32 healthy subjects. There was no difference in the areas under the r...

  6. PKD3 is the predominant protein kinase D isoform in mouse exocrine pancreas and promotes hormone-induced amylase secretion.

    Science.gov (United States)

    Chen, L Andy; Li, Jing; Silva, Scott R; Jackson, Lindsey N; Zhou, Yuning; Watanabe, Hiroaki; Ives, Kirk L; Hellmich, Mark R; Evers, B Mark

    2009-01-23

    The protein kinase D (PKD) family of serine/threonine kinases, which can be activated by gastrointestinal hormones, consists of three distinct isoforms that modulate a variety of cellular processes including intracellular protein transport as well as constitutive and regulated secretion. Although isoform-specific functions have been identified in a variety of cell lines, the expression and function of PKD isoforms in normal, differentiated secretory tissues is unknown. Here, we demonstrate that PKD isoforms are differentially expressed in the exocrine and endocrine cells of the pancreas. Specifically, PKD3 is the predominant isoform expressed in exocrine cells of the mouse and human pancreas, whereas PKD1 and PKD2 are more abundantly expressed in the pancreatic islets. Within isolated mouse pancreatic acinar cells, PKD3 undergoes rapid membrane translocation, trans-activating phosphorylation, and kinase activation after gastrointestinal hormone or cholinergic stimulation. PKD phosphorylation in pancreatic acinar cells occurs viaaCa2+-independent, diacylglycerol- and protein kinase C-dependent mechanism. PKD phosphorylation can also be induced by physiologic concentrations of secretagogues and by in vivo stimulation of the pancreas. Furthermore, activation of PKD3 potentiates MEK/ERK/RSK (RSK, ribosomal S6 kinase) signaling and significantly enhances cholecystokinin-mediated pancreatic amylase secretion. These findings reveal a novel distinction between the exocrine and endocrine cells of the pancreas and further identify PKD3 as a signaling molecule that promotes hormone-stimulated amylase secretion. PMID:19028687

  7. Characterization of protein kinase C and its isoforms in human T lymphocytes.

    Science.gov (United States)

    Beyers, A D; Hanekom, C; Rheeder, A; Strachan, A F; Wooten, M W; Nel, A E

    1988-11-15

    Protein kinase C (PKC) regulates numerous T cell functions and is present in abundance in normal human T cells and certain T cell lines. Although crude Triton X-100 soluble material obtained from T cell pellets contains minimal PKC activity, DEAE chromatography revealed that 12 to 37% of cellular PKC was membrane associated, probably due to removal of an inhibitor through column chromatography. As in other tissues, PKC from lymphoid tissue was phospholipid and Ca2+ dependent and diolein reduced the Ca2+ requirements for enzyme activity. Hydroxylapatite chromatography revealed that T cells possess two major peaks of PKC activity. Although, the enzyme in these peaks had similar m.w. and identical iso-electric mobility, the proteins differed with respect to their autophosphorylation sites and immunoreactivity toward an isoform specific antibody. Furthermore, differences in their activities in the presence of phospholipid, diolein, and limiting amounts of Ca2+ imply that these isoforms may be differentially activated. We discuss optimal conditions for activation of PKC and its isoforms for study of T lymphocyte cellular function. PMID:3263426

  8. Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator

    Directory of Open Access Journals (Sweden)

    Fabian V Filipp

    2013-01-01

    Full Text Available Pyruvate kinase activity is controlled by a tightly woven regulatory network. The oncofetal isoform of pyruvate kinase (PKM2 is a master regulator of cancer metabolism. PKM2 engages in parallel, feed-forward, positive and negative feedback control contributing to cancer progression. Besides its metabolic role, non-metabolic functions of PKM2 as protein kinase and transcriptional coactivator for c-MYC and hypoxia-inducible factor 1-alpha are essential for epidermal growth factor receptor activation-induced tumorigenesis. These biochemical activities are controlled by a shift in the oligomeric state of PKM2 that includes acetylation, oxidation, phosphorylation, prolyl hydroxylation and sumoylation. Metabolically active PKM2 tetramer is allosterically regulated and responds to nutritional and stress signals. Metabolically inactive PKM2 dimer is imported into the nucleus and can function as protein kinase stimulating transcription. A systems biology approach to PKM2 at the genome, transcriptome, proteome, metabolome and fluxome level reveals how differences in biomolecular structure translate into a global rewiring of cancer metabolism. Cancer systems biology takes us beyond the Warburg effect, opening unprecedented therapeutic opportunities.

  9. Clinical characteristics of megaconial congenital muscular dystrophy due to choline kinase beta gene defects in a series of 15 patients.

    Science.gov (United States)

    Haliloglu, Goknur; Talim, Beril; Sel, Cigdem Genc; Topaloglu, Haluk

    2015-11-01

    A new form of congenital muscular dystrophy (CMD) with multisystem involvement and characteristic mitochondrial structural changes, due to choline kinase beta (CHKB) gene defects has been characterized by intellectual disability, autistic features, ichthyosis-like skin changes, and dilated cardiomyopathy. We define the clinical characteristics in 15 patients, from 14 unrelated families with so-called 'megaconial CMD', all having mutations in CHKB. Core clinical phenotype included global developmental delay prominent in gross-motor and language domains, severe intellectual disability (ID), and/or muscle weakness in all cases. Muscle biopsies were equivocally 'megaconial' in all. Other peculiarities were: ichthyosis-like skin changes (n = 11), increased serum CK levels (n = 12), microcephaly (n = 6), dysmorphic facial features (n = 7), neonatal hypotonia (n = 3), seizures (n = 3), epileptiform activity without clinically overt seizures (n = 2), dilated cardiomyopathy (n = 2), decreased left ventricular systolic function (n = 2), congenital heart defects (n = 3), sensorineural (n = 1), and conductive hearing loss (n = 1). Ten patients had cranial neuroimaging (MRI-MRS) study, which was notably normal in all, other than one patient having a decreased choline: creatine peak. Intra-familial variability in clinical expression of the disease is noted in four families. Two siblings from the same family, one presenting with global developmental delay and dilated cardiomyopathy, and the other with ichthyosis, ID and proximal weakness without cardiomyopathy died at the ages of 2 years 1 month, and 7 years 4 months respectively. Evolution was progressive (n = 13) and static (n = 2). PMID:26067811

  10. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    Science.gov (United States)

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2016-06-24

    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα. PMID:27151216

  11. Multiple Promoters in the WNK1 Gene: One Controls Expression of a Kidney-Specific Kinase-Defective Isoform

    OpenAIRE

    Delaloy, Celine; Lu, Jingyu; Houot, Anne-Marie; Disse-Nicodeme, Sandra; Gasc, Jean-Marie; Corvol, Pierre; Jeunemaitre, Xavier

    2003-01-01

    WNK1 is a serine-threonine kinase, the expression of which is affected in pseudohypoaldosteronism type II, a Mendelian form of arterial hypertension. We characterized human WNK1 transcripts to determine the molecular mechanisms governing WNK1 expression. We report the presence of two promoters generating two WNK1 isoforms with a complete kinase domain. Further variations are achieved by the use of two polyadenylation sites and tissue-specific splicing. We also determined the structure of a ki...

  12. Chronic treatment with amyloid beta(1-42) inhibits non-cholinergic high-affinity choline transport in NG108-15 cells through protein kinase C signaling

    Czech Academy of Sciences Publication Activity Database

    Nováková, Jana; Mikasová, Lenka; Machová, Eva; Lisá, Věra; Doležal, Vladimír

    2005-01-01

    Roč. 1062, č. 1-2 (2005), s. 101-110. ISSN 0006-8993 R&D Projects: GA AV ČR(CZ) IAA5011206; GA MŠk(CZ) LC554 Grant ostatní: Lipidiet(XE) QLK1-CT-2002-00172 Institutional research plan: CEZ:AV0Z50110509 Keywords : choline transporter * beta-amyloid * protein kinase C Subject RIV: ED - Physiology Impact factor: 2.296, year: 2005

  13. Direct binding and activation of protein kinase C isoforms by steroid hormones.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2008-10-01

    The non-genomic action of steroid hormones regulates a wide variety of cellular responses including regulation of ion transport, cell proliferation, migration, death and differentiation. In order to achieve such plethora of effects steroid hormones utilize nearly all known signal transduction pathways. One of the key signalling molecules regulating the non-genomic action of steroid hormones is protein kinase C (PKC). It is thought that rapid action of steroids hormones results from the activation of plasma membrane receptors; however, their molecular identity remains elusive. In recent years, an increasing number of studies have pointed at the selective binding and activation of specific PKC isoforms by steroid hormones. This has led to the hypothesis that PKC could act as a receptor as well as a transducer of the non-genomic effects of these hormones. In this review we summarize the current knowledge of the direct binding and activation of PKC by steroid hormones.

  14. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms.

    Science.gov (United States)

    Fritsch, Ralph; de Krijger, Inge; Fritsch, Kornelia; George, Roger; Reason, Beth; Kumar, Madhu S; Diefenbacher, Markus; Stamp, Gordon; Downward, Julian

    2013-05-23

    RAS proteins are important direct activators of p110α, p110γ, and p110δ type I phosphoinositide 3-kinases (PI3Ks), interacting via an amino-terminal RAS-binding domain (RBD). Here, we investigate the regulation of the ubiquitous p110β isoform of PI3K, implicated in G-protein-coupled receptor (GPCR) signaling, PTEN-loss-driven cancers, and thrombocyte function. Unexpectedly, RAS is unable to interact with p110β, but instead RAC1 and CDC42 from the RHO subfamily of small GTPases bind and activate p110β via its RBD. In fibroblasts, GPCRs couple to PI3K through Dock180/Elmo1-mediated RAC activation and subsequent interaction with p110β. Cells from mice carrying mutations in the p110β RBD show reduced PI3K activity and defective chemotaxis, and these mice are resistant to experimental lung fibrosis. These findings revise our understanding of the regulation of type I PI3K by showing that both RAS and RHO family GTPases directly regulate distinct ubiquitous PI3K isoforms and that RAC activates p110β downstream of GPCRs. PMID:23706742

  15. Early detection of skeletal muscle injury by assay of creatine kinase MM isoforms in serum after acute exercise

    DEFF Research Database (Denmark)

    Apple, F. S.; Hellsten, Ylva; Clarkson, P. M.

    1988-01-01

    We could detect skeletal muscle injury early after an acute exercise bout by measuring creatine kinase (CK, EC 2.7.3.2) MM isoforms in serum. Eleven men performed 120 alternating-arm, eccentric (muscle lengthening) biceps contractions with the intensity of each contraction being 110% of maximal...

  16. PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70-KILODALTON HEAT SHOCK PROTEIN HSPA2

    Science.gov (United States)

    THE PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70 kDa HEAT SHOCK PROTEIN HSPA2* Gabor Huszar1, Kathryn Stone2, David Dix3 and Lynne Vigue11The Sperm Physiology Laboratory, Department of Obstetrics and Gynecology, 2 W.M. Keck Foundatio...

  17. Multiple Promoters in the WNK1 Gene: One Controls Expression of a Kidney-Specific Kinase-Defective Isoform

    Science.gov (United States)

    Delaloy, Celine; Lu, Jingyu; Houot, Anne-Marie; Disse-Nicodeme, Sandra; Gasc, Jean-Marie; Corvol, Pierre; Jeunemaitre, Xavier

    2003-01-01

    WNK1 is a serine-threonine kinase, the expression of which is affected in pseudohypoaldosteronism type II, a Mendelian form of arterial hypertension. We characterized human WNK1 transcripts to determine the molecular mechanisms governing WNK1 expression. We report the presence of two promoters generating two WNK1 isoforms with a complete kinase domain. Further variations are achieved by the use of two polyadenylation sites and tissue-specific splicing. We also determined the structure of a kidney-specific isoform regulated by a third promoter and starting at a novel exon. This transcript is kinase defective and has a predominant expression in the kidney compared to the other WNK1 isoforms, with, furthermore, a highly restricted expression profile in the distal convoluted tubule. We confirmed that the ubiquitous and kidney-specific promoters are functional in several cells lines and identified core promoters and regulatory elements. In particular, a strong enhancer element upstream from the kidney-specific exon seems specific to renal epithelial cells. Thus, control of human WNK1 gene expression of kinase-active or -deficient isoforms is mediated predominantly through the use of multiple transcription initiation sites and tissue-specific regulatory elements. PMID:14645531

  18. New splicing mutation in the choline kinase beta (CHKB) gene causing a muscular dystrophy detected by whole-exome sequencing.

    Science.gov (United States)

    Oliveira, Jorge; Negrão, Luís; Fineza, Isabel; Taipa, Ricardo; Melo-Pires, Manuel; Fortuna, Ana Maria; Gonçalves, Ana Rita; Froufe, Hugo; Egas, Conceição; Santos, Rosário; Sousa, Mário

    2015-06-01

    Muscular dystrophies (MDs) are a group of hereditary muscle disorders that include two particularly heterogeneous subgroups: limb-girdle MD and congenital MD, linked to 52 different genes (seven common to both subgroups). Massive parallel sequencing technology may avoid the usual stepwise gene-by-gene analysis. We report the whole-exome sequencing (WES) analysis of a patient with childhood-onset progressive MD, also presenting mental retardation and dilated cardiomyopathy. Conventional sequencing had excluded eight candidate genes. WES of the trio (patient and parents) was performed using the ion proton sequencing system. Data analysis resorted to filtering steps using the GEMINI software revealed a novel silent variant in the choline kinase beta (CHKB) gene. Inspection of sequence alignments ultimately identified the causal variant (CHKB:c.1031+3G>C). This splice site mutation was confirmed using Sanger sequencing and its effect was further evaluated with gene expression analysis. On reassessment of the muscle biopsy, typical abnormal mitochondrial oxidative changes were observed. Mutations in CHKB have been shown to cause phosphatidylcholine deficiency in myofibers, causing a rare form of CMD (only 21 patients reported). Notwithstanding interpretative difficulties that need to be overcome before the integration of WES in the diagnostic workflow, this work corroborates its utility in solving cases from highly heterogeneous groups of diseases, in which conventional diagnostic approaches fail to provide a definitive diagnosis. PMID:25740612

  19. Design, synthesis, crystallization and biological evaluation of new symmetrical biscationic compounds as selective inhibitors of human Choline Kinase α1 (ChoKα1)

    Science.gov (United States)

    Schiaffino-Ortega, Santiago; Baglioni, Eleonora; Mariotto, Elena; Bortolozzi, Roberta; Serrán-Aguilera, Lucía; Ríos-Marco, Pablo; Carrasco-Jimenez, M. Paz; Gallo, Miguel A.; Hurtado-Guerrero, Ramon; Marco, Carmen; Basso, Giuseppe; Viola, Giampietro; Entrena, Antonio; López-Cara, Luisa Carlota

    2016-03-01

    A novel family of compounds derivative of 1,1‧-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bispyridinium or –bisquinolinium bromide (10a-l) containing a pair of oxygen atoms in the spacer of the linker between the biscationic moieties, were synthesized and evaluated as inhibitors of choline kinase against a panel of cancer-cell lines. The most promising compounds in this series were 1,1‧-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))bis(4-(dimethylamino)pyridinium) bromide (10a) and 1,1‧-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bis(7-chloro-4-(pyrrolidin-1-yl)quinolinium) bromide (10l), which inhibit human choline kinase (ChoKα1) with IC50 of 1.0 and 0.92 μM, respectively, in a range similar to that of the previously reported biscationic compounds MN58b and RSM932A. Our compounds show greater antiproliferative activities than do the reference compounds, with unprecedented values of GI50 in the nanomolar range for several of the cancer-cell lines assayed, and more importantly they present low toxicity in non-tumoral cell lines, suggesting a cancer-cell-selective antiproliferative activity. Docking studies predict that the compounds interact with the choline-binding site in agreement with the binding mode of most previously reported biscationic compounds. Moreover, the crystal structure of ChoKα1 with compound 10a reveals that this compound binds to the choline-binding site and mimics HC-3 binding mode as never before.

  20. Purification and characterization of an isoform of protein kinase C from bovine neutrophils

    International Nuclear Information System (INIS)

    Protein kinase C (PKC) from bovine neutrophils was purified 1,420-fold. Subcellular fractionation analysis of bovine neutrophil homogenate in the presence of EGTA indicated that more than 95% of the PKC activity was present in the soluble fraction. Whereas bovine brain PKC could be resolved into four isoenzymatic forms by chromatography on a hydroxylapatite column, bovine neutrophil PKC was eluted in a single peak, suggesting that it corresponded to a single isoform. The apparent molecular weight of bovine neutrophil PKC was 82,000, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bovine neutrophil PKC was autophosphorylated in the presence of [γ-32P]ATP, provided that the medium was supplemented with Mg2+, Ca2+, phosphatidylserine, and diacylglycerol; phorbol myristate acetate could substitute for diacylglycerol. Autophosphorylated PKC could be cleaved by trypsin to generate two radiolabeled peptides of Mr 48,000 and 39,000. The labeled amino acids were serine and threonine. During the course of the purification procedure of bovine neutrophil PKC, a protein of Mr 23,000 was found to exhibit a strong propensity to PKC-dependent phosphorylation in the presence of [γ-32P]ATP, Mg2+, Ca2+, phosphatidylserine, and diacylglycerol. This protein was recovered together with PKC in one of the two active peaks eluted from the Mono Q column at the second step of PKC purification. It is suggested that the Mr 23,000 protein might be a natural substrate for bovine neutrophil PKC

  1. Comparison of fecal pyruvate kinase isoform M2 and calprotectin in acute diarrhea in hospitalized children

    Science.gov (United States)

    Czub, Elzbieta; Nowak, Jan K.; Moczko, Jerzy; Lisowska, Aleksandra; Banaszkiewicz, Aleksandra; Banasiewicz, Tomasz; Walkowiak, Jaroslaw

    2014-01-01

    Fecal concentrations of pyruvate kinase isoform M2 (M2-PK) and calprotectin (FC) serve as biomarkers of inflammation of gastrointestinal mucosa. The value of M2-PK in discriminating between patients with viral and bacterial acute diarrhea (AD) is currently unknown. We analyzed M2-PK and FC concentrations in fifty hospitalized children with AD (29 of which were caused by rotavirus and 21 by Salmonella enteritidis) as well as 32 healthy subjects. There was no difference in the areas under the receiver operating characteristic curves plotted for the two tests in differentiating rotaviral from bacterial AD. The sensitivity and specificity of M2-PK at optimal cut-off (20 U/g) were 75.9% and 71.4%, respectively. M2-PK and FC had similar values in distinguishing between children with AD caused by rotavirus and Salmonella enteritidis. The performance of both tests in hospitalized patients did not meet the needs of everyday clinical practice. Moreover, no advantage of fecal tests over the measurement of CRP was documented. PMID:24759699

  2. Choline metabolism-based molecular diagnosis of cancer: an update

    OpenAIRE

    Glunde, Kristine; Penet, Marie-France; Jiang, Lu; Jacobs, Michael A.; Zaver M Bhujwalla

    2015-01-01

    Abnormal choline metabolism continues to be identified in multiple cancers. Molecular causes of abnormal choline metabolism are changes in choline kinase-α, ethanolamine kinase-α, phosphatidylcholine-specific phospholipase C and -D and glycerophosphocholine phosphodiesterases, as well as several choline transporters. The net outcome of these enzymatic changes is an increase in phosphocholine and total choline (tCho) and, in some cancers, a relative decrease of glycerophosphocholine. The incre...

  3. Bisphenol A differentially activates protein kinase C isoforms in murine placental tissue

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wenjuan; Huang, Hui; Wang, Yanfei [Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Wong, Tsz Yan [Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Wang, C.C. [Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Leung, Lai K., E-mail: laikleung@cuhk.edu.hk [Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong)

    2013-06-01

    Bisphenol A is utilized to make polycarbonate plastics and is an environmental pollutant. Recent research has indicated that it is an endocrine disruptor and may interfere with reproductive processes. Our lab has previously shown that bisphenol A could regulate corticotrophin releasing hormone and aromatase in cultured placental cells. In the present study, the effect of bisphenol A on these two genes in the placenta was investigated in mice. Pregnant ICR mice were gavaged with bisphenol A at 2, 20 and 200 mg/kg body weight/day from E13 to E16 and were euthanized at E17. Compared to the control mice, increased plasma estrogen and corticotrophin releasing hormone were observed in bisphenol A-treated mice. Messenger RNA quantification indicated that placental crh but not cyp19 was induced in mice treated with bisphenol A. Tracking the related signaling pathway, we found that protein kinase C ζ/λ and δ were activated in the placentas of bisphenol A-treated mice. As the gene promoter of crh contains CRE and the half site of ERE, either phospho-PKC or estrogen could stimulate the gene transactivation. These results indicate that bisphenol A might increase plasma concentrations of estradiol, testosterone, corticotrophin releasing hormone and placental phospho-PKC ζ/λ and δ in mice. Ultimately, the incidence of premature birth in these mice could increase. - Highlights: • The pollutant bisphenol A differentially activated PKC isoforms in the placenta. • CRE-binding activity in the nuclear protein of placenta was increased. • Bisphenol A induces CRH mRNA expression in mice.

  4. Bisphenol A differentially activates protein kinase C isoforms in murine placental tissue

    International Nuclear Information System (INIS)

    Bisphenol A is utilized to make polycarbonate plastics and is an environmental pollutant. Recent research has indicated that it is an endocrine disruptor and may interfere with reproductive processes. Our lab has previously shown that bisphenol A could regulate corticotrophin releasing hormone and aromatase in cultured placental cells. In the present study, the effect of bisphenol A on these two genes in the placenta was investigated in mice. Pregnant ICR mice were gavaged with bisphenol A at 2, 20 and 200 mg/kg body weight/day from E13 to E16 and were euthanized at E17. Compared to the control mice, increased plasma estrogen and corticotrophin releasing hormone were observed in bisphenol A-treated mice. Messenger RNA quantification indicated that placental crh but not cyp19 was induced in mice treated with bisphenol A. Tracking the related signaling pathway, we found that protein kinase C ζ/λ and δ were activated in the placentas of bisphenol A-treated mice. As the gene promoter of crh contains CRE and the half site of ERE, either phospho-PKC or estrogen could stimulate the gene transactivation. These results indicate that bisphenol A might increase plasma concentrations of estradiol, testosterone, corticotrophin releasing hormone and placental phospho-PKC ζ/λ and δ in mice. Ultimately, the incidence of premature birth in these mice could increase. - Highlights: • The pollutant bisphenol A differentially activated PKC isoforms in the placenta. • CRE-binding activity in the nuclear protein of placenta was increased. • Bisphenol A induces CRH mRNA expression in mice

  5. Biochemical characterization of the initial steps of the Kennedy pathway in Trypanosoma brucei : the ethanolamine and choline kinases

    OpenAIRE

    GIBELLINI, FEDERICA; Hunter, William N.; Smith, Terry K.

    2008-01-01

    Ethanolamine and choline are major components of the trypanosome membrane phospholipids, in the form of GPEtn (glycero-phosphoethanolamine) and GPCho (glycerophosphocholine). Ethanolamine is also found as an integral component of the GPI (glycosylpliosphatidylinositol) anchor that is required for membrane attachment of cell-surface proteins, most notably the variant-surface glycoproteins. The de novo synthesis of GPEtn and GPCho starts with the generation of phosphoethanolamine and phosphocho...

  6. Biochemical characterisation of the initial steps of the kennedy pathway in Trypanosoma brucei - the ethanolamine and choline kinases

    OpenAIRE

    GIBELLINI, FEDERICA; Hunter, William N.; Smith, Terry K.

    2008-01-01

    Abstract Ethanolamine (EtN) and choline (Cho) are major components of the trypanosome membrane phospholipids, in the form of phosphatidylethanolamine (GPEtn) and phosphatidylcholine (GPCho). Ethanolamine is also found as an integral component of the glycosylphosphatidylinositol (GPI) anchor that is required for membrane attachment of cell surface proteins, most notably the variant surface glycoproteins. The de novo synthesis of GPEth and GPCho starts with the generation of phosphoe...

  7. Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth

    Science.gov (United States)

    Lv, Lei; Li, Dong; Zhao, Di; Lin, Ruiting; Chu, Yajing; Zhang, Heng; Zha, Zhengyu; Liu, Ying; Li, Zi; Xu, Yanping; Wang, Gang; Huang, Yiran; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying

    2016-01-01

    SUMMARY Most tumor cells take up more glucose than normal cells but metabolize glucose via glycolysis even in the presence of normal levels of oxygen, a phenomenon known as the Warburg effect. Tumor cells commonly express the embryonic M2 isoform of pyruvate kinase (PKM2) that may contribute to the metabolism shift from oxidative phosphorylation to aerobic glycolysis and tumorigenesis. Here we show that PKM2 is acetylated on lysine 305 and that this acetylation is stimulated by high glucose concentration. PKM2 K305 acetylation decreases PKM2 enzyme activity and promotes its lysosomal-dependent degradation via chaperone-mediated autophagy (CMA). Acetylation increases PKM2 interaction with HSC70, a chaperone for CMA, and association with lysosomes. Ectopic expression of an acetylation mimetic K305Q mutant accumulates glycolytic intermediates and promotes cell proliferation and tumor growth. These results reveal an acetylation regulation of pyruvate kinase and the link between lysine acetylation and CMA. PMID:21700219

  8. A tail-anchored myotonic dystrophy protein kinase isoform induces perinuclear clustering of mitochondria, autophagy, and apoptosis.

    Directory of Open Access Journals (Sweden)

    Ralph J A Oude Ophuis

    Full Text Available BACKGROUND: Studies on the myotonic dystrophy protein kinase (DMPK gene and gene products have thus far mainly concentrated on the fate of length mutation in the (CTGn repeat at the DNA level and consequences of repeat expansion at the RNA level in DM1 patients and disease models. Surprisingly little is known about the function of DMPK protein products. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate here that transient expression of one major protein product of the human gene, the hDMPK A isoform with a long tail anchor, results in mitochondrial fragmentation and clustering in the perinuclear region. Clustering occurred in a variety of cell types and was enhanced by an intact tubulin cytoskeleton. In addition to morphomechanical changes, hDMPK A expression induces physiological changes like loss of mitochondrial membrane potential, increased autophagy activity, and leakage of cytochrome c from the mitochondrial intermembrane space accompanied by apoptosis. Truncation analysis using YFP-hDMPK A fusion constructs revealed that the protein's tail domain was necessary and sufficient to evoke mitochondrial clustering behavior. CONCLUSION/SIGNIFICANCE: Our data suggest that the expression level of the DMPK A isoform needs to be tightly controlled in cells where the hDMPK gene is expressed. We speculate that aberrant splice isoform expression might be a codetermining factor in manifestation of specific DM1 features in patients.

  9. Characterization and differential expression of protein kinase C isoforms in PC12 cells. Differentiation parallels an increase in PKC beta II.

    Science.gov (United States)

    Wooten, M W; Seibenhener, M L; Soh, Y; Ewald, S J; White, K R; Lloyd, E D; Olivier, A; Parker, P J

    1992-02-17

    Nerve growth factor (NGF) treatment of PC12 cells induced a 2.8-fold increase in protein kinase C activity concomitant with differentiation and acquisition of neuritis. PKC protein isoforms were separated by sequential chromatography on DEAE-Sephacel/hydroxylapatite. A broad peak of PKC activity eluted which corresponded to the alpha PKC isoform. In control cells, message for all six PKC isoforms was detected and expressed as epsilon greater than zeta = gamma greater than delta greater than beta greater than alpha. Western blot of whole cell lysates revealed a large increase in the beta II, while slight changes were observed for the other five PKC isoforms during treatment (1-14 days) with NGF (50 ng/ml). In parallel, coordinate changes in the expression of the individual transcripts for the six isoforms occurred during NGF treatment. Induction and accumulation of PKC beta II may play a role in maintenance of neuronal morphology. PMID:1544425

  10. Efficacy of phosphatidylinositol-3 kinase inhibitors with diverse isoform selectivity profiles for inhibiting the survival of chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Göckeritz, Elisa; Kerwien, Susan; Baumann, Michael; Wigger, Marion; Vondey, Verena; Neumann, Lars; Landwehr, Thomas; Wendtner, Clemens M; Klein, Christian; Liu, Ningshu; Hallek, Michael; Frenzel, Lukas P; Krause, Günter

    2015-11-01

    Pharmacological inhibition of phosphatiylinositide-3-kinase (PI3K)-mediated signaling holds great promise for treating chronic lymphocytic leukemia (CLL). Therefore we assessed three structurally related PI3K inhibitors targeting the PI3K-δ isoform for their ability to inhibit the survival of freshly isolated CLL cells. The purely PI3K-δ-selective inhibitor idelalisib was compared to copanlisib (BAY 80-6946) and duvelisib (IPI-145), with isoform target profiles that additionally include PI3K-α or PI3K-γ, respectively. The concentrations leading to half-maximal reduction of the survival of CLL cells were more than ten-fold lower for copanlisib than for idelalisib and duvelisib. At concentrations reflecting the biological availability of the different inhibitors, high levels of apoptotic response among CLL samples were attained more consistently with copanlisib than with idelalisib. Copanlisib selectively reduced the survival of CLL cells compared to T cells and to B cells from healthy donors. In addition copanlisib and duvelisib impaired the migration of CLL cells towards CXCL12 to a greater extent than equimolar idelalisib. Similarly copanlisib and duvelisib reduced the survival of CLL cells in co-cultures with the bone marrow stroma cell line HS-5 more strongly than idelalisib. Survival inhibition by copanlisib and idelalisib was enhanced by the monoclonal CD20 antibodies rituximab and obinutuzumab (GA101), while antibody-dependent cellular cytotoxicity mediated by alemtuzumab and peripheral blood mononuclear cells was not substantially impaired by both PI3K inhibitors for the CLL-derived JVM-3 cell line as target cells. Taken together, targeting the α- and δ- p110 isoforms with copanlisib may be a useful strategy for the treatment of CLL and warrants further clinical investigation. PMID:25912635

  11. Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway

    DEFF Research Database (Denmark)

    Migliaccio, E; Mele, S; Salcini, A E; Pelicci, G; Lai, K M; Superti-Furga, G; Pawson, T; Di Fiore, P P; Lanfrancone, L; Pelicci, P G

    1997-01-01

    Shc proteins are targets of activated tyrosine kinases and are implicated in the transmission of activation signals to Ras. The p46shc and p52shc isoforms share a C-terminal SH2 domain, a proline- and glycine-rich region (collagen homologous region 1; CH1) and a N-terminal PTB domain. We have iso...

  12. Glutamic acid 203 of the cAMP-dependent protein kinase catalytic subunit participates in the inhibition by two isoforms of the protein kinase inhibitor.

    Science.gov (United States)

    Baude, E J; Dignam, S S; Olsen, S R; Reimann, E M; Uhler, M D

    1994-01-21

    Although the protein kinase inhibitors (PKIs) are known to be potent and specific inhibitors of the catalytic (C) subunit of cAMP-dependent protein kinase, little is known about their physiological roles. Glutamate 203 of the C alpha isoform (C alpha E203) has been implicated in the binding of the arginine 15 residue of the skeletal isoform of PKI (PKI alpha R15) (Knighton, D. R., Zheng, J., Ten Eyck, L. F., Xuong, N., Taylor, S.S., and Sowadski, J. M. (1991) Science 253, 414-420). To investigate the role of C alpha E203 in the binding of PKI and in vivo C-PKI interactions, in vitro mutagenesis was used to change the C alpha E203 codon of the murine C alpha cDNA to alanine and glutamine codons. Initially, the C alpha E203 mutant proteins were expressed and purified from Escherichia coli. C alpha E203 is not essential for catalysis as all of the C subunit mutants were enzymatically active. The mutation of Glu203 did increase the apparent Km for Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) severalfold but did not affect the apparent Km for ATP. The Vmax(app) was not affected by the mutation of C alpha E203. The mutation of C alpha E203 compromised the ability of PKI alpha (5-24), PKI alpha, and PKI beta to inhibit phosphotransferase activity. PKI alpha was altered using in vitro mutagenesis to probe the role of Arg15 in interacting with C alpha E203. The PKI alpha R15A mutant was reduced in its inhibition of C alpha. Preliminary studies of the expression of these C alpha mutants in COS cells gave similar results. These results suggest that the C alpha E203 mutants may be useful in assessing the role of PKI in vivo. PMID:7905001

  13. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    DEFF Research Database (Denmark)

    Massip, L; Garand, C; Labbé, A;

    2010-01-01

    show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1...... contrast, different DNA-damaging treatments known to activate PKCs did not induce RACK1/PKCs association in cells. Overall, our results indicate that a depletion of the WRN protein in normal fibroblasts causes the activation of several PKCs through translocation and association of RACK1 with such kinases.......Werner's syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we...

  14. Diacylglycerol kinase theta and zeta isoforms : regulation of activity, protein binding partners and physiological functions

    NARCIS (Netherlands)

    Los, Alrik Pieter

    2007-01-01

    Diacylglycerol kinases (DGKs) phosphorylate the second messenger diacylglycerol (DAG) yielding phosphatidic acid (PA). In this thesis, we investigated which structural domains of DGKtheta are required for DGK activity. Furthermore, we showed that DGKzeta binds to and is activated by the Retinoblasto

  15. Diacylglycerol kinase theta and zeta isoforms: regulation of activity, protein binding partners and physiological functions

    OpenAIRE

    Los, Alrik Pieter

    2007-01-01

    Diacylglycerol kinases (DGKs) phosphorylate the second messenger diacylglycerol (DAG) yielding phosphatidic acid (PA). In this thesis, we investigated which structural domains of DGKtheta are required for DGK activity. Furthermore, we showed that DGKzeta binds to and is activated by the Retinoblastoma tumour suppressor protein (pRB) and the pRB-related proteins p107 and p130, key regulators of the cell-cycle, differentiation and apoptosis. The interaction between pRB and DGKzeta is regulated ...

  16. A single-vial biphasic liquid extraction assay for choline acetyltransferease using [3H]choline

    International Nuclear Information System (INIS)

    A single-vial liquid extraction assay for choline acetyltransferase that uses [3H]choline as the labeled substrate has been devised. [3H]Choline is incubated with an excess of acetyl-CoA in a small reaction vial which also serves as a scintillation vial. After a suitable reaction period, unreacted [3H]choline is quickly and quantitatively converted to phosphoryl-[3H]choline by the addition of an excess of choline kinase. This treatment is followed by the addition of scintillation fluid containing sodium tetraphenylboron after which the vial is capped, shaken, and counted. A two-phase system is produced in which product [3H]choline is selectively extracted into the scintillation fluid, where is is counted. Phosphoryl-[3H]choline remains in the aqueous phase and is not counted. This assay is rapid, simple, and quite sensitive. In comparison to assays using acetyl-CoA as the labeled substrate, it is less sensitive to interference by other enzymes and thus more suitable for measuring choline acetyltransferase in crude extracts and in the initial stages of purificaton. Similar single-vial radiometric assays are described for choline kinase and acetyl-CoA hydrolases

  17. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells

    Science.gov (United States)

    Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)

    2002-01-01

    Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.

  18. Switching of pyruvate kinase isoform L to M2 promotes metabolic reprogramming in hepatocarcinogenesis.

    Directory of Open Access Journals (Sweden)

    Carmen Chak-Lui Wong

    Full Text Available Hepatocellular carcinoma (HCC is an aggressive tumor, with a high mortality rate due to late symptom presentation and frequent tumor recurrences and metastasis. It is also a rapidly growing tumor supported by different metabolic mechanisms; nevertheless, the biological and molecular mechanisms involved in the metabolic reprogramming in HCC are unclear. In this study, we found that pyruvate kinase M2 (PKM2 was frequently over-expressed in human HCCs and its over-expression was associated with aggressive clinicopathological features and poor prognosis of HCC patients. Furthermore, knockdown of PKM2 suppressed aerobic glycolysis and cell proliferation in HCC cell lines in vitro. Importantly, knockdown of PKM2 hampered HCC growth in both subcutaneous injection and orthotopic liver implantation models, and reduced lung metastasis in vivo. Of significance, PKM2 over-expression in human HCCs was associated with a down-regulation of a liver-specific microRNA, miR-122. We further showed that miR-122 interacted with the 3UTR of the PKM2 gene. Re-expression of miR-122 in HCC cell lines reduced PKM2 expression, decreased glucose uptake in vitro, and suppressed HCC tumor growth in vivo. Our clinical data and functional studies have revealed a novel biological mechanism involved in HCC metabolic reprogramming.

  19. Choline Magnesium Trisalicylate

    Science.gov (United States)

    Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis and painful ... used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal anti- ...

  20. Pivotal role of choline metabolites in remyelination.

    Science.gov (United States)

    Skripuletz, Thomas; Manzel, Arndt; Gropengießer, Karoline; Schäfer, Nora; Gudi, Viktoria; Singh, Vikramjeet; Salinas Tejedor, Laura; Jörg, Stefanie; Hammer, Anna; Voss, Elke; Vulinovic, Franca; Degen, Diane; Wolf, Rebecca; Lee, De-Hyung; Pul, Refik; Moharregh-Khiabani, Darius; Baumgärtner, Wolfgang; Gold, Ralf; Linker, Ralf A; Stangel, Martin

    2015-02-01

    Neuroprotective approaches for central nervous system regeneration have not been successful in clinical practice so far and compounds that enhance remyelination are still not available for patients with multiple sclerosis. The objective of this study was to determine potential regenerative effects of the substance cytidine-5'-diphospho (CDP)-choline in two different murine animal models of multiple sclerosis. The effects of exogenously applied CDP-choline were tested in murine myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. In addition, the cuprizone-induced mouse model of de- and remyelination was used to specifically test the hypothesis that CDP-choline directly increases remyelination. We found that CDP-choline ameliorated the disease course of experimental autoimmune encephalomyelitis and exerted beneficial effects on myelin, oligodendrocytes and axons. After cuprizone-induced demyelination, CDP-choline effectively enhanced myelin regeneration and reversed motor coordination deficits. The increased remyelination arose from an increase in the numbers of proliferating oligodendrocyte precursor cells and oligodendrocytes. Further in vitro studies suggest that this process is regulated by protein kinase C. We thus identified a new mechanism to enhance central nervous system remyelination via the choline pathway. Due to its regenerative action combined with an excellent safety profile, CDP-choline could become a promising substance for patients with multiple sclerosis as an add-on therapy. PMID:25524711

  1. Isolation of a human myocardial cytosolic phospholipase A2 isoform. Fast atom bombardment mass spectroscopic and reverse-phase high pressure liquid chromatography identification of choline and ethanolamine glycerophospholipid substrates.

    OpenAIRE

    Hazen, S. L.; Hall, C. R.; Ford, D. A.; Gross, R W

    1993-01-01

    Recent studies have demonstrated the existence of a novel family of calcium-independent plasmalogen-selective phospholipases A2 in canine myocardium that have been implicated as enzymic mediators of ischemic membrane damage. We now report that human myocardium contains two functionally distinct isoforms of cytosolic calcium-independent phospholipase A2. The major cytosolic phospholipase A2 isoform preferentially hydrolyzes plasmalogen substrate, possesses a pH optimum of 7.0, and is chromatog...

  2. The PI3-kinase isoform p110δ is essential for cell transformation induced by the D816V mutant of c-Kit in a lipid-kinase-independent manner

    DEFF Research Database (Denmark)

    Sun, J.; Mohlin, S.; Lundby, A.; Kazi, J.U.; Hellman, U.; Påhlman, S.; Olsen, J.V.; Rönnstrand, L.

    2013-01-01

    isoform p110δ in c-Kit/D816V-expressing Ba/F3 cells led to reduced cell transformation both in vitro and in vivo without affecting the overall PI3-kinase activity. This suggests that p110δ has a lipid-kinase-independent role in c-Kit/D816V-mediated cell transformation. We furthermore demonstrate that p110......δ is phosphorylated at residues Y524 and S1039 and that phosphorylation requires an intact binding site for PI3-kinase in c-Kit/D816V. Overexpression of p110δ carrying the Y523F and S1038A mutations significantly reduced c-Kit/D816V-mediated cell survival and proliferation. Taken together, our...... results demonstrate an important lipid-kinase-independent role of p110δ in c-Kit/D816V-mediated cell transformation. This furthermore suggests that p110δ could be a potential diagnostic factor and selective therapeutic target for c-Kit/D816V-expressing malignancies.Oncogene advance online publication, 11...

  3. The molecular, temporal and region-specific requirements of the beta isoform of Calcium/Calmodulin-dependent protein kinase type 2 (CAMK2B) in mouse locomotion.

    Science.gov (United States)

    Kool, Martijn J; van de Bree, Jolet E; Bodde, Hanna E; Elgersma, Ype; van Woerden, Geeske M

    2016-01-01

    Genetic approaches using temporal and brain region-specific restricted gene deletions have provided a wealth of insight in the brain regions and temporal aspects underlying spatial and associative learning. However, for locomotion such extensive studies are still scarce. Previous studies demonstrated that Camk2b(-/-) mice, which lack the β isoform of Calcium/Calmodulin-dependent protein kinase 2 (CAMK2B), show very severe locomotion deficits. However, where these locomotion deficits originate is unknown. Here we made use of novel Camk2b mutants (Camk2b(f/f) and Camk2b(T287A)), to explore the molecular, temporal and brain region-specific requirements of CAMK2B for locomotion. At the molecular level we found that normal locomotion requires Calcium/Calmodulin mediated activation of CAMK2B, but CAMK2B autonomous activity is largely dispensable. At a systems level, we found that global deletion of Camk2b in the adult mouse causes only mild locomotion deficits, suggesting that the severe locomotion deficits of Camk2b(-/-) mice are largely of developmental origin. However, early onset deletion of Camk2b in cerebellum, striatum or forebrain did not recapitulate the locomotion deficits, suggesting that these deficits cannot be attributed to a single brain area. Taken together, these results provide the first insights into the molecular, temporal and region-specific role of CAMK2B in locomotion. PMID:27244486

  4. CK2(beta)tes gene encodes a testis-specific isoform of the regulatory subunit of casein kinase 2 in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kalmykova, Alla I; Shevelyov, Yuri Y; Polesskaya, Oksana O; Dobritsa, Anna A; Evstafieva, Alexandra G; Boldyreff, Brigitte; Issinger, Olaf-Georg; Gvozdev, Vladimir A

    2002-01-01

    An earlier described CK2(beta)tes gene of Drosophila melanogaster is shown to encode a male germline specific isoform of regulatory beta subunit of casein kinase 2. Western-analysis using anti-CK2(beta)tes Ig revealed CK2(beta)tes protein in Drosophila testes extract. Expression of a CK2(beta)tes-beta......-galactosidase fusion protein driven by the CK2(beta)tes promoter was found in transgenic flies at postmitotic stages of spermatogenesis. Examination of biochemical characteristics of a recombinant CK2(beta)tes protein expressed in Escherichia coli revealed properties similar to those of CK2beta: (a) CK2(beta......)tes protein stimulates CK2alpha catalytic activity toward synthetic peptide; (b) it inhibits phosphorylation of calmodulin and mediates stimulation of CK2alpha by polylysine; (c) it is able to form (CK2(beta)tes)2 dimers, as well as (CK2alpha)2(CK2(beta)tes)2 tetramers. Using the yeast two-hybrid system and...

  5. Transport and phosphorylation of choline in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies

    International Nuclear Information System (INIS)

    When sycamore cells were suspended in basal medium containing choline, the latter was taken up by the cells very rapidly. A facilitated diffusion system appertained at low concentrations of choline and exhibited Michaelis-Menten kinetics. At higher choline concentrations simple diffusion appeared to be the principal mode of uptake. Addition of choline to the perfusate of compressed sycamore cells monitored by 31P NMR spectroscopy resulted in a dramatic accumulation of P-choline in the cytoplasmic compartment containing choline kinase and not in the vacuole. The total accumulation of P-choline over a 10-h period exhibited Michaelis-Menten kinetics. During this period, in the absence of Pi in the perfusion medium there was a marked depletion of glucose-6-P, and the cytoplasmic Pi resonance disappeared almost completely. When a threshold of cytoplasmic Pi was attained, the phosphorylation of choline was sustained by the continuous release of Pi from the vacuole although at a much lower rate. However, when 100 microM inorganic phosphate was present in the perfusion medium, externally added Pi was preferentially used to sustain P-choline synthesis. It is clear, therefore, that cytosolic choline kinase associated with a carrier-mediated transport system for choline uptake appeared as effective systems for continuously trapping cytoplasmic Pi including vacuolar Pi entering the cytoplasm

  6. CHOLINE METABOLISM ALTERATION: A FOCUS ON OVARIAN CANCER

    Directory of Open Access Journals (Sweden)

    Marina eBagnoli

    2016-06-01

    Full Text Available Compared to normal differentiated cells, cancer cells require a metabolic reprogramming to support their high proliferation rates and survival. Aberrant choline metabolism is a fairly new metabolic hallmark reflecting the complex reciprocal interactions between oncogenic signaling and cellular metabolism. Alterations of the involved metabolic network may be sustained by changes in activity of several choline transporters as well as of enzymes like choline kinase-alpha (ChoK-α and phosphatidylcholine-specific phospholipases C and D. Of note, the net outcome of these enzymatic alterations is an increase of phosphocholine and total choline-containing compounds, a cholinic phenotype that can be monitored in cancer by magnetic resonance spectroscopy. This review will highlight the molecular basis for targeting this pathway in epithelial ovarian carcinoma (EOC, a highly heterogeneous and lethal malignancy characterized by late diagnosis, frequent relapse and development of chemoresistance. Modulation of ChoK-α expression impairs only EOC but not normal ovarian cells, thus supporting the hypothesis that cholinic phenotype is a peculiar feature of transformed cells, and indicating ChoK-α targeting as a novel approach to improve efficacy of standard EOC chemotherapeutic treatments.

  7. Conventional protein kinase C isoforms differentially regulate ADP- and thrombin-evoked Ca²⁺ signalling in human platelets.

    Science.gov (United States)

    Lever, Robert A; Hussain, Azhar; Sun, Benjamin B; Sage, Stewart O; Harper, Alan G S

    2015-12-01

    Rises in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) are central in platelet activation, yet many aspects of the underlying mechanisms are poorly understood. Most studies examine how experimental manipulations affect agonist-evoked rises in [Ca(2+)]cyt, but these only monitor the net effect of manipulations on the processes controlling [Ca(2+)]cyt (Ca(2+) buffering, sequestration, release, entry and removal), and cannot resolve the source of the Ca(2+) or the transporters or channels affected. To investigate the effects of protein kinase C (PKC) on platelet Ca(2+) signalling, we here monitor Ca(2+) flux around the platelet by measuring net Ca(2+) fluxes to or from the extracellular space and the intracellular Ca(2+) stores, which act as the major sources and sinks for Ca(2+) influx into and efflux from the cytosol, as well as monitoring the cytosolic Na(+) concentration ([Na(+)]cyt), which influences platelet Ca(2+) fluxes via Na(+)/Ca(2+) exchange. The intracellular store Ca(2+) concentration ([Ca(2+)]st) was monitored using Fluo-5N, the extracellular Ca(2+) concentration ([Ca(2+)]ext) was monitored using Fluo-4 whilst [Ca(2+)]cyt and [Na(+)]cyt were monitored using Fura-2 and SFBI, respectively. PKC inhibition using Ro-31-8220 or bisindolylmaleimide I potentiated ADP- and thrombin-evoked rises in [Ca(2+)]cyt in the absence of extracellular Ca(2+). PKC inhibition potentiated ADP-evoked but reduced thrombin-evoked intracellular Ca(2+) release and Ca(2+) removal into the extracellular medium. SERCA inhibition using thapsigargin and 2,5-di(tert-butyl) l,4-benzohydroquinone abolished the effect of PKC inhibitors on ADP-evoked changes in [Ca(2+)]cyt but only reduced the effect on thrombin-evoked responses. Thrombin evokes substantial rises in [Na(+)]cyt which would be expected to reduce Ca(2+) removal via the Na(+)/Ca(2+) exchanger (NCX). Thrombin-evoked rises in [Na(+)]cyt were potentiated by PKC inhibition, an effect which was not due to altered changes in non

  8. Short-term Mg deficiency upregulates protein kinase C isoforms in cardiovascular tissues and cells; relation to NF-kB, cytokines, ceramide salvage sphingolipid pathway and PKC-zeta: hypothesis and review

    Science.gov (United States)

    Altura, Burton M; Shah, Nilank C; Shah, Gatha J; Zhang, Aimin; Li, Wenyan; Zheng, Tao; Perez-Albela, Jose Luis; Altura, Bella T

    2014-01-01

    Numerous recent,epidemiological studies reveal that Western populations are growing more and more deficient in daily Mg intake which have been linked to etiology of cardiovascular (CV) diseases. A growing body of evidence suggests that a major missing link to this dilemma may reside within the sphingolipid-ceramide pathways. For the past 25 years , our labs have been focusing on these pathways in Mg-deficient mammals. The objective of this paper is two-fold: 1) to test various hypotheses and 2) to review the current status of the field and how protein kinase C isoforms may be pivotal to solving some of the CV attributes of Mg deficiency. Below, we test the hypotheses that: 1) short-term dietary deficiency of magnesium (MgD) would result in the upregulation of protein kinase C (PKC) isoforms in left ventricular (LV) and aortic smooth muscle (ASM) and serum; 2) MgD would result in a release of select cytokines and an upregulation of NF-kB in LV and ASM, and in primary cultured aortic smooth muscle cells (PCASMC); 3) MgD would result in an activation of the sphingolipid salvage pathway in LV and ASM, and in PCASMC; 4) MgD would result in a synthesis of sphingosine, but not sphinganine, in PCASMC which could be inhibited by fumonisin B1 (FB) an inhibitor of ceramide synthase (CS), but not scyphostatin an inhibitor of neutral sphingomyelinase (N-SMase); 5) incubation of PCASMC (in low Mg2+) with the PKC-mimic PMA would result in release and synthesis of NF-kB, cytokines, and ceramide but not sphingosine. The new data indicate that short-term MgD (10% normal dietary intake) result in an upregulation of all three classes of PKC isoforms in LV, aortic muscle and in serum coupled to the upregulation of ceramide, NF-kB activation, and cytokines. High degrees of linear correlation were found to exist between upregulation of PKC isoforms, p65 and cytokine release, suggesting cross-talk between these molecules and molecular pathways. Our experiments with PCASMCs demonstrated

  9. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Fabiana Salm

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.

  10. Non-invasive in vivo imaging of early metabolic tumor response to therapies targeting choline metabolism.

    Science.gov (United States)

    Mignion, Lionel; Danhier, Pierre; Magat, Julie; Porporato, Paolo E; Masquelier, Julien; Gregoire, Vincent; Muccioli, Giulio G; Sonveaux, Pierre; Gallez, Bernard; Jordan, Bénédicte F

    2016-04-15

    The cholinic phenotype, characterized by elevated phosphocholine and a high production of total-choline (tCho)-containing metabolites, is a metabolic hallmark of cancer. It can be exploited for targeted therapy. Non-invasive imaging biomarkers are required to evaluate an individual's response to targeted anticancer agents that usually do not rapidly cause tumor shrinkage. Because metabolic changes can manifest at earlier stages of therapy than changes in tumor size, the aim of the current study was to evaluate (1) H-MRS and diffusion-weighted MRI (DW-MRI) as markers of tumor response to the modulation of the choline pathway in mammary tumor xenografts. Inhibition of choline kinase activity was achieved with the direct pharmacological inhibitor H-89, indirect inhibitor sorafenib and down-regulation of choline-kinase α (ChKA) expression using specific short-hairpin RNA (shRNA). While all three strategies significantly decreased tCho tumor content in vivo, only sorafenib and anti-ChKA shRNA significantly repressed tumor growth. The increase of apparent-diffusion-coefficient of water (ADCw) measured by DW-MRI, was predictive of the induced necrosis and inhibition of the tumor growth in sorafenib treated mice, while the absence of change in ADC values in H89 treated mice predicted the absence of effect in terms of tumor necrosis and tumor growth. In conclusion, (1) H-choline spectroscopy can be useful as a pharmacodynamic biomarker for choline targeted agents, while DW-MRI can be used as an early marker of effective tumor response to choline targeted therapies. DW-MRI combined to choline spectroscopy may provide a useful non-invasive marker for the early clinical assessment of tumor response to therapies targeting choline signaling. PMID:26595604

  11. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo

    DEFF Research Database (Denmark)

    Sapkota, Gopal P; Cummings, Lorna; Newell, Felicity S;

    2007-01-01

    ), which then mediate many of the physiological processes that are regulated by these extracellular agonists. It can be difficult to assess the individual functions of each AGC kinase because their substrate specificities are similar. Here we describe the small molecule BI-D1870, which inhibits RSK1, RSK2......, RSK3 and RSK4 in vitro with an IC(50) of 10-30 nM, but does not signi-ficantly inhibit ten other AGC kinase members and over 40 other protein kinases tested at 100-fold higher concentrations. BI-D1870 is cell permeant and prevents the RSK-mediated phorbol ester- and EGF (epidermal growth factor......)-induced phosphoryl-ation of glycogen synthase kinase-3beta and LKB1 in human embry-onic kidney 293 cells and Rat-2 cells. In contrast, BI-D1870 does not affect the agonist-triggered phosphorylation of substrates for six other AGC kinases. Moreover, BI-D1870 does not suppress the phorbol ester- or EGF...

  12. Ca2+-DEPENDENT PROTEIN KINASE C ISOFORMS ARE CRITICAL TO ESTRADIOL 17β-D-GLUCURONIDE-INDUCED CHOLESTASIS IN THE RAT

    OpenAIRE

    Crocenzi, Fernando A.; Enrique J Sánchez Pozzi; Ruiz, María Laura; Zucchetti, Andrés E.; Roma, Marcelo G.; Mottino, Aldo D.; Vore, Mary

    2008-01-01

    The endogenous estradiol metabolite estradiol 17β-D-glucuronide (E217G) induces an acute cholestasis in rat liver coincident with retrieval of the canalicular transporters Bsep (Abcc11) and Mrp2 (Abcc2) and their associated loss of function. We assessed the participation of Ca2+-dependent PKC isoforms (cPKC) in the cholestatic manifestations of E217G in the perfused rat liver (PRL) and in isolated rat hepatocyte couplets (IRHC). In the PRL, E217G (2 μmol/liver; intraportal, single injection) ...

  13. Crystal structures of apo and inhibitor-bound TGFβR2 kinase domain: insights into TGFβR isoform selectivity.

    Science.gov (United States)

    Tebben, Andrew J; Ruzanov, Maxim; Gao, Mian; Xie, Dianlin; Kiefer, Susan E; Yan, Chunhong; Newitt, John A; Zhang, Liping; Kim, Kyoung; Lu, Hao; Kopcho, Lisa M; Sheriff, Steven

    2016-05-01

    The cytokine TGF-β modulates a number of cellular activities and plays a critical role in development, hemostasis and physiology, as well as in diseases including cancer and fibrosis. TGF-β signals through two transmembrane serine/threonine kinase receptors: TGFβR1 and TGFβR2. Multiple structures of the TGFβR1 kinase domain are known, but the structure of TGFβR2 remains unreported. Wild-type TGFβR2 kinase domain was refractory to crystallization, leading to the design of two mutated constructs: firstly, a TGFβR1 chimeric protein with seven ATP-site residues mutated to their counterparts in TGFβR2, and secondly, a reduction of surface entropy through mutation of six charged residues on the surface of the TGFβR2 kinase domain to alanines. These yielded apo and inhibitor-bound crystals that diffracted to high resolution (shared ligand contacts as well as differences in the ATP-binding sites, suggesting strategies for the design of pan and selective TGFβR inhibitors. PMID:27139629

  14. BCR-ABL isoforms associated with intrinsic or acquired resistance to imatinib : more heterogeneous than just ABL kinase domain point mutations?

    NARCIS (Netherlands)

    Gruber, Franz X.; Lundan, Tuija; Goll, Rasmus; Silye, Aleksandra; Mikkola, Ingvild; Rekvig, Ole Petter; Knuutila, Sakari; Remes, Kari; Gedde-Dahl, Tobias; Porkka, Kimmo; Hjorth-Hansen, Henrik

    2012-01-01

    Imatinib, a small molecule inhibitor of ABL, PDGFR and C-KIT, has revolutionized treatment of chronic myeloid leukaemia (CML). However, resistance to treatment is of increasing importance and often is due to point mutations in the Abl kinase domain (Abl KD). Here, we analysed clinical outcome and mu

  15. Chromosomal mapping and mutational analysis of the coding region of the glycogen synthase kinase-3alpha and beta isoforms in patients with NIDDM

    DEFF Research Database (Denmark)

    Hansen, L; Arden, K C; Rasmussen, S B;

    1997-01-01

    Activation of glycogen synthesis in skeletal muscle in response to insulin results from the combined inactivation of glycogen synthase kinase-3 (GSK-3) and activation of the protein phosphatase-1, changing the ratio between the inactive phosphorylated state of the glycogen synthase to the active ...

  16. Long isoform of ErbB3 binding protein, p48, mediates protein kinase B/Akt-dependent HDM2 stabilization and nuclear localization

    International Nuclear Information System (INIS)

    p48 is a long isoform of the ErbB3 binding protein that has oncogenic functions including promotion of carcinogenesis and induction of malignant transformation through negative regulation of tumor suppressor p53. Here, we show that high level of p48 protein expression leads to enhance HDM2 phosphorylation by Akt and inhibits the self-ubiquitination of HDM2 by up-regulation of Akt activity, thereby promoting its protein stability. Moreover, p48 expression leads to accumulated nuclear localization of HDM2, whereas p48 depletion disturbs its nuclear localization. Hence, higher expression of p48 in cancer cells reduces p53 levels through modulation of HDM2 nuclear localization and protein stability via regulation of its Akt-mediated phosphorylation.

  17. Therapeutic Targeting the Cell Division Cycle 25 (CDC25 Phosphatases in Human Acute Myeloid Leukemia — The Possibility to Target Several Kinases through Inhibition of the Various CDC25 Isoforms

    Directory of Open Access Journals (Sweden)

    Annette K. Brenner

    2014-11-01

    Full Text Available The cell division cycle 25 (CDC25 phosphatases include CDC25A, CDC25B and CDC25C. These three molecules are important regulators of several steps in the cell cycle, including the activation of various cyclin-dependent kinases (CDKs. CDC25s seem to have a role in the development of several human malignancies, including acute myeloid leukemia (AML; and CDC25 inhibition is therefore considered as a possible anticancer strategy. Firstly, upregulation of CDC25A can enhance cell proliferation and the expression seems to be controlled through PI3K-Akt-mTOR signaling, a pathway possibly mediating chemoresistance in human AML. Loss of CDC25A is also important for the cell cycle arrest caused by differentiation induction of malignant hematopoietic cells. Secondly, high CDC25B expression is associated with resistance against the antiproliferative effect of PI3K-Akt-mTOR inhibitors in primary human AML cells, and inhibition of this isoform seems to reduce AML cell line proliferation through effects on NFκB and p300. Finally, CDC25C seems important for the phenotype of AML cells at least for a subset of patients. Many of the identified CDC25 inhibitors show cross-reactivity among the three CDC25 isoforms. Thus, by using such cross-reactive inhibitors it may become possible to inhibit several molecular events in the regulation of cell cycle progression and even cytoplasmic signaling, including activation of several CDKs, through the use of a single drug. Such combined strategies will probably be an advantage in human cancer treatment.

  18. Characterization of a Novel Cardiac Isoform of the Cell Cycle-related Kinase That Is Regulated during Heart Failure*S⃞

    OpenAIRE

    Qiu, Hongyu; Dai, Huacheng; Jain, Komal; Shah, Rina; Hong, Chull; Pain, Jayashree; Tian, Bin; Vatner, Dorothy E.; Vatner, Stephen F.; Depre, Christophe

    2008-01-01

    Myocardial infarction (MI) is often followed by heart failure (HF), but the mechanisms precipitating the transition to HF remain largely unknown. A genomic profile was performed in a monkey model of MI, from the myocardium adjacent to chronic (2-month) MI followed by 3 weeks of pacing to develop HF. The transcript of the gene encoding the cell cycle-related kinase (CCRK) was down-regulated by 50% in HF heart compared with control (p < 0.05), which was confirmed by quan...

  19. DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans.

    Science.gov (United States)

    Tullet, Jennifer M A; Araiz, Caroline; Sanders, Matthew J; Au, Catherine; Benedetto, Alexandre; Papatheodorou, Irene; Clark, Emily; Schmeisser, Kathrin; Jones, Daniel; Schuster, Eugene F; Thornton, Janet M; Gems, David

    2014-02-01

    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, β and γ subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory γ subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ∼75% of total γ subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 γ subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK β subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be evolutionarily conserved

  20. DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jennifer M A Tullet

    2014-02-01

    Full Text Available The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK, which has α, β and γ subunits. C. elegans has 5 genes encoding putative AMP-binding regulatory γ subunits, aakg-1-5. aakg-4 and aakg-5 are closely related, atypical isoforms, with orthologs throughout the Chromadorea class of nematodes. We report that ∼75% of total γ subunit mRNA encodes these 2 divergent isoforms, which lack consensus AMP-binding residues, suggesting AMP-independent kinase activity. DAF-16 directly activates expression of aakg-4, reduction of which suppresses longevity in daf-2 insulin/IGF-1 receptor mutants. This implies that an increase in the activity of AMPK containing the AAKG-4 γ subunit caused by direct activation by DAF-16 slows aging in daf-2 mutants. Knock down of aakg-4 expression caused a transient decrease in activation of expression in multiple DAF-16 target genes. This, taken together with previous evidence that AMPK promotes DAF-16 activity, implies the action of these two metabolic regulators in a positive feedback loop that accelerates the induction of DAF-16 target gene expression. The AMPK β subunit, aakb-1, also proved to be up-regulated by DAF-16, but had no effect on lifespan. These findings reveal key features of the architecture of the gene-regulatory network centered on DAF-16, and raise the possibility that activation of AMP-independent AMPK in nutritionally replete daf-2 mutant adults slows aging in C. elegans. Evidence of activation of AMPK subunits in mammals suggests that such FoxO-AMPK interactions may be

  1. Evaluation of the choline status in mink fed different levels and sources of choline

    DEFF Research Database (Denmark)

    Hedemann, Mette Skou; Damgaard, Birthe Marie; Clausen, T.N.;

    2012-01-01

    Choline is an essential nutrient but the daily need for choline in mink has never been determined. Two experiments were performed to evalutate the choline status in mink kits and full-grown mink fed different levels of choline. In the first experiment mink kits were fed a synthetic diet with chol...

  2. The high-resolution crystal structure of phosphatidylinositol 4-kinase II beta and the crystal structure of phosphatidylinositol 4-kinase II alpha containing a nucleoside analogue provide a structural basis for isoform-specific inhibitor design

    Czech Academy of Sciences Publication Activity Database

    Klíma, Martin; Bäumlová, Adriana; Chalupská, Dominika; Hřebabecký, Hubert; Dejmek, Milan; Nencka, Radim; Bouřa, Evžen

    2015-01-01

    Roč. 71, č. 7 (2015), s. 1555-1563. ISSN 1399-0047 R&D Projects: GA ČR GJ15-21030Y; GA ČR GA15-09310S; GA MŠk LO1302 EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : phosphatidyl inositol * kinase * crystal structure * ATP * inhibitor Subject RIV: CE - Biochemistry Impact factor: 2.674, year: 2014

  3. Differential water permeability and regulation of three aquaporin 4 isoforms

    DEFF Research Database (Denmark)

    Fenton, Robert A.; Moeller, Hanne B; Zelenina, Marina;

    2010-01-01

    Aquaporin 4 (AQP4) is expressed in the perivascular glial endfeet and is an important pathway for water during formation and resolution of brain edema. In this study, we examined the functional properties and relative unit water permeability of three functional isoforms of AQP4 expressed...... in the brain (M1, M23, Mz). The M23 isoform gave rise to square arrays when expressed in Xenopus laevis oocytes. The relative unit water permeability differed significantly between the isoforms in the order of M1 > Mz > M23. None of the three isoforms were permeable to small osmolytes nor were they affected...... by changes in external K(+) concentration. Upon protein kinase C (PKC) activation, oocytes expressing the three isoforms demonstrated rapid reduction of water permeability, which correlated with AQP4 internalization. The M23 isoform was more sensitive to PKC regulation than the longer isoforms...

  4. Involvement of class II phosphoinositide 3-kinase α-isoform in antigen-induced degranulation in RBL-2H3 cells.

    Directory of Open Access Journals (Sweden)

    Kiyomi Nigorikawa

    Full Text Available In this study, we present findings that suggest that PI3K-C2α, a member of the class II phosphoinositide 3-kinase (PI3K subfamily, regulates the process of FcεRI-triggered degranulation. RBL-2H3 cells were transfected with shRNA targeting PI3K-C2α. The knockdown impaired the FcεRI-induced release of a lysosome enzyme, β-hexosaminidase, without affecting the intracellular Ca2+ mobilization. The release of mRFP-tagged neuropeptide-Y, a reporter for the regulated exocytosis, was also decreased in the PI3K-C2α-deficient cells. The release was increased significantly by the expression of the siRNA-resistant version of PI3K-C2α. In wild-type cells, FcεRI stimulation induced the formation of large vesicles, which were associated with CD63, a marker protein of secretory granules. On the vesicles, the existence of PI3K-C2α and PtdIns(3,4P2 was observed. These results indicated that PI3K-C2α and its product PtdIns(3,4P2 may play roles in the secretory process.

  5. Activation of AMPK alpha and gamma-isoform complexes in the intact ischemic rat heart

    Science.gov (United States)

    AMP-activated protein kinase (AMPK) plays a key role in modulating cellular metabolic processes. AMPK, a serine-threonine kinase, is a heterotrimeric complex of catalytic alpha-subunits and regulatory beta- and gamma-subunits with multiple isoforms. Mutations in the cardiac gamma(2)-isoform have bee...

  6. Reduction of choline acetyltransferase activities in APP770 transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transgenic mice overexpressing the 770-amino acid isoform of human Alzheimer amyloid precursor protein exhibit extracellular b -amyloid deposits in brain regions including cerebral cortex and hippocampus, which are severely affected in Alzheimer's disease patients. Significant reduction in choline acetyltransferase (ChAT) activities has been observed in both cortical and hippocampal brain regions in the transgenic mice at the age of 10 months compared with the age-matched non-transgenic mice, but such changes have not been observed in any brain regions of the transgenic mice under the age of 5 months. These results suggest that deposition of b -amyloid can induce changes in the brain cholinergic system of the transgenic mice.

  7. Choline transport in Leishmania major promastigotes and its inhibition by choline and phosphocholine analogs.

    Science.gov (United States)

    Zufferey, Rachel; Mamoun, Choukri Ben

    2002-01-01

    Phosphatidylcholine is the most abundant phospholipid in the membranes of the human parasite Leishmania. The metabolic pathways leading to its biosynthesis are likely to play a critical role in parasite development and survival and may offer a good target for antileishmanial chemotherapy. Phosphatidylcholine synthesis via the CDP-choline pathway requires transport of the choline precursor from the host. Here, we report the first characterization of choline transport in this parasite, which is carrier-mediated and exhibits Michaelis-Menten kinetics with an apparent K(m) value of 2.5 microM for choline. This process is Na(+)-independent and requires an intact proton gradient to be fully functional. Choline transport into Leishmania is highly specific for choline and is inhibited by the choline carrier inhibitor hemicholinium-3, the channel blocker quinacrine, the antimalarial aminoquinolines quinine and quinidine, the antileishmanial phosphocholine analogs, miltefosine and edelfosine, and by choline analogs, most of which have antimalarial activities. Most importantly, choline analogs kill the promastigote form of the parasite in vitro in the low micromolar range. These results set the stage for the use of choline analogs in antileishmanial chemotherapy and shed new lights on the mechanism of action of the leishmanicidal phosphocholine analogs. PMID:12467980

  8. 21 CFR 172.370 - Iron-choline citrate complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline,...

  9. A novel finding: Anti-androgen flutamide kills androgen-independent PC-3 cells: A radiolabelled methyl-choline incorporation into tumour cells

    International Nuclear Information System (INIS)

    Full text: [Methyl-11C]-choline was introduced to image many types of cancers especially the prostate cancer. Al-Saeedi et al. reported that the incorporation of [Methyl-3H]-choline into breast tumour (MCF-7) cells correlated strongly with proliferation as determined by [Methyl-14C]- thymidine uptake. Also, Al-Saeedi, et al. showed that the chemotherapy using MCF-7 cells treated with 5-Fluorouracil (5-FU) induced modulation in [Methyl-3H]-choline incorporation and certain mechanisms for this modulation were reported. In this study, the androgen-dependent prostate tumour (LNCaP) cells were treated with the well known pure anti-androgen drug, flutamide, for three days. The cells were then incubated with [Methyl-3H]-choline for 10 mint to detect the effect of flutamide on both cell proliferation and choline incorporation. At the same time, a preliminary work was established using androgen-independent PC-3 cells treated with flutamide as controls in this study. PC-3 cells were treated with a range of doses of flutamide inhibiting growth by 20[Methyl-3H]-Choline Incorporation into MCF-7 Cells: Correlation with Proliferation: choline kinase and phospholipase D assay. [Methyl-3H]-Choline Incorporation into MCF-7 Cells: Correlation with Proliferation: choline kinase and phospholipase D assay. - 70%. Treated and control cells were incubated with [Methyl-3H]-choline for 10 min, then in non-radioactive medium to simulate the rapid blood clearance of [Methyl-11C]-choline tracer in control and treated PC-3 cells, and then extracted with organic and aqueous solvents to determine its effect on the intracellular distribution of this tracer. Interesting results showed that flutamide killed the androgen-independent prostate cancer cells, PC-3 and mechanisms responsible for flutamide-induced modulation on [Methyl-3H]- choline incorporation were reported. The PC-3 cells' proliferation was inhibited by flutamide. In addition, treatment of PC-3 cells with flutamide for 3 days resulted

  10. Does litomosoides sigmodontis synthesize dimethylethanolamine from choline?

    OpenAIRE

    Houston, K.M.; Babayan, S.; Allen, J. E.; Harnett, W

    2008-01-01

    Juvenile female Litomosoides sigmodontis secrete a protein (Juv-p120) highly modified with dimethylethanolamine (DMAE). In an attempt to establish the source of this decoration worms were pulsed with [3H]-choline and [3H]-ethanolamine and the radio-isotope labelled products analysed. Both isotope labels were successfully taken up by the worms, as demonstrated by labelling of phospholipids with [3H]-choline, being predominantly incorporated into phosphatidylcholine and [3H]-ethanolamine into p...

  11. Does Litomosoides sigmodontis synthesize dimethylethanolamine from choline?

    OpenAIRE

    Houston, K.M.; Babayan, S. A.; Allen, J. E.; Harnett, W; Allen, Judith

    2008-01-01

    Juvenile female Litomosoides sigmodontis secrete a protein (Juv-p120) highly modified with dimethylethanolamine (DMAE). In an attempt to establish the source of this decoration worms were pulsed with [3H]-choline and [3H]-ethanolamine and the radio-isotope labelled products analysed. Both isotope labels were successfully taken up by the worms, as demonstrated by labelling of phospholipids with [3H]-choline, being predominantly incorporated into phosphatidylcholine and [3H]-ethanolamine into p...

  12. Yeast mutants auxotrophic for choline or ethanolamine.

    OpenAIRE

    Atkinson, K D; Jensen, B.; Kolat, A I; Storm, E M; Henry, S. A.; Fogel, S

    1980-01-01

    Three mutants of the yeast Saccharomyces cerevisiae which require exogenous ethanolamine or choline were isolated. The mutants map to a single locus (cho1) on chromosome V. The lipid composition suggests that cho1 mutants do not synthesize phosphatidylserine under any growth conditions. If phosphatidylethanolamine or phosphatidylcholine, which are usually derived from phosphatidylserine, were synthesized from exogenous ethanolamine or choline, the mutants grew and divided relatively normally....

  13. The Uses of Isoforms of Creatine Kinase CK-MM in the Early Diagnosis of the Patient with Duchenne Muscular Dystrophy%肌型肌酸激酶同工酶亚型在早期诊断假肥大型肌营养不良中的价值

    Institute of Scientific and Technical Information of China (English)

    赵昕; 韩靖云; 李红; 叶贤坤; 赵振军

    2001-01-01

    Objective To study the changes of isoforms of creatine kinaseCK-MM in patients with Duchenne muscular dystrophy for the purpose of early diagnosis as well as evaluation of seriousness of the disease. Methods A dis-continuous buffer system was used. CK-MM isoform was separated by electrophoresis under the condition of constant current and low voltage, then fluorescence scanning. Results The nature of DMD patient was gradually getting worse along with the age increase. There was a statistically significant change of the isoform ratio MM2/MM1 in each stage of DMD compared with the normal control ( P< 0.05 ); there was also significant change of the isoform ratio MM2/MM1 between each stage of the subject ( P < 0.05 ). Conclusions The change of CK-MM isoforms is a specific indicator in early diagnosis of DMD. It is a important indicator for evaluation of seriousness of the disease. It is also useful in the evaluation of the real effect of some treatment methods.%目的 研究假肥大型肌营养不良(DMD)患者肌型肌酸激酶(CK-MM)亚型的变化,为早期诊断和正确评价病情提供依据。方法 采用不连续缓冲体系,在稳流低压条件下电泳分离CK-MM亚型,荧光扫描。结果 随着DMD患者病情的加重,其不同阶段的MM2/MM1均与对照组差异显著(P<0.05);DMD患者不同阶段的MM2/MM1值差异也显著(P<0.05)。结论 CK-MM亚型的改变是DMD的早期诊断指标,是判断病情及科学评价治疗效果的依据。

  14. Choline-containing bacteriophage receptors in Streptococcus pneumoniae.

    OpenAIRE

    Lopez, R. (Rafael); Garcia, E.; Garcia, P.; Ronda, C; Tomasz, A.

    1982-01-01

    Choline-containing teichoic acid seems to be essential for the adsorption of bacteriophage Dp-1 to pneumococci. This conclusion is based on the following observations: In contrast to pneumococci grown in choline-containing medium, cells grown in medium containing ethanolamine or other submethylated aminoalcohols instead of choline were found to be resistant to infection by Dp-1. Live choline-grown bacteria and heat- or UV-inactivated cells and purified cell walls prepared from these cells wer...

  15. GSK-3β phosphorylation of functionally distinct tau isoforms has differential, but mild effects

    Directory of Open Access Journals (Sweden)

    Gamblin T Chris

    2009-05-01

    Full Text Available Abstract Background Tau protein exists as six different isoforms that differ by the inclusion or exclusion of exons 2, 3 and 10. Exon 10 encodes a microtubule binding repeat, thereby resulting in three isoforms with three microtubule binding repeats (3R and three isoforms that have four microtubule binding repeats (4R. In normal adult brain, the relative amounts of 3R tau and 4R tau are approximately equal. These relative protein levels are preserved in Alzheimer's disease, although in other neurodegenerative tauopathies such as progressive supranuclear palsy, corticobasal degeneration and Pick's disease, the ratio of 3R:4R is frequently altered. Because tau isoforms are not equally involved in these diseases, it is possible that they either have inherently unique characteristics owing to their primary structures or that post-translational modification, such as phosphorylation, differentially affects their properties. Results We have determined the effects of phosphorylation by a kinase widely believed to be involved in neurodegenerative processes, glycogen synthase kinase-3β (GSK-3β, on the microtubule binding and inducer-initiated polymerization of these isoforms in vitro. We have found that each isoform has a unique microtubule binding and polymerization profile that is altered by GSK-3β. GSK-3β phosphorylation had differential effects on the isoforms although there were similarities between isoforms and the effects were generally mild. Conclusion These results indicate that tau phosphorylation by a single kinase can have isoform specific outcomes. The mild nature of these changes, however, makes it unlikely that differential effects of GSK-3β phosphorylation on the isoforms are causative in neurodegenerative disease. Instead, the inherent differences in the isoform interactions themselves and local conditions in the diseased cells are likely the major determinant of isoform involvement in various neurodegenerative disorders.

  16. 21 CFR 573.580 - Iron-choline citrate complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron-choline citrate complex. 573.580 Section 573.580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made...

  17. DNA signals at isoform promoters.

    Science.gov (United States)

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua

    2016-01-01

    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  18. DAF-16/FoxO Directly Regulates an Atypical AMP-Activated Protein Kinase Gamma Isoform to Mediate the Effects of Insulin/IGF-1 Signaling on Aging in Caenorhabditis elegans

    OpenAIRE

    Tullet, J. M.; Araiz, C.; Sanders, M J; Au, C.; Benedetto, A.; Papatheodorou, I.; Clark, E.; Schmeisser, K.; Jones, D.; Schuster, E F; Thornton, J M; Gems, D.

    2014-01-01

    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, ...

  19. DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans.

    OpenAIRE

    Tullet, Jennifer M. A.; Caroline Araiz; Sanders, Matthew J.; Catherine Au; Alexandre Benedetto; Irene Papatheodorou; Emily Clark; Kathrin Schmeisser; Daniel Jones; Eugene F Schuster; Thornton, Janet M.; David Gems

    2014-01-01

    The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins. We have investigated the regulation by DAF-16 of genes encoding the AMP-activated protein kinase (AMPK), which has α, ...

  20. Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that epsilon is the isoform involved.

    OpenAIRE

    Qiu, Y.; Ping, P.; Tang, X.L.; Manchikalapudi, S; Rizvi, A.; Zhang, J.; H. Takano; W. J. Wu; Teschner, S; Bolli, R

    1998-01-01

    Brief ischemic episodes confer marked protection against myocardial stunning 1-3 d later (late preconditioning [PC] against stunning). The mechanism of this powerful protective effect is poorly understood. Although protein kinase C (PKC) has been implicated in PC against infarction, it is unknown whether it triggers late PC against stunning. In addition, the entire PKC hypothesis of ischemic PC remains controversial, possibly because the effects of PKC inhibitors on PC protection have not bee...

  1. Crystal Structure of Pyridoxal Kinase from the Escherichia coli pdxK Gene: Implications for the Classification of Pyridoxal Kinases

    OpenAIRE

    Safo, Martin K.; Musayev, Faik N.; di Salvo, Martino L.; Hunt, Sharyn; Claude, Jean-Baptiste; Schirch, Verne

    2006-01-01

    The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were deter...

  2. Diacylglycerol Kinase Inhibition and Vascular Function

    OpenAIRE

    Choi, Hyehun; Allahdadi, Kyan J.; Tostes, Rita C A; Webb, R. Clinton

    2009-01-01

    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structu...

  3. Cloning of Drosophila choline acetyltransferase cDNA.

    OpenAIRE

    Itoh, N; Slemmon, J.R.; Hawke, D.H.; Williamson, R.; Morita, E.; Itakura, K; Roberts, E; Shively, J. E.; Crawford, G D; Salvaterra, P M

    1986-01-01

    Choline acetyltransferase (EC 2.3.1.6) is the biosynthetic enzyme for the neurotransmitter acetylcholine. To isolate choline acetyltransferase cDNA clones, a cDNA library was constructed from poly(A)+ RNA of Drosophila melanogaster heads, these being one of the richest known sources of the enzyme. By screening the cDNA library with a mixture of three different monoclonal antibodies to Drosophila choline acetyltransferase, we isolated 14 positive clones. Only 1 of these clones was identified t...

  4. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis

    OpenAIRE

    Zeisel, Steven H.

    2013-01-01

    There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increa...

  5. Choline inhibition of amino acid transport in preimplantation mouse blastocysts

    International Nuclear Information System (INIS)

    Addition of 70 mM choline chloride to Brinster's medium (140 mM Na+) inhibited uptake of ∼ 1 μM [3H]glycine, leucine, lysine and alanine in blastocysts by about 50% each during a five-minute incubation period at 370C, whereas 70 mM LiCl, sodium acetate and NaCl or 140 mM mannitol had no effect. They attribute the apparent linear relationship between Gly transport in blastocysts and the square of the [Na+], observed when choline was substituted for Na+ in Brinster's medium, to concomitant, concentration-dependent enhancement and inhibition of transport by Na+ and choline, respectively. As expected, Gly uptake and the [Na+] were linearly related up to 116 mM Na+, when Na+ was replaced with Li+. The rates of Na+-independent Gly and Ala uptake were + or choline replaced Na+. Therefore, neither Li+ nor choline appears to substitute for Na+ in supporting Na+-dependent transport in blastocysts. Na+-independent Leu uptake was 20 times faster than Gly or Ala uptake and appeared to be inhibited by choline in blastocysts since it was about 37% slower when choline instead of Li+ was substituted for Na+. In contrast to blastocysts, choline had no effect on amino acid transport in cleavage-stage mouse embryos. The unexpected sensitivity of transport to choline in blastocysts underscores the importance of testing the effects of this substance when it is used to replace Na+ in new transport studies

  6. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    Science.gov (United States)

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  7. Differential and Conditional Activation of PKC-Isoforms Dictates Cardiac Adaptation during Physiological to Pathological Hypertrophy

    OpenAIRE

    Shaon Naskar; Kaberi Datta; Arkadeep Mitra; Kanchan Pathak; Ritwik Datta; Trisha Bansal; Sagartirtha Sarkar

    2014-01-01

    A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week ...

  8. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  9. Legionella bozemanae synthesizes phosphatidylcholine from exogenous choline.

    Science.gov (United States)

    Palusinska-Szysz, Marta; Janczarek, Monika; Kalitynski, Rafal; Dawidowicz, Andrzej L; Russa, Ryszard

    2011-02-20

    The phospholipid class and fatty acid composition of Legionella bozemanae were determined using thin-layer chromatography, gas-liquid chromatography, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Phosphatidylcholine, phosphatidylethanolamine, and diphosphatidylglycerol were the predominant phospholipids, while phosphatidyl-N-monomethylethanolamine, phosphatidylglycerol, and phosphatidyl-N,N-dimethylethanolamine were present at low concentrations. With the use of the LC/MS technique, PC16:0/15:0, PC17:/15:0, and PE16:1/15:0 were shown to be the dominant phospholipid constituents, which may be taxonomically significant. Two independent phosphatidylcholine synthesis pathways (the three-step methylation and the one-step CDP-choline pathway) were present and functional in L. bozemanae. In the genome of L. bozemanae, genes encoding two potential phosphatidylcholine forming enzymes, phospholipid N-methyl transferase (PmtA) and phosphatidylcholine synthase (Pcs), homologous to L. longbeachae, L. drancourtii, and L. pneumophila pmtA and pcs genes were identified. Genes pmtA and pcs from L. bozemanae were sequenced and analyzed on nucleotide and amino acid levels. Bacteria grown on an artificial medium with labelled choline synthesized phosphatidylcholine predominantly via the phosphatidylcholine synthase pathway, which indicates that L. bozemanae phosphatidylcholine, similarly as in other bacteria associated with eukaryotes, is an important determinant of host-microbe interactions. PMID:20338739

  10. Compartmental model of 18F-choline

    Science.gov (United States)

    Janzen, T.; Tavola, F.; Giussani, A.; Cantone, M. C.; Uusijärvi, H.; Mattsson, S.; Zankl, M.; Petoussi-Henß, N.; Hoeschen, C.

    2010-03-01

    The MADEIRA Project (Minimizing Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations), aims to improve the efficacy and safety of 3D functional imaging by optimizing, among others, the knowledge of the temporal variation of the radiopharmaceuticals' uptake in and clearance from tumor and healthy tissues. With the help of compartmental modeling it is intended to optimize the time schedule for data collection and improve the evaluation of the organ doses to the patients. Administration of 18F-choline to screen for recurrence or the occurrence of metastases in prostate cancer patients is one of the diagnostic applications under consideration in the frame of the project. PET and CT images have been acquired up to four hours after injection of 18F-choline. Additionally blood and urine samples have been collected and measured in a gamma counter. The radioactivity concentration in different organs and data of plasma clearance and elimination into urine were used to set-up a compartmental model of the biokinetics of the radiopharmaceutical. It features a central compartment (blood) exchanging with organs. The structure describes explicitly liver, kidneys, spleen, plasma and bladder as separate units with a forcing function approach. The model is presented together with an evaluation of the individual and population kinetic parameters, and a revised time schedule for data collection is proposed. This optimized time schedule will be validated in a further set of patient studies.

  11. Cobalt electrodeposition using urea and choline chloride

    International Nuclear Information System (INIS)

    The electrochemical behavior of Co(II) in urea-choline chloride-CoCl2 melt was investigated by cyclic voltammetry at 373 K. The results show that the reaction of Co(II) to Co is irreversible and it proceeds via a one-step two electrons transfer process. The diffusion coefficient of Co(II) was estimated to be 1.7 × 10−6 cm2 s−1 at 373 K. Electrodeposition of cobalt was studied at different cathodic potentials (-0.80 to -0.95 V) and at different temperatures (353 to 383 K) in eutectic mixture of choline chloride and urea (1:2 molar ratio). The deposits were characterized using scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD). SEM images show that uniform, dense, and compact deposits were obtained at -0.80 V within a temperature range of 353 K to 373 K. EDS and XRD analysis confirm that high-purity metallic Co deposits were obtained

  12. Utility of C-11 Choline PET for brain tumors

    International Nuclear Information System (INIS)

    The purpose of the present study was to assess the clinical potential of methyl-11C choline (C-11 choline) in brain tumors. The results of magnetic resonance (MR) imaging in 23 patients suspected of having brain tumors were then compared to the results of C-11 choline and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). PET with C-11 choline and FDG, in addition to gadolinium-enhanced MR, were performed in these patients. A pathological diagnosis was made for each patient by open surgery. The standardized uptake values (SUVs) of brain tumors and the tumor-to-white matter count (T/W) ratios were determined. The degree of C-11 choline accumulation noted in PET images was compared to the gadolinium-enhanced areas of MR images. The mean T/W ratio of high-grade gliomas was found to be higher than that of low-grade gliomas. This difference was statistically significant (mean±SD: 8.7±6.2, n=9 versus 1.5±0.7 respectively, n=5, p<0.03) when data pertaining to the prominent uptake of C-11 choline by a patient with a pilocytic astrocytoma was excluded. C-11 choline PET failed to detect non-neoplastic lesions in two patients. Areas of C-11 choline accumulation in PET scans were longer than areas visualized by contrast enhancement on MR images in five cases involving high-grade gliomas. C-11 choline PET differentiated between low-grade gliomas and high-grade gliomas, but did not differentiate between low-grade gliomas and non-neoplasms. A combination of C-11 choline PET and MR imaging may provide investigators with accurate means to identify high-grade gliomas. (author)

  13. Utility of C-11 Choline PET for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, Toshiyuki; Hashiba, Yasuhiro; Tosaka, Masahiko; Fujimaki, Hiroya; Sasaki, Tomio; Oriuchi, Noboru [Gunma Univ., Maebashi (Japan). School of Medicine; Inoue, Tomio [Yokohama City Univ. (Japan). School of Medicine

    2002-03-01

    The purpose of the present study was to assess the clinical potential of methyl-{sup 11}C choline (C-11 choline) in brain tumors. The results of magnetic resonance (MR) imaging in 23 patients suspected of having brain tumors were then compared to the results of C-11 choline and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET). PET with C-11 choline and FDG, in addition to gadolinium-enhanced MR, were performed in these patients. A pathological diagnosis was made for each patient by open surgery. The standardized uptake values (SUVs) of brain tumors and the tumor-to-white matter count (T/W) ratios were determined. The degree of C-11 choline accumulation noted in PET images was compared to the gadolinium-enhanced areas of MR images. The mean T/W ratio of high-grade gliomas was found to be higher than that of low-grade gliomas. This difference was statistically significant (mean{+-}SD: 8.7{+-}6.2, n=9 versus 1.5{+-}0.7 respectively, n=5, p<0.03) when data pertaining to the prominent uptake of C-11 choline by a patient with a pilocytic astrocytoma was excluded. C-11 choline PET failed to detect non-neoplastic lesions in two patients. Areas of C-11 choline accumulation in PET scans were longer than areas visualized by contrast enhancement on MR images in five cases involving high-grade gliomas. C-11 choline PET differentiated between low-grade gliomas and high-grade gliomas, but did not differentiate between low-grade gliomas and non-neoplasms. A combination of C-11 choline PET and MR imaging may provide investigators with accurate means to identify high-grade gliomas. (author)

  14. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Directory of Open Access Journals (Sweden)

    Delphine M Béziau

    Full Text Available Phospholipase C (PLC comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA, pulmonary (PA and middle cerebral arteries (MCA. mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA, δ4 (only expressed in MCA, η1 (expressed in all but MA and ζ (not detected in any vascular beds tested. The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1 in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found

  15. Bioelectrochemical response of a choline biosensor fabricated by using polyaniline

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    On the basis of the isoelectric point of an enzyme and the doping principle of conducting polymers,choline oxidase was doped in a polyaniline film to form a biosensor. The amperometric detection of choline is based on the oxidation of the H2O2 enzymatically produced on the choline biosensor. The response current of the biosensor as a function of temperature was determined from 3 to 40℃. An apparent activation energy of 22.8 kJ·mol-1 was obtained. The biosensor had a wide linear response range from 5 × 10-7 to 1 × 10-4 M choline with a correlation coefficient of 0.9999 and a detection limit of 0.2 μM,and had a high sensitivity of 61.9 mA·M-1·cm-2 at 0.50 V and at pH 8.0. The apparent Michaelis constant and the optimum pH for the immobilized enzyme are 1.4 mM choline and 8.4,respectively,which are very close to those of choline oxidase in solution. The effect of selected organic compounds on the response of the choline biosensor was studied.

  16. Differential roles of PML isoforms

    Directory of Open Access Journals (Sweden)

    MouniraKChelbi-Alix

    2013-05-01

    Full Text Available The tumor suppressor promyelocytic leukemia protein (PML is fused to the retinoic acid receptor alpha in patients suffering from acute promyelocytic leukemia (APL. Treatment of APL patients with arsenic trioxide (As2O3 reverses the disease phenotype by a process involving the degradation of the fusion protein via its PML moiety. Several PML isoforms are generated from a single PML gene by alternative splicing. They share the same N-terminal region containing the RBCC/TRIM motif but differ in their C-terminal sequences. Recent studies of all the PML isoforms reveal the specific functions of each. Here, we review the nomenclature and structural organization of the PML isoforms in order to clarify the various designations and classifications found in different databases. The functions of the PML isoforms and their differential roles in antiviral defense also are reviewed. Finally, the key players involved in the degradation of the PML isoforms in response to As2O3 or other inducers are discussed.

  17. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis.

    Science.gov (United States)

    Zeisel, Steven H

    2013-03-01

    There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a > three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856

  18. Synthesis and preclinical evaluation of the choline transport tracer deshydroxy-[{sup 18}F]fluorocholine ([{sup 18}F]dOC)

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, G.; Herz, M.; Hauser, A.; Schwaiger, M.; Wester, H.-J. E-mail: H.J.Wester@lrz.tum.de

    2004-10-01

    ]dOC, which is transported but not intracellularily trapped, the choline kinase substrate [{sup 11}C]CHO is transported into tumor cells and retained. Thus, the signal obtained by imaging early after injection is mainly reflecting transport, whereas a valid quantification of choline kinase activity needs imaging at later time points. Further studies have to clarify whether quantification of the transport capacity or the choline kinase activity result in a better pathophysiological correlate and thus is the more useful process for tumor characterization.

  19. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL isoforms.

    Directory of Open Access Journals (Sweden)

    Christian Krintel

    Full Text Available BACKGROUND: Hormone-sensitive lipase (HSL is a key enzyme in the mobilization of energy in the form of fatty acids from intracellular stores of neutral lipids. The enzyme has been shown to exist in different isoforms with different molecular masses (84 kDa, 89 kDa and 117 kDa expressed in a tissue-dependent manner, where the predominant 84 kDa form in adipocytes is the most extensively studied. METHODOLOGY/PRINCIPAL FINDINGS: In this study we employed negative stain electron microscopy (EM to analyze the quarternary structure of the different HSL isoforms. The results show that all three isoforms adopt a head-to-head homodimeric organization, where each monomer contains two structural domains. We also used enzymatic assays to show that despite the variation in the size of the N-terminal domain all three isoforms exhibit similar enzymological properties with regard to psychrotolerance and protein kinase A (PKA-mediated phosphorylation and activation. CONCLUSIONS/SIGNIFICANCE: We present the first data on the quaternary structure and domain organization of the three HSL isoforms. We conclude that despite large differences in the size of the N-terminal, non-catalytic domain all three HSL isoforms exhibit the same three-dimensional architecture. Furthermore, the three HSL isoforms are very similar with regard to two unique enzymological characteristics of HSL, i.e., cold adaptation and PKA-mediated activation.

  20. [Folate metabolism--epigenetic role of choline and vitamin B12 during pregnancy].

    Science.gov (United States)

    Drews, Krzysztof

    2015-12-01

    Adequate choline intake during pregnancy is essential for proper fetal development. Nowadays studies suggest that even in high income countries regular pregnant women diet does not provide the satisfactory amount of choline. Choline demand during pregnancy is high and it seems to exceed present choline intake recommendations. Moreover lactation period also demands choline supplementation because of its high concentration in female milk. Numerous studies on animal model proved correlation between choline supplementation during pregnancy and proper fetal cognitive function development. Despite increased synthesis in maternal liver during pregnancy choline demand is much higher than common dietary uptake. Nowadays studies as to the nutritional recommendations during pregnancy concern also vitamin B12 supplementation. Vitamin B12 deficiency may be an important risk factor of neural tube defects development. Presented article contains a review of data on proper choline and vitamin B12 uptake during pregnancy and lactation and potential results of choline and vitamin B12 poor maternal status. PMID:26995945

  1. Choline on the Move: Perspectives on the Molecular Physiology and Pharmacology of the Presynaptic Choline Transporter.

    Science.gov (United States)

    Ennis, E A; Blakely, R D

    2016-01-01

    Genetic, biochemical, physiological, and pharmacological approaches have advanced our understanding of cholinergic biology for over 100 years. High-affinity choline uptake (HACU) was one of the last features of cholinergic signaling to be defined at a molecular level, achieved through the cloning of the choline transporter (CHT, SLC5A7). In retrospect, the molecular era of CHT studies initiated with the identification of hemicholinium-3 (HC-3), a potent, competitive CHT antagonist, though it would take another 30 years before HC-3, in radiolabeled form, was used by Joseph Coyle's laboratory to identify and monitor the dynamics of CHT proteins. Though HC-3 studies provided important insights into CHT distribution and regulation, another 15 years would pass before the structure of CHT genes and proteins were identified, a full decade after the cloning of most other neurotransmitter-associated transporters. The availability of CHT gene and protein probes propelled the development of cell and animal models as well as efforts to gain insights into how human CHT gene variation affects the risk for brain and neuromuscular disorders. Most recently, our group has pursued a broadening of CHT pharmacology, elucidating novel chemical structures that may serve to advance cholinergic diagnostics and medication development. Here we provide a short review of the transformation that has occurred in HACU research and how such advances may promote the development of novel therapeutics. PMID:27288078

  2. CHKA and PCYT1A gene polymorphisms, choline intake and spina bifida risk in a California population

    Directory of Open Access Journals (Sweden)

    Lammer Edward J

    2006-12-01

    Full Text Available Abstract Background Neural tube defects (NTDs are among the most common of all human congenital defects. Over the last two decades, accumulating evidence has made it clear that periconceptional intake of folic acid can significantly reduce the risk of NTD affected pregnancies. This beneficial effect may be related to the ability of folates to donate methyl groups for critical physiological reactions. Choline is an essential nutrient and it is also a methyl donor critical for the maintenance of cell membrane integrity and methyl metabolism. Perturbations in choline metabolism in vitro have been shown to induce NTDs in mouse embryos. Methods This study investigated whether single nucleotide polymorphisms (SNPs in human choline kinase A (CHKA gene and CTP:phosphocholine cytidylytransferase (PCYT1A gene were risk factors for spina bifida. Fluorescence-based allelic discrimination analysis was performed for the two CHKA intronic SNPs hCV1562388 (rs7928739 and hCV1562393, and PCYT1A SNP rs939883 and rs3772109. The study population consisted of 103 infants with spina bifida and 338 non-malformed control infants who were born in selected California counties in the period 1989–1991. Results The CHKA SNP hCV1562388 genotypes with at least one C allele were associated with a reduced risk of spina bifida (odds ratio = 0.60, 95%CI = 0.38–0.94. The PCYT1A SNP rs939883 genotype AA was associated with a twofold increased risk of spina bifida (odds ratio = 1.89, 95% CI = 0.97–3.67. These gene-only effects were not substantially modified by analytic consideration to maternal periconceptional choline intake. Conclusion Our analyses showed genotype effects of CHKA and PCYT1A genes on spina bifida risk, but did not show evidence of gene-nutrient interactions. The underlying mechanisms are yet to be resolved.

  3. Henry’s constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems

    International Nuclear Information System (INIS)

    Highlights: • A new set of Henry’s constant for the system carbon dioxide-aqueous deep eutectic solvents were measured. • The DESs used were: ethaline, glyceline, and maline. • The measured data were reported as functions of temperature and composition. • The measured data were represented satisfactorily by the applied correlations. -- Abstract: In this study, we present a new set of Henry’s constant data for the system carbon dioxide-aqueous deep eutectic solvent (DES) (20 to 80 wt% DES) at T = (303.15, 308.15, and 313.15) K. The DESs used were choline chloride-based: ethaline (choline chloride/ethylene glycol), glyceline (choline chloride/glycerol), and maline (choline chloride/malonic acid). A differential Henry’s coefficient model was used to describe the behaviour of Henry’s constant, and correlate it with temperature and concentration of DES in the aqueous DES solution. The correlation was found satisfactory such that the proposed model can be used in engineering calculations with reasonable accuracy

  4. Learning-dependent gene expression of CREB1 isoforms in the molluscan brain

    Directory of Open Access Journals (Sweden)

    Hisayo Sadamoto

    2010-05-01

    Full Text Available Cyclic AMP-responsive element binding protein1 (CREB1 has multiple functions in gene regulation. Various studies have reported that CREB1-dependent gene induction is necessary for memory formation and long-lasting behavioral changes in both vertebrates and invertebrates. In the present study, we characterized Lymnaea CREB1 (LymCREB1 mRNA isoforms of spliced variants in the central nervous system (CNS of the pond snail Lymnaea stagnalis. Among these spliced variants, the three isoforms that code a whole LymCREB1 protein are considered to be the activators for gene regulation. The other four isoforms, which code truncated LymCREB1 proteins with no kinase inducible domain, are the repressors. For a better understanding of the possible roles of different LymCREB1 isoforms, the expression level of these isoform mRNAs was investigated by a real-time quantitative RT-PCR method. Further, we examined the changes in gene expression for all the isoforms in the CNS after conditioned taste aversion (CTA learning or backward conditioning as a control. The results showed that CTA learning increased LymCREB1 gene expression, but it did not change the activator/repressor ratio. Our findings showed that the repressor isoforms, as well as the activator ones, are expressed in large amounts in the CNS, and the gene expression of CREB1 isoforms appeared to be specific for the given stimulus. This was the first quantitative analysis of the expression patterns of CREB1 isoforms at the mRNA level and their association with learning behavior.

  5. The mechanism of protein kinase C regulation

    Institute of Scientific and Technical Information of China (English)

    Julhash U. KAZI

    2011-01-01

    Protein kinase C (PKC) is a family ofserine/threonine protein kinases that plays a central role in transducing extracellular signals into a variety of intracellular responses ranging from cell proliferation to apoptosis.Nine PKC genes have been identified in the human genome,which encode 10 proteins.Each member of this protein kinase family displays distinct biochemical characteristics and is enriched in different cellular and subcellular locations.Activation of PKC has been implicated in the regulation of cell growth and differentiation.This review summarizes works of the past years in the field of PKC biochemistry that covers regulation and activation mechanism of different PKC isoforms.

  6. Characterization of choline uptake in prostate cancer cells following bicalutamide and docetaxel treatment

    International Nuclear Information System (INIS)

    Choline derivatives labelled with positron emitters are successfully used for PET imaging of prostate cancer patients. Since little is known about uptake mechanisms, the aim of this study was to characterize choline uptake in prostate cancer cells, also following anti-androgen treatment or chemotherapy. Choline uptake in prostate cancer cells (LNCaP, PC-3) and Michaelis-Menten kinetics were analysed using different concentrations of 3H-choline via liquid scintillation counting. Inhibition of 3H-choline uptake was assayed in the presence of hemicholinium-3 (HC-3), unlabelled choline, guanidine and tetraethylammonium (TEA), an inhibitor of the organic cation transporter (OCT). Changes in choline uptake triggered by bicalutamide and docetaxel were evaluated and choline transporters were detected via Western blotting. Michaelis-Menten kinetics yielded a saturable transport with Km values of 6.9 and 7.0 μmol/l choline for LNCaP and PC-3 cells, respectively. Treatment of cells with bicalutamide and docetaxel caused an increase in total choline uptake but had no significant effect on Km values. Uptake of 3H-choline was NaCl dependent and 4.5-fold higher in LNCaP cells than in PC-3 cells. 3H-Choline uptake was reduced by 92-96% using HC-3 and unlabelled choline, by 63-69% using guanidine and by 20% using TEA. The high-affinity choline transporter was detected via Western blotting. Choline uptake in prostate cancer cells is accomplished both by a transporter-mediated and a diffusion-like component. Results of inhibition experiments suggest that uptake is mediated by a selective choline transporter rather than by the OCT. Bicalutamide- and docetaxel-induced changes in total choline uptake could affect PET tumour imaging. (orig.)

  7. RBC-choline: changes by lithium and relation to prophylactic response

    International Nuclear Information System (INIS)

    Red blod cell (RBC)- and plasma-choline levels were measured in patients on lithium (n=96), antidepressants (n=32) and neuroleptics (n=51) and in 25 healthy drug-free controls. Lithium patients exhibited highly increased RBC- and slightly increased plasma-choline levels compared with controls (P<0.001 and P<0.05, respectively); the choline ratio (RBC-/plasma-choline) was elevated almost to the same extent as RBC-choline (P<0.001). With antidepressants RBC-choline and choline ratios were slightly reduced (P<0.05), whereas neuroleptics showed no effect on choline levels. 79% of lithium patients were responders (reduction in hospitalizations with lithium) 21% were non-responders (no reduction or increase in hospitalizations). Choline ratio exhibited a significant relation to prophylactic lithium response, but lithium ratio did not. The percentage of non-responders was significantly higher in patients with a choline ratio exceeding 100 than in patients with a choline ratio below this cut-off (P<0.01). Thus, the increase of RBC-choline and choline ratios appears to be an effect specific for lithium and might be related to the outcome of lithium prophylaxis. (author)

  8. Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models

    International Nuclear Information System (INIS)

    Increased concentrations of choline-containing compounds are frequently observed in breast carcinomas, and may serve as biomarkers for both diagnostic and treatment monitoring purposes. However, underlying mechanisms for the abnormal choline metabolism are poorly understood. The concentrations of choline-derived metabolites were determined in xenografted primary human breast carcinomas, representing basal-like and luminal-like subtypes. Quantification of metabolites in fresh frozen tissue was performed using high-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS). The expression of genes involved in phosphatidylcholine (PtdCho) metabolism was retrieved from whole genome expression microarray analyses. The metabolite profiles from xenografts were compared with profiles from human breast cancer, sampled from patients with estrogen/progesterone receptor positive (ER+/PgR+) or triple negative (ER-/PgR-/HER2-) breast cancer. In basal-like xenografts, glycerophosphocholine (GPC) concentrations were higher than phosphocholine (PCho) concentrations, whereas this pattern was reversed in luminal-like xenografts. These differences may be explained by lower choline kinase (CHKA, CHKB) expression as well as higher PtdCho degradation mediated by higher expression of phospholipase A2 group 4A (PLA2G4A) and phospholipase B1 (PLB1) in the basal-like model. The glycine concentration was higher in the basal-like model. Although glycine could be derived from energy metabolism pathways, the gene expression data suggested a metabolic shift from PtdCho synthesis to glycine formation in basal-like xenografts. In agreement with results from the xenograft models, tissue samples from triple negative breast carcinomas had higher GPC/PCho ratio than samples from ER+/PgR+ carcinomas, suggesting that the choline metabolism in the experimental models is representative for luminal-like and basal-like human breast cancer. The differences in choline metabolite

  9. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse

    Science.gov (United States)

    Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C.; Bailey, Mark E. S.; Cobb, Stuart R.

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3’-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders. PMID:27315173

  10. PI3K isoform-selective inhibitors: next-generation targeted cancer therapies.

    Science.gov (United States)

    Wang, Xiang; Ding, Jian; Meng, Ling-hua

    2015-10-01

    The pivotal roles of phosphatidylinositol 3-kinases (PI3Ks) in human cancers have inspired active development of small molecules to inhibit these lipid kinases. However, the first-generation pan-PI3K and dual-PI3K/mTOR inhibitors have encountered problems in clinical trials, with limited efficacies as a monotherapeutic agent as well as a relatively high rate of side effects. It is increasingly recognized that different PI3K isoforms play non-redundant roles in particular tumor types, which has prompted the development of isoform-selective inhibitors for pre-selected patients with the aim for improving efficacy while decreasing undesirable side effects. The success of PI3K isoform-selective inhibitors is represented by CAL101 (Idelalisib), a first-in-class PI3Kδ-selective small-molecule inhibitor that has been approved by the FDA for the treatment of chronic lymphocytic leukemia, indolent B-cell non-Hodgkin's lymphoma and relapsed small lymphocytic lymphoma. Inhibitors targeting other PI3K isoforms are also being extensively developed. This review focuses on the recent progress in development of PI3K isoform-selective inhibitors for cancer therapy. A deeper understanding of the action modes of novel PI3K isoform-selective inhibitors will provide valuable information to further validate the concept of targeting specific PI3K isoforms, while the identification of biomarkers to stratify patients who are likely to benefit from the therapy will be essential for the success of these agents. PMID:26364801

  11. Phosphorylation of Titin Modulates Passive Stiffness of Cardiac Muscle in a Titin Isoform-dependent Manner

    OpenAIRE

    Fukuda, Norio; Wu, Yiming; Nair, Preetha; Granzier, Henk L.

    2005-01-01

    We investigated the effect of protein kinase A (PKA) on passive force in skinned cardiac tissues that express different isoforms of titin, i.e., stiff (N2B) and more compliant (N2BA) titins, at different levels. We used rat ventricular (RV), bovine left ventricular (BLV), and bovine left atrial (BLA) muscles (passive force: RV > BLV > BLA, with the ratio of N2B to N2BA titin, ∼90:10, ∼40:60, and ∼10:90%, respectively) and found that N2B and N2BA isoforms can both be phosphorylated by PKA. Und...

  12. Diacylglycerol Kinase Inhibition and Vascular Function.

    Science.gov (United States)

    Choi, Hyehun; Allahdadi, Kyan J; Tostes, Rita C A; Webb, R Clinton

    2009-01-01

    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction. PMID:21547002

  13. Inference of Isoforms from Short Sequence Reads

    Science.gov (United States)

    Feng, Jianxing; Li, Wei; Jiang, Tao

    Due to alternative splicing events in eukaryotic species, the identification of mRNA isoforms (or splicing variants) is a difficult problem. Traditional experimental methods for this purpose are time consuming and cost ineffective. The emerging RNA-Seq technology provides a possible effective method to address this problem. Although the advantages of RNA-Seq over traditional methods in transcriptome analysis have been confirmed by many studies, the inference of isoforms from millions of short sequence reads (e.g., Illumina/Solexa reads) has remained computationally challenging. In this work, we propose a method to calculate the expression levels of isoforms and infer isoforms from short RNA-Seq reads using exon-intron boundary, transcription start site (TSS) and poly-A site (PAS) information. We first formulate the relationship among exons, isoforms, and single-end reads as a convex quadratic program, and then use an efficient algorithm (called IsoInfer) to search for isoforms. IsoInfer can calculate the expression levels of isoforms accurately if all the isoforms are known and infer novel isoforms from scratch. Our experimental tests on known mouse isoforms with both simulated expression levels and reads demonstrate that IsoInfer is able to calculate the expression levels of isoforms with an accuracy comparable to the state-of-the-art statistical method and a 60 times faster speed. Moreover, our tests on both simulated and real reads show that it achieves a good precision and sensitivity in inferring isoforms when given accurate exon-intron boundary, TSS and PAS information, especially for isoforms whose expression levels are significantly high.

  14. Fine-tuning of choline metabolism is important for pneumococcal colonization.

    Science.gov (United States)

    Johnston, Calum; Hauser, Christoph; Hermans, Peter W M; Martin, Bernard; Polard, Patrice; Bootsma, Hester J; Claverys, Jean-Pierre

    2016-06-01

    The human pathogen Streptococcus pneumoniae (the pneumococcus) is rare in having a strict requirement for the amino alcohol choline, which decorates pneumococcal teichoic acids. This process relies on the lic locus, containing the lic1 and lic2 operons. These operons produce eight proteins that import and metabolize choline, generate teichoic acid precursors and decorate these with choline. Three promoters control expression of lic operons, with Plic1P1 and Plic1P2 controlling lic1 and Plic2 controlling lic2. To investigate the importance of lic regulation for pneumococci, we assayed the activity of transcriptional fusions of the three lic promoters to the luciferase reporter gene. Plic1P1 , whose activity depends on the response regulator CiaR, responded to fluctuations in extracellular choline, with activity increasing greatly upon choline depletion. We uncovered a complex regulatory mechanism controlling Plic1P1 , involving activity driven by CiaR, repression by putative repressor LicR in the presence of choline, and derepression upon choline depletion mediated by LicC, a choline metabolism enzyme. Finally, the ability to regulate Plic1P1 in response to choline was important for pneumococcal colonization. We suggest that derepression of Plic1P1 upon choline depletion maximizing choline internalization constitutes an adaptive response mechanism allowing pneumococci to optimize growth and survival in environments where choline is scarce. PMID:26919406

  15. Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery

    OpenAIRE

    Auger Kurt R; Brown James R

    2011-01-01

    Abstract Background Phosphoinositide lipid kinases (PIKs) generate specific phosphorylated variants of phosatidylinositols (PtdIns) that are critical for second messenger signaling and cellular membrane remodeling. Mammals have 19 PIK isoforms spread across three major families: the PtIns 3-kinases (PI3Ks), PtdIns 4-kinases (PI4Ks), and PtdIns-P (PIP) kinases (PIPKs). Other eukaryotes have fewer yet varying PIK complements. PIKs are also an important, emerging class of drug targets for many t...

  16. Effect of anoxia on choline uptake and release of acetylcholine in brain slices estimated with a bioradiographic technique using [11C] choline

    International Nuclear Information System (INIS)

    The uptake of choline for the synthesis and release of acetylcholine and the metabolism of glucose under anoxic conditions was investigated in brain slices by bioradiography using [N-methyl-11C]choline ([11C]choline) and [18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG). [11C]Choline uptake and the release of accumulated 11C radioactivity in brain slices decreased with anoxic treatment, whereas [18F]FDG uptake increased. The decrease of [11C]choline uptake and the 11C radioactivity accumulated in striatal slices were recovered by acetyl-L-carnitine, an acetyl-donor. However, this effect was not seen in cerebral cortex. These results indicate that choline uptake for the synthesis and release of acetylcholine in brain are energy sensitive. The cholinergic dysfunction in ischemic brain might be improved by compensating for energy loss. (author)

  17. Choline PET for Monitoring Early Tumor Response to Photodynamic Therapy

    OpenAIRE

    Fei, Baowei; Wang, Hesheng; Wu, Chunying; Chiu, Song-mao

    2009-01-01

    Photodynamic therapy (PDT) is a relatively new therapy that has shown promise for treating various cancers in both preclinical and clinical studies. The present study evaluated the potential use of PET with radiolabeled choline to monitor early tumor response to PDT in animal models.

  18. Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata

    OpenAIRE

    Nieto Gutiérrez, Joaquín José; Cánovas, David; Vargas, C.; Csonka, Laszlo N.; Ventosa Ucero, Antonio

    1998-01-01

    The role of choline in osmoprotection in the moderate halophile Halomonas elongata has been examined. Transport and conversion of choline to betaine began immediately after addition of choline to the growth medium. Intracellular accumulation of betaine synthesized from choline was salt dependent up to 2.5 M NaCl. Oxidation of choline was enhanced at 2.0 M NaCl in the presence or absence of externally provided betaine. This indicates that the NaCl concentration in the growth medium has major e...

  19. Casein kinase I-like protein kinases encoded by YCK1 and YCK2 are required for yeast morphogenesis.

    OpenAIRE

    Robinson, L. C.; Menold, M. M.; Garrett, S.; Culbertson, M R

    1993-01-01

    Casein kinase I is an acidotropic protein kinase class that is widely distributed among eukaryotic cell types. In the yeast Saccharomyces cerevisiae, the casein kinase I isoform encoded by the gene pair YCK1 and YCK2 is a 60- to 62-kDa membrane-associated form. The Yck proteins perform functions essential for growth and division; either alone supports growth, but loss of function of both is lethal. We report here that casein kinase I-like activity is associated with a soluble Yck2-beta-galact...

  20. Structural Evolution of the Protein Kinase-Like Superfamily.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available The protein kinase family is large and important, but it is only one family in a larger superfamily of homologous kinases that phosphorylate a variety of substrates and play important roles in all three superkingdoms of life. We used a carefully constructed structural alignment of selected kinases as the basis for a study of the structural evolution of the protein kinase-like superfamily. The comparison of structures revealed a "universal core" domain consisting only of regions required for ATP binding and the phosphotransfer reaction. Remarkably, even within the universal core some kinase structures display notable changes, while still retaining essential activity. Hence, the protein kinase-like superfamily has undergone substantial structural and sequence revision over long evolutionary timescales. We constructed a phylogenetic tree for the superfamily using a novel approach that allowed for the combination of sequence and structure information into a unified quantitative analysis. When considered against the backdrop of species distribution and other metrics, our tree provides a compelling scenario for the development of the various kinase families from a shared common ancestor. We propose that most of the so-called "atypical kinases" are not intermittently derived from protein kinases, but rather diverged early in evolution to form a distinct phyletic group. Within the atypical kinases, the aminoglycoside and choline kinase families appear to share the closest relationship. These two families in turn appear to be the most closely related to the protein kinase family. In addition, our analysis suggests that the actin-fragmin kinase, an atypical protein kinase, is more closely related to the phosphoinositide-3 kinase family than to the protein kinase family. The two most divergent families, alpha-kinases and phosphatidylinositol phosphate kinases (PIPKs, appear to have distinct evolutionary histories. While the PIPKs probably have an

  1. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M;

    1996-01-01

    Although a number of nucleoside diphosphate kinases (NDPKs) have been reported to act as inhibitors of metastasis or as a transcription factor in mammals, it is not known whether these functions are linked to their enzymatic activity or how this protein is regulated. In this report, we show that ...... on histidine residues, however, only the B isoform appeared to be serine phosphorylated....

  2. PKC isoforms interact with and phosphorylate DNMT1

    Directory of Open Access Journals (Sweden)

    Pradhan Sriharsa

    2011-05-01

    Full Text Available Abstract Background DNA methyltransferase 1 (DNMT1 has been shown to be phosphorylated on multiple serine and threonine residues, based on cell type and physiological conditions. Although recent studies have suggested that protein kinase C (PKC may be involved, the individual contribution of PKC isoforms in their ability to phosphorylate DNMT1 remains unknown. The PKC family consists of at least 12 isoforms that possess distinct differences in structure, substrate requirement, expression and localization. Results Here we show that PKCα, βI, βII, δ, γ, η, ζ and μ preferentially phosphorylate the N-terminal domain of human DNMT1. No such phosphorylation of DNMT1 was observed with PKCε. Using PKCζ as a prototype model, we also found that PKC physically interacts with and phosphorylates DNMT1. In vitro phosphorylation assays conducted with recombinant fragments of DNMT1 showed that PKCζ preferentially phosphorylated the N-terminal region of DNMT1. The interaction of PKCζ with DNMT1 was confirmed by GST pull-down and co-immunoprecipitation experiments. Co-localization experiments by fluorescent microscopy further showed that endogenous PKCζ and DNMT1 were present in the same molecular complex. Endogenous PKCζ activity was also detected when DNMT1 was immunoprecipitated from HEK-293 cells. Overexpression of both PKCζ and DNMT1 in HEK-293 cells, but not of either alone, reduced the methylation status of genes distributed across the genome. Moreover, in vitro phosphorylation of DNMT1 by PKCζ reduced its methytransferase activity. Conclusions Our results indicate that phosphorylation of human DNMT1 by PKC is isoform-specific and provides the first evidence of cooperation between PKCζ and DNMT1 in the control of the DNA methylation patterns of the genome.

  3. Tau-tubulin kinase

    Directory of Open Access Journals (Sweden)

    Seiko Ikezu

    2014-04-01

    Full Text Available Tau-tubulin kinase (TTBK belongs to casein kinase superfamily and can phosphorylate microtubule-associated protein tau and tubulin. TTBK has two isoforms, TTBK1 and TTBK2, which contain highly homologous catalytic domains but their non-catalytic domains are distinctly different. TTBK1 is expressed specifically in the central nervous system and is involved in phosphorylation and aggregation of tau. TTBK2 is ubiquitously expressed in multiple tissues and genetically linked to spinocerebellar ataxia type 11. TTBK1 directly phosphorylates tau protein, especially at Ser422, and also activates cycline-dependent kinase 5 in a unique mechanism. TTBK1 protein expression is significantly elevated in Alzheimer’s disease brains, and genetic variations of the TTBK1 gene are associated with late-onset Alzheimer’s disease in two cohorts of Chinese and Spanish populations. TTBK1 transgenic mice harboring the entire 55-kilobase genomic sequence of human TTBK1 show progression of tau accumulation, neuroinflammation, and neurodegeneration when crossed with tau mutant mice. Our recent study shows that there is a striking switch in mononuclear phagocyte and activation phenotypes in the anterior horn of the spinal cord from alternatively activated (M2-skewed microglia to pro-inflammatory (M1-skewed infiltrating peripheral monocytes in P301L tau mutant mice by crossing with TTBK1 transgenic mice. TTBK1 is responsible for mediating M1-activated microglia-induced neurotoxicity, and its overexpression induces axonal degeneration in vitro. These studies suggest that TTBK1 is an important molecule for the inflammatory axonal degeneration, which may be relevant to the pathobiology of tauopathy including Alzheimer’s disease.

  4. Experience in using ceretone (choline alfoscerate) in brain concussion

    OpenAIRE

    N G Voropay; Ol'ga Borisovna Doronina; N G Voropai; Olga Borisovna Doronina; B M Doronin

    2010-01-01

    Nootropics are used to treat patients who have sustained concussion of the brain and complain of reductions in memory and working capacity, as well as emotional disorders. The efficacy of ceretone® (choline alfoscerate) was studied in 76 patients (45 men and 31 women whose age was 21-56 years) who had sustained brain concussion and had complaints of headache, easy fatigability, nocturnal sleep disorders, daytime sleepiness, anxiety, and bad mood. Thirty-nine patients received intravenous cere...

  5. Isoform-specific phosphorylation-dependent regulation of connexin hemichannels

    DEFF Research Database (Denmark)

    Alstrøm, Jette Skov; Hansen, Daniel Bloch; Nielsen, Morten Schak;

    2015-01-01

    Connexins form gap junction channels made up of two connexons (hemichannels) from adjacent cells. Unopposed hemichannels may open toward the extracellular space upon stimulation by, e.g., removal of divalent cations from the extracellular solution and allow isoform-specific transmembrane flux of...... fluorescent dyes and physiologically relevant molecules, such as ATP and ions. Connexin (Cx)43 and Cx30 are the major astrocytic connexins. Protein kinase C (PKC) regulates Cx43 in its cell-cell gap junction configuration and may also act to keep Cx43 hemichannels closed. In contrast, the regulation of Cx30...... hemichannels by PKC is unexplored. To determine phosphorylation-dependent regulation of Cx30 and Cx43 hemichannels, these were heterologously expressed in Xenopus laevis oocytes and opened with divalent cation-free solution. Inhibition of PKC activity did not affect hemichannel opening of either connexin. PKC...

  6. Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Chur Chin

    2010-04-01

    Full Text Available Chur Chin1, In Kyeom Kim2, Dong Yoon Lim3, Ki Suk Kim4, Hyang Ae Lee4, Eun Joo Kim41Department of Pediatrics, Fatima Hospital, Daegu, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea; 3Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea; 4Korea Institute of Toxicology, Daejeon, KoreaAbstract: We identified a novel class of direct ion-channel blockers of ligand-gated ion channels called the gold nanoparticle–choline complex. Negatively charged gold nanoparticles (1.4 nm block ion pores by binding to the sulfur group of the cysteine loop of nicotinic acetylcholine receptors (nAChRs, and currents evoked by acetylcholine (Ach can break these bonds. The current evoked by ACh in nAChRs was blocked directly in ion pores by the gold nanoparticle–choline complex. In adrenal-gland perfusion studies, the complex also blocked nAChRs by diminishing catecholamine release by about 75%. An in vivo study showed muscle relaxation in rats after injection of the complex. These results will foster the application of gold nanoparticles as a direct ion-channel blocker. Keywords: negatively charged gold nanoparticle, choline, gold–sulfur bond, nicotinic acetylcholine receptor, direct ion-channel blocker

  7. Influence of androgen deprivation therapy on choline PET/CT in recurrent prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dost, Rutger J.; Breeuwsma, Anthonius J.; Jong, Igle J. de [University of Groningen, University Medical Center Groningen, Department of Urology, Groningen (Netherlands); Glaudemans, Andor W.J.M. [University of Groningen, University Medical Center Groningen, Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2013-07-15

    Recurrent prostate cancer is usually treated by combining radiotherapy and androgen deprivation therapy. To stage the cancer, choline positron emission tomography (PET)/CT can be performed. It is generally thought that androgen deprivation therapy does not influence choline PET/CT. In this article we focus on the molecular backgrounds of choline and androgens, and the results of preclinical and clinical studies performed using PET/CT. Using PubMed, we looked for the relevant articles about androgen deprivation therapy and choline PET/CT. During ADT, a tendency of decreased uptake of choline in prostate cancer was observed, in particular in hormone-naive patients. We conclude that in order to prevent false-negative choline PET/CT scans androgen deprivation should be withheld prior to scanning, especially in hormone-naive patients. (orig.)

  8. Influence of androgen deprivation therapy on choline PET/CT in recurrent prostate cancer

    International Nuclear Information System (INIS)

    Recurrent prostate cancer is usually treated by combining radiotherapy and androgen deprivation therapy. To stage the cancer, choline positron emission tomography (PET)/CT can be performed. It is generally thought that androgen deprivation therapy does not influence choline PET/CT. In this article we focus on the molecular backgrounds of choline and androgens, and the results of preclinical and clinical studies performed using PET/CT. Using PubMed, we looked for the relevant articles about androgen deprivation therapy and choline PET/CT. During ADT, a tendency of decreased uptake of choline in prostate cancer was observed, in particular in hormone-naive patients. We conclude that in order to prevent false-negative choline PET/CT scans androgen deprivation should be withheld prior to scanning, especially in hormone-naive patients. (orig.)

  9. Central injection of captopril inhibits the blood pressure response to intracerebroventricular choline

    Directory of Open Access Journals (Sweden)

    N. Isbil-Buyukcoskun

    2001-06-01

    Full Text Available In the present study, we investigated the involvement of the brain renin-angiotensin system in the effects of central cholinergic stimulation on blood pressure in conscious, freely moving normotensive rats. In the first step, we determined the effects of intracerebroventricular (icv choline (50, 100 and 150 µg on blood pressure. Choline increased blood pressure in a dose-dependent manner. In order to investigate the effects of brain renin-angiotensin system blockade on blood pressure increase induced by choline (150 µg, icv, an angiotensin-converting enzyme inhibitor, captopril (25 and 50 µg, icv, was administered 3 min before choline. Twenty-five µg captopril did not block the pressor effect of choline, while 50 µg captopril blocked it significantly. Our results suggest that the central renin-angiotensin system may participate in the increase in blood pressure induced by icv choline in normotensive rats.

  10. Significance of yeast peroxisomes in the metabolism of choline and ethanolamine

    OpenAIRE

    Zwart, Kor B.; Veenhuis, Marten; Harder, Wim

    1983-01-01

    The yeasts Candida utilis and Hansenula polymorpha were able to grow in media containing choline or ethanolamine as the sole nitrogen source. During growth in the presence of these substrates, large peroxisomes developed in the cells, and extracts of choline-grown C. utilis cells contained increased levels of amine oxidase and catalase. Incubation of whole cells with choline in the presence of the amine oxidase inhibitor aminoacetonitrile led to excretion of dimethylamine and methylamine. Cyt...

  11. Effects of CDP-choline on macrophages and oligodendrocytes in neuroinflammation

    OpenAIRE

    Wolf, Rebecca

    2016-01-01

    1) Background and objective of the project Cytidine-5'-diphosphocholine (CDP-choline) has gained some importance as an add-on therapy in neurodegenerative, neurovascular and traumatic brain disorders due to its neuroprotective and regenerative properties. Exogenously applied CDP-choline displays a very high bioavailability and readily disperses throughout the organism, also crossing the blood-brain barrier. Along with a favorable toxicity profile, these characteristics render CDP-choline a...

  12. Methanogenesis from Choline by a Coculture of Desulfovibrio sp. and Methanosarcina barkeri

    OpenAIRE

    Fiebig, K; Gottschalk, G.

    1983-01-01

    A sulfate-reducing vibrio was isolated from a methanogenic enrichment with choline as the sole added organic substrate. This organism was identified as a member of the genus Desulfovibrio and was designated Desulfovibrio strain G1. In a defined medium devoid of sulfate, a pure culture of Desulfovibrio strain G1 fermented choline to trimethylamine, acetate, and ethanol. In the presence of sulfate, more acetate and less ethanol were formed from choline than in the absence of sulfate. When grown...

  13. FSH isoform pattern in classic galactosemia

    OpenAIRE

    Gubbels, Cynthia S.; Thomas, Chris M.G.; Wodzig, Will K. W. H.; Olthaar, André J.; Jaeken, Jaak; Sweep, Fred C. G. J.; Rubio-Gozalbo, M. Estela

    2010-01-01

    Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfunction. An earlier study showed less acidic isoforms of FSH in serum samples of two classic galactosemia patients compared to controls, indicating hypoglycosylation. In this study, FSH isoform patterns...

  14. Tentative identification of the choline transporter in cholinergic presynaptic plasma membrane preparations from Torpedo electric organ

    International Nuclear Information System (INIS)

    This paper demonstrates specific high-affinity choline transport into resealed membrane fragments from Torpedo. The amount of bound choline to various subfractions of synaptosome lysate is estimated, and tentative identification of the choline transporter was made. After synaptosomes from Torpedo were pepred the diluted ample was immediately mixed and applied to a 0.45 um cellulose filter and the membranes were washed. The filters were removed, solubilized in Bray's solution and assayed for radioactivity in a Berthold LB 5004 liquid scintillation spectrometer. Acetylcholinesterase was measred and Quabain-sensitive (Na+ -K+) ATPase activity was assayed. Tritium-choline chloride and tritium=acetylcoA were used in the experiments

  15. Phospholipid biosynthesis in Candida albicans: Regulation by the precursors inositol and choline

    International Nuclear Information System (INIS)

    Phospholipid metabolism in the pathogenic fungus Candida albicans was examined. The phospholipid biosynthetic pathways of C. albicans were elucidated and were shown to be similar to those of Saccharomyces cerevisiae. However, marked differences were seen between these two fungi in the regulation of the pathways in response to exogenously provided precursors inositol and choline. In S. cerevisiae, the biosynthesis of phosphatidylcholine via methylation of phosphatidylethanolamine appears to be regulated in response to inositol and choline; provision of choline alone does not repress the activity of this pathway. The same pathway in C. albicans responds to the exogenous provision of choline. Possible explanations for the observed differences in regulation are discussed

  16. Automated synthesis of [11C]choline, a positron-emitting tracer for tumor imaging

    International Nuclear Information System (INIS)

    (β-Hydroxyethyl)tri([11C]methyl)ammonium ([11C]choline) is a tracer very effective in imaging various human tumors using positron emission tomography (PET). We have constructed a computer-controlled [11C]choline synthetic apparatus which carries out the whole process of synthesis and product purification automatically. The setup is simple and the process quick. In 20 min, 11 GBq of [11C]choline (chloride) is obtainable from 26 GBq of [11C]CO2. The final product is a sterile and pyrogen-free [11C]choline 'injection'

  17. Utilization of choline from crude soybean lecithin by chicks. 1. Growth and prevention of perosis.

    Science.gov (United States)

    Lipstein, B; Bornstein, S; Budowski, P

    1977-01-01

    Data obtained with growing chicks fed a semi-purified diet indicate that choline from crude soybean lecithin is as well utilized as synthetic choline chloride, on the basis of growth, relative liver weight and prevention of perosis. Extrapolation of the results on growth and perosis prevention, obtained between 1 and 3 weeks of age, to performance on practical-type diets yields choline requirements for broiler-type chicks ranging from 800 to 1000 mg./kg. diet (as choline chloride). The requirement seems to decrease with age. PMID:564504

  18. Bioelectrochemical Response and Kinetics of Choline Oxidase Entrapped in Polyaniline-Polyacrylonitrile Composite Film

    Institute of Scientific and Technical Information of China (English)

    XUE,Huai-Guo(薛怀国); SHEN,Zhi-Quan(沈之荃)

    2002-01-01

    A novel choline oxidase electrode was constructed by entrapping choline oxidase into polyaniline-polyacrylonitrile composite film. The enzyme film was prepared by in situ electropolymerization of aniline into porous polyacrylonitrile-coated platinum electrode in the presence of choline oxidase. The enzyme electrode exhibited sensitive and stable electrochemical response to choline. The kinetics analysis showed that the mass transport is partially rate-limiting. The influences of pH, applied potential and temperature on the response of the enzyme electrode were also described.

  19. PKC Isoform Expression in Modeled Microgravity

    Science.gov (United States)

    Risin, Diana; Sundaresan, Alamelu; Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Our previous studies showed that modeled (MMG) and true (USA Space Shuttle Missions STS-54 and STS-56) microgravity (MG) inhibit human lymphocyte locomotion, Modeled MG also suppressed polyclonal and antigen-specific lymphocyte activation. Activation of PKC by phorbol myristate acetate (PMA) restored the microgravity-inhibited lymphocyte locomotion as well as activation by phytohaemagglutinin (PHA), whereas calcium ionophore (ionomycin) was unable to restore these functions. Based on these results we hypothesized that MG-induced changes in lymphocyte functions are caused by a fundamental defect in signal transduction mechanism. This defect may be localized either at the PKC level or upstream of PKC, most likely, at the cell membrane level. In this study we examined the expression of PKC isoforms alpha, epsilon and delta in PBMC cultured in rotating wall vessel bioreactor, developed at NASA JSC, which models microgravity by sustaining cells in continuous free fall. The assessment of the isoforms was performed by FACS analysis following cell permeabilization. A decrease in the expression of isoforms epsilon and delta, but not isoform a, was observed in PBMC cultured in microgravity conditions. These data suggest that MMG might selectively affect the expression of Ca2+ independent isoforms of PKC Molecular analysis confirm selective suppression of Ca2+ independent isoforms of PKC.

  20. Functional Analysis of the Short Isoform of Orf Virus Protein OV20.0

    Science.gov (United States)

    Tseng, Yeu-Yang; Lin, Fong-Yuan; Cheng, Sun-Fang; Chulakasian, Songkhla; Chou, Chia-Chi; Liu, Ya-Fen; Chang, Wei-Shan; Wong, Min-Liang

    2015-01-01

    ABSTRACT Orf virus (ORFV) OV20.0L is an ortholog of vaccinia virus (VACV) gene E3L. The function of VACV E3 protein as a virulence factor is well studied, but OV20.0 has received less attention. Here we show that like VACV E3L, OV20.0L encodes two proteins, a full-length protein and a shorter form (sh20). The shorter sh20 is an N-terminally truncated OV20.0 isoform generated when a downstream AUG codon is used for initiating translation. These isoforms differed in cellular localization, with full-length OV20.0 and sh20 found throughout the cell and predominantly in the cytoplasm, respectively. Nonetheless, both OV20.0 isoforms were able to bind double-stranded RNA (dsRNA)-activated protein kinase (PKR) and dsRNA. Moreover, both isoforms strongly inhibited PKR activation as shown by decreased phosphorylation of the translation initiation factor eIF2α subunit and protection of Sindbis virus infection against the activity of interferon (IFN). In spite of this apparent conservation of function in vitro, a recombinant ORFV that was able to express only the sh20 isoform was attenuated in a mouse model. IMPORTANCE The OV20.0 protein of orf virus (ORFV) has two isoforms and contributes to virulence, but the roles of the two forms are not known. This study shows that the shorter isoform (sh20) arises due to use of a downstream initiation codon and is amino-terminally truncated. The sh20 form also differs in expression kinetics and cellular localization from full-length OV20.0. Similar to the full-length isoform, sh20 is able to bind dsRNA and PKR, inactivate PKR, and thus act as an antagonist of the interferon response in vitro. In vivo, however, wild-type OV20.0 could not be replaced with sh20 alone without a loss of virulence, suggesting that the functions of the isoforms are not simply redundant. PMID:25694596

  1. The α and Δ isoforms of CREB1 are required to maintain normal pulmonary vascular resistance.

    Directory of Open Access Journals (Sweden)

    Lili Li

    Full Text Available Chronic hypoxia causes pulmonary hypertension associated with structural alterations in pulmonary vessels and sustained vasoconstriction. The transcriptional mechanisms responsible for these distinctive changes are unclear. We have previously reported that CREB1 is activated in the lung in response to alveolar hypoxia but not in other organs. To directly investigate the role of α and Δ isoforms of CREB1 in the regulation of pulmonary vascular resistance we examined the responses of mice in which these isoforms of CREB1 had been inactivated by gene mutation, leaving only the β isoform intact (CREB(αΔ mice. Here we report that expression of CREB regulated genes was altered in the lungs of CREB(αΔ mice. CREB(αΔ mice had greater pulmonary vascular resistance than wild types, both basally in normoxia and following exposure to hypoxic conditions for three weeks. There was no difference in rho kinase mediated vasoconstriction between CREB(αΔ and wild type mice. Stereological analysis of pulmonary vascular structure showed characteristic wall thickening and lumen reduction in hypoxic wild-type mice, with similar changes observed in CREB(αΔ. CREB(αΔ mice had larger lungs with reduced epithelial surface density suggesting increased pulmonary compliance. These findings show that α and Δ isoforms of CREB1 regulate homeostatic gene expression in the lung and that normal activity of these isoforms is essential to maintain low pulmonary vascular resistance in both normoxic and hypoxic conditions and to maintain the normal alveolar structure. Interventions that enhance the actions of α and Δ isoforms of CREB1 warrant further investigation in hypoxic lung diseases.

  2. Casein kinases

    DEFF Research Database (Denmark)

    Issinger, O G

    1993-01-01

    subunits are highly conserved during evolution. The relationship between CK-2 alpha from humans and plants is still 73%. Similar relationships are reported for the beta-subunit. Chromosomal assignment of CK-2 alpha shows two gene loci, one of which is a pseudogene. They are located on different chromosomes...... genetic changes are necessarily involved; the observed changes may be entirely due to a signal transduction pathway where CK-2 could be phosphorylated by another kinase(s). CK-2 cDNAs from various organisms have been isolated and characterized. From the deduced amino acid sequence it turns out that CK-2...

  3. Conformational analysis of acetylcholine and related choline esters

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Jensen, B

    1996-01-01

    ,2'-[(1,4-dioxo-1,4-butanediyl)bis(oxy)]bis(N,N,N-trimethylet hanaminium)¿ iodide have been redetermined at 105 K in order to obtain detailed and accurate information on the geometry of choline esters and to elucidate the conformationally dependent changes of geometry. The conformational flexibility and the...... preferred conformations are elucidated based on results obtained from X-ray crystallographic studies and molecular mechanics (MM2) calculations. The usefulness of molecular mechanics calculations for quaternary ammonium ions is discussed....

  4. Autophosphorylation of serine 608 in the p85 regulatory subunit of wild type or cancer-associated mutants of phosphoinositide 3-kinase does not affect its lipid kinase activity

    OpenAIRE

    Layton Meredith J; Saad Mirette; Church Nicole L; Pearson Richard B; Mitchell Christina A; Phillips Wayne A

    2012-01-01

    Abstract Background The α-isoform of the Type 1A Phosphoinositide 3-kinases (PI3Kα) has protein kinase activity as well as phosphoinositide lipid kinase activity. The best described substrate for its protein kinase activity is its regulatory subunit, p85α, which becomes phosphorylated on Serine 608. Phosphorylation of Serine 608 has been reported to down-regulate its lipid kinase activity. Results We have assessed whether oncogenic mutants of PI3Kα, which have up-regulated lipid kinase activi...

  5. Long-Term Memory Deficits in Pavlovian Fear Conditioning in Ca2+/Calmodulin Kinase Kinase α-Deficient Mice▿

    OpenAIRE

    Blaeser, Frank; Sanders, Matthew J.; Truong, Nga; Ko, Shanelle; Wu, Long Jun; Wozniak, David F.; Fanselow, Michael S.; Zhuo, Min; Chatila, Talal A.

    2006-01-01

    Signaling by the Ca2+/calmodulin kinase (CaMK) cascade has been implicated in neuronal gene transcription, synaptic plasticity, and long-term memory consolidation. The CaM kinase kinase α (CaMKKα) isoform is an upstream component of the CaMK cascade whose function in different behavioral and learning and memory paradigms was analyzed by targeted gene disruption in mice. CaMKKα mutants exhibited normal long-term spatial memory formation and cued fear conditioning but showed deficits in context...

  6. Absolute Quantification of Endogenous Ras Isoform Abundance.

    Directory of Open Access Journals (Sweden)

    Craig J Mageean

    Full Text Available Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data.

  7. Are dietary choline and betaine intakes determinants of total homocysteine concentration?

    Science.gov (United States)

    Elevated homocysteine concentrations are associated with an increased risk of cardiovascular disease and a decline in cognitive function. Intakes of choline and betaine, as methyl donors, may affect homocysteine concentrations. The objective was to examine whether choline and betaine intakes, assess...

  8. Choline uptake in Agrobacterium tumefaciens by the high-affinity ChoXWV transporter.

    Science.gov (United States)

    Aktas, Meriyem; Jost, Kathinka A; Fritz, Christiane; Narberhaus, Franz

    2011-10-01

    Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called "Venus flytrap mechanism" of substrate binding. PMID:21803998

  9. Prenatal Choline Availability Alters the Context Sensitivity of Pavlovian Conditioning in Adult Rats

    Science.gov (United States)

    Lamoureux, Jeffrey A.; Meck, Warren H.; Williams, Christina L.

    2008-01-01

    The effects of prenatal choline availability on Pavlovian conditioning were assessed in adult male rats (3-4 mo). Neither supplementation nor deprivation of prenatal choline affected the acquisition and extinction of simple Pavlovian conditioned excitation, or the acquisition and retardation of conditioned inhibition. However, prenatal choline…

  10. Effects of Choline on DNA Methylation and Macronutrient Metabolic Gene Expression in In Vitro Models of Hyperglycemia

    OpenAIRE

    Xinyin Jiang; Esther Greenwald; Chauntelle Jack-Roberts

    2016-01-01

    Choline is an essential nutrient that plays an important role in lipid metabolism and DNA methylation. Studies in rodents suggest that choline may adversely affect glycemic control, yet studies in humans are lacking. Using the human hepatic and placental cells, HepG2 and BeWo, respectively, we examined the interaction between choline and glucose treatments. In HepG2 cells, choline supplementation (1 mM) increased global DNA methylation and DNA methyltransferase expression in both low-glucose ...

  11. Oxygen-18 and deuterium labeling studies of choline oxidation by spinach and sugar beet

    International Nuclear Information System (INIS)

    Chenopods synthesize betaine by a two-step oxidation of choline: choline --> betaine aldehyde --> betaine. The pathway is chloroplastic; the first step has been shown in isolated spinach (Spinacia oleracea L.) chloroplasts to be O2- and light-dependent, the role of light being to provide reducing power (P Weigel, EA Weretilnyk, AD Hanson 1988 Plant Physiol 86: 54-60). Here, we report use of in vivo18O- and 2H-labeling in conjunction with fast atom bombardment mass spectrometry to test for two hypothetical choline-oxidizing reactions that would explain the observed requirements for O2 and reductant: a desaturase or an oxygenase. Simple syntheses for 2H3-choline, 2H3, 18O-choline, and 2H3, 18O-betaine are given. A desaturase mechanism was sought by giving choline deuterated at the 2-carbon, or choline unlabeled at this position together with 2H2O and by analyzing newly synthesized betaine. About 15% of the 2H at C-2 was lost during oxidation of choline to betaine, and about 10% of the betaine made in the presence of 50% 2H2O was monodeuterated. These small effects are more consistent with chemical exchange than with a desaturase, because 10 to 15% losses of 2H from the C-2 position also occurred if choline was converted to betaine by a purified bacterial choline oxidase. To test for an oxygenase, the incorporation of 18O from 18O2 into newly synthesized betaine was compared with that from 18O-labeled choline, in light and darkness. Incorporation of 18O from 18O-choline was readily detectable and varied from about 15 to 50% of the theoretical maximum value; the 18O losses were attributable to exchange of the intermediate betaine aldehyde with water. In darkness, incorporation of 18O from 18O2 approached that from 18O-choline, but in the light was severalfold lower, presumably due to isotopic dilution by photosynthetic 16O2. These data indicate that the chloroplast choline-oxidizing enzyme is an oxygenase. (author)

  12. Moderate Perinatal Choline Deficiency Elicits Altered Physiology and Metabolomic Profiles in the Piglet.

    Directory of Open Access Journals (Sweden)

    Caitlyn M Getty

    Full Text Available Few studies have evaluated the impact of dietary choline on the health and well-being of swine, and those pivotal papers were aimed at determining dietary requirements for sows and growing pigs. This is of importance as the piglet is becoming a widely accepted model for human infant nutrition, but little is known about the impacts of perinatal choline status on overall health and metabolism of the growing piglet. In the present study, sows were provided either a choline deficient (CD, 625 mg choline/kg dry matter or choline sufficient (CS, 1306 mg choline/kg dry matter diet for the last 65 d of gestation (prenatal intervention. Piglets were weaned from the sow 48 h after farrowing and provided either a CD (477 mg choline/kg dry matter or CS (1528 mg choline/kg dry matter milk replacer (postnatal intervention for 29 ± 2 d, resulting in a factorial arrangement of 4 treatment (prenatal/postnatal groups: CS/CS, CS/CD, CD/CS, and CD/CD. Piglet growth was normal for artificially-reared piglets, and was not impacted by perinatal choline status. Piglets receiving the postnatal CD treatment had lower (P < 0.01 plasma choline and choline-containing phospholipid concentrations and higher (P < 0.05 liver enzyme (alkaline phosphatase and gamma-glutamyl transferase values compared with piglets receiving the postnatal CS treatment. Hepatic lipid content of piglets receiving the postnatal CD treatment was higher (P < 0.01 compared with piglets receiving the postnatal CS treatment. Additionally, postnatally CD piglets had lower (P = 0.01 plasma cholesterol than postnatally CS piglets. Brain development was also impacted by perinatal choline status, with brains of piglets exposed to prenatal CD being smaller (P = 0.01 than those of prenatally CS piglets. These findings support the hypothesis that the piglet is a sensitive model for choline deficiency during the perinatal period. In the present study, piglets exhibited similarities in health markers and

  13. Carbon Nanotubes/Gold Nanoparticles Composite Film for the Construction of a Novel Amperometric Choline Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2011-01-01

    Full Text Available This study develops a facile method to fabricate a novel choline biosensor based on multiwalled carbon nanotubes (MWCNTs and gold nanoparticles (AuNPs. Chitosan, a natural biocompatible polymer, was used to solubilize MWCNTs for constructing the aqueous Chit-MWCNTs solution. Then Chit-MWCNTs were first dropped on the surface of a cleaned platinum electrode. Finally, a thiolated silica sol containing AuNPs and choline oxidase (ChOx was immobilized on the surface of the Chit-MWCNTs-modified electrode. The MWCNTs/AuNPs/Pt electrode showed excellent electrocatalytic activity for choline. The resulting choline biosensor showed high sensitivity of choline (3.56 μA/mM, and wide linear range from 0.05 to 0.8 mM with the detection limit of 15 μM. In addition, good reproducibility and stability were obtained.

  14. B cell receptor-mediated apoptosis of human lymphocytes is associated with a new regulatory pathway of Bim isoform expression.

    Science.gov (United States)

    Mouhamad, Shahul; Besnault, Laurence; Auffredou, Marie Thérèse; Leprince, Corinne; Bourgeade, Marie Françoise; Leca, Gérald; Vazquez, Aimé

    2004-02-15

    Studies in Bim-deficient mice have shown that the proapoptotic molecule Bim plays a key role in the control of B cell homeostasis and activation. However, the role of Bim in human B lymphocyte apoptosis is unknown. We show in this study that, depending on the degree of cross-linking, B cell receptors can mediate both Bim-dependent and apparent Bim-independent apoptotic pathways. Cross-linked anti-mu Ab-mediated activation induces an original pathway governing the expression of the various Bim isoforms. This new pathway involves the following three sequential steps: 1) extracellular signal-regulated kinase-dependent phosphorylation of the BimEL isoform, which is produced in large amounts in healthy B cells; 2) proteasome-mediated degradation of phosphorylated BimEL; and 3) increased expression of the shorter apoptotic isoforms BimL and BimS. PMID:14764673

  15. Evidence for negative selection of gene variants that increase dependence on dietary choline in a Gambian cohort.

    Science.gov (United States)

    Silver, Matt J; Corbin, Karen D; Hellenthal, Garrett; da Costa, Kerry-Ann; Dominguez-Salas, Paula; Moore, Sophie E; Owen, Jennifer; Prentice, Andrew M; Hennig, Branwen J; Zeisel, Steven H

    2015-08-01

    Choline is an essential nutrient, and the amount needed in the diet is modulated by several factors. Given geographical differences in dietary choline intake and disparate frequencies of single-nucleotide polymorphisms (SNPs) in choline metabolism genes between ethnic groups, we tested the hypothesis that 3 SNPs that increase dependence on dietary choline would be under negative selection pressure in settings where choline intake is low: choline dehydrogenase (CHDH) rs12676, methylenetetrahydrofolate reductase 1 (MTHFD1) rs2236225, and phosphatidylethanolamine-N-methyltransferase (PEMT) rs12325817. Evidence of negative selection was assessed in 2 populations: one in The Gambia, West Africa, where there is historic evidence of a choline-poor diet, and the other in the United States, with a comparatively choline-rich diet. We used 2 independent methods, and confirmation of our hypothesis was sought via a comparison with SNP data from the Maasai, an East African population with a genetic background similar to that of Gambians but with a traditional diet that is higher in choline. Our results show that frequencies of SNPs known to increase dependence on dietary choline are significantly reduced in the low-choline setting of The Gambia. Our findings suggest that adequate intake levels of choline may have to be reevaluated in different ethnic groups and highlight a possible approach for identifying novel functional SNPs under the influence of dietary selective pressure. PMID:25921832

  16. Role of choline PET/CT in guiding target volume delineation for irradiation of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzenboeck, S.M.; Kurth, J. [University Medical Centre Rostock, Department of Nuclear Medicine, Rostock (Germany); Gocke, C.; Kuhnt, T.; Hildebrandt, G. [University Medical Centre Rostock, Department of Radiotherapy, Rostock (Germany); Krause, B.J. [University Medical Centre Rostock, Department of Nuclear Medicine, Rostock (Germany); Universitaet Rostock, Department of Nuclear Medicine, Universitaetsmedizin Rostock, Rostock (Germany)

    2013-07-15

    Choline PET/CT has shown limitations for the detection of primary prostate cancer and nodal metastatic disease, mainly due to limited sensitivity and specificity. Conversely in the restaging of prostate cancer recurrence, choline PET/CT is a promising imaging modality for the detection of local regional and nodal recurrence with an impact on therapy management. This review highlights current literature on choline PET/CT for radiation treatment planning in primary and recurrent prostate cancer. Due to limited sensitivity and specificity in differentiating between benign and malignant prostatic tissues in primary prostate cancer, there is little enthusiasm for target volume delineation based on choline PET/CT. Irradiation planning for the treatment of single lymph node metastases on the basis of choline PET/CT is controversial due to its limited lesion-based sensitivity in primary nodal staging. In high-risk prostate cancer, choline PET/CT might diagnose lymph node metastases, which potentially can be included in the conventional irradiation field. Prior to radiation treatment of recurrent prostate cancer, choline PET/CT may prove useful for patient stratification by excluding distant disease which would require systemic therapy. In patients with local recurrence, choline PET/CT can be used to delineate local sites of recurrence within the prostatic resection bed allowing a boost to PET-positive sites. In patients with lymph node metastases outside the prostatic fossa and regional metastatic lymph nodes, choline PET/CT might influence radiation treatment planning by enabling extension of the target volume to lymphatic drainage sites with or without a boost to PET-positive lymph nodes. Further clinical randomized trials are required to assess treatment outcomes following choline-based biological radiation treatment planning in comparison with conventional radiation treatment planning. (orig.)

  17. Folate intake, MTHFR genotype, and sex modulate choline metabolism in mice.

    Science.gov (United States)

    Chew, Tina W; Jiang, Xinyin; Yan, Jian; Wang, Wei; Lusa, Amanda L; Carrier, Bradley J; West, Allyson A; Malysheva, Olga V; Brenna, J Thomas; Gregory, Jesse F; Caudill, Marie A

    2011-08-01

    Choline and folate are interrelated in 1-carbon metabolism, mostly because of their shared function as methyl donors for homocysteine remethylation. Folate deficiency and mutations of methylenetetrahydrofolate reductase (MTHFR) reduce the availability of a major methyl donor, 5-methyltetrahydrofolate, which in turn may lead to compensatory changes in choline metabolism. This study investigated the hypothesis that reductions in methyl group supply, either due to dietary folate deficiency or Mthfr gene deletion, would modify tissue choline metabolism in a sex-specific manner. Mthfr wild type (+/+) or heterozygous (+/-) knockout mice were randomized to a folate-deficient or control diet for 8 wk during which time deuterium-labeled choline (d9-choline) was consumed in the drinking water (~10 μmol/d). Mthfr heterozygosity did not alter brain choline metabolite concentrations, but it did enhance their labeling in males (P mice. Dietary folate deficiency in females yielded 52% higher (P = 0.027) hepatic glycerophosphocholine, which suggests that phosphatidylcholine (PtdCho) degradation was enhanced. Labeling of the hepatic PtdCho in d3 form was also reduced (P < 0.001) in females, which implies that fewer of the dietary choline-derived methyl groups were used for de novo PtdCho biosynthesis under conditions of folate insufficiency. Males responded to folate restriction with a doubling (P < 0.001) of hepatic choline dehydrogenase transcripts, a finding consistent with enhanced conversion of choline to the methyl donor, betaine. Collectively, these data show that several adaptations in choline metabolism transpire as a result of mild perturbations in folate metabolism, presumably to preserve methyl group homeostasis. PMID:21697299

  18. Ikaros isoforms:The saga continues

    Institute of Scientific and Technical Information of China (English)

    Laura; A; Perez-Casellas; Aleksandar; Savic; Sinisa; Dovat

    2011-01-01

    Through alternate splicing,the Ikaros gene produces multiple proteins.Ikaros is essential for normal hematopoiesis and possesses tumor suppressor activity.Ikaros isoforms interact to form dimers and potentially multimeric complexes.Diverse Ikaros complexes produced by the presence of different Ikaros isoforms are hypothesized to confer distinct functions.Small dominantnegative Ikaros isoforms have been shown to inhibit the tumor suppressor activity of full-length Ikaros.Here,we describe how Ikaros activity is regulated by the coordinated expression of the largest Ikaros isoforms IK-1 and IK-H.Although IK-1 is described as full-length Ikaros,IK-H is the longest Ikaros isoform.IK-H,which includes residues coded by exon 3B (60 bp that lie between exons 3 and 4),is abundant in human but not murine hematopoietic cells.Specific residues that lie within the 20 amino acids encoded by exon 3B give IK-H DNA-binding characteristics that are distinct from those of IK-1.Moreover,IK-H can potentiate or inhibit the ability of IK-1 to bind DNA.IK-H binds to the regulatory regions of genes that are upregulated by Ikaros,but not genes that are repressed by Ikaros.Although IK-1 localizes to pericentromeric heterochromatin,IK-H can be found in both pericentromeric and non-pericentromeric locations.Anti-silencing activity of gamma satellite DNA has been shown to depend on the binding of IK-H,but not other Ikaros isoforms.The unique features of IK-H,its influence on Ikaros activity,and the lack of IK-H expression in mice suggest that Ikaros function in humans may be more complex and possibly distinct from that in mice.

  19. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Science.gov (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  20. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    Science.gov (United States)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  1. Identification of alternatively spliced Dab1 and Fyn isoforms in pig

    Directory of Open Access Journals (Sweden)

    Yuan Jihong

    2011-02-01

    Full Text Available Abstract Background Disabled-1 (Dab1 is an adaptor protein that is essential for the intracellular transduction of Reelin signaling, which regulates the migration and differentiation of postmitotic neurons during brain development in vertebrates. Dab1 function depends on its tyrosine phosphorylation by Src family kinases, especially Fyn. Results We have isolated alternatively spliced forms of porcine Dab1 from brain (sDab1 and liver (sDab1-Li and Fyn from brain (sFyn-B and spleen (sFyn-T. Radiation hybrid mapping localized porcine Dab1 (sDab1 and Fyn (sFyn to chromosomes 6q31-35 and 1p13, respectively. Real-time quantitative RT-PCR (qRT-PCR demonstrated that different isoforms of Dab1 and Fyn have tissue-specific expression patterns, and sDab1 and sFyn-B display similar temporal expression characteristics in the developing porcine cerebral cortex and cerebellum. Both sDab1 isoforms function as nucleocytoplasmic shuttling proteins. It was further shown that sFyn phosphorylates sDab1 at tyrosyl residues (Tyr 185, 198/200 and 232, whereas sDab1-Li was phosphorylated at Tyr 185 and Tyr 197 (corresponding to Y232 in sDab1 in vitro. Conclusions Alternative splicing generates natural sDab1-Li that only carries Y185 and Y197 (corresponding to Y232 in sDab1 sites, which can be phosphorylated by Fyn in vitro. sDab1-Li is an isoform that is highly expressed in peripheral organs. Both isoforms are suggested to be nucleocytoplasmic shuttling proteins. Our results imply that the short splice form sDab1-Li might regulate cellular responses to different cell signals by acting as a dominant negative form against the full length sDab1 variant and that both isoforms might serve different signaling functions in different tissues.

  2. Sat-Nav for T cells: Role of PI3K isoforms and lipid phosphatases in migration of T lymphocytes.

    Science.gov (United States)

    Ward, Stephen G; Westwick, John; Harris, Stephanie

    2011-07-01

    Phosphoinositide 3-kinase (PI3K)-dependent signaling has been placed at the heart of conserved biochemical mechanisms that facilitate cell migration of leukocytes in response to a range of chemoattractant stimuli. This review assesses the evidence for and against PI3K-dependent mechanisms of T lymphocyte migration and whether pharmacological targeting of PI3K isoforms is likely to offer potential benefit for T cell mediated pathologies. PMID:21333676

  3. p53 isoforms change p53 paradigm

    OpenAIRE

    Bourdon, JC

    2014-01-01

    Although p53 defines cellular responses to cancer treatment it is not clear how p53 can be used to control cell fate outcome. Data demonstrate that so-called p53 does not exist as a single protein, but is in fact a group of p53 protein isoforms whose expression can be manipulated to control the cellular response to treatment.

  4. New isoforms of rat Aquaporin-4

    DEFF Research Database (Denmark)

    Moe, Svein Erik; Sorbo, Jan Gunnar; Søgaard, Rikke;

    2008-01-01

    Aquaporin-4 (AQP4) is a brain aquaporin implicated in the pathophysiology of numerous clinical conditions including brain edema. Here we show that rat AQP4 has six cDNA isoforms, formed by alternative splicing. These are named AQP4a-f, where AQP4a and AQP4c correspond to the two classical M1 and M...

  5. Dietary Intake and Plasma Levels of Choline and Betaine in Children with Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Joanna C. Hamlin

    2013-01-01

    Full Text Available Abnormalities in folate-dependent one-carbon metabolism have been reported in many children with autism. Because inadequate choline and betaine can negatively affect folate metabolism and in turn downstream methylation and antioxidant capacity, we sought to determine whether dietary intake of choline and betaine in children with autism was adequate to meet nutritional needs based on national recommendations. Three-day food records were analyzed for 288 children with autism (ASDs who participated in the national Autism Intervention Research Network for Physical Health (AIR-P Study on Diet and Nutrition in children with autism. Plasma concentrations of choline and betaine were measured in a subgroup of 35 children with ASDs and 32 age-matched control children. The results indicated that 60–93% of children with ASDs were consuming less than the recommended Adequate Intake (AI for choline. Strong positive correlations were found between dietary intake and plasma concentrations of choline and betaine in autistic children as well as lower plasma concentrations compared to the control group. We conclude that choline and betaine intake is inadequate in a significant subgroup of children with ASDs and is reflected in lower plasma levels. Inadequate intake of choline and betaine may contribute to the metabolic abnormalities observed in many children with autism and warrants attention in nutritional counseling.

  6. Effects of temperature, moisture and choline chloride on vitamin A stability in broiler premix

    Institute of Scientific and Technical Information of China (English)

    SUN Haixia; SHAN Anshan; SHI Baoming

    2007-01-01

    A 2×2×2 factorial design was adopted to study the effects of temperature, moisture and choline chloride on vitamin A stability in premix. The results indicated that temperature, moisture and choline chloride damaged vitamin A significantly. The regression equations of vitamin A disappearance rate and storage time were as follows: in room temperature (18±3) ℃, y=14.368Ln(x)+ 4.1425,R2=978; in high temperature (4℃), y=22.24Ln(x)+13.27, R2=O.9918; in low moisture (2%-3%), y=10.408Ln(x)+9.5418, R2=O.9322; in high moisture (8%-9%), y=26.199Ln(x)+7.8741, R2=0.9949; in the condition of choline chloride free, y=9.5125Ln(x)+ 8.9869, R2=O.9826; supplemented with choline chloride, y=27.094Ln(x)+8.4276, R2=0.9984. Temperature had highly significant interaction with moisure and choline chloride on destruction of vitamin A, respectively from the periods of two months storage. However, from the period of the first month storage, the interaction of moisture and choline chloride, as well as the interaction of temperature, moisture and choline destroyed vitamin A remarkably.

  7. 加压素对缺氧血管平滑肌细胞蛋白激酶C亚型表达的调节及其机制%Effect of vasopressin on the expression of protein kinase C isoforms of vascular smooth muscle cell after hypoxia and its mechanisms

    Institute of Scientific and Technical Information of China (English)

    杨光明; 李涛; 明佳; 徐竞; 陈玮; 刘良明

    2009-01-01

    目的 探讨精氨酸血管加压素(AVP)对缺氧血管平滑肌细胞(VSMC)中PKC-α、δ和ε亚型蛋白表达的调节作用及其可能机制.方法 取50只Wistar大鼠的血管进行原代VSMC培养,观察AVP对缺氧VSMC胞质和胞膜成分中PKC-α、δ和ε亚型蛋白表达的影响,同时检测缺氧VSMC中3种磷脂酶(PLC、PLD、PLA:)的活性变化及AVP和PKC亚型抑制剂对其的作用.结果 缺氧后VSMC胞膜成分中PKC.α和亚ε型的表达分别升高为正常组的1.5和2.0倍,而胞质成分中表达降低,AVP处理进一步升高胞膜PKC-α和ε亚型的表达(分别为正常组的2.4和2.6倍,P<0.05);而胞质和胞膜PKC-δ亚型有相似的变化趋势,但差异无统计学意义.同时,缺氧后PLC和PLD活性升高,AVP处理使PLC和PLD的活性进一步升高为正常组的1.6和2.1倍;PKC-α抑制剂Go 6976预处理可拮抗AVP诱导PLD活性升高的作用(PLD活性降低为AVP组的40.8%),而PKC-δ和ε抑制剂无明显作用;各组PLA2活性差异无统计学意义.结论 AVP可通过促进VSMC胞质中的PKC-α和ε亚型向胞膜转位而激活,进而调节休克后血管反应性;PLC和PLD可能参与了AVP介导的PKC激活过程.%Objective To observe the effect of arginine vasopressin (AVP) on the expression of PKC-ot,8 and e isoforms of vascular smooth muscle cell (VSMC) after hypoxia and its mechanisms. Methods With cultured VSMC from 50 Wistar ruts,the effect of AVP on the expression of PKC-α,δ and ε isoforms in the cytosol and particulate fractions of VSMC after hypoxia were observed. At the same time, the activity of phospholipase C (PLC) , phospholipase D (PLD) ,phospholipase A2 (PLA2) and the effects of AVP and PKC isoform inhibitors were also observed. Results The expression of particulate PKC-α and ε increased about 1.5 and 2.0 folds, respectively after 90-min hypoxia, with a concomitant decrease in cy-tosolic fractions. AVP treatment further increased expression of PKC-α and e in the particulate

  8. Experience in using ceretone (choline alfoscerate in brain concussion

    Directory of Open Access Journals (Sweden)

    N G Voropay

    2010-01-01

    Full Text Available Nootropics are used to treat patients who have sustained concussion of the brain and complain of reductions in memory and working capacity, as well as emotional disorders. The efficacy of ceretone® (choline alfoscerate was studied in 76 patients (45 men and 31 women whose age was 21-56 years who had sustained brain concussion and had complaints of headache, easy fatigability, nocturnal sleep disorders, daytime sleepiness, anxiety, and bad mood. Thirty-nine patients received intravenous ceretone® in a dose of 1000 mg/day for 10 days; the other 37 patients formed a control group. A one-year follow-up indicated that ceretone® had a positive effect on health, autonomic, and emotional status and working capacity.

  9. Choline acetyltransferase-containing neurons in the human parietal neocortex

    Directory of Open Access Journals (Sweden)

    V Benagiano

    2009-06-01

    Full Text Available A number of immunocytochemical studies have indicated the presence of cholinergic neurons in the cerebral cortex of various species of mammals. Whether such cholinergic neurons in the human cerebral cortex are exclusively of subcortical origin is still debated. In this immunocytochemical study, the existence of cortical cholinergic neurons was investigated on surgical samples of human parietal association neocortex using a highly specific monoclonal antibody against choline acetyltransferase (ChAT, the acetylcholine biosynthesising enzyme. ChAT immunoreactivity was detected in a subpopulation of neurons located in layers II and III. These were small or medium-sized pyramidal neurons which showed cytoplasmic immunoreactivity in the perikarya and processes, often in close association to blood microvessels. This study, providing demonstration of ChAT neurons in the human parietal neocortex, strongly supports the existence of intrinsic cholinergic innervation of the human neocortex. It is likely that these neurons contribute to the cholinergic innervation of the intracortical microvessels.

  10. Interaction between cytotoxic effects of γ-radiation and folate deficiency in relation to choline reserves

    International Nuclear Information System (INIS)

    The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. Recent studies have indicated that bio-molecules such as folate and choline might be of radio-protective value as they are, within broad dose ranges, non-toxic to humans and experimental animals. The objective of the present study was to investigate choline dependent adaptive response to potential synergistic cytotoxic effect of folate deficiency and γ-radiation. Male Swiss mice maintained on folate sufficient diet (FSD) and folate free diet (FFD) based on AIN-93 M formula, were subjected to 1-4 Gy total body γ-irradiation. To investigate liver DNA damage, apurinic/apyrimidinic sites (AP sites) were quantified. A significant increase in liver DNA AP sites with concomitant depletion of liver choline reserves was observed when γ-radiation was combined with folate deficiency. Further work in this direction suggested that cytotoxic interaction between folate deficiency and gamma radiation might induce utilization of choline and choline containing moieties by modifying levels of key regulatory enzymes dihydrofolate reductase (DHFR) and choline oxidase (ChoOx). Another major finding of these studies is that significant liver damage at higher doses of radiation (3-4 Gy), might release considerable amounts of choline reserves to serum. In conclusion, a plausible interpretation of the present studies is that folate deprivation and -radiation interact to mobilize additional choline reserves of hepatic tissue, for redistribution to other organs, which could not be utilized by folate deficiency alone. Present results clearly indicated a distinct choline pool in liver and kidney tissues that could be utilized by folate deficient animals only under radiation stress conditions

  11. Inhibition of hepatic phosphatidylcholine synthesis by 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside is independent of AMP-activated protein kinase activation.

    Science.gov (United States)

    Jacobs, René L; Lingrell, Susanne; Dyck, Jason R B; Vance, Dennis E

    2007-02-16

    5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAr), a commonly used indirect activator of AMP-activated protein kinase (AMPK), inhibits phosphatidylcholine (PC) biosynthesis in freshly isolated hepatocytes. In all nucleated mammalian cells, PC is synthesized from choline via the Kennedy (CDP-choline) pathway. The purpose of our study was to provide direct evidence that AMPK regulates phospholipid biosynthesis and to elucidate the mechanism(s) by which AMPK inhibits hepatic PC synthesis. Incubations of hepatocytes with AICAr resulted in a dose-dependent activation of AMPK and inhibition of PC biosynthesis. Surprisingly, adenoviral delivery of constitutively active AMPK did not alter PC biosynthesis. In addition, expression of dominant negative mutants of AMPK was unable to block the AICAr-dependent inhibition of PC biosynthesis, indicating that AICAr was acting independently of AMPK activation. Determination of aqueous intermediates of the CDP-choline pathway indicated that choline kinase, the first enzyme in the pathway, was inhibited by AICAr administration. Flux through the CDP-choline pathway was directly correlated to the level of intracellular ATP concentrations. Therefore, it is possible that inhibition of PC biosynthesis is another process by which the cell can reduce ATP consumption in times of energetic stress. However, unlike cholesterol and triacylglycerol biosynthesis, PC production is not regulated by AMPK. PMID:17179149

  12. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons

    Science.gov (United States)

    Wurtman, R. J.

    1992-01-01

    The unique propensity of cholinergic neurons to use choline for two purposes--ACh and membrane phosphatidylcholine synthesis--may contribute to their selective vulnerability in Alzheimer's disease and other cholinergic neurodegenerative disorders. When physiologically active, the neurons use free choline taken from the 'reservoir' in membrane phosphatidylcholine to synthesize ACh; this can lead to an actual decrease in the quantity of membrane per cell. Alzheimer's disease (but not Down's syndrome, or other neurodegenerative disorders) is associated with characteristic neurochemical lesions involving choline and ethanolamine: brain levels of these compounds are diminished, while those of glycerophosphocholine and glycerophosphoethanolamine (breakdown products of their respective membrane phosphatides) are increased, both in cholinergic and noncholinergic brain regions. Perhaps this metabolic disturbance and the tendency of cholinergic neurons to 'export' choline--in the form of ACh--underlie the selective vulnerability of the neurons. Resulting changes in membrane composition could abnormally expose intramembraneous proteins such as amyloid precursor protein to proteases.

  13. {sup 11}C-Choline PET/CT and PSA kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Castellucci, Paolo [Policlinico S. Orsola-Malpighi, University of Bologna, Nuclear Medicine Unit, Bologna (Italy); Azienda Ospedaliero-Universitaria di Bologna Policlinico S. Orsola-Malpighi, UO di Medicina Nucleare, PAD. 30, Bologna (Italy); Picchio, Maria [National Research Council (IBFM-CNR), Nuclear Medicine Unit, San Raffaele Scientific Institute, Institute for Bioimaging and Molecular Physiology, Milan (Italy)

    2013-07-15

    The role of PET/CT with radiolabelled {sup 18}F-choline or {sup 11}C-choline in patients with prostate cancer after primary treatment has not been established yet and there are no guidelines on the appropriate use of this emerging modality. According to the literature, choline PET/CT may have a role in restaging the disease in patients with biochemical relapse for the detection of local and/or lymph node and/or distant recurrence. The aim of this brief review is to summarize the results of the most relevant published studies with particular focus on the relationship between prostate-specific antigen levels and kinetics and the sensitivity of choline PET/CT for optimizing the selection of patients who may benefit the most from this diagnostic procedure, especially early after biochemical recurrence. (orig.)

  14. Lipoprotein lipase isoelectric point isoforms in humans

    DEFF Research Database (Denmark)

    Badia-Villanueva, M.; Carulla, P.; Carrascal, M.;

    2014-01-01

    characterization of these forms was carried out by 2DE combined with Western blotting and mass spectrometry (MALDI-TOF/MS and LC-MS/MS). Further studies are needed to discover their molecular origin, the pattern of pI isoforms in human tissues, their possible physiological functions and possible modifications of......-heparin plasma (PHP), LPL consists of a pattern of more than 8 forms of the same apparent molecular weight, but different isoelectric point (pI). In the present study we describe, for the first time, the existence of at least nine LPL pI isoforms in human PHP, with apparent pI between 6.8 and 8.6. Separation and...

  15. EASI—enrichment of alternatively spliced isoforms

    OpenAIRE

    Julian P Venables; Burn, John

    2006-01-01

    Alternative splicing produces more than one protein from the majority of genes and the rarer forms can have dominant functions. Instability of alternative transcripts can also hinder the study of regulation of gene expression by alternative splicing. To investigate the true extent of alternative splicing we have developed a simple method of enriching alternatively spliced isoforms (EASI) from PCRs using beads charged with Thermus aquaticus single-stranded DNA-binding protein (T.Aq ssb). This ...

  16. Functional studies of sodium pump isoforms

    DEFF Research Database (Denmark)

    Clausen, Michael Jakob

    The Na+,K+-ATPase is an essential ion pump found in all animal cells. It uses the energy from ATP hydrolysis to export three Na+ and import two K+, both against their chemical gradients and for Na+ also against the electrical potential. Mammals require four Na+,K+-ATPase isoforms that each have...... synthesized cohorts of pumps from the Golgi apparatus to the plasma membrane....

  17. Hidrolisis Hasil Delignifikasi Tandan Kosong Kelapa Sawit Dalam Sistem Cairan Ionik Choline Chloride

    OpenAIRE

    Aisyah, Shinta

    2016-01-01

    This research aims to determine the hydrolysis of delignification results on palm empty fruit bunches and determine the best conditions of hydrolysis obtained in the hydrolysis process in the choline chloride ionic liquid system. The main raw material used is cellulose delignification results TKKS, choline chloride, sulfatl acid, and distilled water. The hydrolysis stage in this research was carried out at temperature 105 0C, concentration of catalyst (H2SO4) 10% (w / w) cellul...

  18. 55K isoform of CDK9 associates with Ku70 and is involved in DNA repair

    International Nuclear Information System (INIS)

    Positive elongation factor b (P-TEFb) is a cellular protein kinase that is required for RNA polymerase II (RNAP II) transcriptional elongation of protein coding genes. P-TEFb is a set of different molecular complexes, each containing CDK9 as the catalytic subunit. There are two isoforms of the CDK9 protein - the major 42 KDa CDK9 isoform and the minor 55KDa isoform that is translated from an in-frame mRNA that arises from an upstream transcriptional start site. We found that shRNA depletion of the 55K CDK9 protein in HeLa cells induces apoptosis and double-strand DNA breaks (DSBs). The levels of apoptosis and DSBs induced by the depletion were reduced by expression of a 55K CDK9 protein variant resistant to the shRNA, indicating that these phenotypes are the consequence of depletion of the 55K protein and not off-target effects. We also found that the 55K CDK9 protein, but not the 42K CDK9 protein, specifically associates with Ku70, a protein involved in DSB repair. Our findings suggest that the 55K CDK9 protein may function in repair of DNA through an association with Ku70.

  19. Quantum Chemical Insight into the Interactions and Thermodynamics Present in Choline Chloride Based Deep Eutectic Solvents.

    Science.gov (United States)

    Wagle, Durgesh V; Deakyne, Carol A; Baker, Gary A

    2016-07-14

    We report quantum chemical calculations performed on three popular deep eutectic solvents (DESs) in order to elucidate the molecular interactions, charge transfer interactions, and thermodynamics associated with these systems. The DESs studied comprise 1:2 choline chloride/urea (reline), 1:2 choline chloride/ethylene glycol (ethaline), and 1:1 choline chloride/malonic acid (maloline). The excellent correlation between calculated and experimental vibrational spectra allowed for identification of dominant interactions in the DES systems. The DESs were found to be stabilized by both conventional hydrogen bonds and C-H···O/C-H···π interactions between the components. The hydrogen-bonding network established in the DES is clearly distinct from that which exists within the neat hydrogen-bond donor dimer. Charge decomposition analysis indicates significant charge transfer from choline and chloride to the hydrogen-bond donor with a higher contribution from the cation, and a density of states analysis confirms the direction of the charge transfer. Consequently, the sum of the bond orders of the choline-Cl(-) interactions in the DESs correlates directly with the melting temperatures of the DESs, a correlation that offers insight into the effect of the tuning of the choline-Cl(-) interactions by the hydrogen-bond donors on the physical properties of the DESs. Finally, the differences in the vibrational entropy changes upon DES formation are consistent with the trend in the overall entropy changes upon DES formation. PMID:27268431

  20. Choline requirements of male White Pekin ducks from 21 to 42 d of age.

    Science.gov (United States)

    Wen, Z G; Hou, S S; Tang, J; Feng, Y L; Huang, W; Guo, Y M; Xie, M

    2014-01-01

    1. A dose-response experiment with 6 dietary choline concentrations (0, 342, 779, 1285, 1662 and 1962 mg/kg) was conducted with male White Pekin ducks to estimate the choline requirement from 21 to 42 d of age. 2. Ninety 21-d-old male White Pekin ducks were allotted to 6 dietary treatments, each containing 5 replicate pens with three birds per pen. At 42 d of age, final weight, weight gain, feed intake and feed/gain were measured. Liver was collected to determine total liver lipid, triglyceride and phospholipids. 3. Significant positive effects of dietary choline on final weight, weight gain and feed intake were observed. In addition, dietary choline supplementation significantly decreased liver lipid and triglyceride content and increased liver phospholipids of Pekin ducks. 4. According to broken-line regression analysis, the choline requirements of male White Pekin ducks from 21 to 42 d of age for weight gain, feed intake and total liver lipid were 980, 950 and 1130 mg/kg. Pekin ducks needed more choline to prevent excess liver lipid deposition than to maintain growth. PMID:25005232

  1. Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Ansar, Saema; Edvinsson, Lars

    2008-01-01

    BACKGROUND AND PURPOSE: The pathogenesis of cerebral ischemia associated with subarachnoid hemorrhage (SAH) still remains elusive. The aim of this study was to examine the involvement of mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) subtypes in the pathophysiology of cerebral...... ischemia after SAH in cerebral arteries and microvessels and to examine temporal activation of the kinases. We hypothesize that treatment with a MAPK or PKC inhibitor will prevent the SAH-induced kinase activation in brain vessels. METHODS: SAH was induced by injecting 250 microL blood into the......: Among the 8 investigated PKC isoforms, only PKC delta was activated at 1 hour and at 48 hours, whereas PKC alpha was activated at 48 hours after SAH. For the MAPKs, there was early phosphorylation at 1 hour of extracellular signal-regulated kinase 1/2, whereas c-jun N-terminal kinase and p38 showed...

  2. Proteinase K processing of rabbit muscle creatine kinase

    DEFF Research Database (Denmark)

    Leydier, C; Andersen, Jens S.; Couthon, F;

    1997-01-01

    Proteinase K cleaves selectively both cytosolic and mitochondrial isoforms of creatine kinase leading to the appearance of two fragments, a large N-terminal one (K1) and a small C-terminal peptide (K2) which remain associated together. The loss of enzymatic activity correlates with the extent of...... monomer cleavage. N-terminal sequencing of the K2 fragments from rabbit cytosolic and pig mitochondrial creatine kinase shows that these peptides begin with A328 and A324, respectively. Electrospray ionization mass spectrometry demonstrates that K2 peptide is composed of 53 residues (A328-K380). However...

  3. Targeting Protein Kinase C subtypes in pancreatic cancer

    OpenAIRE

    Storz, Peter

    2015-01-01

    In preclinical studies protein kinase C (PKC) enzymes have been implicated in regulating many aspects of pancreatic cancer development and progression. However, clinical phase I or phase II trials with compounds targeting classical PKC isoforms were not successful. Recent studies implicate that mainly atypical and novel PKC enzymes regulate oncogenic signaling pathways in pancreatic cancer. Members of these two subgroups converge signaling induced by mutant Kras, growth factors and inflammato...

  4. Listeria monocytogenes, an invasive bacterium, stimulates MAP kinase upon attachment to epithelial cells.

    OpenAIRE

    Tang, P.; Rosenshine, I.; Finlay, B B

    1994-01-01

    Protein tyrosine phosphorylation is an important regulatory mechanism for many cellular processes in eucaryotic cells. During the invasion of the gram-positive pathogen, Listeria monocytogenes, into host epithelial cells, two host proteins become tyrosine phosphorylated. We have identified these major tyrosine phosphorylated species to be two isoforms of mitogen-activated protein (MAP) kinase, the 42 and 44 kDa MAP kinases. This activation begins within 5 to 15 min of bacterial infection. The...

  5. Photosynthate partitioning in higher plants. I. The effect of elevated carbon dioxide levels. II. The role of pyruvate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Baysdorfer, C.W.

    1983-12-01

    The regulation of photosynthetic rates in a simulated alfalfa crop were investigated. Long and short term CO/sub 2/ enrichment, /sup 14/CO/sub 2/ feeding, and partial defoliation were used to investigate source/sink interactions in a simulated alfalfa crop. Long term CO/sub 2/ enrichment did not increase the photosynthetic rate or the growth rate in mature alfalfa, in spite of the fact that photorespiration was substantially reduced. Short term CO/sub 2/ exposures did, however, increase mature crop photosynthetic rates as did partial defoliation of the crop. In contrast, seedling photosynthetic rates and growth rates were increased in response to long term CO/sub 2/ enrichment. These results suggest that, for the mature alfalfa crop, photosynthesis is limited by the demand for photosynthate. In a second, related experiment partial purification of and regulatory properties of spinach pyruvate kinase isoforms were isolated. Pyruvate kinase from spinach (Spinacea oleracea L.) leaves consists of two isoforms, separable by blue agarose chromatography. Both isoforms share similar pH profiles and substrate and alternate nucleotide k/sub m/ values. In addition, both isoforms differ in their response to three key metabolites, citrate, aspartate, and glutamate. The first isoform is similar to previously reported plant pyruvate kinases in its sensitivity to citrate inhibition. The second isoform is not affected by citrate but is regulated by aspartate and glutamate. Aspartate is an activator with a K/sub a/ of 0.05 mM, glutamate an inhibitor with a K/sub i/ of 0.68 mM. A pyruvate kinase with these properties has not been previously reported. Based on these considerations it is likely that the activity of the first isoform is regulated by respiratory metabolism. The second isoform, in contrast, may be regulated by the demand for carbon skeletons for use in ammonia assimilation.

  6. Role of JNK isoforms in the development of neuropathic pain following sciatic nerve transection in the mouse

    Directory of Open Access Journals (Sweden)

    Manassero Giusi

    2012-05-01

    Full Text Available Abstract Background Current tools for analgesia are often only partially successful, thus investigations of new targets for pain therapy stimulate great interest. Consequent to peripheral nerve injury, c-Jun N-terminal kinase (JNK activity in cells of the dorsal root ganglia (DRGs and spinal cord is involved in triggering neuropathic pain. However, the relative contribution of distinct JNK isoforms is unclear. Using knockout mice for single isoforms, and blockade of JNK activity by a peptide inhibitor, we have used behavioral tests to analyze the contribution of JNK in the development of neuropathic pain after unilateral sciatic nerve transection. In addition, immunohistochemical labelling for the growth associated protein (GAP-43 and Calcitonin Gene Related Peptide (CGRP in DRGs was used to relate injury related compensatory growth to altered sensory function. Results Peripheral nerve injury produced pain–related behavior on the ipsilateral hindpaw, accompanied by an increase in the percentage of GAP43-immunoreactive (IR neurons and a decrease in the percentage of CGRP-IR neurons in the lumbar DRGs. The JNK inhibitor, D-JNKI-1, successfully modulated the effects of the sciatic nerve transection. The onset of neuropathic pain was not prevented by the deletion of a single JNK isoform, leading us to conclude that all JNK isoforms collectively contribute to maintain neuropathy. Autotomy behavior, typically induced by sciatic nerve axotomy, was absent in both the JNK1 and JNK3 knockout mice. Conclusions JNK signaling plays an important role in regulating pain threshold: the inhibition of all of the JNK isoforms prevents the onset of neuropathic pain, while the deletion of a single splice JNK isoform mitigates established sensory abnormalities. JNK inactivation also has an effect on axonal sprouting following peripheral nerve injury.

  7. Structure of the human protein kinase CK2 catalytic subunit CK2α' and interaction thermodynamics with the regulatory subunit CK2β

    DEFF Research Database (Denmark)

    Bischoff, Nils; Olsen, Birgitte; Raaf, Jennifer; Bretner, Maria; Issinger, Olaf-Georg; Niefind, Karsten

    2011-01-01

    Protein kinase CK2 (formerly "casein kinase 2") is composed of a central dimer of noncatalytic subunits (CK2β) binding two catalytic subunits. In humans, there are two isoforms of the catalytic subunit (and an additional splicing variant), one of which (CK2α) is well characterized. To supplement ...

  8. Quantification of choline concentration following liver cell apoptosis using 1H magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Wei Shen; Zhen Cao; Ke-Zeng You; Zhong-Xian Yang; Ye-Yu Xiao; Xiao-Fang Cheng; Yao-Wen Chen

    2012-01-01

    AIM:To evaluate the feasibility of quantifying liver choline concentrations in both normal and apoptotic rabbit livers in vivo,using 1H magnetic resonance spectroscopy (1H-MRS).METHODS:1H-MRS was performed in 18 rabbits using a 1.5T GE MR system with an eight-channel head/neck receiving coil.Fifteen rabbits were injected with sodium selenite at a dose of 10 μmol/kg to induce the liver cell apoptosis.Point-resolved spectroscopy sequencelocalized spectra were obtained from 10 livers once before and once 24 h after sodium selenite injection in vivo.T1 and T2 relaxation time of water and choline was measured separately in the livers of three healthy rabbits and three selenite-treated rabbits.Hematoxylin and eosin and dUTP-biotin nick end labeling (TUNEL) staining was used to detect and confirm apoptosis.Choline peak areas were measured relative to unsuppressed water using LCModel.Relaxation attenuation was corrected using the average of T1 and T2 relaxation time.The choline concentration was quantified using a formula,which was tested by a phantom with a known concentration.RESULTS:Apoptosis of hepatic cells was confirmed by TUNEL assay.In phantom experiment,the choline concentration (3.01 mmol/L),measured by 1H-MRS,was in good agreement with the actual concentration (3 mmol/L).The average T1 and T2 relaxation time of choline was 612 ± 15 ms and 74 ± 4 ms in the control group and 670 ± 27 ms and 78 ± 5 ms in apoptotic livers in vivo,respectively.Choline was quantified in 10 rabbits,once before and once after the injection with sodium selenite.The choline concentration decreased from 14.5 ± 7.57 mmol/L before sodium selenite injection to 10.8 ± 6.58 mmol/L (mean ± SD,n =10) after treatment (Z =-2.395,P < 0.05,two-sample paired Wilcoxon test).CONCLUSION:1H-MRS can be used to quantify liver choline in vivo using unsuppressed water as an internal reference.Decreased liver choline concentrations are found in sodium selenite-treated rabbits undergoing liver cell

  9. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    Directory of Open Access Journals (Sweden)

    Wouter Eilers

    2014-01-01

    Full Text Available We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis and slow-type muscle (soleus for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02. In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII.

  10. Higher Dietary Choline and Betaine Intakes Are Associated with Better Body Composition in the Adult Population of Newfoundland, Canada.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Choline is an essential nutrient and betaine is an osmolyte and methyl donor. Both are important to maintain health including adequate lipid metabolism. Supplementation of dietary choline and betaine increase muscle mass and reduce body fat in animals. However, little data is available regarding the role of dietary choline and betaine on body composition in humans.To investigate the association between dietary choline and betaine intakes with body composition in a large population based cross-sectional study.A total of 3214 subjects from the CODING (Complex Disease in Newfoundland population: Environment and Genetics study were assessed. Dietary choline and betaine intakes were computed from the Willett Food Frequency questionnaire. Body composition was measured using dual-energy X-ray absorptiometry following a 12-hour fast. Major confounding factors including age, sex, total calorie intake and physical activity level were controlled in all analyses.Significantly inverse correlations were found between dietary choline and betaine intakes, with all obesity measurements: total percent body fat (%BF, percent trunk fat (%TF, percent android fat (%AF, percent gynoid fat (%GF and anthropometrics: weight, body mass index, waist circumference, waist-to-hip ratio in both women and men (r range from -0.13 to -0.47 for choline and -0.09 to -0.26 for betaine, p<0.001 for all. Dietary choline intake had stronger association than betaine. Moreover, obese subjects had the lowest dietary choline and betaine intakes, with overweight subjects in the middle, and normal weight subjects consumed the highest dietary choline and betaine (p<0.001. Vice versa, when subjects were ranked according to dietary choline and betaine intakes, subjects with the highest intake of both had the lowest %TF, %AF, %GF, %BF and highest %LM among the groups in both sexes.Our findings indicate that high dietary choline and betaine intakes are significantly associated with favorable body

  11. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies.

    Science.gov (United States)

    Gong, Yan; Bourhis, Eric; Chiu, Cecilia; Stawicki, Scott; DeAlmeida, Venita I; Liu, Bob Y; Phamluong, Khanhky; Cao, Tim C; Carano, Richard A D; Ernst, James A; Solloway, Mark; Rubinfeld, Bonnee; Hannoush, Rami N; Wu, Yan; Polakis, Paul; Costa, Mike

    2010-01-01

    β-Catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may allow for

  12. Localization and functional characterization of the human NKCC2 isoforms

    DEFF Research Database (Denmark)

    Carota, I; Theilig, F; Oppermann, M;

    2010-01-01

    inhibited by bumetanide than by furosemide. A sequence analysis of the amino acids encoded by exon 4 variants revealed high similarities between human and rodent NKCC2 isoforms, suggesting that differences in ion transport characteristics between species may be related to sequence variations outside the...... isoforms have specific localizations and transport characteristics, as assessed for rabbit, rat and mouse. In the present study, we aimed to address the localization and transport characteristics of the human NKCC2 isoforms. METHODS: RT-PCR, in situ hybridization and uptake studies in Xenopus oocytes were...... performed to characterize human NKCC2 isoforms. RESULTS: All three classical NKCC2 isoforms were detected in the human kidney; in addition, we found splice variants with tandem duplicates of the variable exon 4. Contrary to rodents, in which NKCC2F is the most abundant NKCC2 isoform, NKCC2A was the dominant...

  13. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Sergey V., E-mail: Sergey.Ivanov@med.nyu.edu [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States); Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I. [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States)

    2009-05-08

    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  14. Biochemical methods for quantifying sphingolipids: ceramide, sphingosine, sphingosine kinase-1 activity, and sphingosine-1-phosphate.

    Science.gov (United States)

    Brizuela, Leyre; Cuvillier, Olivier

    2012-01-01

    Sphingolipids (ceramide, sphingosine, and sphingosine-1-phosphate) are bioactive lipids with important biological functions in proliferation, apoptosis, angiogenesis, and inflammation. Herein, we describe easy and rapid biochemical methods with the use of radiolabeled molecules ((3)H, (32)P) for their mass determination. Quantitation of sphingosine kinase-1 activity, the most studied isoform, is also included. PMID:22528435

  15. Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice.

    Science.gov (United States)

    Ren, Daoyuan; Liu, Yafei; Zhao, Yan; Yang, Xingbin

    2016-08-01

    The involvement of choline and its metabolite trimethylamine-N-oxide (TMAO) in endothelial dysfunction and atherosclerosis has been repeatedly confirmed. Phloretin, a dihydrochalcone flavonoid usually present in apples, possesses a variety of biological activities including vascular nutrition. This study was designed to investigate whether phloretin could alleviate or prevent high choline-induced vascular endothelial dysfunction and liver injury in mice. Mice were provided with 3% high choline water and given phloretin orally daily for 10 weeks. The high choline-treated mice showed the significant dyslipidemia and hyperglycemia with the impaired liver and vascular endothelium (p < 0.01). Administration of phloretin at 200 and 400 mg/kg bw significantly reduced the choline-induced elevation of serum TC, TG, LDL-C, AST, ALT, ET-1 and TXA2 (p < 0.01), and markedly antagonized the choline-induced decrease of serum PGI2, HDL-C and NO levels. Furthermore, phloretin elevated hepatic SOD and GSH-Px activities and decreased hepatic MDA levels of the mice exposed to high choline water. Moreover, histopathological test with the H&E and Oil Red O staining of liver sections confirmed the high choline diet-caused liver steatosis and the hepatoprotective effect of phloretin. These findings suggest that high choline causes oxidative damage, and phloretin alleviate vascular endothelial dysfunction and liver injury. PMID:27316781

  16. Effects of Choline on DNA Methylation and Macronutrient Metabolic Gene Expression in In Vitro Models of Hyperglycemia

    Science.gov (United States)

    Jiang, Xinyin; Greenwald, Esther; Jack-Roberts, Chauntelle

    2016-01-01

    Choline is an essential nutrient that plays an important role in lipid metabolism and DNA methylation. Studies in rodents suggest that choline may adversely affect glycemic control, yet studies in humans are lacking. Using the human hepatic and placental cells, HepG2 and BeWo, respectively, we examined the interaction between choline and glucose treatments. In HepG2 cells, choline supplementation (1 mM) increased global DNA methylation and DNA methyltransferase expression in both low-glucose (5 mM) and high-glucose (35 mM) conditions. Choline supplementation increased the expression of peroxisomal acyl-coenzyme A oxidase 1 (ACOX1), which mediates fatty acid β-oxidation, especially in the high-glucose condition. High-glucose exposure increased the transcription of the gluconeogenic gene phosphoenolpyruvate carboxykinase (PEPCK), while choline supplementation mitigated such increase. Compared to HepG2 cells, the placenta-derived BeWo cells were relatively unresponsive to either high-glucose or -choline treatment. In conclusion, choline and glucose interacted to affect macronutrient metabolic genes, yet there was no indication that choline may worsen glycemic control in these in vitro human cell culture models. PMID:27081315

  17. Improved human visuomotor performance and pupil constriction after choline supplementation in a placebo-controlled double-blind study.

    Science.gov (United States)

    Naber, Marnix; Hommel, Bernhard; Colzato, Lorenza S

    2015-01-01

    Only few nutrients are known to enhance cognition. Here we explore whether visuomotor performance can be improved through the intake of the nutrient choline, an essential chemical compound in a vertebrate's diet. Choline is abundant in for example eggs and shrimps and many animal studies suggest that it serves as a cognitive enhancer. As choline is important for the communication between motor neurons and the control of skeletal muscles, we assumed that choline supplementation may have positive effects on action coordination in humans. A group of twenty-eight individuals ingested two grams of choline bitartrate or a placebo in two separate sessions. Seventy minutes post ingestion, participants performed a visuomotor aiming task in which they had to rapidly hit the centers of targets. Results showed that participants hit targets more centrally after choline supplementation. Pupil size (a cognition-sensitive biomarker) also significantly decreased after choline intake and correlated positively with the hit distance to the targets and the number of target misses, and negatively with reaction times. These findings point to a choline-induced bias towards action precision in the trade-off between speed and accuracy. The changes in pupil size suggest that choline uptake alters cholinergic functions in the nervous system. PMID:26271904

  18. A novel functional rabbit IL- 7 isoform

    OpenAIRE

    Siewe, Basile T.; Kalis, Susan L.; Esteves, Pedro J; Zhou, Tong; Knight, Katherine L.

    2010-01-01

    IL-7 is required for B cell development in mouse and is a key regulator of T cell development and peripheral T cell homeostasis in mouse and human. Recently, we found that IL-7 is expressed in rabbit bone marrow and in vitro, is required for differentiation of lymphoid progenitors to B and T lineage cells. Herein, we report the identification of a novel rabbit IL-7 isoform, IL-7II. Recombinant IL-7II (rIL-7II) binds lymphocytes via the IL-7R and induces phosphorylation of STAT5. Further, rIL-...

  19. Androgen receptor isoforms in human and rat prostate

    Institute of Scientific and Technical Information of China (English)

    Shu-JieXIA; Gang-YaoHAO; Xiao-DaTANG

    2000-01-01

    Aim: To investigate the androgen receptor (AR) isoforms and its variability of expression in human and rat prostatic tissues. Methods: Human benign prostatic hyperplasia (BPH) and prostatic cancer tissues were obtained from patients undergoing prostatectomy, and rat ventral prostate was incised 3 days after castration. Forty-one AR-positive BPH specimens, 3 prostatic cancer specimens, and 6 rat prostates were used. After processing at 4℃, the tissues were examined by means of high resolution isoelectric focusing (IEF) technique to determine their AR isoforms. Results:From the prostatic specimens, 3 types of AR isoforms were detected with pI values at 6.5, 6.0, and 5.3. In human BPH tissues, 15/41 (36.6%) specimens showed all the three types of isoforms, while 19/41 (46.3%) showed 2 isoforms at various combinations and 7/41(17.1%), 1 isoform. For the 3 prostatic cancer specimens, one showed 3 isoforms, one, 2 isoforms, and the other failed to show any isoform. All rat prostatic tissues showed 2 isoforms at different combinations. Binding of 3H-dihydrotestosterone (DHT) to the isoforms was inhibited by the addition of 100-fold excess of DHT or testosterone, but not progesterone, oestradiol or diethylstilboestrol. Conclusion: AR isoforms are different in different patients. Although their genesis is not clear, the therapeutic implication of the present observation appears to be interesting, that may help clarifying the individual differences in the response to hormonal therapy.(Asian J Androl 2000 Dec;2:307-310)

  20. Physical and chemical immobilization of choline oxidase onto different porous solid supports: Adsorption studies.

    Science.gov (United States)

    Passos, Marieta L C; Ribeiro, David S M; Santos, João L M; Saraiva, M Lúcia M F S

    2016-08-01

    This work carries out for the first time the comparison between the physical and chemical immobilization of choline oxidase onto aminated silica-based porous supports. The influence on the immobilization efficiency of concentration, pH, temperature and contact time between the support and choline oxidase, was evaluated. The immobilization efficiency was estimated taking into consideration the choline oxidase activity, which was assessed by using cadmium telluride (CdTe) quantum dots (QDs), obtained by hydrothermal synthesis, as photoluminescent probes. Hydrogen peroxide produced by enzyme activity was capable of quenching CdTe QDs photoluminescence. The magnitude of the PL quenching process was directly related with the enzyme activity. By comparing the chemical process with the physical adsorption, it was observed that the latter provided the highest choline oxidase immobilization. The equilibrium data were analyzed using Langmuir and Freundlich isotherms and kinetic data were fitted to the pseudo-first-order and pseudo-second-order models. Thermodynamic parameters, such as Gibbs free energy and entropy were also calculated. These results will certainly contribute to the development of new sensing schemes for choline, taking into account the growing demand for its quantification in biological samples. PMID:27241295

  1. Choline Ameliorates Disease Phenotypes in Human iPSC Models of Rett Syndrome.

    Science.gov (United States)

    Chin, Eunice W M; Marcy, Guillaume; Yoon, Su-In; Ma, Dongliang; Rosales, Francisco J; Augustine, George J; Goh, Eyleen L K

    2016-09-01

    Rett syndrome (RTT) is a postnatal neurodevelopmental disorder that primarily affects girls. Mutations in the methyl-CpG-binding protein 2 (MECP2) gene account for approximately 95 % of all RTT cases. To model RTT in vitro, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of two RTT patients with different mutations (MECP2 (R306C) and MECP2 (1155Δ32)) in their MECP2 gene. We found that these iPSCs were capable of differentiating into functional neurons. Compared to control neurons, the RTT iPSC-derived cells had reduced soma size and a decreased amount of synaptic input, evident both as fewer Synapsin 1-positive puncta and a lower frequency of spontaneous excitatory postsynaptic currents. Supplementation of the culture media with choline rescued all of these defects. Choline supplementation may act through changes in the expression of choline acetyltransferase, an important enzyme in cholinergic signaling, and also through alterations in the lipid metabolite profiles of the RTT neurons. Our study elucidates the possible mechanistic pathways for the effect of choline on human RTT cell models, thereby illustrating the potential for using choline as a nutraceutical to treat RTT. PMID:27379379

  2. Enhancing the biodegradation of oil in sandy sediments with choline: A naturally methylated nitrogen compound

    International Nuclear Information System (INIS)

    We investigated how additions of choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments contaminated with moderately weathered crude oil (4000 mg kg−1 sediment). Addition of lauroylcholine chloride (LCC) and tricholine citrate (TCC) to oil contaminated sediments resulted in 1.6 times higher hydrocarbon degradation rates compared to treatments without added choline derivatives. However, the degradation rate constant for the oil contaminated sediments amended with LCC was similar to that in contaminated sediments amended with inorganic nitrogen, phosphorus, and glucose. Additions of LLC and TCC to sediments containing extensively weathered oil also resulted in enhanced mineralization rates. Cultivation-free 16S rRNA analysis revealed the presence of an extant microbial community with clones closely related to known hydrocarbon degraders from the Gammaproteobacteria, Alphaproteobacteria, and Firmicutes phyla. The results demonstrate that the addition of minimal amounts of organic compounds to oil contaminated sediments enhances the degradation of hydrocarbons. -- Highlights: •Aerobic degradation of weathered crude oil in sandy sediments was determined. •The effect of input of choline on degradation rates was determined. •16S rRNA clone library analyses were used to examine the microbial phylogeny. •The bacterial community was consisted of clones related to hydrocarbon degraders. •Hydrocarbon degradation in sandy sediments was accelerated by addition of choline. -- Choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments by an extant microbial community

  3. Choline requirements of White Pekin ducks from hatch to 21 days of age.

    Science.gov (United States)

    Wen, Z G; Tang, J; Hou, S S; Guo, Y M; Huang, W; Xie, M

    2014-12-01

    A dose-response experiment with 8 dietary choline levels (302, 496, 778, 990, 1,182, 1,414, 1,625, and 1,832 mg/kg) was conducted with male White Pekin ducks to estimate the choline requirement from hatch to 21 d of age. Three hundred eighty-four 1-d-old male White Pekin ducks were randomly assigned to 8 dietary treatments, each containing 6 replicate pens with 8 birds per pen. At 21 d of age, weight gain, feed intake, and feed/gain from each pen were calculated for feeding period, and 2 ducks selected randomly from each pen were euthanized and the liver was collected to determine total lipids, triglycerides, and phospholipids. In our study, perosis, poor growth, and high liver fat were all observed in choline-deficient ducks and incidence of perosis was zero when dietary choline was 1,182 mg/kg. As dietary choline increased, the weight gain and feed intake increased linearly or quadratically (P perosis and excess liver lipid deposition completely. PMID:25260528

  4. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine.

    Science.gov (United States)

    Yamada, Nana; Takahashi, Hiroyuki; Kitou, Kunihide; Sahashi, Kosuke; Tamagake, Hideto; Tanaka, Yoshito; Takabe, Teruhiro

    2015-11-01

    Glycine betaine (GB) is an important osmoprotectant and synthesized by two-step oxidation of choline. Choline monooxygenase (CMO) catalyzes the first step of the pathway and is believed to be a rate limiting step for GB synthesis. Recent studies have shown the importance of choline-precursor supply for GB synthesis. In order to investigate the role of CMO for GB accumulation in sugar beet (Beta vulgaris), transgenic plants carrying the antisense BvCMO gene were developed. The antisense BvCMO plants showed the decreased activity of GB synthesis from choline compared to wild-type (WT) plants which is well related to the suppressed level of BvCMO protein. However, GB contents were similar between transgenic and WT plants with the exception of young leaves and storage roots. Transgenic plants showed enhanced susceptibility to salt stress than WT plants. These results suggest the importance of choline-precursor-supply for GB accumulation, and young leaves and storage root are sensitive sites for GB accumulation. PMID:26302482

  5. C-11 Choline and FDG PET/CT Imaging of Primary Cholangiocarcinoma – a Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Chanisa Chotipanich

    2015-01-01

    Full Text Available Objective(s: This study aimed to compare the diagnostic values of 11C-choline and 18F-fluorodeoxyglucose (18F-FDG positron emission tomography/computed tomography (PET/CT in patients with cholangiocarcinoma (CCA. Methods: This prospective study was conducted on 10 patients (6 males and 4 females, aged 42-69 years, suspected of having CCA based on CT or magnetic resonance imaging (MRI results. 11C-choline and 18F-FDG PET/CT studies were performed in all patients over 1 week. PET/CT results were visually analyzed by 2 independent nuclear medicine physicians and quantitatively by calculating the tumor-to-background ratio (T/B. Results: No 11C-choline PET/CT uptake was observed in primary extrahepatic or intrahepatic CCA cases. Intense 18F-FDG avidity was detected in the tumors of 8 patients (%80. Two patients, who were 18F-FDG negative, had primary extrahepatic CCA. Ki-67 measurements were positive in all patients (range; 14.2%-39.9%. The average T/B values of 11C-choline and 18F-FDG were 0.4±0.2 and 2.0±1.0 in all cases of primary CCA, respectively; these values were significantly lower for 11C-choline (P

  6. Identification of a novel TDRD7 isoforms

    Directory of Open Access Journals (Sweden)

    Filonenko V. V.

    2011-12-01

    Full Text Available The aim of our study was to investigate the tudor domain-containing protein 7 (TDRD7 subcellular localization, which could be linked to diverse functions of this protein within the cell. Methods. In this study we employed cell imaging technique for detecting TDRD7 subcellular localization, Western blot analysis of HEK293 cell fractions with anti-TDRD7 monoclonal antibodies and bioinformatical search of possible TDRD7 isoforms in Uniprot, Ensemble, UCSC databases. Results. We have observed specific TDRD7-containing structures in cytoplasm as well as in the nucleus in HEK293 cells. The Western blot analysis of subcellular fractions (cytoplasm, mitochondria, nucleus allowed us to detect three lower immunoreactive bands, with the aproximate molecular weight of 130, 110 and 60 kDa (we termed them as TDRD7, TDRD7 and TDRD7 and specific subcellular localization. The bioinformatical analysis of TDRD7 primary structure allowed us to determine two alternative transcripts from TDRD7 gene coding for proteins with calculated molecular weight of 130 and 60 kDa. Conclusion. The presented data demonstrate the existence at protein level of potential TDRD7 isoforms: TDRD7, TDRD7 and TDRD7. The expression profile of these splice variants and their role in cells remains to be elucidated.

  7. The p38 Mitogen-Activated Protein Kinase Pathway-A Potential Target for Intervention in Infarction, Hypertrophy and Heart Failure

    OpenAIRE

    Marber, Michael S; Rose, Beth; Wang, Yibin

    2010-01-01

    The p38 mitogen-activated protein kinases (p38s) are stress activated ser/thr kinases. Their activation has been associated with various pathological stressors in the heart. Activated p38 is implicated in a wide spectrum of cardiac pathologies, including hypertrophy, myocardial infarction, as well as systolic and diastolic heart failure. In this review, the specific contribution of different isoforms of p38 kinases to cardiac diseases as well as TAB-1 mediated non-canonical activation pathway...

  8. Loss of Protein Kinase Cβ Function Protects Mice Against Diet-Induced Obesity and Development of Hepatic Steatosis and Insulin Resistance

    OpenAIRE

    Huang, Wei; Bansode, Rishipal; Mehta, Madhu; Mehta, Kamal D

    2009-01-01

    Obesity is an energy balance disorder in which intake is greater than expenditure, with most excess calories stored as triglyceride (TG). We previously reported that mice lacking β-isoform of protein kinase C (PKCβ), a diacylglycerol- and phospholipid-dependent kinase, exhibit marked reduction in the whole body TG content, including white adipose tissue (WAT) mass. To investigate the role of this signaling kinase in metabolic adaptations to severe dietary stress, we studied the impact of a hi...

  9. Estimation of usual intake and food sources of choline and betaine in New Zealand reproductive age women.

    Science.gov (United States)

    Mygind, Vanessa L; Evans, Sophie E; Peddie, Meredith C; Miller, Jody C; Houghton, Lisa A

    2013-01-01

    Recently, choline has been associated with neurodevelopment, cognitive function and neural tube defect incidence. However, data on usual intakes are limited, and estimates of dietary intakes of choline and its metabolite betaine, are not available for New Zealanders. The objective of the present study was to determine usual intake and food sources of choline and betaine in a group of New Zealand reproductive age women. Dietary intake data were collected from a sample of 125 women, aged 18-40 years, by means of a 3-day weighed food record, and usual choline and betaine intake distributions were determined. The mean (SD) daily intakes of choline and betaine were 316 (66) mg and 178 (66) mg, respectively. The total choline intake relative to energy intake and body weight was 0.18 mg/kcal and 5.1 mg/kg, respectively. Only 16% of participants met or exceeded the Adequate Intake (AI) for adult women of 425 mg of choline. The top five major food contributors of choline were eggs, red meat, milk, bread and chicken; and of betaine were bread, breakfast cereal, pasta, grains and root vegetables (carrots, parsnips, beetroot, swedes). Our findings contribute towards the recent emergence of published reports on the range of dietary choline and betaine intakes consumed by free-living populations. In our sample of New Zealand women, few participants were meeting or exceeding the AI level. Given recent epidemiological evidence suggesting health benefits of increased choline and betaine intakes, recommendations should be made to encourage the consumption of choline and betaine-rich foods. PMID:23635379

  10. Induction and phosphorylation of protein kinase C-α and mitogen-activated protein kinase by hypoxia and by radiation in Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Protein kinase C (PKC) and mitogen-activated protein (MAP) kinase are protein-serine/threonine kinases which are important regulators of diverse cellular processes including metabolism, proliferation and differentiation. This study shows that both hypoxia and X irradiation of serum-deprived Chinese hamster V79 cells cause the induction and phosphorylation of the PKC-α isoform. The increased induction and phosphorylation of PKC occur mainly in the nuclear fraction. Unlike the PKC activator TPA, neither hypoxic nor radiation stress causes translocation of PKC-α from the cytosol to the membrane. The induction of PKC-α by hypoxia is accompanied by an increased expression of MAP kinase but, in contrast, this does not occur when PKC-α is induced by radiation. Radiation, like TPA, causes a complete redistribution of MAP kinase from the cytosol to the nucleus. 28 refs., 7 figs

  11. Experience with carbon-11 choline positron emission tomography in prostate carcinoma

    International Nuclear Information System (INIS)

    We investigated the potential of carbon-11 choline positron emission tomography (PET) for the detection of lymph node and bone metastases in prostate cancer. A total of 23 patients were studied (known metastases: 8; suspicion of metastases: 3; primary staging: 12). Whole-body PET imaging was performed 5 min after injection of the tracer and completed within 1 h. Focally increased tracer uptake in bone or abdominal lymph node regions was interpreted as representing tumour involvement. All known bone and lymph node metastases could be recognized by [11C]choline PET. One out of ten negative scans for primary staging was false-negative (lymph node 11C]choline PET is a promising new tool for the primary staging of prostate cancer, with lymph node and bone metastases demonstrating high tracer uptake. Therapeutic management could be influenced by these results in that the technique may permit avoidance of surgical lymph node exploration. (orig.)

  12. Red radiation and choline compounds influence growth and greening of wheat seedlings

    International Nuclear Information System (INIS)

    The effects of 2-chloroethyltrimethylammonium chloride (CCh), 2-ethyltrimethylammonium chloride (Ch), and acetylcholine chloride (ACh) at concentrations of 1 microM-5 mM and of red radiation (R) pulse on growth, greening, and formation of the photosynthetic apparatus in etiolated wheat seedlings (Triticum aestivum cv. Moskovskaya-35) were examined. A short-term application of cholines and R pulse simulated the first leaf growth and its appearance from coleoptile, and inhibited the coleoptile growth. CCh, Ch, and R were stimulators of greening and increased the photosynthetic activity, whereas Ach did not influence the process of greening. Joint effects of R with cholines on the growth and photomorphogenesis were greater than the individual ones, whereas far-red (FR) radiation decreased the influence of cholines

  13. A Facile, Choline Chloride/Urea Catalyzed Solid Phase Synthesis of Coumarins via Knoevenagel Condensation

    Directory of Open Access Journals (Sweden)

    Hosanagara N. Harishkumar

    2011-01-01

    Full Text Available The influence of choline chloride/urea ionic liquid in solid phase on the Knoevenagel condensation is demonstrated. The active methylene compounds such as meldrum’s acid, diethylmalonate, ethyl cyanoacetate, dimethylmalonate, were efficiently condensed with various salicylaldehydes in presence of choline chloride/urea ionic liquid without using any solvents or additional catalyst. The reaction is remarkably facile because of the air and water stability of the catalyst, and needs no special precautions. The reactions were completed within 1hr with excellent yields (95%. The products formed were sufficiently pure, and can be easily recovered. The use of ionic liquid choline chloride/urea in solid phase offered several significant advantages such as low cost, greater selectivity and easy isolation of products.

  14. Multiple host kinases contribute to Akt activation during Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Bernhard Roppenser

    Full Text Available SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4 P2/PI(3-5 P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4 P2/PI(3-5 P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.

  15. Optimization of luminescent assay for screening of cyclin-dependent kinase 2 inhibitors

    Directory of Open Access Journals (Sweden)

    Suthar M

    2010-01-01

    Full Text Available Cyclin-dependent kinases are most extensively studied targets for cancer chemotherapy since the tumor cells exhibit false checkpoints and can proliferate even if the genome is compromised. Cyclin-dependent kinases ensure the tight regulation of the cell cycle execution by mediating phosphorylation of cellular proteins. Deregulation of the cyclin-dependent kinase 2 activity by cellular and external factors leads to many diseases like cancers. Different methods like radiolabeled, fluorescence and luminescence are available for screening of library of compounds against kinases. However, bioluminescent methods offer several advantages like low background and no effect of fluorescent compound interference. Present study is focused on development, optimization and validation of cyclin-dependent kinase 2 assay which is suitable for identification potent and selective, ATP competitive and non-competitive inhibitors of cyclin-dependent kinase 2. The aim of present investigation was to optimize the assay for cyclin-dependent kinase 2/cylin A and cyclin-dependent kinase 2/cyclin E with use of bioluminescence based biochemical reaction. Both cyclin-dependent kinase 2 which are cyclin-dependent kinase 2/cyclin A and cyclin-dependent kinase 2/cyclin E complexes, have different affinity for ATP. Therefore, both isoform analogs of cyclin-dependent kinase 2 were optimized separately. Optimum cyclin-dependent kinase 2/cyclin A and cyclin-dependent kinase 2/cyclin E concentration were found to be 250 ng/well and 200 ng/well, respectively. Optimum substrate (histone H1 concentration was found to be 2.5 mg/ml for both cyclin-dependent kinase 2 analogs. Optimum reaction time was found to be 20 min for both cyclin-dependent kinase 2/cyclin complexes.

  16. Choline, Its Potential Role in Nonalcoholic Fatty Liver Disease, and the Case for Human and Bacterial Genes.

    Science.gov (United States)

    Sherriff, Jill L; O'Sullivan, Therese A; Properzi, Catherine; Oddo, Josephine-Lee; Adams, Leon A

    2016-01-01

    Our understanding of the impact of poor hepatic choline/phosphatidylcholine availability in promoting the steatosis characteristic of human nonalcoholic fatty liver disease (NAFLD) has recently advanced and possibly relates to phosphatidylcholine/phosphatidylethanolamine concentrations in various, membranes as well as cholesterol dysregulation. A role for choline/phosphatidylcholine availability in the progression of NAFLD to liver injury and serious hepatic consequences in some individuals requires further elucidation. There are many reasons for poor choline/phosphatidylcholine availability in the liver, including low intake, estrogen status, and genetic polymorphisms affecting, in particular, the pathway for hepatic de novo phosphatidylcholine synthesis. In addition to free choline, phosphatidylcholine has been identified as a substrate for trimethylamine production by certain intestinal bacteria, thereby reducing host choline bioavailability and providing an additional link to the increased risk of cardiovascular disease faced by those with NAFLD. Thus human choline requirements are highly individualized and biomarkers of choline status derived from metabolomics studies are required to predict those at risk of NAFLD induced by choline deficiency and to provide a basis for human intervention trials. PMID:26773011

  17. Choline chloride based ionic liquid analogues as tool for the fabrication of agar films with improved mechanical properties

    Science.gov (United States)

    In the present paper, we test the suitability of Choline-Cl/urea (DES-U) and Choline-Cl/glycerol (DES-G) eutectic mixtures at 1:2 molar ratios for the production of agar biodegradable films. A three-step process is proposed: pre-solubilization of polymer in DES followed by compression-molding and s...

  18. Dietary folate and choline status differentially affect lipid metabolism and behavior-mediated neurotransmitters in young rats

    Science.gov (United States)

    The relationship between choline and folate metabolisms is an important issue due to the essential role of these nutrients in brain plasticity and cognitive functions. Present study was designed to investigate whether modification of the dietary folate-choline status in young rats would affect brain...

  19. Optical choline sensor based on a water-soluble fluorescent conjugated polymer and an enzyme-coupled assay

    International Nuclear Information System (INIS)

    We report on a simple and sensitive water-soluble fluorescent conjugated polymer for use in a choline biosensor. Choline is oxidized by the enzyme choline oxidase (ChOx), and the hydrogen peroxide (H2O2) formed is used to oxidize catechol via catalysis by horseradish peroxidase. The product of oxidation acts as a quencher of the photoluminescence of a fluorescent conjugated polymer. The ratio of the fluorescence intensity of the system in the presence and absence of the choline, respectively, serves as the analytical information. It is proportional to the concentration of choline in the 0.1 μM to 20 μM concentration range. The detection limit for choline is 50 nM. The biosensor was successfully applied to the determination of choline in milk samples with satisfactory reproducibility and accuracy. This is the first biosensor where a ChOx/HRP enzyme-coupled assay is used in combination with a water-soluble conjugated polymer for the fluorescent detection of choline. In our opinion, it provides a common platform for further development of enzymatic biosensors based on fluorescent conjugated polymers. (author)

  20. Method of empirical dependences in estimation and prediction of activity of creatine kinase isoenzymes in cerebral ischemia

    Science.gov (United States)

    Sergeeva, Tatiana F.; Moshkova, Albina N.; Erlykina, Elena I.; Khvatova, Elena M.

    2016-04-01

    Creatine kinase is a key enzyme of energy metabolism in the brain. There are known cytoplasmic and mitochondrial creatine kinase isoenzymes. Mitochondrial creatine kinase exists as a mixture of two oligomeric forms - dimer and octamer. The aim of investigation was to study catalytic properties of cytoplasmic and mitochondrial creatine kinase and using of the method of empirical dependences for the possible prediction of the activity of these enzymes in cerebral ischemia. Ischemia was revealed to be accompanied with the changes of the activity of creatine kinase isoenzymes and oligomeric state of mitochondrial isoform. There were made the models of multiple regression that permit to study the activity of creatine kinase system in cerebral ischemia using a calculating method. Therefore, the mathematical method of empirical dependences can be applied for estimation and prediction of the functional state of the brain by the activity of creatine kinase isoenzymes in cerebral ischemia.

  1. Effect of choline on carbon assimilation and phosphorus uptake by ginseng

    International Nuclear Information System (INIS)

    The results showed that the choline sprayed at green fruit stage of 4 years old ginseng, photosynthetic rate increased by 14.22%, transfer rate of 14C-assimilates increased by 21.82%, a mount of 14C-assimilates transported in total ginsensidi of root increased by 10.66%. Choline treatment also promoted phosphorus absorption in ginseng, the ratio of 32P absorption increased by 17.81%, and the 32P accumulated in root increased by 31.2%. The yield of ginseng root was increased by 28.78%

  2. Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress.

    Science.gov (United States)

    Deshnium, P; Los, D A; Hayashi, H; Mustardy, L; Murata, N

    1995-12-01

    Choline oxidase, isolated from the soil bacterium Arthrobacter globiformis, converts choline to glycinebetaine (N-trimethylglycine) without a requirement for any cofactors. The gene for this enzyme, designated codA, was cloned and introduced into the cyanobacterium Synechococcus sp. PCC 7942. The codA gene was expressed under the control of a strong constitutive promoter, and the transformed cells accumulated glycinebetaine at intracellular levels of 60-80 mM. Consequently the cells acquired tolerance to salt stress, as evaluated in terms of growth, accumulation of chlorophyll and photosynthetic activity. PMID:8555454

  3. Osmoprotectants in Halomonas elongata: High-affinity betaine transport system and choline-betaine pathway

    OpenAIRE

    Nieto Gutiérrez, Joaquín José; Cánovas, David; Vargas, C.; Ventosa Ucero, Antonio; Csonka, Laszlo N.

    1996-01-01

    The osmoregulatory pathways of the moderately halophilic bacterium Halomonas elongata DSM 3043 have been investigated. This strain grew optimally at 1.5 to 2 M NaCl in M63 glucose-defined medium. It required at least 0.5 M NaCl for growth, which is a higher concentration than that exhibited by the H. elongata type strain ATCC 33173. Externally provided betaine, choline, or choline-O-sulfate (but not proline, ectoine, or proline betaine) enhanced the growth of H. elongata on 3 M NaCl-glucose-M...

  4. CK (Creatine Kinase) Test

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Creatine Kinase Share this page: Was this page helpful? Also known as: CK; Total CK; Creatine Phosphokinase; CPK Formal name: Creatine Kinase Related tests: ...

  5. Temperature-Driven Mixing-Demixing Behavior of Binary Mixtures of the Ionic Liquid Choline Bis(trifluoromethylsulfonyl)imide and Water

    OpenAIRE

    Nockemann, Peter; Binnemans, Koen; Thijs, Ben; Parac-Vogt, Tatjana; Merz, Klaus; Mudring, Anja-Verena; Menon, Preethy Chirukandath; Rajesh, Ravindran Nair; George, Cordoyiannis; Thoen, Jan; Leys, Jan; Glorieux, Christ

    2009-01-01

    The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point = 30 °C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion ar...

  6. Morphological effects of cytidin-diphosphate-choline on rats with lesions of the substantia nigra: study using horse radish peroxidase method.

    Science.gov (United States)

    Stanzani, S

    1981-09-15

    Morphological effects of Cytidin-diphosphate-Choline (CDP-choline) (Ni-cholin) on rat brain with Substantia nigra lesions were studied by using the horse radish peroxidase method (HRP). Three groups of animals were studied. Post-lesion axonal and cellular regeneration was detected only in the group of rats treated with CDP-choline q.d. i.m. for 15 days. PMID:7306424

  7. Pantothenate kinase-associated neurodegeneration.

    Science.gov (United States)

    Hartig, Monika B; Prokisch, Holger; Meitinger, Thomas; Klopstock, Thomas

    2012-08-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is a hereditary progressive disorder and the most frequent form of neurodegeneration with brain iron accumulation (NBIA). PKAN patients present with a progressive movement disorder, dysarthria, cognitive impairment and retinitis pigmentosa. In magnetic resonance imaging, PKAN patients exhibit the pathognonomic "eye of the tiger" sign in the globus pallidus which corresponds to iron accumulation and gliosis as shown in neuropathological examinations. The discovery of the disease causing mutations in PANK2 has linked the disorder to coenzyme A (CoA) metabolism. PANK2 is the only one out of four PANK genes encoding an isoform which localizes to mitochondria. At least two other NBIA genes (PLA2G6, C19orf12) encode proteins that share with PANK2 a mitochondrial localization and all are suggested to play a role in lipid homeostasis. With no causal therapy available for PKAN until now, only symptomatic treatment is possible. A multi-centre retrospective study with bilateral pallidal deep brain stimulation in patients with NBIA revealed a significant improvement of dystonia. Recently, studies in the PANK Drosophila model "fumble" revealed improvement by the compound pantethine which is hypothesized to feed an alternate CoA biosynthesis pathway. In addition, pilot studies with the iron chelator deferiprone that crosses the blood brain barrier showed a good safety profile and some indication of efficacy. An adequately powered randomized clinical trial will start in 2012. This review summarizes clinical presentation, neuropathology and pathogenesis of PKAN. PMID:22515741

  8. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, Toshiyuki; Kurihara, Hideyuki; Ishiuchi, Shogo; Saito, Nobuhito; Sasaki, Tomio [Dept. of Neurosurgery, Gunma University School of Medicine (Japan); Oriuchi, Noboru; Inoue, Tomio [Dept. of Nuclear Medicine, Gunma University School of Medicine, Maebashi (Japan)

    2001-11-01

    The purpose of this study was to assess the clinical potential of methyl-{sup 11}C-choline ({sup 11}C-choline) in the diagnosis of brain tumours. To this end, the results of {sup 11}C-choline positron emission tomography (PET) in 22 patients suspected of having brain tumours were compared with the findings of contrast-enhanced magnetic resonance (MR) imaging and fluorine-18 fluorodeoxyglucose PET. A histopathological diagnosis was made for each patient during open surgery. The standardised uptake values of brain tumours and the tumour-to-white matter count (T/W) ratios were determined. The degree of {sup 11}C-choline accumulation noted in PET images was compared with the gadolinium-enhanced areas of MR images. The mean T/W ratio of {sup 11}C-choline in high-grade gliomas was found to be higher than that in low-grade gliomas. This difference was statistically significant (mean{+-}SD: 8.7{+-}6.2, n=9 versus 1.5{+-}0.7, n=5, P<0.03) when data pertaining to the prominent uptake of {sup 11}C-choline in a patient with a pilocytic astrocytoma were excluded. {sup 11}C-choline PET failed to detect non-neoplastic lesions in two patients. Areas of {sup 11}C-choline accumulation in PET scans were larger than areas enhanced on MR images in five cases involving high-grade gliomas. {sup 11}C-choline PET differentiated between low-grade gliomas and high-grade gliomas, but did not differentiate between low-grade gliomas and non-neoplastic lesions. The combination of {sup 11}C-choline PET and MR imaging may provide investigators with an accurate means by which to identify high-grade gliomas. (orig.)

  9. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging

    International Nuclear Information System (INIS)

    The purpose of this study was to assess the clinical potential of methyl-11C-choline (11C-choline) in the diagnosis of brain tumours. To this end, the results of 11C-choline positron emission tomography (PET) in 22 patients suspected of having brain tumours were compared with the findings of contrast-enhanced magnetic resonance (MR) imaging and fluorine-18 fluorodeoxyglucose PET. A histopathological diagnosis was made for each patient during open surgery. The standardised uptake values of brain tumours and the tumour-to-white matter count (T/W) ratios were determined. The degree of 11C-choline accumulation noted in PET images was compared with the gadolinium-enhanced areas of MR images. The mean T/W ratio of 11C-choline in high-grade gliomas was found to be higher than that in low-grade gliomas. This difference was statistically significant (mean±SD: 8.7±6.2, n=9 versus 1.5±0.7, n=5, P11C-choline in a patient with a pilocytic astrocytoma were excluded. 11C-choline PET failed to detect non-neoplastic lesions in two patients. Areas of 11C-choline accumulation in PET scans were larger than areas enhanced on MR images in five cases involving high-grade gliomas. 11C-choline PET differentiated between low-grade gliomas and high-grade gliomas, but did not differentiate between low-grade gliomas and non-neoplastic lesions. The combination of 11C-choline PET and MR imaging may provide investigators with an accurate means by which to identify high-grade gliomas. (orig.)

  10. Expression, purification and enzymatic characterization of the catalytic domains of human tryptophan hydroxylase isoforms

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Boesen, Jane; Karlsen, Pernille Efferbach; Christensen, Hans Erik Mølager

    Tryptophan hydroxylase exists in two isoforms: Isoform 1 catalyses the first and rate-limiting step in the synthesis of serotonin in the peripheral parts of the body while isoform 2 catalyses this step in the brain. The catalytic domains of human tryptophan hydroxylase 1 and 2 have been expressed......, purified and the kinetic properties have been studied and are compared. Substrate inhibition by tryptophan is observed for isoform 1 but not for isoform 2. Large differences are observed in the K m,tetrahydrobiopterin values for the two isoforms, being >10 times larger for isoform 1 compared to isoform 2....

  11. Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity

    Directory of Open Access Journals (Sweden)

    Belén Mezquita

    2014-02-01

    Full Text Available One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT and a truncated isoform of VEGFR-1 (i21-VEGFR-1, which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer.

  12. Mirk/dyrk1B Kinase in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Eileen Friedman

    2013-03-01

    Full Text Available Mirk/dyrk1B kinase is expressed in about 75% of resected human ovarian cancers and in most ovarian cancer cell lines with amplification in the OVCAR3 line. Mirk (minibrain-related kinase is a member of the Minibrain/dyrk family of related serine/threonine kinases. Mirk maintains cells in a quiescent state by stabilizing the CDK inhibitor p27 and by inducing the breakdown of cyclin D isoforms. Mirk also stabilizes the DREAM complex, which maintains G0 quiescence by sequestering transcription factors needed to enter cycle. By entering a quiescent state, tumor cells can resist the nutrient deficiencies, hypoxic and acidic conditions within the tumor mass. Mirk maintains the viability of quiescent ovarian cancer cells by reducing intracellular levels of reactive oxygen species. CDKN2A-negative ovarian cancer cells treated with a Mirk kinase inhibitor escaped G0/G1 quiescence, entered cycle with high ROS levels and underwent apoptosis. The ROS scavenger N-acetyl cysteine reduced the extent of cancer cell loss. In contrast, the Mirk kinase inhibitor slightly reduced the fraction of G0 quiescent diploid epithelial cells and fibroblasts, and the majority of the cells pushed into cycle accumulated in G2 + M. Apoptotic sub-G0/G1 cells were not detected. Thus, normal cells were spared because of their expression of CDK inhibitors that blocked unregulated cycling and Mirk kinase inhibitor-treated normal diploid cells were about as viable as untreated controls.

  13. Synthesis of Anti-oxidant Conjugates with Choline as Potential Acetylcholinesterase Inhibitors

    Czech Academy of Sciences Publication Activity Database

    Šebestík, Jaroslav; Falé, P. L.; Santos, S.; Serralheiro, M. L. M.; Santos, M. A.

    Smolenice : -, 2010. s. 101-101. [Conference of Organic Chemists. Advances in Organic Chemistry /29./. 05.09.2010-09.09.2010, Smolenice] Institutional research plan: CEZ:AV0Z40550506 Keywords : choline conjugates * AChE inhibitors * antioxidants * docking Subject RIV: CC - Organic Chemistry

  14. Studies on the riboflavin, niacin, pantothenic acid and choline requirements of young bobwhite quail

    Science.gov (United States)

    Serafin, J.A.

    1974-01-01

    Four experiments were conducted to examine the riboflavin, niacin, pantothenic acid and choline requirements of young Bobwhite quail. Quail fed purified diets deficient in either riboflavin, niacin, pantothenic acid or choline grew poorly and high mortality occurred by 5 weeks of age. Under the conditions of these experiments, it was found that: (1) young quail require approximately 3.8 mg. riboflavin/kg. diet for satisfactory growth and survival; (2) no more than 31 mg. niacin/kg. diet are required for normal growth and survival of young quail; (3) the requirement for pantothenic acid is higher than has previously been reported, quail in these studies requiring 12.6 mg. pantothenic acid/kg. feed for growth and survival; and (4) the requirement for choline for reducing mortality is approximately 1000 mg./kg., while the amount necessary for normal growth of young quail is no greater than 1500 mg./kg. when the diet contains ample amounts of methionine. Quail fed a niacin-deficient diet developed stiff, shortened feathers and an erythema about the head; those receiving a riboflavin-deficient ration developed enlarged hocks and bowed legs, as did quail fed diets low or devoid of choline. Aside from slow growth, poor feathering was the only other indication that a deficient diet was being fed when quail were placed on a basal ration without pantothenic acid for five weeks.

  15. Studies on the riboflavin, pantothenic acid, nicotinic acid and choline requirements of young Embden geese

    Science.gov (United States)

    Serafin, J.A.

    1981-01-01

    Four experiments were conducted to examine the riboflavin, pantothenic acid, nicotinic acid, and choline requirements of young Embden geese fed purified diets. Goslings fed diets deficient in either riboflavin, pantothenic acid, nicotinic acid, or choline grew poorly. Feeding a pantothenic acid-deficient diet resulted in 100% mortality. Goslings fed diets containing 530 mg/kg of choline or less developed perosis. Under the conditions of these experiments it was found that: 1) goslings require no more than 3.84 mg/kg of riboflavin and 31.2 mg/kg of nicotinic acid in the diet for rapid growth and normal development, 2) the pantothenic acid requirement of goslings is no more than 12.6 mg/kg of diet, and 3) a dietary choline level of 1530 mg/kg is adequate for both the prevention of perosis and rapid growth of goslings. The levels of vitamins found to support normal growth and development of goslings appear to be similar to requirements of other species that have been examined.

  16. The unmediated choline sensor based on layered double hydroxides in hydrogen peroxide detection mode

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this work,we have developed a novel choline biosensor on the basis of immobilization of choline oxidase (ChOx) by the attractive materials layered double hydroxides (LDHs). Amperometric detection of choline was evaluated by holding the modified electrode at 0.5 V (vs. SCE). Due to the special properties of LDHs ([Zn3-Al-Cl]),such as chemical inertness,high porosity,and swelling property,the [Zn3-Al-Cl]/ChOx modified electrode exhibited an enhanced analytical performance. The biosensor provided a linear response to choline over a concentration range from 3.7 × 10-6 to 6.3 × 10-4 M with a low detection limit of 3 × 10-7 M based on S/N=3. The apparent Michaelis-Menten constant was calculated to be 1.38 mM. In addition,the interaction between ChOx and LDHs has also been investigated using FT-IR spectroscopy.

  17. Mechanisms of Indomethacin-Induced Alterations in the Choline Phospholipid Metabolism of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kristine Glunde

    2006-09-01

    Full Text Available Human mammary epithelial cells (HMECs exhibit an increase in phosphocholine (PC and total cholinecontaining compounds, as well as a switch from high glycerophosphocholine (GPC/low PC to low GPC/high PC, with progression to malignant phenotype. The treatment of human breast cancer cells with a nonsteroidal anti-inflammatory agent, indomethacin, reverted the high PC/low GPC pattern to a low PC/high GPC pattern indicative of a less malignant phenotype, supported by decreased invasion. Here, we have characterized mechanisms underlying indomethacininduced alterations in choline membrane metabolism in malignant breast cancer cells and nonmalignant HMECs labeled with [1,2-13C]choline using 1H and 13C magnetic resonance spectroscopy. Microarray gene expression analysis was performed to understand the molecular mechanisms underlying these changes. In breast cancer cells, indomethacin treatment activated phospholipases that, combined with an increased choline phospholipid biosynthesis, led to increased GPC and decreased PC levels. However, in nonmalignant HMECs, activation of the anabolic pathway alone was detected following indomethacin treatment. Following indomethacin treatment in breast cancer cells, several candidate genes, such as interleukin 8, NGFB, CSF2, RHOB, EDN1, and JUNB, were differentially expressed, which may have contributed to changes in choline metabolism through secondary effects or signaling cascades leading to changes in enzyme activity.

  18. Maternal Choline Supplementation: A Potential Prenatal Treatment for Down Syndrome and Alzheimer's Disease.

    Science.gov (United States)

    Strupp, Barbara J; Powers, Brian E; Velazquez, Ramon; Ash, Jessica A; Kelley, Christy M; Alldred, Melissa J; Strawderman, Myla; Caudill, Marie A; Mufson, Elliott J; Ginsberg, Stephen D

    2016-01-01

    Although Down syndrome (DS) can be diagnosed prenatally, currently there are no effective treatments to lessen the intellectual disability (ID) which is a hallmark of this disorder. Furthermore, starting as early as the third decade of life, DS individuals exhibit the neuropathological hallmarks of Alzheimer's disease (AD) with subsequent dementia, adding substantial emotional and financial burden to their families and society at large. A potential therapeutic strategy emerging from the study of trisomic mouse models of DS is to supplement the maternal diet with additional choline during pregnancy and lactation. Studies demonstrate that maternal choline supplementation (MCS) markedly improves spatial cognition and attentional function, as well as normalizes adult hippocampal neurogenesis and offers protection to basal forebrain cholinergic neurons (BFCNs) in the Ts65Dn mouse model of DS. These effects on neurogenesis and BFCNs correlate significantly with spatial cognition, suggesting functional relationships. In this review, we highlight some of these provocative findings, which suggest that supplementing the maternal diet with additional choline may serve as an effective and safe prenatal strategy for improving cognitive, affective, and neural functioning in DS. In light of growing evidence that all pregnancies would benefit from increased maternal choline intake, this type of recommendation could be given to all pregnant women, thereby providing a very early intervention for individuals with DS, and include babies born to mothers unaware that they are carrying a fetus with DS. PMID:26391046

  19. Choline intake and risk of lethal prostate cancer: incidence and survival123

    OpenAIRE

    Richman, Erin L.; Kenfield, Stacey A.; Meir J Stampfer; Giovannucci, Edward L.; Zeisel, Steven H.; Willett, Walter C.; Chan, June M.

    2012-01-01

    Background: Meat, milk, and eggs have been inconsistently associated with the risk of advanced prostate cancer. These foods are sources of choline—a nutrient that may affect prostate cancer progression through cell membrane function and one-carbon metabolism. No study has examined dietary choline and the risk of lethal prostate cancer.

  20. Studies on the riboflavin, pantothenic acid, nicotinic acid, and choline requirements of young Embden geese.

    Science.gov (United States)

    Serafin, J A

    1981-08-01

    Four experiments were conducted to examine the riboflavin, pantothenic acid, nicotinic acid, and choline requirements of young Embden geese fed purified diets. Goslings fed diets deficient in either riboflavin, pantothenic acid, nicotinic acid, or choline grew poorly. Feeding a pantothenic acid-deficient diet resulted in 100% mortality. Goslings fed diets containing 530 mg/kg of choline or less developed perosis. Under the conditions of these experiments it was found that: 1) goslings require no more than 3.84 mg/kg of riboflavin and 31.2 mg/kg of nicotinic acid in the diet for rapid growth and normal development, 2) the pantothenic acid requirement of goslings is no more than 12.6 mg/kg of diet, and 3) a dietary choline level of 1530 mg/kg is adequate for both the prevention of perosis and rapid growth of goslings. The levels of vitamins found to support normal growth and development of goslings appear to be similar to requirements of other species that have been examined. PMID:7322986

  1. Solubilities and thermodynamic properties of CO2 in choline-chloride based deep eutectic solvents

    International Nuclear Information System (INIS)

    Highlights: • Solubilities of carbon dioxide in three deep eutectic solvents (DESs) have been reported. • The experimental data were reduced to Henry’s law constants. • The Gibbs free energy, enthalpy, and entropy changes were calculated. • Relationship between solubility and structure of DESs was developed. - Abstract: The solubilities of CO2 in three kinds of deep eutectic solvents, (choline chloride + phenol), (choline chloride + diethylene glycol) and (choline chloride + triethylene glycol), were determined at temperatures ranging from 293.15 K to 323.15 K under pressures up to 600.0 kPa using isochoric saturation method. The mole ratios of choline chloride to phenol were selected as 1:2, 1:3 and 1:4, the others as 1:3 and 1:4. Henry’s constants and thermodynamic properties such as standard Gibbs free energy, enthalpy, and entropy changes of CO2 solvation were calculated from the correlation of solubility data. Results revealed that the solubility of CO2 increased with increasing pressure and decreased with increasing temperature. The enthalpies of solution were negative at all conditions

  2. Take your PIK: PI-3-kinase inhibitors race through the clinic and towards cancer therapy

    OpenAIRE

    Ihle, Nathan T.; Powis, Garth

    2009-01-01

    The phosphatidylinositol-3-kinase / Akt signaling pathway is currently one of the most exciting drug targets in oncology. However only a short time ago, the paradigm existed that drugs targeted to the four PI3K class 1 isoforms would be too toxic for use in cancer therapy due to effects on physiological signaling. Since that time studies have delineated the roles of these four isoforms in non-pathological signaling as well as their roles in cancer. An extensive effort has gone into developing...

  3. p53 Family: Role of Protein Isoforms in Human Cancer

    Directory of Open Access Journals (Sweden)

    Jinxiong Wei

    2012-01-01

    Full Text Available TP53, TP63, and TP73 genes comprise the p53 family. Each gene produces protein isoforms through multiple mechanisms including extensive alternative mRNA splicing. Accumulating evidence shows that these isoforms play a critical role in the regulation of many biological processes in normal cells. Their abnormal expression contributes to tumorigenesis and has a profound effect on tumor response to curative therapy. This paper is an overview of isoform diversity in the p53 family and its role in cancer.

  4. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent.

    Science.gov (United States)

    Ashworth, Claire R; Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2016-07-21

    Deep eutectic solvents (DESs) are exemplars of systems with the ability to form neutral, ionic and doubly ionic H-bonds. Herein, the pairwise interactions of the constituent components of the choline chloride-urea DES are examined. Evidence is found for a tripodal CHCl doubly ionic H-bond motif. Moreover it is found that the covalency of doubly ionic H-bonds can be greater than, or comparable with, neutral and ionic examples. In contrast to many traditional solvents, an "alphabet soup" of many different types of H-bond (OHO[double bond, length as m-dash]C, NHO[double bond, length as m-dash]C, OHCl, NHCl, OHNH, CHCl, CHO[double bond, length as m-dash]C, NHOH and NHNH) can form. These H-bonds exhibit substantial flexibility in terms of number and strength. It is anticipated that H-bonding will have a significant impact on the entropy of the system and thus could play an important role in the formation of the eutectic. The 2 : 1 urea : choline-chloride eutectic point of this DES is often associated with the formation of a [Cl(urea)2](-) complexed anion. However, urea is found to form a H-bonded urea[choline](+) complexed cation that is energetically competitive with [Cl(urea)2](-). The negative charge on [Cl(urea)2](-) is found to remain localised on the chloride, moreover, the urea[choline](+) complexed cation forms the strongest H-bond studied here. Thus, there is potential to consider a urea[choline](+)·urea[Cl](-) interaction. PMID:27328990

  5. Metabolism of choline in brain of the aged CBF-1 mouse

    International Nuclear Information System (INIS)

    In order to quantify the changes that occur in the cholinergic central nervous system with aging, we have compared acetylcholine (Ach) formation in brain cortex slice preparations from 2-year-old aged CBF-1 mouse brains and compared the findings with those in 2-4-month-old young adult mouse brain slices. Incorporation of exogenous radioactively labelled choline (31 nM [3H] choline) into acetyl choline in incubated brain slices was linear with time for 90 min. Percentage of total choline label distributed into Ach remained constant from 5 min after starting the incubation to 90 min. In contrast, distribution of label into intracellular free choline (Ch) and phosphorylcholine (Pch) changed continuously over this period suggesting that the Ch pool for Ach synthesis in brain cortex is different from that for Pch synthesis. Incorporation of radioactivity into Ach was not influenced by administration of 10 microM eserine, showing that the increment of radioactivity in Ach reflects rate of Ach formation, independently from degradation by acetylcholine esterases. Under our experimental conditions, slices from cortices of aged 24-month-old mouse brain showed a significantly greater (27%) incorporation of radioactivity into intracellular Ach than those from young, 2-4-month-old, brain cortices. Inhibitors of Ach release, 1 mM ATP or GABA, had no effect. Since concentration of radioactive precursor in the incubation medium was very low (31 nM), the Ch pool for Ach synthesis in slices was labelled without measurably changing the size of the endogenous pool. These data suggest a compensatory acceleration of Ach synthesis or else a smaller precursor pool specific for Ach synthesis into which labelled Ch migrated in aged brain

  6. Vitamin A, folate, and choline as a possible preventive intervention to fetal alcohol syndrome.

    Science.gov (United States)

    Ballard, Mark S; Sun, Muxin; Ko, Jenny

    2012-04-01

    It is recognized that alcohol consumption during pregnancy is associated with fetal alcohol syndrome (FAS). Alcohol can trigger a pattern of neurodegeneration in rat brains similar to other known gamma-aminobutyric acid (GABA) specific agonists. However this does not seem to explain FAS entirely, as impoverished care-giving environments have been shown to increase the risk of FAS. Individuals living under the poverty level are at risk for micronutrient deficiencies due to insufficient intake. In particular, three nutrients commonly found to be deficient are folate, choline and vitamin A. There is evidence to suggest that ethanol alone may not explain the entire spectrum of anomalies seen in individuals with FAS. It is hypothesized that FAS may be caused more by the nutritional deficiencies that are exacerbated by alcohol than by direct alcoholic neurotoxicity. It is known that ethanol inhibits folate, choline, and vitamin A/retinoic acid metabolism at multiple steps. Additionally, mice exposed to ethanol demonstrated epigenetic changes, or variations in the methylation of DNA to control gene expression. Folate is important in the production of methyl groups, which are subsequently used to create and methylate DNA. Choline (which is metabolized to acetylcholine) is important in neurotransmission and neurodevelopment. It is also involved in an alternative pathway in the production of methyl groups. In fact a study by Thomas et al. in 2009 found that nutritional supplementation with choline in rats exposed to ethanol in utero almost completely mitigated the degenerative effects of ethanol on development and behaviour. Lastly, vitamin A and retinoic acid metabolism is associated with the regulation of one sixth of the entire proteome. Thus supplementation of folate, choline and vitamin A to mothers may mitigate the effects of the alcohol and reduce the severity or prevalence of FAS. PMID:22285196

  7. LPA is a novel lipid regulator of mesangial cell hexokinase activity and HKII isoform expression.

    Science.gov (United States)

    Coy, Platina E; Taneja, Navin; Lee, Iris; Hecquet, Claudie; Bryson, Jane M; Robey, R Brooks

    2002-08-01

    The prototypical extracellular phospholipid mediator, lysophosphatidic acid (LPA), exhibits growth factor-like properties and represents an important survival factor in serum. This potent mesangial cell mitogen is increased in conditions associated with glomerular injury. It is also a known activator of the classic mitogen-activated protein kinase (MAPK) pathway, which plays an important role in the regulation of mesangial cell hexokinase (HK) activity. To better understand the mechanisms coupling metabolism to injury, we examined the ability of LPA to regulate HK activity and expression in cultured murine mesangial cells. LPA increased total HK activity in a concentration- and time-dependent manner, with maximal increases of >50% observed within 12 h of exposure to LPA concentrations > or =25 microM (apparent ED(50) 2 microM). These effects were associated with increased extracellular signal-regulated kinase (ERK) activity and were prevented by the pharmacological inhibition of either MAPK/ERK kinase or protein kinase C (PKC). Increased HK activity was also associated with increased glucose (Glc) utilization and lactate accumulation, as well as selectively increased HKII isoform abundance. The ability of exogenous LPA to increase HK activity was both Ca2+ independent and pertussis toxin insensitive and was mimicked by LPA-generating phospholipase A2. We conclude that LPA constitutes a novel lipid regulator of mesangial cell HK activity and Glc metabolism. This regulation requires sequential activation of both Ca2+-independent PKC and the classic MAPK pathway and culminates in increased HKII abundance. These previously unrecognized metabolic consequences of LPA stimulation have both physiological and pathophysiological implications. They also suggest a novel mechanism whereby metabolism may be coupled to cellular injury via extracellular lipid mediators. PMID:12110510

  8. Galvanostatic bottom-up filling of TSV-like trenches: Choline-based leveler containing two quaternary ammoniums

    International Nuclear Information System (INIS)

    Highlights: • The choline-based leveler having two quaternary ammoniums was synthesized. • The adsorption of this leveler with suppressor and accelerator was examined. • Galvanostatic Cu bottom-up filling was achieved with three-additive system. • The mechanism of gap-filling was elucidated based on the additive adsorption. - Abstract: Through Silicon Via (TSV) technology is essential to accomplish 3-dimensional packaging of electronics. Hence, more reliable and faster TSV filling by Cu electrodeposition is required. Our approach to improve Cu gap-filling in TSV is based on the development of new organic additives for feature filling. Here, we introduce our achievements from the synthesis of choline-based leveler to the feature filling using a synthesized leveler. The choline-based leveler, which includes two quaternary ammoniums at both ends of the molecule, is synthesized from glutaric acid. The characteristics of the choline-based additive are examined by the electrochemical analyses, and it is confirmed that the choline-based leveler shows a convection dependent adsorption behavior, which is essential for leveling. The interactions between the polymeric suppressor, accelerator, and the choline-based leveler are also investigated by changing the convection condition. Using the combination of suppressor, accelerator, and the choline-based leveler, the extreme bottom-up filling of Cu at trenches with dimensions similar to TSV are fulfilled. The mechanism of Cu gap-filling is demonstrated based on the results of electrochemical analyses and feature filling

  9. cGMP-dependent protein kinase Iβ regulates breast cancer cell migration and invasion via interaction with the actin/myosin-associated protein caldesmon

    OpenAIRE

    Schwappacher, Raphaela; Rangaswami, Hema; Su-Yuo, Jacqueline; Hassad, Aaron; Spitler, Ryan; Casteel, Darren E.

    2013-01-01

    The two isoforms of type I cGMP-dependent protein kinase (PKGIα and PKGIβ) differ in their first ∼100 amino acids, giving each isoform unique dimerization and autoinhibitory domains. The dimerization domains form coiled-coil structures and serve as platforms for isoform-specific protein–protein interactions. Using the PKGIβ dimerization domain as an affinity probe in a proteomic screen, we identified the actin/myosin-associated protein caldesmon (CaD) as a PKGIβ-specific binding protein. PKGI...

  10. Autophosphorylation of serine 608 in the p85 regulatory subunit of wild type or cancer-associated mutants of phosphoinositide 3-kinase does not affect its lipid kinase activity

    Directory of Open Access Journals (Sweden)

    Layton Meredith J

    2012-12-01

    Full Text Available Abstract Background The α-isoform of the Type 1A Phosphoinositide 3-kinases (PI3Kα has protein kinase activity as well as phosphoinositide lipid kinase activity. The best described substrate for its protein kinase activity is its regulatory subunit, p85α, which becomes phosphorylated on Serine 608. Phosphorylation of Serine 608 has been reported to down-regulate its lipid kinase activity. Results We have assessed whether oncogenic mutants of PI3Kα, which have up-regulated lipid kinase activity, have altered levels of Serine 608 phosphorylation compared to wild type PI3Kα, and whether differential phosphorylation of Serine 608 contributes to increased activity of oncogenic forms of PI3Kα with point mutations in the helical or the kinase domains. Despite markedly increased lipid kinase activity, protein kinase activity was not altered in oncogenic compared to wild type forms of PI3Kα. By manipulating levels of phosphorylation of Serine 608 in vitro, we found no evidence that the protein kinase activity of PI3Kα affects its phosphoinositide lipid kinase activity in either wild-type or oncogenic mutants of PI3Kα. Conclusions Phosphorylation of p85α S608 is not a significant regulator of wild-type or oncogenic PI3Kα lipid kinase activity.

  11. 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Birk, Jesper Bratz; Frøsig, Christian;

    2005-01-01

    Strength training enhances insulin sensitivity and represents an alternative to endurance training for patients with type 2 diabetes (T2DM). The 5'AMP-activated protein kinase (AMPK) may mediate adaptations in skeletal muscle in response to exercise training; however, little is known about...... subunit isoforms is susceptible to moderate strength training, which may influence metabolism and improve energy homeostasis in trained muscle....

  12. In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer

    International Nuclear Information System (INIS)

    Prostate cancer is the second leading cause of death from cancer among US men. Positron emission tomography (PET) with [11C]choline has been shown to be useful in the staging and detection of prostate cancer. The background of the increased uptake of choline in human prostate cancer is not completely understood. The aim of this study was to prospectively investigate the relationship between the [11C]choline uptake and the cell proliferation in human prostate cancer. Prostate cancer tissue from 18 patients who had undergone a radical prostatectomy for histologically proven disease was studied. An [11C]choline PET scan was performed prior to surgery. Post-prostatectomy specimens were prepared and stained with the antibody MIB-1 for Ki-67, which depicts proliferation. Two independent observers counted the amount of stained nuclei per specimen. Prostate cancer showed Ki-67 staining and high uptake of [11C]choline. Statistical analysis showed no significant correlation between [11C]choline uptake and Ki-67 staining (R=0.23; P=0.34). No significant relationships were found between the uptake of [11C]choline (SUV) and either preoperative PSA (R=0.14; P=0.55) or Gleason sum score (R=0.28; P=0.25). In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer as depicted by Ki-67. Our results suggest that a process other than proliferation is responsible for the uptake of [11C]choline in prostate cancer. (orig.)

  13. ALTERATIONS IN BRAIN PROTEIN KINASE C ISOFORMS FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYL MIXTURE.

    Science.gov (United States)

    PCBs have been shown to alter several neurochemical end-points and are implicated in the etiology of some neurological diseases. Recent in vivo studies from our laboratory indicated that developmental exposure to a commercial PCB mixture, Aroclor 1254, caused perturbations in cal...

  14. Degradable Dextran Nanopolymer as a Carrier for Choline Kinase (ChoK) siRNA Cancer Therapy

    OpenAIRE

    Zhihang Chen; Balaji Krishnamachary; Zaver M. Bhujwalla

    2016-01-01

    Although small interfering RNA (siRNA) therapy has proven to be a specific and effective treatment in cells, the delivery of siRNA is a challenge for the applications of siRNA therapy. We present a degradable dextran with amine groups as an siRNA nano-carrier. In our nano-carrier, the amine groups are conjugated to the dextran platform through the acetal bonds, which are acid sensitive. Therefore this siRNA carrier is stable in neutral and basic conditions, while the amine groups can be cleav...

  15. High-throughput, cell-free, liposome-based approach for assessing in vitro activity of lipid kinases.

    Science.gov (United States)

    Demian, Douglas J; Clugston, Susan L; Foster, Meta M; Rameh, Lucia; Sarkes, Deborah; Townson, Sharon A; Yang, Lily; Zhang, Melvin; Charlton, Maura E

    2009-08-01

    Lipid kinases are central players in lipid signaling pathways involved in inflammation, tumorigenesis, and metabolic syndrome. A number of these kinase targets have proven difficult to investigate in higher throughput cell-free assay systems. This challenge is partially due to specific substrate interaction requirements for several of the lipid kinase family members and the resulting incompatibility of these substrates with most established, homogeneous assay formats. Traditional, cell-free in vitro investigational methods for members of the lipid kinase family typically involve substrate incorporation of [gamma-32P] and resolution of signal by thin-layer chromatography (TLC) and autoradiograph densitometry. This approach, although highly sensitive, does not lend itself to high-throughput testing of large numbers of small molecules (100 s to 1 MM+). The authors present the development and implementation of a fully synthetic, liposome-based assay for assessing in vitro activity of phosphatidylinositol-5-phosphate-4-kinase isoforms (PIP4KIIbeta and alpha) in 2 commonly used homogeneous technologies. They have validated these assays through compound testing in both traditional TLC and radioactive filterplate approaches as well as binding validation using isothermic calorimetry. A directed library representing known kinase pharmacophores was screened against type IIbeta phosphatidylinositol-phosphate kinase (PIPK) to identify small-molecule inhibitors. This assay system can be applied to other types and isoforms of PIPKs as well as a variety of other lipid kinase targets. PMID:19641220

  16. Specific regulation of NRG1 isoform expression by neuronal activity

    OpenAIRE

    Liu, Xihui; Bates, Ryan; Wang, Fay; Su, Nan; Kirov, Sergei A.; Luo, Yuling; Wang, Jian-Zhi; Xiong, Wen-Cheng; Mei, Lin

    2011-01-01

    Neuregulin 1 (NRG1) is a trophic factor that has been implicated in neural development, neurotransmission and synaptic plasticity. NRG1 has multiple isoforms that are generated by usage of different promoters and alternative splicing of a single gene. However, little is known about NRG1 isoform composition profile, whether it changes during development or the underlying mechanisms. We found that each of the six types of NRG1 has a distinct expression pattern in the brain at different ages, re...

  17. A Network of Splice Isoforms for the Mouse.

    Science.gov (United States)

    Li, Hong-Dong; Menon, Rajasree; Eksi, Ridvan; Guerler, Aysam; Zhang, Yang; Omenn, Gilbert S; Guan, Yuanfang

    2016-01-01

    The laboratory mouse is the primary mammalian species used for studying alternative splicing events. Recent studies have generated computational models to predict functions for splice isoforms in the mouse. However, the functional relationship network, describing the probability of splice isoforms participating in the same biological process or pathway, has not yet been studied in the mouse. Here we describe a rich genome-wide resource of mouse networks at the isoform level, which was generated using a unique framework that was originally developed to infer isoform functions. This network was built through integrating heterogeneous genomic and protein data, including RNA-seq, exon array, protein docking and pseudo-amino acid composition. Through simulation and cross-validation studies, we demonstrated the accuracy of the algorithm in predicting isoform-level functional relationships. We showed that this network enables the users to reveal functional differences of the isoforms of the same gene, as illustrated by literature evidence with Anxa6 (annexin a6) as an example. We expect this work will become a useful resource for the mouse genetics community to understand gene functions. The network is publicly available at: http://guanlab.ccmb.med.umich.edu/isoformnetwork. PMID:27079421

  18. Selective synthesis of 2',3'-cyclic nucleotide 3'-phosphodiesterase isoform 2 and identification of specifically phosphorylated serine residues.

    Science.gov (United States)

    O'Neill, R C; Braun, P E

    2000-02-01

    2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) is a protein found abundantly in the cytoplasmic compartments of CNS myelin. Two isoforms of this protein, CNP1 and CNP2, are detectable. They differ by a 20-amino acid extension exclusive to CNP2. Additionally, CNP2 is essentially the only isoform to be phosphorylated in vivo. In this study, we examine the phosphorylation of CNP2 in transfected cells. CNP2 was selectively expressed ectopically in 293T cells and labeled with 32P. Immunoprecipitation of labeled CNP2 and tryptic phosphopeptide mapping analyses identified serines 9 and 22 as the major sites of phosphorylation. Only serine 22 was phosphorylated initially in oligodendrocyte-enriched cultures of neonatal rat brain glial cells. However, 4beta-phorbol 12,13-dibutyrate (PDB) induced the phosphorylation of serine 9, thereby producing the same pattern seen in 293T cells. These results suggest that serine 9 is phosphorylated by a PDB-sensitive kinase, likely protein kinase C, and that serine 22 appears to be constitutively phosphorylated. PMID:10646504

  19. Choline PET based dose-painting in prostate cancer - Modelling of dose effects

    Science.gov (United States)

    2010-01-01

    Background Several randomized trials have documented the value of radiation dose escalation in patients with prostate cancer, especially in patients with intermediate risk profile. Up to now dose escalation is usually applied to the whole prostate. IMRT and related techniques currently allow for dose escalation in sub-volumes of the organ. However, the sensitivity of the imaging modality and the fact that small islands of cancer are often dispersed within the whole organ may limit these approaches with regard to a clear clinical benefit. In order to assess potential effects of a dose escalation in certain sub-volumes based on choline PET imaging a mathematical dose-response model was developed. Methods Based on different assumptions for α/β, γ50, sensitivity and specificity of choline PET, the influence of the whole prostate and simultaneous integrated boost (SIB) dose on tumor control probability (TCP) was calculated. Based on the given heterogeneity of all potential variables certain representative permutations of the parameters were chosen and, subsequently, the influence on TCP was assessed. Results Using schedules with 74 Gy within the whole prostate and a SIB dose of 90 Gy the TCP increase ranged from 23.1% (high detection rate of choline PET, low whole prostate dose, high γ50/ASTRO definition for tumor control) to 1.4% TCP gain (low sensitivity of PET, high whole prostate dose, CN + 2 definition for tumor control) or even 0% in selected cases. The corresponding initial TCP values without integrated boost ranged from 67.3% to 100%. According to a large data set of intermediate-risk prostate cancer patients the resulting TCP gains ranged from 22.2% to 10.1% (ASTRO definition) or from 13.2% to 6.0% (CN + 2 definition). Discussion Although a simplified mathematical model was employed, the presented model allows for an estimation in how far given schedules are relevant for clinical practice. However, the benefit of a SIB based on choline PET seems less than

  20. Choline PET based dose-painting in prostate cancer - Modelling of dose effects

    International Nuclear Information System (INIS)

    Several randomized trials have documented the value of radiation dose escalation in patients with prostate cancer, especially in patients with intermediate risk profile. Up to now dose escalation is usually applied to the whole prostate. IMRT and related techniques currently allow for dose escalation in sub-volumes of the organ. However, the sensitivity of the imaging modality and the fact that small islands of cancer are often dispersed within the whole organ may limit these approaches with regard to a clear clinical benefit. In order to assess potential effects of a dose escalation in certain sub-volumes based on choline PET imaging a mathematical dose-response model was developed. Based on different assumptions for α/β, γ50, sensitivity and specificity of choline PET, the influence of the whole prostate and simultaneous integrated boost (SIB) dose on tumor control probability (TCP) was calculated. Based on the given heterogeneity of all potential variables certain representative permutations of the parameters were chosen and, subsequently, the influence on TCP was assessed. Using schedules with 74 Gy within the whole prostate and a SIB dose of 90 Gy the TCP increase ranged from 23.1% (high detection rate of choline PET, low whole prostate dose, high γ50/ASTRO definition for tumor control) to 1.4% TCP gain (low sensitivity of PET, high whole prostate dose, CN + 2 definition for tumor control) or even 0% in selected cases. The corresponding initial TCP values without integrated boost ranged from 67.3% to 100%. According to a large data set of intermediate-risk prostate cancer patients the resulting TCP gains ranged from 22.2% to 10.1% (ASTRO definition) or from 13.2% to 6.0% (CN + 2 definition). Although a simplified mathematical model was employed, the presented model allows for an estimation in how far given schedules are relevant for clinical practice. However, the benefit of a SIB based on choline PET seems less than intuitively expected. Only under the

  1. Activation of human mitochondrial pantothenate kinase 2 by palmitoylcarnitine

    OpenAIRE

    Leonardi, Roberta; Rock, Charles O.; Jackowski, Suzanne; Zhang, Yong-Mei

    2007-01-01

    The human isoform 2 of pantothenate kinase (PanK2) is localized to the mitochondria, and mutations in this protein are associated with a progressive neurodegenerative disorder. PanK2 inhibition by acetyl-CoA is so stringent (IC50 < 1 μM) that it is unclear how the enzyme functions in the presence of intracellular CoA concentrations. Palmitoylcarnitine was discovered to be a potent activator of PanK2 that functions to competitively antagonize acetyl-CoA inhibition. Acetyl-CoA was a competitive...

  2. Characterization of a novel Eph receptor tyrosine kinase, EphA10, expressed in testis.

    Science.gov (United States)

    Aasheim, Hans-Christian; Patzke, Sebastian; Hjorthaug, Hanne Sagsveen; Finne, Eivind Farmen

    2005-05-25

    In mammals, 14 members of the Eph receptor tyrosine kinase family have been described so far. Here we present a not yet described member of this family denoted EphA10. We report the identification of three putative EphA10 isoforms: one soluble and two transmembrane isoforms. One of the latter isoforms lacked the sterile alpha motif commonly found in Eph receptors. The gene encoding EphA10 is located on chromosome 1p34 and expression studies show that EphA10 mRNA is mainly expressed in testis. Binding studies to ephrin ligands suggests that this receptor belongs to the EphA subclass of Eph receptors binding mainly to ephrin-A ligands. PMID:15777695

  3. Pharmacological Targeting of AMP-Activated Protein Kinase and Opportunities for Computer-Aided Drug Design.

    Science.gov (United States)

    Miglianico, Marie; Nicolaes, Gerry A F; Neumann, Dietbert

    2016-04-14

    As a central regulator of metabolism, the AMP-activated protein kinase (AMPK) is an established therapeutic target for metabolic diseases. Beyond the metabolic area, the number of medical fields that involve AMPK grows continuously, expanding the potential applications for AMPK modulators. Even though indirect AMPK activators are used in the clinics for their beneficial metabolic outcome, the few described direct agonists all failed to reach the market to date, which leaves options open for novel targeting methods. As AMPK is not actually a single molecule and has different roles depending on its isoform composition, the opportunity for isoform-specific targeting has notably come forward, but the currently available modulators fall short of expectations. In this review, we argue that with the amount of available structural and ligand data, computer-based drug design offers a number of opportunities to undertake novel and isoform-specific targeting of AMPK. PMID:26510622

  4. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    International Nuclear Information System (INIS)

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H2O2-induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H2O2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells

  5. Characterization of a tissue-specific CDP/Cux isoform, p75, activated in breast tumor cells.

    Science.gov (United States)

    Goulet, Brigitte; Watson, Peter; Poirier, Madeleine; Leduy, Lam; Bérubé, Ginette; Meterissian, Sarkis; Jolicoeur, Paul; Nepveu, Alain

    2002-11-15

    Two isoforms of the CCAAT-displacement protein/cut homeobox (CDP/Cux) transcription factor have been characterized thus far. The full length protein, p200, which contains four DNA binding domains, transiently binds to DNA and carries the CCAAT-displacement activity. The p110 isoform is generated by proteolytic processing at the G1-S transition and is capable of stable interaction with DNA. Here we demonstrate the existence of a shorter CDP/Cux isoform, p75, which contains only two DNA binding domains, Cut repeat 3 and the Cut homeodomain, and binds more stably to DNA. CDP/Cux p75 was able to repress a reporter carrying the promoter for the cyclin-dependent kinase inhibitor p21 gene and to activate a DNA polymerase alpha gene reporter. Expression of CDP/Cux p75 involved a novel mechanism: transcription initiation within intron 20. The intron 20-initiated mRNA (I20-mRNA) was expressed at higher level in the thymus and in CD4+/CD8+ and CD4+ T cells. I20-mRNA was expressed only weakly or not at all in normal human mammary epithelial cells and normal breast tissues but was detected in many breast tumor cells lines and breast tumors. In invasive tumors a significant association was established between higher I20-mRNA expression and a diffuse infiltrative growth pattern (n = 41, P = 0.0137). In agreement with these findings, T47D breast cancer cells stably expressing p75 could not form tubule structures in collagen but rather developed as solid undifferentiated aggregates of cells. Taken together, these results suggest that aberrant expression of the CDP/Cux p75 isoform in mammary epithelial cells may be associated with the process of tumorigenesis in breast cancer. PMID:12438259

  6. Phosphoinositide-3-kinases p110alpha and p110beta mediate S phase entry in astroglial cells in the marginal zone of rat neocortex

    Directory of Open Access Journals (Sweden)

    Rabea eMüller

    2013-03-01

    Full Text Available In cells cultured from neocortex of newborn rats, phosphoinositide-3-kinases of class I regulate the DNA synthesis in a subgroup of astroglial cells. We have studied the location of these cells as well as the kinase isoforms which facilitate the S phase entry. Using dominant negative isoforms as well as selective pharmacological inhibitors we quantified S phase entry by nuclear labeling with bromodeoxyuridine. Only in astroglial cells harvested from the marginal zone of the neocortex inhibition of phosphoinositide-3-kinases reduced the nuclear labeling with bromodeoxyuridine, indicating that neocortical astroglial cells differ in the regulation of proliferation. The two kinase isoforms p110 and p110were essential for S phase entry. p110 diminished the level of the p27Kip1 which inactivates the complex of cyclin E and CDK2 necessary for entry into the S phase. p110phosphorylated and inhibited glycogen synthase kinase-3which can prevent S-phase entry. Taken together, both isoforms mediated S phase in a subgroup of neocortical astroglial cells and acted via distinct pathways.

  7. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture

    DEFF Research Database (Denmark)

    Higginson, James; Wackerhage, Henning; Woods, Niall;

    2002-01-01

    and mitogen-activated protein kinase kinase (MEK1/2) blockade with U0126 upon myosin heavy chain (MHC) isoform mRNA levels and activities of metabolic enzymes after 1 day, 3 days and 7 days of treatment in primary cultures of spontaneously twitching rat skeletal muscle. U0126 treatment significantly......Activation of either the calcineurin or the extracellular signal-regulated kinase (ERK1/2) pathway increases the percentage of slow fibres in vivo suggesting that both pathways can regulate fibre phenotypes in skeletal muscle. We investigated the effect of calcineurin blockade with cyclosporin A...

  8. Early second trimester maternal plasma choline and betaine are related to measures of early cognitive development in term infants.

    Directory of Open Access Journals (Sweden)

    Brian T F Wu

    Full Text Available BACKGROUND: The importance of maternal dietary choline for fetal neural development and later cognitive function has been well-documented in experimental studies. Although choline is an essential dietary nutrient for humans, evidence that low maternal choline in pregnancy impacts neurodevelopment in human infants is lacking. We determined potential associations between maternal plasma free choline and its metabolites betaine and dimethylglycine in pregnancy and infant neurodevelopment at 18 months of age. METHODOLOGY: This was a prospective study of healthy pregnant women and their full-term, single birth infants. Maternal blood was collected at 16 and 36 weeks of gestation and infant neurodevelopment was assessed at 18 months of age for 154 mother-infant pairs. Maternal plasma choline, betaine, dimethylglycine, methionine, homocysteine, cysteine, total B12, holotranscobalamin and folate were quantified. Infant neurodevelopment was evaluated using the Bayley Scales of Infant Development-III. Multivariate regression, adjusting for covariates that impact development, was used to determine the associations between maternal plasma choline, betaine and dimethylglycine and infant neurodevelopment. RESULTS: The maternal plasma free choline at 16 and 36 weeks gestation was median (interquartile range 6.70 (5.78-8.03 and 9.40 (8.10-11.3 µmol/L, respectively. Estimated choline intakes were (mean ± SD 383 ± 98.6 mg/day, and lower than the recommended 450 mg/day. Betaine intakes were 142 ± 70.2 mg/day. Significant positive associations were found between infant cognitive test scores and maternal plasma free choline (B=6.054, SE=2.283, p=0.009 and betaine (B=7.350, SE=1.933, p=0.0002 at 16 weeks of gestation. Maternal folate, total B12, or holotranscobalamin were not related to infant development. CONCLUSION: We show that choline status in the first half of pregnancy is associated with cognitive development among healthy term gestation infants. More work

  9. Glycyl-L-glutamine opposes the fall in choline acetyltransferase in the denervated superior cervical ganglion of the cat.

    OpenAIRE

    Koelle, G B; O'Neill, J J; Thampi, N S; Han, M S; Caccese, R

    1989-01-01

    Intracarotid infusion of 3 microM glycyl-L-glutamine was found to oppose the fall in the choline acetyl-transferase content of the preganglionically denervated cat superior cervical ganglion; this same effect has been demonstrated previously for acetylcholinesterase content. Because choline acetyltransferase, in contrast to acetylcholinesterase, occurs exclusively in the preganglionic axons and their terminals, this finding raises the possibility that glycyl-L-glutamine opposes postsectional ...

  10. Choline acetyltransferase detection in normal and denervated electrocyte from Electrophorus electricus (L.) using a Confocal Scanning Optical Microscopy Analysis

    OpenAIRE

    NILSON NUNES-TAVARES; NARCISA LEAL CUNHA-E-SILVA; AÍDA HASSÓN-VOLOCH

    2000-01-01

    Acetylcholine is the neurotransmitter responsible for the transmission of impulses from cholinergic neurons to cells of innervated tissues. Its biosynthesis is catalyzed by the enzyme Choline acetyltransferase that is considered to be a phenotypically specific marker for cholinergic system. It is well known that the regulation of Choline acetyltransferase activity under physiological and pathological conditions is important for development and neuronal activities of cholinergic functions. We ...

  11. Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young-adult Ts65Dn and disomic mice

    Science.gov (United States)

    Kelley, Christy M.; Powers, Brian E.; Velazquez, Ramon; Ash, Jessica A.; Ginsberg, Stephen D.; Strupp, Barbara J.; Mufson, Elliott J.

    2014-01-01

    Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimer’s disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. While DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age-related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3–7.5 mos of age. Ts65Dn dams were maintained on a choline supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; postweaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, brains were sectioned, and immunolabeled for choline acetyltransferase (ChAT) or p75-neurotrophin receptor (p75NTR). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn unsupplemented mice displayed region- and immunolabel-dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal-diet choline supplementation attenuates some of the genotype-dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21. PMID:24178831

  12. Brain choline concentrations may not be altered in euthymic bipolar disorder patients chronically treated with either lithium or sodium valproate

    OpenAIRE

    Wu, Ren H; O'Donnell, Tina; Ulrich, Michele; Asghar, Sheila J; Hanstock, Christopher C; Silverstone, Peter H

    2004-01-01

    Background It has been suggested that lithium increases choline concentrations, although previous human studies examining this possibility using 1H magnetic resonance spectroscopy (1H MRS) have had mixed results: some found increases while most found no differences. Methods The present study utilized 1H MRS, in a 3 T scanner to examine the effects of both lithium and sodium valproate upon choline concentrations in treated euthymic bipolar patients utilizing two different methodologies. In the...

  13. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A; Laforet, P; Lonsdorfer-Wolf, E; Doutreleau, S; Geny, B; Akman, H O; Dimauro, S; Vissing, J

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  14. Choline uptake in the hippocampus: inhibition of septal-hippocampal cholinergenic neurons by intraventricular barbiturates

    International Nuclear Information System (INIS)

    The author attempts to determine where in the brain pentobarbital acts to cause the inhibition of high-affinity, sodium-dependent choline uptake, and what behavioral consequences result from this particular effect of barbituates. The experiments were done in male Wistar rats which had received an injection of Nivea cream injected directly to the acannula. In the experiments the drug solution injected into the lateral ventricle was also spiked with (14C) - phenobarbital at a final specific activity of 5 dpm/nmole so that a more precise estimate of the spread of drug solution could be made. When a phenobarbital-Fast green Dye mixture was injected bilaterally into the lateral ventricles, the dye was found to have spread through the entire ventricular system when the rat was killed 10-20 min later. Choline uptake in the hippocampus was inhibited and the inhibition was apparently greater of 20 min rather than 10 min were allowed to elapse after the injection

  15. Endogenous protein kinase C facilitation of transmitter release differs from phorbol ester facilitation

    International Nuclear Information System (INIS)

    Full text: Protein kinase C (PKC) is a family of enzymes that are implicated in the modulation of neurotransmitter release in a variety of neurones (Majewski and lannazzo, 1998). Phorbol esters, being potent activators of both the conventional and novel isoforms of this enzyme, have been used repeatedly to study the functions of protein kinase C. However, they may not be specifically targeted to individual isoforms of PKC, hence in this study we use isoform selective inhibitors of PKC to investigate its role on transmitter release. Outbred Sprague-Dawley rats were decapitated and rat cortical slices prepared and incubated with [3H]-noradrenaline which was used as an index of stimulation-induced (S-I) noradrenaline release. We incubated the cortical slices with isoform selective inhibitors either on their own or in the presence of phorbol esters to determine which isoforms of this enzyme may be involved in S-I transmitter release. The inhibitors used were polymyxin B (PXB), a non-selective PKC inhibitor, the myristoylated PKC inhibitor peptide (selective for PKC α and β), bisindolylmaleimide I (selective for PKC α, β, γ and δ) and GO6976 (selective for PKC α, β and γ). The phorbol ester, phorbol dibutyrate (1 μM), markedly facilitated S-I noradrenaline release (172.86 ± 16.73 %, n=12, P33P]-orthophosphoric acid, whereby the basal phosphorylation of B-50 was lowered by the inhibitors, with only PXB attenuating phorbol-ester facilitation of B-50 phosphorylation. This suggests that the PKC isoforms involved in the endogenous modulation of transmitter release are different to those involved in phorbol ester enhancement of noradrenaline release. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  16. Highly sensitive choline biosensor based on carbon nanotube-modified Pt electrode combined with sol-gel immobilization

    Institute of Scientific and Technical Information of China (English)

    SONG Zhao; ZHAO Zixia; QIN Xia; HUANG Jiadong; SHI Haibin; WU Baoyan; CHEN Qiang

    2007-01-01

    A novel amperometric choline biosensor has been fabricated with choline oxidase (ChOx) immobilized by the sol-gel method on the surface of multi-walled carbon nanotubes (MWCNT) modified platinum electrode to improve the sensitivity and the anti-interferential property of the sensor.By analyzing the electrocatalytic activity of the modified electrode by MWCNT,it was found that MWCNT could not only improve the current response to H2O2 but also decrease the electrocatalytic potential.The effects of experimental variables such as the buffer solutions,pH and the amount of loading enzyme were investigated for the optimum analytical performance.This sensor shows sensitive determination of choline with a linear range from 5.0×10-6 to 1.0×10-4 mol/L when the operating pH and potential are 7.2 and 0.15 V,respectively.The detection limit of choline was 5.0×10-7 mol/L.Selectivity for choline was 9.48 μA.(mmol/L)-1.The biosensor exhibits excellent anti-interferential property and good stability,retaining 85% of its original current value even after a month.It has been applied to the determination of choline in human serum.

  17. Usefulness of Choline-PET for the detection of residual hemangiopericytoma in the skull base: comparison with FDG-PET

    Directory of Open Access Journals (Sweden)

    Ito Shin

    2012-02-01

    Full Text Available Abstract Background Choline is a new PET tracer that is useful for the detection of malignant tumor. Choline is a precursor of the biosynthesis of phosphatidylcholine, a major phospholipid in the cell membrane of eukaryotic cells. Malignant tumors have an elevated level of phosphatidylcholine in cell membrane. Thus, choline is a marker of tumor malignancy. Method The patient was a 51-year-old man with repeated recurrent hemangiopericytoma in the skull base. We performed Choline-PET in this patient after various treatments and compared findings with those of FDG-PET. Results Choline accumulated in this tumor, but FDG did not accumulate. We diagnosed this tumor as residual hemangiopericytoma and performed the resection of the residual tumor. FDG-PET is not appropriate for skull base tumor detection because uptake in the brain is very strong. Conclusion We emphasize the usefulness of Choline-PET for the detection of residual hemangiopericytoma in the skull base after various treatments, compared with FDG-PET.

  18. Uptake of 3H-choline and synthesis of 3H-acetylcholine by human penile corpus cavernosum

    International Nuclear Information System (INIS)

    The neuroeffectors which relax penile smooth muscle and lead to erection are unknown; physiological studies of human corpus cavernosum, in vitro, have suggested a significant role of cholinergic neurotransmission. To further characterize the importance of cholinergic nerves, biopsies of human corpus cavernosum were obtained at the time of penile prosthesis implantation. Tissues were incubated in 3H-choline (10-5M, 80 Ci/mmol) in oxygenated physiological salt solution at 370C, pH 7.4 for 1 hour. Radiolabelled compounds were extracted with perchloric acid (0.4 M) and acetylcholine and choline were separated by HPLC; 14C-acetylcholine was used as internal standard. 3H-choline was accumulated by the tissues (20 +/- 1.9 fmol/mg), and 3H-acetylcholine was synthesized (4.0 +/- 1.1 fmol/mg). In control experiments, heating of the tissue blocked synthesis of 3H-acetylcholine. Inhibition of high affinity choline transport by hemicholinium-3 (10-5M) diminished tissue accumulation of 3H-choline and significantly reduced the synthesis of 3H-acetylcholine (0.5 +/ 0.2 fmol/mg, p < 0.05). These results provide direct evidence of neuronal accumulation of choline and enzymatic conversion to acetylcholine in human corpus cavernosum. Taken together with the physiological studies, it can be concluded that cholinergic neurotransmission in human corpus cavernosum plays a role in penile erection

  19. Sex-dependent actions of amyloid beta peptides on hippocampal choline carriers of postnatal rats

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Říčný, Jan; Kozmiková, I.; Řípová, D.; Zach, P.; Klaschka, Jan

    2006-01-01

    Roč. 31, č. 3 (2006), s. 351-360. ISSN 0364-3190 R&D Projects: GA ČR(CZ) GA305/03/1547 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10300504 Keywords : amyloid beta peptide * high affinity choline transport * rat hippocampus Subject RIV: ED - Physiology Impact factor: 2.139, year: 2006

  20. Comparable Stability of Hoogsteen and Watson–Crick Base Pairs in Ionic Liquid Choline Dihydrogen Phosphate

    OpenAIRE

    Hisae Tateishi-Karimata; Miki Nakano; Naoki Sugimoto

    2014-01-01

    The instability of Hoogsteen base pairs relative to Watson–Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson–Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stabi...

  1. The Pathogenesis of Ethanol versus Methionine and Choline Deficient Diet-Induced Liver Injury

    OpenAIRE

    Gyamfi, Maxwell Afari; Damjanov, Ivan; French, Samuel; Wan, Yu-Jui Yvonne

    2007-01-01

    The differences and similarities of the pathogenesis of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH) were examined. Mice (6/group) received 1 of 4 Lieber-Decarli liquid diets for 6 weeks: (1) paired-fed control diet; (2) control diet with ethanol (ethanol); (3) paired-fed methionine/choline deficient (MCD) diet; and (4) MCD plus ethanol (combination). Hepatotoxicity, histology, and gene expression changes were examined. Both MCD and ethanol induced macrovesicular steatosis. Howeve...

  2. 75 FR 760 - Choline chloride; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-01-06

    ... metabolism. Choline chloride has demonstrated a low acute oral toxicity with LD 50 values for rats ranging from 3,150 to >= 6,000 milligram/kilogram (mg/kg) and LD 50 for mice in the range of 3,900 to 6,000 mg... Findings In the Federal Register of December 3, 2008 (73 FR 73648) (FRL- 8391-3), EPA issued a...

  3. Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Nisha Durand

    2016-02-01

    Full Text Available The Protein Kinase D (PKD isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs and diacylglycerol (DAG. PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development.

  4. Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion.

    Science.gov (United States)

    Durand, Nisha; Borges, Sahra; Storz, Peter

    2016-01-01

    The Protein Kinase D (PKD) isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs) and diacylglycerol (DAG). PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT) and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development. PMID:26848698

  5. 11C-Choline PET/pathology image coregistration in primary localized prostate cancer

    International Nuclear Information System (INIS)

    The aim of this study was to develop a methodology for the comparison of pathology specimens after prostatectomy (post-S) with PET images obtained before surgery (pre-S). This method was used to evaluate the merit of 11C-choline PET/CT for delineation of gross tumour volume (GTV) in prostate cancer (PC). In 28 PC patients, 11C-choline PET/CT was performed before surgery. PET/CT data were coregistered with the pathology specimens. GTV on PET images (GTV-PET) was outlined automatically and corrected manually. Tumour volume in the prostate (TVP) was delineated manually on the pathology specimens. Based on the coregistered PET/pathology images, the following parameters were assessed: SUVmax and SUVmean in the tumoral and nontumoral prostate (NP), GTV-PET (millilitres) and TVP (millilitres). PET/pathology image coregistration was satisfactory. Mean SUVmax in the TVP was lower than in the NP: 5.0 and 5.5, respectively (p = 0.093). Considering the entire prostate, SUVmax was located in the TVP in two patients, in the TVP and NP in 12 patients and exclusively in NP in 14 patients. Partial overlap the TVP and GTV-PET was seen in 71 % of patients, and complete overlap in 4 %. PET/pathology image coregistration can be used for evaluation of different imaging modalities. 11C-Choline PET failed to distinguish tumour from nontumour tissue. (orig.)

  6. Choline Modulation of the Aβ P1-40 Channel Reconstituted into a Model Lipid Membrane

    Directory of Open Access Journals (Sweden)

    Daniela Meleleo

    2010-01-01

    Full Text Available Nicotinic acetylcholine receptors (AChRs, implicated in memory and learning, in subjects affected by Alzheimer's disease result altered. Stimulation of α7-nAChRs inhibits amyloid plaques and increases ACh release. β-amyloid peptide (AβP forms ion channels in the cell and model phospholipid membranes that are retained responsible in Alzheimer disease. We tested if choline, precursor of ACh, could affect the AβP1-40 channels in oxidized cholesterol (OxCh and in palmitoyl-oleoyl-phosphatidylcholine (POPC:Ch lipid bilayers. Choline concentrations of 5 × 10−11 M–1.5 × 10−8 M added to the cis- or trans-side of membrane quickly increased AβP1-40 ion channel frequency (events/min and ion conductance in OxCh membranes, but not in POPC:Ch membranes. Circular Dichroism (CD spectroscopy shows that after 24 and 48 hours of incubation with AβP1-40, choline stabilizes the random coil conformation of the peptide, making it less prone to fibrillate. These actions seem to be specific in that ACh is ineffective either in solution or on AβP1-40 channel incorporated into PLMs.

  7. {sup 11}C-Choline PET/pathology image coregistration in primary localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Grosu, Anca-Ligia; Prokic, Vesna [University of Freiburg, Department of Radiation Oncology, Freiburg (Germany); Technical University of Munich, Department of Radiation Oncology, Munich (Germany); Weirich, Gregor [Technical University of Munich, Institute of Pathology, Munich (Germany); Wendl, Christina; Geinitz, Hans; Molls, Michael [Technical University of Munich, Department of Radiation Oncology, Munich (Germany); Kirste, Simon [University of Freiburg, Department of Radiation Oncology, Freiburg (Germany); Souvatzoglou, Michael; Schwaiger, Markus [Technical University of Munich, Department of Nuclear Medicine, Munich (Germany); Gschwend, Juergen E.; Treiber, Uwe [Technical University of Munich, Department of Urology, Munich (Germany); Weber, Wolfgang A. [Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, New York (United States); Krause, Bernd Joachim [Technical University of Munich, Department of Nuclear Medicine, Munich (Germany); University of Rostock, Department of Nuclear Medicine, Rostock (Germany)

    2014-12-15

    The aim of this study was to develop a methodology for the comparison of pathology specimens after prostatectomy (post-S) with PET images obtained before surgery (pre-S). This method was used to evaluate the merit of {sup 11}C-choline PET/CT for delineation of gross tumour volume (GTV) in prostate cancer (PC). In 28 PC patients, {sup 11}C-choline PET/CT was performed before surgery. PET/CT data were coregistered with the pathology specimens. GTV on PET images (GTV-PET) was outlined automatically and corrected manually. Tumour volume in the prostate (TVP) was delineated manually on the pathology specimens. Based on the coregistered PET/pathology images, the following parameters were assessed: SUVmax and SUVmean in the tumoral and nontumoral prostate (NP), GTV-PET (millilitres) and TVP (millilitres). PET/pathology image coregistration was satisfactory. Mean SUVmax in the TVP was lower than in the NP: 5.0 and 5.5, respectively (p = 0.093). Considering the entire prostate, SUVmax was located in the TVP in two patients, in the TVP and NP in 12 patients and exclusively in NP in 14 patients. Partial overlap the TVP and GTV-PET was seen in 71 % of patients, and complete overlap in 4 %. PET/pathology image coregistration can be used for evaluation of different imaging modalities. {sup 11}C-Choline PET failed to distinguish tumour from nontumour tissue. (orig.)

  8. Differential regulation of renal phospholipase C isoforms by catecholamines.

    Science.gov (United States)

    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A

    1995-01-01

    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam or pramipexole) or antinatriuresis (NE) occurred, the kidneys were removed for analysis of PLC isoform protein expression activity. Western blot analysis revealed that in renal cortical membranes, fenoldopam and pramipexole increased expression of PLC beta 1 and decreased expression of PLC gamma 1; PLC delta was unchanged. In the cytosol, pramipexole and fenoldopam increased expression of both PLC beta 1 and PLC gamma 1. No effects were noted in the medulla. A preferential D1 antagonist, SKF 83742, which by itself had no effect, blocked the effects of pramipexole, thus confirming the involvement of the D1 receptor. In contrast, NE also increased PLC beta 1 but did not affect PLC gamma 1 protein expression in membranes. The changes in PLC isoform expression were accompanied by similar changes in PLC isoform activity. These studies demonstrate for the first time differential regulation of PLC isoforms by catecholamines. PMID:7814630

  9. SURVIV for survival analysis of mRNA isoform variation.

    Science.gov (United States)

    Shen, Shihao; Wang, Yuanyuan; Wang, Chengyang; Wu, Ying Nian; Xing, Yi

    2016-01-01

    The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types. Alternative splicing-based survival predictors consistently outperform gene expression-based survival predictors, and the integration of clinical, gene expression and alternative splicing profiles leads to the best survival prediction. We anticipate that SURVIV will have broad utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq projects. PMID:27279334

  10. Myotonic dystrophy protein kinase (DMPK) and its role in the pathogenesis of myotonic dystrophy 1.

    Science.gov (United States)

    Kaliman, Perla; Llagostera, Esther

    2008-11-01

    Myotonic dystrophy 1 (DM1) is an autosomal, dominant inherited, neuromuscular disorder. The DM1 mutation consists in the expansion of an unstable CTG-repeat in the 3'-untranslated region of a gene encoding DMPK (myotonic dystrophy protein kinase). Clinical expression of DM1 is variable, presenting a progressive muscular dystrophy that affects distal muscles more than proximal and is associated with the inability to relax muscles appropriately (myotonia), cataracts, cardiac arrhythmia, testicular atrophy and insulin resistance. DMPK is a Ser/Thr protein kinase homologous to the p21-activated kinases MRCK and ROCK/rho-kinase/ROK. The most abundant isoform of DMPK is an 80 kDa protein mainly expressed in smooth, skeletal and cardiac muscles. Decreased DMPK protein levels may contribute to the pathology of DM1, as revealed by gene target studies. Here we review current understanding of the structural, functional and pathophysiological characteristics of DMPK. PMID:18583094

  11. Short-Form Ron Promotes Spontaneous Breast Cancer Metastasis through Interaction with Phosphoinositide 3-Kinase

    OpenAIRE

    Liu, Xuemei; Zhao, Ling; DeRose, Yoko S.; Lin, Yi-Chun; Bieniasz, Magdalena; Eyob, Henok; Buys, Saundra S.; Neumayer, Leigh; Welm, Alana L.

    2011-01-01

    Receptor tyrosine kinases (RTKs) have been the subject of intense investigation due to their widespread deregulation in cancer and the prospect of developing targeted therapeutics against these proteins. The Ron RTK has been implicated in tumor aggressiveness and is a developing target for therapy, but its function in tumor progression and metastasis is not fully understood. We examined Ron activity in human breast cancers and found striking predominance of an activated Ron isoform known as s...

  12. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  13. Effects of ethanolamine and choline on thiotepa cellular accumulation and cytotoxicity in L1210 cells

    International Nuclear Information System (INIS)

    The amino alcohols, ethanolamine and choline, were studied for their effects on (a) L1210 cell growth, (b) N,N',N double-prime-triethylenetheiphosphoramide (thiotepa)-induced growth inhibition of L1210 cells, and (c) 14C accumulation by L1210 cells incubated with [14C]thiotepa. Ethanolamine, at concentrations up to 300 microM, had no effect on L1210 cell growth but, at concentrations greater than 300 microM, produced a dose-dependent reduction in cell growth. Choline, at concentrations up to 20 mM, had no effect on L1210 cell growth. Neither ethanolamine, at 250 microM, nor choline, at 10 mM, altered the ability of thiotepa to reduce L1210 cell growth. Neither ethanolamine, at 250 microM, nor choline, at 10 mM, affected the rapid phase of 14C accumulation by L1210 cells incubated with [14C]thiotepa. The slow phase of 14C accumulation by L1210 cells incubated with 5 microM [14C]thiotepa, a process which is 80-85% due to production of [14C]phosphatidylethanolamine, was not affected by 250 microM choline. In contrast, ethanolamine produced a dose-dependent reduction in this slow rate of 14C accumulation. The reduction in the slow rate of 14C accumulation produced by ethanolamine was due almost entirely to a decrease in the accumulation of nonexchangeable 14C. Kinetic analysis of the inhibition of 14C accumulation produced by 25, 100, and 250 microM ethanolamine was compatible with competitive inhibition. Thin layer chromatography of cell extracts showed that the ability of ethanolamine to reduce 14C accumulation by L1210 cells incubated with [14C]thiotepa was due solely to reduction in production of [14C]phosphatidylethanolamine. These results are all compatible with and predicted by our previously described scheme wherein thiotepa enters cells by simple diffusion and serves as a prodrug for aziridine

  14. Vitamin E Isoforms as Modulators of Lung Inflammation

    Directory of Open Access Journals (Sweden)

    Hiam Abdala-Valencia

    2013-10-01

    Full Text Available Asthma and allergic diseases are complex conditions caused by a combination of genetic and environmental factors. Clinical studies suggest a number of protective dietary factors for asthma, including vitamin E. However, studies of vitamin E in allergy commonly result in seemingly conflicting outcomes. Recent work indicates that allergic inflammation is inhibited by supplementation with the purified natural vitamin E isoform α-tocopherol but elevated by the isoform γ-tocopherol when administered at physiological tissue concentrations. In this review, we discuss opposing regulatory effects of α-tocopherol and γ-tocopherol on allergic lung inflammation in clinical trials and in animal studies. A better understanding of the differential regulation of inflammation by isoforms of vitamin E provides a basis towards the design of clinical studies and diets that would effectively modulate inflammatory pathways in lung disease.

  15. Isoforms of murine and human serum amyloid P component

    DEFF Research Database (Denmark)

    Nybo, Mads; Hackler, R; Kold, B;

    1998-01-01

    affect their number. When the acute-phase response was analysed in three mouse strains, CBA/J and C3H/HeN initially showed seven SAP isoforms in serum and C57BL/6 J three or four. The responses in all three strains peaked at day 2 and were normalized within 14 days. On days 2 and 4, CBA/J and C3H......Isoelectric focusing (IEF) and immunofixation of murine serum amyloid P component (SAP), purified and in serum, showed a distinct and strain-dependent isoform pattern with up to seven bands (pI 5.1-5.7). Neuraminidase treatment caused a shift of the isoforms to more basic pI values, but did not...

  16. Oxygenation properties and isoform diversity of snake hemoglobins

    DEFF Research Database (Denmark)

    Storz, Jay F.; Natarajan, Chandrasekhar; Moriyama, Hideaki;

    2015-01-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer- dimer dissociation. However, standardized comparative data are lacking for...... snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying - and -type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the...... oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis...

  17. Laminin isoforms in endothelial and perivascular basement membranes

    Science.gov (United States)

    Yousif, Lema F.; Di Russo, Jacopo; Sorokin, Lydia

    2013-01-01

    Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis. PMID:23263631

  18. Identification and characterization of novel NuMA isoforms

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin, E-mail: petersdu2112@hotmail.com [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Xu, Zhe [Department of Clinical Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); He, Dacheng [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Lu, Guanting, E-mail: guantlv@126.com [Beijing DnaLead Science and Technology Co., LTD, Beijing (China)

    2014-11-21

    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.

  19. Apolipoprotein E isoform-specific effects on lipoprotein receptor processing.

    Science.gov (United States)

    Bachmeier, Corbin; Shackleton, Ben; Ojo, Joseph; Paris, Daniel; Mullan, Michael; Crawford, Fiona

    2014-12-01

    Recent findings indicate an isoform-specific role for apolipoprotein E (apoE) in the elimination of beta-amyloid (Aβ) from the brain. ApoE is closely associated with various lipoprotein receptors, which contribute to Aβ brain removal via metabolic clearance or transit across the blood–brain barrier (BBB). These receptors are subject to ectodomain shedding at the cell surface, which alters endocytic transport and mitigates Aβ elimination. To further understand the manner in which apoE influences Aβ brain clearance, these studies investigated the effect of apoE on lipoprotein receptor shedding. Consistent with prior reports, we observed an increased shedding of the low-density lipoprotein receptor (LDLR) and the LDLR-related protein 1 (LRP1) following Aβ exposure in human brain endothelial cells. When Aβ was co-treated with each apoE isoform, there was a reduction in Aβ-induced shedding with apoE2 and apoE3, while lipoprotein receptor shedding in the presence of apoE4 remained increased. Likewise, intracranial administration of Aβ to apoE-targeted replacement mice (expressing the human apoE isoforms) resulted in an isoform-dependent effect on lipoprotein receptor shedding in the brain (apoE4 > apoE3 > apoE2). Moreover, these results show a strong inverse correlation with our prior work in apoE transgenic mice in which apoE4 animals showed reduced Aβ clearance across the BBB compared to apoE3 animals. Based on these results, apoE4 appears less efficient than other apoE isoforms in regulating lipoprotein receptor shedding, which may explain the differential effects of these isoforms in removing Aβ from the brain. PMID:25015123

  20. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines

    DEFF Research Database (Denmark)

    Nielsen, M; Kaltoft, K; Nordahl, M; Röpke, C; Geisler, C; Mustelin, T; Dobson, P; Svejgaard, A; Odum, N

    1997-01-01

    . Jaks link cytokine receptors to Stats, and abnormal Jak/Stat signaling has been observed in some hemopoietic cancers. In MF tumor cells, a slowly migrating isoform of Stat3, Stat3(sm), was found to be constitutively activated, i.e., (i) Stat3(sm) was constitutively phosphorylated on tyrosine residues......, and tyrosine phosphorylation was not enhanced by growth factor stimulation; (ii) band shift assays and immunoprecipitations of DNA/Stat complexes showed constitutive DNA-binding properties of Stat3(sm); and (iii) Stat3(sm) was constitutively associated with Jak3. The abnormal activation of Stat3(sm......) was highly specific. Thus, neither the fast migrating isoform of Stat3 (Stat3(fm)) nor other Stats (Stat1, Stat2, and Stat4 through Stat6) were constitutively activated. The Jak kinase inhibitor, tyrphostin AG490, blocked the constitutive activation of Stat3(sm) and inhibited spontaneous as well as...

  1. Molecular regulation of skeletal muscle myosin heavy chain isoforms

    OpenAIRE

    Brown, David M.

    2015-01-01

    Research investigating the regulation of muscle fibre type has traditionally been conducted in vivo, analyzing global changes at a whole muscle level. Broadly, this thesis aimed to explore more “molecular” approaches, utilizing molecular and cell biology to understand the expression and regulation of myosin heavy chain (MyHC) isoforms as an indicator of muscle fibre composition. The mRNA expression profile of six MyHC isoform genes during C2C12 myogenesis was elucidated to reveal that the...

  2. A Review of Metallothionein Isoforms and their Role in Pathophysiology

    OpenAIRE

    Senthil kumar M; Manisenthil Kumar KT; Shyam Sunder A; Thirumoorthy N; Ganesh GNK; Chatterjee Malay

    2011-01-01

    Abstract The Metallothionein (MT) is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological s...

  3. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy

    International Nuclear Information System (INIS)

    The aim of this study was to assess the accuracy and clinical impact of [11C]choline PET/CT for localizing occult relapse of prostate adenocarcinoma after radical prostatectomy. Fourty-nine patients with prostate adenocarcinoma, radical prostatectomy, no evidence of metastatic disease, and occult relapse underwent [11C]choline PET/CT. Thirty-six of the patients had biochemical evidence and histological evaluation of local recurrence. Thirteen patients had PSA 11C]choline uptake in the prostatic fossa was visually assessed and graded on a five point scale. Maximum standardized radioactivity uptake value (SUVmax) and the lesion size were measured. A receiver operating characteristic (ROC) analysis was performed and the clinical impact of the PET/CT study was determined. [11C]choline PET/CT was true positive in 23/33 patients and true negative in 12/13 controls. SUVmax of local recurrence was 3.0 (median, range 0.6-7.4) and 1.1 (0.4-1.6) in controls (p = 0.0002). Lesion size was 1.7 cm (range 0.9-3.7). Area under the ROC curve for detecting relapse was 0.90 ± 0.05 and 0.83 ± 0.06 for visual evaluation and SUVmax, respectively. Sensitivity and specificity of [11C]choline PET/CT were 0.73 and 0.88, respectively. [11C]choline PET/CT identified 12/17 (71%) patients with a favourable biochemical response to local radiotherapy at 2 year (median, 0.8-3.2 range) follow-up. Focally increased [11C]choline uptake in the prostatic bed reliably predicted local low volume occult relapsing prostate adenocarcinoma after radical prostatectomy and identified 71% of patients with a favourable biochemical response to local radiotherapy. (orig.)

  4. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner.

    Directory of Open Access Journals (Sweden)

    Jee-Hyun Um

    Full Text Available BACKGROUND: AMP protein kinase (AMPK plays an important role in food intake and energy metabolism, which are synchronized to the light-dark cycle. In vitro, AMPK affects the circadian rhythm by regulating at least two clock components, CKIα and CRY1, via direct phosphorylation. However, it is not known whether the catalytic activity of AMPK actually regulates circadian rhythm in vivo. METHODOLOGY/PRINCIPAL FINDING: THE CATALYTIC SUBUNIT OF AMPK HAS TWO ISOFORMS: α1 and α2. We investigate the circadian rhythm of behavior, physiology and gene expression in AMPKα1-/- and AMPKα2-/- mice. We found that both α1-/- and α2-/- mice are able to maintain a circadian rhythm of activity in dark-dark (DD cycle, but α1-/- mice have a shorter circadian period whereas α2-/- mice showed a tendency toward a slightly longer circadian period. Furthermore, the circadian rhythm of body temperature was dampened in α1-/- mice, but not in α2-/- mice. The circadian pattern of core clock gene expression was severely disrupted in fat in α1-/- mice, but it was severely disrupted in the heart and skeletal muscle of α2-/- mice. Interestingly, other genes that showed circadian pattern of expression were dysreguated in both α1-/- and α2-/- mice. The circadian rhythm of nicotinamide phosphoryl-transferase (NAMPT activity, which converts nicotinamide (NAM to NAD+, is an important regulator of the circadian clock. We found that the NAMPT rhythm was absent in AMPK-deficient tissues and cells. CONCLUSION/SIGNIFICANCE: This study demonstrates that the catalytic activity of AMPK regulates circadian rhythm of behavior, energy metabolism and gene expression in isoform- and tissue-specific manners.

  5. Capillary Isoelectric Focusing of Akt Isoforms Identifies Highly Dynamic Phosphorylation in Neuronal Cells and Brain Tissue.

    Science.gov (United States)

    Schrötter, Sandra; Leondaritis, George; Eickholt, Britta J

    2016-05-01

    The PI3K/PTEN/Akt pathway has been established as a core signaling pathway that is crucial for the integration of neurons into neuronal circuits and the maintenance of the architecture and function of neurons in the adult brain. Akt1-3 kinases are specifically activated by two phosphorylation events on residues Thr(308) and Ser(473) upon growth factor signaling, which subsequently phosphorylate a vast cohort of downstream targets. However, we still lack a clear understanding of the complexity and regulation of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and the developing brain and identify previously undescribed features of Akt phosphorylation and activation. First, we show that the accumulation of multiple phosphorylation events on Akt forms occur concurrently with Ser(473) and Thr(308) phosphorylation upon acute PI3K activation and provide evidence for uncoupling of Ser(473) and Thr(308) phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. Second, we detect a transient shift in Akt isoform phosphorylation and activation pattern during early postnatal brain development, at stages corresponding to synapse development and maturation. Third, we show differential sensitivities of Ser(473)-Akt species to PTEN deletion in mature neurons, which suggests inherent differences in the Akt pools that are accessible to growth factors as compared with the pools that are controlled by PTEN. Our study demonstrates the presence of complex phosphorylation events of Akt in a time- and signal-dependent manner in neurons. PMID:26945062

  6. Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms

    Directory of Open Access Journals (Sweden)

    Yu Jun

    2009-03-01

    Full Text Available Abstract Background Tarantula has been used as a model system for studying skeletal muscle structure and function, yet data on the genes expressed in tarantula muscle are lacking. Results We constructed a cDNA library from Aphonopelma sp. (Tarantula skeletal muscle and got 2507 high-quality 5'ESTs (expressed sequence tags from randomly picked clones. EST analysis showed 305 unigenes, among which 81 had more than 2 ESTs. Twenty abundant unigenes had matches to skeletal muscle-related genes including actin, myosin, tropomyosin, troponin-I, T and C, paramyosin, muscle LIM protein, muscle protein 20, a-actinin and tandem Ig/Fn motifs (found in giant sarcomere-related proteins. Matches to myosin light chain kinase and calponin were also identified. These results support the existence of both actin-linked and myosin-linked regulation in tarantula skeletal muscle. We have predicted full-length as well as partial cDNA sequences both experimentally and computationally for myosin heavy and light chains, actin, tropomyosin, and troponin-I, T and C, and have deduced the putative peptides. A preliminary analysis of the structural and functional properties was also carried out. Sequence similarities suggested multiple isoforms of most myofibrillar proteins, supporting the generality of multiple isoforms known from previous muscle sequence studies. This may be related to a mix of muscle fiber types. Conclusion The present study serves as a basis for defining the transcriptome of tarantula skeletal muscle, for future in vitro expression of tarantula proteins, and for interpreting structural and functional observations in this model species.

  7. The β isoform of GSK3 mediates podocyte autonomous injury in proteinuric glomerulopathy.

    Science.gov (United States)

    Li, Changbin; Ge, Yan; Dworkin, Lance; Peng, Ai; Gong, Rujun

    2016-05-01

    Converging evidence points to glycogen synthase kinase (GSK) 3 as a key player in the pathogenesis of podocytopathy and proteinuria. However, it remains unclear if GSK3 is involved in podocyte autonomous injury in glomerular disease. In normal kidneys, the β isoform of GSK3 was found to be the major GSK3 expressed in glomeruli and intensely stained in podocytes. GSK3β expression in podocytes was markedly elevated in experimental or human proteinuric glomerulopathy. Podocyte-specific somatic ablation of GSK3β in adult mice attenuated proteinuria and ameliorated podocyte injury and glomerular damage in experimental adriamycin (ADR) nephropathy. Mechanistically, actin cytoskeleton integrity in podocytes was largely preserved in GSK3β knockout mice following ADR insult, concomitant with a correction of podocyte hypermotility and lessened phosphorylation and activation of paxillin, a focal adhesion-associated adaptor protein. In addition, GSK3β knockout diminished ADR-induced NFκB RelA/p65 phosphorylation selectively at serine 467; suppressed de novo expression by podocytes of NFκB-dependent podocytopathic mediators, including B7-1, cathepsin L, and MCP-1; but barely affected the induction of NFκB target pro-survival factors, such as Bcl-xL. Moreover, the ADR-elicited podocytopenia and podocyte death were significantly attenuated in GSK3β knockout mice, associated with protection against podocyte mitochondrial damage and reduced phosphorylation and activation of cyclophilin F, a structural component of mitochondria permeability transition pores. Overall, our findings suggest that the β isoform of GSK3 mediates autonomous podocyte injury in glomerulopathy by integrating multiple podocytopathic signalling pathways. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:26876299

  8. Pyruvate kinase blood test

    Science.gov (United States)

    ... break down faster than normal, a condition called hemolytic anemia . This test helps diagnose pyruvate kinase deficiency (PKD) . ... Pa: Elsevier Saunders; 2011:chap 32. Gallagher PG. Hemolytic anemias: red cell membrane and metabolic defects In: Goldman ...

  9. Exposure to chronic psychosocial stress and corticosterone in the rat : Effects on spatial discrimination learning and hippocampal protein kinase C gamma immunoreactivity

    NARCIS (Netherlands)

    Krugers, HJ; Douma, BRK; Bohus, B; Korf, J; Luiten, PGM; Krugers, Harm J.

    1997-01-01

    Previous reports have demonstrated a striking increase of the immunoreactivity of the gamma-isoform of protein kinase C (PKC gamma-ir) in Ammon's horn and dentate gyrus (DC) of rodent hippocampus after training in a spatial orientation task. In the present study, we investigated how 8 days of psycho

  10. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics

    International Nuclear Information System (INIS)

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features

  11. Structural studies on choline-carboxylate bio-ionic liquids by x-ray scattering and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, Luana; Ramondo, Fabio, E-mail: fabio.ramondo@univaq.it [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, L’Aquila I-67100 (Italy); Caminiti, Ruggero; Campetella, Marco; Di Luca, Andrea; Gontrani, Lorenzo, E-mail: lorenzo.gontrani@uniroma1.it [Department of Chemistry, University of Rome ‘La Sapienza’, P.le Aldo Moro 5, I-00185 Rome (Italy)

    2015-09-21

    We report a X-ray diffraction and molecular dynamics study on three choline-based bio-ionic liquids, choline formate, [Ch] [For], choline propanoate, [Ch][Pro], and choline butanoate, [Ch][But]. For the first time, this class of ionic liquids has been investigated by X-ray diffraction. Experimental and theoretical structure factors have been compared for each term of the series. Local structural organization has been obtained from ab initio calculations through static models of isolated ion pairs and dynamic simulations of small portions of liquids through twelve, ten, and nine ion pairs for [Ch][For], [Ch][Pro], and [Ch][But], respectively. All the theoretical models indicate that cations and anions are connected by strong hydrogen bonding and form stable ion pairs in the liquid that are reminiscent of the static ab initio ion pairs. Different structural aspects may affect the radial distribution function, like the local structure of ion pairs and the conformation of choline. When small portions of liquids have been simulated by dynamic quantum chemical methods, some key structural features of the X-ray radial distribution function were well reproduced whereas the classical force fields here applied did not entirely reproduce all the observed structural features.

  12. Role of p53 isoforms and aggregations in cancer.

    Science.gov (United States)

    Kim, SeJin; An, Seong Soo A

    2016-06-01

    p53 is a master regulatory protein that is involved in diverse cellular metabolic processes such as apoptosis, DNA repair, and cell cycle arrest. The protective function of p53 (in its homotetrameric form) as a tumor suppressor is lost in more than 50% of human cancers.Despite considerable experimental evidence suggesting the presence of multiple p53 states, it has been difficult to correlate the status of p53 with cancer response to treatments and clinical outcomes, which suggest the importance of complex but essential p53 regulatory pathways.Recent studies have indicated that the expression pattern of p53 isoforms may play a crucial role in regulating normal and cancer cell fates in response to diverse stresses. The human TP53 gene encodes at least 12 p53 isoforms, which are produced in normal tissue through alternative initiation of translation, usage of alternative promoters, and alternative splicing. Furthermore, some researchers have suggested that the formation of mutant p53 aggregates may be associated with cancer pathogenesis due to loss-of function (LoF), dominant-negative (DN), and gain-of function (GoF) effects.As different isoforms or the aggregation state of p53 may influence tumorigenesis, this review aims to examine the correlation of p53 isoforms and aggregation with cancer. PMID:27368003

  13. APPRIS: annotation of principal and alternative splice isoforms.

    Science.gov (United States)

    Rodriguez, Jose Manuel; Maietta, Paolo; Ezkurdia, Iakes; Pietrelli, Alessandro; Wesselink, Jan-Jaap; Lopez, Gonzalo; Valencia, Alfonso; Tress, Michael L

    2013-01-01

    Here, we present APPRIS (http://appris.bioinfo.cnio.es), a database that houses annotations of human splice isoforms. APPRIS has been designed to provide value to manual annotations of the human genome by adding reliable protein structural and functional data and information from cross-species conservation. The visual representation of the annotations provided by APPRIS for each gene allows annotators and researchers alike to easily identify functional changes brought about by splicing events. In addition to collecting, integrating and analyzing reliable predictions of the effect of splicing events, APPRIS also selects a single reference sequence for each gene, here termed the principal isoform, based on the annotations of structure, function and conservation for each transcript. APPRIS identifies a principal isoform for 85% of the protein-coding genes in the GENCODE 7 release for ENSEMBL. Analysis of the APPRIS data shows that at least 70% of the alternative (non-principal) variants would lose important functional or structural information relative to the principal isoform. PMID:23161672

  14. Antagonistic functions of LMNA isoforms in energy expenditure and lifespan.

    Science.gov (United States)

    Lopez-Mejia, Isabel C; de Toledo, Marion; Chavey, Carine; Lapasset, Laure; Cavelier, Patricia; Lopez-Herrera, Celia; Chebli, Karim; Fort, Philippe; Beranger, Guillaume; Fajas, Lluis; Amri, Ez Z; Casas, Francois; Tazi, Jamal

    2014-05-01

    Alternative RNA processing of LMNA pre-mRNA produces three main protein isoforms, that is, lamin A, progerin, and lamin C. De novo mutations that favor the expression of progerin over lamin A lead to Hutchinson-Gilford progeria syndrome (HGPS), providing support for the involvement of LMNA processing in pathological aging. Lamin C expression is mutually exclusive with the splicing of lamin A and progerin isoforms and occurs by alternative polyadenylation. Here, we investigate the function of lamin C in aging and metabolism using mice that express only this isoform. Intriguingly, these mice live longer, have decreased energy metabolism, increased weight gain, and reduced respiration. In contrast, progerin-expressing mice show increased energy metabolism and are lipodystrophic. Increased mitochondrial biogenesis is found in adipose tissue from HGPS-like mice, whereas lamin C-only mice have fewer mitochondria. Consistently, transcriptome analyses of adipose tissues from HGPS and lamin C-only mice reveal inversely correlated expression of key regulators of energy expenditure, including Pgc1a and Sfrp5. Our results demonstrate that LMNA encodes functionally distinct isoforms that have opposing effects on energy metabolism and lifespan in mammals. PMID:24639560

  15. Comparison of liver oncogenic potential among human RAS isoforms

    Science.gov (United States)

    Chung, Sook In; Moon, Hyuk; Ju, Hye-Lim; Kim, Dae Yeong; Cho, Kyung Joo; Ribback, Silvia; Dombrowski, Frank; Calvisi, Diego F.; Ro, Simon Weonsang

    2016-01-01

    Mutation in one of three RAS genes (i.e., HRAS, KRAS, and NRAS) leading to constitutive activation of RAS signaling pathways is considered a key oncogenic event in human carcinogenesis. Whether activated RAS isoforms possess different oncogenic potentials remains an unresolved question. Here, we compared oncogenic properties among RAS isoforms using liver-specific transgenesis in mice. Hydrodynamic transfection was performed using transposons expressing short hairpin RNA downregulating p53 and an activated RAS isoform, and livers were harvested at 23 days after gene delivery. No differences were found in the hepatocarcinogenic potential among RAS isoforms, as determined by both gross examination of livers and liver weight per body weight ratio (LW/BW) of mice expressing HRASQ61L, KRAS4BG12V and NRASQ61K. However, the tumorigenic potential differed significantly between KRAS splicing variants. The LW/BW ratio in KRAS4AG12V mice was significantly lower than in KRAS4BG12V mice (p mice lived significantly longer than KRRAS4BG12V mice (p mice displayed higher expression of the p16INK4A tumor suppressor when compared with KRAS4BG12V tumors. Forced overexpression of p16INK4A significantly reduced tumor growth in KRAS4BG12V mice, suggesting that upregulation of p16INK4A by KRAS4AG12V presumably delays tumor development driven by the latter oncogene. PMID:26799184

  16. Tropomyosin-binding properties modulate competition between tropomodulin isoforms.

    Science.gov (United States)

    Colpan, Mert; Moroz, Natalia A; Gray, Kevin T; Cooper, Dillon A; Diaz, Christian A; Kostyukova, Alla S

    2016-06-15

    The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities. PMID:27091317

  17. Cloning, expression and alternative splicing of the novel isoform of hTCP11 gene

    DEFF Research Database (Denmark)

    Ma, Yong-xin; Zhang, Si-zhong; Wu, Qia-qing;

    2003-01-01

    To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing.......To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing....

  18. A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts

    Directory of Open Access Journals (Sweden)

    Knight James DR

    2012-03-01

    Full Text Available Abstract Background The p38α mitogen-activated protein kinase (MAPK is a critical mediator of myoblast differentiation, and does so in part through the phosphorylation and regulation of several transcription factors and chromatin remodelling proteins. However, whether p38α is involved in processes other than gene regulation during myogenesis is currently unknown, and why other p38 isoforms cannot compensate for its loss is unclear. Methods To further characterise the involvement of p38α during myoblast differentiation, we developed and applied a simple technique for identifying relevant in vivo kinase substrates and their phosphorylation sites. In addition to identifying substrates for one kinase, the technique can be used in vitro to compare multiple kinases in the same experiment, and we made use of this to study the substrate specificities of the p38α and β isoforms. Results Applying the technique to p38α resulted in the identification of seven in vivo phosphorylation sites on six proteins, four of which are cytoplasmic, in lysate derived from differentiating myoblasts. An in vitro comparison with p38β revealed that substrate specificity does not discriminate these two isoforms, but rather that their distinguishing characteristic appears to be cellular localisation. Conclusion Our results suggest p38α has a novel cytoplasmic role during myogenesis and that its unique cellular localisation may be why p38β and other isoforms cannot compensate for its absence. The substrate-finding approach presented here also provides a necessary tool for studying the hundreds of protein kinases that exist and for uncovering the deeper mechanisms of phosphorylation-dependent cell signalling.

  19. Automated evaluation of protein binding affinity of anti-inflammatory choline based ionic liquids.

    Science.gov (United States)

    Ribeiro, Rosa; Pinto, Paula C A G; Azevedo, Ana M O; Bica, Katharina; Ressmann, Anna K; Reis, Salette; Saraiva, M Lúcia M F S

    2016-04-01

    In this work, an automated system for the study of the interaction of drugs with human serum albumin (HSA) was developed. The methodology was based on the quenching of the intrinsic fluorescence of HSA by binding of the drug to one of its binding sites. The fluorescence quenching assay was implemented in a sequential injection analysis (SIA) system and the optimized assay was applied to ionic liquids based on the association of non-steroidal anti-inflammatory drugs with choline (IL-API). In each cycle, 100µL of HSA and 100µL of IL-API (variable concentration) were aspirated at a flow rate of 1mLmin(-1) and then sent through the reaction coil to the detector where the fluorescence intensity was measured. In the optimized conditions the effect of increasing concentrations of choline ketoprofenate and choline naproxenate (and respective starting materials: ketoprofen and naproxen) on the intrinsic fluorescence of HSA was studied and the dissociation constants (Kd) were calculated by means of models of drug-protein binding in the equilibrium. The calculated Kd showed that all the compounds bind strongly to HSA (Kd<100µmolL(-1)) and that the use of the drugs in the IL format does not affect or can even improve their HSA binding. The obtained results were compared with those provided by a conventional batch assay and the relative errors were lower than 4.5%. The developed SIA methodology showed to be robust and exhibited good repeatability in all the assay conditions (rsd<6.5%). PMID:26838377

  20. Development and Application of a High-Throughput Fluorescence Polarization Assay to Target Pim Kinases.

    Science.gov (United States)

    Lee, Seongho; Hong, Victor Sukbong

    2016-01-01

    Pim proteins consisting of three isoforms (Pim-1, Pim-2, and Pim-3) are a family of serine/threonine kinases that regulate fundamental cellular responses such as cell growth, differentiation, and apoptosis. Overexpression of the Pim kinases has been linked to a wide variety of hematological and solid tumors. Thus, all three Pim kinases have been studied as promising targets for anticancer therapy. Here, we report on the development and optimization of an immobilized metal ion affinity partitioning (IMAP) fluorescence polarization (FP) method for Pim kinases. In this homogeneous 384-well assay method, fluorescein-labeled phosphopeptides are captured on cationic nanoparticles through interactions with immobilized trivalent metals, resulting in high polarization values. The apparent Km values for adenosine triphosphate (ATP) were determined to be 45 ± 7, 6.4 ± 2, and 29 ± 5 μM for Pim-1, Pim-2, and Pim-3, respectively. The assay yielded robustness with Z'-factors of >0.75 and low day-to-day variability (CV <5%) for all three Pim kinases. The IMAP FP assay was further validated by determining IC50 values for staurosporine and a known Pim inhibitor. We have also used an IMAP FP assay to examine whether compound 1, an ATP mimetic inhibitor designed through structure-based drug design, is indeed an ATP-competitive inhibitor of Pim kinases. Kinetic analysis based on Lineweaver-Burk plots showed that the inhibition mechanism of compound 1 is ATP competitive against all three Pim isoforms. The optimized IMAP assay for Pim kinases not only allows for high-throughput screening but also facilitates the characterization of novel Pim inhibitors for drug development. PMID:26824666

  1. Choline Acetyltransferase Activity in Striatum of Neonatal Rats Increased by Nerve Growth Factor

    Science.gov (United States)

    Mobley, William C.; Rutkowski, J. Lynn; Tennekoon, Gihan I.; Buchanan, Karen; Johnston, Michael V.

    1985-07-01

    Some neurodegenerative disorders may be caused by abnormal synthesis or utilization of trophic molecules required to support neuronal survival. A test of this hypothesis requires that trophic agents specific for the affected neurons be identified. Cholinergic neurons in the corpus striatum of neonatal rats were found to respond to intracerebroventricular administration of nerve growth factor with prominent, dose-dependent, selective increases in choline acetyltransferase activity. Cholinergic neurons in the basal forebrain also respond to nerve growth factor in this way. These actions of nerve growth factor may indicate its involvement in the normal function of forebrain cholinergic neurons as well as in neurodegenerative disorders involving such cells.

  2. An Incidental Renal Oncocytoma: 18F-Choline PET/MRI

    Directory of Open Access Journals (Sweden)

    Andrew Mallia

    2016-04-01

    Full Text Available PET/MRI is a new hybrid imaging modality and has the potential to become a powerful imaging tool. It is currently one of the most active areas of research in diagnostic imaging. The characterisation of an incidental renal lesion can be difficult. In particular, the differentiation of an oncocytoma from other solid renal lesions such as renal cell carcinoma (RCC represents a diagnostic challenge. We describe the detection of an incidental renal oncocytoma in a 79-year gentleman who underwent a re-staging 18F-Choline PET/MRI following a rise in PSA values (4.07, nadir 1.3.

  3. Full-Length Human Placental sFlt-1-e15a Isoform Induces Distinct Maternal Phenotypes of Preeclampsia in Mice

    OpenAIRE

    Gabor Szalai; Roberto Romero; Tinnakorn Chaiworapongsa; Yi Xu; Bing Wang; Hyunyoung Ahn; Zhonghui Xu; Po Jen Chiang; Birgitta Sundell; Rona Wang; Yang Jiang; Olesya Plazyo; Mary Olive; Adi L Tarca; Zhong Dong

    2015-01-01

    Objective Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in no...

  4. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors

    DEFF Research Database (Denmark)

    Khan, N.; Jeffers, M.; Kumar, S.;

    2008-01-01

    ) against a panel of rhHDAC (recombinant human HDAC) isoforms. Eight rhHDACs were expressed using a baculoviral system, and a Fluor de Lystrade mark (Biomol International) HDAC assay was optimized for each purified isoform. The potency and selectivity of ten HDACs on class I isoforms (rhHDAC1, rhHDAC2, rh...

  5. Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein

    International Nuclear Information System (INIS)

    The kinase domain (residues 1–331) of human tau-tubulin kinase 2 was expressed in insect cells, purified and crystallized. Diffraction data have been collected to 2.9 Å resolution. Tau-tubulin kinase 2 (TTBK2) is a Ser/Thr kinase that putatively phosphorylates residues Ser208 and Ser210 (numbered according to a 441-residue human tau isoform) in tau protein. Functional analyses revealed that a recombinant kinase domain (residues 1–331) of human TTBK2 expressed in insect cells with a baculovirus overexpression system retains kinase activity for tau protein. The kinase domain of TTBK2 was crystallized using the hanging-drop vapour-diffusion method. The crystals belong to space group P212121, with unit-cell parameters a = 55.6, b = 113.7, c = 117.3 Å, α = β = γ = 90.0°. Diffraction data were collected to 2.9 Å resolution using synchrotron radiation at BL24XU of SPring-8

  6. Dietary choline regulates antibacterial activity, inflammatory response and barrier function in the gills of grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Zhao, Hua-Fu; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-05-01

    An 8-week feeding trial was conducted to determine the effects of graded levels of choline (197-1795 mg/kg) on antibacterial properties, inflammatory status and barrier function in the gills of grass carp. The results showed that optimal dietary choline supplementation significantly improved lysozyme and acid phosphatase activities, complement component 3 (C3) content, and the liver expressed antimicrobial peptide 2 and Hepcidin mRNA levels in the gills of fish (P C3 content and AHR activity, the dietary choline requirements for young grass carp (266.5-787.1 g) were estimated to be 1191.0 and 1555.0 mg/kg diet, respectively. PMID:26988287

  7. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3ζ protein

    International Nuclear Information System (INIS)

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3ζ. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3ζ is ∼3-folds higher than that between unphosphorylated 4R-tau and 14-3-3ζ. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3ζ to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3ζ. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3ζ exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3ζ suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.

  8. A novel oncogenic BTK isoform is overexpressed in colon cancers and required for RAS-mediated transformation

    DEFF Research Database (Denmark)

    Grassilli, E; Pisano, F; Cialdella, A;

    2016-01-01

    tissues correlates with ERK1/2 activation. Moreover, p65BTK inhibition affects growth and survival of colon cancer cells. Our data reveal that BTK, via p65BTK expression, is a novel and powerful oncogene acting downstream of the RAS/MAPK pathway and suggest that its targeting may be a promising......Bruton's tyrosine kinase (BTK) is essential for B-cell proliferation/differentiation and it is generally believed that its expression and function are limited to bone marrow-derived cells. Here, we report the identification and characterization of p65BTK, a novel isoform abundantly expressed in...... colon carcinoma cell lines and tumour tissue samples. p65BTK protein is expressed, through heterogeneous nuclear ribonucleoprotein K (hnRNPK)-dependent and internal ribosome entry site-driven translation, from a transcript containing an alternative first exon in the 5'-untranslated region, and is post...

  9. Androgen deprivation therapy influences the uptake of 11C-choline in patients with recurrent prostate cancer: the preliminary results of a sequential PET/CT study

    International Nuclear Information System (INIS)

    The influence of androgen deprivation therapy (ADT) on 11C-choline uptake in patients with prostate cancer (PC) has not yet been clarified. The aim of our study was to investigate this issue by means of sequential 11C-choline positron emission tomography (PET)/CT in patients with recurrent PC. We retrospectively studied 14 recurrent PC patients (mean age 67 years, range 55-82) during follow-up after radical prostatectomy (RP) with rising serum prostate-specific antigen (PSA) levels. All patients had undergone at least two consecutive 11C-choline PET/CT scans: the first 11C-choline PET/CT before commencing ADT and the second 11C-choline PET/CT after 6 months of ADT administration. The mean serum PSA level before ADT was 17.0 ± 44.1 ng/ml. After 6 months of ADT administration the PSA value significantly decreased in comparison to baseline (PSA = 2.4 ± 3.1 ng/ml, p 11C-choline PET/CT for metastatic spread, while after 6 months of ADT administration in 9 of 14 patients 11C-choline PET/CT became negative. These preliminary results suggest that ADT significantly reduces 11C-choline uptake in androgen-sensitive PC patients. (orig.)

  10. Pre-Conditioning with CDP-Choline Attenuates Oxidative Stress-Induced Cardiac Myocyte Death in a Hypoxia/Reperfusion Model

    Directory of Open Access Journals (Sweden)

    Héctor González-Pacheco

    2014-01-01

    Full Text Available Background. CDP-choline is a key intermediate in the biosynthesis of phosphatidylcholine, which is an essential component of cellular membranes, and a cell signalling mediator. CDP-choline has been used for the treatment of cerebral ischaemia, showing beneficial effects. However, its potential benefit for the treatment of myocardial ischaemia has not been explored yet. Aim. In the present work, we aimed to evaluate the potential use of CDP-choline as a cardioprotector in an in vitro model of ischaemia/reperfusion injury. Methods. Neonatal rat cardiac myocytes were isolated and subjected to hypoxia/reperfusion using the coverslip hypoxia model. To evaluate the effect of CDP-choline on oxidative stress-induced reperfusion injury, the cells were incubated with H2O2 during reperfusion. The effect of CDP-choline pre- and postconditioning was evaluated using the cell viability MTT assay, and the proportion of apoptotic and necrotic cells was analyzed using the Annexin V determination by flow cytometry. Results. Pre- and postconditioning with 50 mg/mL of CDP-choline induced a significant reduction of cells undergoing apoptosis after hypoxia/reperfusion. Preconditioning with CDP-choline attenuated postreperfusion cell death induced by oxidative stress. Conclusion. CDP-choline administration reduces cell apoptosis induced by oxidative stress after hypoxia/reperfusion of cardiac myocytes. Thus, it has a potential as cardioprotector in ischaemia/reperfusion-injured cardiomyocytes.

  11. PET as a possible indicator of the prognosis of head and neck squamous cell carcinoma. Comparative analysis of FDG-PET and choline-PET

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) using 18F-fluoro-2-deoxy-D-glucose (FDG), which reflects glucose metabolism, has been reported to be useful for staging head and neck cancers and for investigating the primary lesion of unknown origin, double cancer, recurrence and residual cancer after treatment. It has also been reported that the degree of accumulation before treatment may be utilized as a prognostic factor. The usefulness of PET using 11C-choline, which reflects cell membrane phospholipid metabolism, for cancer diagnosis has been reported as well. In this study, we investigated differences in the prognosis based on the degree of 11C-choline-PET and FDG-PET accumulation. 11C-choline-PET and FDG-PET were taken before treatment in patients with squamous cell carcinoma of the head and neck. To indicate the degree of accumulation, the standard uptake value (SUV) was used. Choline and FDG were accumulated in the primary lesion in all patients. The SUVs in both choline and FDG were higher in patients who responded poorly to primary treatment than in those who responded well. The cumulative survival rate of patients with a high SUV of choline was significantly lower than that of patients with a low SUV of choline. SUV of choline-PET before treatment may be utilized as a prognostic factor. (author)

  12. Differential regulation of macropinocytosis by Abi1/Hssh3bp1 isoforms.

    Directory of Open Access Journals (Sweden)

    Patrycja M Dubielecka

    Full Text Available BACKGROUND: Macropinocytosis, which is a constitutive cellular process of fluid and macromolecule uptake, is regulated by actin cytoskeleton rearrangements near the plasma membrane. Activation of Rac1, which is proposed to act upstream of the actin polymerization regulatory Wave 2 complex, has been found to correlate with enhanced macropinocytosis. One of the components of the Wave 2 complex is Abi1. Multiple, alternatively spliced isoforms of Abi1 are expressed in mammalian cells, but the functional significance of the various isoforms is unknown. PRINCIPAL FINDINGS: Here, using flow cytometric assay analysis for Alexa Fluor 647, we demonstrate that Abi1 isoforms 2 and 3 differentially regulate macropinocytosis. LNCaP cells expressing isoform 3 had increased macropinocytic uptake that correlated with enhanced cell spreading and higher Rac1 activation in comparison to cells expressing isoform 2. Isoform 2 expressing cells had decreased macropinocytic uptake, but demonstrated greater sensitivity to Rac1 activation. Moreover, more isoform 2 was localized within the cytoplasm in comparison to isoform 3, which was more associated with the plasma membrane. Activated Rac1 was found to specifically bind to a site in exon 10 of isoform 2 in vitro. Because of alternative mRNA splicing, exon 10 is absent from isoform 3, precluding similar binding of activated Rac1. Both isoforms, however, bound to inactive Rac1 through the same non-exon 10 site. Thus, Abi1 isoform 3-containing Wave 2 complex exhibited a differential binding to activated vs. inactive Rac1, whereas isoform 2-containing Wave 2 complex bound activated or inactive Rac1 comparably. CONCLUSION: Based on these observations, we postulate that Abi1 isoforms differentially regulate macropinocytosis as a consequence of their different relative affinities for activated Rac1 in Wave 2 complex. These findings also raise the possibility that isoform-specific roles occur in other Abi1 functions.

  13. From Phosphosites to Kinases

    DEFF Research Database (Denmark)

    Munk, Stephanie; Refsgaard, Jan C; Olsen, Jesper V;

    2016-01-01

    Kinases play a pivotal role in propagating the phosphorylation-mediated signaling networks in living cells. With the overwhelming quantities of phosphoproteomics data being generated, the number of identified phosphorylation sites (phosphosites) is ever increasing. Often, proteomics investigations...... sequence motifs, mostly based on large scale in vivo and in vitro experiments. The context of the kinase and the phosphorylated proteins in a biological system is equally important for predicting association between the enzymes and substrates, an aspect that is also being tackled with available...

  14. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    Science.gov (United States)

    Guillaudeau, Angélique; Durand, Karine; Bessette, Barbara; Chaunavel, Alain; Pommepuy, Isabelle; Projetti, Fabrice; Robert, Sandrine; Caire, François; Rabinovitch-Chable, Hélène; Labrousse, François

    2012-01-01

    The EGFR (epidermal growth factor receptor) is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a), normal and tumor cells produce soluble EGFR isoforms (sEGFR) that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2), 3 (v3) and 4 (v4) mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab) and intracellular domain targeted antibody (ICD-Ab). EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade), histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS). PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types. PMID:22623992

  15. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    Directory of Open Access Journals (Sweden)

    Angélique Guillaudeau

    Full Text Available The EGFR (epidermal growth factor receptor is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a, normal and tumor cells produce soluble EGFR isoforms (sEGFR that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2, 3 (v3 and 4 (v4 mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab and intracellular domain targeted antibody (ICD-Ab. EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade, histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS. PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types.

  16. In vitro inhibition of choline acetyltransferase by a series of 2-benzylidene-3-quinuclidinones

    International Nuclear Information System (INIS)

    Ten substituted 2-benzylidene-3-quinuclidinones were synthesized and evaluated for their relative potency as in vitro inhibitors of choline acetyltransferase (ChAT). Acetylcholine (ACh) synthesis was followed radiometrically by the incorporation of labeled acetate originating from 14C-acetyl-CoA. Woolf-Augustinsson-Hofstee data analysis was used to calculate Vmax, Km, and Ki values. The inhibition was found to be noncompetitive or uncompetitive with respect to choline. Quantitative structure activity relationship correlations demonstrated a primary dependence on κ-σ, as well as steric properties of the substituted benzene ring. Additional radiometric and spectrophotometric were performed with 2-(3'-methyl)-benzylidene-3-quinuclidinone, one of the more potent analogs, to further elucidate the inhibitory mechanism. ChAT-mediated cleavage of ACh was measured spectrophotometrically by following the appearance of NADH at 340 nanometers in an enzyme coupled assay. Lineweaver-Burk analysis indicated mixed or uncompetitive inhibition with respect to both substrates of the forward reaction, suggesting interference with a rate limiting step

  17. Electrochemical synthesis of nanosized TiO2 nanopowder involving choline chloride based ionic liquids

    International Nuclear Information System (INIS)

    Highlights: • TiO2 nanopowder electrochemically prepared using choline chloride based ionic liquids. • The new proposed method allowed high anodic synthesis efficiencies of minimum 92%. • High surface area of the electrochemically synthesized titania nanopowders. • Enhanced photocatalytic activity. - Abstract: The paper presents some experimental results regarding the electrochemical synthesis of TiO2 nanopowders through anodic dissolution of Ti metal in choline chloride based eutectic mixtures (DES). A detailed characterization of the obtained titania has been performed, using various techniques, including XRD, Raman spectroscopy, XPS, SEM associated with EDX analysis, BET and UV–vis diffuse reflectance spectra. The anodic behavior of Ti electrode in DES has been also investigated. The photoreactivity of the synthesized materials was evaluated for the degradation of Orange II dye under UV (λ = 365 nm) and visible light irradiation. An anodic synthesis efficiency of minimum 92% has been determined. The as-synthesized TiO2 showed amorphous structure and a calcination post-treatment at temperatures between 400 and 600 °C yielded anatase. The anodically obtained nanocrystalline oxides have crystallite sizes of 8–18 nm, a high surface area and enhanced photocatalytic effect

  18. Overexpression, purification and crystallization of a choline-binding protein CbpI from Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, Neil G., E-mail: neison@chem.gla.ac.uk; Riboldi-Tunicliffe, Alan [Department of Chemistry and WestCHEM, Glasgow Biomedical Research Centre (GBRC), University of Glasgow, 120 University Place, Glasgow G12 8TA,Scotland (United Kingdom); Mitchell, Timothy J. [Division of Infection and Immunity (IBLS), Glasgow Biomedical Research Centre (GBRC), University of Glasgow, 120 University Place, Glasgow G12 8TA,Scotland (United Kingdom); Isaacs, Neil W. [Department of Chemistry and WestCHEM, Glasgow Biomedical Research Centre (GBRC), University of Glasgow, 120 University Place, Glasgow G12 8TA,Scotland (United Kingdom)

    2006-07-01

    The choline-binding protein CbpI from S. pneumoniae has been purified and crystallized and diffraction data have been collected to 3.5 Å resolution. The choline-binding protein CbpI from Streptococcus pneumoniae is a 23.4 kDa protein with no known function. The protein has been successfully purified initially using Ni–NTA chromatography and to homogeneity using Q-Sepharose ion-exchange resin as an affinity column. CbpI was crystallized using PEG 3350 as a precipitant and X-ray crystallographic analysis showed that the crystals belonged to the tetragonal space group P4, with unit-cell parameters a = b = 83.31, c = 80.29 Å, α = β = γ = 90°. The crystal contains two molecules in the asymmetric unit with a solvent content of 55.7% (V{sub M} = 2.77 Å{sup 3} Da{sup −1}) and shows a diffraction limit of 3.5 Å.

  19. Spectrophotometric determination of Sc in eriochrome cyanine R(chrome azurol S) - phosphatidyl choline system

    International Nuclear Information System (INIS)

    Eriochrome cyanine R(chrome azurol S) is used as a color reagent to determine Sc in the presence of phosphatidyl choline, eta = 3.7 * 104 (4.5 * 104). This method has been connected to extraction separation to determine Sc in the presence of rare earth elements, and good results have been obtained. Phosphatidyl choline(PC) is a biochemical reagent, which can be used as a surfactant. It has been reported that chrome azurol S(CAS) can be used to determine Be in the presence of PC but it has not been reported that eriochrome cyanine R(ECR) and CAS can been used to determine Sc in the presence of PC. This paper has put forward a method by which Sc can be determined. ECR (CAS) has been used as a color reagent and PC as a surfactant. Conditional experiments have been made and this method has been connected to extraction separation. Tributyl phosphate (TBP) extracts Sc from rare earth elements to make a determination and good results have been obtained

  20. Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures

    International Nuclear Information System (INIS)

    Highlights: ► The solubilities of carbon dioxide in a eutectic mixture of choline chloride and glycerol were measured. ► The pressure was up to 6.3 MPa. ► The temperature studied was (303.15 to 343.15) K. ► The measured data were reported as functions of temperature and pressure. ► The measured data were represented satisfactorily by the applied correlation. - Abstract: In this work, we present new measurements on the solubility of carbon dioxide in a deep eutectic solvent (DES) containing choline chloride and glycerol (1:2 mole ratio) over the temperature range (303.15 to 343.15) K and pressures up to 6.3 MPa. Experimental measurements were carried out in a thermogravimetric microbalance, and the effects of buoyancy on the measurements were accounted for. Results indicated that the solubility of the gas in the solvent increased almost linearly with pressure and decreased with increasing temperature. The dependence of the carbon dioxide solubility in the DES (in molality) on temperature and pressure were accurately represented by an extended Henry’s law model at an average absolute deviation of 1.4%.

  1. Electrochemical synthesis of nanosized TiO{sub 2} nanopowder involving choline chloride based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Anicai, Liana, E-mail: lanicai@itcnet.ro [POLITEHNICA University of Bucharest, Center of Surface Science and Nanotechnology, Splaiul Independentei 313, Bucharest, 060042 (Romania); Petica, Aurora [Leather and Footwear Research Institute (ICPI), Ion Minulescu 93, Bucharest, 031215 (Romania); Patroi, Delia; Marinescu, Virgil; Prioteasa, Paula [INCDIE ICPE-Advanced Research, Splaiul Unirii 313, Bucharest (Romania); Costovici, Stefania [POLITEHNICA University of Bucharest, Center of Surface Science and Nanotechnology, Splaiul Independentei 313, Bucharest, 060042 (Romania)

    2015-09-15

    Highlights: • TiO{sub 2} nanopowder electrochemically prepared using choline chloride based ionic liquids. • The new proposed method allowed high anodic synthesis efficiencies of minimum 92%. • High surface area of the electrochemically synthesized titania nanopowders. • Enhanced photocatalytic activity. - Abstract: The paper presents some experimental results regarding the electrochemical synthesis of TiO{sub 2} nanopowders through anodic dissolution of Ti metal in choline chloride based eutectic mixtures (DES). A detailed characterization of the obtained titania has been performed, using various techniques, including XRD, Raman spectroscopy, XPS, SEM associated with EDX analysis, BET and UV–vis diffuse reflectance spectra. The anodic behavior of Ti electrode in DES has been also investigated. The photoreactivity of the synthesized materials was evaluated for the degradation of Orange II dye under UV (λ = 365 nm) and visible light irradiation. An anodic synthesis efficiency of minimum 92% has been determined. The as-synthesized TiO{sub 2} showed amorphous structure and a calcination post-treatment at temperatures between 400 and 600 °C yielded anatase. The anodically obtained nanocrystalline oxides have crystallite sizes of 8–18 nm, a high surface area and enhanced photocatalytic effect.

  2. The role of rumen-protected choline in hepatic function and performance of transition dairy cows.

    Science.gov (United States)

    Shahsavari, Arash; D'Occhio, Michael J; Al Jassim, Rafat

    2016-07-01

    High-producing dairy cows enter a period of negative energy balance during the first weeks of lactation. Energy intake is usually sufficient to cover the increase in energy requirements for fetal growth during the period before calving, but meeting the demand for energy is often difficult during the early stages of lactation. A catabolic state predominates during the transition period, leading to the mobilisation of energy reserves (NEFA and amino acids) that are utilised mainly by the liver and muscle. Increased uptake of mobilised NEFA by the liver, combined with the limited capacity of hepatocytes to either oxidise fatty acids for energy or to incorporate esterified fatty acids into VLDL results in fatty liver syndrome and ketosis. This metabolic disturbance can affect the general health, and it causes economic losses. Different nutritional strategies have been used to restrict negative effects associated with the energy challenge in transition cows. The provision of choline in the form of rumen-protected choline (RPC) can potentially improve liver function by increasing VLDL exportation from the liver. RPC increases gene expression of microsomal TAG transfer protein and APOB100 that are required for VLDL synthesis and secretion. Studies with RPC have looked at gene expression, metabolic hormones, metabolite profiles, milk production and postpartum reproduction. A reduction in liver fat and enhanced milk production has been observed with RPC supplementation. However, the effects of RPC on health and reproduction are equivocal, which could reflect the lack of sufficient dose-response studies. PMID:27138530

  3. Phosphatidylinositol kinase from rabbit reticulocytes

    International Nuclear Information System (INIS)

    Phosphatidylinositol (PI) kinase was isolated from the postribosomal supernatant of rabbit reticulocytes. This activity was identified by the formation of a product that comigrated with phosphatidylinositol-4-phosphate (PIP) when purified PI was phosphorylated in the presence of [32P]ATP and Mg2+. Three major peaks of PI kinase activity were resolved by chromatography on DEAE-cellulose. The first peak eluted at 50-100 mM NaCl together with several serine protein kinases, casein kinase (CK) I and protease activated kinase (PAK) I and II. The PI kinase was subsequently separated from the protein kinases by chromatography on phosphocellulose. The second peak eluted at 125-160 mM NaCl and contained another lipid kinase activity that produced a product which comigrated with phosphatidic acid on thin layer chromatography. The third peak, which eluted at 165-200 mM NaCl, partly comigrated with casein kinase (CK) II and an active protein kinase(s) which phosphorylated mixed histone and histone I. CK II and the histone kinase activities were also separated by chromatography on phosphocelluslose. The different forms of PI kinase were characterized and compared with respect to substrate and salt requirements

  4. Human p38δ MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14

    International Nuclear Information System (INIS)

    The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38α, β, γ and δ. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38α and β, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38γ and/or δ was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38δ attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38δ with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38δ isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38α and/or β isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.

  5. Kinase Inhibitors from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Ana Zivanovic

    2011-10-01

    Full Text Available Protein kinases play a critical role in cell regulation and their deregulation is a contributing factor in an increasing list of diseases including cancer. Marine sponges have yielded over 70 novel compounds to date that exhibit significant inhibitory activity towards a range of protein kinases. These compounds, which belong to diverse structural classes, are reviewed herein, and ordered based upon the kinase that they inhibit. Relevant synthetic studies on the marine natural product kinase inhibitors have also been included.

  6. Differential regulation of renal phospholipase C isoforms by catecholamines.

    OpenAIRE

    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A

    1995-01-01

    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam ...

  7. GABAB(1) receptor subunit isoforms differentially regulate stress resilience

    OpenAIRE

    O’Leary, Olivia F.; Felice, Daniela; Galimberti, Stefano; Savignac, Hélène M.; Bravo, Javier A.; Crowley, Tadhg; El Yacoubi, Malika; Vaugeois, Jean-Marie; Gassmann, Martin; Bettler, Bernhard; Dinan, Timothy G.; Cryan, John F.

    2014-01-01

    Stress can increase susceptibility to developing psychiatric disorders, including depression. Understanding the neurobiological mechanisms underlying stress resilience and susceptibility is key to identifying novel targets for the development of more effective treatments for stress-related psychiatric disorders. Here we show that specific isoforms of GABAB receptor subunits differentially regulate stress resilience. Specifically, GABAB(1a)−/− mice are more susceptible whereas GABAB(1b)−/− mic...

  8. The role of Protein Kinase Cη in T cell biology

    Directory of Open Access Journals (Sweden)

    Nicholas R.J. Gascoigne

    2012-06-01

    Full Text Available Protein kinase Cη (PKCη is a member of the novel PKC subfamily, which also includes δ, ε, and θ isoforms. Compared to the other novel PKCs, the function of PKCη in the immune system is largely unknown. Several studies have started to reveal the role of PKCη, particularly in T cells. PKCη is highly expressed in T cells, and is upregulated during thymocyte positive selection. Interestingly, like the θ isoform, PKCη is also recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell. However, unlike PKCθ, which becomes concentrated to the central region of the synapse, PKCη remains in a diffuse pattern over the whole area of the synapse, suggesting distinctive roles of these two isoforms in signal transduction. Although PKCη is dispensable for thymocyte development, further analysis of PKCη− or PKCθ−deficient and double knockout mice revealed the redundancy of these two isoforms in thymocyte development. In contrast, PKCη rather than PKCθ, plays an important role for T cell homeostatic proliferation, which requires recognition of self-antigen. Another piece of evidence demonstrating that PKCη and PKCθ have isoform specific as well as redundant roles come from the analysis of CD4 to CD8 T cell ratios in the periphery of these knockout mice. Deficiency in PKCη or PKCθ had opposing effects as PKCη knockout mice had a higher ratio of CD4 to CD8 T cells compared to that of wild-type mice, whereas PKCθ-deficient mice had a lower ratio. Biochemical studies showed that calcium flux and NFκB translocation is impaired in PKCη-deficient T cells upon TCR crosslinking stimulation, a character shared with PKCθ-deficient T cells. However, unlike the case with PKCθ, the mechanistic study of PKCη is at early stage and the signaling pathways involving PKCη, at least in T cells, are essentially unknown. In this review, we will cover the topics mentioned above as well as provide some

  9. Casein Kinase 2 Associates with Initiation-Competent RNA Polymerase I and Has Multiple Roles in Ribosomal DNA Transcription

    OpenAIRE

    Panova, Tatiana B; Panov, Kostya I.; Russell, Jackie; Zomerdijk, Joost C. B. M.

    2006-01-01

    Mammalian RNA polymerase I (Pol I) complexes contain a number of associated factors, some with undefined regulatory roles in transcription. We demonstrate that casein kinase 2 (CK2) in human cells is associated specifically only with the initiation-competent Pol Iβ isoform and not with Pol Iα. Chromatin immunoprecipitation analysis places CK2 at the ribosomal DNA (rDNA) promoter in vivo. Pol Iβ-associated CK2 can phosphorylate topoisomerase IIα in Pol Iβ, activator upstream binding factor (UB...

  10. Analysis of the genotype of diacylglycerol kinase delta single-nucleotide polymorphisms in Parkinson disease in the Han Chinese population

    OpenAIRE

    Wei Song; Yong Ping Chen; Rui Huang; Ke Chen; Ping Lei Pan; Jianpeng Li; Yuan Yang; Hui-Fang Shang

    2012-01-01

    Numerous Single-Nucleotide Polymorphisms (SNPs) of the Diacylglycerol Kinase Delta (DGKD) isoform 1 gene have been associated with Parkinson Disease (PD) in the genome-wide association studies of Caucasian population. This association has not been proven in the Han Chinese PD patients. This study included 376 unrelated Han Chinese PD patients from West China and 273 unrelated healthy controls from the same region. Five SNPs (rs2971859, rs1550532, rs2305539, rs2034762, and rs2242102) were geno...

  11. Calcium-Dependent Protein Kinase Genes in Corn Roots

    Science.gov (United States)

    Takezawa, D.; Patil, S.; Bhatia, A.; Poovaiah, B. W.

    1996-01-01

    Two cDNAs encoding Ca-2(+) - Dependent Protein Kinases (CDPKs), Corn Root Protein Kinase 1 and 2 (CRPK 1, CRPK 2) were isolated from the root tip library of corn (Zea mays L., cv. Merit) and their nucleotide sequences were determined. Deduced amino acid sequences of both the clones have features characteristic of plant CDPKS, including all 11 conserved serine/threonine kinase subdomains, a junction domain and a calmodulin-like domain with four Ca-2(+), -binding sites. Northern analysis revealed that CRPKI mRNA is preferentially expressed in roots, especially in the root tip; whereas, the expression of CRPK2 mRNA was very low in all the tissues tested. In situ hybridization experiments revealed that CRPKI mRNA is highly expressed in the root apex, as compared to other parts of the root. Partially purified CDPK from the root tip phosphorylates syntide-2, a common peptide substrate for plant CDPKs, and the phosphorylation was stimulated 7-fold by the addition of Ca-2(+). Our results show that two CDPK isoforms are expressed in corn roots and they may be involved in the Ca-2(+)-dependent signal transduction process.

  12. Expression patterns of protein kinase D 3 during mouse development

    Directory of Open Access Journals (Sweden)

    Lutz Sylke

    2008-04-01

    Full Text Available Abstract Background The PKD family of serine/threonine kinases comprises a single member in Drosophila (dPKD, two isoforms in C. elegans (DKF-1 and 2 and three members, PKD1, PKD2 and PKD3 in mammals. PKD1 and PKD2 have been the focus of most studies up to date, which implicate these enzymes in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, immune responses, apoptosis and cell proliferation. Concerning PKD3, a role in the formation of vesicular transport carriers at the trans-Golgi network (TGN and in basal glucose transport has been inferred from in vitro studies. So far, however, the physiological functions of the kinase during development remain unknown. Results We have examined the expression pattern of PKD3 during the development of mouse embryos by immunohistochemistry. Using a PKD3 specific antibody we demonstrate that the kinase is differentially expressed during organogenesis. In the developing heart a strong PKD3 expression is constantly detected from E10 to E16.5. From E12.5 on PKD3 is increasingly expressed in neuronal as well as in the supporting connective tissue and in skeletal muscles. Conclusion The data presented support an important role for PKD3 during development of these tissues.

  13. PSA doubling time for prediction of [11C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy

    International Nuclear Information System (INIS)

    Previous studies have shown that the positive detection rate of [11C]choline positron emission tomography/computed tomography (PET/CT) depends on prostate-specific antigen (PSA) plasma levels. This study compared PSA levels and PSA doubling time (PSADT) to predict [11C]choline PET/CT findings. PSADT was retrospectively calculated in 170 prostate cancer (PCa) patients with biochemical failure after radical prostatectomy who underwent [11C]choline PET/CT. PSADT was calculated as PSADT = ln2/m, where m is the slope of the linear regression line of the natural log of PSA values. At least three PSA measurements were used (median: 4; range: 3-16), separated by at least 3 months, each with a minimum increase of 0.20 ng/ml. PET/CT findings were validated using criteria based on histological analysis and clinical and imaging data. Statistical analysis was performed using the t test, chi-square test, analysis of variance and binary logistic regression. Regression-based coefficients were used to develop a nomogram predicting the probability of positive [11C]choline PET/CT and 200 bootstrap resamples were used for internal validation. The median PSA was 1.25 ng/ml (range: 0.23-48.6 ng/ml), and the median PSADT was 7.0 months (range: 0.97-45.3 months). [11C]choline PET/CT was positive in 75 of 170 patients (44%). PET/CT findings were validated using histological criteria (11%) and clinical and imaging criteria (89%). The overall accuracy of [11C]choline PET/CT was 88%. Multivariate logistic regression showed that high PSA and short PSADT were significant (p 11C]choline PET/CT [PSA: odds ratio (OR) = 1.43; 95% confidence interval (CI): 1.15-1.78; PSADT: OR = 1.12; 95% CI: 1.04-1.21]. The percentage of patients with positive [11C]choline PET/CT was 27% for PSADT >6 months, 61% for PSADT between 3 and 6 months and 81% for PSADT 11C]choline uptake in the skeleton significantly increased (p 6 months to 52% for PSADT 11C]choline uptake in the prostatectomy bed were 0% for PSADT 6

  14. Protein τ-mediated effects on rat hippocampal choline transporters CHT1 and τ-amyloid β interactions

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Řípová, D.; Hegnerová, Kateřina; Šírová, J.; Homola, Jiří

    2013-01-01

    Roč. 38, č. 9 (2013), s. 1949-1959. ISSN 0364-3190 Institutional support: RVO:67985882 Keywords : Tau protein * Amyloid β peptide * Choline transporter Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.551, year: 2013

  15. No up-regulation of the phosphatidylethanolamine N-methyltransferase pathway and choline production by sex hormones in cats

    NARCIS (Netherlands)

    Valtolina, Chiara; Vaandrager, Arie B; Favier, Robert P; Robben, Joris H; Tuohetahuntila, Maidina; Kummeling, Anne; Jeusette, Isabelle; Rothuizen, Jan

    2015-01-01

    BACKGROUND: Feline hepatic lipidosis (FHL) is a common cholestatic disease affecting cats of any breed, age and sex. Both choline deficiency and low hepatic phosphatidylethanolamine N-methyltransferase (PEMT) activity are associated with hepatic lipidosis (HL) in humans, mice and rats. The PEMT expr

  16. Crotoxin, the major toxin from the rattlesnake Crotalus durissus terrificus, inhibits ³H-choline uptake in guinea pig ileum

    Directory of Open Access Journals (Sweden)

    L.S. Kattah

    2000-09-01

    Full Text Available We examined the effect of crotoxin, the neurotoxic complex from the venom of the South American rattlesnake Crotalus durissus terrificus, on the uptake of ³H-choline in minces of smooth muscle myenteric plexus from guinea pig ileum. In the concentration range used (0.03-1 µM and up to 10 min of treatment, crotoxin decreased ³H-choline uptake by 50-75% compared to control. This inhibition was time dependent and did not seem to be associated with the disruption of the neuronal membrane, because at least for the first 20 min of tissue exposure to the toxin (up to 1 µM the levels of lactate dehydrogenase (LDH released into the supernatant were similar to those of controls. Higher concentrations of crotoxin or more extensive incubation times with this toxin resulted in elevation of LDH activity detected in the assay supernatant. The inhibitory effect of crotoxin on ³H-choline uptake seems to be associated with its phospholipase activity since the equimolar substitution of Sr2+ for Ca2+ in the incubation medium or the modification of the toxin with p-bromophenacyl bromide substantially decreased this effect. Our results show that crotoxin inhibits ³H-choline uptake with high affinity (EC25 = 10 ± 5 nM. We suggest that this inhibition could explain, at least in part, the blocking effect of crotoxin on neurotransmission.

  17. Effects of Flutamide on [Methyl-3H]-Choline Uptake in Human Prostate Cancer-3 Cells: A Pilot Study

    OpenAIRE

    Al-Saeedi, Fatma

    2007-01-01

    Background: Positron emission tomography using [methyl-11C]-choline is effective in imaging many types of cancer, especially prostate cancer (PC). The antiandrogen flutamide is often used as part of the initial treatment of PC. Data on the effect of flutamide on and methylcholine incorporation into PC-3 cells are lacking in the experimental and literature work.

  18. Genetic variants in the choline acetyltransferase (ChAT) gene are modestly associated with normal cognitive function in the elderly

    DEFF Research Database (Denmark)

    Mengel-From, J; Christensen, K; Thinggaard, M; McGue, M; Christiansen, L

    2011-01-01

    Genetic variants in the choline acetyltransferase (ChAT) gene have been suggested as risk factors for neurodegenerative Alzheimer's disease (AD). Here we tested the importance of genetic variants in the ChAT gene in normal cognitive function of elderly in a study sample of Danish twins and single...

  19. Molecular mechanical differences between isoforms of contractile actin in the presence of isoforms of smooth muscle tropomyosin.

    OpenAIRE

    Lennart Hilbert; Genevieve Bates; Roman, Horia N.; Jenna L Blumenthal; Zitouni, Nedjma B.; Apolinary Sobieszek; Mackey, Michael C.; Anne-Marie Lauzon

    2013-01-01

    The proteins involved in smooth muscle's molecular contractile mechanism - the anti-parallel motion of actin and myosin filaments driven by myosin heads interacting with actin - are found as different isoforms. While their expression levels are altered in disease states, their relevance to the mechanical interaction of myosin with actin is not sufficiently understood. Here, we analyzed in vitro actin filament propulsion by smooth muscle myosin for [Formula: see text]-actin ([Formula: see text...

  20. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  1. Application of 11C-choline PET/CT imaging for differentiating malignant from benign prostate lesions

    International Nuclear Information System (INIS)

    Objective: To investigate the potential of 11C-choline PET/CT imaging for differentiating prostate cancer from benign prostate hyperplasia. Methods: A total of 45 patients with prostate lesions under- went 11C-choline PET/CT imaging before transrectal needle biopsy. PET/CT imaging was performed 5 min after injection of 7.4 MBq/kg 11C-choline in supine position over lower abdomen (3 min per bed with 2 beds), including the pelvis, and the whole body with 6 beds when necessary. After attenuation correction and iterative reconstruction, PET data were analyzed semi-quantitatively by measuring maximum standardized uptake values (SUVmax) in prostate lesions (P, target) and the muscles (M, non-target) and then P/M ratios were calculated. Also visual analysis was performed in different transverse, sagittal views and slices as well as three-dimensional images. Results: Eighteen prostate cancer and 27 benign prostate hyperplasia [and(or) chronic prostatitis] were all confirmed by pathology. The mean P/M ratio of prostate cancer was 4.02± 1.88, while in benign lesions was 1.87±1.21. The statistical differences of P/M ratios between them were significant (t=2.07, P11C-choline PET/CT imaging were 88.89%, 88.89% and 92.31% respectively. Conclusions: 11C-choline PET/CT imaging is a valuable non-invasive technology in the diagnosis of pros- tate cancer. The P/M ratio can differentiate prostate cancer from benign lesions better than SUV. (authors)

  2. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes.

    Science.gov (United States)

    Wu, I; Shin, S C; Cao, Y; Bender, I K; Jafari, N; Feng, G; Lin, S; Cidlowski, J A; Schleimer, R P; Lu, N Z

    2013-01-01

    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids. PMID:23303127

  3. Novel, isoform-selective, cholecystokinin A receptor antagonist inhibits colon and pancreatic cancers in preclinical models through novel mechanism of action.

    Science.gov (United States)

    Ponnusamy, Suriyan; Lattmann, Eric; Lattmann, Pornthip; Thiyagarajan, Thirumagal; Padinjarethalakal, Balaram N; Narayanan, Ramesh

    2016-04-01

    Colon and pancreatic cancers contribute to 90,000 deaths each year in the USA. These cancers lack targeted therapeutics due to heterogeneity of the disease and multiple causative factors. One important factor that contributes to increased colon and pancreatic cancer risk is gastrin. Gastrin mediates its actions through two G-protein coupled receptors (GPCRs): cholecystokinin receptor A (CCK-A) and CCK-B/gastrin receptor. Previous studies have indicated that colon cancer predominantly expresses CCK-A and responds to CCK-A isoform antagonists. However, many CCK-A antagonists have failed in the clinic due to poor pharmacokinetic properties or lack of efficacy. In the present study, we synthesized a library of CCK-A isoform-selective antagonists and tested them in various colon and pancreatic cancer preclinical models. The lead CCK-A isoform, selective antagonist PNB-028, bound to CCK-A at 12 nM with a 60-fold selectivity towards CCK-A over CCK-B. Furthermore, it inhibited the proliferation of CCK-A-expressing colon and pancreatic cancer cells without affecting the proliferation of non-cancerous cells. PNB-028 was also extremely effective in inhibiting the growth of MAC-16 and LoVo colon cancer and MIA PaCa pancreatic cancer xenografts in immune-compromised mice. Genome‑wide microarray and kinase-array studies indicate that PNB-028 inhibited oncogenic kinases and angiogenic factors to inhibit the growth of colon cancer xenografts. Safety pharmacology and toxicology studies have indicated that PNB-028 is extremely safe and has a wide safety margin. These studies suggest that targeting CCK-A selectively renders promise to treat colon and pancreatic cancers and that PNB-028 could become the next-generation treatment option. PMID:26820391

  4. Effect Of Choline Chloride (CC On 'Monroe' Peach Fruit Quality And Leaf Characteristics

    Directory of Open Access Journals (Sweden)

    Melike ÇETİNBAŞ

    2014-07-01

    Full Text Available The effect of choline chloride (CC were evaluated on fruit quality of ‘Monroe’ peach over 2-year period in a commercial orchard. Spray treatments of CC (0, 1000, 2000 and 3000 ppm were applied to 7, 21 and 30 days before commercial harvest (DBH. Some fruit quality parameters fruit weight (g, fruit flesh firmness (N, soluble solids content (SSC, %, titratable acidity (TA, %, fruit colour (CIELab, sugars, ethylene production, respiration rate were assessed for per treatments. All treatments were increased fruit size and fruit weight. In the applications of CC the most determined results have occurred on colourness which is the one of significant quality parameter in peaches and they had positive effect on the development red colour.Treatments of CC have been increased of total sugar contents

  5. Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.

    Science.gov (United States)

    Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J

    2015-12-01

    Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration. PMID:26540438

  6. The Semi-automatic Synthesis of 18F-fluoroethyl-choline by Domestic FDG Synthesizer

    Directory of Open Access Journals (Sweden)

    ZHOU Ming

    2016-02-01

    Full Text Available As an important complementary imaging agent for 18F-FDG, 18F-fluoroethyl-choline (18F-FECH has been demonstrated to be promising in brain and prostate cancer imaging. By using domestic PET-FDG-TI-I CPCU synthesizer, 18F-FECH was synthesized by different reagents and consumable supplies. The C18 column was added before the product collection bottle to remove K2.2.2. The 18F-FECH was synthesized by PET-FDG-IT-I synthesizer efficiently about 30 minutes by radiochemical yield of 42.0% (no decay corrected, n=5, and the radiochemical purity was still more than 99.0% after 6 hours. The results showed the domestic PET-FDG-IT-I synthesizer could semi-automatically synthesize injectable 18F-FECH in high efficiency and radiochemical purity

  7. Mesoporous and biocompatible surface active silica aerogel synthesis using choline formate ionic liquid.

    Science.gov (United States)

    Meera, Kamal Mohamed Seeni; Sankar, Rajavelu Murali; Jaisankar, Sellamuthu N; Mandal, Asit Baran

    2011-09-01

    In this paper, we report the preparation and characterization of mesoporous and biocompatible transparent silica aerogel by the sol-gel polymerization of tetraethyl orthosilicate using ionic liquid. Choline cation based ionic liquid allows the silica framework to form in a non collapsing environment and controls the pore size of the gel. FT-IR spectra reveal the interaction of ionic liquid with surface -OH of the gel. DSC thermogram giving the evidence of confinement of ionic liquid within the silica matrix, which helps to avoid the shrinkage of the gel during the aging process. Nitrogen sorption measurements of gel prepared with ionic liquid exhibit a low surface area of 100.53 m2/g and high average pore size of 3.74 nm. MTT assay proves the biocompatibility and cell viability of the prepared gels. This new nanoporous silica material can be applied to immobilize biological molecules, which may retain their stability over a longer period. PMID:21565470

  8. Real-Time Translocation and Function of PKCβII Isoform in Response to Nociceptive Signaling via the TRPV1 Pain Receptor

    Directory of Open Access Journals (Sweden)

    Basil D. Roufogalis

    2011-11-01

    Full Text Available Serine/threonine protein kinase C βII isoform (PKCβII or the pain receptor transient receptor potential vanilloid 1 (TRPV1 have been separately implicated in mediating heat hyperalgesia during inflammation or diabetic neuropathy. However, detailed information on the role of PKC βII in nociceptive signaling mediated by TRPV1 is lacking. This study presents evidence for activation and translocation of the PKC βII isoform as a signaling event in nociception mediated by activation of TRPV1 by capsaicin. We show that capsaicin induces translocation of cytosolic PKCβII isoform fused with enhanced green fluorescence protein (PKCβII-EGFP in dorsal root ganglion (DRG neurons. We also show capsaicin-induced translocation in Chinese Hamster Ovarian (CHO cells co-transfected with TRPV1 and PKCβII-EGFP, but not in CHO cells expressing PKCβII-EGFP alone. By contrast, the PKC activator phorbol-12-myristate-13-acetate (PMA induced translocation of PKCβII-EGFP which was sustained and independent of calcium or TRPV1. In addition PMA-induced sensitization of TRPV1 to capsaicin response in DRG neurons was attenuated by PKCβII blocker CGP 53353. Capsaicin response via TRPV1 in the DRG neurons was confirmed by TRPV1 antagonist AMG 9810. These results suggested a novel and potential signaling link between PKCβII and TRPV1. These cell culture models provide a platform for investigating mechanisms of painful neuropathies mediated by nociceptors expressing the pain sensing gene TRPV1, and its regulation by the PKC isoform PKCβII.

  9. Regulation of carnitine palmitoyltransferase I (CPT-Iα) gene expression by the peroxisome proliferator activated receptor gamma coactivator (PGC-1) isoforms

    Science.gov (United States)

    Sadana, Prabodh; Zhang, Yi; Song, Shulan; Cook, George A.; Elam, Marshall B.; Park, Edwards A.

    2007-01-01

    Summary The peroxisome proliferator-activated receptor gamma coactivators (PGC-1) have important roles in mitochondrial biogenesis and metabolic control in a variety of tissues. There are multiple isoforms of PGC-1 including PGC-1α and PGC-1β. Both the PGC-1α and β isoforms promote mitochondrial biogenesis and fatty acid oxidation, but only PGC-1α stimulates gluconeogenesis in the liver. Carnitine palmitoyltransferase I (CPT-I) is a key enzyme regulating mitochondrial fatty acid oxidation. In these studies, we determined that PGC-1β stimulated expression of the “liver” isoform of CPT-I (CPT-Iα) but that PGC-1β did not induce pyruvate dehydrogenase kinase 4 (PDK4) which is a regulator of pyruvate metabolism. The CPT-Iα gene is induced by thyroid hormone. We found that T3 increased the expression of PGC-1β and that PGC-1β enhanced the T3 induction of CPT-Iα. The thyroid hormone receptor interacts with PGC-1β in a ligand dependent manner. Unlike PGC-1α, the interaction of PGC-1β and the T3 receptor does not occur exclusively through the leucine-X-X-leucine-leucine motif in PGC-1β. We have found that PGC-1β is associated with the CPT-Iα gene in vivo. Overall, our results demonstrate that PGC-1β is a coactivator in the T3 induction of CPT-Iα and that PGC-1β has similarities and differences with the PGC-1α isoform. PMID:17239528

  10. Oncoprotein protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA); Davis, Roger (Princeton, MA); Derijard, Benoit (Shrewsbury, MA)

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  11. Kinase-Catalyzed Biotinylation

    OpenAIRE

    Senevirathne, Chamara; Green, Keith D.; Pflum, Mary Kay H.

    2012-01-01

    Kinase-catalyzed protein phosphorylation plays an essential role in a variety of biological processes. Methods to detect phosphoproteins and phosphopeptides in cellular mixtures will aid in cell biological and signaling research. Our laboratory recently discovered the utility of γ-modified ATP analogues as tools for studying phosphorylation. Specifically, ATP-biotin can be used for labeling and visualizing phosphoproteins from cell lysates. Because the biotin tag is suitable for protein detec...

  12. Rat model of nonalcoholic steatohepatitis created by methionine and choline deficiency: biochemical and histological analyses

    Directory of Open Access Journals (Sweden)

    Seki A

    2011-07-01

    Full Text Available Shinichi Nagai1, Jun Iwamoto2, Masakazu Suzuki1, Azusa Seki11Hamri Co Ltd, Koga, Ibaraki, Japan; 2Institute for Integrated Sports Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, JapanBackground: The purpose of this study was to establish a Sprague-Dawley rat model of nonalcoholic steatohepatitis (NASH due to combined methionine and choline deficiency (MCD. Methods: Eighty nine-week-old male Sprague-Dawley rats were randomized into two groups (n = 40, comprising an MCD diet group and a standard diet (control group. After fasting blood was collected, 10 rats from each group were scheduled to be sacrificed at weeks 4, 8, 12, and 16 from the start of the experiment. Body weight and liver wet weight were measured, and histological examination of the liver was performed after hematoxylin and eosin and Oil Red O staining. Results: In the MCD group, body weight and liver wet weight were decreased compared with the control group, while serum levels of albumin, γ-glutamyltranspeptidase, alkaline phosphatase, and total bilirubin were increased, but serum levels of total cholesterol and triglycerides were decreased. Histological examination of the liver revealed centrilobular hepatocellular fatty change from as early as four weeks, with mild fibrosis after 12 weeks. Conclusion: These findings suggested the onset of NASH with liver dysfunction and bile duct damage in rats fed with the MCD diet. Increased fatty acid uptake and decreased cholesterol secretion were considered to be important mechanisms by which the MCD diet promoted intrahepatic lipid accumulation in this model.Keywords: nonalcoholic steatohepatitis, rat, methionine, choline, fatty liver 

  13. Enhanced incorporation of fatty acid into phosphatidyl choline that parallels histamine discharge in mast cells

    International Nuclear Information System (INIS)

    Purified rat peritoneal and pleural mast cells preincubated briefly with radioactively labeled fatty acid were treated with A23187, which bypasses primary receptors in stimulating exocytosis. An enhanced incorporation of fatty acid into phosphatidyl choline (PC) that occurred in parallel with histamine release at 24-25 degrees C was observed and was initially proportional to the total amount of histamine discharged. Enhanced PC labeling and histamine secretion were also proportional at temperatures ranging from 17-37 degrees C. Both radioactive linoleic and palmitic acids were incorporated selectively at the beta-position of the glycerol backbone of PC. PC labeling by [3H]choline was not detectably different in control and stimulated cells, and phosphatidic acid did not exhibit selectively enhanced beta-acylation. Thus, the stimulated labeling in A23187-treated cells may occur secondary to the action of a phospholipase A2 that favors PC as a substrate. Other peritoneal cell types exhibit a very similar A23187-stimulated selective labeling of PC. Therefore, autoradiography has been used to provide a direct demonstration that in purified preparations, mast cells are the principal cell type engaged in A23187-elicited incorporation of fatty acid into PC. The efficacy of this approach has relied on special procedures devised to obtain significantly different autoradiographic grain densities between control and stimulated preparations that can be attributed to differences in the level of [3H]palmitate-labeled PC. Preliminary tests using compound 48/80 as a secretory stimulus for mast cells have identified a similar selectively enhanced PC labeling. In either case, however, consideration of possible relationships between PC metabolism and the secretory process are premature since they have not been tested directly

  14. Activation of protein kinase Ceta triggers cortical granule exocytosis in Xenopus oocytes.

    Science.gov (United States)

    Gundersen, Cameron B; Kohan, Sirus A; Chen, Qian; Iagnemma, Joseph; Umbach, Joy A

    2002-03-15

    Previous work has shown that phorbol esters or diacylglycerol trigger cortical granule exocytosis in Xenopus oocytes. We sought to identify the isoform(s) of protein kinase C (PKC) that mediate(s) this regulated secretory event. Because this process is initiated by lipid activators of PKC but is independent of calcium ions, we focused on the family of novel (calcium-independent) PKCs. Pharmacological investigations using Gö6976 and Gö6983 tended to exclude PKCdelta, epsilon and mu as secretory triggers. Subcellular fractionation and immunoblot data revealed that these oocytes expressed all five members of the novel PKC family, but it was only PKCeta that colocalized with cortical granules. Finally, expression of wild type or constitutively active forms of PKCdelta and eta strongly supported the conclusion that it is PKCeta that initiates cortical granule exocytosis in these cells. These observations represent an important step in identifying the mechanism of secretory triggering in this system. PMID:11884530

  15. Presenilin dependence of phospholipase C and protein kinase C signaling

    DEFF Research Database (Denmark)

    Dehvari, Nodi; Cedazo-Minguez, Angel; Isacsson, Ola;

    2007-01-01

    -stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha and......Presenilins (PSs) are involved in processing several proteins such as the amyloid precursor protein (APP), as well as in pathways for cell death and survival. We previously showed that some familial Alzheimer's disease PS mutations cause increased basal and acetylcholine muscarinic receptor...... PKCgamma activations were significantly lower in PS1 and PS2 double knockout MEFs after PLC stimulation. Protein levels of PKCalpha and PKCgamma were lower in PS1 and PS2 double knockout MEFs. In contrast, PKCdelta levels were significantly elevated in PS1 and PS2 double knockout as well as in PS1 knockout...

  16. [{sup 11}C]Choline PET/CT predicts survival in hormone-naive prostate cancer patients with biochemical failure after radical prostatectomy

    Energy Technology Data Exchange (ETDEWEB)

    Giovacchini, Giampiero [Stadtspital Triemli, Department of Radiology and Nuclear Medicine, Zurich (Switzerland); Incerti, Elena; Mapelli, Paola; Gianolli, Luigi; Picchio, Maria [IRCCS San Raffaele Scientific Institute, Department of Nuclear Medicine, Milano (Italy); Kirienko, Margarita [University of Milano-Bicocca, Milano (Italy); Briganti, Alberto; Gandaglia, Giorgio; Montorsi, Francesco [IRCCS San Raffaele Scientific Institute, Department of Urology, Milano (Italy)

    2015-05-01

    Over the last decade, PET/CT with radiolabelled choline has been shown to be useful for restaging patients with prostate cancer (PCa) who develop biochemical failure. The limitations of most clinical studies have been poor validation of [{sup 11}C]choline PET/CT-positive findings and lack of survival analysis. The aim of this study was to assess whether [{sup 11}C]choline PET/CT can predict survival in hormone-naive PCa patients with biochemical failure. This retrospective study included 302 hormone-naive PCa patients treated with radical prostatectomy who underwent [{sup 11}C]choline PET/CT from 1 December 2004 to 31 July 2007 because of biochemical failure (prostate-specific antigen, PSA, >0.2 ng/mL). Median PSA was 1.02 ng/mL. PCa-specific survival was estimated using Kaplan-Meier curves. Cox regression analysis was used to evaluate the association between clinicopathological variables and PCa-specific survival. The coefficients of the covariates included in the Cox regression analysis were used to develop a novel nomogram. Median follow-up was 7.2 years (1.4 - 18.9 years). [{sup 11}C]Choline PET/CT was positive in 101 of 302 patients (33 %). Median PCa-specific survival after prostatectomy was 14.9 years (95 % CI 9.7 - 20.1 years) in patients with positive [{sup 11}C]choline PET/CT. Median survival was not achieved in patients with negative [{sup 11}C]choline PET/CT. The 15-year PCa-specific survival probability was 42.4 % (95 % CI 31.7 - 53.1 %) in patients with positive [{sup 11}C]choline PET/CT and 95.5 % (95 % CI 93.5 - 97.5 %) in patients with negative [{sup 11}C]choline PET/CT. In multivariate analysis, [{sup 11}C]choline PET/CT (hazard ratio 6.36, 95 % CI 2.14 - 18.94, P < 0.001) and Gleason score >7 (hazard ratio 3.11, 95 % CI 1.11 - 8.66, P = 0.030) predicted PCa-specific survival. An internally validated nomogram predicted 15-year PCa-specific survival probability with an accuracy of 80 %. Positive [{sup 11}C]choline PET/CT after biochemical failure

  17. [11C]Choline PET/CT predicts survival in hormone-naive prostate cancer patients with biochemical failure after radical prostatectomy

    International Nuclear Information System (INIS)

    Over the last decade, PET/CT with radiolabelled choline has been shown to be useful for restaging patients with prostate cancer (PCa) who develop biochemical failure. The limitations of most clinical studies have been poor validation of [11C]choline PET/CT-positive findings and lack of survival analysis. The aim of this study was to assess whether [11C]choline PET/CT can predict survival in hormone-naive PCa patients with biochemical failure. This retrospective study included 302 hormone-naive PCa patients treated with radical prostatectomy who underwent [11C]choline PET/CT from 1 December 2004 to 31 July 2007 because of biochemical failure (prostate-specific antigen, PSA, >0.2 ng/mL). Median PSA was 1.02 ng/mL. PCa-specific survival was estimated using Kaplan-Meier curves. Cox regression analysis was used to evaluate the association between clinicopathological variables and PCa-specific survival. The coefficients of the covariates included in the Cox regression analysis were used to develop a novel nomogram. Median follow-up was 7.2 years (1.4 - 18.9 years). [11C]Choline PET/CT was positive in 101 of 302 patients (33 %). Median PCa-specific survival after prostatectomy was 14.9 years (95 % CI 9.7 - 20.1 years) in patients with positive [11C]choline PET/CT. Median survival was not achieved in patients with negative [11C]choline PET/CT. The 15-year PCa-specific survival probability was 42.4 % (95 % CI 31.7 - 53.1 %) in patients with positive [11C]choline PET/CT and 95.5 % (95 % CI 93.5 - 97.5 %) in patients with negative [11C]choline PET/CT. In multivariate analysis, [11C]choline PET/CT (hazard ratio 6.36, 95 % CI 2.14 - 18.94, P < 0.001) and Gleason score >7 (hazard ratio 3.11, 95 % CI 1.11 - 8.66, P = 0.030) predicted PCa-specific survival. An internally validated nomogram predicted 15-year PCa-specific survival probability with an accuracy of 80 %. Positive [11C]choline PET/CT after biochemical failure predicts PCa-specific survival in hormone-naive PCa patients

  18. Regulation of Autophagy by Kinases

    International Nuclear Information System (INIS)

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets

  19. Altered Alpha-Synuclein, Parkin, and Synphilin Isoform Levels in Multiple System Atrophy Brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Bredo Rasmussen, Nadja;

    2016-01-01

    -1 isoforms. In MSA brains, alpha-synuclein140 and alpha-synuclein112 isoform levels were significantly increased,whereas levels of the alpha-synuclein126 isoform were decreased in the substantia nigra, striatum, cerebellar cortex, and nucleus dentatus vs. CONTROLS: Moreover, in MSA cases, we showed...... increased levels of parkin isoforms lacking the N-terminal ubiquitin-like domain and an aggregation-prone synphiln-1A isoform that causes neuronal toxicity in MSA. In PD brains, Parkin transcript variant 3, 7 and 11 were significantly and specifically overexpressed in the striatum and cerebellar cortex......, together with synphilin-1A and 1C. The changes of isoform expression profiles in neurodegenerative diseases suggest alterations in the regulation of transcription and/or splicing events, leading to regional/cellular events that may be important for the highly increased aggregation of alpha-synuclein in the...

  20. The role of the Drosophila LAMMER protein kinase DOA in somatic sex determination

    Indian Academy of Sciences (India)

    Leonard Rabinow; Marie-Laure Samson

    2010-09-01

    DOA kinase, the Drosophila member of the LAMMER/Clk protein kinase family, phosphorylates SR and SR-like proteins, including TRA, TRA2 and RBP1, which are responsible for the alternative splicing of transcripts encoding the key regulator of sex-specific expression in somatic cells of the fly, DOUBLESEX. Specific Doa alleles induce somatic female-to-male sex transformations, which can be enhanced when combined with mutations in loci encoding SR and SR-like proteins. The Doa locus encodes six different kinases, of which a 69-kDa isoform is expressed solely in females. Expression of this isoform is itself under the regulation of the somatic sex determination regulatory network, thus forming a putative positive autoregulatory loop which would reinforce the choice of the female cell-fate. We speculate that this loop is part of the evolutionary ancestral sex-determination machinery, based upon evidence demonstrating the existence of an autoregulatory loop involving TRA and TRA2 in several other insect species.

  1. Functional differences between L- and T-plastin isoforms

    OpenAIRE

    1994-01-01

    Fimbrins/plastins are a family of highly conserved actin-bundling proteins. They are present in all eukaryotic cells including yeast, but each isoform displays a remarkable tissue specificity. T-plastin is normally found in epithelial and mesenchymal cells while L-plastin is present in hematopoietic cells. However, L-plastin has been also found in tumor cells of non-hematopoietic origin (Lin, C.-S., R. H. Aebersold, S. B. Kent, M. Varma, and J. Leavitt. 1988. Mol. Cell. Biol. 8:4659-4668; Lin...

  2. The FU gene and its possible protein isoforms

    Directory of Open Access Journals (Sweden)

    Nöthen Markus M

    2004-07-01

    Full Text Available Abstract Background FU is the human homologue of the Drosophila gene fused whose product fused is a positive regulator of the transcription factor Cubitus interruptus (Ci. Thus, FU may act as a regulator of the human counterparts of Ci, the GLI transcription factors. Since Ci and GLI are targets of Hedgehog signaling in development and morphogenesis, it is expected that FU plays an important role in Sonic, Desert and/or Indian Hedgehog induced cellular signaling. Results The FU gene was identified on chromosome 2q35 at 217.56 Mb and its exon-intron organization determined. The human developmental disorder Syndactyly type 1 (SD1 maps to this region on chromosome 2 and the FU coding region was sequenced using genomic DNA from an affected individual in a linked family. While no FU mutations were found, three single nucleotide polymorphisms were identified. The expression pattern of FU was thoroughly investigated and all examined tissues express FU. It is also clear that different tissues express transcripts of different sizes and some tissues express more than one transcript. By means of nested PCR of specific regions in RT/PCR generated cDNA, it was possible to verify two alternative splicing events. This also suggests the existence of at least two additional protein isoforms besides the FU protein that has previously been described. This long FU and a much shorter isoform were compared for the ability to regulate GLI1 and GLI2. None of the FU isoforms showed any effects on GLI1 induced transcription but the long form can enhance GLI2 activity. Apparently FU did not have any effect on SUFU induced inhibition of GLI. Conclusions The FU gene and its genomic structure was identified. FU is a candidate gene for SD1, but we have not identified a pathogenic mutation in the FU coding region in a family with SD1. The sequence information and expression analyses show that transcripts of different sizes are expressed and subjected to alternative splicing

  3. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes

    OpenAIRE

    Wu, I; Shin, S. C.; Cao, Y; Bender, I K; N Jafari; Feng, G.; Lin, S.; Cidlowski, J. A.; Schleimer, R. P.; Lu, N Z

    2013-01-01

    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expres...

  4. MetaDiff: differential isoform expression analysis using random-effects meta-regression

    OpenAIRE

    Jia, Cheng; Guan, Weihua; Yang, Amy; Xiao, Rui; Tang, W. H. Wilson; Moravec, Christine S.; Margulies, Kenneth B.; Cappola, Thomas P.; Li, Mingyao; Li, Chun

    2015-01-01

    Background RNA sequencing (RNA-Seq) allows an unbiased survey of the entire transcriptome in a high-throughput manner. A major application of RNA-Seq is to detect differential isoform expression across experimental conditions, which is of great biological interest due to its direct relevance to protein function and disease pathogenesis. Detection of differential isoform expression is challenging because of uncertainty in isoform expression estimation owing to ambiguous reads and variability i...

  5. Induction of Chemokine Expression by Adiponectin In Vitro is Isoform-Dependent

    OpenAIRE

    Song, Huijuan; Chan, James; Rovin, Brad H.

    2009-01-01

    Adiponectin is reported to have both pro- and anti-inflammatory effects. Because adiponectin circulates in isoforms of various sizes, and some responses to adiponectin are isoform-dependent, it was postulated that the pro-inflammatory effects of adiponectin may isoform-specific. To test this, peripheral blood mononuclear cells (PBMC), microvascular endothelial cells (MVEC), and human glomerular mesangial cells (HMC) were treated with high or low molecular weight (HMW, LMW) recombinant human a...

  6. IsoformEx: isoform level gene expression estimation using weighted non-negative least squares from mRNA-Seq data

    Directory of Open Access Journals (Sweden)

    Gupta Ravi

    2011-07-01

    Full Text Available Abstract Background mRNA-Seq technology has revolutionized the field of transcriptomics for identification and quantification of gene transcripts not only at gene level but also at isoform level. Estimating the expression levels of transcript isoforms from mRNA-Seq data is a challenging problem due to the presence of constitutive exons. Results We propose a novel algorithm (IsoformEx that employs weighted non-negative least squares estimation method to estimate the expression levels of transcript isoforms. Validations based on in silico simulation of mRNA-Seq and qRT-PCR experiments with real mRNA-Seq data showed that IsoformEx could accurately estimate transcript expression levels. In comparisons with published methods, the transcript expression levels estimated by IsoformEx showed higher correlation with known transcript expression levels from simulated mRNA-Seq data, and higher agreement with qRT-PCR measurements of specific transcripts for real mRNA-Seq data. Conclusions IsoformEx is a fast and accurate algorithm to estimate transcript expression levels and gene expression levels, which takes into account short exons and alternative exons with a weighting scheme. The software is available at http://bioinformatics.wistar.upenn.edu/isoformex.

  7. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance

    Science.gov (United States)

    Gautheron, Jérémie; Vucur, Mihael; Schneider, Anne T.; Severi, Ilenia; Roderburg, Christoph; Roy, Sanchari; Bartneck, Matthias; Schrammen, Peter; Diaz, Mauricio Berriel; Ehling, Josef; Gremse, Felix; Heymann, Felix; Koppe, Christiane; Lammers, Twan; Kiessling, Fabian; Van Best, Niels; Pabst, Oliver; Courtois, Gilles; Linkermann, Andreas; Krautwald, Stefan; Neumann, Ulf P.; Tacke, Frank; Trautwein, Christian; Green, Douglas R.; Longerich, Thomas; Frey, Norbert; Luedde, Mark; Bluher, Matthias; Herzig, Stephan; Heikenwalder, Mathias; Luedde, Tom

    2016-01-01

    Receptor-interacting protein kinase 3 (RIPK3) mediates necroptosis, a form of programmed cell death that promotes inflammation in various pathological conditions, suggesting that it might be a privileged pharmacological target. However, its function in glucose homeostasis and obesity has been unknown. Here we show that RIPK3 is over expressed in the white adipose tissue (WAT) of obese mice fed with a choline-deficient high-fat diet. Genetic inactivation of Ripk3 promotes increased Caspase-8-dependent adipocyte apoptosis and WAT inflammation, associated with impaired insulin signalling in WAT as the basis for glucose intolerance. Similarly to mice, in visceral WAT of obese humans, RIPK3 is overexpressed and correlates with the body mass index and metabolic serum markers. Together, these findings provide evidence that RIPK3 in WAT maintains tissue homeostasis and suppresses inflammation and adipocyte apoptosis, suggesting that systemic targeting of necroptosis might be associated with the risk of promoting insulin resistance in obese patients. PMID:27323669

  8. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;

    2010-01-01

    Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... enzymes that are unique in exploiting the ATP/GTP-binding Walker motif to catalyze phosphorylation of protein tyrosine residues. Characterized for the first time only a decade ago, BY-kinases have now come to the fore. Important regulatory roles have been linked with these enzymes, via their involvement...... in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by...

  9. Choline in infant formula and adult nutritionals by ion chromatography and suppressed conductivity: First Action 2012.20.

    Science.gov (United States)

    Oates, Kassandra; Chen, Lillian; De Borba, Brian; Mohindra, Deepali; Rohrer, Jeffrey; Dowell, Dawn

    2013-01-01

    Single-laboratory validation (SLV) data from a method for the determination of choline in infant formula and adult nutritionals by ion chromatography (IC) and suppressed conductivity were generated and presented to the Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) Expert Review Panel (ERP) at the AOAC Annual Meeting held in Las Vegas, NV, during September 30 to October 3, 2012. The ERP reviewed the data and concluded that the data met the standard method performance requirements (SMPRs) established and approved the method as AOAC Official First Action. At the ERP's request, a second, full SLV was performed on 17 SPIFAN matrixes that included fortified and placebo products. Prior to IC analysis, microwave-assisted acid hydrolysis was used to digest and release bound choline from powder and ready-to-feed (RTF) infant formula and adult nutritional samples. Following hydrolysis, separation of choline from common cations was achieved on a Thermo Scientific Dionex IonPac CS19 column followed by suppressed conductivity detection. Total choline was measured and reported as the choline ion in mg/100 g reconstituted material or RTF as-is. The system was calibrated over the analytical range specified in the SMPR (2-250 mg/100 g). Recoveries of spiked samples at 50 and 100% of the fortified choline amounts ranged from 93.1 to 100.7% with RSDs < or = 6.7% for product containing < 2 mg/100 g and < or = 4.1% for product containing 2-100 mg/100 g. Accuracy for the National Institute of Standards and Technology Standard Reference Material 1849a was determined over a 6-day interval and found to be 10.2 +/- 0.2 mg/100 g calculated as the reconstituted powder with an RSD of 1.8%. The LOD was determined to be 0.009, and the LOQ 0.012 mg/100 g, well below the SMPR requirements of 0.7 and 2 mg/100 g, respectively. Repeatability RSDs over the range of the assay (2-200 mg/100 g) ranged from 1.0 to 5.93% PMID:24645521

  10. Proteomic Analysis of Cytokeratin Isoforms Uncovers Association with Survival in Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Tarek G. Gharib

    2002-01-01

    Full Text Available Cytokeratins. (CK are intermediate filaments whose expression is often altered in epithelial cancer. Systematic identification of lung adenocarcinoma proteins using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry has uncovered numerous CK isoforms. In this study, 93 lung adenocarcinomas. (64 stage I and 29 stage III and 10 uninvolved lung samples were quantitatively examined for protein expression. Fourteen of 21 isoforms of CK 7, 8, 18, 19 occurred at significantly higher levels. (P<.05 in tumors compared to uninvolved adjacent tissue. Specific isoforms of the four types of CK identified correlated with either clinical outcome or individual clinical-pathological parameters. All five of the CK7 isoforms associated with patient survival represented cleavage products. Two of five CK7 isoforms. (nos. 2165 and 2091, one of eight CK8 isoforms. (no. 439, one of three CK19 isoforms. (no. 1955 were associated with survival and significantly correlated to their mRNA levels, suggesting that transcription underlies overexpression of these CK isoforms. Our data indicate substantial heterogeneity among CK in lung adenocarcinomas resulting from posttranslational modifications, some of which correlated with patient survival and other clinical parameters. Therefore, specific isoforms of individual CK may have utility as diagnostic or predictive markers in lung adenocarcinomas.

  11. Mining frequent patterns for AMP-activated protein kinase regulation on skeletal muscle

    Directory of Open Access Journals (Sweden)

    Chen Yi-Ping

    2006-08-01

    Full Text Available Abstract Background AMP-activated protein kinase (AMPK has emerged as a significant signaling intermediary that regulates metabolisms in response to energy demand and supply. An investigation into the degree of activation and deactivation of AMPK subunits under exercise can provide valuable data for understanding AMPK. In particular, the effect of AMPK on muscle cellular energy status makes this protein a promising pharmacological target for disease treatment. As more AMPK regulation data are accumulated, data mining techniques can play an important role in identifying frequent patterns in the data. Association rule mining, which is commonly used in market basket analysis, can be applied to AMPK regulation. Results This paper proposes a framework that can identify the potential correlation, either between the state of isoforms of α, β and γ subunits of AMPK, or between stimulus factors and the state of isoforms. Our approach is to apply item constraints in the closed interpretation to the itemset generation so that a threshold is specified in terms of the amount of results, rather than a fixed threshold value for all itemsets of all sizes. The derived rules from experiments are roughly analyzed. It is found that most of the extracted association rules have biological meaning and some of them were previously unknown. They indicate direction for further research. Conclusion Our findings indicate that AMPK has a great impact on most metabolic actions that are related to energy demand and supply. Those actions are adjusted via its subunit isoforms under specific physical training. Thus, there are strong co-relationships between AMPK subunit isoforms and exercises. Furthermore, the subunit isoforms are correlated with each other in some cases. The methods developed here could be used when predicting these essential relationships and enable an understanding of the functions and metabolic pathways regarding AMPK.

  12. Therapeutic targeting of Janus kinases

    OpenAIRE

    Pesu, Marko; Laurence, Arian; Kishore, Nandini; Zwillich, Sam; Chan, Gary; O’Shea, John J.

    2008-01-01

    Cytokines play pivotal roles in immunity and inflammation, and targeting cytokines and their receptors is an effective means of treating such disorders. Type I and II cytokine receptors associate with Janus family kinases (JAKs) to effect intracellular signaling. These structurally unique protein kinases play essential and specific roles in immune cell development and function. One JAK, JAK3, has particularly selective functions. Mutations of this kinase underlie severe combined immunodeficie...

  13. Visualizing autophosphorylation in histidine kinases

    OpenAIRE

    Casino, Patricia; Miguel-Romero, Laura; Marina, Alberto

    2014-01-01

    Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two dir...

  14. Phosphatidylinositol 3-kinase in myogenesis.

    Science.gov (United States)

    Kaliman, P; Zorzano, A

    1997-08-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) has been cloned and characterized in a wide range of organisms. PI 3-kinases are activated by a diversity of extracellular stimuli and are involved in multiple cell processes such as cell proliferation, protein trafficking, cell motility, differentiation, regulation of cytoskeletal structure, and apoptosis. It has recently been shown that PI 3-kinase is a crucial second messenger in the signaling of myogenesis. Two structurally unrelated highly specific inhibitors of PI 3-kinase-wortmannin and LY294002-block the morphological and biochemical differentiation program of different skeletal-muscle cell models. Moreover, L6E9 myoblasts overexpressing a dominant-negative mutant of PI 3-kinase p85 regulatory subunit (Δp85) are unable to differentiate. Furthermore, PI 3-kinase is specifically involved in the insulinlike growth factor (IGF)-dependent myogenic pathway. Indeed, the ability of IGF-I, des-1,3-IGF-I, and IGF-II to promote cell fusion and muscle-specific protein expression is impaired after treatment with PI 3-kinase inhibitors or in cells overexpressing Δp85. The identification of additional key downstream elements of the IGF/PI 3-kinase myogenic cascade is crucial to a detailed understanding of the process of muscle differentiation and may generate new tools for skeletal and cardiac muscle regeneration therapies. (Trends Cardiovasc Med 1997;7:198-202). © 1997, Elsevier Science Inc. PMID:21235885

  15. A Review of Metallothionein Isoforms and their Role in Pathophysiology

    Directory of Open Access Journals (Sweden)

    Senthil kumar M

    2011-05-01

    Full Text Available Abstract The Metallothionein (MT is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological systems. Strong evidence exists that MT modulates complex diseases and the immune system in the body but the primary function of MT still remains unknown. This review's main objective is to explore the capability to specifically manipulate MT levels in cells and in animals to provide answers regarding how MT could impact those complex disease scenarios. The experimental result mentioned in this review related among MT, zinc, cadmium, diabetic, heart disease, bone retardation, neuro toxicity, kidney dysfunction, cancer, and brain suggest novel method for exploration and contribute significantly to the growing scientist to research further in this field.

  16. Entropy-based model for miRNA isoform analysis.

    Directory of Open Access Journals (Sweden)

    Shengqin Wang

    Full Text Available MiRNAs have been widely studied due to their important post-transcriptional regulatory roles in gene expression. Many reports have demonstrated the evidence of miRNA isoform products (isomiRs in high-throughput small RNA sequencing data. However, the biological function involved in these molecules is still not well investigated. Here, we developed a Shannon entropy-based model to estimate isomiR expression profiles of high-throughput small RNA sequencing data extracted from miRBase webserver. By using the Kolmogorov-Smirnov statistical test (KS test, we demonstrated that the 5p and 3p miRNAs present more variants than the single arm miRNAs. We also found that the isomiR variant, except the 3' isomiR variant, is strongly correlated with Minimum Free Energy (MFE of pre-miRNA, suggesting the intrinsic feature of pre-miRNA should be one of the important factors for the miRNA regulation. The functional enrichment analysis showed that the miRNAs with high variation, particularly the 5' end variation, are enriched in a set of critical functions, supporting these molecules should not be randomly produced. Our results provide a probabilistic framework for miRNA isoforms analysis, and give functional insights into pre-miRNA processing.

  17. A New View of Ras Isoforms in Cancers.

    Science.gov (United States)

    Nussinov, Ruth; Tsai, Chung-Jung; Chakrabarti, Mayukh; Jang, Hyunbum

    2016-01-01

    Does small GTPase K-Ras4A have a single state or two states, one resembling K-Ras4B and the other N-Ras? A recent study of K-Ras4A made the remarkable observation that even in the absence of the palmitoyl, K-Ras4A can be active at the plasma membrane. Importantly, this suggests that K-Ras4A may exist in two distinct signaling states. In state 1, K-Ras4A is only farnesylated, like K-Ras4B; in state 2, farnesylated and palmitoylated, like N-Ras. The K-Ras4A hypervariable region sequence is positively charged, in between K-Ras4B and N-Ras. Taken together, this raises the possibility that the farnesylated but nonpalmitoylated state 1, like K-Ras4B, binds calmodulin and is associated with colorectal and other adenocarcinomas like lung cancer and pancreatic ductal adenocarcinoma. On the other hand, state 2 may be associated with melanoma and other cancers where N-Ras is a major contributor, such as acute myeloid leukemia. Importantly, H-Ras has two, singly and doubly, palmitoylated states that may also serve distinct functional roles. The multiple signaling states of palmitoylated Ras isoforms question the completeness of small GTPase Ras isoform statistics in different cancer types and call for reevaluation of concepts and protocols. They may also call for reconsideration of oncogenic Ras therapeutics. PMID:26659836

  18. Role of cysteines in mammalian VDAC isoforms' function.

    Science.gov (United States)

    De Pinto, Vito; Reina, Simona; Gupta, Ankit; Messina, Angela; Mahalakshmi, Radhakrishnan

    2016-08-01

    In this mini-review, we analyze the influence of cysteines in the structure and activity of mitochondrial outer membrane mammalian VDAC isoforms. The three VDAC isoforms show conserved sequences, similar structures and the same gene organization. The meaning of three proteins encoded in different chromosomes must thus be searched for subtle differences at the amino acid level. Among others, cysteine content is noticeable. In humans, VDAC1 has 2, VDAC2 has 9 and VDAC3 has 6 cysteines. Recent works have shown that, at variance from VDAC1, VDAC2 and VDAC3 exhibit cysteines predicted to protrude towards the intermembrane space, making them a preferred target for oxidation by ROS. Mass spectrometry in VDAC3 revealed that a disulfide bridge can be formed and other cysteine oxidations are also detectable. Both VDAC2 and VDAC3 cysteines were mutagenized to highlight their role in vitro and in complementation assays in Δporin1 yeast. Chemico-physical techniques revealed an important function of cysteines in the structural stabilization of the pore. In conclusion, the works available on VDAC cysteines support the notion that the three proteins are paralogs with a similar pore-function and slightly different, but important, ancillary biological functions. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26947058

  19. Regular exercise improves cardiac contractile activation by modulating MHC isoforms and SERCA activity in orchidectomized rats.

    Science.gov (United States)

    Vutthasathien, Pavarana; Wattanapermpool, Jonggonnee

    2015-10-01

    Data from the trial known as Testosterone in Older Men with Mobility Limitations (TOM) has indicated an association between testosterone administration and a greater risk for adverse cardiovascular events. We therefore propose that regular exercise is a cardioprotective alternative that prevents detrimental changes in contractile activation when a deficiency in male sex hormones exists. Ten-week-old orchidectomized (ORX) rats were subjected to a 9-wk treadmill running program at moderate intensity starting 1 wk after surgery. Although exercise-induced cardiac hypertrophy was observed both in rats that underwent ORX and sham surgery, regular exercise enhanced cardiac myofilament Ca(2+) sensitivity and myosin light-chain 2 phosphorylation only in rats that underwent a sham operation. Although the rats that had sham surgery and and given exercise exhibited no change in maximum developed tension, regular running prevented the suppression of maximum active tension in the hearts of ORX rats. Regular exercise also prevented a shift in myosin heavy chain (MHC) isoforms toward β-MHC, a reduction in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity, and an increase in SERCA sensitivity in the hearts of ORX rats. Neither SERCA content nor its modulating component, phospholamban (PLB), was altered by exercise in either sham-operated or ORX rats. However, decreases in the phosphorylated Thr(17) form of PLB and the phosphorylated Thr(287) form of Ca(2+)/calmodulin-dependent kinase II in the hearts of ORX rats were abolished after regular exercise. These results thus support the use of regular running as a cardioprotective alternative to testosterone replacement in hypogonadal conditions. PMID:26272317

  20. Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells.

    Science.gov (United States)

    Gu, Yu-Chen; Kortesmaa, Jarkko; Tryggvason, Karl; Persson, Jenny; Ekblom, Peter; Jacobsen, Sten-Eirik; Ekblom, Marja

    2003-02-01

    Laminins are alphabetagamma heterotrimeric extracellular proteins that regulate cellular functions by adhesion to integrin and nonintegrin receptors. Laminins containing alpha4 and alpha5 chains are expressed in bone marrow, but their interactions with hematopoietic progenitors are unknown. We studied human bone marrow cell adhesion to laminin-10/11 (alpha5beta1gamma1/alpha5beta2gamma1), laminin-8 (alpha4beta1gamma1), laminin-1 (alpha1beta1gamma1), and fibronectin. About 35% to 40% of CD34(+) and CD34(+)CD38(-) stem and progenitor cells adhered to laminin-10/11, and 45% to 50% adhered to fibronectin, whereas they adhered less to laminin-8 and laminin-1. Adhesion of CD34(+)CD38(-) cells to laminin-10/11 was maximal without integrin activation, whereas adhesion to other proteins was dependent on protein kinase C activation by 12-tetradecanoyl phorbol-13-acetate (TPA). Fluorescence-activated cell-sorting (FACS) analysis showed expression of integrin alpha6 chain on most CD34(+) and CD34(+)CD38(-) cells. Integrin alpha6 and beta1 chains were involved in binding of both cell fractions to laminin-10/11 and laminin-8. Laminin-10/11 was highly adhesive to lineage-committed myelomonocytic and erythroid progenitor cells and most lymphoid and myeloid cell lines studied, whereas laminin-8 was less adhesive. In functional assays, both laminin-8 and laminin-10/11 facilitated stromal-derived factor-1alpha (SDF-1alpha)-stimulated transmigration of CD34(+) cells, by an integrin alpha6 receptor-mediated mechanism. In conclusion, we demonstrate laminin isoform-specific adhesive interactions with human bone marrow stem, progenitor, and more differentiated cells. The cell-adhesive laminins affected migration of hematopoietic progenitors, suggesting a physiologic role for laminins during hematopoiesis. PMID:12393739

  1. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts.

    Science.gov (United States)

    Kacena, Melissa A; Eleniste, Pierre P; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E; Mayo, Lindsey D; Bruzzaniti, Angela

    2012-05-18

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  2. Megakaryocytes Regulate Expression of Pyk2 Isoforms and Caspase-mediated Cleavage of Actin in Osteoblasts*

    Science.gov (United States)

    Kacena, Melissa A.; Eleniste, Pierre P.; Cheng, Ying-Hua; Huang, Su; Shivanna, Mahesh; Meijome, Tomas E.; Mayo, Lindsey D.; Bruzzaniti, Angela

    2012-01-01

    The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton. PMID:22447931

  3. Role of {sup 11}C-choline PET/CT in the re-staging of prostate cancer patients with biochemical relapse and negative results at bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Fuccio, Chiara; Castellucci, Paolo [Nuclear Medicine Unit, Department of Hematology Oncology and Laboratory Medicine, Azienda Ospedaliero - Universitaria di Bologna Policlinico Sant' Orsola - Malpighi, University of Bologna, Bologna (Italy); Schiavina, Riccardo [Urology Unit, Department of Specialist Surgery and Anaesthesiology, Azienda Ospedaliero - Universitaria di Bologna Policlinico Sant' Orsola - Malpighi, University of Bologna, Bologna (Italy); Guidalotti, Pier Luigi; Gavaruzzi, Gilberto; Montini, Gian Carlo; Nanni, Cristina [Nuclear Medicine Unit, Department of Hematology Oncology and Laboratory Medicine, Azienda Ospedaliero - Universitaria di Bologna Policlinico Sant' Orsola - Malpighi, University of Bologna, Bologna (Italy); Marzola, Maria Cristina [Department of Nuclear Medicine and PET/CT Centre, ' Santa Maria della Misericordia' Hospital, Via Tre Martiri 140, 45100 Rovigo (Italy); Rubello, Domenico, E-mail: domenico.rubello@libero.it [Department of Nuclear Medicine and PET/CT Centre, ' Santa Maria della Misericordia' Hospital, Via Tre Martiri 140, 45100 Rovigo (Italy); Fanti, Stefano [Nuclear Medicine Unit, Department of Hematology Oncology and Laboratory Medicine, Azienda Ospedaliero - Universitaria di Bologna Policlinico Sant' Orsola - Malpighi, University of Bologna, Bologna (Italy)

    2012-08-15

    Aim: to evaluate the utility of {sup 11}C-choline PET/CT in prostate cancer (PC) patients who have demonstrated a biochemical recurrence and a negative bone scintigraphy (BS). Materials and methods: 123 consecutive PC patients (mean age 67.6 years; range 54-83) with a biochemical relapse (mean PSA value 3.3 ng/mL; range 0.2-25.5) after radical prostatectomy (RP) were included in our retrospective study. Patients underwent a BS that resulted negative and a {sup 11}C-choline PET/CT within 4 months from BS (range: 1 day to 4 months; mean: 2.5 months). Validation of results was established by: (1) a positive biopsy, (2) a positive subsequent BS, CT or MR and (3) a normalization of {sup 11}C-choline uptake after systemic therapy or a progression of the disease. Results: {sup 11}C-choline PET/CT was positive in 42/123 patients (34.1%). {sup 11}C-choline PET/CT detected lesions in: bone (10 patients), lymph-nodes (20 patients), bone and lymph nodes (7 patients), bone and lung (1 patient), lymph-nodes and lung (1 patient), local relapse (3 patients). Overall, {sup 11}C-choline PET/CT showed a total of 30 unknown bone lesions in 18/123 (14.6%) patients. Conclusion: {sup 11}C-choline PET/CT showed a better sensitivity than BS in patients with biochemical relapse after RP: {sup 11}C-choline PET/CT detected unknown bone lesions in 18/123 (14.6%) patients.

  4. Effects of irradiation on the [methyl-3H]choline uptake in the human prostate cancer cell lines LNCaP and PC3

    International Nuclear Information System (INIS)

    Background and purpose: choline positron emission tomography (PET) can help to optimize radiation treatment strategy of prostate cancer. Therefore, the aim of this study was to elucidate the effects of ionizing radiation on the choline uptake in an androgen-dependent (LNCaP) and an androgen-independent (PC3) prostate cancer cell line. Material and methods: uptake of [methyl-3H]choline chloride was investigated between 4 and 96 h after irradiation with 6 Gy. Dose dependence of choline uptake was examined following irradiation with 2-12 Gy, and cell survival was analyzed via the clonogenic assay. Michaelis-Menten kinetics was determined 24 h (PC3) and 48 h (LNCaP) after irradiation with 6 Gy. Results: PC3 cells showed a significant transitory increase of [methyl-3H]choline uptake with a maximum at 24 h after irradiation. In LNCaP cells irradiation induced a significant decrease with a minimum at 48 h. Changes in choline uptake in both cell lines were almost dose-independent up to 12 Gy. Following irradiation with 6 Gy, transport capacity (vmax) increased and Michaelis-Menten constant (KM) decreased in PC3 cells, while in LNCaP cells the two parameters behaved vice versa. Conclusion: changes in choline uptake following irradiation might be due to metabolic changes associated with initiation of processes that finally cause cell death. Thus, changes in tumor choline uptake monitored by PET after radiotherapy might not exclusively reflect therapeutic success but also altered tracer uptake as a consequence of irradiation. (orig.)

  5. Studies of the cytosolic thymidine kinase in human cells and comparison to the recombinantly expressed enzyme

    DEFF Research Database (Denmark)

    Kock Jensen, Helle

    Thymidine kinase (TK) is a key enzyme in the salvage pathway of the nucleoside metabolism catalyzing the first phosphorylation step in TTP synthesis. Human cytosolic TK (TKl) is highly cell cycle regulated. TKl is regulated on many different levels of expression and isoforms with altered enzymatic...... identical but further investigations showed some interesting differences. Recombinant TKl is about 10 fold more sensitive towards TTP as inhibitor. Furthermore the effect of removal of ATP from the native TKl on the enzyme kinetics and native molecular weight was not found for recombinant TKl. Native TKl...

  6. M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation

    OpenAIRE

    Morgan, Hugh P.; O???Reilly, Francis J.; Wear, Martin A.; O'Neill, Robert; Fothergill-Gilmore, Linda A.; Hupp, Ted; Walkinshaw, Malcolm D.

    2013-01-01

    We show that the M2 isoform of pyruvate kinase (M2PYK) exists in equilibrium between monomers and tetramers regulated by allosteric binding of naturally occurring small-molecule metabolites. Phenylalanine stabilizes an inactive T-state tetrameric conformer and inhibits M2PYK with an IC50 value of 0.24 mM, whereas thyroid hormone (triiodo-l-thyronine, T3) stabilizes an inactive monomeric form of M2PYK with an IC50 of 78 nM. The allosteric activator fructose-1,6-bisphosphate [F16BP, AC50 (conce...

  7. Utility of 18F-choline photon emission tomography/computed tomography in the diagnosis of parathyroid adenoma

    Science.gov (United States)

    Damle, Nishikant Avinash; Tripathi, Madhavi; Behera, Abhishek; Aggarwal, Sameer; Bal, Chandrasekhar; Aggarwal, Shipra; Aggarwal, Vivek; Kandasamy, Devasenathipathi; Taywade, Sameer

    2016-01-01

    Recently, the role of 18F-choline in the detection of parathyroid adenomas has been reported. At our institution, we are currently studying the role of this tracer in comparison to the standard methoxy-isobutyl-isonitrile.(MIBI) scan with single photon emission tomography/computed tomography. Our initial results show that 18F-choline is at least as good as 99mTc-MIBI scan. We present here a representative case of a 45-year-old woman with multiple skeletal lytic lesions and a high parathyroid hormone.(PTH) who underwent both these imaging techniques with concordant results, further confirmed by histopathology and postoperative fall in serum PTH levels. PMID:27385893

  8. Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice

    Science.gov (United States)

    Ash, Jessica A.; Velazquez, Ramon; Kelley, Christy M.; Powers, Brian E.; Ginsberg, Stephen D.; Mufson, Elliott J.; Strupp, Barbara J.

    2014-01-01

    Down syndrome (DS) is marked by intellectual disability (ID) and early-onset of Alzheimer’s disease (AD) neuropathology, including basal forebrain cholinergic neuron (BFCN) degeneration. The present study tested the hypothesis that maternal choline supplementation (MCS) lessens hippocampal dysfunction and protects against BFCN degeneration in the Ts65Dn mouse model of DS and AD. During pregnancy and lactation, dams were assigned to either a choline sufficient (1.1 g/kg choline chloride) or choline supplemented (5.0 g/kg choline chloride) diet. Between 13 and 17 months of age, offspring were tested in the radial arm water maze (RAWM) to examine spatial learning and memory followed by unbiased quantitative morphometry of BFCNs. Spatial mapping was significantly impaired in unsupplemented Ts65Dn mice relative to normal disomic (2N) littermates. Additionally, a significantly lower number and density of medial septum (MS) hippocampal projection BFCNs was also found in unsupplemented Ts65Dn mice. Notably, MCS significantly improved spatial mapping and increased number, density, and size of MS BFCNs in Ts65Dn offspring. Moreover, the density and number of MS BFCNs correlated significantly with spatial memory proficiency, providing powerful support for a functional relationship between these behavioral and morphometric effects of MCS for the trisomic offspring. Thus, increasing maternal choline intake during pregnancy may represent a safe and effective treatment approach for expectant mothers carrying a DS fetus, as well as a possible means of BFCN neuroprotection during aging for the population at large. PMID:24932939

  9. Effects of rumen-protected choline supplementation on metabolic and performance responses of transition dairy cows.

    Science.gov (United States)

    Leiva, T; Cooke, R F; Brandão, A P; Marques, R S; Vasconcelos, J L M

    2015-04-01

    The objective of this experiment was to compare metabolic and milk production parameters in dairy cows supplemented and nonsupplemented with rumen-protected choline (RPC) during the transition period. Twenty-three nonlactating, multiparous, pregnant Holstein cows were ranked by BW and BCS 21 d before expected date of calving and immediately were assigned to receive (n = 12) or not receive (control; n = 11) RPC until 45 d in milk (DIM). Cows supplemented with RPC received (as-fed basis) 50 and 100 g/d of RPC (18.8% choline) before and after calving, respectively. Before calving, cows were maintained in 2 drylot pens according to treatment with ad libitum access to corn silage, and individually they received (as-fed basis) 3 kg/cow daily of a concentrate. Upon calving, cows were moved to 2 adjacent drylot pens according to treatment, milked twice daily, offered (as-fed basis) 35 kg/cow daily of corn silage, and individually received a concentrate formulated to meet their nutritional requirements after milking. The RPC was individually offered to cows as a topdressing into the morning concentrate feeding. Before calving, cow BW and BCS were recorded weekly, and blood samples were collected every 5 d beginning on d -21 relative to expected calving date. Upon calving and until 45 DIM, BW and BCS were recorded weekly, individual milk production was recorded daily, and milk samples were collected once a week and analyzed for fat, protein, and total solids. Blood samples were collected every other day from 0 to 20 DIM and every 5 d from 20 to 45 DIM. Based on actual calving dates, cows receiving RPC or control began receiving treatments 16.8 ± 1.7 and 17.3 ± 2.0 d before calving, respectively. No treatment effects were detected (P ≥ 0.18) on postpartum concentrate intake, BW and BCS, or serum concentrations of cortisol, β-hydroxybutyrate, NEFA, glucose, and IGF-I. Cows supplemented with RPC had greater (P ≤ 0.01) mean serum haptoglobin and insulin concentrations

  10. A novel PGC-1α isoform in brain localizes to mitochondria and associates with PINK1 and VDAC

    International Nuclear Information System (INIS)

    Highlights: •Novel 35 kDa PGC-1α localizes to mitochondrial inner membrane and matrix in brain. •Mitochondrial localization of 35 kDa PGC-1α depends on VDAC protein. •Mitochondrial localization of 35 kDa PGC-1α depends on membrane potential. •The 35 kDa PGC-1α associates and colocalizes with PINK in brain mitochondria. -- Abstract: Peroxisome proliferator-activated receptor-gamma co-activator 1α (PGC-1α) and PTEN-induced putative kinase 1 (PINK1) are powerful regulators of mitochondrial function. Here, we report that a previously unrecognized, novel 35 kDa PGC-1α isoform localizes to the mitochondrial inner membrane and matrix in brain as determined by protease protection and carbonate extraction assays, as well as by immunoelectron microscopy. Immunoelectron microscopy and import experiments in vitro revealed that 35 kDa PGC-1α colocalizes and interacts with the voltage-dependent anion channel (VDAC), and that its import depends on VDAC. Valinomycin treatment which depolarizes the membrane potential, abolished mitochondrial localization of the 35 kDa PGC-1α. Using blue native-PAGE, co-immunoprecipitation, and immunoelectron microscopy analyses, we found that the 35 kDa PGC-1α binds and colocalizes with PINK1 in brain mitochondria. This is the first report regarding mitochondrial localization of a novel 35 kDa PGC-1α isoform and its association with PINK1, suggesting possible regulatory roles for mitochondrial function in the brain

  11. Laminin isoforms differentially regulate adhesion, spreading, proliferation, and ERK activation of β1 integrin-null cells

    International Nuclear Information System (INIS)

    The presence of many laminin receptors of the β1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin α6β4 and dystroglycan. We therefore tested the binding of a β1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin α6Aβ4A variant. GD25 β1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin α6 antibody, but not by a dystroglycan antibody. Hence, integrin α6Aβ4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin α6Aβ4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin α6Aβ4A

  12. Changes in brain striatum dopamine and acetylcholine receptors induced by chronic CDP-choline treatment of aging mice.

    OpenAIRE

    Giménez, R.; Raïch, J.; Aguilar, J.

    1991-01-01

    1. Spiroperidol binding (dopamine D2 receptors) and quinuclidinyl benzilate binding (muscarinic receptors) in striata of 19-month old mice was analyzed for animals that had received chronic administration of cytidine 5'-diphosphocholine (CDP-choline) incorporated into the chow consumed (100 or 500 mg kg-1 added per day) for the 7 months before they were killed. 2. Treated animals displayed an increase in the dopamine receptor densities of 11% for those receiving 100 mg kg-1 and 18% for those ...

  13. Cholinergic activation of the murine trachealis muscle via non-vesicular acetylcholine release involving low-affinity choline transporters.

    Science.gov (United States)

    Nassenstein, Christina; Wiegand, Silke; Lips, Katrin S; Li, Guanfeng; Klein, Jochen; Kummer, Wolfgang

    2015-11-01

    In addition to quantal, vesicular release of acetylcholine (ACh), there is also non-quantal release at the motor endplate which is insufficient to evoke postsynaptic responses unless acetylcholinesterase (AChE) is inhibited. We here addressed potential non-quantal release in the mouse trachea by organ bath experiments and (immuno)histochemical methods. Electrical field stimulation (EFS) of nerve terminals elicited tracheal constriction that is largely due to ACh release. Classical enzyme histochemistry demonstrated acetylcholinesterase (AChE) activity in nerve fibers in the muscle and butyrylcholinesterase (BChE) activity in the smooth muscle cells. Acute inhibition of both esterases by eserine significantly raised tracheal tone which was fully sensitive to atropine. This effect was reduced, but not abolished, in AChE, but not in BChE gene-deficient mice. The eserine-induced increase in tracheal tone was unaffected by vesamicol (10(-5)M), an inhibitor of the vesicular acetylcholine transporter, and by corticosterone (10(-4)M), an inhibitor of organic cation transporters. Hemicholinium-3, in low concentrations an inhibitor of the high-affinity choline transporter-1 (CHT1), completely abrogated the eserine effects when applied in high concentrations (10(-4)M) pointing towards an involvement of low-affinity choline transporters. To evaluate the cellular sources of non-quantal ACh release in the trachea, expression of low-affinity choline transporter-like family (CTL1-5) was evaluated by RT-PCR analysis. Even though these transporters were largely abundant in the epithelium, denudation of airway epithelial cells had no effect on eserine-induced tracheal contraction, indicating a non-quantal release of ACh from non-epithelial sources in the airways. These data provide evidence for an epithelium-independent non-vesicular, non-quantal ACh release in the mouse trachea involving low-affinity choline transporters. PMID:26278668

  14. The correlation between (1)H MRS choline concentrations and MR diffusion trace values in human brain tumors

    Czech Academy of Sciences Publication Activity Database

    Wagnerová, Dita; Jirů, F.; Dezortová, M.; Vargová, Lýdia; Syková, Eva; Hájek, M.

    2009-01-01

    Roč. 22, č. 1 (2009), s. 19-31. ISSN 0968-5243 R&D Projects: GA MŠk(CZ) LC554 Grant ostatní: MZd(CZ) MZ0IKEM2005; EC FP6 project Angiotargeting(XE) 504743 Institutional research plan: CEZ:AV0Z50390512 Keywords : spectroscopic imaging * cholines * diffusion trace Subject RIV: FH - Neurology Impact factor: 1.859, year: 2009

  15. Diagnostic value of combining 11C-choline and 18F-FDG PET/CT in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    In this prospective study, our goal was to emphasize the diagnostic value of combining 11C-choline and 18F-FDG PET/CT for hepatocellular carcinoma (HCC) in patients with chronic liver disease. Thirty-three consecutive patients were enrolled. All patients were suspected to have HCC based on CT and/or MRI imaging. A final diagnosis was obtained by histopathological examination or by imaging alone according to American Association for the Study of Liver Disease criteria. All patients underwent PET/CT with both tracers within a median of 5 days. All lesions showing higher tracer uptake than normal liver were considered positive for HCC. We examined how tracer uptake was related to biological (serum α-fetoprotein levels) and pathological (differentiation status, peritumoral capsule and vascular invasion) prognostic markers of HCC, as well as clinical observations at 6 months (recurrence and death). Twenty-eight HCC, four cholangiocarcinomas and one adenoma were diagnosed. In the HCC patients, the sensitivity of 11C-choline, 18F-FDG and combined 11C-choline and 18F-FDG PET/CT for the detection of HCC was 75 %, 36 % and 93 %, respectively. Serum α-fetoprotein levels >200 ng/ml were more frequent among patients with 18F-FDG-positive lesions than those with 18F-FDG-negative lesions (p < 0.05). Early recurrence (n=2) or early death (n=5) occurred more frequently in patients with 18F-FDG-positive lesions than in those with 18F-FDG-negative lesions (p < 0.05). The combined use of 11C-choline and 18F-FDG PET/CT detected HCC with high sensitivity. This approach appears to be of potential prognostic value and may facilitate the selection of patients for surgical resection or liver transplantation. (orig.)

  16. No evidence for role of extracellular choline-acetyltransferase in generation of gamma oscillations in rat hippocampal slices in vitro.

    Science.gov (United States)

    Hollnagel, J O; ul Haq, R; Behrens, C J; Maslarova, A; Mody, I; Heinemann, U

    2015-01-22

    Acetylcholine (ACh) is well known to induce persistent γ-oscillations in the hippocampus when applied together with physostigmine, an inhibitor of the ACh degrading enzyme acetylcholinesterase (AChE). Here we report that physostigmine alone can also dose-dependently induce γ-oscillations in rat hippocampal slices. We hypothesized that this effect was due to the presence of choline in the extracellular space and that this choline is taken up into cholinergic fibers where it is converted to ACh by the enzyme choline-acetyltransferase (ChAT). Release of ACh from cholinergic fibers in turn may then induce γ-oscillations. We therefore tested the effects of the choline uptake inhibitor hemicholinium-3 (HC-3) on persistent γ-oscillations either induced by physostigmine alone or by co-application of ACh and physostigmine. We found that HC-3 itself did not induce γ-oscillations and also did not prevent physostigmine-induced γ-oscillation while washout of physostigmine and ACh-induced γ-oscillations was accelerated. It was recently reported that ChAT might also be present in the extracellular space (Vijayaraghavan et al., 2013). Here we show that the effect of physostigmine was prevented by the ChAT inhibitor (2-benzoylethyl)-trimethylammonium iodide (BETA) which could indicate extracellular synthesis of ACh. However, when we tested for effects of extracellularly applied acetyl-CoA, a substrate of ChAT for synthesis of ACh, physostigmine-induced γ-oscillations were attenuated. Together, these findings do not support the idea that ACh can be synthesized by an extracellularly located ChAT. PMID:25453770

  17. Effects of Maternal Choline Supplementation on the Septohippocampal Cholinergic System in the Ts65Dn Mouse Model of Down Syndrome.

    Science.gov (United States)

    Kelley, Christy M; Ash, Jessica A; Powers, Brian E; Velazquez, Ramon; Alldred, Melissa J; Ikonomovic, Milos D; Ginsberg, Stephen D; Strupp, Barbara J; Mufson, Elliott J

    2016-01-01

    Down syndrome (DS), caused by trisomy of chromosome 21, is marked by intellectual disability (ID) and early onset of Alzheimer's disease (AD) neuropathology including hippocampal cholinergic projection system degeneration. Here we determined the effects of age and maternal choline supplementation (MCS) on hippocampal cholinergic deficits in Ts65Dn mice compared to 2N mice sacrificed at 6-8 and 14-18 months of age. Ts65Dn mice and disomic (2N) littermates sacrificed at ages 6-8 and 14-18 mos were used for an aging study and Ts65Dn and 2N mice derived from Ts65Dn dams were maintained on either a choline-supplemented or a choline-controlled diet (conception to weaning) and examined at 14-18 mos for MCS studies. In the latter, mice were behaviorally tested on the radial arm Morris water maze (RAWM) and hippocampal tissue was examined for intensity of choline acetyltransferase (ChAT) immunoreactivity. Hippocampal ChAT activity was evaluated in a separate cohort. ChAT-positive fiber innervation was significantly higher in the hippocampus and dentate gyrus in Ts65Dn mice compared with 2N mice, independent of age or maternal diet. Similarly, hippocampal ChAT activity was significantly elevated in Ts65Dn mice compared to 2N mice, independent of maternal diet. A significant increase with age was seen in hippocampal cholinergic innervation of 2N mice, but not Ts65Dn mice. Degree of ChAT intensity correlated negatively with spatial memory ability in unsupplemented 2N and Ts65Dn mice, but positively in MCS 2N mice. The increased innervation produced by MCS appears to improve hippocampal function, making this a therapy that may be exploited for future translational approaches in human DS. PMID:26391045

  18. Metabolism of Trimethylamine, Choline, and Glycine Betaine by Sulfate-Reducing and Methanogenic Bacteria in Marine Sediments †

    OpenAIRE

    King, Gary M.

    1984-01-01

    The response of methanogenesis and sulfate reduction to trimethylamine, choline, and glycine betaine was examined in surface sediments from the intertidal region of Lowes Cove, Maine. Addition of these substrates markedly stimulated methanogenesis in the presence of active sulfate reduction, whereas addition of other substrates, including glucose, acetate, and glycine, had no effect on methane production. Sulfate reduction was stimulated simultaneously with methanogenesis by the various quate...

  19. INS, DFT and temperature dependent IR investigations of dynamical properties of low temperature phase of choline chloride

    International Nuclear Information System (INIS)

    Highlights: • Choline chloride was investigated by INS and IR. • DFT calculations for solids state model were performed. • Full vibrational analysis was performed. • Activation energy for the CH3 group reorientation was obtained. - Abstract: Within the framework of the research the inelastic neutron scattering and temperature dependent infra-red spectroscopy investigations of the low temperature phase of choline chloride were performed. The infra-red spectra in wavenumber region 4000–80 cm−1 and in a temperature range 9–300 K were collected. The density functional theory calculations with the periodic boundary conditions for determination and description of the normal modes in the vibration spectra of choline chloride were applied. Bands assigned to the CH3 torsional vibration were observed at 288 and 249 cm−1. From the analysis of the temperature dependence of the full-width-at-half-maximum the activation energy for CH3 group reorientation is found to be equal to 1.6 ± 0.2 kcal/mol

  20. Choline Binding Proteins from Streptococcus pneumoniae: A Dual Role as Enzybiotics and Targets for the Design of New Antimicrobials.

    Science.gov (United States)

    Maestro, Beatriz; Sanz, Jesús M

    2016-01-01

    Streptococcus pneumoniae (pneumococcus) is an important pathogen responsible for acute invasive and non-invasive infections such as meningitis, sepsis and otitis media, being the major cause of community-acquired pneumonia. The fight against pneumococcus is currently hampered both by insufficient vaccine coverage and by rising antimicrobial resistances to traditional antibiotics, making necessary the research on novel targets. Choline binding proteins (CBPs) are a family of polypeptides found in pneumococcus and related species, as well as in some of their associated bacteriophages. They are characterized by a structural organization in two modules: a functional module (FM), and a choline-binding module (CBM) that anchors the protein to the choline residues present in the cell wall through non-covalent interactions. Pneumococcal CBPs include cell wall hydrolases, adhesins and other virulence factors, all playing relevant physiological roles for bacterial viability and virulence. Moreover, many pneumococcal phages also make use of hydrolytic CBPs to fulfill their infectivity cycle. Consequently, CBPs may play a dual role for the development of novel antipneumococcal drugs, both as targets for inhibitors of their binding to the cell wall and as active cell lytic agents (enzybiotics). In this article, we review the current state of knowledge about host- and phage-encoded pneumococcal CBPs, with a special focus on structural issues, together with their perspectives for effective anti-infectious treatments. PMID:27314398

  1. Solubilities of carbon dioxide in the eutectic mixture of levulinic acid (or furfuryl alcohol) and choline chloride

    International Nuclear Information System (INIS)

    Highlights: • Solubilities of carbon dioxide in six renewable deep eutectic solvents (DESs) have been reported. • The experimental data were well correlated by Henry’s law. • The dissolution Gibbs free energy, enthalpy, and entropy changes were derived. • The absorption capacities of CO2 in present DESs and other DESs as well as several ionic liquids were compared. - Abstract: The solubilities of carbon dioxide (CO2) in the renewable deep eutectic solvents (DESs) containing levulinic acid (or furfuryl alcohol) and choline chloride were determined at temperatures (303.15, 313.15, 323.15, and 333.15) K and pressures up to 600.0 kPa using an isochoric saturation method. The mole ratios of levulinic acid (or furfuryl alcohol) to choline chloride were fixed at 3:1, 4:1 and 5:1. Standard Gibbs free energy, dissolution enthalpy and dissolution entropy were calculated from Henry’s law constant of CO2 in the DESs. Results indicated that levulinic acid based DESs are more effective to capture CO2 than furfuryl alcohol based ones. The solubility of CO2 in the DESs increased with increasing mole ratio of levulinic acid (or furfuryl alcohol) to choline chloride as well as pressure and decreased with increasing temperature

  2. Crystallization and preliminary X-ray diffraction studies of choline-binding protein F from Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Rafael [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); González, Ana; Moscoso, Miriam; García, Pedro [Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Stelter, Meike; Kahn, Richard [Institut de Biologie Structurale J.-P. Ebel CEA CNRS UJF, Laboratoire de Cristallographie Macromoléculaire, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 1 (France); Hermoso, Juan A., E-mail: xjuan@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2007-09-01

    The modular choline-binding protein F (CbpF) from S. pneumoniae has been crystallized by the hanging-drop vapour-diffusion method. A SAD data set from a gadolinium-complex derivative has been collected to 2.1 Å resolution. Choline-binding protein F (CbpF) is a modular protein that is bound to the pneumococcal cell wall through noncovalent interactions with choline moieties of the bacterial teichoic and lipoteichoic acids. Despite being one of the more abundant proteins on the surface, along with the murein hydrolases LytA, LytB, LytC and Pce, its function is still unknown. CbpF has been crystallized using the hanging-drop vapour-diffusion method at 291 K. Diffraction-quality orthorhombic crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 49.13, b = 114.94, c = 75.69 Å. A SAD data set from a Gd-HPDO3A-derivatized CbpF crystal was collected to 2.1 Å resolution at the gadolinium L{sub III} absorption edge using synchrotron radiation.

  3. Histopathological correlation of 11C-choline PET scans for target volume definition in radical prostate radiotherapy

    International Nuclear Information System (INIS)

    Background and purpose: To evaluate the accuracy of 11C-choline PET scans in defining dominant intraprostatic lesions (DILs) for radiotherapy target volume definition. Material and methods: Eight men with prostate cancer who had 11C-choline PET scans prior to radical prostatectomy were studied. Several methods were used to contour the DIL on the PET scans: visual, PET Edge, Region Grow, absolute standardised uptake value (SUV) thresholds and percentage of maximum SUV thresholds. Prostatectomy specimens were sliced in the transverse plane and DILs were delineated on these by a pathologist. These were then compared with the PET scans. The accuracy of correlation was assessed by the Dice similarity coefficient (DSC) and the Youden index. Results: The contouring method resulting in both the highest DSC and the highest Youden index was 60% of the maximum SUV (SUV60%), with values of 0.64 and 0.51, respectively. However SUV60% was not statistically significantly better than all of the other methods by either measure. Conclusions: Although not statistically significant, SUV60% resulted in the best correlation between 11C-choline PET and pathology amongst all the methods studied. The degree of correlation shown here is consistent with previous studies that have justified using imaging for DIL radiotherapy target volume definition.

  4. Nuclear Magnetic Resonance Detects Phosphoinositide 3-Kinase/Akt-Independent Traits Common to Pluripotent Murine Embryonic Stem Cells and Their Malignant Counterparts

    Directory of Open Access Journals (Sweden)

    Hanna M. Romanska

    2009-12-01

    Full Text Available Pluripotent embryonic stem (ES cells, a potential source of somatic precursors for cell therapies, cause tumors after transplantation. Studies of mammalian carcinogenesis using nuclear magnetic resonance (NMR spectroscopy have revealed changes in the choline region, particularly increased phosphocholine (PCho content. High PCho levels in murine ES (mES cells have recently been attributed to cell pluripotency. The phosphoinositide 3-kinase (PI3K/Akt pathway has been implicated in tumor-like properties of mES cells. This study aimed to examine a potential link between the metabolic profile associated with choline metabolism of pluripotent mES cells and PI3K/Akt signaling. We used mES (ES-D3 and murine embryonal carcinoma cells (EC-F9 and compared the metabolic profiles of 1 pluripotent mES (ESD0, 2 differentiated mES (ESD14, and 3 pluripotent F9 cells. Involvement of the PI3K/Akt pathway was assessed using LY294002, a selective PI3K inhibitor. Metabolic profiles were characterized in the extracted polar fraction by 1H NMR spectroscopy. Similarities were found between the levels of choline phospholipid metabolites (PCho/total choline and PCho/glycerophosphocholine [GPCho] in ESD0 and F9 cell spectra and a greater-than five-fold decrease of the PCho/GPCho ratio associated with mES cell differentiation. LY294002 caused no significant change in relative PCho levels but led to a greater-than two-fold increase in PCho/GPCho ratios. These results suggest that the PCho/GPCho ratio is a metabolic trait shared by pluripotent and malignant cells and that PI3K does not underlie its development. It is likely that the signature identified here in a mouse model may be relevant for safe therapeutic applications of human ES cells.

  5. PIM-1 kinase interacts with the DNA binding domain of the vitamin D receptor: a further kinase implicated in 1,25-(OH2D3 signaling

    Directory of Open Access Journals (Sweden)

    Maier Christina J

    2012-06-01

    Full Text Available Abstract Background The vitamin D3 receptor (VDR is responsible for mediating the pleiotropic and, in part, cell-type-specific effects of 1,25-dihydroxyvitamin D3 (calcitriol on the cardiovascular and the muscle system, on the bone development and maintenance, mineral homeostasis, cell proliferation, cell differentiation, vitamin D metabolism, and immune response modulation. Results Based on data obtained from genome-wide yeast two-hybrid screenings, domain mapping studies, intracellular co-localization approaches as well as reporter transcription assay measurements, we show here that the C-terminus of human PIM-1 kinase isoform2 (amino acid residues 135–313, a serine/threonine kinase of the calcium/calmodulin-regulated kinase family, directly interacts with VDR through the receptor’s DNA-binding domain. We further demonstrate that PIM-1 modulates calcitriol signaling in HaCaT keratinocytes by enhancing both endogenous calcitriol response gene transcription (osteopontin and an extrachromosomal DR3 reporter response. Conclusion These results, taken together with previous reports of involvement of kinase pathways in VDR transactivation, underscore the biological relevance of this novel protein-protein interaction.

  6. Activation of antithrombin III isoforms by heparan sulphate glycosaminoglycans and other sulphated polysaccharides.

    Science.gov (United States)

    Carlson, T H; Kolman, M R; Piepkorn, M

    1995-07-01

    Antithrombin III occurs naturally as two functionally distinct molecular species that differ in glycosylation at Asn135. Whereas the predominant, glycosylated isoform has high affinity for heparin, a quantitatively minor isoform lacking glycosylation at that site displays relatively higher affinity for both heparins and heparinoids. We characterized the ability of various sulphated polysaccharides to potentiate the rates of thrombin inhibition by the isoforms. High-molecular-weight dextran sulphate was the most effective of those studied, increasing thrombin inhibition by the higher-affinity antithrombin III isoform up to five-fold more efficiently than did heparin fractions with low-affinity for antithrombin III. In addition, dextran sulphate activated the higher-affinity isoform as much as twelve times more effectively than it did the lower-affinity isoform. Pentosan polysulphate was up to three-fold, and some heparan sulphate fractions up to two-fold, more effective with the higher, compared with the lower affinity, isoform. Heparan sulphate preparations less effectively increased the rate of thrombin inhibition than did the other low-affinity polysaccharides. Structure-function studies indicated positive correlations between activity and both polymer length and anionic group density of low-affinity sulphated polysaccharides. The observed effects of the heparan sulphates on this anticoagulant pathway, although of low potency, are consistent with the hypotheses that these substances naturally regulate blood homeostasis in vascular tissues and that much of this function may be mediated by the higher-affinity antithrombin III isoform. PMID:8589216

  7. AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE

    Science.gov (United States)

    AN ENZYME LINKED IMMUNOSORBENT ASSAY FOR THE HO-1 ISOFORM OF HEME OXYGENASE Heme oxygenase (HO) occurs in biological tissues as two major isoforms HO-1 and HO-2. HO-1 is inducible by many treatments, particularly oxidative stress-related conditions such as depletion of gl...

  8. Development of isoform-specific sensors of polypeptide GalNAc-transferase activity

    DEFF Research Database (Denmark)

    Song, Lina; Bachert, Collin; Schjoldager, Katrine T; Clausen, Henrik; Linstedt, Adam D

    2014-01-01

    Humans express up to 20 isoforms of GalNAc-transferase (herein T1-T20) that localize to the Golgi apparatus and initiate O-glycosylation. Regulation of this enzyme family affects a vast array of proteins transiting the secretory pathway and diseases arise upon misregulation of specific isoforms...

  9. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    Science.gov (United States)

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases. PMID:27090236

  10. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H(3) receptor

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Goodman, M W; Burstein, E S;

    2002-01-01

    The pharmacology of histamine H(3) receptors suggests the presence of distinct receptor isoforms or subtypes. We herein describe multiple, functionally distinct, alternatively spliced isoforms of the human H(3) receptor. Combinatorial splicing at three different sites creates at least six distinc...

  11. Roles of the troponin isoforms during indirect flight muscle development in Drosophila

    Indian Academy of Sciences (India)

    Salam Herojeet Singh; Prabodh Kumar; Nallur B. Ramachandra; Upendra Nongthomba

    2014-08-01

    Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to another depending on physiological demands and pathological conditions. In Drosophila, amajority of themyofibrillar proteins in the indirect flight muscles (IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed exclusively in the IFMs, during later stages of development, we have looked at the developmental and functional importance of each of the troponin subunits (troponin-I, troponin-T and troponin-C) and their isoforms. We show that all the troponin subunits are required for normal myofibril assembly and flight, except for the troponin-C isoform 1 (TnC1). Moreover, rescue experiments conducted with troponin-I embryonic isoform in the IFMs, where flies were rendered flightless, show developmental and functional differences of TnI isoforms and importance of maintaining the right isoform.

  12. Translational control of C/EBPalpha and C/EBPbeta isoform expression

    NARCIS (Netherlands)

    Calkhoven, C F; Müller, C; Leutz, A

    2000-01-01

    Transcription factors derived from CCAAT/enhancer binding protein (C/EBP)alpha and C/EBPbeta genes control differentiation and proliferation in a number of cell types. Various C/EBP isoforms arise from unique C/EBPbeta and C/EBPalpha mRNAs by differential initiation of translation. These isoforms re

  13. Positive correlations between cerebral choline and renal dysfunction in chronic renal failure

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Osamu; Nakahama, Hajime; Nakamura, Satoko; Inenaga, Takashi; Kawano, Yuhei [National Cardiovascular Center, Division of Hypertension and Nephrology, Department of Internal Medicine, Osaka (Japan); Hattori, Noriaki; Inoue, Noriko; Sawada, Tohru [BF Research Institute, Osaka (Japan); Kohno, Shigeru [Nagasaki University School of Medicine, Second Department of Internal Medicine, Nagasaki (Japan)

    2006-05-15

    Cerebral metabolism in chronic renal failure (CRF) patients has not been fully evaluated. This study examined cerebral metabolites in CRF, using proton magnetic resonance spectroscopy (MRS). Subjects comprised 19 CRF patients and 21 healthy volunteers. Spectra were acquired from voxels of interest positioned in the parietal gray and white matter, and concentrations of the following cerebral metabolites were measured: N-acetyl group (NA), creatine + phosphocreatine (Cr), choline-containing compounds (Cho), myo-inositol and glutamate + glutamine. Among the 19 CRF patients, 9 who were started on hemodialysis (HD) underwent careful follow-up. Proton MRS was performed before and about 2 weeks after starting HD. In six patients in whom follow-up was possible, a third MRS was performed after about 18 months. The NA/Cr ratio was not significantly changed in CRF. However, elevations in the Cho/Cr ratio were found in both gray and white matter compared with controls. To the best of our knowledge, this is the first report of positive correlations between the Cho/Cr ratio in both regions and serum osmotic pressure. (orig.)

  14. Chronic demyelination in mouse peripheral nerve produced by lysophosphatidyl choline and X-irradiation: ultrastructural observations

    International Nuclear Information System (INIS)

    The effects of X-irradiation on demyelination and remyelination were studied in the peripheral nerve of the mouse. Three days after injection of lysophosphatidyl choline into one sciatic nerve, a 20 Gy dose of X-rays was administered to the hind limb. At survival times ranging from 4 days to 6 months after injection, the nerves were examined by light and electron microscopy. Removal of myelin debris was retarded and remyelination delayed or prevented. The myelin sheaths which did form were thin and the configuration of Schmidt-Lanterman incisures and nodes of Ranvier was abnormal. Some of the chronically demyelinated fibres formed focal node-like complexes; patches of finely granular material coated the inner aspect of the axolemma, the external surface was covered by slender processes of Schwann cell cytoplasm, and an electron-dense lamina was present in the enlarged periaxonal space. Elsewhere demyelinated axons and their ensheathing Schwann cells were separated by gap junctions or transverse bands. These findings indicate that the morphological differentiation of structures thought to be characteristic of nodes of Ranvier can take place in the absence of remyelination. (author)

  15. Choline-induced selective fluorescence quenching of acetylcholinesterase conjugated Au@BSA clusters.

    Science.gov (United States)

    Mathew, Meegle S; Baksi, Ananya; Pradeep, T; Joseph, Kuruvilla

    2016-07-15

    We have developed a highly selective sensitive fluorescent detection of acetylcholine (ACh) using bovine serum albumin (BSA) protected atomically precise clusters of gold. The gold quantum clusters (AuQC@BSA) synthesized using bovine serum albumin and conjugated with acetylcholinesterase (AChE), an enzyme specific for acetylcholine, resulting in AuQC@BSA-AChE. The enzyme, AChE hydrolyzes acetylcholine (ACh) to choline (Ch) which in turn interacts with AuQC@BSA-AChE and quenches its fluorescence, enabling sensing. We have carried out the real time monitoring of the hydrolysis of ACh using electrospray ionization mass spectrometry (ESI MS) to find out the mechanism of fluorescent quenching. The validity of present method for determination of concentration of acetylcholine in real system such as blood was demonstrated. Further, the sensor, AuQC@BSA-AChE can be easily coated on paper and an efficient and cheap sensor can be developed and detection limit for ACh is found to be 10nM. The fluorescent intensity of AuQC@BSA-AChE is sensitive towards acetylcholine in range of 10nM to 6.4µM. This suggests that AuQC@BSA-AChE has an excellent potential to be used for diagnosis of various neuropsychological and neuropsychiatric disorders. PMID:26921554

  16. Distinct Localization of Peripheral and Central Types of Choline Acetyltransferase in the Rat Cochlea

    International Nuclear Information System (INIS)

    We previously discovered a splice variant of choline acetyltransferase (ChAT) mRNA, and designated the variant protein pChAT because of its preferential expression in peripheral neuronal structures. In this study, we examined the immunohistochemical localization of pChAT in rat cochlea and compared the distribution pattern to those of common ChAT (cChAT) and acetylcholinesterase. Some neuronal cell bodies and fibers in the spiral ganglia showed immunoreactivity for pChAT, predominantly the small spiral ganglion cells, indicating outer hair cell type II neurons. In contrast, cChAT- and acetylcholinesterase-positive structures were localized to fibers and not apparent in ganglion cells. After ablation of the cochlear nuclei, many pChAT-positive cochlear nerve fibers became clearly visible, whereas fibers immunopositive for cChAT and acetylcholine esterase disappeared. These results suggested that pChAT and cChAT are localized in different systems of the rat cochlea; pChAT in the afferent and cChAT in the efferent structures

  17. Insulin stimulates choline acetyltransferase activity in cultured embryonic chicken retina neurons

    International Nuclear Information System (INIS)

    The effect of insulin on the appearance of the enzyme choline acetyltransferase in embryonic chicken retina neurons cultured in defined medium was studied. In the presence of a minimal level of insulin (1 ng/ml), ChoAcT activity increased with time in culture. A correspondence between the insulin concentration in the defined medium (1-100 ng/ml) and both the rate of increase and maximum attained level of ChoAcT activity was observed. Maximal ChoAcT activity was 2- to 3-fold greater in cells cultured in the presence of 100 ng of insulin per ml than in cells cultured in the presence of 1 ng of insulin per ml. To elicit maximum ChoAcT activity, insulin at 100 ng/ml was required in the medium for only the first 4 days of the culture period, at which time insulin could be reduced to maintenance levels (10 ng/ml) without affecting ChoAcT activity. Insulin binding assays performed during a 7-day culture period revealed that irrespective of the 125I-insulin concentration in the medium during culture, cell-surface insulin receptors decreased by ≅ 90% between 4 and 7 days in culture. This decrease in insulin binding corresponded to the observed decrease in the sensitivity of ChoAcT activity to insulin. The findings suggest that insulin plays a role in mediating cholinergic differentiation in the embryonic chicken retina

  18. Electrodeposition of zinc-cobalt alloys from choline chloride–urea ionic liquid

    International Nuclear Information System (INIS)

    Highlights: •The electrodeposition behavior of Zn-Co alloy in ChCl/urea ionic liquid was studied. •The co-deposition process of Zn-Co alloys in ionic liquid is normal type. •The nucleation mechanism of Zn-Co alloy is an instantaneous process. •The composition, structure and morphology of Zn-Co alloys were potential dependent. -- Abstract: The electrodeposition behavior of zinc-cobalt (Zn-Co) alloy was investigated in choline chloride/urea (1:2 molar ratio) deep eutectic solvent containing 0.11 M ZnCl2 and 0.01 M CoCl2. Cyclic voltammetry revealed that Co reduced preferably with respect to Zn and anomalous codeposition of Zn-Co did not occur in this solvent. Chronoamperometric investigations combined with field emission scanning electron microscopy (FE-SEM) indicated that the electrodeposition of Zn-Co alloys followed the mechanism of instantaneous nucleation. Energy dispersive spectroscopy (EDS), grazing incidence X-ray diffraction (GI-XRD) and SEM results showed that the deposition potential influenced the compositions, phase structure and surface morphology of the Zn-Co alloys

  19. Effects of choline chloride on electrodeposited Ni coating from a Watts-type bath

    Science.gov (United States)

    Wang, Yurong; Yang, Caihong; He, Jiawei; Wang, Wenchang; Mitsuzak, Naotoshi; Chen, Zhidong

    2016-05-01

    Electrodeposition of bright nickel (Ni) was carried out in a Watts-type bath. Choline chloride (ChCl) was applied as a multifunctional additive and substitute for nickel chloride (NiCl2) in a Watts-type bath. The function of ChCl was investigated through conductivity tests, anodic polarization, and cathodic polarization experiments. The studies revealed that ChCl performed well as a conducting salt, anodic activator, and cathodic inhibitor. The effects of ChCl on deposition rate, preferred orientation, grain size, surface morphology, and microhardness of Ni coatings were also studied. The deposition rate reached a maximum value of greater than 27 μm h-1 when 20 g L-1 ChCl was introduced to the bath. Using X-ray diffraction, it was confirmed that progressive addition of ChCl promoted the preferred crystal orientation modification from (2 0 0) and (2 2 0) to (1 1 1), refined grain size, and enhanced microhardness. The presence of ChCl lowered the roughness of the coating.

  20. Phosphatidylcholine synthesis in the rat: The substrate for methylation and regulation by choline

    International Nuclear Information System (INIS)

    Two lines of evidence led us to reexamine the possibility that methylation of phosphoethanolamine and its partially methylated derivatives, in addition to methylation of the corresponding phosphatidyl derivatives, plays a role in mammalian phosphatidylcholine biosynthesis: (a) Results obtained by Salerno and Beeler with rat appear to strongly support such a role for methylation of phosphobases; (b) Such reactions have recently been shown to play major roles in phosphatidylcholine synthesis by higher plants. We found that, following continuous labeling of rat liver with L-[methyl-3H]methionine for 10.4 min (intraperitoneal administration) or for 0.75 min (intraportal administration), virtually no 3H was detected in methylated derivatives of phosphoethanolamine, but readily detectable amounts of 3H were present in the base moiety of each methylated derivative of phosphatidylethanolamine. Thus, there was no indication that phospho-base methylation makes a significant contribution. Studies of cultured rat hepatoma cells showed definitively for the first time in a mammalian system that choline deprivation up-regulates the rate of flow of methyl groups originating in methionine into phosphatidylethanolamine and derivatives. Even under these conditions, methylation of phosphoethanolamine bases appeared to play a negligible role

  1. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    Directory of Open Access Journals (Sweden)

    Kyungha Shin

    2016-01-01

    Full Text Available Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs overexpressing choline acetyltransferase (ChAT improve cognitive function of Alzheimer’s disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level.

  2. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury.

    Science.gov (United States)

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  3. Electrolysis of solid copper oxide to copper in Choline chloride-EG eutectic melt

    International Nuclear Information System (INIS)

    Electrochemical deoxygenation of porous CuO pellet to prepare copper was investigated in the 33.3-66.7 mol% Choline chloride (ChCl)-EG eutectic melt at 353 K. Cyclic voltammetry of the Pt-powder cavity microelectrode loaded with CuO powder exhibited that the solid CuO can be electrochemically reduced in solid state in the eutectic melt. Constant-voltage (2.0 to 2.4 V) electrolysis, with an assembled cathode of a sintered porous CuO pellet and a graphite anode, that performed in the eutectic melt demonstrated the conversion process of oxide-to metal as confirmed by scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction spectra. A mechanism for this reduction process has been proposed on the basis of the in situ formation of numerous gas at the cathode, emphasizing that the oxidation of cathodically generated O2− ions occurred nearby along with the copper electroreduction, in which the new formed metal was served as a temporary anode, oxygen was generated at the interface of the reduced copper and electrolyte inside the cathode

  4. Enzyme-Catalyzed Henry Reaction in Choline Chloride-Based Deep Eutectic Solvents.

    Science.gov (United States)

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-01-01

    The enzyme-catalyzed Henry reaction was realized using deep eutectic solvents (DESs) as a reaction medium. The lipase from Aspergillus niger (lipase AS) showed excellent catalytic activity toward the substrates aromatic aldehydes and nitromethane in choline chloride:glycerol at a molar ratio of 1:2. Addition of 30 vol% water to DES further improved the lipase activity and inhibited DES-catalyzed transformation. A final yield of 92.2% for the lipase AS-catalyzed Henry reaction was achieved under optimized reaction conditions in only 4 h. In addition, the lipase AS activity was improved by approximately 3-fold in a DES-water mixture compared with that in pure water, which produced a final yield of only 33.4%. Structural studies with fluorescence spectroscopy showed that the established strong hydrogen bonds between DES and water may be the main driving force that affects the spatial conformation of the enzyme, leading to a change in lipase activity. The methodology was also extended to the aza-Henry reaction, which easily occurred in contrast to that in pure water. The enantioselectivity of both Henry and aza-Henry reactions was not found. However, the results are still remarkable, as we report the first use of DES as a reaction medium in a lipase-catalyzed Henry reaction. PMID:26437947

  5. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish.

    Science.gov (United States)

    Juneidi, Ibrahim; Hayyan, Maan; Mohd Ali, Ozair

    2016-04-01

    An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl2 exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC50) of the same DESs on C. carpio fish. The inhibition range and LC50 of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC50 of ChCl:MADES is much higher than that of ChCl:MAMix. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds. PMID:26743645

  6. Significance of host cell kinases in herpes simplex virus type 1 egress and lamin-associated protein disassembly from the nuclear lamina

    International Nuclear Information System (INIS)

    The nuclear lamina is thought to be a steric barrier to the herpesvirus capsid. Disruption of the lamina accompanied by phosphorylation of lamina proteins is a conserved feature of herpesvirus infection. In HSV-1-infected cells, protein kinase C (PKC) alpha and delta isoforms are recruited to the nuclear membrane and PKC delta has been implicated in phosphorylation of emerin and lamin B. We tested two critical hypotheses about the mechanism and significance of lamina disruption. First, we show that chemical inhibition of all PKC isoforms reduced viral growth five-fold and inhibited capsid egress from the nucleus. However, specific inhibition of either conventional PKCs or PKC delta does not inhibit viral growth. Second, we show hyperphosphorylation of emerin by viral and cellular kinases is required for its disassociation from the lamina. These data support hypothesis that phosphorylation of lamina components mediates lamina disruption during HSV nuclear egress.

  7. Exo70 Isoform Switching upon Epithelial-Mesenchymal Transition Mediates Cancer Cell Invasion

    Science.gov (United States)

    Lu, Hezhe; Liu, Jianglan; Liu, Shujing; Zeng, Jingwen; Ding, Deqiang; Carstens, Russ P.; Cong, Yusheng; Xu, Xiaowei; Guo, Wei

    2014-01-01

    Summary Epithelial-mesenchymal transition (EMT) is an important developmental process hijacked by cancer cells for their dissemination. Here we show that Exo70, a component of the exocyst complex, undergoes isoform switching mediated by ESRP1, a pre-mRNA splicing factor that regulates EMT. Expression of the epithelial isoform of Exo70 affects the levels of key EMT transcriptional regulators such as Snail and ZEB2, and is sufficient to drive the transition to epithelial phenotypes. Differential Exo70 isoforms expression in human tumors correlates with cancer progression, and increased expression of the epithelial isoform of Exo70 inhibits tumor metastasis in mice. At the molecular level, the mesenchymal but not the epithelial isoform of Exo70 interacts with the Arp2/3 complex and stimulates actin polymerization for tumor invasion. Our findings provide a mechanism by which the exocyst function and actin dynamics are modulated for EMT and tumor invasion. PMID:24331928

  8. Pharmacological targeting of PI3K isoforms as a therapeutic strategy in chronic lymphocytic leukaemia

    Science.gov (United States)

    Blunt, Matthew D.; Steele, Andrew J.

    2015-01-01

    PI3Kδ inhibitors such as idelalisib are providing improved therapeutic options for the treatment of chronic lymphocytic leukaemia (CLL). However under certain conditions, inhibition of a single PI3K isoform can be compensated by the other PI3K isoforms, therefore PI3K inhibitors which target multiple PI3K isoforms may provide greater efficacy. The development of compounds targeting multiple PI3K isoforms (α, β, δ, and γ) in CLL cells, in vitro, resulted in sustained inhibition of BCR signalling but with enhanced cytotoxicity and the potential for improve clinical responses. This review summarises the progress of PI3K inhibitor development and describes the rationale and potential for targeting multiple PI3K isoforms. PMID:26500849

  9. Pharmacological targeting of PI3K isoforms as a therapeutic strategy in chronic lymphocytic leukaemia

    Directory of Open Access Journals (Sweden)

    Matthew D. Blunt

    2015-01-01

    Full Text Available PI3Kδ inhibitors such as idelalisib are providing improved therapeutic options for the treatment of chronic lymphocytic leukaemia (CLL. However under certain conditions, inhibition of a single PI3K isoform can be compensated by the other PI3K isoforms, therefore PI3K inhibitors which target multiple PI3K isoforms may provide greater efficacy. The development of compounds targeting multiple PI3K isoforms (α, β, δ, and γ in CLL cells, in vitro, resulted in sustained inhibition of BCR signalling but with enhanced cytotoxicity and the potential for improve clinical responses. This review summarises the progress of PI3K inhibitor development and describes the rationale and potential for targeting multiple PI3K isoforms.

  10. MET Receptor Tyrosine Kinase

    Science.gov (United States)

    Faoro, Leonardo; Cervantes, Gustavo M.; El-Hashani, Essam; Salgia, Ravi

    2010-01-01

    MET receptor tyrosine kinase (RTK) and its ligand hepatocyte growth factor (HGF) have become important therapeutic target in oncology, especially lung cancer. MET RTK is involved in cancer cell growth/survival, motility/migration, invasion/metastasis, and in angiogenesis. MET can be overexpressed in lung cancer, sometimes mutated, and sometimes amplified. Not only can MET be overexpressed, there are subsets of lung cancer tumors that have HGF overexpression. The mutations of MET can occur in the semaphorin and/or juxtamembrane domain in a majority of times. Amplification of MET can occur de novo in primary/metastatic tumors, as well arise in the context of therapeutic inhibition. There are a number of clinical inhibitors that have been developed against MET/HGF. Small molecule inhibitors such as XL184 and PF02341066 have come to clinical fruition, as well as antibodies against MET (such as MetMAb). These inhibitors will be discussed. PMID:19861919

  11. N- and C-terminal isoforms of Arg quantified by real-time PCR are specifically expressed in human normal and neoplastic cells, in neoplastic cell lines, and in HL-60 cell differentiation.

    Science.gov (United States)

    Perego, Roberto A; Corizzato, Matteo; Bianchi, Cristina; Eroini, Barbara; Bosari, Silvano

    2005-04-01

    The human ABL2 (or ARG) gene codes for a nonreceptor tyrosine kinase is involved in translocation with the ETV6 gene in human leukemia and has an altered expression in several human carcinomas. Two isoforms of Arg with different N-termini (1A and 1B) have been described. The C-terminal domain of Arg contains two F-actin-binding sequences that perform a number of actions related to cell morphology and motility by interacting with actin filaments. We have identified different-sized specific cDNAs in hematopoietic, epithelial, nervous, and fibroblastic cells by means of the reverse transcription (RT)-polymerase chain reaction (PCR) analysis of human Arg mRNA. Some of these cDNAs showed an adjunctive alternative splice event involving the 63 bp sequence of exon II, thus leading to four cDNA types with different N-termini: 1A long and short, and 1B long and short. Other cDNAs lacked a 309 bp sequence in the last exon involving one of the C-terminal F-actin binding domains, thus giving rise to two cDNA types: C-termini long and short. Quantified by real-time PCR-quantitative RT-PCR-these Arg transcript isoforms have specific expression patterns not only in different normal and tumor cell types, but also during cell differentiation and growth arrest. These isoforms maintained the open reading frames, and eight putative proteins were predicted. The different C-termini isoforms seem to retain the same quantitative reciprocal ratio of their respective transcripts. The Arg protein isoforms with different C-terminal actin-binding domains and different N-termini might have specific cellular localizations/concentrations, and differently regulated catalytic activity with different implications in normal and neoplastic cells. PMID:15765532

  12. Structure Guided Optimization, in Vitro Activity, and in Vivo Activity of Pan-PIM Kinase Inhibitors.

    Science.gov (United States)

    Burger, Matthew T; Han, Wooseok; Lan, Jiong; Nishiguchi, Gisele; Bellamacina, Cornelia; Lindval, Mika; Atallah, Gordana; Ding, Yu; Mathur, Michelle; McBride, Chris; Beans, Elizabeth L; Muller, Kristine; Tamez, Victoriano; Zhang, Yanchen; Huh, Kay; Feucht, Paul; Zavorotinskaya, Tatiana; Dai, Yumin; Holash, Jocelyn; Castillo, Joseph; Langowski, John; Wang, Yingyun; Chen, Min Y; Garcia, Pablo D

    2013-12-12

    Proviral insertion of Moloney virus (PIM) 1, 2, and 3 kinases are serine/threonine kinases that normally function in survival and proliferation of hematopoietic cells. As high expression of PIM1, 2, and 3 is frequently observed in many human malignancies, including multiple myeloma, non-Hodgkins lymphoma, and myeloid leukemias, there is interest in determining whether selective PIM inhibition can improve outcomes of these human cancers. Herein, we describe our efforts toward this goal. The structure guided optimization of a singleton high throughput screening hit in which the potency against all three PIM isoforms was increased >10,000-fold to yield compounds with pan PIM K is < 10 pM, nanomolar cellular potency, and in vivo activity in an acute myeloid leukemia Pim-dependent tumor model is described. PMID:24900629

  13. Fibronectin matrix assembly requires distinct contributions from Rho kinases I and -II

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Ushakov, Dmitriy; Multhaupt, Hinke A B;

    2006-01-01

    , the effect of ROCK I deficiency on fibronectin matrix assembly was secondary to altered cell surface morphology, rich in filopodia, resulting from high GTP-Cdc42 levels. Total internal reflection microscopy revealed that a submembranous pool of myosin light chain in control cells was missing in ROCK II......Extracellular matrix is integral to tissue architecture and regulates many aspects of cell behavior. Fibronectin matrix assembly involves the actin cytoskeleton and the small GTPase RhoA, but downstream signaling is not understood. Here, down-regulation of either rho kinase isoform (ROCK I or -II......) by small interfering RNA treatment blocked fibronectin matrix assembly, although the phenotypes were distinct and despite persistence of the alternate kinase. Remnant fibronectin on ROCK-deficient fibroblasts was mostly punctate and more deoxycholate soluble compared with controls. Fibronectin matrix...

  14. Troponin T isoform expression is modulated during Atlantic Halibut metamorphosis

    Directory of Open Access Journals (Sweden)

    Llewellyn Lynda

    2007-06-01

    Full Text Available Abstract Background Flatfish metamorphosis is a thyroid hormone (TH driven process which leads to a dramatic change from a symmetrical larva to an asymmetrical juvenile. The effect of THs on muscle and in particular muscle sarcomer protein genes is largely unexplored in fish. The change in Troponin T (TnT, a pivotal protein in the assembly of skeletal muscles sarcomeres and a modulator of calcium driven muscle contraction, during flatfish metamophosis is studied. Results In the present study five cDNAs for halibut TnT genes were cloned; three were splice variants arising from a single fast TnT (fTnT gene; a fourth encoded a novel teleost specific fTnT-like cDNA (AfTnT expressed exclusively in slow muscle and the fifth encoded the teleost specific sTnT2. THs modified the expression of halibut fTnT isoforms which changed from predominantly basic to acidic isoforms during natural and T4 induced metamorphosis. In contrast, expression of red muscle specific genes, AfTnT and sTnT2, did not change during natural metamorphosis or after T4 treatment. Prior to and after metamorphosis no change in the dorso-ventral symmetry or temporal-spatial expression pattern of TnT genes and muscle fibre organization occurred in halibut musculature. Conclusion Muscle organisation in halibut remains symmetrical even after metamorphosis suggesting TH driven changes are associated with molecular adaptations. We hypothesize that species specific differences in TnT gene expression in teleosts underlies different larval muscle developmental programs which better adapts them to the specific ecological constraints.

  15. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration.

    Science.gov (United States)

    Turnquist, C; Horikawa, I; Foran, E; Major, E O; Vojtesek, B; Lane, D P; Lu, X; Harris, B T; Harris, C C

    2016-09-01

    Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. PMID:27104929

  16. Redundant role of protein kinase C delta and epsilon during mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Sergio Carracedo

    Full Text Available Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.

  17. Characterization of ductal and lobular breast carcinomas using novel prolactin receptor isoform specific antibodies

    International Nuclear Information System (INIS)

    Prolactin is a polypeptide hormone responsible for proliferation and differentiation of the mammary gland. More recently, prolactin's role in mammary carcinogenesis has been studied with greater interest. Studies from our laboratory and from others have demonstrated that three specific isoforms of the prolactin receptor (PRLR) are expressed in both normal and cancerous breast cells and tissues. Until now, reliable isoform specific antibodies have been lacking. We have prepared and characterized polyclonal antibodies against each of the human PRLR isoforms that can effectively be used to characterize human breast cancers. Rabbits were immunized with synthetic peptides of isoform unique regions and immune sera affinity purified prior to validation by Western blot and immunohistochemical analyses. Sections of ductal and lobular carcinomas were stained with each affinity purified isoform specific antibody to determine expression patterns in breast cancer subclasses. We show that the rabbit antibodies have high titer and could specifically recognize each isoform of PRLR. Differences in PRLR isoform expression levels were observed and quantified using histosections from xenografts of established human breast cancer cells lines, and ductal and lobular carcinoma human biopsy specimens. In addition, these results were verified by real-time PCR with isoform specific primers. While nearly all tumors contained LF and SF1b, the majority (76%) of ductal carcinoma biopsies expressed SF1a while the majority of lobular carcinomas lacked SF1a staining (72%) and 27% had only low levels of expression. Differences in the receptor isoform expression profiles may be critical to understanding the role of PRL in mammary tumorigenesis. Since these antibodies are specifically directed against each PRLR isoform, they are valuable tools for the evaluation of breast cancer PRLR content and have potential clinical importance in treatment of this disease by providing new reagents to study

  18. Glutathione S-transferase class mu regulation of apoptosis signal-related kinase 1 protein during VCD-induced ovotoxicity in neonatal rat ovaries

    OpenAIRE

    Bhattacharya, Poulomi; Madden, Jill A.; Sen, Nivedita; Hoyer, Patricia B.; Keating, Aileen F.

    2012-01-01

    4-vinylcyclohexene diepoxide (VCD) destroys ovarian primordial and small primary follicles via apoptosis. In mice, VCD exposure induces ovarian mRNA expression of glutathione S-transferase (GST) family members, including isoform mu (Gstm). Extra-ovarian GSTM negatively regulates pro-apoptotic apoptosis signal-related kinase 1 (ASK1) through protein complex formation, which dissociates during stress, thereby initiating ASK1-induced apoptosis. The present study investigated the ovarian response...

  19. Ablation of phosphoinositide-3-kinase class II alpha suppresses hepatoma cell proliferation

    International Nuclear Information System (INIS)

    Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2α) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2α mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2α was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2α can modulate HCC cell growth.

  20. Application of 11C-choline PET/CT for the hepatic space-occupying lesions with an indeterminate diagnosis by 18F-FDG PET/CT

    International Nuclear Information System (INIS)

    Objective: To explore the value of 11C-choline PET/CT in patients with hepatic space-occupying lesions that have an indeterminate diagnosis by 18F-fluorodeoxyglucose (FDG) PET/CT. Methods: A total of 25 liver masses in 20 patients with an indeterminate diagnosis based on 18F-FDG PET/CT were enrolled. Regional 11C-choline PET/CT scan was performed in all of the patients. Lesions with intense 11C-choline uptake were considered as positive. The semiquantitative maximum standardized uptake value(SUVmax) was measured and the tumor-to-liver (T/L) radioactivity ratio was calculated. The Mann-Whitney test, Kruskal-Wallis test and crosstabs χ2-test were performed by using SPSS version 11.5. Results: Of the 25 lesions, 21 were proven to be hepatocellular carcinomas (HCC), 3 hemangiomas, and 1 parasitic granuloma. The sensitivity of 11C-choline PET/CT for the detection of HCC was 66.7% (14/21). 11C-choline PET/CT had a higher sensitivity for well differentiated HCC than moderately and poorly differentiated HCC on a patient basis (8/9 vs 2/5, respectively). There were significant differences of 11C-choline T/L ratios between the HCC positive group, HCC negative group and benign lesion group (1.70 ± 0.35, 0.86 ± 0.15, and 0.36 ± 0.18, χ2 = 19.00, P 0.05, and U=16.00, P>0.05, respectively). Conclusions: 11C-choline is complementary to 18F-FDG PET/CT for the detection of HCC, especially for well differentiated HCC. (authors)

  1. [{sup 11}C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Giovacchini, Giampiero; Coradeschi, Elisa [University of Milano-Bicocca, Center for Molecular Bioimaging, Milan (Italy); Picchio, Maria; Bettinardi, Valentino [Scientific Institute San Raffaele, Department of Nuclear Medicine, Milan (Italy); Scattoni, Vincenzo [Scientific Institute San Raffaele, Department of Urology, Milan (Italy); Cozzarini, Cesare [Scientific Institute San Raffaele, Department of Radiation Oncology, Milan (Italy); Freschi, Massimo [Scientific Institute San Raffaele, Department of Pathology, Milan (Italy); Fazio, Ferruccio [University of Milano-Bicocca, Center for Molecular Bioimaging, Milan (Italy); Scientific Institute San Raffaele, Department of Nuclear Medicine, Milan (Italy); Scientific Institute San Raffaele, Department of Radiation Oncology, Milan (Italy); National Research Council, Institute for Bioimaging and Molecular Physiology, Milan (Italy); Messa, Cristina [University of Milano-Bicocca, Center for Molecular Bioimaging, Milan (Italy); National Research Council, Institute for Bioimaging and Molecular Physiology, Milan (Italy); University of Milano-Bicocca, Department Nuclear Medicine, San Gerardo Hospital, Monza (Italy)

    2008-06-15

    The accuracy of positron emission tomography (PET)/CT with [{sup 11}C]choline for the detection of prostate cancer is not well established. We assessed the dependence of [{sup 11}C]choline maximum standardized uptake values (SUV{sub max}) in the prostate gland on cell malignancy, prostate-specific antigen (PSA) levels, Gleason score, tumour stage and anti-androgenic hormonal therapy. In this prospective study, PET/CT with [{sup 11}C]choline was performed in 19 prostate cancer patients who subsequently underwent prostatectomy with histologic sextant analysis (group A) and in six prostate cancer patients before and after anti-androgenic hormonal therapy (bicalutamide 150 mg/day; median treatment of 4 months; group B). In group A, based on a sextant analysis with a [{sup 11}C]choline SUV{sub max} cutoff of 2.5 (as derived from a receiver-operating characteristic analysis), PET/CT showed sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 72, 43, 64, 51 and 60%, respectively. In the patient-by-patient analysis, no significant correlation was detected between SUV{sub max} and PSA levels, Gleason score or pathological stage. On the contrary, a significant (P < 0.05) negative correlation was detected between SUV{sub max} and anti-androgenic therapy both in univariate (r {sup 2} = 0.24) and multivariate (r {sup 2} = 0.48) analyses. Prostate [{sup 11}C]choline uptake after bicalutamide therapy significantly (P < 0.05) decreased compared to baseline (6.4 {+-} 4.6 and 11.8 {+-} 5.3, respectively; group B). PET/CT with [{sup 11}C]choline is not suitable for the initial diagnosis and local staging of prostate cancer. PET/CT with [{sup 11}C]choline could be used to monitor the response to anti-androgenic therapy. (orig.)

  2. [11C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy

    International Nuclear Information System (INIS)

    The accuracy of positron emission tomography (PET)/CT with [11C]choline for the detection of prostate cancer is not well established. We assessed the dependence of [11C]choline maximum standardized uptake values (SUVmax) in the prostate gland on cell malignancy, prostate-specific antigen (PSA) levels, Gleason score, tumour stage and anti-androgenic hormonal therapy. In this prospective study, PET/CT with [11C]choline was performed in 19 prostate cancer patients who subsequently underwent prostatectomy with histologic sextant analysis (group A) and in six prostate cancer patients before and after anti-androgenic hormonal therapy (bicalutamide 150 mg/day; median treatment of 4 months; group B). In group A, based on a sextant analysis with a [11C]choline SUVmax cutoff of 2.5 (as derived from a receiver-operating characteristic analysis), PET/CT showed sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 72, 43, 64, 51 and 60%, respectively. In the patient-by-patient analysis, no significant correlation was detected between SUVmax and PSA levels, Gleason score or pathological stage. On the contrary, a significant (P max and anti-androgenic therapy both in univariate (r 2 = 0.24) and multivariate (r 2 = 0.48) analyses. Prostate [11C]choline uptake after bicalutamide therapy significantly (P 11C]choline is not suitable for the initial diagnosis and local staging of prostate cancer. PET/CT with [11C]choline could be used to monitor the response to anti-androgenic therapy. (orig.)

  3. Comparison of {sup 18}F-FACBC and {sup 11}C-choline PET/CT in patients with radically treated prostate cancer and biochemical relapse: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Nanni, Cristina; Boschi, Stefano [Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, OU Nuclear Medicine, Bologna (Italy); Schiavina, Riccardo; Ambrosini, Valentina; Brunocilla, Eugenio; Martorana, Giuseppe; Fanti, Stefano [Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, OU Urology, Bologna (Italy); Pettinato, Cinzia [Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, OU Medical Physics, Bologna (Italy)

    2013-07-15

    We assessed the rate of detection rate of recurrent prostate cancer by PET/CT using anti-3-{sup 18}F-FACBC, a new synthetic amino acid, in comparison to that using {sup 11}C-choline as part of an ongoing prospective single-centre study. Included in the study were 15 patients with biochemical relapse after initial radical treatment of prostate cancer. All the patients underwent anti-3-{sup 18}F-FACBC PET/CT and {sup 11}C-choline PET/CT within a 7-day period. The detection rates using the two compounds were determined and the target-to-background ratios (TBR) of each lesion are reported. No adverse reactions to anti-3-{sup 18}F-FACBC PET/CT were noted. On a patient basis, {sup 11}C-choline PET/CT was positive in 3 patients and negative in 12 (detection rate 20 %), and anti-3-{sup 18}F-FACBC PET/CT was positive in 6 patients and negative in 9 (detection rate 40 %). On a lesion basis, {sup 11}C-choline detected 6 lesions (4 bone, 1 lymph node, 1 local relapse), and anti-3-{sup 18}F-FACBC detected 11 lesions (5 bone, 5 lymph node, 1 local relapse). All {sup 11}C-choline-positive lesions were also identified by anti-3-{sup 18}F-FACBC PET/CT. The TBR of anti-3-{sup 18}F-FACBC was greater than that of {sup 11}C-choline in 8/11 lesions, as were image quality and contrast. Our preliminary results indicate that anti-3-{sup 18}F-FACBC may be superior to {sup 11}C-choline for the identification of disease recurrence in the setting of biochemical failure. Further studies are required to assess efficacy of anti-3-{sup 18}F-FACBC in a larger series of prostate cancer patients. (orig.)

  4. Effect of hypoxia on the uptake of [methyl-3H]choline, [1-14C] acetate and [18F]FDG in cultured prostate cancer cells

    International Nuclear Information System (INIS)

    Introduction: Choline, acetate and glucose ([2-18F]fluoro-2-deoxyglucose, [18F]FDG) analogs are under investigation as positron emission tomography (PET) tracers for the imaging of prostate cancer; however, their response to tumor hypoxia has not been clarified. Methods: The uptake of [methyl-3H]choline, [1-14C]acetate and [18F]FDG was monitored in androgen-independent PC-3 cells and androgen-sensitive LNCaP cells under aerobic or anoxic conditions. The effect of androgen depletion was also examined. Results: PC-3 cells exhibited aerobic choline and acetate uptake five to six times higher than FDG uptake, whereas LNCaP cells showed choline uptake 2.2-fold higher than acetate uptake and 10-fold higher than FDG uptake. After 4 h of anoxia, PC-3 cells showed an 85% increase in FDG uptake, a 15% decrease in choline uptake and a 36% increase in acetate uptake, whereas LNCaP cells showed a 212% increase in FDG uptake, a 28% decrease in choline uptake and no change in acetate uptake. Androgen depletion resulted in a marked decrease in the uptake of all tracers in LNCaP cells but no changes in PC-3 cells. Conclusion: In aerobic conditions, both PC-3 and LNCaP cells exhibited an order of uptake preference as follows: choline>acetate>FDG. In hypoxic cells, the order is reversed, reflecting diverse biochemical responses to hypoxia. These findings may help to explain PET imaging findings of the diverse responses of these tracers in different stages and locations of prostate cancer. Androgen depletion markedly suppressed the uptake of all three tracers in LNCaP cells, which suggests the potential for underestimation of the disease state when PET imaging is performed subsequent to antiandrogen therapy

  5. MAP Kinases in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Yongliang Zhang; Chen Dong

    2005-01-01

    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses.

  6. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants.

    Directory of Open Access Journals (Sweden)

    Thomas L Prince

    Full Text Available The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.

  7. Androgen receptor isoforms in human prostatic cancer tissue and LNCaP cell line

    Institute of Scientific and Technical Information of China (English)

    Shu-Jie XIA; Xiao-Da TANG; Qing-Zheng MA

    2001-01-01

    Aim: To investigate the androgen receptor (AR) isoform expressions in human prostatic cancer tissue and LNCaP cell line. Methods: With high resolution isoelectric focusing (IEF) method we demonstrated the different expressions of AR isoforms in human prostatic cancer tissues and LNCaP cell line. Results: Data were obtained from three prostatic cancer specimens and the LNCaP cell line. Three types of AR isoforms were detected with pI values at 6.5,6.0, and 5.3. For the 3 prostatic cancer specimens, 1 sample showed all the three types of AR isoforms, the second specimen expressed at 6.5 and 6.0, and the third failed to show any type of isoforms. The LNCaP cell line expressed all the three AR isoforms. Binding of 3H-dihydrotestosterone (3H-DHT) to these three isoforms was inhibited by the addition ofl00-fold excess of DHT or testosterone, while not by progesterone, oestradiol and diethylstilboestrol. Conclusion: The expression of AR isofonns is different in different prostate cancer tissues, which may be related to the difference in the effect of anti-androgen therapy in different patients.

  8. Dysregulation of miRNA isoform level at 5' end in Alzheimer's disease.

    Science.gov (United States)

    Wang, Shengqin; Xu, Yuming; Li, Musheng; Tu, Jing; Lu, Zuhong

    2016-06-15

    Alzheimer's disease (AD) is the most common form of dementia, whose mechanism is still not yet fully understood. A miRNA-based signature method, commonly according to the changes of expression levels, is widely used for AD analysis in previous studies. Recently, miRNA isoforms called as isomiR variants, which is considered to play important biological roles, have been demonstrated as the applications of high throughput sequencing platforms. Here, we presented an entropy-based model to detect the miRNA isoform level at the 5' end, and found many miRNAs with significant changes of isoform levels between the early stage and the late stage of AD by the application of this model to the public data. The statistical significance of the overlap between isoform-level changed miRNAs and AD related miRNAs extracted from HMDD2 supports that these miRNA isoforms are not degradation products. Based on the most common isomiR seed analysis of isoform-level changed AD related miRNAs, the predicted targets are also found to be enriched for genes involved in transcriptional regulation and the nervous system. After comparing with the expression level based method, we detected that changes of 5' isoform levels are more stable than those of expression levels for AD related miRNA detecting. PMID:26899870

  9. The isolation of parvalbumin isoforms from the tail muscle of the American alligator (Alligator mississipiensis).

    Science.gov (United States)

    Laney, E L; Shabanowitz, J; King, G; Hunt, D F; Nelson, D J

    1997-04-01

    Multiple parvalbumin isoforms have been detected in the tail (skeletal) muscle of the American alligator (Alligator mississipiensis). One of these isoforms (APV-1) has been highly purified and partially characterized. Protein purification involved mainly gel filtration and anion exchange chromatography, and characterization included gel electrophoresis, amino acid composition analysis, metal ion analysis, MALDI-TOF and ESI mass spectrometry, ultraviolet and fluorescence spectroscopy, and one- and two-dimensional 500 MHz proton NMR spectroscopy. The alligator isoforms are rich in phenylalanine and deficient in the other aromatic residues as is typical for parvalbumins. In fact, the one highly purified isoform that forms the basis of this study has only phenyl-alanine as an aromatic residue. Ion exchange chromatography further indicates that this isoform has a relatively high isoelectric point (pl approximately 5.0), indicating that it is an alpha-lineage parvalbumin. This alligator parvalbumin isoform is unusual in that it has an atypically high Ca2+ content (almost 3.0 mole of Ca2+ per mole of protein) following purification, a fact supported by terbium fluorescence titration experiments. Preliminary comparative analysis of the highly purified alligator parvalbumin isoform (in the Ca2-loaded state) by two-dimensional 1H-NMR (2D 1H TOCSY and 2D 1H NOESY) indicates that there is considerable similarity in structure between the alligator protein and a homologous protein obtained from the silver hake (a saltwater fish species). PMID:9076974

  10. Expression and purification of the soluble isoform of human receptor for advanced glycation end products (sRAGE) from Pichia pastoris.

    Science.gov (United States)

    Ostendorp, Thorsten; Weibel, Mirjam; Leclerc, Estelle; Kleinert, Peter; Kroneck, Peter M H; Heizmann, Claus W; Fritz, Günter

    2006-08-18

    RAGE is a multi-ligand receptor involved in various human diseases including diabetes, cancer or Alzheimer's disease. Engagement of RAGE by its ligands triggers activation of key cellular signalling pathways such as the MAP kinase and NF-kappaB pathways. Whereas the main isoform of RAGE is a transmembrane receptor with both extra- and intracellular domains, a secreted soluble isoform (sRAGE), corresponding to the extracellular part only, has the ability to block RAGE signalling and suppress cellular activation. Administration of sRAGE to animal models of cancer or multiple sclerosis blocked successfully tumour growth and the course of the autoimmune disease. These findings demonstrate that sRAGE may have a potential as therapeutic. We present here a fast and simple purification protocol of sRAGE from the yeast Pichia pastoris. The identity of the protein was confirmed by mass spectrometry and Western blot. The protein was N-glycosylated and 95-98% pure as judged by SDS-PAGE. PMID:16806067

  11. The amyloid precursor protein (APP) intracellular domain regulates translation of p44, a short isoform of p53, through an IRES-dependent mechanism.

    Science.gov (United States)

    Li, Mi; Pehar, Mariana; Liu, Yan; Bhattacharyya, Anita; Zhang, Su-Chun; O'Riordan, Kenneth J; Burger, Corinna; D'Adamio, Luciano; Puglielli, Luigi

    2015-10-01

    p44 is a short isoform of the tumor suppressor protein p53 that is regulated in an age-dependent manner. When overexpressed in the mouse, it causes a progeroid phenotype that includes premature cognitive decline, synaptic defects, and hyperphosphorylation of tau. The hyperphosphorylation of tau has recently been linked to the ability of p44 to regulate transcription of relevant tau kinases. Here, we report that the amyloid precursor protein (APP) intracellular domain (AICD), which results from the processing of the APP, regulates translation of p44 through a cap-independent mechanism that requires direct binding to the second internal ribosome entry site (IRES) of the p53 mRNA. We also report that AICD associates with nucleolin, an already known IRES-specific trans-acting factor that binds with p53 IRES elements and regulates translation of p53 isoforms. The potential biological impact of our findings was assessed in a mouse model of Alzheimer's disease. In conclusion, our study reveals a novel aspect of AICD and p53/p44 biology and provides a possible molecular link between APP, p44, and tau. PMID:26174856

  12. Coimmobilization of acetylcholinesterase and choline oxidase on gold nanoparticles: stoichiometry, activity, and reaction efficiency.

    Science.gov (United States)

    Keighron, Jacqueline D; Åkesson, Sebastian; Cans, Ann-Sofie

    2014-09-30

    Hybrid structures constructed from biomolecules and nanomaterials have been used in catalysis and bioanalytical applications. In the design of many chemically selective biosensors, enzymes conjugated to nanoparticles or carbon nanotubes have been used in functionalization of the sensor surface for enhancement of the biosensor functionality and sensitivity. The conditions for the enzyme:nanomaterial conjugation should be optimized to retain maximal enzyme activity, and biosensor effectiveness. This is important as the tertiary structure of the enzyme is often altered when immobilized and can significantly alter the enzyme catalytic activity. Here we show that characterization of a two-enzyme:gold nanoparticle (AuNP) conjugate stoichiometry and activity can be used to gauge the effectiveness of acetylcholine detection by acetylcholine esterase (AChE) and choline oxidase (ChO). This was done by using an analytical approach to quantify the number of enzymes bound per AuNP and monitor the retained enzyme activity after the enzyme:AuNP synthesis. We found that the amount of immobilized enzymes differs from what would be expected from bulk solution chemistry. This analysis was further used to determine the optimal ratio of AChE:ChO added at synthesis to achieve optimum sequential enzyme activity for the enzyme:AuNP conjugates, and reaction efficiencies of greater than 70%. We here show that the knowledge of the conjugate stoichiometry and retained enzyme activity can lead to more efficient detection of acetylcholine by controlling the AChE:ChO ratio bound to the gold nanoparticle material. This approach of optimizing enzyme gold nanoparticle conjugates should be of great importance in the architecture of enzyme nanoparticle based biosensors to retain optimal sensor sensitivity. PMID:25167196

  13. Effect of temperature on the photobehavior of Rose Bengal associated with dipalmitoylphosphatidyl choline liposomes

    International Nuclear Information System (INIS)

    The association and photobehavior of Rose Bengal (RB) in the presence of dipalmitoylphosphatidyl choline (DPPC) small unilamellar liposomes is determined by the temperature. At temperatures above the main phase transition of the bilayer, the incorporation of the dye is ca. 2.5 times more efficient than that taking place when the bilayer is in the gel state. In both temperature ranges, adsorption isotherms show a noticeable anti-cooperativity that can be related to electrostatic repulsion between bound molecules. The photophysics and the photochemistry of the bound dye molecules also depend on the bilayer status. In particular, in the liquid crystalline state the surrounding of the dye is more polar and production of singlet oxygen is less efficient (Φ∼0.1). This reduced singlet oxygen production is partially due to a low triplet yield (ΦT=0.35) and triplet self-quenching due to a high local RB concentration. In spite of these, tryptophan is efficiently photobleached when RB is associated to liposomes in the liquid crystalline state, probably due to a Type I mechanism favored by its high local concentration in the sensitized surroundings. - Highlights: → Association and photobehavior of RB in presence of DPPC liposomes is determined by the temperature. → Above the main phase transition the incorporation of the dye is ca. 2.5 times more efficient than in the gel state. → In the liquid crystalline state the surrounding of the dye is more polar and production of 1O2 is less efficient than in the gel state.

  14. Changes of dipalmitoyl phosphatidyl choline after mechanical ventilation in patients with acute cerebral injury

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei-dong; ZHOU Dao-yang; YANG Yun-mei; XU Zhe-rong; SHEN Mei-ya; SU Wei

    2006-01-01

    Objective: To detect the levels of dipalmitoyl phosphatidyl choline (DPPC) in the sputum of the patients with acute cerebral injury without primary pulmonary injury after mechanical ventilation treatment.Methods: DPPC levels in sputum of 35 patients with acute cerebral injury but without pulmonary injury were detected with high performance liquid chromatography at the beginning of ventilation and 16-20 days, 21-40 days,and 41-60 days after ventilation, respectively.Results: There was no significant difference of the DPPC levels between 16-20 days after ventilation (3.36 ±0.49) and at the beginning of ventilation ( 3.37 ± 0.58 )(P>0.05). The mean levels of DPPC decreased significantly at 21-40 days (2.87 mg/ml ±0.26 mg/ml, P <0.05) and 41-60 days (1.93 mg/ml ±0.21 mg/ml, P <0.01) after ventilation compared with that at the beginning of ventilation. At the same period, the peak inspiratory pressure and the mean pressure of airway increas ed significantly, whereas the static compliance and the partial pressure of oxygen in artery decreased significantly. Among the 25 patients who received ventilation for more than 20days, 8 (32%) had slightly-decreased partial pressure of oxygen in artery compared with that at the beginning of ventilation.Conclusions: Mechanical ventilation can decrease the DPPC levels, decrease the lung compliance and increase the airway pressure, even impair the oxygenation function in patients with acute cerebral injury. Abnormal DPPC is one of the major causes of ventilator-associated lung injury.

  15. Translational control of protein kinase Ceta by two upstream open reading frames.

    Science.gov (United States)

    Raveh-Amit, Hadas; Maissel, Adva; Poller, Jonathan; Marom, Liraz; Elroy-Stein, Orna; Shapira, Michal; Livneh, Etta

    2009-11-01

    Protein kinase C (PKC) represents a family of serine/threonine kinases that play a central role in the regulation of cell growth, differentiation, and transformation. Posttranslational control of the PKC isoforms and their activation have been extensively studied; however, not much is known about their translational regulation. Here we report that the expression of one of the PKC isoforms, PKCeta, is regulated at the translational level both under normal growth conditions and during stress imposed by amino acid starvation, the latter causing a marked increase in its protein levels. The 5' untranslated region (5' UTR) of PKCeta is unusually long and GC rich, characteristic of many oncogenes and growth regulatory genes. We have identified two conserved upstream open reading frames (uORFs) in its 5' UTR and show their effect in suppressing the expression of PKCeta in MCF-7 growing cells. While the two uORFs function as repressive elements that maintain low basal levels of PKCeta in growing cells, they are required for its enhanced expression upon amino acid starvation. We show that the translational regulation during stress involves leaky scanning and is dependent on eIF-2alpha phosphorylation by GCN2. Our work further suggests that translational regulation could provide an additional level for controlling the expression of PKC family members, being more common than currently recognized. PMID:19797084

  16. Isoform-specific upregulation of palladin in human and murine pancreas tumors.

    Directory of Open Access Journals (Sweden)

    Silvia M Goicoechea

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is a lethal disease with a characteristic pattern of early metastasis, which is driving a search for biomarkers that can be used to detect the cancer at an early stage. Recently, the actin-associated protein palladin was identified as a candidate biomarker when it was shown that palladin is mutated in a rare inherited form of PDA, and overexpressed in many sporadic pancreas tumors and premalignant precursors. In this study, we analyzed the expression of palladin isoforms in murine and human PDA and explored palladin's potential use in diagnosing PDA. We performed immunohistochemistry and immunoblot analyses on patient samples and tumor-derived cells using an isoform-selective monoclonal antibody and a pan-palladin polyclonal antibody. Immunoblot and real-time quantitative reverse transcription-PCR were used to quantify palladin mRNA levels in human samples. We show that there are two major palladin isoforms expressed in pancreas: 65 and 85-90 kDa. The 65 kDa isoform is expressed in both normal and neoplastic ductal epithelial cells. The 85-90 kDa palladin isoform is highly overexpressed in tumor-associated fibroblasts (TAFs in both primary and metastatic tumors compared to normal pancreas, in samples obtained from either human patients or genetically engineered mice. In tumor-derived cultured cells, expression of palladin isoforms follows cell-type specific patterns, with the 85-90 kDa isoform in TAFs, and the 65 kDa isoform predominating in normal and neoplastic epithelial cells. These results suggest that upregulation of 85-90 kDa palladin isoform may play a role in the establishment of the TAF phenotype, and thus in the formation of a desmoplastic tumor microenvironment. Thus, palladin may have a potential use in the early diagnosis of PDA and may have much broader significance in understanding metastatic behavior.

  17. Myosin isoform fiber type and fiber size in the tail of the Virginia opossum (Didelphis virginiana).

    Science.gov (United States)

    Hazimihalis, P J; Gorvet, M A; Butcher, M T

    2013-01-01

    Muscle fiber type is a well studied property in limb muscles, however, much less is understood about myosin heavy chain (MHC) isoform expression in caudal muscles of mammalian tails. Didelphid marsupials are an interesting lineage in this context as all species have prehensile tails, but show a range of tail-function depending on either their arboreal or terrestrial locomotor habits. Differences in prehensility suggest that MHC isoform fiber types may also be different, in that terrestrial opossums may have a large distribution of oxidative fibers for object carrying tasks instead of faster, glycolytic fiber types expected in mammals with long tails. To test this hypothesis, MHC isoform fiber type and their regional distribution (proximal/transitional/distal) were determined in the tail of the Virginia opossum (Didelphis virginiana). Fiber types were determined by a combination of myosin-ATPase histochemistry, immunohistochemistry, and SDS-PAGE. Results indicate a predominance of the fast MHC-2A and -2X isoforms in each region of the tail. The presence of two fast isoforms, in addition to the slow MHC-1 isoform, was confirmed by SDS-PAGE analysis. The overall MHC isoform fiber type distribution for the tail was: 25% MHC-1, 71% MHC-2A/X hybrid, and 4% MHC-1/2A hybrid. Oxidative MHC-2A/X isoform fibers were found to be relatively large in cross-section compared to slow, oxidative MHC-1 and MHC-1/2A hybrid fibers. A large percentage of fast MHC-2A/X hybrids fibers may be suggestive of an evolutionary transition in MHC isoform distribution (fast-to-slow fiber type) in the tail musculature of an opossum with primarily a terrestrial locomotor habit and adaptive tail-function. PMID:23152195

  18. PML isoforms in response to arsenic: high-resolution analysis of PML body structure and degradation.

    Science.gov (United States)

    Hands, Katherine J; Cuchet-Lourenco, Delphine; Everett, Roger D; Hay, Ronald T

    2014-01-15

    Arsenic is a clinically effective treatment for acute promyelocytic leukaemia (APL) in which the promyelocytic leukaemia (PML) protein is fused to retinoic receptor alpha (RARα). PML-RARα is degraded by the proteasome by a SUMO-dependent, ubiquitin-mediated pathway in response to arsenic treatment, curing the disease. Six major PML isoforms are expressed as a result of alternative splicing, each of which encodes a unique C-terminal region. Using a system in which only a single EYFP-linked PML isoform is expressed, we demonstrate that PMLI, PMLII and PMLVI accumulate in the cytoplasm following arsenic treatment, whereas PMLIII, PMLIV and PMLV do not. 3D structured illumination was used to obtain super-resolution images of PML bodies, revealing spherical shells of PML along with associated SUMO. Arsenic treatment results in dramatic isoform-specific changes to PML body ultrastructure. After extended arsenic treatment most PML isoforms are degraded, leaving SUMO at the core of the nuclear bodies. A high-content imaging assay identifies PMLV as the isoform most readily degraded following arsenic treatment, and PMLIV as relatively resistant to degradation. Immunoprecipitation analysis demonstrates that all PML isoforms are modified by SUMO and ubiquitin after arsenic treatment, and by using siRNA, we demonstrate that arsenic-induced degradation of all PML isoforms is dependent on the ubiquitin E3 ligase RNF4. Intriguingly, depletion of RNF4 results in marked accumulation of PMLV, suggesting that this isoform is an optimal substrate for RNF4. Thus the variable C-terminal domain influences the rate and location of degradation of PML isoforms following arsenic treatment. PMID:24190887

  19. Isolation of chloroplastic phosphoglycerate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Macioszek, J.; Anderson, L.E. (Univ. of Illinois, Chicago (USA)); Anderson, J.B. (Pennsylvania State Univ., University Park (USA))

    1990-09-01

    We report here a method for the isolation of high specific activity phosphoglycerate kinase (EC 2.7.2.3) from chloroplasts. The enzyme has been purified over 200-fold from pea (Pisum sativum L.) stromal extracts to apparent homogeneity with 23% recovery. Negative cooperativity is observed with the two enzyme phosphoglycerate kinase/glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) couple restored from the purified enzymes when NADPH is the reducing pyridine nucleotide, consistent with earlier results obtained with crude chloroplastic extracts. Michaelis Menten kinetics are observed when 3-phosphoglycerate is held constant and phosphoglycerate kinase is varied, which suggests that phosphoglycerate kinase-bound 1,3-bisphosphoglycerate may be the preferred substrate for glyceraldehyde-3-P dehydrogenase in the chloroplast.

  20. Protein Crystals of Raf Kinase

    Science.gov (United States)

    1995-01-01

    This image shows crystals of the protein raf kinase grown on Earth (photo a) and on USML-2 (photo b). The space-grown crystals are an order of magnitude larger. Principal Investigator: Dan Carter of New Century Pharmaceuticals